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Abstract

Central limit theorems are obtained for the PARMSR (perturbation analysis Robbins-Monro
single run) algorithm with averaging, updated either after every regenerative cycle or after ev-
ery fixed-length observation period, for one-dependent regenerative processes. These stochastic
approximation algorithms with averaging turn out to have identical limiting behavior, i.e., the
same convergence rate and the same limit covariance matrix, when the convergence is expressed
in terms of the total observation time of the system (or the total computing budget in the
case of a simulation). Under certain assumptions, these algorithms are asymptotically efficient,
in the sense that both their convergence rate and limit covariance are optimal. The strong
convergence rate of the usual PARMSR algorithm updated after every fixed length observation
period is established using a limit theorem on double array martingales. This is the key step
for obtaining the asymptotic efficiency of the algorithms with averaging and has interest in its
own right.

Key words. perturbation analysis, asymptotic efficiency, central limit theorems, stochastic
approximation, recursive estimation, queueing theory.

Résumé

Nous obtenons des théorémes de limite centrale pour des algorithmes d’approximation sto-
chastique de type “PARMSR (perturbation analysis Robbins-Monro single run)” avec lissage
par la moyenne, pour des systémes regénératifs au sens large, et oit le paramétre & optimiser
est mis & jour soit a la fin de chaque cycle regénératif, soit 4 intervalle fixe. Nous montrons que
les propriétés de convergence de ces algorithmes sont les mémes, i.e., ils ont le méme taux de
convergence et la méme matrice de covariance asymptotique, lorsque la convergence est exprimée
en fonction du budget total de calcul (i.e., de la durée totale d’observation du systéme). Sous
certaines hypothéses, ces algorithmes ont un taux de convergence et une matrice de covariance
asymptotique optimaux.






1 Introduction

Consider a discrete-time stochastic process {J;(#), ¢ > 0}, where 8 € R! is an [-dimensional control

parameter, and suppose that we want to minimize the performance measure
- 1<
T6) = Jim 3 S EO) (L1)

with respect to 6. Perturbation analysis (PA) offers viable means to estimate f(8) 2 dJ(6)/de
by observing a single sample path of the system (see, e.g., [14], [19], and other references therein).
It is natural to treat the current estimate as a noise-contaminated observation of f(6), and put
it in a stochastic approximation (SA) algorithm to recursively estimate the optimal parameter,
while the system is running. When the Robbins-Monro (RM) algorithm (see [29]) is applied, this is
referred to as a PARMSR (perturbation analysis Robbins-Monro single run) algorithm by Suri[34]
and Suri and Leung[35]. Considerable effort has been devoted, in the recent years, to studying the
convergence of the PARMSR algorithm in the field of discrete event dynamic systems (DEDSs);
see, e.g., [8]-[10], [13], [21], [22], [24], [36], and [37], among others.

When a PARMSR algorithm is implemented, one concern is how to choose the step-sizes.
Consider a classical SA algorithm

9n+1 =0, — anfn+1 (1'2)

with an arbitrary initial value 8y, where a, = A*/n for some matrix A*,

fn+1 = f(en) + En+t1

is an unbiased estimate of f(#,), 9, is the nth estimate for the optimizer §°, and e, is the
observation error at the (n + 1)-th step. It is well-known that under certain conditions on the
regression function f(8), on the noise sequence {e,, n > 1}, and on the matrix A*, /n(6, — 6°) is
asymptotically N(0, S*), i.e., centered normal with some limiting covariance matrix S*. The trace
of S* is minimized by taking A* = M; !, where M; = d f(6°)/d6 is the Hessian matrix of J(6) at
6°. This optimal covariance matrix is S* = M;1S3(M;!)’, where the prime means “transpose”
and S§ is the asymptotic covariance matrix of (1/4/n) 37_; €;. But since M is generally unknown,
this optimal scheme is usually impracticable.

This has motivated the introduction of SA algorithms with averaging, using a slowly varying
gain sequence {a,, n > 1} which decreases at a rate slower than 1/n (see [3], [5], [28], and [39]).
One of these algorithms uses (1.2) as usual, then retains the following estimator of the optimizer
at step n:
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1=1

(4] =
n+l n+1

Under some conditions, /n(8, —8°) is asymptotically N(0, S*). A major advantage of the averaged
algorithm is that there is no need to know M;'. The conditions under which the above results
have been proved, however, do not hold in the PARMSR setup. For example, conditional on 6,,
the error €,41 generally has nonzero expectation (3,, where B, # 0, and is correlated with the

previous €rrors ep,€n—1,- - ..

In this paper, we study the asymptotic efficiency of the PARMSR algorithm with averaging,
in the context where the process {J;(8), ¢ > 0} is one-dependent regenerative. This covers a wide
class of systems. The PARMSR algorithm observes the process {J;(0)}, say, for L, steps with
0 = 6,,, uses this information to obtain a PA gradient estimator f,11, computes the next parameter
value 6,1 from (1.2), continues running the system for another L,.; steps with 8 = 6,41 to
estimate fni2, and so on. Let N, = 3°7_, L; be the cumulative computing budget for the first
n steps of the PARMSR algorithm. We shall express the convergence speed of the algorithm
in terms of N, (as done, e.g., in [24]). When /N, (8, — 6°) is asymptotically N(0, S*), with
S* = M1S3(M), where S§ is the asymptotic covariance matrix of (1/v/Ny) Y 7=1€; (which is
the best possible limit covariance matrix for a given gradient estimator), then for that particular
gradient estimator we say that the PARMSR algorithm is asymptotically optimal, or asymptotically
efficient as in [3, 5, 39]. Most limit theorems in the literature of stochastic approximation are,
however, expressed in terms of n, the number of iterations, rather than in terms of N, (see, e.g.,
[7] and [20]).

