Les Cahiers du GERAD ISSN: 0711-2440

Good Parameters and Implementations for
Combined Multiple Recursive Random
Number Generators

Pierre L’Ecuyer
G-98-18
May 1998

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs
auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds F.C.A.R.

Good Parameters and Implementations for
Combined Multiple Recursive Random Number
Generators

Pierre ’ECUYER

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal
C.P. 6128, Succ. Centre-Ville
Montréal, H3C 3J7, Canada
and GERAD

May, 1998

Les Cahiers du GERAD
G-98-18

Abstract

Combining parallel multiple recursive sequences provides an efficient way of imple-
menting random number generators with long periods and good structural properties.
Such generators are statistically more robust than simple linear congruential generators
that fit into a computer word. We made extensive computer searches for good param-
eter sets, with respect to the spectral test, for combined multiple recursive generators
of different sizes. We also compare different implementations and give a specific code
in C that is faster than previous implementations of similar generators.

Keywords Simulation, random number generation, multiple recursive, combined
generators, lattice structure, spectral test.

Résumé

En combinant des récurrences linéaires multiples évoluant en paralléle, on obtient
une implantation efficace de générateurs de valeurs aléatoires ayant de tres longues
périodes et de bonnes propriétés structurelles. Ces générateurs sont plus robustes, du
point de vue statistique, que les générateurs a congruence linéaire simples qui tiennent
dans un mot machine de 32 bits. Nous avons effectué des recherches par ordinateur
pour trouver de bons parametres, par rapport au test spectral, pour des générateurs
récursifs multiples combinés de différentes tailles. Nous comparons aussi différentes
implantations et proposons une implantation spécifique en langage C, significativement
plus rapide que les celles déja disponibles pour des générateurs semblables.

Les Cahiers du GERAD G-98-18 1

It is now recognized that random number generators (RNGs) should have huge pe-
riods, several orders of magnitude larger than whatever can be used in practice (L’Ecuyer
1994, L’Ecuyer 1998b, Ripley 1987). For example, all full-period linear congruential gen-
erators (LCGs), or multiple recursive generators (MRGs), fail decisively some statistical
tests that use approximately ,/p random numbers, where p is the period length (see, e.g.,
L’Ecuyer, Cordeau, and Simard 1997, L’Ecuyer and Hellekalek 1998 for the LCGs). To
be reasonably safe, the period length of a general purpose generator must exceed 200
or so, and preferably more. And a long period is not sufficient. Good structural prop-
erties are also needed. If the aim is to imitate a sequence of ii.d. U(0,1) (indepen-
dent and identically distributed random variables, uniform over the interval [0,1]), the
set Ty = {ty, = (Un, ..., unti—1), n > 0}, of all vectors of ¢ successive output values over all
the generator’s cycles, should be uniformly distributed over the ¢-dimensional unit hyper-
cube [0,1]%, for all ¢ (ideally). If the seed is random, this set T} can be viewed as a sample
space from which some points are drawn. In practice, the structural properties of T} can be
analyzed via the spectral test, for ¢ up to 30 or so.

A multiple recursive generator (MRG) of order k is defined by the linear recurrence:

In = (alxn—l +-+ akxnfk) mod m; (1)
Up = Tp/m,
where m and k are positive integers, and each a; belongs to Z,, = {0,1,...,m — 1} (see
Grube 1973, Niederreiter 1992). The recurrence (1) has maximal period length m* — 1,

attained if and only if m is prime and the characteristic polynomial P(z) = 2% — a;2F~! —

-+ — ay, is primitive (i.e., the powers of z, modulo P(z) and m, run through all nonzero
polynomials of degree less than k with coefficients in Z"™). The latter can be achieved
most economically with only two nonzero coefficients, say a, and a, with 1 <7 < k. The
recurrence is generally easier to implement when these coefficients are small. However, a
necessary condition for a good figure of merit with respect to the spectral test is that Zle a?
be large (Grube 1973, L’Ecuyer 1997). To reconcile these conflicting requirements, L’ Ecuyer
(1996) proposed combined MRGs (CMRGs), where the components are carefully selected so
that the combined generator has good structural properties, while each component remains
easy to implement in an efficient manner. Such a CMRG turns out to be equivalent (or
approximately equivalent, depending on the type of combination) to an MRG with a large
composite modulus, equal to the product of the moduli of its components. The recurrence
of the CMRG can have many large coefficients even if the components have only two small
nonzero coefficients. L’Ecuyer (1996) gave a few examples of CMRGs, but only one of these
(Example 4) was a recommendable generator, with two components of order 3, period length

approximately 285

, and with the parameters chosen specifically for an implementation using
31-bit integer arithmetic with the “approximate factoring” method. That generator behaves

well with respect to the spectral test in up to 20 dimensions.

