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Abstract

Di�erent versions of the serial test for testing the uniformity and independence
of vectors of successive values produced by a �pseudo�random number generator are
studied� These tests partition the t�dimensional unit hypercube into k cubic cells of
equal volume� generate n points �vectors� in this hypercube� count how many points
fall in each cell� and compute a test statistic de�ned as the sum of values of some
univariate function f applied to these k individual counters� Both the overlapping
and the non�overlapping vectors are considered� For di�erent families of generators�
such as the linear congruential� Tausworthe� nonlinear inversive� etc�� di�erent ways of
choosing these functions and of choosing k are compared� and formulas are obtained
for the �estimated� sample size required to reject the null hypothesis of i�i�d� uniformity
as a function of the period length of the generator� For the classes of alternatives that
correspond to linear generators� the most e�cient tests turn out to have k � n �in con�
trast to what is usually done or recommended in simulation books� and use overlapping�

Keywords� Random number generation� goodness�of��t� serial test� collision test�
m�tuple test� multinomial distribution� OPSO

R�esum�e

Nous �etudions di��erentes versions du test s�eriel pour tester l	uniformit�e et l	ind�e�
pendance des vecteurs de valeurs successives produites par des g�en�erateurs pseudo�
al�eatoires� Ces tests partitionnent l	hypercube unitaire t�dimensionnel en k cellules
cubiques de m
eme volume� g�en�erent n points �vecteurs� dans cet hypercube� comptent
combien de points tombent dans chaque cellule� et calculent une statistique de test
d�e�nie comme la somme des valeurs d	une certaine fonction f appliqu�ee aux k valeurs
des compteurs� On consid�ere des vecteurs avec et sans chevauchement� Pour di��erentes
familles de g�en�erateurs� tels les g�en�erateurs �a congruence lin�eaire� les g�en�erateurs de
Tausworthe� les g�en�erateurs non�lin�eaires inversifs� etc�� nous comparons di��erentes
fa�cons de choisir f et k� et nous obtenons des expressions pour estimer la taille
d	�echantillon n requise pour rejeter l	hypoth�ese nulle �que les valeurs sont i�i�d� uni�
formes�� en fonction de la p�eriode du g�en�erateur� Pour les classes d	hypoth�eses alter�
natives qui correspondent aux g�en�erateurs communs de type lin�eaire� les tests les plus
e�caces prennent k � n �contrairement �a ce qui est recommand�e dans les bouquins
de simulation� et utilisent le chevauchement�
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� Introduction

The aim of this paper is to examine certain types of serial tests for testing the uniformity
and independence of the output sequence of general�purpose uniform random number gen�
erators �RNGs� such as those found in software libraries� Several classes of modern RNGs
are designed much like a special type of roulette wheel� Choosing a random seed for the
RNG and taking its �rst t successive output values u�� � � � � ut�� corresponds to spinning the
wheel and taking note of the �rst t numbers� after it stops� starting at the top position and
going clockwise� The RNGs are usually designed �theoretically� so that the multiset �t of
all vectors of the form �u�� � � � � ut��� lying around the wheel covers the t�dimensional unit
hypercube �	� ��t very evenly� at least for t up to some t�� where t� is chosen somewhere
between 
 and 
	 or so� This �t can be viewed in some sense as the sample space from
which points are chosen at random to approximate the uniform distribution over �	� ��t� For
more background on the construction of RNGs� see� for example� Knuth ������� L
Ecuyer
������� L
Ecuyer ������� Niederreiter �������

For large t� the structure of �t is typically hard to analyze theoretically� Moreover�
even for a small t� one would often generate several successive t�dimensional vectors of the
form �uti� � � � � uti�t���� i � 	� Empirical statistical testing then comes into play because
the dependence structure of these vectors is hard to analyze theoretically� An excessive
regularity of �t implies that statistical tests should fail when their sample sizes approach
the period length of the generator� But how close to the period length can one get before
trouble begins�

We view the output of the RNG as a sequence of random variables U�� U�� U�� � � �
and we test the null hypothesis H�� �The Ui are independent and uniformly distributed
over the interval �	� �� �that is� i�i�d� U�	� ����� Several goodness�of��t tests for H� have
been proposed and studied in the past �see� e�g�� Knuth ������� Greenwood and Nikulin
������� L
Ecuyer and Hellekalek ������� Stephens ������ and references therein�� Statistical
tests can never certify for good an RNG� Di�erent types of tests detect di�erent types of
de�ciencies and the more diversi�ed is the available battery of tests� the better�

A simple and widely used test for RNGs is the serial test �Altman ����� Fishman
����� Good ��
�� Knuth ������ which operates as follows� Partition the interval �	� �� into
d equal segments� This determines a partition of �	� ��t into k � dt cubic cells of equal size�
Generate nt random numbers U�� � � � � Unt��� construct the points Vti � �Uti� � � � � Uti�t����
i � 	� � � � � n � �� and let Xj be the number of these points falling into cell j� for j �
	� � � � � k � �� Under H�� the vector �X�� � � � �Xk��� has the multinomial distribution with
parameters �n� ��k� � � � � ��k�� The usual version of the test� as described for example in
Fishman ������� Knuth ������ and Law and Kelton ������ among others� is based on
Pearson
s chi�square statistic

X� �
k��X
j��

�Xj � n�k��

n�k
���

where n�k � 
 �say�� and the distribution of X� under H� is approximated by the chi�
square distribution with k � � degrees of freedom�
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In this paper� we consider test statistics of the general form

