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Abstract

Pricing Asian options based on the arithmetic average, under the Black and Sc-
holes model, involves estimating an integral (a mathematical expectation) for which
no analytical solution is available. Pricing their American-style counterparts, which
provide early exercise opportunities, poses the additional difficulty of solving a dy-
namic optimization problem to determine the optimal exercise strategy. We develop
a numerical method for pricing American-style Asian options based on dynamic pro-
gramming combined with finite-element piecewise-polynomial approximation of the
value function. Numerical experiments show convergence, consistency, and efficiency.
Some theoretical properties of the value function and of the optimal exercise strategy
are also established.

Keywords: Option pricing, Asian Options, Path-dependent options, American Op-
tions, Dynamic Programming, Piecewise Polynomials.

Résumé

Il n’existe pas de solution analytique a 1’évaluation d’options asiatiques basées sur
une moyenne arithmétique de prix échantillonnés de facon discréte et obéissant a un
processus de diffusion selon le modele de Black et Sholes. L’évaluation de l’option
américaine correspondante (pouvant étre exercées avant ’échéance) pose le probléeme
additionnel de la détermination de la stratégie d’exercice optimale.

Nous présentons une méthode numérique pour 1’évaluation d’options asiatiques
américaines qui est basée sur la programmation dynamique combinée & une méthode
d’approximation de la fonction valeur par une fonction polynomiale par morceaux.

Les essais numériques montrent que la méthode proposée est convergente, cohérente
et efficace.

Des propriétés théoriques de la fonction valeur ainsi que de la frontiére d’exercice
sont également établies.
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work was done while M. Breton was a visiting professor at ITAM, México, and while
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1 Introduction

A financial derivative is a contract which provides its holder a future payment that depends
on the price of one or more primitive asset(s), such as stocks or commodities. In a friction-
less market, the no-arbitrage principle allows one to express the value of a derivative as
the mathematical expectation of its expected discounted future payment, with respect to a
so-called risk-neutral probability measure. Options are particular derivatives characterized
by non-negative payoffs. European-style options can be exercised at the expiration date
only, whereas American-style ones offer early exercise opportunities to the holder.

For simple cases, such as for European call and put options written on a stock whose
price is modeled as a geometric Brownian motion, as studied by Black and Scholes (1973),
analytic formulas are available for the fair price of the option. For more complicated
derivatives, however, which may involve multiple assets, complex payoff functions, possi-
bilities of early exercise, stochastic time-varying model parameters, etc., analytic formulas
are unavailable. These derivatives are usually priced either via Monte Carlo simulation or
via numerical methods. (e.g., Boyle, Broadie, and Glasserman 1997, Hull 1993, Wilmott,
Dewynne, and Howison 1993, and other references given there).

An important class of options for which no analytic formula is available even under the
standard Black-Scholes (BS) model is the class of Asian options, for which the payoff is
a function of the arithmetic average of the price of a primitive asset over a certain time
period. These options are often used for protection against brutal and unexpected changes
of prices. An Asian option can hedge the risk exposure of a firm that sells or buys certain
types of resources (raw materials, energy, foreign currency, etc.), on a regular basis over
some period of time. Since the average is in general less volatile than the underlying
asset price itself, these contracts are less expensive than their standard versions. Asian
options are heavily traded over-the-counter and, because of the possible lack of depth
of these markets, their theoretical values often need to be computed on-the-fly for fair
negotiations.

Asian options come in various flavors. For example, the average can be arithmetic or
it can be geometric. One talks of a plain vanilla Asian option if the average is computed
over the full trading period, and a backward-starting option if it is computed over a right
subinterval of the trading period. This interval usually has a fixed starting point in time.
The Asian option can be fized-strike (if the strike price is a fixed constant) or floating-strike
(if the strike is itself an average). It is called flexible when the payoff is a weighted average,
and equally weighted when all the weights are equal. The prices are discretely sampled if
the payoff is the average of a discrete set of values of the underlying asset (observed at
discrete epochs), and continuously sampled if the payoff is the integral of the asset value
over some time interval, divided by the length of that interval. The options considered in
this paper are the most common: Fized-strike, equally-weighted, discretely-sampled Asian
options based on arithmetic averaging. Our method could also be adapted to price other
kinds of discretely-sampled Asian options.
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European-style Asian (Eurasian) options can be exercised at the expiration date only,
whereas American-style ones (named Amerasian) offer earlier exercise opportunities, which
may become attractive intuitively when the current asset price is below the current running
average (i.e., is pulling down the average) for a call option, and when it is above the running
average for a put. Here, we focus on Amerasian call options, whose values are harder to
compute than the Eurasian ones, because an optimization problem must be solved at the
same time as computing the mathematical expectation giving the option’s value.

There is an extensive literature on the pricing of Eurasian options. In the context of
the BS model, there is a closed-form analytic solution for the value of discretely-sampled
Eurasian options only when they are based on the geometric average (Turnbull and Wake-
man 1991, Zhang 1995). The idea is that under the BS model, the asset price at any
given time has the lognormal distribution, and the geometric average of lognormals is a
lognormal. Geman and Yor (1993) used Bessel processes and derived exact formulas for
the Laplace transform of the value of a continuous-time Eurasian option. For options
based on the arithmetic average, solution approaches include quasi-analytic approxima-
tion methods based on Fourier transforms, Edgeworth and Taylor expansions, and the
like (e.g., Bouaziz, Briys, and Crouhy 1994, Carverhill and Clewlow 1990, Curran 1994,
Levy 1992, Ritchken, Sankarasubramanian, and Vijh 1993, Turnbull and Wakeman 1991),
methods based on partial differential equations (PDEs) and their numerical solution via
finite-difference techniques (e.g., Alziary, Décamps, and Koehl 1997, Rogers and Shi 1995,
Zvan, Forsyth, and Vetzal 1998), and Monte Carlo simulation coupled with variance-
reduction techniques (e.g., Glasserman, Heidelberger, and Shahabuddin 1999, Kemna and
Vorst 1990, Lemieux and L’Ecuyer 1998, Lemieux and L’Ecuyer 1999).