Les Cahiers du GERAD G-98-18 2

The aim of this paper is to provide good CMRGs of different sizes, selected via the
spectral test up to 32 (or 24) dimensions, and a faster implementation than in L’Ecuyer
(1996) using floating-point arithmetic. Why do we need different parameter sets? Firstly,
different types of implementations require different constraints on the modulus and multipli-
ers. For example, a floating-point implementation with 53 bits of precision allows moduli of
more than 31 bits and this can be exploited to increase the period length for free. Secondly,
as 64-bit computers get more widespread, there is demand for generators implemented in
64-bit integer arithmetic. Tables of good parameters for such generators must be made
available. Thirdly, RNGs are somewhat like cars: a single model and single size for the
entire world is not the most satisfactory solution. Some people want a fast and relatively
small RNG, while others prefer a bigger and more robust one, with longer period and good
equidistribution properties in larger dimensions. Naively, one could think that an RNG
with period length near 2'% is big enough for any conceivable application. But note that
185 (selected) bits of the RNG’s sequence are enough to determine all the others, so this
sequence has a lot of structure, and for this reason some might want a bigger number than
185.

The tables provided here are the partial results of an extensive computer search that
took more than a year of CPU time on SUN Sparcstations using the software described in
L’Ecuyer and Couture (1997). The next section recalls some notation, defines the figures of
merit that we use, and explains our search strategies. Section 2 reports the results. Section 3
provides an implementation in C and gives timing comparisons. The C code is also available
at ftp.iro.umontreal.ca in directory pub/simulation/lecuyer/combmrg2. Look for the
file combmrg2.c. A shorter version of this paper will appear as L’Ecuyer (1998a).

1. Notation, Selection Criteria, and Implementation Conditions

The RNGs considered in this paper combine .J copies of (1), that is:

Tin = (@j1%jn—1+ -+ ajptjn k) mod m; (2)
for j = 1,...,J, where the m; are distinct primes and the jth recurrence has order £ and
period length m? — 1. Let 01,...,0; be arbitrary integers such that d; is relatively prime

to m; for each j, and define:

J
_ Ljn
wy, = (Zajm-> mod 1, (3)
j=1 J
J
2y = Z 0;xjn | mod my, (4)
7j=1

Uy = 2zp/my. (5)

Les Cahiers du GERAD G-98-18 3

The sequences {wy, n > 0} and {Gy, n > 0} define two different CMRGs which have been
studied by L’Ecuyer (1996). In summary, the CMRG (2)-(3) is exactly equivalent to an
MRG as in (1) with modulus m = mj ---my, and the set T} mentioned in the introduction
is the intersection of a lattice with the unit hypercube. The points of T} lie in successive
parallel hyperplanes at a distance d; of each other. The other CMRG, defined by (4)—(5),
is also approximately the same as the first one. In other words, these CMRGs are basically
just special implementations of an MRG and they can be analyzed by applying the spectral
test to this MRG.

We use the figure of merit M7 = mins<;<7 Sy for some integer T', where S; =
(ptmk/tdt)_1 and p; is defined as follows. For ¢ < 8, p; is the 7; defined in Knuth (1981),
page 105, while for ¢ > 8, p, = exp(R(t)/t) where R(t) is Rogers’ bound on the density of
sphere packings (see Conway and Sloane 1988, page 88, and L’Ecuyer 1998c). S; and My
are always between 0 and 1 and we seek generators with My close to 1. An Sy close to 0
means that all the points of T} lie in equidistant parallel hyperplanes that are far apart,
leaving thick slices of empty space in between. An Mrp close to 1 means that T; is evenly
distributed over the unit hypercube, for all ¢ < T

For J = 2,3, k = 3,5,7, and prime moduli slightly smaller than 2¢ for e = 31, 32,
63, 64, 127, and 128, we searched for CMRGs with good values of Mg, Mg, and M3y (or
Moy, for e > 32). All the m; are selected so that r; = (mgC —1)/(m; — 1) is prime, and so
that the least common multiple of the (m§c —1)is (m§ —1)--- (mk —1)/27=! (which is the
largest possible period length for the combination). In most cases, (m; —1)/2 is also prime.
With these conditions, the full-period conditions are easier to satisfy and to verify, because

they require (in particular) the factorization of r;.

Table I lists some values of m and k such that m, (m—1)/2, and r = (m*—1)/(m—1)
are all prime. These values were found by random search, using a few months of CPU time.

They are useful for anyone who would like to perform additional searches for full-period
MRGs.

MRG implementations are easier and more efficient when certain constraints are
imposed on the coefficients a;;. For example, forcing some of the coefficients to be zero
save multiplications. In our search for good coefficients a;;, we consider also the following
conditions:

(B). The product a;;(m; — 1) is less than 253.
(C). The coefficient a;; satisfies a;;(m; mod a;;) < m;.