We analyze the following two cases:

¢ (R) The parameter 6, is updated after each regenerative cycle (so, L, is random and repre-
sents the length of the nth regenerative cycle). In this regenerative case, we use 6,_; instead
of 6, to obtain f,41, as explained in Section 2.3.

e (F) 6, is updated after every L steps in the system’s evolution (so L, = L, a positive constant).

For case (R), the limiting behavior is relatively easy to analyze since the main part of the observation
noise can be decomposed into two martingale difference sequences. Then, standard results on
stochastic approximation are applicable. For case (F'), the analysis is much more difficult, primarily
because the standard conditions on the observation noise, assumed in, e.g., [3], [28] and [39], do not
hold. These authors require the observation noise to satisfy the properties of martingale differences,
or of stationary ¢-mixing processes, or of the infinite sum of a martingale difference sequence. But



for the PARMSR algorithm with fixed-length observation period, the observation noise has a very
complicated dynamic, as shown in previous convergence studies; see, e.g., [9], [10], [21], [22], [24],
[36], and [37]. In this paper, we first obtain the strong convergence rate of the usual PARMSR
algorithm (without averaging), using a limit theorem on double array martingales taken from [6)
and [17]. We then apply this result to obtain the asymptotic efficiency of the PARMSR algorithm

with averaging for case (F).

Our main results say that for both (R) and (F), the PARMSR algorithm with averaging
is asymptotically efficient. Both cases thus have the same convergence rate and the same limit
covariance matrix, in terms of N,. Moreover, for (F), this limit covariance is independent of the
updating frequency L. Our emphasis in this paper is on the case (F). The implementation in this
case is much easier, because there is no need to recognize the regeneration points, so it depends much
less on the structure of the system. For case (R), the algorithm must identify the regeneration points
explicitly. This is usually hard for complex systems. See [30]-[31] on identification of regeneration

points for queueing networks.

The rest of the paper is organized as follows. The asymptotic efficiency of the PARMSR
algorithm with averaging for case (R) is analyzed in Section 2. For case (F), we begin with L =1
for simplicity of writing. We establish the strong convergence rate of the PARMSR algorithm in
Section 3 and obtain the asymptotic efficiency of the algorithm with averaging in Section 4. We
then extend the results to the case where L > 1 in Section 5.

2 Asymptotic Efficiency of the PARMSR Algorithm with Aver-
aging for Case (R)

2.1 Model and Problem Formulation

We begin with the construction of controlled one-dependent regenerative processes. Let
{{xi™, iz 1, {6, i>1}, (g™, i 21}, 1, m21} (2.1)

be a controlled 4-tuple stochastic process, defined on some common probability space {Q, F, P},
where for each m > 1, {Xi(m), i > 1} is a d-dimensional state process, {9§m), i> 1} is an I-
dimensional control parameter process belonging to a compact set D C R/, {Ji(m), i>1}isa
R!-valued cost function process, and 7,, is an integer-valued random variable (r.v.). Define

F™ = ofx{m™ ... xm™hy (2.2)



.7‘_11.(m) _ o{}-i(m) U}-(m—l)}’ Vm>1, (2.4)
where for all » < 0 we define F r) = o{Xo, 0o, Jo}, a g-algebra containing the initial information.

For each m > 1, we assume that

(i) for any ¢ > 1, 0§m) is .ﬁ(m)-measurable;

(ii) nm is a stopping time with respect to {fi(m), i>1}

(iii) for any 7 > 1, Ji(m) is ﬁgm)—measurable.

By (2.1), we can construct a controlled 4-tuple stochastic process
({Xi7 i > 0}7 {ai; 12> 0}, {Jia 1 > 0}7 {"7ma m 2> 1}) (25)

as follows. Define k,,, = 0 for m <0 and

kn = an for m > 1, (2.6)
j=1
and let
X = XD
By = OLTY) for 1< < Mmt1, m 20, (2.7)
Jbm+i = Ji(m+1)
where X, 50, and Jp are initial values.
If for some m > 0, 6§m+1) = @ for all i > 1, where 0 is a deterministic parameter in D, we

use
({x{™0), i > 13, {H™D0), i 21}, 1 (9))

to represent
({Xz'(m+l)7 i 2 1}’ {0§m+1), i Z 1}’ {Ji(m+1)$ 1 Z 1}7 77m+1) .

The controlled 4-tuple stochastic process (2.1) is assumed to be one-dependent regenerative in the
sense that the following condition (AOQ) is satisfied.

(A0). For any fixed § € D and m > 1, ({Xi(mH) ), ¢ > 1}, {Ji(mﬂ) (9), i > 1}, nm+1(9)) is in-
dependent of F(™~1) and n,,,, and has the same distribution as ({Xi(z), i>1}, {Ji(z), i>1}, 772)

conditional on 01(-2) =@ forallj>1



If e§"" =@ for alli > 1, m > 1, we obtain a 3-tuple stochastic process
({X:(8), i 20}, {Ji(8), i >0}, {nm(0), m >1})

by defining
Xiem(o)+:(6) = X" 1(6)
Tkm(@y4(8) = JV(6)
where X(8) and Jy(6) are the initial values, km(8) = 0 for m < 0, and

} for 1 <i<pus1(8), m>0, (2.8)

km(6) = inj(t?) for m>1. (2.9)
=1

For a fixed 8 € D, the process {X;(0), i > 0} is one-dependent regenerative in the common sense
(see, e.g., [32]). The {kmn(0), m > 1} are called the regeneration points or regeneration times. If
for all i > 1 and 6 € D, Xy, (9)+i(6) and X;(0) also have the same distribution, then the process
is called non-delayed regenerative. If {X;(6), km—1(0) < i < kn(0)} are also independent of
{ka(g)+,~(0), i > 0} for all m > 1, then the process is called classically regenerative. We require
that {J;(8), ¢ > 0} is a one-dependent regenerative process with the same regenerative points
{km(8), m > 0} for {X;(0), i > 0}. This can be achieved by choosing, e.g., J;(8) = ¢(X;(8), 0) for
all ¢ > 0, where ¢(-, -) is a measurable mapping. By Proposition V.1.1 in [1], {¢(X;(6), 6), i > 0}
is a regenerative process with the same regeneration points {kn,,(6), m > 0}.