Techniques for pricing Amerasian options are surveyed by Barraquand and Pudet
(1996), Grant, Vora, and Weeks (1997), and Zvan, Forsyth, and Vetzal (1998). For contin-
uously sampled prices, Zvan, Forsyth, and Vetzal (1998) have developed stable numerical
PDE methods techniques adapted from the field of computational fluid dynamics. These
PDE methods do not apply to discretely sampled prices. Hull and White (1993) have
adapted binomial lattices (from the binomial tree model of Cox, Ross, and Rubinstein
1979, the so-called CRR model) to the pricing of Amerasian options, and this work has
been refined by Chalasani et al. (1999), but these methods are based on very simplified
models and remain limited in their application. Moreover, these tree-based approaches do
not give a clear insight on the optimal exercising region. Broadie and Glasserman (1997a)
proposed a simulation method based on nonrecombining trees in the lattice model, and
which produces two estimators of the option value, one with positive bias and one with
negative bias. By taking the union of the confidence intervals corresponding to these two
estimators, one obtains a conservative confidence interval for the true value. The prob-
lem with their approach, however, is that the work and space requirements explode very
quickly (exponentially) with the number of exercise opportunities. Broadie and Glasserman
(1997b) then developed a simulation-based stochastic mesh method which accommodates
a large number of exercise dates and high-dimensional American options. Their method
appears adaptable to Amerasian options, although this is not the route we take here.
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Pricing American-style options is naturally formulated as a Markov Decision process,
i.e., a stochastic dynamic programming (DP) problem, as pointed out by Barraquand and
Martineau (1995) and Broadie and Glasserman (1997b), for example. The DP wvalue func-
tion expresses the value of an Amerasian option as a function of the current time, current
price, and current average. This value function satisfies a DP recurrence (or Bellman equa-
tion), written as an integral equation. Solving this equation yields both the option value
and the optimal exercise strategy. For a general overview of stochastic DP, we refer the
reader to Bertsekas (1987).

In this paper, we write the DP equation for Amerasian options under the BS model.
Using this equation, we prove by induction certain properties of the value function and
of the optimal ezercise frontier (which delimits the region where it is optimal to exercise
the option). We then propose a numerical solution approach for the DP equation, based
on piecewise bilinear interpolation over rectangular finite elements. This kind of approach
has been used in other application contexts, e.g. by Haurie and L'Ecuyer (1986), L’Ecuyer
and Malenfant (1988). In fact, we reformulate the DP equation in a way that simplifies
significantly the numerical integration at each step. This is a key ingredient for improv-
ing the efficiency of the procedure. Convergence and consistency of the method, as the
discretization gets finer, follows from the monotonicity properties of the value function.
Numerical experiments indicate that the method is competitive and efficient; it provides
precise results in a reasonable computing time. It could also be easily adapted to price most
low-dimensional American-style products such as calls with dividends, puts, and lookback
options.

The idea of this paper came after reading Grant, Vora, and Weeks (1997). These
authors also formulate the problem of pricing an Amerasian option in the dynamic pro-
gramming framework, but use Monte Carlo simulation to estimate the value function at
each point of some discretization of the state space, and identify a “good” exercise frontier
by interpolation. Their estimate of the value function at the initial date is an estimate of
the option value. These authors also propose to restrict the strategy of exercise to a class
of suboptimal rules where the exercise frontier is approximated by two linear segments,
at each date of exercise opportunity. They observed on a few numerical examples that
restricting the class of strategies in this way did not seem to diminish the value of the
option significantly, but they provided no proof that is true in general.

Here, we suggest replacing simulation at both stages by numerical integration, which
is obviously less noisy, and we do not assume a priori a shape of the exercise frontier. For
both the simulation approach and our approach, an approximation of the value function
must be memorized, so the storage requirement is essentially the same for the two methods.

The rest of the paper is organized as follows. Section 2 presents the model and notation.
In Section 3, we develop the DP formulation. In Section 4, we establish certain properties
of the value function and of the optimal region of exercise. Our numerical approximation
approach is detailed in Section 5. In Section 6, we report on numerical experiments.
Section 7 is a conclusion.
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2 Model and notation

2.1 Evolution of the Primitive Asset

We assume a single primitive asset whose price process {S(t), t € [0,7]} is a Geometric
Brownian Motion, in a world that satisfies the standard assumptions of Black and Scholes
(1973). Under these assumptions (see, e.g., Duffie 1996), there is a probability measure
Q called risk-neutral, under which the primitive asset price S(-) satisfies the stochastic
differential equation

dS(t) = rS(t)dt + oS(t)dW (t), for 0<t<T, (1)

where S(0) > 0, r is the risk-free rate, o is the volatility parameter, T' is the maturity date,
and {W(t), t € [0,T]} is a standard Brownian motion. The solution of (1) is given by

S(t") = S(t")ert" )W) -WE)] - for 0 < ¢! <" < T, (2)

where 4 = r — 02/2. An important feature is that the random variable S(t")/S(t")
is lognormal with parameters u(t" — t') and ov/t" —t', and independent of the o-field
F(t') = o{S(t), t €[0,t']}, i.e., of the trajectory of S(¢) up to time ¢'. This follows
from the independent-increments property of the Brownian motion. In addition, from the
no-arbitrage property of the BS model, the discounted price of the primitive asset is a
Q-martingale:

p(t"S(t") = E [pt")S{t") | F(')], for0 <t <t"<T, (3)

where {p(t) = e™" t € [0,T]} is the discount factor process and E is (all along this paper)
the expectation with respect to ). Details about risk-neutral evaluation can be found in
Duffie (1996).