If Condition (B) holds, the integer a;;x;; is always represented exactly in floating point
on a 32-bit computer that supports the IEEE 754 floating-point arithmetic standard, with
at least 53 bits of precision for the mantissa. The generator can then be implemented
directly in floating-point arithmetic, which is typically faster than an integer arithmetic

Les Cahiers du GERAD

G-98-18

Table I
Values of m and k such that m, (m —1)/2 and r are prime.

k m
3231 —21069, 231 —43725, 231 — 43845
3| 232 — 209, 232 — 22853, 232 — 30833
3] 232 —-32969, 232 — 33053
3120 —21129, 263 — 275025
3| 264 — 239669, 264 — 525377, 26% — 539069
3| 2127 — 601821
3| 2128 — 233633
51 231 —22641, 231 —46365, 23! — 59601
51232 -18269, 23232969, 232 — 56789
5| 232 — 88277, 232 — 127829
51263 —19581, 263 — 594981, 263 — 745281
5 | 264 — 460589, 264 — 665033, 264 — 959417
7 | 231 — 6489, 231 — 50949, 23! — 55341
7 | 232 — 5453, 232 _ 36233, 232 — 37277
7232 —40313, 232 — 45737
7| 263 — 52425, 263 — 92181
7 | 263 — 152541, 263 — 379521
7 | 264 — 51149, 264 — 225257

11 | 232 30833, 232 — 86357

13 | 232 — 9653, 232 — 65129

implementation. On the other hand, with this implementation, the state of the generator
is represented over 64k.J bits, as opposed to 32kJ bits when the x;; are represented as
32-bit integers. When Condition (C) is satisfied and each integer from —m; to m; fits into
a computer word, each z;; can be represented as an integer over a single computer word
and the product a;;z;; mod m; can be computed via the approximate factoring method
described in Bratley, Fox, and Schrage (1987) and L’Ecuyer and Coté (1991). This condition
holds if and only if aii < mj or aj; = |mj/z] for 22 < m,;.

One can also force any a;; to be either positive or negative. A coeflicient a;; < 0 is

i = aji+mj >0, but |a;;| may satisfy a condition such as (B) or (C) that
aj; +m; does not satisfy.

equivalent to a

When (B) or (C) is imposed and some coefficients are forced to be zero, combination
is usually needed for reaching good figures of merit Mr, because there is a limit on what an
MRG can do with these conditions imposed on its coefficients. Combination helps because
the coefficients a; in (1) can be large even if the a;; in (2) are small. To illustrate certain

Les Cahiers du GERAD G-98-18 5

limitations in absence of combination, consider an MRG with a prime modulus m near 232,
order k = 7, and for which 7 — p of the coefficients a; are zero, the others being less than
22! 50 that (B) holds. Recall (see L'Ecuyer 1997) that a general lower bound on d; is given
by

k —1/2
dy > (1 + Za?) ,
=1

which in our example yields d; > (1 + p(22' — 1)2)~1/2 > 1/(2*',/p). For t = 8, since
¥s = V2, one has Sy = 2*1/2m*k/t/dg < 2*7'5\/5. With only two nonzero coefficients
(p = 2) this gives Mg < Sg < 1/128, whereas if all the coefficients are nonzero (p = 7) this
still yields Mg < Sg < 1/68.4. It is thus impossible to obtain a good figure of merit in this
situation, for any p. Similar limitations hold if the MRG has many zero coefficients.

For several vectors (J, k,m1,...,my) and different sets of constraints on the coeffi-
cients a;;, we performed random searches among the coefficients yielding maximal period
length (m} —1)--- (m% —1)/27~! for the CMRG, and retained the coefficient sets with the
largest values of Mg that we could find, those with the largest values of Mg, and those
with the largest values of M3y (or My for some large m;). The choice of T' = 8, 16, and
32 is arbitrary. It gives generators with good lattice structures in small, medium, and large
dimensions. Each random search was given a computing budget of between 20 and 40 hours
of CPU time on a SUN Sparcstation. Performing exhaustive searches is out of the question
because there are too many possibilities. The next section reports some of the results.

2. Tables of Combined MRGs with Good Figures of Merit

In the tables that we now give, a symbol * next to an M7 value means that this is the
best value found for that figure of merit, within the class of CMRG considered. For each
class, the m; are fixed and the constraints (B) or (C) on the coefficients a;; are given in the
second column of the table. The symbol (X) means that no conditions are imposed. The
coefficients not given in the tables (e.g., a1 and agy in Table IT) are equal to zero.