By the splitting technique from [2] and [26], it is well-known that Harris-recurrent Markov
chains (HRMCs) are one-dependent regenerative processes. We refer the reader to [1], [25], [27],
and [32] for appropriate background on HRMCs and one-dependent regenerative processes. Under
standard rate conditions, Sigman [31] shows that open queueing networks can be modeled by
HRMCs and gives explicit regeneration points. Similar results hold for closed queueing networks
(see [30]).

The performance measure of interest is the steady-state average

1
J(8) = Jlim ;Z[IE[JZ-(B)L 9 €D,

assuming that this limit exists. Let 1,,(6) = kmn(0) — km—1(6) be the length of the mth regenerative
cycle, for m > 1. Without loss of generality, we shall assume henceforth that {X;(6), ¢ > 0} is
. non-delayed regenerative. If

74(6)
E[7,(8)] < and E [ |Ji(9)|} < 00
1

=

5



for all @ € D, then J(6) is well defined on D and we have

7.(6

7(6) = E[7711 [Z] } (2.10)

from the renewal-reward theorem (see, e.g., [1] and [38]). The problem is how to find 6° such
that J(6%) = 192%17(0). We are mainly interested in the situation where J(6) or its gradient are
too hard to compute exactly, but where gradient estimators can be computed, either on-line or by

simulation.

2.2 Strong Consistency of the Gradient Estimators Using Infinitesimal
Perturbation Analysis

We now turn to the sample path gradient dJ;(8)/d6 € R', which is called the infinitesimal pertur-
bation analysis (IPA) gradient. The computation of {d J;(8)/d @, i > 1} has been widely studied,
see, e.g., [14], [19] and references therein.

In this paper, we focus exclusively on these systems where {d J;(#)/d6, ¢ > 1} inher-
its a regenerative structure from {J;(f), ¢ > 1}. This means that the regeneration points of
{dJi(6)/d6, i > 1} coincide with those of {J;(f), i > 1}. A typical condition under which
the regenerative structure of {J;(6), ¢ > 1} is preserved by {d J;(8)/d6, i > 1} is that there
exists a state of degree one; see [14] and [16]. In the context of queueing systems, suppose that
{Ji(6), i > 1} is a HRMC and satisfies a recursion of the general form J;11(8) = ¢(X;+1(0), 6),
Xiy1(0) = (Wi 1(0), uiy1(9)), where ¢(-, -) is a measurable mapping, {W(#), i > 1} is the se-
quence of waiting times, and {u;(#), ¢ > 1} is the input sequence including the i.i.d. interarrival
times and the i.i.d. service times. Then, the regeneration of {d J;(6)/d0, ¢ > 1} is determined by
that of {d X;(8)/d6, i > 1}. If there is an open set Cx that {X;(0), i > 1} visits infinitely often,
and such that dW}*(0)/d6 = 0 when X;(f) € Cx, then the times at which X;(8) visits Cx are
regeneration points for {X;(8), d X;(8)/d6, i > 1}, provided that X;(6) is absolutely continuous
with respect to 6 for all 8 € D. We refer the reader to [15] for more details.

In practice, (1/t) S°¢_; d J;(9)/d 6, t > 1 serve as estimators for f(8). To obtain the strong
consistency of the estimators, i.e.,
. 1< dJi(8)
Jim < 2 0 = @), as,

we impose the following conditions.



(Al). {J;(8), i > 1} are absolutely continuous with respect to § on D.

(A2). {dJi(0)/d6, i > 1} and {J;(0), ¢ > 1} are one-dependent regenerative processes with
the same regeneration points {k,,(8), m > 0}. There is a sequence of one-dependent and
identically distributed random variables (r.v.’s) {Zn(0), m > 1} such that

d Ik, +i(0)

(A3). For some & > 1, supycpE [Zl(G)EO] < oo and supgep E [771(9)60] < 0.

Lemma 2.1  Suppose that conditions (A0)-(A3) are satisfied with §; = 2. Then the IPA deriva-
tive estimators are strongly consistent and

1 O 4 100
f(0)=E[n—1(@)—]E[; dé )}, VéeD. (2.11)

Proof. The proof is along the same lines as in [14]-[16].

2.3 PARMSR with Update After Every Regenerative Cycle

Since 7;(8) > 1, finding a root of f(6) is equivalent to finding a root of f(6)7(0), where 7(8) =
E[n1(0)]. If explicit regeneration points for the model under consideration are known as a prereq-
uisite, by Lemma 2.1 we can use the information contained in a regenerative cycle to obtain an
unbiased estimate for f(0)7(6). This motivates the following projected RM algorithm.

On — anfni1, if 0, — anfni1 € D;
Ons1 = Hp(bn —anfrny) = (2-12)
en, if 6, — an fri1 ¢ D,
"7n+1(‘9n—1)
dJy 1i(0n_
fast = Y ——’“"%—1), (2.13)
i=1
kno o= > mi(6i-2), (2.14)
i=1

where 6_1, 6y € D are initial values, a, is a step-size, fo41 is the (n + 1)-th estimate for
f(6p-1)7(8n-1), and IIp is a projection operator. When D is a closed convex set, we can also



define IIp(z) to be the nearest boundary point whenever z ¢ D. It is worth noticing that the
decision parameters throughout the evolution of the (n + 1)-th regenerative cycle are fixed at 6,_1,
rather than 6,. This is because of the one-dependent nature of our model, and will simplify our
convergence analysis of the algorithm. Note that k, as defined here is not quite the same as kn(6)
defined in (2.9) for a fixed 6, because 6 changes between the regeneration cycles. In the setting of
(2.1), we have

0§m+1) = Om—1

for 1 <i<nmt+1(Om-1), m >0, (2.15)

Nm+1 = Mmt1(Om—1) )
where k,, is defined by (2.6).