2.2 The Amerasian Contract

We consider a model similar to that of Grant, Vora, and Weeks (1997). Let 0 =ty < t; <
to < --- < t, =T be a fixed sequence of observation dates, where T is the time horizon,
and let m* be an integer satisfying 1 < m* < n. The ezxercise opportunities are at dates
tm, for m* < m < n. If the option is exercised at time t,,, the payoff of the Amerasian
call option is (S, — K)* def max(0, S, — K), where S,,, = (S(t1) + --- + S(tm))/m is the
arithmetic average of the asset prices at the observation dates up to time ¢,,. This model
is quite flexible. For n = 1, we get a standard European call option. For m* =n > 1, we
have an Eurasian option. Here, we are not really interested in these degenerate cases, but
in the case where m* < n. To simplify the exposition we will assume that the observation
dates are equally spaced: t; —t; 1 = h for ¢t = 1,...,n, for some constant h.



Les Cahiers du GERAD G-99-39 5

3 The Dynamic Programming Formulation

3.1 Value Function and Recurrence Equations

For m = 0,...,n, denote by v,,(s,3) the value of the option at the observation date t,,
when S(t,,) = s and S, = 5, assuming that the decisions of exercising the option or not,
from time t,, onwards, are always made in an optimal way (i.e., in a way that maximizes
the option value). This optimal value is a function of the state variables (s,s) and of the
time t,,. We take the state space as [0,00)? for convenience, although at each time step,
only a subset of this space is reachable: Since S(-) is always positive, at time ¢,, one must
have s =s >0ifm=1and s > s/m > 0if m > 1. At time t,, v,(s,5) = v,(5) does
not depend on s, whereas at time ¢, 3 is just a dummy variable in vy(s) = vo(s,s), which
depends only on s.

At time t,,, if S(t,) = s and S,, =3, the ezercise value of the option (for m > m*) is
() = (- K)*, (4)

whereas the holding value (i.e., the value of the option if it is not exercised at time t,, and
if we follow an optimal exercise strategy thereafter) is

(5,5) = p Eoss[v1(S(t1), S(t1))] if m =0,
) pEm,s,E [Um+1(S(tm+1),(m§+S(tm+1))/(m+ 1))] lf]- S m S n — ]-,
(5)
where E, ;5[] represents the conditional expectation E[- | F(tm), S(tm) = s, Sm = 3],

and p = e ™" is the discount factor over the period [t,tm+1]. This v% (s,3) is the (condi-
tional) expected value of the option at time ¢,,,1, discounted to time t,,.

h
Um,

The optimal value function obeys the following recurrence:

ol (s,3) if0 <m<m* -1,
O (8,3) = { max{v,(3), vk (5,3} ifm*<m<n-—1, (6)
vE,(3) if m=n.

The optimal exercise strategy is defined as follows: In state (s,3) at time ¢,,, for m* < m <
n, exercise the option if v¢,(3) > v (s,3), and hold it otherwise. The value of the Amerasian
option at the initial date ¢, under an optimal exercise strategy, is vo(s) = vo(s,5). The
functions v, v,f;l, and v, are defined over the entire state space [0, 00)? for all m, via the
above recurrence equations, even if we know that part of the state space is not reachable.

(We do this to simplify the notation and to avoid considering all sorts of special cases.)

The natural way of solving (6) is via backward iteration: jFrom the known function v,
and using (4)—(6), compute the function v,_1, then from v,_; compute v,_s, and so on,
down to vg. Here, unfortunately, the functions v, for m < n — 2 cannot be obtained in
closed form (we will give a closed-form expression for v,_; in a moment), so they must
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be approximated in some way. We propose a way of doing this in Section 5. Notice that
these functions are defined over an unbounded continuous state space (there is no upper
bound on s and 5). In the next section, we establish some properties of v, and of the
optimal strategy of exercise, which are interesting per se and are also useful for analyzing
the numerical approximation techniques.

4 Characterizing the Value Function and the Optimal Strategy

4.1 The Value Function v,_1

Recall that the value function v, at the horizon T' = ¢, has the simple form v,(s,s) =
(s — K)*. We now derive a closed-form expression for the value function at time ¢,_1, the
last observation date before the horizon. We assume that 1 < m* < n — 1 (otherwise one
has v, 1 = v?_; and the argument simplifies). From (5) we have

oy (5,5) = pEn1,33[((”‘1’”5“">—K)+] = LBy 15 [(S(0) - B)'],

n

where K = nK — (n — 1)3.
We first consider the case where K < 0, i.e., 3 > Kn/(n — 1). The holding value can
then be derived from (3) as the linear function

. — -1
,Ulln(s,g) — i _ BK — i + pn g — pK,
n n n n

and the exercise value equals s — K > 0. One can easily identify the frontier of the optimal
region of exercise by comparing this exercise value with the holding value v, and thus
obtain an explicit expression for the value function. Consider the line defined in the (s,3)
plane by 3 — K = v!"(s,3), that is,

s—(n—(m—-1)p)s+nK(l—-p)=0. (7)

The optimal strategy here is: Exercise the option if and only if (s,3) is above the line (7).
This line passes through the point (K, K)n/(n—1) and has a slope of 1/(n—(n—1)p) < 1,
so it is optimal to exercise for certain pairs (s,S) with s > 5, a possibility which was
neglected by Grant, Vora, and Weeks (1997). The intuition behind this optimal strategy
is that for sufficiently large 5 and for s <'s, the average price will most likely decrease in
the future (it is pressured down by the current value), so it is best to exercise right away.