For example, for J = 2, k = 3, m; = 232 — 209, my = 232 — 22853, a1, = ag = 0,
and with Condition (B) in force, the combined generator with the largest value of M3y that
we found has Mj3o = 0.63359, and its coefficients are given in lines 3 and 4 from below
in Table II. This generator is implemented in Figure I. Note that the generators which
satisfy condition (C) in Table II also satisfy condition (B). For the values of J, k, and m;
chosen in Table II, the searches with no conditions on the coefficents did no better than
those with condition (B) or (C), except for the generator in the last two lines of the table,
which is marginally better with respect to Mg than the best one with condition (B). This
means that for practical purposes, we lose nothing by imposing either (B) or (C) on the
coefficients. For the larger moduli of Table III, condition (B) becomes irrelevant, and one

Les Cahiers du GERAD G-98-18 6

Table II
MRGs with J =2, k = 3, and Good Figures of Merit up to M3

mi a12 @13

msa Cd. a1 azs | Mg M;is M3,

25T 1 B 1321911 -4129054

231 _ 21069 B 2794761 -2188892 | 0.75320* 0.54812 0.54812
231 —1 B 3027836 -4091335

231 — 21069 B 4153570 -2990503 | 0.66216 0.65405* 0.56902
231 1 B 1670453 -3445492

231 — 21069 B 2197254 -1967928 | 0.64954 0.63638 0.63442*
231 — 21069 B 1193908 -2950125

231 _ 43725 B 2894372 -2940180 | 0.75451* 0.57093 0.51825
231 — 21069 B 1820706 -2009471

231 43725 B 1221169 -3650454 | 0.66209 0.65914* 0.51902
231 — 21069 ¢ 158402 -8405

231 _ 43725 C 56443 -14788 | 0.74083* 0.55796 0.55796
231 — 21069 ¢ 19524 -1638034

231 43725 ¢ 73764 -75622 | 0.65710 0.65292* 0.57402
231 _ 21069 C 26697 -94635

231 43725 ¢ 17207 -32449 | 0.64585 0.63562 0.63257*
232 — 209 B 1969538 -1433364

232 22853 B 847574 -739568 | 0.76749* 0.37869 0.37869
232 _ 209 B 1403444 -1751842

232 _ 22853 B 2042792 -1119812 | 0.66825 0.65540* 0.60234
232 _ 209 B 1403580 -810728

232 _9292853 B 527612 -1370589 | 0.68561 0.63940 0.63359*
232 — 209 X | 3486492906 -835981324

232 22853 X | 2107769446 -1282201325 | 0.66505 0.66505* 0.56803

loses very little by imposing (C). Tables IV and V give combinations of order 5 with 2
components, whereas Tables VI and VII give combinations of order 7 with 3 components.
All the coefficients in Tables IV and VI satisfy (B). Condition (B+) in Table IV means
that m; times the sum of the positive coefficients a;; does not exceed 253 This is slightly
stronger than (B) and implies that the terms of the linear combination can be added directly
in floating-point arithmetic without checking for overflow. In Table IV, with the m; near
231 our best combinations that satisfy (B+) are roughly as good as our best that satisfy
(B). But for the m; near 232, this is not the case: Imposing (B+) instead of (B) seems to
place a limitation on S} in dimension 6. For the combinations of order 7 with 3 components,
with 3 nonzero coefficients per component, we found no good set of coefficients that satisfy
(B+). We also found no good combinations in Tables V and VII for which the coefficients
satisfy (C).

Les Cahiers du GERAD

G-98-18

Table III
MRGs with J =2, k = 3, and Good Figures of Merit up to Moy
mi @12 @13
mo Cd. a21 23
Mg Mg Moy
263 _ 6645 X | 2589555827131458924 -4099479422893200720
263 _ 21129 X | 3289188331138264874 -1966513844028073209
0.65854 0.65854* 0.49571
263 _ 6645 X | 4190300628867444087 -3011960430186860296
263 _ 21129 X | 3289188331138264879 -1966513844028073209
0.63483 0.63483 0.63483*
263 — 6645 C 1655695575 -6336349341
263 _ 21129 c 31387474303 -6199136374
0.75429* 0.42033 0.42033
263 — 6645 C 1671177874 -4955851730
263 _ 21129 C 6254512935 -6964872892
0.69070 0.64709* 0.60405
263 — 6645 C 1754669720 -3182104042
263 _ 21129 C 31387477935 -6199136374
0.66021 0.62700 0.62700*
263 _ 21129 X | 4526524762173418132 -4555864699875109770
263 _ 275025 X | 1307791354756187406 -3073682228037191328
0.76206* 0.48301 0.48301
263 _ 21129 X | 2856694698336738094 -1298122433948874740
263 _ 9275025 X | 15669635301760128104 -1851529377525193617
0.67365 0.67365* 0.54479
263 _ 21129 X | 1526140779108535277 -2367937505303034453
263 _ 275025 X | 2780088258196613065 -3342815652037032447
0.63633 0.63633 0.63633*
263 _ 21129 C 3308108773 -6149300867
263 _ 275025 C 3262668826 -7914571809
0.75525* 0.57777 0.51514
263 _ 21129 C 2438134156 -18272927275
263 _ 275025 C 1675429757 -2849571296
0.65701 0.65328* 0.51514
263 _ 21129 § 18010381385 -5837607579
263 _ 275025 C 3444163371 -3141078384
0.63477 0.63393 0.63393*