For most practical problems, the parameter # cannot take an arbitrary value. Specifically,
we suppose that D is a bounded set in R'. In the context of queueing systems, for example, D
may represent the stability region such that the standard load condition can be fulfilled. In the
case where D is unbounded, then a stochastic approximation procedure with randomly varying
truncations can be employed to deal with such a problem (see, e.g., [3]-[5], and [7]).

The PARMSR algorithm without averaging for case (R) is composed of (2.12)—(2.14) (cf.
(8], [13], [22], and [23]). The observation noise €,4+1 can be expressed as

ent1 = fn41 — F(0n)7(0n). (2.16)

Our aim in this paper is to obtain a central limit theorem for {8, n > 1}, where

9n+1 = n+1 ; 9i = m (0n+1 + nen) . (217)

The PARMSR algorithm with averaging for case (R) consists of (2.12)-(2.14) and (2.17).

2.4 Limiting Behavior of the PARMSR Algorithm with Averaging for Case (R)

We first list the following conditions that will be used later on.

(A4). There are constants @ > 0 and v € (%, 1) such that 0 < a, <@n ¥ foralln > 1; a; =@ for

all 7 <0; Y20, an = o00; Oga,ﬁ_l—a;l—-——m.
n — o0



(A5). D is a bounded set and f(6) is bounded on D. The optimizer 6° is an interior point of D.
There are a stable matrix M; (all eigenvalues of M; have positive real parts) and positive

constants rg and ¢; such that

1£(8) — My (8 — 6%)|| < c1]|6 — 6°]|2,  whenever [|§ — 8°|| < ro.

(A6). There exists a continuously differentiable function v : R' - R such that v(6°) = 0 and for
all Ay >0,
sup  (£(6))'ve(6) > 0.
0eD, A, <||6—-6°)|

(A7). f(0) is Lipschitz with modulus By on D, i.e.,

| f(z1) = f(z2)l| < Billz1 — z2ll, V&1, z2 € D.

(A8). 7(0) and H(@) are continuous at §°, where H(9) is defined as
m.(0) m(6) ’
HO)=E || > dJ(9)/do] | Y dJi(6)/de] |.
i=1 i=1

Let us comment on conditions (A1)-(A8). To establish the strong consistency of the IPA
gradient estimators, conditions (A1)-(A3) are standard; see, e.g., [14]-[16] for details. The slow
gain condition on the step-sizes is put in condition (A4). Conditions (A5) and (A6) are standard
in the context of stochastic approximation. Condition (A7) requires that the regression function
£(8) is sufficiently smooth. We note that if our model is a classically regenerative process, then the
Lipschitz conditions on f(6) and #(8) required in Theorems 2.1-2.3 can be dropped since in this
situation, 6,,_; in (2.13) may be replaced by 6, and we do not need to decompose €41 Into two
parts (see (2.18)—(2.20)). Condition (A8) requires the continuity of 7j(6) and H(6) at the optimizer
6°. This is a mild condition.

Theorem 2.1  Suppose that (i) conditions (A0)-(A6) hold, with & > 4 in (A8); (i) 7(6) is
Lipschitz with modulus By. Then |0, — 6°|| = o(al), a.s., V3 €[0, 1 —1/(2v)), where v is given
by condition (A4).

Proof. We first decompose €41 into two parts

en1 = e +e2) (2.18)



where

Npt1(n-1) .
a= Ty T ) (2.19)
@) = (f(Bn1) = F(B))ABn-1) + £ (0n)@(Bn-1) — 7T(6a)). (2.20)

With the definition (2.15), we define {.7-'(’"), m > 0} as in (2.3), where Flm) = o{Xo, Jo, 0o,
6_1} for all m < 0. By Lemma 2.1 and the one-dependence assumption, it is seen that {5&)’ F2n)
n > 1} and {egl)_l, F@n=1) ' > 1} are martingale difference sequences. By condition (A2), it
follows from (2.19) that

111l < a1 (Bn1)Zns1(Ba—1) + sup [1£(8) ]| sup7(8), (2.21)
ecD geD
which yields
supE [fleg )y *] V] < oo, (2:22)

by Schwarz inequality and condition (A3). Then using the local convergence theorem of martingales
(see, e.g., [11] and [33]), it is seen that Y72 a&__‘sl) eé},’ < ooand y 022, aé}f_‘? eg,)_l < o0 a.s., which
implies that
[0 o]
S alfel) < oo, as. (2.23)
By Lemma 2 of [36] and condition (A3), one derives
027, (6,-3) —— 0 and {0, (6n-2) ——0as, V€0, 1-1/(2v). (2.24)
n — o0 n — oo
Using condition (A2) and (2.24), it follows from (2.12)-(2.13) that

16n — Op-1ll < an—t|[fall < afz—-l ’ aflziinn(en—ﬂzn(en—ﬁ = 0(“‘:;) a.s.,

which gives
1211 < 1160 — B (Bl Sgg’ﬁ((?) + Bz sup ||f(0)!l}) = O(|l6r — ba-1]| = oap) a.s., (2.25)

_via (2.20) and the Lipschitz conditions.

By (2.23) and (2.25), the desired result follows from Theorem 3.2.1 of [7].

10



Theorem 2.2  Suppose that conditions (A0)-(A8) hold with some & > 4/v and that 7(0) is
Lipschitz on D. Then

d
where ——— means convergence in distribution and N (0, S1) is the multivariate normal distribu-

tion with covariance matric

i [ Mg Tty
0

and S = H(8Y).