We now consider the case K > 0, i.e., 3 < Kn/(n — 1). In this case, the holding value
is equivalent to the value of an European call option under the BS model, with strike price
K, initial price s for the primitive asset, maturity horizon T' — t,_1 = h, volatility o, and
risk-free rate r. This value is given by the well-known solution:

v35(s,3) = % (@(dl)s — pK®(dy — a\/ﬁ))
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where
In(s/K) + (r + 02/2)h

ovh

and ® denotes the standard normal distribution function. If 5 < K| one must clearly hold
the option since the exercise value is 0. For s > K, the exercise frontier is obtained by
comparing v®5(s,5) with § — K, similar to what we did for the case where K < 0. We
have now completely identified the optimal exercise strategy at time ¢, 1.

dy =

We could (in principle) compute an expression for v,_2 by placing our expression for
vp—1 in the DP equations (5) and (6), although this becomes quite complicated. The
functions v, and v,_1 are obviously continuous, but are not differentiable (v, is not differ-
entiable with respect to 3§ at 3 = K). These functions are also monotone non-decreasing
with respect to both s and 5. Finally, the optimal exercise region at ¢,_; is the epigraph
of some function ¢, _1, i.e., the region where 3 > ¢,,_1(s), where ¢,_1(s) is defined as the
value of 5 such that v?_;(s,3) =3 — K. In the next subsection, we show that these general
properties hold as well for v,,, for m < n — 1.

4.2 General Properties of the Value Function and of the Exercise Frontier

We now prove certain monotonicity and convexity properties of the value function at each
step, and use these properties to show that the optimal strategy of exercise at each step
is characterized by a function ¢, whose graph partitions the state space in two pieces: If
3 > pm(s) it is optimal to exercise the option now, whereas if 3 < ¢, (s) it is optimal to
hold it for at least another step. One consequence of the next proposition is that at any
time before the final exercise date, the value of the option is always strictly positive.

PROPOSITION 1. At each observation date t,,, for 1 < m < n, the holding value vfn(s,E)
18 a continuous, strictly positive, strictly increasing, and conver function of both s and s,
for s >0 and s > 0. The function vy(s) enjoys the same properties as a function of s, for
s > 0. For 1 < m < n, the value function vy, (s,S) also has these properties except that it
is only non-decreasing (instead of strictly increasing) in s.

PrROOF. The proof proceeds by backward induction on m. At each step, we define the
auxiliary random variable 7,;, = S(t;41)/S(¢m), which has the lognormal distribution with
parameters ph and ov/h, independently of F(t,,), as in (2). A key step in our proof will
be to write the holding value v” (s,3) as a convex combination of a continuous family of
well-behaved functions indexed by 7,,,. We will simply denote 7,,, by 7 at any given step.

For m = n — 1, the holding value is

vh 1(s,8) = pBEn_1s5[vn (Sn)] = p/ooo (m —K>+f(7)d7,

n

where f is the density function of 7. The integrand is continuous and bounded by an
integrable function of 7 over any bounded interval for s and 5. Therefore the holding
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value ”2—1 is also continuous by Lebesgue’s dominated convergence theorem (Billingsley

1986). The integral is strictly positive because, for instance, the lognormal distribution
always gives a strictly positive measure to the event {(n — 1)s + s7 — nK > n}, on which
the integrand is > 1.

To show that v?_;(s,3) is strictly increasing in 3, let 3> 0 and § > 0. One has
02—1(5,3 + 5) - 1}2_1(8,5)

_ p/0°° [((n—l)(§+5)+s7' _K>+_ ((n—1)§+s7- _K>+] fos

n

> p/(oo [(n—l)(§+6)+sr (n—1)§+sr]

nK—(n—1)51)/s n n

> (n_1>5 > 0.
n

The same argument can be used to prove that v
convexity of v

h_.(s,3) is strictly increasing in s. The
r_1(s,5) follows from the fact that this function is a positively weighted
average (a convex combination), over all positive values of 7, of the values of ((n — 1)s +
s7)/n — K)*, which are (piecewise linear) convex functions of s and 5 for each 7.

Since the holding function is continuous and strictly positive, the value function
vn-1(5,5) = max (5 — K)*, v _(s,%))

is also continuous and strictly positive. It is also convex, non-decreasing in s, and strictly
increasing in 3. (The maximum can be reached at (s — K)* only if 5 > K, since the
function is strictly positive.)

We now assume that the result holds for m + 1, where 1 < m < n — 2, and show that
this implies that it holds for m. The holding value at t,, is

v%(s, 3) = pEmss[vmii(sT,(ms+s7)/(m+1))]
. / vms1(s7, (m3 + 57),/(m + 1)) £ (7)dr. (8)

where f is again the lognormal density of 7 = 7,,,. Since the integrand is continuous, strictly

positive, and bounded by an integrable function of 7 over every bounded interval for s and

3, the function v? (s,3) is also continuous and strictly positive. The other properties can

be proved via similar arguments as for the case of m = n — 1. The proof for vy is also
similar as for m > 0. We omit the details. [ |

LEMMA 2. For s > 0 and 0 <51 < 83, one has
vl (5,32) — vl (5,51) < Fo — 51 fort1<m<n (9)
and