Les Cahiers du GERAD G-98-18

Table IV
MRGs with J =2, k =5, and Good Figures of Merit up to M3
mi a12 14 ais
my Cd. a21 a23 azs
M8 M16 M32

231 _ 292641 B | 2727871 2605551 -2464029
231 _ 46365 B | 2895584 2558064 -1854053
0.77574* 0.50616 0.50616
231 22641 B | 2627540 632401 -2108408
231 _ 46365 B | 2895555 2558064 -1854053
0.66494 0.66103* 0.56765
23T _ 22641 B | 2728409 760401 -3516385
231 _ 46365 B | 2895587 2558063 -1854053
0.66620 0.62885 0.62885*

231 — 22641 B+ 781863 739164 -1249628
231 — 46365 B+ 995050 1521128 -2869717
0.76769* 0.59404 0.48965
231 _ 922641 B+ | 2072955 524735 -3626155
231 _ 46365 B+ 839749 1782022 -1794739
0.65267 0.65128* 0.48965
231 — 22641 B+ 343567 1162681 -1838005
231 — 46365 B+ | 1358258 449185 -619098
0.65922 0.63317 0.62644*

232 _ 18269 B 743348 1348285 -1980137
232 32969 B | 1788813 766578 -2064311
0.72818* 0.52654 0.52654
232 _ 18269 B | 1690742 783011 -1464677
232 32969 B | 1537375 1519984 -1039239
0.65039 0.64489* 0.59046
252 _ 18269 1154721 1739991 -1108499
232 32969 B | 1776413 865203 -1641052
0.66340 0.61130 0.61130*
232 _ 18269 B+ | 1033005 946785 -1387074
232 _ 32969 B+ 931504 860289 -1905982
0.57474 0.57474 0.57474*

(o]

Les Cahiers du GERAD G-98-18 9
Table V

MRGs with J = 2, k = 5, m; near 263 and Good Figures of Merit up to Moy
my a12 14 ais
meo Cd. as1 a3 a25
Mg My My
263 _ 19581 X 2623120880450994287 2356691689101540791 -2787290123899037863
263 — 594981 X 2306683785521934873 1841422677436109686 -3971733758690076701
0.76247* 0.51720 0.51720
263 _ 19581 X 2950615467004737479 2737337638805101082 -4592181088053893523
263 — 594981 X 4135715169147669386 4552814183224056363 -4578906048748201475
0.68111 0.66143* 0.58368
263 _ 19581 X 1718818747424265332 3433057061817565211 -3832930842357298842
263 _ 594981 X 1774293239749025172 2893614667916396552 -4284347090005224716
0.64397 0.64288 0.63270*

3. Implementations

Figure I gives an implementation in the C language of the CMRG given in the third entry
of Table II. We call it MRG32k3a. It has 2 components of order 3, whose coefficients satisfy
Condition (B). The moduli and coefficients are m; = 232 — 209, a1; = 0, a12 = 1403580,
a1z = —810728, my = 232 — 22853, ay; = 527612, asy = 0, ass = —1370589. This generator
is well-behaved in all dimensions up to at least 45: In addition to M3s = 0.6336, one has
My =~ 0.6336 and Mys ~ 0.6225. Its period length is (m$ — 1)(m3 — 1)/2 ~ 291, This
implementation uses floating-point arithmetic and works under the (sufficient) condition
that all integers between —253 and 253 are represented exactly in floating-point. The strings
ml, m2, all, etc., in the code must also be converted by the compiler to the ezact floating-
point representation of the corresponding integers (beware: the author knows compilers,
for other languages than C, that do not do that correctly).

The vectors (s10, si11, s12) and (s20, s21, s22) contain the values of (:El,(),(IIl’l,
z1,2) and (x2,0,%2,1,%2,2), respectively. Their initial values constitute the seed. Before the
procedure is called for the first time, one must initialize s10, s11, s12 to (exact) non-
negative integers less than m; and not all zero, and s20, s21, s22 to non-negative in-
tegers less than mo and not all zero. This program implements the combination (4)-(5),
with §; = —d2 = 1 and with the following slight modification: The normalization constant
is 1/(my + 1) instead of 1/my, and z, = 0 is converted to z, = m;. This modification
is to make sure that the generator never returns exactly 0 or 1 (frequently, one takes the
logarithm of u or of 1 —u, where u is the returned value, for example to generate exponential
random variables).

