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Abstract

The cell�loss ratio at a given node in an ATM switch� de�ned as the steady�state frac�
tion of packets of information that are lost at that node due to bu�er over�ow� is typically
a very small quantity which is hard to estimate by simulation� Cell losses are rare events
and importance sampling is normally the appropriate tool in this situation� However�
�nding the right change of measure is generally hard� In this paper� importance sampling
is applied to estimate the cell�loss ratio in an ATM switch modeled as a queueing network
fed by several sources emitting cells according to a Markov�modulated on�o� process�
and where all the cells from the same source have the same destination� The numerical
experiments show impressive e�ciency improvements�

Keywords� Importance sampling� variance reduction� rare events� ATM

R�esum�e

La fraction de cellules perdues �a cause d�un d	ebordement du tampon �a un noeud
donn	e d�un commutateur ATM� sur horizon in�ni� est une quantit	e habituellement tr�es
petite et di�cile �a estimer par simulation� Les pertes de cellules sont des 	ev	enements
rares et l�	echantillonnage strat	egique est l�outil habituel pour ce genre de situation� Il
est toutefois tr�es di�cile en g	en	eral de trouver un bon changement de loi de probabilit	e
pour l	echantillonnage strat	egique� Dans cet article� nous appliquons cette m	ethode pour
estimer la fraction de cellules perdues dans un commutateur ATM mod	elis	e par un r	eseau
de �les d�attente nourri par plusieurs sources qui 	emettent des cellules selon un processus
Markov�modul	e �a deux 	etats 
�on�o� �
� et pour lequel toutes les cellules d�une m�eme
source ont la m�eme destination� Nos r	esultats num	eriques montrent une am	elioration
impressionnante de l�e�cacit	e�
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Introduction

An Asynchronous Transfer Mode �ATM� communication switch can be modeled as a network
of queues with �nite bu�er sizes� Packets of information �called cells� join the network from
several sources according to stochastic processes� and some cells may be lost due to bu�er
over�ow� The long�term �or steady�state� fraction of cells that are lost at a given node is
called the cell�loss ratio �CLR� at that node� Typical CLRs are small �e�g�� less than �	���
and the cell losses tend to occur in bunches� Cell losses are thus so rare that estimating the
CLR with good precision by straightforward simulation is very time�consuming� and in some
cases practically impossible�

Importance sampling �IS� is the method of choice in such a situation� IS changes the
probability laws governing the system so that the rare events of interest occur more frequently�
eventually to the point of being no longer rare events� The estimator is modi�ed accordingly so
that it remains unbiased
 It is multiplied by a quantity called the likelihood ratio� The hope is
that the IS estimator is more e�cient � i�e�� that the product of its variance and its computing
cost is smaller than for the regular estimator� The most di�cult problem in applying IS is �in
general� to �gure out how to change the probability laws so that the variance gets reduced to
an acceptable level� Theoretically� there always exists a change of measure that reduces the
variance to an arbitrary small positive value� but �nding it is usually much too complicated
and not practical�


Chang et al� ����� derived an asymptotically optimal change of measure� based on
the theories of e�ective bandwidth and large deviations� for estimating the probability p that
a queue length exceeds a given level x before returning to empty� given that the queue is
started from empty� for a single queue with multiple independent arrival sources� Roughly�
asymptotically optimal means that the standard error of the IS estimator converges to zero
exponentially fast with the same decay rate �exponent� as the quantity to be estimated�
as a function of the level x� A precise de�nition can be found in 
Chang et al� ������ An
asymptotically optimal change of measure does not minimize the variance� but it can reduce it
by several orders of magnitude� 
Chang et al� ����� extended their method to intree networks
of queues� which are acyclic tree networks where customers �ow only towards the root of the
tree� For intree networks� they gave an upper bound on the variance of the IS estimator� and
conjectured that this estimator is asymptotically optimal �or almost�� but did not prove it�
In numerical experiments with queueing models with a single node� or two nodes in series�
they observed large variance reductions with their IS estimator�

The probability p just described is closely related to the CLR when x equals the bu�er
size �it measures almost the same events�� so it seems quite reasonable to use the change of
measure proposed by 
Chang et al� ����� to estimate the CLR as well� as pointed out by these
authors themselves�


Beck et al� ����� Dabrowski et al� ����� also study the application of IS to a discrete�
time queueing network model of an ATM switch� Their model is very general� Assuming
in�nite bu�ers at all nodes� they obtain the asymptotics of the tail of the queue size distri�
bution in steady�state� and they use that to propose a change of measure for estimating the
CLR at a given node� Their IS methodology is related �but di�erent� to that of 
Chang et al�
������
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For general background on e�ciency improvement �or variance reduction�� we refer
the reader to 
Bratley et al� ����� Fishman ����� Glynn ����� L�Ecuyer ������ IS is well
explained in 
Glynn and Iglehart ����� Heidelberger ����� Shahabuddin����� and the several
other references given there� Application of IS to the simulation of communication systems
is studied by 
Bonneau ����� Chang et al� ����� Chang et al� ����� Heegaard ������ among
others�

In this paper� we consider queueing networks having a large number of nodes� fed by
a large number of Markov�modulated on�o� sources� The nodes are organized in successive
layers and each cell �or customer� goes through exactly one node of each layer� following a
path uniquely determined by its source� This type of queueing network is a widely used model
for the tra�c in an ATM switch� We apply IS to estimate the CLR at any pre�speci�ed node
of the network� using a change of measure based on the same approach as 
Chang et al� ������
We obtain spectacular e�ciency improvements for both small and large networks�

The model is de�ned is Section �� Section � recalls the A�cycles method and the
batch�means method� which we use jointly to compute con�dence intervals� In Section � we
explain how IS is applied to estimate the CLR at a given target node� The idea is to increase
the tra�c to the target node by increasing the average on�o� ratio for all the sources �and
only those� feeding that node� The exact change of measure is determined by a heuristic�
Numerical results are reported in Section �� In Section �� we consider various re�nements of
the basic IS scheme� and test them empirically to see how much additional variance reduction
they can bring� Section � explains how the CLR can be estimated in functional form� as a
function of certain parameters of the model� Additional numerical results and details can be
found in 
Champoux ������ A preliminary report of this work was presented in 
L�Ecuyer and
Champoux ������

� The Model

We consider an acyclic queueing network with � layers of nodes� as illustrated in Figure ��
Each node is a single�server FIFO queue with �nite bu�er size� The ��th layer is called level
� and the nodes at level � transmit cells to destinations� Levels � and � have m� nodes each�
while levels � and � have m�m� nodes each� Each level�� node is fed by m� level�� nodes�
while each level�� node feeds m� nodes at level �� Cells �i�e�� packets of information� arrive at
level �� visit one node of each level� in succession� then leave the network� Each node at level �
is fed by m� arrival sources� These m�m�m� sources are assigned to speci�c destinations� i�e��
all the cells produced by a given source follow exactly the same path� The arrival sources are
time�synchronized� but otherwise independent� stochastically identical� discrete�time on�o�
Markov modulated processes� A source is o� for a while� then on for a while� then o� again�
and so on� The source produces one cell per unit of time during a on period� and none during
a o� period� The durations of o� and on periods are independent geometric random variables
with means �� and ��� respectively� so the arrival rate is � � ������ � ���� The parameter
�� is called the average burst size� If we denote o� and on by 	 and �� respectively� our
assumptions imply that the state of a source evolves as a discrete�time Markov chain with
two states� 	 and �� with transition probability matrix
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R �

�
r�� r��
r�� r��

�
�

�
�� ���� ����
���� �� ����

�
� ���

These Markov chains comprise all the stochasticity of the model� everything else is determin�
istic� The arrival sources are numbered from � to m�m�m� and the nodes are numbered from
� to �m��� �m��� level by level� When two or more cells reach a given node simultaneously�
they are placed in the queue �the bu�er� by order of the number of the node or source where
they come from� This deterministic ordering rule is for simpli�cation and tends to favor the
cells coming from certain sources and nodes� One could order the cells randomly instead� but
that would have no major qualitative impact on our results�

Figure �
 An ATM Switch Modeled as � Layers of Queues with Finite Bu�er Sizes

All the nodes at level � have the same bu�er size B� and the same constant service
time ��c� �so c� is the service rate�� Whenever a cell arrives at a node where the bu�er is full�
it is lost and disappears from the network� Our aim is to estimate the CLR at a given node
of the network� say node q� at level ��� where the CLR is de�ned as

� � lim
t��

E
NL�t���E
NT�t��� ���

where NT�t� is the total number of cells reaching node q� during the time interval �	� t� and
NL�t� is the number of those cells that are lost due to bu�er over�ow at node q�� We assume
that the total arrival rate is less than the service rate at each node� so that the network is
stable� That is� if the cells from m sources pass through a given node at level �� then m� � c��
and this holds for all nodes�

To simplify the discussion� we assume that each c� is an integer� Since the bu�ers
are �nite� the model is then a discrete�time Markov chain with �nite state space� It is also
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aperiodic� and the zero state �the state where all sources are o� and all the nodes are empty�
is positive recurrent and is accessible from every other state� As a consequence� there exists
a limiting distribution � over the state space of that chain� de�ned as

���� � lim
n��

Pfstate � � at time ng�

This model could of course be generalized in several directions and our approach
would be easy to adapt for certain types of generalizations� For example� the bu�er sizes and
constant service times can di�er between nodes at a given level� di�erent sources can have
di�erent transition probability matrices R� and a source could produce a cell only with some
probability when it is on� IS would still work nicely in these situations� We keep our simpler
model to avoid burying the key ideas under a complicated notation� On the other hand� if
the destinations were determined randomly and independently for each cell� or for each on
period at each source� �nding an e�cient way of applying IS would be more di�cult� Our
�xed source�destination assignment model is reasonable because in the ATM switches that we
have in mind� a typical connection between a source and a destination lasts for several orders
of magnitude longer than the service times ��c��

� A Regeneration Approach for Con�dence Intervals

IS is generally easier to apply to a model de�ned over a short time horizon or when the
model�s evolution can be decomposed into short regenerative cycles� Here� the model is over
an in�nite horizon� and to decompose its trajectory into cycles� we apply a generalization of
the classical regenerative method introduced by 
Nicola et al� ����� Chang et al� ������ and
called the A�cycle method� Let A be a subset of the state space of the system� Here we take
A as the set of states for which the bu�er at q� is empty� Let t� � 	 and let t�� t�� � � � be
the successive hitting times of the set A� i�e�� ti � infft 	 ti�� 
 the bu�er at q� is empty at
time t but not at time t� �g� The system state at those hitting times ti has a pointwise limit
distribution 
� over A� de�ned by



��� � lim
i��

Pfstate � � at time tig�

The process over the time interval �ti��� ti� is called the ith A�cycle� Let Xi be the
number of cells reaching node q� during the ith A�cycle� and Yi be the number of those Xi

cells that are lost due to bu�er over�ow at q�� Let E� denote the mathematical expectation
over an A�cycle when the initial state �at the beginning of the A�cycle� has distribution 
�
One has


� �
E�
Y��

E�
X��
� ���

In the limit� as the number of A�cycles increases� the average distribution of the system states
at the times ti approaches 
� By taking the average of the Yi and Xi over the �rst n A�cycles�
one obtains the consistent estimator of �


�� �

Pn
i�� YiPn
i��Xi

�
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This estimator is biased unless the initial state at time 	 is generated from 
� which is usually
much too hard to achieve� but the bias can be reduced by warming up the system� e�g�� by
running n� � n A�cycles and discarding the �rst n� from the statistics�

The A�cycles are asymptotically identically distributed �with probability law 
 for
their initial state� but they are dependent � To reduce the dependence� and also improve the
normality� one can batch the cycles� as in the usual batch means method� One then applies the
standard methodology for computing a con�dence interval for a ratio of expectations� using
the batch means as observations� and obtain a con�dence interval for � 
Law and Kelton
������

� Applying Importance Sampling

When � is very small� the vast majority of the Yi�s in ��� are 	 and the relative error of
�� �i�e�� its standard deviation divided by �� blows up� In ���� the denominator E�
X�� is
easy to estimate� but the numerator is hard to estimate because it depends on rare events�
In fact� denoting �Y � E�
Y�� and observing that Y� is a non�negative integer� one has
Var�
Y�� � E�
Y

�
� �� ��Y � E�
Y��� ��Y � �Y ��� �Y �� so the squared relative error satis�es

RE�
Y�� �
Var�
Y��

��Y
�

�

�Y
� ��� ���

as �Y � 	� Following 
Chang et al� ������ we will use IS for the numerator of ��� and not for
the denominator�

Let S� denote the set of sources feeding q�� The IS strategy for increasing the tra�c
towards q� is to increase r�� and r�� in the matrix R� for all the sources that belong to S� and
only those� so that the total long run arrival rate at q� becomes larger than the service rate�
The system starts with an empty bu�er at q� �a state in A� and the change remains in e�ect
until the bu�er at q� empties again or over�ows� When the bu�er over�ows� R is set back
to its original for all the sources until the bu�er at q� empties again� which marks the end of
the A�cycle� We call this an A�cycle with IS � Under this strategy� if the tra�c to q� can be
increased su�ciently� cell losses are no longer rare events� This can certainly be achieved if
m� 	 c�� where m� is the cardinality of S� and c� � c�� is the service rate at the target node�

It remains to decide how to change R� For a real�valued parameter �� de�ne

���� �

�
r�� r��e

�

r�� r��e
�

�
�

let ���� be the spectral radius �largest eigenvalue� of ����� and let �f����� f����� be the corre�
sponding eigenvector� so that�

r�� r��e
�

r�� r��e
�

��
f����
f����

�
� ����

�
f����
f����

�
�

The eigenvalue ���� can be written explicitly as

���� �
�

�

�
r�� � r��e

� �
q

�r�� � r��e��� � �e�r��r��

�
�
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For IS� we will change R to the stochastic matrix

�R �

�
�r�� �r��
�r�� �r��

�
�

�

����

�
r�� r��e

�f�����f����
r��f�����f���� r��e

�

�
�

This formulation is quite �exible� because the mean arrival rate from a source can be set to
an arbitrary value between 	 and � by choosing an appropriate �� and it leads to important
simpli�cations in the likelihood ratio over an A�cycle� as we will see�

During a given A�cycle� let Nij be the number of times a source in S� goes from state
i to state j while using the probabilities �rij � for i � 	� � and j � 	� �� The total number of

transitions generated from �R is then NT � N���N���N���N�� � m�t� where t is the number
of time steps where IS is on� The state transitions of the sources are assumed to occur right
before the �discrete� times of cell production� The number of cells generated for q� during the
time interval �	� t� is thus N�� �N��� If the bu�er over�ows at time t� that number should be
approximately equal to the number of cells required to �ll up the bu�er plus those that are
served at q� during that time period� i�e�� approximately B�� c�t� where B� is the bu�er size
at q�� The di�erence � � N�� � N�� � B� � c�t can be written as � � Qt � Lt � Q� � Ft�
where Q� and Qt are the numbers of cells already generated and on their way to node q�

at time 	 and at time t� respectively� Lt is the number of cells headed to q� but lost due to
bu�er over�ow either at q� or upstream during �	� t�� and Ft is the di�erence between the total
capacity of service c�t of the server at q� during �	� t� and the actual number of cells served
at q� during that interval of time� We assume that at the levels upstream of q�� the increase
of tra�c when using �R instead of R is divided among several nodes and the bu�er sizes at
these nodes remain almost empty most of the time� whereas the server at q� is almost always
busy� so Qt� Lt� Q�� and Ft remain small� This is typical�

The likelihood ratio associated with this change of probabilities is

L �

�
r��
�r��

�N��
�
r��
�r��

�N��
�
r��
�r��

�N��
�
r��
�r��

�N��

� W �������NT exp
���N�� �N����

� W ��� exp
m�t ln����� ��B� � c�t���� ���

where

W ��� � �f�����f�����
N���N�� �

If V is a random variable de�ned over an A�cycle with initial state that has distribution 
�
E�
V � � �E�
LV �� where �E� denotes the expectation under the probabilities �R� over an A�cycle
with IS� with initial state drawn from 
� Thus� computing LV over the A�cycle with IS yields
an unbiased estimator of E�
V ��

In ���� jN�� � N��j in W ��� is bounded by m�� exp���B�� is a constant� and the
variance of exp����� is expected to remain under control even for large t� An annoying
term that remains is exp
t�m� ln����� �c���� and our strategy is to simply kill it by choosing
� � �� 	 	 such that

m� ln����� � ��c� ���
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Note that ln��	� � 	� ln������ is strictly increasing and di�erentiable �see� e�g�� 
Chang et al�
������ Example ����� and ln������ � � as � � �� Therefore� this �� exists if and only if
m� 	 c�� which we assume �otherwise� one cannot overload the node q��� With � � ��� the
likelihood ratio becomes

L � e��
��B����W �����

The variance of the estimator of �Y is �Var�
LY�� � �E�
L
�Y �

� �� ��Y and one has

�E�
L
�Y �

� � � e��
�B� �E�
LY�e

����Y�W ������ ���

We pursue with heuristic arguments� A �rst observation is that in most cases of
interest� f���

���f���
�� � �� in which case W ���� is almost always less than � and usually

much smaller than �� As a second observation� since q� is stable without IS and since IS is
stopped as soon as the bu�er over�ows� Y� should remain �reasonable�� Thirdly� by looking
at the de�nition of �� the reader would agree that � should usually be positive and almost
never take large negative values� Moreover� � should usually be larger �positive� when Y� is
larger� because a large Y� is much more likely when Qt�Q� is large� Therefore� e��

��Y�W ����
in ��� is expected to remain small� These arguments� together with ���� lead to the very crude
approximation

�E�
L
�Y �

� � � O�e��
�B�

�Y �� ���

If ��� holds� then IS provides the approximate variance reduction factor

�Var�
LY��

Var�
Y��
�

�E�
L
�Y �

� �� ��Y
�Y � ��Y

� O�e��
�B�

��

Independently of ���� the squared relative error of the IS estimator satis�es

�RE
�

LY�� �

�Var�
LY��

��Y
�

�E�
L
�Y �

� �

��Y
�

�E�
�e
����Y�W �������

�E�
�
e

����Y�W �����
���

The ratio of expectations in ��� is � � �by the Cauchy�Schwartz inequality� and should remain
under control when B� increases� Bounding this ratio by a constant independent of B� would
prove that the relative error under IS is bounded� but we do not have the proof� One may be
tempted to modify the IS scheme adaptively �e�g�� by stopping IS earlier or later� in order to
reduce the variability of the quantity e��

��Y�W ����� We will return to this in Section ��

What about the variance of the variance estimator� with and without IS They can
be compared by comparing �E�
L

	Y 	
� � with E�
Y

	
� �� Using the same heuristic argument as in

��� above� one obtain the crude approximation

�E�
L
	Y 	

� �

E�
Y 	
� �

�
�E�
L

	Y 	
� �

�E�
LY
	
� �

� O�e�
�
�B�

��

Not only the estimator itself is less noisy with IS than without� its sample variance is also
much less noisy� and by a larger factor�
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We now explain how the A�cycles are simulated to estimate both the numerator and
the denominator in ���� in the IS case� One simulates two versions of each A�cycle� one with
IS and the other without� both starting from the same initial state� Thus� the A�cycles come
in pairs� For the ith A�cycle pair� one �rst simulates an A�cycle with IS� which provides an
estimation LiYi of the numerator� where Li and Yi are the value of the L and the number of
cell losses for this cycle� Then� the state of the system is reset to what it was at the beginning
of this A�cycle with IS� and a second A�cycle is simulated to obtain an estimator Xi of the
denominator� The �nal state of the no�IS A�cycle� which obeys approximately the distribution

� is then saved and is taken as the initial state for the next pair of A�cycles� After a warmup
of n� cycles without IS� n pairs of A�cycles are thus simulated and the IS estimator of � is

�� �

Pn
i�� LiYiPn
i��Xi

�

A con�dence interval is computed using batch means as explained in Section ��

Starting the two A�cycles of each pair from the same state means that one must save
or reset the entire state of the system after each cycle� This means copying how many cells are
at each node of the network� the destinations of these cells� and the state �on or o� � of each
source� One can also memorize!reset the state of each random number generator� so that the
two A�cycles of a pair use common random numbers� This tends to increase the correlation
between LiYi and Xi� and to decrease the variance of �� as a result�

� Simulation Experiments

��� The Setup

For several examples and parameter sets� we ran the simulation �rst using the standard
approach without IS� for C A�cycles� and then with IS for C � pairs of A�cycles� In each case�
the values of C and C � were chosen so that the total CPU time was about the same for both IS
and no�IS� and these A�cycles were regrouped into b � �		 batches� �For sensitivity analysis
with respect to b� we tried di�erent values of b ranging from �	 to ��		� for several examples�
and found that the variance estimates were practically independent of b� in that range� for
the values of C and C � that we use�� For � � j � b� let "Xj and "Yj denote the samples means
of the Xi and Yi �or of the Xi and LiYi� for IS�� respectively� within batch j� The tables that
follow report the value of the CLR estimator �� and of its variance estimator

�
� � �S�Y � ���S�X � ���SXY ���b "X
��� ��	�

where �� � "Y � "X � and "Y � "X� S�Y � S
�
X � and SXY are the sample means� sample variances� and

sample covariance of the "Yj and "Xj � respectively� The tables also report the relative half�

width �� � �����
��� of a ��# con�dence interval on � �under the normality assumption�� the
CPU time t �in seconds� required to perform the simulation� and the relative e�ciency �e����
de�ned as �����t�
��� These values are all noisy estimates but give a good indication of what
happens�
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For the cases where no cell loss was observed in all the A�cycles simulated� we put
�� � 	 and the entries for the variance and e�ciency are left blank� The simulation with
IS takes more CPU time than no�IS for the same total number of simulated cells� but the
relative e�ciency takes both the variance reduction and the overhead into account� Beware

E�ciencies and CPU times can be compared within a given table� but not across the tables�
because the models are di�erent and the experiments were run on di�erent machines �SUN
SparcStations �� �� and �	�� Within each table� common random numbers were used for the
corresponding A�cycles across the di�erent lines of the table�

��� CLR Estimation at Level �

Example � Let �� � �� B� � ���� m� � �� m� � ��� c� � �� c� � �� �� � �	� � � ���	�
�i�e�� r�� � ����	 � 	���		 and r�� � 	������ and vary the bu�er size B� � B�� There are
�	 sources feeding the target node q�� so the average arrival rate at q� is �	��	� � 	�����
while the service rate is �� With these numbers� we compute �� � 	�	������ f���

�� � 	�	����
f���

�� � 	������ �r�� � 	������� �r�� � 	������� and IS increases the total arrival rate at q�

from 	���� to ������

We took C � ��		 			 for no�IS and C � � �		 			 for IS �note that the IS cycles
are much longer than the no�IS on the average� and their average length increases with B��
because most of them �ll up the bu�er before emptying it again� whereas for most of the
no�IS cycles the bu�er empties after just a few cell arrivals�� Table � gives the results� For
B� � ���� without IS� not a single cell loss was observed� so the estimates are useless� On the
other hand� the relative error of the IS estimators does not increase signi�cantly as a function
of B�� and these estimators work nicely to estimate very small CLRs� The e�ciency decreases
slowly with B�� �The outlier at B� � ��� will be discussed later on��

Example � Same as the preceding example� except that B� is now �xed at ��� and we vary
the average burst size ��� For large ��� � is large and easy to estimate� but not for small ��
�the other parameters remaining the same�� The results are in Table �� Without IS� cell losses
were observed only for �� � �		� and even in that case IS is much more e�cient� The total
arrival rate with IS decreases with ��
 It goes from ���� for �� � �� to ���� with �� � ��	�
The squared relative error with IS �not show in the table� is approximately constant as a
function of ���

An important question now arises
 How noisy are the variance and e�ciency estimates
given in the tables One way of estimating the distribution of the variance and e�ciency esti�
mators is to bootstrap from the b batch means� as follows� Put the b pairs � "X�� "Y��� � � � � � "Xb� "Yb�
in a table� Draw b random pairs from that table� with replacement� and compute the quanti�
ties �
� and e�� that correspond to this sample of size b� Repeat this N times and compute the
empirical distributions of the N values of �
� and of e�� thus obtained� These empirical distri�
butions are bootstrap estimators of the distributions of �
� and e��� and the interval between
the ���th and ����th percentiles of the empirical distribution is a ��# bootstrap con�dence
interval for the variance of �� or for the e�ciency� Table � gives the xth percentiles Qx of the
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Table �
 CLR estimation at level � for di�erent bu�er sizes

B� �� ��� �� CPU e��

no�IS

��� ���E�� ���E��� ��	 ���� 
�
���

��� ���E�
 ���E��� ��
	 ���� 
�


�

��� 
 ����


�� 
 ����

�
�� 
 ���


IS

��� ��
E�� ���E��� 
	 ��
� 
����

��� ���E�
 ���E��� �
	 ���� 
����

��� ���E�� ���E��
 ��	 ���� 
�
��


�� ��
E��� ���E��� �

	 ��
� 
�

�

�
�� ���E��� ���E��� ��	 ���� 
�
��

Table �
 CLR estimation at level � for di�erent average burst sizes
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��E�� ���E��� �	 ���� 
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 ��
E�� ���E�� �	 ���� 
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�

bootstrap distributions obtained from the results of Example �� for x � ���� �	� and �����
with N � �	 			�

We already pointed out the very low empirical e�ciency of the IS estimator with
B� � ��� in Table �� A closer look at the �		 batch means "Yj reveals that one of the
"Yj in that case is ���� � �	��� whereas all others are less than �	��� except one which is
���� � �	��� It seems that a rare event has happened within that particular batch� We did
not observe such outliers for the other values of B�� but we found some in other examples�
although rarely as excessive� The presence of these outliers is due to the important tail
which remains in the distribution of "Yj after IS� despite the large reduction in the variance
of "Yj� �It would have been easy to change the example in the paper for one that gives no
outlier� Of course� this would have been misleading� And the current example� with the
outlier� is instructive�� This outlier has an important e�ect not only on the variance and
e�ciency estimators� but also on the bootstrap distributions� as can be seen from Table �
�compare the behavior of the quantiles for B� � ��� with those for the other values of
B��� To assess the e�ect of the outlier� we repeated the bootstrap after removing it from
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Table �
 Bootstrap quantile estimates for Example �

��� e��

B� Q��� Q�� Q���� Q��� Q�� Q����

��� ���E��� ���E��� ���E��� 
��� 
��� 
���

��� ���E��� ���E��� ���E��� 
�
� 
��� 
���

��� ���E��� ���E��
 ���E��� 
��E�� ���E�� ��
E��


�� ���E��� ���E��� ���E��� ���E�� ��
E�� ��
E��

� 
�� ���E��
 ���E��� ���E��� ���E�� ��
E�� ���E��

the sample �i�e�� with the ��� remaining pairs�� and obtained the following quantiles for �
�

�Q���� Q��� Q�
��� � ���� � �	���� ��� � �	��	� ��� � �	��	�� The e�ect is signi�cant� The
numbers suggest that for B� � ���� the variance is highly overestimated� that the e�ciency
is underestimated� and that the bootstrap distribution is more widely spread than the true
distribution� To con�rm these suspicions� we made � additional replications of the entire
experiment� independently� with B� � ��� and IS� The results� in Table �� give an idea of
the variability� Table � provides similar results for B� � ���� One can see that the e�ciency
estimator is �unfortunately� noisy� On the other hand� �� is �fortunately� much less noisy� and
this is reassuring�

Table �
 Five additional independent replications for B� � ��� with IS
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Table �
 Five additional independent replications for B� � ��� with IS
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��� CLR Estimation at Level �

Example � Let �� � �� B� � B� � ���� c� � �� c� � c
 � �� m� � �� m� � �� m� � �	�
�� � �	� � � ����� and we vary the bu�er size B� � B
� We assign � of the �	 sources to q��
One node at level � is fed by � of these � hot sources� while no other node at levels � and �
is fed by more than � of them� Here� �� � 	�	������ f���

�� � 	�	������� f���
�� � 	��������

and the total arrival rate at q� is �!�� without IS and ��	 with IS� We take C � ��		 			 and
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C � � �		 			� The results appear in Table �� Again� IS works nicely while the no�IS observes
no cell loss except at the smallest bu�er size� With IS� the relative error and the relative
e�ciency are almost constant with respect to B��

Example � Same as the preceding example� except that B
 is �xed at ��� and we vary the
average burst size ��� Table � gives the results� While no�IS has di�culty to observe cell
losses� IS gives reasonable estimations�

Table �
 CLR estimation at level � for di�erent bu�er sizes

B� �� ��� �� CPU e��

no�IS

��� ���E�� ���E��
 ���	 

�� 
�

�

��� 
 

��

��� 
 

��


�� 
 

�


�
�� 
 

�


IS

��� ���E�� ���E��� ��	 �

� 
�
��

��� ��
E�
 
��E��� ��	 
��� 
�
��

��� ���E��
 ���E��� ��	 �
��� 
�
�



�� ���E��� ��
E��� ��	 ����
 
�
��

�
�� ���E��� ���E��� ��	 ����� 
�
�


Table �
 CLR estimation at level � for di�erent average burst sizes
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��� CLR Estimation at Level �

Example � Let �� � �� B� � B� � B
 � ���� c� � c	 � �� c� � c
 � �� m� � �� m� � �	�
m� � �� �� � �	� � � ����� and we vary the bu�er size B� � B	� We assign � of the �		
sources to q�� They are distributed as in Example �� Here� �� � 	�	������ f���

�� � 	�	�������
f���

�� � 	�������� and the total arrival rate at q� is �!�� without IS and ����� with IS� We
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take C � �		 			 and C � � �	 			� The results are in Table � and they resemble what was
observed at level �� For this example� we also varied �� with B� �xed at ���� and the results
were qualitatively similar to those of Table ��

Table �
 CLR estimation at level � for di�erent bu�er sizes
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��� Other Variants of the Model

We made several experiments with variants of the model to explore the e�ectiveness of the
proposed IS strategy in other �sometimes more realistic� situations�

The original model is called variant A� For variant B � the sources are no longer a�ected
to �xed destinations� but the destination of each cell is chosen randomly� independently of
other cells� uniformly over all destinations� Variant C is similar except that each burst �i�e��
all the cells from a source during a given on period� has a random destination� The IS
approach of Section � did very badly for variant B� and gave improvement for variant C only
when � was very small� An appropriate IS strategy for these models should also change the
probabilities over the destinations to increase the tra�c towards q�� In any case� variants B
and C are not realistic for ATM switches�

In variant D� each node at level � has k bu�ers� the �rst one receiving the cells
originating from the sources � to m�m�m��k� the second one taking those from the sources
� �m�m�m��k to �m�m�m��k� and so on� A server at level � takes cells from those bu�ers
according to either a round robin or longest queue �rst policy�

In variant E� the sources produce two classes of cells
 High priority constant bit rate
�CBR� cells and low priority variable bit rate �VBR� cells� The VBR sources are Markov
modulated as before� whereas the CBR sources have constant on and o� periods �they are
completely deterministic�� Each node has two bu�ers� one for the CBR cells and one for the
VBR cells� and the CBR cells are always served before the VBR ones�

The IS strategy of Section � works �ne for the variants D and E
 It provides reasonable
estimates for values of � that standard simulation cannot handle� We also observed in our
empirical results that the longest queue �rst policy gives a CLR generally smaller than round
robin�
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� Re�ning the Importance Sampling Scheme

��� Optimizing �

The IS approach of Section � provides a good change of measure� but based only on a heuristic
and asymptotic argument� not necessarily the optimal value of � for a given bu�er size�
Moreover� when choosing �� the approach does not take into account the computational costs
which may depend on �� To evaluate the sensitivity with respect to �� we performed additional
experiments where � was varied around ��� and the variance and e�ciency were estimated�
As a general rule� we found that the optimal � was around �	# to ��# less than ��� and
increased the e�ciency by a factor between � to �� compared with ��� at level � or � where
m� is typically large� At level � or �� where m� is usually small� the optimal � tends to
be much closer to �and no signi�cantly better than� ��� We emphasize that there is noise
in these estimated factors� due to the variance of the e�ciency estimators� However� the
tendency persisted when we replicated the experiments� Such factors constitute signi�cant
e�ciency improvements� so it would make sense to use� e�g�� � � ������� instead of �� at levels
� and �� and perhaps try to optimize � adaptively in a small neighborhood around that value�
during the simulation� It is very dangerous to use � 	 ��� because the variance increases
very fast with � in that area� and may even become in�nite for �nite �� The next examples
illustrate typical behavior at levels � and ��

Example � Let �� � �� B� � B� � B
 � ���� m� � �� m� � �� m� � �	� c� � �� c� � c
 � ��
�� � �	� and � � ����� The node q� is fed by � sources� whose tra�c passes through as in
example �� We take C � ���	 			� Here� �� � 	�	���� and the results for di�erent values of
� around �� are in Table �� Taking � � 	�	��� improves the empirical e�ciency by a factor
of approximately �� compared with ��� By examining the data more closely� we found that
the e�ciency improves because the smaller � gives a smaller value of S�Y ��b

"X��� which is the
dominant term in �
�� Further replications showed similar results� with � � 	�	��� registering
e�ciencies �� to �	 times higher than ���

Example � Let �� � �� B� � B� � B
 � B	 � ���� m� � �� m� � m� � �� c� � c	 � ��
c� � c
 � �� � � ����� and �� � �	� Only � sources feed the node q�� Both sources feed the
same node at level �� but di�erent nodes at levels � and �� We take C � ��	 			� In this
case� �� � 	�	���� and the results for di�erent values of � are given in Table �	� In this case�
taking � � �� brings no signi�cant e�ciency improvement� This was con�rmed by � additional
independent replications of this entire experiment� We made similar experiments with exactly
the same data as in Example �� with B	 � ���� and observed an e�ciency improvement by a
factor between ��� and ��

��� De�ning the A�Cycles Di�erently

Instead of starting the A�cycles when the bu�er at q� becomes empty� one can start them
when the number of cells in the bu�er crosses � upward� where � is a �xed integer� There
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Table �
 Comparing di�erent values of �� for �� � �

� �� �
� �� CPU e��

	�	��	 ���E�� ���E��� ��� # ����� 	����
	�	��� ���E�� ��	E��� ��� # ����� 	��	�
	�	�		 ���E�� ���E��� ��� # ����� 	����
	�	��� ���E�� ���E��� ��� # ��	�� 	��	�
	�	��	 ���E�� ���E��� ��� # ���	� 	�	��
	�	��� ���E�� ���E��� ���� # ���	� 	�	�	
	�	��	 ���E�� ���E��� ���� # ����� 	�		�

� 	�	��� ���E�� ���E��� �	�� # ����� 	�	��
	�	��	 ���E�� ���E��� ���� # ����� 	�		�

is essentially nothing to gain in that direction� however� because when increasing � the no�IS
A�cycles tend to become excessively long �typically� the bu�er at q� remains nearly empty
most of the time��

Another idea is to impose a lower bound� say t�� on the length of the A�cycles� to get
rid of the extremely short �and wasteful� A�cycles which tend to occur frequently under both
the IS and no�IS setup� The A�cycle ends at the maximum time between t� and the �rst
time when node q� becomes empty� How to choose t� We want to choose it large enough
to make sure that most A�cycles under IS see some over�ow� but not too large� so that the
A�cycles end at the �rst return to the empty state after over�ow� According to our arguments
in Section �� if over�ow occurs at time t�� then the total production by the twisted sources up
to time t� should be approximately equal to the number of cells required to keep the server
busy until time t� and �ll up the bu�er at node q�� that is� m���t� � B� � c�t�� where �� is
the average production rate of a twisted source� The additional time t� to empty the bu�er
�with IS turned o�� should satisfy �c� �m���t� � B�� We want �roughly� t� � t� � t�� i�e��

t� �
B�

m���� c�
�

B�

c� �m��
�

We suggest taking t� somewhere between �	# and �	# of the value of that upper bound�
In our experiments� this always gave e�ciency improvement� Since the variance associated
with the IS cycles is the dominant term in the variance of ��� a good strategy is to choose t�
just large enough so that most of the IS cycles �ll up the bu�er� Taking t� too large �close
to t� � t�� is not a good idea because it makes us spend too much time on the no�IS cycles
without bringing much additional variance reduction� Beyond a certain point� increasing t�
eventually decreases the e�ciency�

Example � We used the same data as in Example � �for �� � ��� with B	 � ��� and
C � � ��	 			� with IS� For � � ��� we have t� � �� and t� � �		� For � � 	��	 ��� we have a
total arrival rate of ���� with IS� which give t� � ��� and t� � �		� Table �� give the results�
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Table �	
 Comparing di�erent values of �� for �� � �

���� �� �
� �� CPU e��

��		 ����E��� ���E��� ��� # ���	 	���
	��� ����E��� ���E��� ��� # ���	 	���
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	��	 ����E��� ���E��� ��� # ���� 	���
	��� ����E��� ���E��� ��	 # ���� 	���
	��	 ����E��� ���E��� ��� # ���� 	���
	��� ����E��� ���E��� ��� # ���	 	���
	��	 ����E��� ���E��� �� # ���� 	���

With � � ��� raising t� from 	 to �� increases the �empirical� e�ciency approximately by a
factor of �� With � � 	�� ��� raising t� from 	 to ��	 improves the �empirical� e�ciency by a
factor of more than �	� This gain is related to the rapid increase of "X� which decreases �
�

�see Eq� ��	��� when t� is small� We made � additional replications of this experiments and
the results were similar �although the empirical e�ciency for � � �� and t� � 	 was 	�	� and
	�	�� which suggests that the factor of e�ciency improvement from this setup to � � 	�� ��

and t� � ��	 is more around �	 to �	 instead of �	��

Example � Let �� � �� B� � B� � B
 � ���� m� � �� m� � �� m� � �	� c� � �� c� � c
 � ��
� � ���� and �� � �	� Six sources feed the target node q�� as in example �� which gives an
average arrival rate of ���� � 	���� to that node� We run simulations for di�erent values of
t� both with the �rij associated to �� � ����� �	�� �with �� � ���� a total arrival rate of ��		�
t� � ��� and t� � ��	� and 	��	 �� � ���� � �	�� �with �� � 	���� a total arrival rate of �����
t� � �		� and t� � ��	�� The results are in Table ��� Using t� � �		 together with � � 	����

gives the best empirical e�ciency in this case� about �	 times the empirical e�ciency observed
with t� � 	 and � � ���

��� Stopping IS Earlier

Suppose that �� � � and that we use IS� When the target bu�er at q� over�ows and IS
is turned o�� there may be several cells already in the network at previous levels� and this
may produce more over�ow than necessary� Because of that� it could make sense to turn
o� IS earlier� e�g�� when the total number of cells in bu�er q� or at previous nodes but on
their way to q�� reaches some threshold N�� 
Beck et al� ����� Dabrowski et al� ����� use
this criterion for turning o� IS� with N� � B�� Our experiments with this idea showed no
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Table ��
 Imposing Lower Bounds on the A�cycle lengths� for �� � �

t� �� �
� �� "X Var� "X� CPU e��
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signi�cant improvement compared with the method which turns o� IS when q� over�ows�
With N� � B�� this idea seems to reduce the e�ciency instead� Here is a typical illustration�

Example �	 Let �� � �� B� � B� � B
 � B	 � ���� m� � �� m� � �� m� � �� c� � c	 � ��
c� � c
 � �� � � ���� and �� � �	� Two sources feed the node q�� which gives an arrival
rate at q� of ��� � 	��� When IS is applied the arrival rate increases to ������� These � hot
sources feed di�erent nodes at level �� In Table ��� CL is the average number of cell losses
per cycle with IS and N� � � corresponds to turning o� IS when q� over�ows� Taking N�

between ��	 and �		 appears to be about as good as our usual method� but N� � ��	 is
de�nitely worse�

��� Retroactive Manipulations to Control the Over	ow

The criterion for turning o� IS earlier� considered in the previous subsection� is rather blind�
Remember that all the randomness in our model is in the state transitions of the sources� It is
therefore possible� in principle� to compute at any given point t in time whether or not there
will be over�ow at q� caused only by the cells generated so far� and turn o� IS as soon as this
happens� In this way� IS is turned o� before the target bu�er �lls up� but only when over�ow is
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guaranteed to occur� In practice� this can be implemented by actually running the simulation
until there is over�ow� and then turning o� IS retroactively right after the time t when all the
cells having reached q� when the �rst cell over�ows �at time t� �� say� were already produced
by a source� This is complicated to implement and implies signi�cant overhead� Despite
spending a lot of time on experimenting with this idea� we were unsuccessful in improving the
e�ciency with it�

��� Combining IS with Indirect Estimation


Srikant andWhitt ����� proposed the following indirect estimator of the CLR� �This approach
was presented by Ward Whitt during the keynote address of the ���� Winter Simulation
Conference�� The CLR at node q� satis�es

� � �� ���� � �� Lc���� ����

where �� � m������� � ��� is the total �average� production rate of the m� sources feeding
node q�� � is the �average� output rate from node q�� ��c� is the service time at node q�� and
L is the steady�state fraction of time where the server is busy at node q�� The second equality
follows from the Lindley equation L � ��c�� Using ����� � can be estimated indirectly by
estimating L� 
Srikant and Whitt ����� showed that the indirect estimator brings substantial
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variance reduction in heavy tra�c situations� especially for queues with several servers and
random service times� but not in light tra�c� In our context� the tra�c at q� is light� but
becomes heavy when IS is applied� so it was not clear to us a priori if the indirect estimator
combined with IS could help�

The results of our extensive numerical experiments can be summarized as follows� For
a single queue with several servers� without IS� the indirect estimator reduces the variance
by large factors when the total arrival rate exceeds the service capacity� and increases the
variance by large factors when the total arrival rate is much less than the service capacity�
This is true even for constant service times and single�server queues� but less servers or less
variability in the service times favors the direct estimator� A larger bu�er at q� tends to
accentuate the factor of variance reduction or variance increase� When the indirect estimator
was combined with IS� we observed a variance increase instead of a variance reduction� even if
the total arrival rate after IS was larger than the service rate� An intuitive explanation seems
to be that because IS is turned o� as soon as the bu�er over�ows� the conditions favoring the
indirect estimator �sustained overloading at q�� do not hold for a large enough fraction of the
time�

� Functional Estimation

So far we have considered the problem of estimating the CLR for �xed values of the model
parameters� But in real life one is often interested in a wide range of values of the rij�s and
of the bu�er sizes� We now examine how the CRL can be estimated in functional form� as a
function of the matrix R� from a single simulation� and also as a function of B� by re�using
certain portions of the simulation�
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Let R and �R be as before� where �R is the twisted version of R determined as in
Section �� but suppose that we now want to estimate the CLR � for R replaced by $R� for
several $R in some neighborhood of R� by simulating pairs of A�cycles with �R and R only�
This can be achieved as follows� One simulates pairs of A�cycles and computes Xi� Yi� and
the likelihood ratio Li for each pair just as before� Afterwards� the estimators LiYi and Xi of
the numerator and the denominator are multiplied by the likelihood ratios

L�i� $R� �

�
$r��
r��

�N �

��

�
$r��
r��
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�
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respectively� where N �

kl and N ��

kl are the total number of transitions of the sources from state
k to state l during the A�cycle with IS and without IS� respectively� The functional estimator
of � is then

��� $R� �

Pn
i�� L

�

i�
$R�LiYiPn

i�� L
��

i �
$R�Xi

and it can be evaluated a posteriori for as many di�erent matrices $R as desired� as long as
$R is not too far away from R� The additional overhead during the simulation amounts only
to storing the values of N �

kl and N ��

kl� together with those of Xi and LiYi� for all the pairs of
A�cycles� This type of functional estimator based on a likelihood ratio is discussed in a more
general context in 
L�Ecuyer ����� and 
Rubinstein and Shapiro ������ for example�

Example �� We give an example of functional estimation at level �� Let B� � B� � B
 �
B	 � �		� m� � �� m� � �� m� � �� c� � c	 � �� c� � c
 � �� �� � �	� and � � ����� We
assign � sources to the node q� and take C � ��	 			� We �nd �R and run the simulation
as usual� and then compute two functional estimators� For the �rst one� �� is �xed and � is
estimated as a function of ��� whereas for the second one� � � ������ � ��� is �xed and � is
estimated as a function of ��� Tables �� and �� give a partial view of the results�

The relative half�widths of pointwise ��# con�dence interval� ��� remain reasonable for
a good range of values of �� and ��� If one is interested in a wider region� that region can be
partitioned into a few subintervals and a di�erent �R can be used for each subinterval�

We now consider the estimation of � as a fonction of B�� For this� one cannot use the
likelihood ratio approach� because B� is not a parameter of a probability distribution in the
model� However� observe that when an A�cycle is simulated� the sample path of the system
is independent of B� as long as there is no over�ow at q�� Therefore� when estimating � for
several large values of B�� the initial part of the simulation �until over�ow occurs� does not
have to be repeated for each value� One can start with a single simulation �or sample path�
and create a new subpath �or branch� each time the number of cells at q� exceeds one of the
bu�er sizes of interest� If one is interested in N distinct values of B�� one eventually ends up
with N parallel simulations� but a lot of work is saved by starting these parallel simulations
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only when needed� This type of approach is studied in more generality in 
L�Ecuyer and
V%azquez�Abad ������ In our experiments with this method� the savings in CPU time were
typically around �	#�

The development of Section � suggests an approximately linear relationship between
ln� and B�� at least asymptotically� Our empirical experiments con�rm that the linear model
ln� � �����B

� �ts very well indeed� for large enough B�� We can therefore recommend� for
estimating � as a function of B�� to perform simulations at � or � values of B� only� and �t
a linear model to the observations �B�� ln ��� by least squares regression�

As an illustration� for the same model as in Example �� and �� � �� Figure � shows
the �	 points �B�� ln ���� for B� � ��	� �		� � � � � �		� It is clear from the �gure that a linear
model is an excellent �t�
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