Um(8,82) — vm(s,51) <52 — 51 for 1 <m <n. (10)
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ProOOF. The proof proceeds again by backward induction on m. We will use the property
that b© —a* < b—a when a < b. For m = n, we have v,(s,32) — v,(s,31) = (582 — K)© —
(51 — K)T <33 — 31, so (10) holds for m = n. We now assume that (10) holds for m + 1,
where m < n, and show that this implies (9) and (10) for m. From (8), we have

2 S 81)

ol (
m
mso + ST msy + ST
= / (Um+]_ (57', o] ) — Uma1 <s7', TH)) f(rydr
/ (msz +sT  m3y +sT

— > f(r)dr

<
- m—+ 1 m—+ 1

89 — S < 83— 8§
+12 1) 2 1-

Moreover, Ufn(gg) - Ufn(gl) = (52 — K)+ - (§1 — K)+ <33 —51. Now,

Um(8,52) — Um(s,51) = max(ve,(32), v1(s,32)) — max(ve, (1), vl (s,31))
< max(vy, (52) — v5, (1), v (s,52) — v (s,51))
< S2—-35
This completes the proof. |
PROPOSITION 3. For m =m®*,... ,n— 1, there exists a continuous, strictly increasing,

and convex function ¢, : (0,00) — (K, 00) such that

> v (8)  for 3 < pm(s)
v%(s,?) =05, (3)  fors = pn(s) (11)
<vp(3)  for3> pm(s)

PROOF. Let s >0 and m* < m < n— 1. We know from Proposition 1 and Lemma 2 that
v (s,3) is always strictly positive and increasing in 3, with a growth rate always strictly
less than 1. On the other hand, v, (5) = (s — K)* is 0 for s < K and increases at rate 1
for s > K. Therefore, there is a unique value of 3 > K, denoted ¢,,(s), such that (11) is
satisfied.

To show that ¢, is strictly increasing, let 0 < s1 < so. We have

om(s2) — om(s1)
vl (s2,0m(s2)) — vl (51, om(s51))
= P (52, 0m(52)) — Vi (51, 0m(51)) + Vi (51, Pm(52)) — v (51, om(s2)).  (12)
If o (81) > ©m(s2), combining (12) with the inequality v;‘z(sl, ©m(s2)) —vz‘z(sl, em(s1)) >

©m(52) — @m(s1), we obtain v” (s2, om(s2)) — v (51, ¢0m(s2)) < 0, a contradiction since
v (5,3) is non-decreasing in s. Therefore, ¢, (s) is strictly increasing in s.
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Now consider sy = As1+(1—X)sz and @ (s)x = Apm(s1)+(L—=N)@m(s2), for 0 < A < 1.
To show that ¢, is convex, it suffices to show that ¢.,(s) < @m(s)a. Since !, is convex,

vm(s382) < Avp(s1, pm(s1)) + (1= A)vp, (2, pm(s2))
= AMepm(s1) = K) + (1 = A) (pm(s2) — K)
= Som(s))\ - K.

Suppose that @,,(sx) > 3x. Then, by Lemma 2,

vp(sx, om(sh)) < vl(sx, 0m(8)2) + @m(sx) — em(s)r < @m(sy) — K,

a contradiction. Therefore, ¢,,(s) is convex in s, which implies that it is also continuous.
|

For m = m*,... ;,n—1, we define the (optimal) ezercise frontier at time t,, as the graph
of ¢, i.e., the locus of points (s, 3) such that v” (s,5) = v%,(5). The function @y, (s) is the
optimal ezercise function and its epigraph is the (optimal) exercise region. It is optimal
to exercise the option at time t,, if 3 > ¢, (s), and hold it until the next exercise date
tm+1 if 5 < o (s). The optimal exercise function is illustrated in Section 6 for a numerical
example. At each step, the value function is an increasing and convex curve which displays
linearity on extreme regions and increases less rapidly than the average price in the holding
region.

5 Numerical Solution of the DP Equation

We now elaborate the numerical approach that we suggest for approximating the solution
of the DP equations and the optimal exercise function. The general idea is to partition
the positive quadrant of the plane (s,3) by a rectangular grid and to approximate the
value function, at each observation date, by a function which is bilinear on each rectangle
of the grid (i.e., piecewise bilinear). However, instead of fitting the approximation to v,
directly, we will make the change of variable 3 = (m3s—s)/(m — 1) at time t,, and redefine
the value function in terms of (s,s’) before fitting a piecewise bilinear approximation to
it. This change of variable greatly simplifies the integration when the piecewise linear
approximation is incorporated into Eq. (5): It allows us to compute the integral formally
(explicitly) instead of numerically. Other types of approximations could also be used for
Wm, such as a piecewise constant function, or a piecewise linear function over triangles,
or bidimensional splines, etc. (see, e.g., de Boor 1978), but we found that the technique
proposed here gives a good compromise in terms of the amount of work required to achieve
a given precision. Simpler methods (e.g., piecewise constant) require much finer partitions
to reach an equivalent precision, whereas more elaborate methods (e.g., higher-dimensional
splines) bring excessive overhead, especially for performing the integration in (5).
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5.1 The Piecewise Bilinear Approximation

To define the grid, let 0 =ag < a1 <+ <ap <app1 =00 and 0 =by < by <--- < by <
bg+1 = 0o. The grid points are

G ={(a;,bj):0<i<pand0<j<gq}.