Les Cahiers du GERAD G-98-18

Table VI
MRGs with J =3, k =7, and Good Figures of Merit up to M3

mi aii Q14 air
ma a22 a25 a27
ms3 Cd. ass ase asr

M8 M16 M32
23T _ 6489 B | 4114612 695005 -1902775
231 _ 50949 B | 1824834 1099113 -3119657

231 _ 55341 B | 1897747 1413593 -1708684
0.80892* 0.59276 0.59276
231 — 6489 B | 1746621 2150930 -586682
231 50949 B | 3047650 3229951 -741583
231 _ 55341 B | 2880860 2830701 -1694599
0.72984 0.64372* 0.58432
231 _ 6489 B | 1004479 719020 -3542530
231 50949 B | 3259273 533655 -3434331
231 _ 55341 B | 1193874 2375699 -589692
0.70833 0.61275 0.61275*

232 _ 5453 B | 1218796 1840997 -1659552
232 36233 B | 1581362 1977203 -963326
232 _ 37277 B | 1202489 1736613 -1071212
0.81993* 0.43817 0.43817
232 _ 5453 B | 1740887 1181466 -1689373
232 36233 B | 1865459 1581232 -1527886
232 37277 B 808720 1958655 -1081624
0.68906 0.65815* 0.61090
232 _ 5453 B | 1025652 1495670 -1555702
232 36233 B | 1790017 1978132 -1015534
232 _ 37277 B | 1227190 1019889 -847163
0.68699 0.64588 0.64251*

Les Cahiers du GERAD G-98-18 11

Table VII
Large MRGs with J =3, k£ = 7, and Good Figures of Merit up to Moy

my ai1 14 air

m2 22 25 a7

ms3 Cd. ass ase asr

Mg Mg My

263 _ 52425 X 1199930145625658665 3713347872332282548 -4457315441628249813

263 — 92181 X 1397544940795732264 3808491227469253752 -2779271459168535736

263 — 152541 X 1207133271673920629 2942169185470839283 -1408095690229419395

0.79912* 0.51149 0.51149

263 _ 52425 X 1199930145625658665 3713347872332282548 -4457315441628249813

263 — 92181 X 3228923391594905828 1846866007242895159 -3137683670715012686

263 — 152541 X 1987272621033941685 4562552581286095999 -2571599210827278492

0.65741 0.64393* 0.56884

263 — 52425 X 3066411589989614628 3773315552627701863 -2372050994168764690

263 — 92181 X 1445357760795571378 3879290525763220258 -3915197909228525368

263 — 152541 X 2252905204102887454 794248818025848337 -3291594373975992936

0.66255 0.63467 0.63467*

To implement the combination (3) instead, add:
#define norm2 2.328318824698632e-10

and replace the last two lines of the procedure by:

= pl * norml - p2 * norm2;

if (p < 0.0) return (p + 1.0); else return p;

This would be slightly slower and may return 0.0.

This generator has been tested extensively with various empirical statistical tests
and it easily passed all the tests.

Figure II provides a similar implementation, for a CMRG with two components of
order 5, taken from Table IV. Its period length is (m3 — 1)(m3 — 1)/2 ~ 2319, If the two
components of this generator would also satisfy condition (B+), then the code could be
simplified somewhat: The two lines starting with “if (p > 0.0)” could be removed and
the “p +=" statements that follow these lines could be incorporated with the previous line,
because (B+) would guarantee that p could never exceed 2°3.

Figure III implements a generator in 64-bit integer arithmetic. It is a CMRG with 2
components of order 3, whose coefficients satisfy Condition (C) and are given in Table III.
The moduli and coefficients are m; = 2% — 6645, a;; = 0, a2 = 1754669720, a3 =
—3182104042, mo = 203 — 21129, ag; = 31387477935, az = 0, as3 = —6199136374. The

Les Cahiers du GERAD G-98-18 12

#tdefine norm 2.328306549295728e-10

#define mil 4294967087.0
#define m2 4294944443 .0
#define al2 1403580.0
#tdefine al3n 810728.0
#tdefine a21 527612.0
#define a23n 1370589.0

double s10, sl11, sl12, s20, s21, s22;
double MRG32k3a ()
{

long k;

double pl, p2;

/* Component 1 */

pl = al2 * s11 - al3n * s10;

k =pl /ml; pl-=%k * ml; if (p1 < 0.0) pl += mi;
s10 = sl11; sll = s12; s12 = pl;

/* Component 2 */

P2 = a2l * s22 - a23n * s20;

k p2 / m2; p2 -= k * m2; if (p2 < 0.0) p2 += m2;
s20 = s21; s21 = s22; s22 = p2;

/* Combination */

if (p1l <= p2) return ((pl - p2 + ml) * norm);

else return ((pl - p2) * norm);

Figure I
A floating-point implementation in C of a 32-bit CMRG

period length is (m3 — 1)(m3 — 1)/2 ~ 2377, This implementation assumes that all integers
from —m; and m; are represented exactly in the “long long” type. This implementation
is similar to the one given in Figure I of L’Ecuyer (1996), but with the parameters of the
generator defined as constants instead of variables. This makes the code significantly faster
on most computers. Again, the global variables s10, s11, s12 (resp., s20, s21, s22)
must be initialized to non-negative integers less than m; (resp., mo) and not all zero before
the first call.