Proof. By Theorem 2.1, 6, —— 6° a.s.. Then, there is a finite time ng such that
n— oo

Opt1="0n —anfnt1 YV n 2ne. (2'26)

Define 9,0 = I, ¢nn+1 = I, and
Pk = (I+apAy)--- (I +arAg)Vn>k. (2.27)

where {A4,, n > 0} is a sequence of deterministic matrices such that limp, 00 An = —M7. Then it

is standard to derive that

n
llpn, &ll < coexp (—C > aj) ) (2.28)

i=k
n
supZa,-Hgon,iHH” <00, Vr;>0, (2.29)
"=t
where ¢y and c are some positive constants. From (2.26) one derives

6n—+~1 - 90
Van+1
eno _ 90 n

n
1 2
= Pnme 2 = Y i Va@Eh — Y enis1v/aiE
V @no i=ng i=ngo

— 3 pnir10(a)Vaigiss — Y @nir1V/@(1+ 0(ai)O(||6n — 6°1%), (2.30)

i=ng i=no

where O(||0, — 6°]|2) means a vector with the same order as ||, — 6]|?. In the proof of Theorem
2 of [3], it is shown that E[||6, — 6°||*] = O(an), which yields that the last term on the right side

11



of (2.30) converges to zero in probability via (2.28) and (2.29). By the conditions (A2), (A3), and
Lemma 2 of [36], it can be shown that

vV An€n+1 mO a.s., (231)

which yields that the fourth term on the right side of (2.30) converges to zero a.s.. Similarly, we
can prove that the first and the third terms converge to zero a.s.. Then, the desired theorem follows
from standard martingale arguments.

Theorem 2.3 Under the conditions of Theorem 2.2, the PARMSR algorithm with averaging for
case (R) satisfies
—_ d
Vn(8, — 8°)——N(0, S2),
n — 00

where Sy = 7(6°) 2 M 1S(M).

Proof.  The proof uses similar arguments as that of Theorem 2 in [3], combined with a
decomposition as in the proof of our Theorem 2.1. Since it is very long and technical, it is omitted.

O

For the first n iterations of the PARMSR algorithm (2.12)-(2.14), the total computing
budget is N, = %, 7i(fi—2). By the continuity of %(8) at §° and the law of large numbers for
martingales, it is seen that

2 5j(6°), as. (2.32)
By (2.32) and Theorem 2.3 we arrive at the following corollary.

Corollary 2.1 Let the conditions of Theorem 2.2 be satisfied. Then, the PARMSR algorithm with
averaging for case (R) satisfies
— d
VN (85 — 6°)——=N(0, S%),

n— oo

where S* = 7(6%) "M S(M; ). This algorithm is asymptotically optimal.
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3 Convergence Rate of the PARMSR Algorithm with L =1

From now on, we shall explore the limiting behavior of the PARMSR algorithm with update after
every fixed length observation period, i.e., L, = L. For simplicity of writing, we begin with the case
of L = 1. In this section, we establish a strong convergence rate, which will be used for proving the
asymptotic optimality of the algorithm with averaging in the next section. We extend our results
to L > 1 in Section 5.

As in the proof of Theorem 2.1, for the convergence of 3 7 ; a},“sef}ll, it suffices to prove

the convergence of Y o2, a%,‘,_‘fls&) and Y022, a%;fzsg,)_l, where {5513, FEn) n > 1} and {552_1,
Fn-1) p > 1} are martingale difference sequences. Such a technique is standard when one
wants to extend some results on classically regenerative processes to the one-dependent regenerative
processes. Hence, no generality is lost by supposing that {J,(6), n > 1} is a classically regenerative

process, for simplicity of writing.

The parameter 8 is updated by the projected RM algorithm (2.12), where f,,11 is the (n+1)-
th step estimate for f(8). The computation of fn11 is based on the perturbation propagation rule
of IPA, though the control parameters are changed frequently. The concrete form of f,1 may be
very complicated, and needs to be analyzed on a case by case basis. Let 7,41 be the (m + 1)-th
regenerative cycle length. In the (m + 1)-th regenerative cycle, suppose that fi, 1; has the form

Frmti = Ye+i(Okns Okmt1, =<y Okmti-1), for 1 <i<mmyq, (3.1)

where k., = 3., 7;. If the control parameters are fixed at 6 throughout the (m+1)-th regenerative
cycle, we denote the regenerative cycle length by 7m1(8), and for 1 < i < 1, 6 € D, we have

dJy +i(6
Ykm+i(07 6, ..., 0) = —kfj%(—_) (32)
For later use, we define the r.v.
dJy, +i(0
Dm,i = '_k"niz"(——)' = Ykm+i(6km7 ey ekm)7
de 6=0y,

which is the value of fx, i obtained if we assume that 6, ; is fixed at 6, for all j > 0. The
PARMSR algorithm with observation period 1 consists of (2.12), (3.1), and (3.2) (see, e.g., [9], [10],
[36] and [37]). The observation noise can be written as

en+1 = fot1 — f(On). (3.3)
When this algorithm is employed, in the setting of (2.1) we have

ez(m) = Okm+i for 1 S ) S NTm+1, (34)

13



where the control parameter process {6, n > 1} is defined by the PARMSR algorithm. Note that
(3.1) means that f,, +; depends on the parameters 6y, , Ok, +1, - - - Okp+i-1, and on the randomness

involved in {Xfm“), X§m+1)’ . Xi(m+1)}'

We use the following conditions.