These points define a partition of the positive quadrant [0, c0) x [0, c0) into the (p+1)(g+1)
rectangles

Rij = {(8,5) ta; < s <ajqq and bj <s< bj_|_1}, (13)

fori=0,...,pand 5 =0,...,q.
At time t,,, let

S (ms—s)/(m—1) ?fm> 1, (14)
0 ifm<1,
which is the value of Sy,_1 if S(t;,) = s and Sy, = 3, and define
Wi (8,8) = vpm(s, (m — 1) + 5)/m) = vy, (s,3) (15)

where 5= ((m —1)s' +s)/m if m > 1 and 3 = 0 if m = 0. The function w,, has the same
properties as stated for v,, in Proposition 1, except that w; does not depend on 5. The
recurrence (5)—(6) can be rewritten is terms of wy, as

we (s,3) = (3-K)T, (16)

wh(5,5) = pEmss[Wmi1(5Tmi1,3)] for0 <m<n-—1, (17)
wh (s,3") if0<m<m*—1,

wm(s,3) = max{wg,(s,5), wh (5,5} ifm*<m<n-—1, (18)
we, (s,3) if m=n.

The idea now is to approximate each value function w,, by a bilinear function of (s,3’)
over each rectangle R;;, and continuous at the boundaries. More specifically, the approxi-
mation W, of w,, is written as

Wm(s,3) = aii + Bij's + 7{?5' + 5;7}35' (19)

for (s,5') € R;;. To determine the coefficients of these bilinear pieces, we first compute
an approximation of wy, at each point of G. This is done via the DP equations (4)—(6),
using an available approximation for the function wy,+1 (in a manner to be detailed in a
moment). Now, given an approximation @wm(a;,b;) of wm(a;,b;) for each (a;,b;) € G, we
impose W, (ai, bj) = Wm(a;, bj) at each of these points. For each bounded rectangle R;;, this
gives one equation for each corner of the rectangle, that is, a system of 4 linear equations in
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the 4 unknown (a;}‘, 1 Vi (5m), which is quick and easy to solve. Over the unbounded

rectangles, we simply extrapolate the linear trend observed over the adjacent bounded
rectangles, towards infinity. The piecewise-bilinear surface w,, is thus an interpolation of
the values of Wy, at the grid points. Since it is linear along each rectangle boundary, this
function is continuous over the entire positive quadrant. At time ¢, 1, we use the exact
closed-form expression for the value function (since we know it) instead of a piecewise
bilinear approximation.

5.2 Explicit Integration for Function Evaluation

We now examine how to compute the approximation wy,(a;, b;) given an available piece-
wise bilinear approximation @y, 1 of Wy 1. Observe that w? in (17) is expressed as an
expectation with respect to a single random variable, 7,,,+1, and we have chosen our change
of variable (s,5) — (s,s') precisely to obtain this property. Moreover, the fact that our
approximation of wy,41 is piecewise linear with respect to its first coordinate makes the
integral very easy to compute ezplicitly when this approximation is put into (17). More
specifically, the holding value w! (s,3) is approximated by

Wt (5,3) = pEmss|@mi1(5Tmi1,5)]

p g

= r) > ((a;}wrl T %7?“5) Em,s5 [1ij(S(tm41),3)]
(ﬁinjerl + 5;?“5) 8Em,s,5 [Lij(S(tm+1),3 )Tm+1])
(a;gﬂ n fyl??JrlE) Emss [Lie(sTms1, )]

(ﬁ”gﬂ + 5m+1 ) $Em 55 [Lie(8Tm+1,3 )Tm+1])

where I;;(z,y) = I{(z,y) € Ry;}, I is the indicator function, and ¢ is the value of k such
that 5 € [bg, bg11). The function @, is to be evaluated over the points of G. If we denote
ekt = ((m —1)by +ag)/m for k=0,... ,pand [ =0,... ,q, we obtain

W, (ag, br) = PZ ([ (AR m+10kl] i+ [ﬁmﬂ + 5m+10kl] asz’k) (20)

where ¢ is the index such that cy € [bg, bet1), P = E[I{a; < a7 < aip1}], Qix =
ElrI{a; < apt < aij+1}], and 7 is a lognormal random variable with parameters ph and
ov/h. This yields the approximate value function

Wm (ag, by) = max (117’% (ar, br) , (crt — K)+) : (21)
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These values at the grid points are then interpolated to obtain the function w,, as explained
previously, and the optimal exercise frontier is approximated by the locus where (3—K)* =
@" (s,3'). Integration and interpolation stages are repeated successively until m = 0, where
an approximation of wy and of the option value vy is finally obtained. Note that vy depends
only on the initial price s = S(0), so it is approximated by a one-dimensional piecewise
linear function. An important advantage of choosing the same grid G for all m is that the
values of the expectations P;;, and @;; can be precomputed once for all. Evaluating uﬂ‘n at

the grid points via (20) then becomes very fast.

It would also be possible to use an adaptive grid, where the grid points change with the
observation dates. This can be motivated by the fact that the probability distribution of
the state vector changes with time. In that case, the mathematical expectations P;; and
Q;r would depend on m and would have to be recomputed at each observation date. This
would significantly increase the overhead.

As it turns out, this procedure evaluates, with no extra cost, the option value and the
optimal decision at all observation dates and in all states. This could be used for instance
to estimate the sensitivity of the option value with respect to the initial price. Of course,
Eurasian options can be evaluated via this procedure as well, since they are a special case.