To get an idea of the comparative speeds, for each generator we generated 10 million
(107) random numbers and added them up, looked at how much CPU time (user time +
system time) it took, and then printed the sum for checking purposes. This was done
first on a 64-bit SUN Ultra-2 under OS 5.6, using the system’s compiler (cc, version 4.2)
with the “-fast -xtarget=ultra -xarch=v8plusa” options, and also on a 64-bit DEC
AlphaStation 250 using the compiler cc at optimization level O4. The timings (in seconds)
for selected generators are in Table VIII. We also indicate the period length, the type of
implementation (FP for floating-point and I for integer arithmetic), and the sum of the 107
numbers generated. In addition to the already mentioned CMRGs, we report the timings
for a C version of the 32-bit combined LCG of L’Ecuyer (1988) (comblec88a), the CMRG

Les Cahiers du GERAD G-98-18

13

double

#tdefine
#define
#tdefine
#define
#tdefine
#define
#tdefine
#define
#define

long

else

}

s10, s11, s12, s13, s14, s20, s21, s22, s23, s24;

norm 2.3283163396834613e-10

ml 4294949027.0
m2 4294934327.0
al2 1154721.0
al4d 1739991.0
aldbn 1108499.0
a21 1776413.0
a23 865203.0
a2bn 1641052.0

double MRG32kba ()
{

k;

double pl, p2;
/* Component 1 */

pl = al2 * s13 - albn * s10;

if (p1 > 0.0) pl -= ald * mil;

pl += al4 * sl11; k = pl / mi; pl = k * ml;

if (p1 < 0.0) pl += mi;

s10 = sl11; sll = s12; s12 = s13; s13 = s14; sl14 = pil;

/* Component 2 */

P2 = a2l * s24 - a2bn * s20;

if (p2 > 0.0) p2 -= a23 * m2;

P2 += a23 * s22; k =p2 / m2; P2 = k * m2;

if (p2 < 0.0) p2 += m2;

s20 = s21; s21 = s22; s22 = s23; 823 = s24; s24 = p2;

/* Combination */
if (p1l <= p2) return ((pl - p2 + ml) * norm);

return ((pl - p2) * norm);

Figure II

A floating-point implementation in C of a 32-bit CMRG of order 5 with 2 components.

Les Cahiers du GERAD G-98-18

14

#define
#tdefine
#tdefine
#define
#tdefine
#define
#tdefine
#define
#tdefine
#define
#define
#tdefine
#define
#tdefine
#define

h
h

h
h

}

a23n
q23
r23

1.0842021724855052e-19
9223372036854769163
9223372036854754679
1754669720
5256471877
251304723
3182104042
2898513661
394451401
31387477935
293855150

143639429
6199136374
1487847900
985240079

long long s10, s11, s12, s20, s21, s22;
double MRG63k3a ()
{

long long h, pl2, pl3, p21, p23;
/* Component 1 */
s10 / q13; pi13
si1 / ql12; pl2
if (p13 < 0) p13 += mi;

if (p12 < 0) p12 +=ml - p13; else pl2 -= pi13;
if (p12 < 0) p12 += mi;

s10 = s11;
/* Component 2 */

s20 / 923; p23 = a23n * (s20 - h * g23) - h * r23;
s22 / q21; p21 = a21 * (s22 - h * g21) - h * r21;
if (p23 < 0) p23 += m2;

if (p21 < 0) p21 += m2 - p23; else p21 -= p23;

if (p21 < 0) p21 += m2;

s20 = s21;
/* Combination */

if (p12 > p21) return ((p1l2 - p21) * norm);
else return ((pl12 - p21 + ml) * norm);

al3n * (s10 - h * q13) - h * ri3;
al2 * (s11 - h * q12) - h * r12;

ml;
s11 = s12; s12 = pl12;

m2;
s21 = s22; 22 = p21;

Figure III

An implementation in C, on 64-bit integers, of a CMRG of order 3 with 2 components.