(A9). There exist a parameter §* € D and a sequence of one-dependent and identically distributed
I.v.’s {Z(O) m > 0}, with E[(Zfo))ﬁ/”] < 00, such that for all 8 € D and 1 < i < 41, 3.8,

m+1s
Mm+1 < Nmt1(6%), (3.5)
Yerti Ok Ottt - s Okmti-1)ll < Ziny1(6%), (3.6)
1Ye+iOkms Okmtts === s Okmti-1) = Yiati(6, 6, -, O]

<2 max (B =6l (37)

(A10). There are two positive constants ag and 7 such that P{nm+1 # Nm+1 Ok, )| F (m)} < aoa',::"
where the filtration F(™) is defined by (2.3).

(A11). & = max{2/¢, 4/v, 2p1}, where v is given by (A4), p; > 1 and ¢ > 0 are some constants
such that
v (1+71(1 - -1—)) S1, 0<c<dy, mi-L>L s
n mT 2 2

Note that v; is given by (A10).

By putting some conditions on the service times and the interarrival times, conditions (A9)
and (A10) have been verified for the GI/G/1 queueing systems; see, e.g., [9], [10], [36] and [37]
for details. Suppose that the distribution of the interarrival times has a bounded density function,
then (A10) can be verified with some constants g > 0 and y; € (0, 1), where 1 can be arbitrarily
close to 1. We also note that Chong and Ramadge[10] have checked conditions (A9) and (A10) for
several classically regenerative systems, though the convergence rate of the PARMSR algorithms
have not been studied there.

Before stating our main results in this section, we introduce two lemmas.

Lemma 3.1 Suppose that {2;} is a sequence of r.v.s with the same distribution. Then for any
r >0, E|z1|" < oo implies

lim n Y72, =0 a.s.
n—o0

Furthermore, if {2;, 1 > 1} are mutually independent, then the converse is true.

14



Proof. The proof follows essentially from the Borel-Cantelli lemma and Corollary 4.1.3 in
[12], pp. 90-91.

Lemma 3.2 Suppose that {z,, B} is an l-dimensional martingale difference sequence satisfying
sup E[|| zn+1 %18} < 0, |zl = o(h(n)), a.s., h(n) < h(n+1), Vn2=>0,
n

and that gn; is an Bf-measurable | x I-dimensional random matriz, for 1 <i < n, which satisfies
n
Z “9n,i”2 <g<oo, as,Vn2>1,
i=1

where h(n) and g are positive constants. Then, as n — oo,

H
o | j;gn,jzjﬂll =o(h(n+1)log n) a.s.

Proof. The proof can be found in Guo, Huang, and Hannan([17]. See also {6].

Theorem 3.1 Suppose that conditions (A0)-(A10) hold with & > max{4, 2p;m}, v(1 +n(1 -
1/p1)) > 1 where py > 1 is some constant, and 1 is given by condition (A10). Then 6, —:—%00
n o

a.s..

Proof. The key idea lies in verifying that Y o, anen41 converges a.s.. Then the desired
result follows from Theorem 3.1 in [4] (see also Theorem 2.4.1 in [7]).

(i). We first show that >0 _, ST qy 1, 1€k, 4i converges a.s.. From (3.1)—(3.3) it is

easy to see that

[s,¢] 77m+1
Z Z Ay +i—1€kpy, +i
m=1 i=1
[o o] nm+1 [ee] 7lm+1 (ekm )
= > (Akptiol — G )kmti + D Gk D, (Dmyi— f(6k))
m=1 i=1 m=1 i=1

15



77m+1 o0 77m+1

+ 3 atn Y (FOkm) = FOrpriz1)) + Y ke D (fhmti = Dimyi)
m=1

N1

+ ) ax,, > (Dmji — F Ok DI {Mmt1 > M1 (k) }
m=1 i:nm-}-l (Okm )+1

0 Nont1 Ok )
=Y ak, Y. Dmi— FOr ) {Mms1 < Mms1Okn)}- (3.8)
m=1

i:nm+1+1

As in Lemma 3.4 of [37], we can prove that each term on the right hand side of (3.8) converges a.s..
The details are omitted here.

(i1). By the result of step (i), analogous to Lemma 3.5 of [37], we can prove the almost sure
convergence of Y o2 GnEnt1-

Theorem 3.2 Suppose that conditions (A0)-(A11) hold. Then, for the PARMSR algorithm
with observation period L = 1, the following strong convergence rate is achieved:

6, -0 =o al/2-? a.$.,
n

where §' is any constant satisfying condition (A11).

Remark 3.1 We note that §' in Theorem 3.2 is independent of v. Thus 1/2—¢§' can be arbitrarily
close to 1/2, if condition (A3) is fulfilled with very large &. This is different from Theorem 2.1 in
Section 2 and Theorem 2.2 in [37], where ||6, —6°|| = o(ad) a.s. with 6 € [0, 1—1/(2v)) depending
on v. In particular, in the latter setup, if v is close to 1/2, then § must be close to zero.

For n > 0, define
(I—apMy)---(I—a;M;) fori<m;
"pn,i =

I for i = n + 1; (3.9)
0 fori>n+2;

o(n) =max{m: ky, <n}, 7(n)=o(n)+1 (3.10)

To prove Theorem 3.2, we use the following lemma.
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Lemma 3.3 If conditions (A0)-(A11) are satisfied, with &' satisfying (A11), then

§'-1/2
Opt1 Za]¢n,]+15]+1 -—>0 a.s.
Jj=0

Proof.  Since —M; is stable, it is standard to derive that (see, e.g., [3] and [7]):

[¥nkll < coexp (—c > aj) , (3.11)

=k

i=1 j=i-+1 i=1

supZa,exp (-rc Z a,) < 00, supZazH(pn " <oco, Vr>0, (3.12)