5.3 Grid Choice

The number of rectangles defined in (13) should be increased in the regions that are visited
with high probability and where the value function tends to be less linear. In the experi-
ments reported here, we took a; = S(0) exp (ut,—1 — 30v/tr-1), ap—1 = S(0) exp(pt,—1 +
30\/th-1), ap = S(0)exp (putn—1 +40y/tn_1), and for 2 < i < p — 2, a; was the quantile
of order (i — 1)/(p — 2) of the lognormal distribution with parameters pt, 1 and o/, 1.
For by,...,bs, we partitioned the positive part of the vertical axis into the subintervals
I(] = [O,bl), Il = [bl,bq/4), I2 = [bq/4,b3q/4), I3 = [bgq/4,bq), and I4 = [bq,OO), where
by = S(0) exp(uty 1 —20\/tn 1), bg/a = ((n —1)p — 1)K/(n — 2), b3g/4 = nK/(n —2), and
by = S(0) exp(ptn—1 + 3.90y/t,—1). We then defined the other values so that the b;’s were
equally spaced within each of the intervals I, Is, and I3. This choice is purely heuristic
and certainly not optimal.

5.4 Convergence

A rigorous proof of convergence of the DP algorithm as the grid size becomes finer and
finer is somewhat tricky, mainly because the state space is unbounded and the value func-
tion increases unboundedly when s or 5 goes to infinity. Here we sketch heuristic proof
arguments. For large values of a, and b,, the probability that the trajectory of (S(t), S(t))
ever goes out of the box B = (0,ap] x (0,b,] decreases to 0 at an exponential rate when
¢ = min(ap, by) — 00, whereas the error on the value function can only increase linearly
when s or s goes to infinity. For a large enough box B, we can therefore neglect the effect
of the approximation error outside of the box. We use this heuristic argument to justify
the next proposition. Define d, = sup;<;<p(a; — a;—1) and &, = supy<;j<4(bj — bj—1).
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PropPosITION 4. If p — 00, ¢ = 00, a, — 00, by — 00, 0 — 0, and §, — 0, then for
any constant ¢ > 0,

sup sup Wi (s,s) — wpy(s,3)| — 0.
0<m<n (5,5)€(0,c]?

PrOOF. (Sketch) Define

€m = sup | W, (8,3) — wm(s,3)|.
0<s<ap, 0<5<by

We use backward induction on m to show that €, — 0 for all m > 0. Under the stated
assumptions, €,_1; — 0 because the two functions w,_; and wy,_; are both non-decreasing
and bounded over the box B, and are equal at the grid points. Now, if we assume that
€m+1 — 0 and neglect the error on wy,+1 outside the box B, we easily find that |@, (ax, b;)—
wi(ag, by)| = |8 (ag, b)) — wh (ag,by)| < €my1 at all grid points (ay,b;). Therefore, since
W, and w,, are again both non-decreasing and bounded over the box B, €11 — 0 implies
that €, — 0.

This argument is in fact not rigorous, because we cannot neglect the effect that the
€rror on Wy, +1 outside the box B has on the error on w,, at points near the boundary of B.
This is why the proposition’s statement is in terms of a constant box (0, c]? instead of B.
Since the distance from this box to the boundary of B increases towards infinity, the effect
of the error outside B becomes negligible on the error in the box (0, c]? at earlier steps. B

6 Numerical Experiments and Examples

We now present the results of numerical experiments on the computation of the value of
Amerasian options.

Example 1 For our first example, we take the parameter values S(0) = 100, K = 100,
T = 1/4 (years), o = 0.15, r = 0.05, h = 1/52, m* = 1, and n = 13. We thus have a
13-week contract, with an exercise opportunity at each observation epoch, which is every
week. We also consider 3 variants of this example: We first increase the volatility o from
0.15 to 0.25, we then increase T from 1/4 to 1/2 (26 weeks) while keeping n = 13, and
finally we increase K from 100 to 105, which yields an out-of-the-money option. In each
case, we evaluate the Amerasian option with 4 grid sizes, as indicated in Table 1, where
our approximation of vy(S(0)) with each grid size can be found. The table also gives
the value of the corresponding Eurasian option computed by DP with a 300 x 400 grid
(denoted vey (DP)) and the same value estimated by the efficient Monte Carlo simulation
scheme (using variance reduction) described by Lemieux and L’Ecuyer (1998) (denoted
veu(simul)). For the latter values, the sample size is always large enough s that the half-
length of a 99% confidence interval on the true value is less than 0.0005, so that all the
reported digits are significant. We see no significant difference between the values obtained
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Table 1: Approximations of the Amerasian call option prices

pxq

(K, T, o) 40 x 60 60 x 80 100 x 160 300 x 400 | vey(DP)  veu(simul)
(100,0.25,0.15) | 2.3474 2.3344  2.3246 2.3214 | 2.1653 2.165
(100,0.25,0.25) | 3.6864  3.6680  3.6553 3.6507 | 3.3646 3.364
(100,0.50,0.25) | 5.3779  5.3545  5.3386 5.3328 | 4.9278 4.927
(105,0.50,0.25) | 3.0204 2.9931  2.9734 2.9667 | 2.8068 2.806

CPU (sec) 9 18 60 1080

by the two methods. This certainly reassures us on the precision of the approximation in
the DP algorithm.

The approximation of vy(S(0)) seems to converge quite well as the grid size is refined. A
grid of 100 x 160 appears sufficient for a precision of less than 1 penny, and the computing
time for that grid size is quite acceptable. The timings reported here are for an old
100Mhz Silicon Graphics computer, and could be improved significantly by using a more
recent computer and by optimizing the code. The CPU times are approximately the same
for each line of the table. The values obtained are consistent. For example, the privilege
of early exercise increases the value of the option, as expected. The contract becomes
more expensive when the volatility or the maturity date are increased (because this gives
more chance of achieving a large average), and becomes cheaper when the strike price is
increased.