Y �
k��X
j��

fn�k�Xj� ���

where fn�k is a real�valued function which may depend on n and k� We are interested for
instance in the power divergence statistic

D� �
k��X
j��

�

��� � ��
Xj

h
�Xj���

� � �
i

���

where � � n�k is the average number of points per cell and � � �� is a real�valued
parameter �by � � 	� we understand the limit as � � 	�� One could also consider � � ��
and � � ��� but this seems unnecessary in the context of this paper� Note that D� � X��
The power divergence statistic is studied in Read and Cressie ������ and other references
given there� A more general class is the ��divergence family� where fn�k�Xj� � ���Xj���
�see� e�g�� Csisz�ar ����� Morales� Pardo� and Vajda ���
�� Other forms of fn�k that we
consider are fn�k�x� � I�x � b� �where I denotes the indicator function�� fn�k�x� � I�x � 	��
and fn�k�x� � max�	� x� ��� for which the corresponding Y is the number of cells with at
least b points� the number of empty cells� and the number of collisions� respectively�

We are interested not only in the dense case� where n�k � �� but also in the
sparse case� where n�k is small� sometimes much smaller than �� We also consider circular
overlapping versions of these statistics� where Ui � Ui�n for i � n and Vti is replaced by
Vi�

In a slightly modi�ed setup� the constant n is replaced by a Poisson random variable
� with mean n� Then� �X�� � � � �Xk��� is a vector of i�i�d� Poisson random variables with
mean � instead of a multinomial vector� and the distribution of Y becomes easier to analyze
because of this i�i�d� property� For large k and n� however� the di�erence between the two
setups is practically negligible� and our experiments are with � � n for simplicity and
convenience�

A �rst�order test observes the value of Y � say y� and rejects H� if the p�value

p � P �Y � y j H���

is much too close to either 	 or �� The function f is usually chosen so that p too close to
	 means that the points tend to concentrate in certain cells and avoid the others� whereas
p close to � means that they are distributed in the cells with excessive uniformity� So p
can be viewed as a measure of uniformity� and is approximately a U�	� �� random variable
under H� if the distribution of Y is approximately continuous�

A second�order �or two�level� test would obtain N �independent� copies of Y � say
Y�� � � � � YN � compute F �Y��� � � � � F �Yn� where F is the theoretical distribution of Y under
H�� and compare their empirical distribution to the uniform� Such a two�level procedure is
widely applied when testing RNGs �see Fishman ����� Knuth ����� L
Ecuyer ����� Leeb
and Wegenkittl ����� Marsaglia ���
�� Its main supporting arguments are that it tests
the RNG sequence not only at the global level but also at a local level �i�e�� there could
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be bad behavior over short subsequences which �cancels out� over larger subsequences��
and that it permits one to apply certain tests with a larger total sample size �for example�
the memory size of the computer limits the values of n and�or k in the serial test� but the
total sample size can exceed n by taking N � ��� Our extensive empirical investigations
indicate that for a �xed total sample size Nn� when testing RNGs� a test with N � �
is typically more e�cient than the corresponding test with N � �� This means that for
typical RNGs� the type of structure found in one �reasonably long� subsequence is usually
found in �practically� all subsequences of the same length� In other words� when an RNG
started from a given seed fails spectacularly a certain test� it usually fails that test for most
admissible seeds�

The common way of applying serial tests to RNGs is to select a few speci�c genera�
tors and some arbitrarily chosen test parameters� run the tests� and check if H� is rejected
or not� Our aim in this paper is to examine in a more systematic way the interaction
between the serial tests and certain families of RNGs� From each family� we take an RNG
with period length near �e� chosen on the basis of the usual theoretical criteria� for integers
e ranging from �	 to �	 or so� We then examine� for di�erent ways of choosing k and
constructing the points Vi� how the p�value of the test evolves as a function of the sample
size n� The typical behavior is that p takes �reasonable� values for a while� say for n up to
some threshold n�� then converges to 	 or � exponentially fast with n� Our main interest
is to examine the relationship between n� and e� We adjust �crudely� a regression model
of the form log� n� � 	e � 
 � � where 	 and 
 are two constants and � is a small noise�
The result gives an idea of what size �or period length� of RNG is required� within a given
family� to be safe with respect to these serial tests for the sample sizes that are practically
feasible on current computers� It turns out that for popular families of RNGs such as the
linear congruential� multiple recursive� and shift�register� the most sensitive tests choose k
proportional to �e and yield 	 � ��� and � � 
 � 
� which means that n� is a few times
the square root of the RNG
s period length�

The results depend of course on the choice of f in ��� and on how d and t are chosen�
For example� for linear congruential generators �LCGs� selected on the basis of the spectral
test �Fishman ����� Knuth ����� L
Ecuyer ������ the serial test is most sensitive when
k � �e� in which case n� � O�

p
k�� These �most e�cient� tests are very sparse �n�k � ���

Such large values of k yield more sensitive tests than the usual ones �for which k � �e and
n�k � 
 or so� because the excessive regularity of LCGs really shows up at that level of
partitioning� For k � �e� the partition eventually becomes so �ne that each cell contains
either 	 or � point� and the test loses all of its sensitivity�

For �xed n� the non�overlapping test is typically slightly more e�cient than the
overlapping one� because it relies on a larger amount of independent information� However�
the di�erence is typically almost negligible �see Section 
��� and the non�overlapping test
requires t times more random numbers� If we �x the total number of Ui
s that are used�
so the non�overlapping test is based on n points whereas the overlapping one is based on
nt points� for example� then the overlapping test is typically more e�cient� It is also more
costly to compute and its distribution is generally more complicated� If we compare the
two tests for a �xed computing budget� the overlapping one has an advantage when t is
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large and when the time to generate the random numbers is an important fraction of the
total CPU time to apply the test�

In Section �� we collect some results on the asymptotic distribution of Y for the
dense case where k is �xed and n � �� the sparse case where both k � � and n � �
so that n�k � � � �� and the very sparse case where n�k � 	� In Section � we do
the same for the overlapping setup� In Section � we brie�y discuss the e�ciency of these
statistics for certain classes of alternatives� Systematic experiments with these tests and
certain families of RNGs are reported in Section 
� In Section �� we apply the tests to a
short list of RNGs proposed in the literature or available in software libraries and widely
used� Most of these generators fail miserably� However� several recently proposed RNGs
are robust enough to pass all these tests� at least for practically feasible sample sizes�

� Divergence Test Statistics for Disjoint Vectors

We brie�y discuss some choices of fn�k in ��� which correspond to previously introduced
tests� We then provide formulas for the exact mean and variance� and limit theorems for
the dense and sparse cases�

��� Choices of fn�k

Some choices of fn�k are given in Table �� In each case� Y is a measure of clustering� It
tends to increase when the points are less evenly distributed between the cells� The well�
known Pearson and loglikelihood statistics� X� and G�� are both special cases of the power
divergence� with � � � and � � 	� respectively �Read and Cressie ������ H is related to
G� via the relation H � log��k� � G����n ln ��� The statistics Nb� Wb� and C count the
number of cells that contain exactly b points �for b � 	�� the number of cells that contain
at least b points �for b � ��� and the number of collisions� respectively� They are related
by N� � k �W� � k � n� C� Wb � Nb � � � � �Nn� and C � W� � � � ��Wn�

Table �

Some choices of fn�k and the corresponding statistics�

Y fn�k�x� name

D� �x��x���� � ������� � ��� power divergence

X� �x� ����� Pearson

G� �x ln�x��� loglikelihood

�H �x�n� log��x�n� negative entropy

Nb I�x � b� nb� cells with exactly b points

Wb I�x � b� nb� cells with at least b points

N� I�x � 	� nb� empty cells

C �x� �� I�x � �� nb� collisions
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��� Mean and Variance

Before looking at the distribution of Y � we give expressions for computing its exact mean
and variance under H��

If the number of points is �xed at n� �X�� � � � �Xk��� is multinomial� Denoting
� � E�fn�k�Xj��� one obtains after some algebraic manipulations�

E�Y � � k� �
nX

x��

�
n
x

�
�k � ��n�x

kn��
f�x�� ���

Var�Y � � E

�
��
�
�k��X

j��

�f�Xj�� ��

�
A

�
�
	


� k E
h
�f�X��� ���

i
� k�k � ��E ��f�X��� ���f�X��� ���

�
nX

x��

�
n
x

�
�k � ��n�x

kn��
�f�x�� ���

�

bn��cX
x��

�
n
x

��
n� x
x

�
�k � ���k � ��n��x

kn��
�f�x�� ���

� �
nX

x��

min�n�x� x���X
y��

�
n
x

��
n� x
y

�
�k � ���k � ��n�x�y

kn��

� �f�x�� ���f�y�� ��� �
�

Although containing a lot of summands� these formulas are practical in the sparse case
since for the Y 
s de�ned in Table �� when n and k are large and � � n�k is small� only
the terms for small x and y in the above sums are non�negligible� These terms converge
to 	 exponentially fast as a function of x � y� The �rst two moments of Y are then easy
to compute by truncating the sums after a small number of terms� For example� with
n � k � �			� the relative errors on E�H� and Var�H� are less than �	��� if the sums
are stopped at x� y � �� instead of �			� and less than �	��� if the sums are stopped at
x� y � ��� A similar behavior is observed for the other statistics�

The expressions ��� and �
� are still valid in the dense case� but for larger �� more
terms need to be considered� Approximations for the mean and variance of D� when �� �
are provided in Chapter 
 of Read and Cressie �������

In the Poisson setup� where n is the mean of a Poisson random variable� the Xj are
i�i�d� Poisson��� and the expressions become

E�Y � � k� � k
nX

x��

�xe��

x�
f�x�� ���

Var�Y � � k
nX

x��

�xe��

x�
�f�x�� ���� ���
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��� Limit Theorems

The limiting distribution of D� is a chi�square in the dense case and a normal in the
sparse case� Two�moment�corrected versions of these results are stated in the next propo�

sition� This means that D
�C�
� and D

�N�
� in the proposition have exactly the same mean

and variance as their asymptotic distribution �e�g�� 	 and � in the normal case�� Read and
Cressie ������ recommend this type of standardization� which tends to be closer to the
asymptotic distribution than a standardization by the asymptotic mean and variance� The
two�moment corrections become increasingly important when � gets away from around ��
The mean and variance of D� can be computed as explained in the previous subsection�
Another possibility would be to correct the distribution itself� e�g�� using Edgeworth�type
expansions �Read and Cressie ����� p����� This gives extremely complicated expressions�
due in part to the discrete nature of the multinomial distribution� and the gain is small�

Proposition �� For � � ��� the following holds under H��

�i� �Dense case� If k is �xed and n��� in the multinomial setup

D
�C�
�

def
�

D� � k�� �k � ��
C

C

	 ���k � ��� ���

where 
�C � Var�D� �����k����� 	 denotes convergence in distribution� and ���k���
is the chi�square distribution with k � � degrees of freedom� In the Poisson setup�

D
�C�
� 	 ���k� instead�

�ii� �Sparse case� For both the multinomial and Poisson setups� if k ��� n��� and

n�k � �� where 	 � �� ��� then

D
�N�
�

def
�

D� � k�


N
	 N�	� ��� ���

where 
�N � Var�D� � and N�	� �� is the standard normal distribution�

Proof� For the multinomial setup� part �i� can be found in Read and Cressie ������� p�
��� whereas part �ii� follows from Theorem � of Holst ������� by noting that all the Xj 
s
here have the same distribution� The proofs simplify for the Poisson setup� due to the
independence� The Zj � �Xj � n�k��

p
n�k are i�i�d� and asymptotically N�	� �� in the

dense case� so their sum of squares� which is X�� is asymptotically ���k�� �

We now turn to the counting random variables Nb� Wb� and C� These are not

approximately chi�square in the dense case� In fact� if n � � for �xed k� it is clear that
Nb � 	 with probability � for any �xed b� This implies that Wb � k and C � n� k� so
these random variables are all degenerate�

For the Poisson setup� each Xi is Poisson���� so pb
def
� P �Xi � b� � e���b�b� for

b � 	 and Nb is BN�k� pb�� a binomial with parameters k and pb� If k is large and pb is
small� Nb is thus approximately Poisson with �exact� mean

E�Nb� � kpb �
nbe��

kb��b�
for b � 	� ��	�
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The next result covers other cases as well�

Proposition �� For the Poisson or the multinomial setup� under H�� suppose that k ��
and n��� and let ��� ��� and �� denote positive constants�

�i� If b � � and nb��kb��b��� ��� then Wb 	 Nb 	 Poisson����� For b � �� one also
has C 	 N��

�ii� For b � 	� if n�k � ln�k�� ��� then N� 	 Poisson�e�����

�iii� If k �� and n�k � �� � 	� then for Y � Nb� Wb� or C�

Y �E�Y �

�Var�Y �����
	 N�	� ��� ����

Proof� In �i�� since � � n�k � 	� one has for the Poisson case E�Nb����E�Nb� � ���b �
�� � 	 and E�Wb����E�Nb� � E�

P�
i��Nb�i��E�Nb� �

P�
i�� �

ib���b � i�� � b�
P�

i�� �
i�i� �

b��e� � �� � 	� The relative contribution of Wb�� to the sum Wb � Nb � Wb�� �a
sum of correlated Poisson random variables� is then negligible compared with that of Nb�
so Nb and Wb have the same asymptotic distribution �this follows from Lemma ����� of
Barbour� Holst� and Janson ������ Likewise� under these conditions with b � �� C has
the same asymptotic distribution as N�� because C � N� �

P�
i���i � ��Ni and therefore

E�C�N���E�N�� � E�
P�

i���i���Ni��E�N�� � �
P�

i���i����i���i� �
P�

j�� �
j�j� � e����

For the multinomial setup� it has been shown �see Barbour� Holst� and Janson ����� Section
���� that Nb and Wb� for b � �� are asymptotically Poisson�kpb� when � � 	� the same
as for the Poisson setup� The same argument as for W� applies for C� using again their
Lemma ������ and this proves �i�� For b � 	� for the Poisson setup� we saw already that N�

is asymptotically Poisson���� if ke�n�k � ��� i�e�� if ln�k� � n�k � ln���� � ���� For
the multinomial case� the same result follows from Theorem ��D of Barbour� Holst� and
Janson ������� and this proves �ii�� Part �iii� is obtained by applying Theorem � of Holst
������� �

The exact distributions of C and N� under H�� for the multinomial setup� are given
by

P �C � c� � P �N� � k � n� c� �
k�k � �� � � � �k � n� c� ��

kn

�
n

n� c

�

where the

�
k
n

�
are the Stirling numbers of the second kind �see Knuth ������� p���� who

also gives an algorithm to compute all the non�negligible probabilities in time O�n log n���

In our implementation of the test based on C� we used the Poisson approximation for
� � ����� the normal approximation for � � ���� and n � ���� and the exact distribution
otherwise�
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� Overlapping vectors

For the overlapping case� let X
�o�
t�j be the number of overlapping vectors Vi� i � 	� � � � � n���

that fall into cell j� Now� the formulas ��� and �
� for the mean and variance� and the limit
theorems in Propositions � and �� no longer stand� The analysis is more di�cult than for

the disjoint case because in general P �X
�o�
t�i � x� depends on i and P �X

�o�
t�i � x� X

�o�
t�j � y�

depends on the pair �i� j� in a non�trivial way�

Theoretical results have been available in the overlapping multinomial setup� for
the Pearson statistic in the dense case� Let

X�
�t� �

k��X
j��

�X
�o�
t�j � n�k��

n�k
����

and let X�
�t��� be the equivalent of X�

�t� for the overlapping vectors of dimension t� ��

X�
�t��� �

k���X
j��

�X
�o�
t���j � n�k���

n�k�
����

where k� � dt��� Consider the statistic  X� � X�
�t� �X�

�t���� Good ���
�� has shown that

E�X�
�t�� � dt � � �exactly� and that when n�� for d and t �xed�  X� 	 ���k� k��� This

setup� usually with n�k � 
 or so� is called the overlapping serial test or the m�tuple test
in the literature and has been used previously to test RNGs �e�g�� Altman ����� Leeb and
Wegenkittl ����� Marsaglia ���
�� The next proposition generalizes the result of Good
to the power divergence statistic in the dense case� Further generalization is given by
Theorem ��� of Wegenkittl �������

Proposition �� Let

D���t� �
k��X
j��

�

��� � ��
X

�o�
t�j

h
�X

�o�
t�j ���

� � �
i
� ����

the power divergence statistic for the t�dimensional overlapping vectors� and let  D���t� �
D���t� �D���t���� Under H�� in the multinomial setup� if � � ��� k is �xed� and n � ��
 D���t� � ���dt � dt����

Proof� The result is well�known for � � �� Moreover� a Taylor series expansion of

D���t� in powers of X
�o�
t�j ��� � easily shows that D���t� � D���t� � op���� where op���� 	 in

probability as n � � �see Read and Cressie ����� Theorem A����� Therefore�  D���t� has

the same asymptotic distribution as  D���t� and this completes the proof� �

For the sparse case� where k� n � � and n�k � �� where 	 � �� � �� our
simulation experiments support the conjecture that

 X�
N

def
�

 X� � �k � k��p
��k � k��

	 N�	� ��� ��
�
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The overlapping empty�cells�count test has been discussed in a heuristic way in a few
papers� For t � �� Marsaglia ����
� calls it the overlapping pairs sparse occupancy �OPSO�
and suggests a few speci�c parameters� without providing the underlying theory� Marsaglia
and Zaman ������ speculate that N� should be approximately normally distributed with
mean ke�� and variance ke���� � �e���� This make sense only if � is not too large or
not too close to zero� We studied empirically this approximation and found it reasonably
accurate only for � � � � 
 �approximately�� The approximation could certainly be
improved by re�ning the variance formula�

Proposition � �i� and �ii� should hold in the overlapping case as well� Our simulation
experiments indicate that the Poisson approximation for C is very accurate for �say� � �
����� and already quite good for � � �� when n is large�

� Which Test Statistic and What to Expect�

The LFSR� LCG� and MRG generators in our lists are constructed so that their point sets
�t over the entire period are superuniformly distributed� Thus� we may be afraid� if k
is large enough� that very few cells �if any� contain more than � point and that D�� C�
N�� Nb and Wb for b � � are smaller than expected� In the extreme case where C � 	�
assuming that the distribution of C underH� is approximately Poisson with mean n����k��

the left p�value of the collision test is pl � P �C � 	 j H�� � e�n
����k�� For a �xed number

of cells� this p�value approaches 	 exponentially fast in the square of the sample size n�
For example� pl � ��� � �	�	� ��� � �	��	� and ��� � �	��
 for n � �

p
k� �

p
k� and ��

p
k�

respectively� Assuming that k is near the RNG
s period length� i�e�� k � �e� this means
that the test starts to fail abruptly when the sample size exceeds approximately � times
the square root of the period length� As we shall see� this is precisely what happens for
certain popular classes of generators� If we use the statistic Wb instead of C� in the same

situation� we have pl � P �Wb � 	 j H�� � e�n
b��kb��b��� and the sample size required to

obtain a p�value less than a �xed �small� constant is n � O�k�b����b� for b � �� In this
setup� C and N� are equivalent to W�� and choosing b � � gives a less e�cient test�

Suppose now that we have the opposite� Too many collisions� One simple model
of this situation is the alternative H�� �The points are i�i�d� uniformly distributed over
k� boxes� the other k � k� boxes being always empty�� Under H�� Wb is approximately
Poisson with mean �� � nbe�n�k���kb��

� b�� �if n is large and �� is small� instead of �� �
nbe�n�k��kb��b��� Therefore� for a given 	�� and x� such that 	� � P �Wb � x� j H��� the
power of the test at level 	� is

P �Wb � x� j H�� � ��
x���X
x��

e����x�
x�

�

where x� depends on b� When b increases� for a �xed 	�� x� decreases and �� decreases
as well if n�k� � b � �� So b � � maximizes the power unless n�k� is large� In fact
the test can have signi�cant power only if �� exceeds a few units �otherwise� with large
probability� one has Wb � 	 and H� is not rejected�� This means �� � O���� i�e�� n �
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O�k
�b����b
� �b����ben��bk���� which can be approximated by O�k

�b����b
� � if k� is reasonably

large� Then� b � � is the best choice� If k� is small� �� is maximized �approximately� by
taking b � max��� dn�k�e � ���

The alternative H� just discussed can be generalized as follows� Suppose that the
k� cells have a probability larger than ��k� while the other k � k� cells have a smaller
probability� H� is called a hole �resp�� peak � split� alternative if k��k is near � �resp�� near
	� near ����� We made extensive numerical experiments regarding the power of the tests
under these alternatives and found the following� Hole alternatives can be detected only
when n�k is reasonably large �dense case�� because in the sparse case one expects several
empty cells anyway� The best test statistics to detect them are those based on the number
of empty cells N�� and D� with � as small as possible �e�g�� �� � � � 	�� For a peak
alternative� the power of D� increases with � as a concave function� with a rate of increase
that typically becomes very small for � larger than � or � �or higher� if the peak is very
narrow�� The other test statistics in Table � are usually not competitive with D	 �say�
under this alternative� except for Wb which comes close when b � n�k� �however it is hard
to choose the right b because k� is generally unknown�� The split alternative with the
probability of the k� k� low�probability cells equal to 	 is easy to detect and the collision
test �using C or W�� is our recommendation� The power of D� is essentially the same as
that of C and W�� for most �� because E�W�� has a negligible value� which implies that
there is almost a one�to�one correspondence between C� W�� and D�� However� with the
small n that su�ces for detection in this situation� E�W�� is small and the distribution of
D� is concentrated on a small number of values� so neither the normal nor the chi�square is
a good approximation of its distribution� Of course� the power of the test would improve if
the high�probability cells were aggregated into a smaller number of cells� and similarly for
the low�probability cells� But to do this� one needs to know where these cells are a priori �

These observations extend �and agree with� those made previously by several au�
thors �see Read and Cressie ���� and references therein�� who already noted that for D��
the power decreases with � for a hole alternative and increases with � for a peak alterna�
tive� This implies in particular that G� and H are better �worse� test statistics than X� to
detect a hole �a peak�� In the case of a split alternative for which the cell probabilities are
only slightly perturbed� X� is optimal in terms of Pitman
s asymptotic e�ciency whereas
G� is optimal in terms of Bahadur
s e�ciency �see Read and Cressie ���� for details��

	 Empirical Evaluation for RNG Families

��� Selected Families of RNGs

We now report systematic experiments to assess the e�ectiveness of serial tests for detecting
the regularities in speci�c families of small RNGs� The RNG families that we consider are
named LFSR�� GoodLCG� BadLCG�� MRG�� CombL�� InvExpl� Within each family� we
constructed a list of speci�c RNG instances� with period lengths near �e for �integer� values
of e ranging from �	 to �	� These RNGs are too small to be considered for serious general
purpose softwares� but their study gives good indication about the behavior of larger
instances from the same families� At step n� a generator outputs a number un 
 �	� ���
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The LFSR�s are combined linear feedback shift register �LFSR� �or Tausworthe�
generators with three components� of the form

xj�n � �arjxj�n�rj � akjxj�n�kj� mod �� � � j � �!

uj�n �
��X
i��

xj�nsj�i���
�i� � � j � �!

un � u��n � u��n � u��n�

where � means bitwise exclusive�or� and �kj � rj � sj�� � � j � �� are constant parameters
selected so that the kj are reasonably close to each other� and the sequence fung has period
length ��k� �����k� �����k� ��� and is maximally equidistributed �see L
Ecuyer ����b for
the de�nition and further details about these generators��

The GoodLCGs are linear congruential generators �LCGs�� of the form

xn � axn�� mod m! un � xn�m� ����

where m is a prime near �e and a is selected so that the period length is m � � and so
that the LCG has an excellent behavior with respect to the spectral test �i�e�� an excellent
lattice structure� in up to at least � dimensions� The BadLCG�s have the same structure�
except that their a is chosen so that they have a mediocre lattice structure in � dimensions�
More details and the values of a and m can be found in L
Ecuyer ������ and L
Ecuyer and
Hellekalek ������� The MRG� are multiple recursive generators of order �� of the form

xn � �a�xn�� � a�xn��� mod m! un � xn�m� ����

period length m���� and excellent lattice structure as for the GoodLCGs �L
Ecuyer �����
L
Ecuyer ������

The CombL�s combine two LCGs as proposed by L
Ecuyer �������

xj�n � ajxj�n�� mod mj � � � j � �!

un � ��x��n � x��n� mod m���m��

so that the combined generator has period length �m� � ���m� � ���� and an excellent
lattice structure �see L
Ecuyer and Tezuka ���� for details about that lattice structure��

InvExpl denotes a family of explicit inversive nonlinear generators of period length
m� de�ned by

xn � ����n��� mod m! un � xn�m� ����

where m is prime and �an��� mod m � �an�m�� mod m �see Eichenauer�Herrmann ������
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��� The Log�p�values

For a given test statistic Y taking value y� let pl � P �Y � y j H�� and pr � P �Y � y j H���
We de�ne the log�p�value of the test as

� �


��
��

k if �	��k��� � pr � �	�k� k � 	�

�k if �	��k��� � pl � �	�k� k � 	�
	 otherwise�

For a given class of RNGs� given Y � t� and a way of choosing k� we apply the test for
di�erent values of e and with sample size n � ��e�� � for 
 � � � � ������� 	� �� �� � � �� where
the constant � is chosen so that the test starts to fail at approximately the same value of

 for all �or most� e� More speci�cally� we de�ne  
 �resp� 
�� as the smallest values of 

for which the absolute log�p�value satis�es j�j � � �resp� j�j � ��� for a majority of values
of e�

��� Test Results� Examples and Summary

Tables � and � give the log�p�values for the collision test applied to the GoodLCGs and
BadLCG�s� respectively� in t � � dimensions� with d � b�e��c �so k � �e�� and n � �e���� �
Only the numbers � outside of the set f��� 	� �g� which correspond to p�values less than
	�	�� are displayed� The symbols � and � mean � � �� and � � ��� respectively� The
columns not shown are mostly blank on the left and �lled with arrows on the right� The
small p�values appear with striking regularity� at about the same 
 for all e� in each of
these tables� This is also true for other values of e not shown in the table� One has
 
 � � and 
� � � in Table �� while  
 � �� and 
� � � in Table �� The GoodLCGs fail
because their structure is too regular �the left p�values are too small because there are
too few collisions�� whereas the BadLCG�s have the opposite behavior �the right p�values
are too small because there are too many collisions! their behavior correspond to the split
alternative described in Section ���

Table � gives the values of  
 and 
� for the selected RNG families� for the collision
test in � and � dimensions� All families� except InvExpl� fail at a sample size proportional
to the square root of the period length �� At n � ��

�

����� the left or right p�value is less
than �	��	 most of the time� The BadLCG�s in � dimensions are the �rst to fail� They
were chosen to be particularly mediocre in � dimensions and the test detects it� Apart
from the BadLCG�s� the generators always fail the tests due to excessive regularity� For
the GoodLCGs and LFSR�s� for example� there was never a cell with more than � points
in it� For the LFSR�s� we distinguish two cases� One where d was chosen always odd and
one where it was always the smallest power of � such that k � dt � �e� In the latter
case� the number of collisions is always 	� since no cell contains more than a single point
over the entire period of the generator� as a consequence of the �maximal equidistribution�
property of these generators �L
Ecuyer ����b�� The left p�values then behave as described
at the beginning of Section �� The InvExpl resist the tests until after their period length
is exhausted� These generators have their point set �t �random�looking� instead of very
evenly distributed� However� they are much slower than the linear ones�
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Table �

The log�p�values for the GoodLCGs for C� t � �� k � �e�

e � 
 � � 
 � � 
 � � 
 � � 
 �

�� �� � �

�� ��� �

�� �� ��� �

�� �� �� � �

�� �� �� � �

�� �� �� � �

�� �� � �

�� �� ��� � �

�� �� �� � �

�� �� �� � �

�� �� ��� �

�� �� �� � �

�� �� ��� � �

�� �� � �

�� �� �� � �

�� �� �� � �

�� �� � �

�� �� ��� � �

�� �� � �

We applied the power divergence tests with � � ����� 	� �� �� �� and in most cases
the p�values were very close to those of the collision test� In fact� when W� � 	 �which
we have observed frequently�� there is a one�to�one correspondence between the values of
C and of D� for all � � ��� Therefore� all these statistics should have similar p�values
if both E�W�� and the observed value of W� are small �the very sparse situation�� For
the overlapping versions of the tests� the values of ��  
� and 
� are exactly the same as
those given in Table �� This means that the overlapping tests are more e�cient than the
non�overlapping ones� because they call the RNG t times less�

We applied the same tests with smaller and larger numbers of cells� such as k �
�e���� k � �e��� k � � ��e� k � �� ��e� and found that  
 and 
� increase when k moves away
from �e� A typical example� For the GoodLCGs with t � �� 
� � �� �� 
� and � for the
four choices of k given above� respectively� whereas 
� � � when k � �e� The classical way
of applying the serial test for RNG testing uses a large average number of points per cell
�dense case�� We applied the test based on X� to the GoodLCGs� with k � n��� and found
empirically � � ����  
 � �� and 
� � �� This means that the required sample size now
increases as O������ instead of O������ as before! i�e�� the dense setup with the chi�square
approximation is much less e�cient than the sparse setup� We observed the same for D�

with other values of � and other values of t� and a similar behavior for other RNG families�
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Table �

The log�p�values for the BadLCG�s for C� t � �� k � �e�

e � 
 �� � 
 � � 
 � � 
 �

�� � � � �

�� � � �

�� � � � �

�� � � � �

�� � �� � �

�� � � �

�� �� � �

�� � � �

�� � � �

�� � � �

�� � �� � �

�� � � �� �

�� �� � �

�� � � �

�� � � �

�� � � � �

�� �� � �

�� � � � �

�� � � � �

For the results just described� t was �xed and d varied with e� We now �x d � �
�i�e�� we take the �rst two bits of each number� and vary the dimension as t � be��c�
Table 
 gives the results of the collision test in this setup� Note the change in � for the
GoodLCGs and BadLCG�s� The tests are less sensitive for these large values of t�

We also experimented with two�level tests� where a test of sample size n is replicated
N times independently� For the collision test� we use the test statistic CT � the total
number of collisions over the N replications� which is approximately Poisson with mean

Nn�e�n�k���k� underH�� For the power divergence tests� we use the sum of values of D
�N�
�

and D
�C�
� � which are approximately N�	� N� and ���N�k � ��� under H�� respectively� as

test statistics� We observed the following� The power of a test with �N�n� is typically
roughly the same as that of the same test at level one �N � �� and with sample size n

p
N �

Single�level tests thus need a smaller total sample size than the two�level tests to achieve
the same power� On the other hand� two�level tests are justi�ed when the sample size n
is limited by the memory size of the computer at hand� �For n � k� the counters Xj are
implemented via a hashing technique� for which the required memory is proportional to n
instead of k�� Another way of doing a two�level test with D� is to compute the p�values for
the N replicates and compare their distribution with the uniform via �say� a Kolmogorov�
Smirnov or Anderson�Darling goodness�of��t test� We experimented extensively with this
as well and found no advantage in terms of e�ciency� for all the RNG families that we
tried�
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Table �

Collision tests for RNG families� with k � �e�

RNG family � t  
 
�

GoodLCG
� � �

���
� � 


BadLCG�
� �� �

���
� � 


LFSR�� d odd
� � 


���
� � �

LFSR�� d power of �
� � �

���
� � �

MRG�
� � �

���
� � 


CombL�
� � 


���
� 
 �

InvExpl
� � �

�
� � �

Table �

Collision tests with d � � and t � be��c�
Generators �  
 
�

GoodLCG ��� � �

BadLCG� ��� � �

LFSR� ��� � �

MRG� ��� � �

CombL� ��� 
 �

InvExpl � � �
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 What about real�life LCGs�

From the results of the preceding section one can easily predict� conservatively� at which
sample size a speci�c RNG from a given family will start to fail� We verify this with a few
commonly used RNGs� listed in Table �� �Of course� this list is far from exhaustive��

Table �

List of selected generators�

LCG�� LCG with m � ��� � � and a � �
	�	����� c � 	�
LCG�� LCG with m � ��� � � and a � ��������
� c � 	�
LCG�� LCG with m � ��� � � and a � ��	��		��� c � 	�
LCG�� LCG with m � ��� � � and a � ���	�� c � 	�
LCG
� LCG with m � ���� a � ��	�
�
��
� c � ����
�
LCG�� LCG with m � ���� a � ��	��� and c � ��
LCG�� LCG with m � �	�� a � ���	��	���	���� c � 	�
LCG�� LCG with m � �	�� a � ����
�	�����	�� c � 	�
LCG�� LCG with m � �	�� a � �
����	����� c � ���
RLUX� RANLUX with L � �� �see James ������

WEY�� Nested Weyl with 	 �
p
� �see Holian et al� ������

WEY�� Shu"ed nested Weyl with 	 �
p
� �see Holian et al� ������

CLCG�� Combined LCG of L
Ecuyer and Andres �������
CMRG��� Combined MRG in Fig� � of L
Ecuyer �����a��

Generators LCG� to LCG� are well�known LCGs� based on the recurrence xi �
�axi�� � c� mod m� with output ui � xi�m at step i� LCG� and LCG� are recommended
by Fishman and Moore III ������ and a FORTRAN implementation of LCG� is given by
Fishman ������� LCG� is recommended by Law and Kelton ������� among others� and is
used in the SIMSCRIPT II�
 and INSIGHT simulation languages� LCG� is in numerous
software systems� including the IBM and Macintosh operating systems� the ARENA and
SLAM II simulation languages� MATLAB� the IMSL library �which also provides LCG�
and LCG
�� the Numerical Recipes �Press and Teukolsky ������ etc�� and is suggested
in several books and papers �e�g�� Bratley� Fox� and Schrage ����� Park and Miller �����
Ripley ���	�� LCG� is used in the VAX�VMS operating system and on Convex computers�
LCG
 and LCG� are the rand and rand�� functions in the standard libraries of the C
programming language �Plauger ������ LCG� is taken from Fishman ������ and LCG� is
used in the CRAY system library� LCG� to LCG� have period length ������ LCG
� LCG��
AND LCG� have period length m� and LCG� and LCG� have period length m�� � �	
�

RLUX is the RANLUX generator implemented by James ������� with luxury level
L � ��� At this luxury level� RANLUX is equivalent to the subtract�with�borrow gener�
ator with modulus b � ��� � 
 and lags r � �� and s � �� proposed by Marsaglia and
Zaman ������ and used� for example� in MATHEMATICA �according to its documenta�
tion�� WEY� is a generator based on the nested Weyl sequence de�ned by ui � i�	 mod ��
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Table 	

The log�p�values for C with t � �� k � m� n � ��
p
m

Generator � 
 � � 
 � � 
 � � 
 � � 
 �

LCG� �� ��� � �

LCG� �� �� � �

LCG� �� � �

LCG� � � � �

LCG� �� ��� � �

LCG� �� �� � �

Table 


The log�p�values for C with t � �� k � �	
� n � ��	��

Generator � 
 �� � 
 �� � 
 �

LCG� �� �

LCG� �� �

LCG� �� ��

where 	 �
p
� �see Holian et al� ������ WEY� implements the shu"ed nested Weyl se�

quence proposed in Holian et al� ������� de�ned by ui � ��Mi�	 mod �� � �����	 mod ��
with 	 �

p
� and M � ����
� CLCG� and CMRG�� are the combined LCG of L
Ecuyer

and Andres ������ and the combined MRG given in Figure � of L
Ecuyer �����a��

Table � gives the log�p�values for the collision test in two dimensions� for LCG� to
LCG�� with k � m and n � ��

p
m� As expected� suspect values start to appear at sample

size n � �
p
m and all these LCGs are de�nitely rejected with n � ��

p
m� LCG� has

too many collisions whereas the others have too few� By extrapolation� LCG� to LCG�
are expected to start failing with n around ��
� which is just a bit more than what the
memory size of our current computer allows� However� we applied the two�level collision
test with N � ��� t � �� k � �	
� and n � ��	�� � Here� the total number of collisions CT

is approximately Poisson with mean ��n����k� � ���� under H�� The log�p�values are in
Table �� With a total sample size of �� ���	� LCG� and LCG� fail decisively! they have too
few collisions� We also tried t � �� and the collision test with overlapping� and the results
were similar�

We tested the other RNGs �the last 
 in the table� for several values of t ranging from
� to �
� RLUX passed all the tests for t � �� but failed spectacularly in �
 dimensions�
With d � �� t � �
 �so k � ����� and n � ��	� the log�p�value for the collision test is
� � � �there are ��� collisions� while E�CjH�� � ����� For a two�level test with N � ���
d � �� t � �
� n � ���� the total number of collisions was CT � ��
�� much more than
��E�CjH�� � ���� �� � ���� This result is not surprising� because for this generator all the
points Vi in �
 dimensions or more lie in a family of equidistant hyperplanes that are ��

p
�

apart �see L
Ecuyer ������� Tezuka� L
Ecuyer� and Couture �������� Note that RANLUX
with a larger value of L passes these tests� at least for t � �
� WEY� passed the tests
in � dimensions� but failed spectacularly for all t � �� The points are concentrated in a
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small number of boxes� For example� with t � �� k � �			� and a sample size as small as
n � �	��� we observed C � ��
 whereas E�CjH�� � ��� �� � ���� WEY�� CLCG�� and
CMRG�� passed all the tests that we tried�
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