:—'-—exp( I)Za,>, Vn>i, (3.13)

n

where ¢y and c are some constants and o(1) —— 0.
1~ 00

Using (3.1)-(3.3) and (3.10), we have

§—~1/2
Gppy Z @ ¥n,j+1€j+1

Jj=0
5, 1/2 n a(n) =1Mm1
= Qpyq Z aj"/)n,j+15j+1 + an+1 Z Z Qe +i—1Vn km+z(fkm+z f(gkm—H 1))
J=ksmy+1 m=0 =1
§-1/2 512 " QL T
= G’ D G¥ngniEii i D Y Ghtic1¥nnti(f Oh) — FOkmrio))
kg +1 m=0 i=1
Py 1/2 U(n)—l 77m+1
+an+1 Z Z Ak +i— 1¥n km+z(fkm+z Dy, z)
m=0 i=1
Y 1 Mt
Gpr’” D D (Ghyrio1 — @k )V g +i(Dimi ~ f(0r,,))
m=0 i=1
6’ —1/2 o(n)~17m41
n+1 Z Z k., (d’n km+1 ™ d’n km)( - f(ekm))
m=0 =1
51 o(n)-1
'—-1/2
+an+1/ Z Ok, "ubn,km Wm+1
m=0
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- 2a(n)—l N1
+ad 17 S aktnke O (Pmi— FOe ) {Nmi1 > Tms1 (Okn)}

m=0 =742 (O )+ 1
§—1 20’(1’1)—1 nm+1(0km)
_an-:l/ 3 Gkntngkn Y, (DPmi— O {Mm41 < Mmi1(Okn)}y (3.14)
m=0 =N tl
where
77m+1(0km)
wmtr= Y, (Dmi— f(0kn))- (3.15)
i=1

We will show that each term on the right hand side of the second equality in (3.14) converges
to zero a.s.. Then, the desired result follows from (3.14).

(i). By condition (A4), there is a constant a; such that

Ak, 2 *
ma <1 6*) and | < 6%). (3.16
1< s (akm+i) S 1+ a1k, Tm41(67) an 1< s @kt = G| < 105, M1 (607)-(3:16)

Using (3.6), it follows from (3.3) that
A . ,
letmtill < Wiy £ max | £(O)] + Zmsa(6%), for 1<i<myn. (317)

By Lemma 3.1 and conditions (A3) and (All), one has

1 .
TWT;nm+1(0 )W‘r(r?-z-l mo a.s., (318)
which yields
. 0
nll}nolo A /aka(n)na(n)_q_l (9*)W0('(3l)+1 m 0 a.s. (3.19)
By (3.11), (3.16) and (3.17), we have
& ¢
Sntl i aj¥nj+i1€i+1| < Coil coak,(")WS(),),,)_*.lna(n)-kl (6%)
Van+1 j=ka(n)+1 vVon+1
a 1/2
/ o(n 1/2 *
< cOaﬁ-u ('—L) akﬁ(n)na(n)ﬂ(@ )th(()r),)+1
aka(n)+1
< & (1 + (9*))1/2 9*)W(0)
S Colpyg alaka(")nd(n)-l-l \/ ak,(,.)"la(n)+1( a(n)+1

——0 as,
n — oo
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which implies that the first term on the right hand side of the second equality in (3.14) converges
to zero as n — oo, a.s.

(ii). Using (3.5) and (3.6), it follows from (2.12) and (3.1) that

i
18m+i = Okl < D N0kmts = Okmrjill < Gk W1, for 1<i<nmya, (3.20)
i=1
where
Wint1 = Mm+1(0%) Zm+1(6%). (3.21)
By condition (A7), (3.16) and (3.20), it is derived that
o512 o)1 s
Gy iy Z Z Ak +i—1¥n km+i(f Ok ) — [ (Okppti-1))
a(n)— 1Mt
< Blan+1 Z Z Gl 4i— 1”¢n km+z|| i1 Ck Wint1
m=0 i=1
o(n)=1Mm41 1/2 1/2
Ak +i ag
< B m m
= 1an+1 ng:o ; Ak, +i— 1“'¢'n km+z” ( it ) 13;151%3{,.:1 (akm+i) \/akam+1
. o(n)=1 M1 n n
< Blcoaf,_l_l Z Z ak,,+i—1€Xp | —c¢ Z aj | exp [ o(1) Z a;
m=0 i=1 j=km+i j=km+i
(1 + 01k M1 (8) 2 AR, Win g1
—0 a.s, (3.22)

n — oo

since by (3.12)-(3.13)

o(n)—=1Mm41 n n
Z Z ak,, +i—1 €XP (—c Z aj) exp (0(1) Z aj)

m=0 i=1 j=km+i j=km i

< Zn:aiexp (—c zn: aj) exp (0(1) i aj) = 0(1) a.s.,

i=0 J=i+l Jj=i+l
and by (3.18)
(1 + alakmnm+1(0*))1/2,/akam+1 m_—;—:g 0 a.s.

Thus, the second term on the right hand side of the second equality in (3.14) converges to
Zero a.s., as n — 00.

19



(iii). By (3.7) and (3.20) we get

0
| fem+i — Dmill < Z,(nll . s%%f.ﬂ 10kum+i — Ok, |

AN

akar(rL~)|-1777n+1(0 ) m+1(9 ) for 1 < 7 S Tm+1- (323)

Similar to (3.18), by Lemma 3.1 it follows that

Vi 20 i s1(6%) Zm 1 (6%) ——0 as. (3.24)

By the same argument as in (3.22), it is seen that

a(n) 17’m+1
n+1 Z Z Ak, +i— 1¥n km+z(fkm+z_ )
m=0 i=1
o(n)=1Npy1 1/2 1/2
’ Ak +i ag
< a a - i ( UL > max ( "‘)
< pq mz=o z:ZI kg +i~1¥n ki P P
Vg, Z7(r?-)f-177m+1(9*)zm+1(0*)
) o(n)—1Mn, 11 n n
< coaﬁ+1 Z Z g, +i—1€Xp | —C Z a; | exp | o(1) Z a;
m=0 i=1 j=km-+i F=km+i
(L + 0101, Tm11(0) 2 /G 201 T 1(6%) Zrn 1 (67)
—0 a.s, (3.25)
n—+ o0

which implies that the third term on the right hand side of the second inequality in (3.14) converges
to zero as n — 00, a.s.