To quantify the impact of increasing the number of early exercise opportunities (and
observation dates), we performed additional experiments with the same parameter sets as
in Table 1, but with different values of n ranging from 1 to 52. For each of the 4 parameter
sets in Table 2, the top and bottom lines give the value of the Amerasian call option
computed via DP with a 300 x 400 grid, and the value of the corresponding Eurasian
option computed via efficient simulation (again with 99% confidence interval half-width
less than 0.0005), respectively. We see that increasing n decreases the option value. The
explanation is that increasing the number of observation dates increases the stability of
the average prices, and this offsets the advantage of having more exercise opportunities.
Note that n = 1 corresponds to a standard European call. For n = 2, it is optimal to
exercise at time t; only if S(t;) = S(t;) > 2K (see section 4.1), which is an extremely
rare event with our choice of parameters. This is why the Amerasian and Eurasian options
have practically the same value when n = 2.

Figures 1 and 2 show the optimal exercise frontier at times t,,_o and ¢, respectively, for
this example, for the Amerasian option with parameters (K, T,o,n) = (100,0.5,0.25,52).
These figures illustrate the fact that the farther away from the time horizon we are, the
higher is the exercise frontier: It makes sense to wait even if the current price is somewhat
below the current average, because things have time to change. The function w, (not
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Table 2: Amerasian (top) and Eurasian (bottom) option values as a function of n

G-99-39

n

(K,T, o) 1 2 4 13 26 52
(100,0.25,0.15) | 3.635 2.842 2513 2.321 2290 2.278
3.635 2.842 2443 2165 2.103 2.072
(100,0.25,0.25) | 5.598 4.395 3.921 3.651 3.609 3.596
5598 4.395 3.788 3.364 3.269 3.222
(100,0.50,0.25) | 8.260 6.463 5.745 b5.333 5.268 b5.247
8.260 6.462 5.558 4.927 4.787 4.716
(105,0.50,0.25) | 5.988 4.245 3.476 2.967 2.860 2.810
5.988 4.245 3.389 2.806 2.678 2.614

16

shown here) depends almost only on § (very little on s) and is almost piecewise linear
when we are near the time horizon, but the dependence on s and the nonlinearity increase
when we move away (backwards) from the time horizon.

150
s

140
130 |
120
110

100

60

Figure 1: The optimal exercise frontier at time ¢,,_» for Example 1 (solid line). The dotted

line is the diagonal s = s.

Example 2 Our second example is the one considered by Grant, Vora, and Weeks (1997).
The time increment is fixed at h = 1/365 (one day), the first observation date is at
t1 = 91/365 (91 days), and the first exercise opportunity is at ¢, = 105/365 (105 days).
The other parameters are: S(0) = 100, K = 100, T = 120/365, ¢ = 0.20, and r = 0.09.
Table 3 gives our approximation of vy(S(0)) for the Amerasian option with different grid
sizes, as in Table 1. The column labeled GVW gives the 95% confidence interval reported
by Grant, Vora, and Weeks (1997) for the value of the option with the strategy obtained
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Figure 2: The optimal exercise frontier at time to for Example 1 (solid line). The dotted
line is the diagonal s = s.

by their procedure. The difference from our values could be explained in part by the fact
that their procedure systematically underestimates the values of Amerasian call options,
because the exercise strategy found by their simulation procedure is suboptimal, so when
they use this strategy in a simulation, their estimator of the optimal price has a negative
bias. Further negative bias is introduced when they assume that the exercise frontier at
each stage is determined by two straight lines. On the other hand, our piecewise-bilinear
approximation method seems to overestimate the exact value when the grid is too coarse.
The last column reports the value of the corresponding Eurasian option, again with an
error less than 0.0005 with 99% confidence.

Table 3: Approximation of the option value for the GVW example

pXxgq
(K,0) [40x60 60x80 100 x 160 300 x 400 | GVW  vey(simul)
(100, 0.2) | 5902  5.859 5.825 5804 |580+0.02 5543
(105, 0.2) | 3.439  3.401 3.372 3354 |3.35+002  3.189
(100, 0.3) | 8.127  8.058 8.001 7.966 | 7.02+£002  7.652
(105, 0.3) | 5.714  5.651 5.601 5569 | 553+0.02 5269

7 Conclusion

We showed in this paper how to price an Amerasian option on a single asset, under the
BS model, via dynamic programming coupled with a piecewise-polynomial approximation
of the value function after an appropriate change of variable. We also proved continuity,
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monotonicity, and convexity properties of the value function and of the optimal exercise
function (which delimits the optimal region of exercise). These properties characterize the
optimal exercise strategy for the option. One of our examples illustrates that increasing
the number of exercise opportunities tends to decrease the value of the option when the
average is taken over the dates where there is an exercise opportunity: The increase in the
stability of the average price offsets the value for having more exercise opportunities.

The computational approach does not rely on the form of the exercise region and
could be adapted for pricing other types of discretely-sampled American-style options
for which the relevant information process can be modeled as a Markov process over a
low-dimensional state space (for the case considered in this paper, the state of the Markov
process is the pair (S(t),S(t))). A key ingredient is the ability to approximate the value
function at each time step. Here we have used piecewise polynomials, with the pieces de-
termined by a rectangular grid that remains the same at all steps. Adapting the grid to the
shape of the value function at each step (with the same number of pieces) could provide a
better approximation but would bring much more overhead, so it would not necessarily be
an improvement. Perhaps a good compromise would be to readjust the grid every d steps
(say), for some integer d.

It may be useful to study, for each case of practical interest, how to exploit the structure
of the problem to characterize the value function and the optimal exercise strategy, and
to improve the efficiency of the numerical method, as we have done here. When the
dimension of the state space is large (e.g., if the payoff depends on several underlying
assets), approximating the value function becomes generally much more difficult (we hit
the “curse of dimensionality”) and pricing the option then remains a challenging problem.
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