Les Cahiers du GERAD G-98-18 15

Table VIII
CPU time (seconds) to generate and add 107 random numbers, and value of the sum
Generator Period Method SUN DEC | Sum
length ~ Ultra-2 | Alpha
MRG32k3a 2191 FP 5.6 8.2 | 5001090.95
MRG32k5a 2319 FP 6.8 | 10.1 | 5000494.15
MRG63k3a 2377 I 39.5 | 16.8 | 5000445.10
combMRG96a | 285 I 19.8 | 37.6 | 4999897.05
combMRG96b | 2185 I 156.5 | 13.2 | 4999897.05
combMRGO6f | 2185 FP 5.5 8.2 | 4999897.05
comblec88a | 26! I 8.5 5.9 | 4999532.57
comblec88f | 261 FP 4.2 7.9 | 4999532.57
drand48 248 -— 20.1 8.8 | -—-

in Figure I of L’Ecuyer (1996) (combMRG96a), and one of the system’s generators in UNIX
(drand48). In all cases (except for drand48), each integer in the seed was 12345. (It is a
good idea to check that your implementations reproduce the same sums.) For comblec88a
and combMRG96a, the times are for the implementations in integer arithmetic as given in
these papers. Implementations of these two generators in floating-point arithmetic as in
Figure I are called comblec88f and combMRGI6f in the table. The generator combMRG96b
is a variant of combMRG96a with the moduli and multipliers defined as embedded constants
in the code instead of variables as in combMRG96a.

Obviously, the timings depend on the type of machine. On different models of SUN
computers they vary (roughly) only by a machine-dependent constant factor. On these
computers, the floating-point implementation is much faster than the 32-bit integer imple-
mentation, and the implementation based on 64-bit integer arithmetic is rather slow. On
the 64-bit DEC Alpha, a RISC machine with fast integer arithmetic, the implementations
in integer arithmetic are more competitive. Considering the period and the quality of the
lattice structure, MRG63k3a could be a good choice for the DEC Alpha.

The generator of Figure I gives no more than 32 bits of precision even though it
returns 53-bit floating-point numbers. If more precision is desired, a simple solution uses
two successive numbers produced by the generator to construct each output value. For
example, if MRG32k3a outputs the sequence uq,us, ..., one can effectively use the sequence
v1,V2, ... defined by v; = (vug; +ug; 1) mod 1 for some constant v between 272! and 2732,

Les Cahiers du GERAD G-98-18 16

Acknowledgments

This work has been supported by NSERC-Canada grants No. ODGP0110050 and SMF0169893,
and FCAR-Québec grant No. 93ER1654. Thanks to Anna Bragina and Richard Simard for
their help in testing the code, and to Hannes Leeb, David Kelton, and two anonymous
referees for their constructive comments.

REFERENCES

BRATLEY, P., B. L. Fox, AND L. E. SCHRAGE. 1987. A Guide to Simulation. Second
ed. New York: Springer-Verlag.

CoNwAy, J. H. AND N. J. A. SLOANE. 1988. Sphere Packings, Lattices and Groups.
Grundlehren der Mathematischen Wissenschaften 290, New York: Springer-Verlag.

GRUBE, A. 1973. Mehrfach rekursiv-erzeugte Pseudo-Zufallszahlen. Zeitschrift fir ange-
wandte Mathematik und Mechanik, 53, T223-T225.

KnuTH, D. E. 1981. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Second ed. Reading, Mass.: Addison-Wesley.

L’ECuUYER, P. 1988. Efficient and portable combined random number generators. Com-
munications of the ACM, 31(6), 742-749 and 774. See also the correspondence in
the same journal, 32, 8 (1989) 1019-1024.

L’ECUYER, P. 1994. Uniform random number generation. Annals of Operations Research,
53, 77-120.

L’ECUYER, P. 1996. Combined multiple recursive random number generators. Operations
Research, 44(5), 816-822.

L’ECUYER, P. 1997. Bad lattice structures for vectors of non-successive values produced
by some linear recurrences. INFORMS Journal on Computing, 9(1), 57-60.
L’ECUYER, P. 1998a. Good parameters and implementations for combined multiple recur-

sive random number generators. Operations Research. To appear.

L’EcuYER, P. 1998b. Random number generation. In The Handbook of Simulation, ed.
J. Banks. Wiley. To appear in Aug. 1998. Also GERAD technical report number
G-96-38.

L’ECUYER, P. 1998c. A table of linear congruential generators of different sizes and good
lattice structure. Mathematics of Computation. To appear.

L’ECuUYER, P., J.-F. CORDEAU, AND R. SIMARD. 1997. Close-point spatial tests and
their application to random number generators. Submitted.

L’ECUYER, P. AND S. COTE. 1991. Implementing a random number package with splitting
facilities. ACM Transactions on Mathematical Software, 17(1), 98-111.

L’ECUYER, P. AND R. COUTURE. 1997. An implementation of the lattice and spectral
tests for multiple recursive linear random number generators. INFORMS Journal
on Computing, 9(2), 206-217.

Les Cahiers du GERAD G-98-18 17

L’ECUYER, P. AND P. HELLEKALEK. 1998. Random number generators: Selection criteria
and testing. submitted.

NIEDERREITER, H. 1992. Random Number Generation and Quasi-Monte Carlo Methods.
volume 63 of STAM CBMS-NSF Regional Conference Series in Applied Mathematics.
Philadelphia: STAM.

RipLEY, B. D. 1987. Stochastic Simulation. New York: Wiley.