(iv). Analogous to (3.22), by (3.16) it can be shown that

6 1/2 a'(n) 1 77m+1
Qi1 Z Z (akm+z 1— akm)¢n,km+i(Dm, i— f(@km))
a o(n)—1Mm41 o
= Vi > Y G krillnmer (0)W,
n+1 m=0 i=1
<

; a(n)—-1",41 n ak, 1i 1/2 az/Z
1
Q1C00y, 1y E E ak,.+i-1€xp | —c E a; (—'"———) 1<z;1g%x m
—"="m41

m=0 i=1 j=km+i an+41 akm-I-Z—l\/ Ay +i

MRVAL. Zm+1 Nm+1(6")W, ml—l
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) o(n)=-11m41 n n
< alcoafH_l Z Z ag,,+i—1€xp | —¢ Z aj | exp | o(1) Z a;

m=0 i=1 j=km-+i j=km+i
(1 + 0108, Tms1(0%)¥2 Va2 1 (0OW,

—0, a.s. (3.26)
n — o

This means that the fourth term on the right hand side of the second inequality in (3.14) converges
to zero as n — 00, a.s.

(v). By the definition (3.9), we have
i

i
Dromti = Vrkm = O Ui 1¥n ki M1 = Ykt D, Vo +=1Phm+i— 15 ML (3.27)
j=1 j=1

Similar to (3.26), it is derived that

Y ()71 s
Gt || 20 D Ok Wrnbnti ~ Prkn)(Dmi — f(Bn)
m=0 i=1
& 1/2a(n )71 T (0)
< COHM1“a‘n+1 Z Z a’km“'wnkm+1“nm+1(0*)Wm+1
m=0 i=1
, a'(n)-—lnm+1 n n
< c%l|M1||ai+1 z Z ag,, +i—1€xp | —c Z a; | exp | o(1) Z aj
m=0 i=1 Gk +i j=km+i
(1 + 0104, 11 (68) ¥ Va2 g1 (6)W
——0 as, (3.28)
n—o0

which means that the fifth term on the right hand side of the second inequality in (3.14) converges
to zero as n — o0, a.s.

(vi). We now consider the convergence of the sixth term. First, by the definition (3.9) it is

seen that
T(n) n+1

Z Y ko Gk Wit 1 = Z Qe V1 o Wrnt 1 (3.29)

Let h(n) = nS,V n > 1, where ( is some constant satisfying 0 < { < §'v. Then by condition
(A11) and Lemma 2.1 we have

w0 *
lwntall _ Was1Mn41(6%) . .
h(n) < ;; — 0, a.s. (3.30)
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By (3.11) and (3.13), it is derived that

a Z af Mnpal? < - E Uy~ 1y [P o 1
m—O
n+1
<
<

n+1 n
2 Z exp ( 2cz a]) a;_1 €Xp (0(1 Zaj)
j=i =i

=0

= 0(1), (3.31)

which, incorporating with (3.30) and Lemma 3.2, leads to

1 n+1

Ve 2 E WYn ko Gk Wm+1 = O(1) + o(h(n) log n). (3.32)

By (3.32), it follows from (3.29) that

)
fz+11/2 Z W Y Wmt1 = Ofadyy) + o( & 1h(n)log n)

m=0
1
= o0 J,V ¢ logn
= o(l) as,
which implies that
s 2 o(n)—1
1
a’n+1/ Z Ok, Uk Wmt1 ;—:—;—20, a.s.,
m=0

since by (3.11), (3.16), and (3.18)—(3.19) we have

i
Ant1
Van+1 190k ) @by Worm 1+ Pty By Wr )1l

< Coai+1((1 + alak,(n)ﬂa(n)ﬂ (6*)) 1/2\/ak,(n)770-(n)+1 (9*)W,£((),),)+1
a
— 1/2 v Ok ()7 (n) +1 Wr((()r)z)+1)

—0, a.s.
n — oo
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(vii). Set

Nnt1

VO = Y (Dmi— fOe)) {01 > i1 Brn)}, ¥ m >0,
i= nm+1(0km)+1

By (3.30), we get
0y _ (0)) g (m-1)
Vi = BV, |7 ] »0, a.s., (3.33)
h(m) m — 00

which incorporating with (3.31) and Lemma 3.2 yields

n+1
\ﬂil,m Z¢"kmakm(v1fwll EVSLIF™]) = 0(1) + o(h(n) logn) = o(h(n)logn), a.s. (3.34)

By Holder inequality and condition (A10) for any p; > 1 we have
IEIVAL I FN < Elmas ()Wt H{mne1 > s (B ) HF ™)

* l/pl
< (B[ inmia@)P]) ™ Plimsr > a1 (B, )| Fm 2o
1
< a(l)—-l/Pl (E [(W(O)lnm+1(0*)) ]) /P az:’fl—l/pl), (335)
which leads to
o2 125 Zdjnkmakm Vil 1l
an41 m=0
- . 1/p 1
< o 7 sup L (£ [ 2mna @)™ | g 3 Wil aafs P
n+1 m=0

8 W - Qi+1 12 o r1-1/p1)-1/2
< OMal,; > ajexp | —c > aj a;yy
J

i=—1
= o(1) a.s., (3.36)
provided y1(1 — 1/py) > 1/2.

Combining (3.34) and (3.36) gives

1 n+1
1/2 5” Z ¢n kma‘km m+1” = 0( )+ O( n+1h( )logn) = 0(1) a.s.,

Qp1  m=0

where 0 < ¢ < é'v.

(viii). By the same way as in (vii), it can be shown that the last term on the right hand

side of the second equality in (3.14) converges to zero, a.s.
O
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Proof of Theorem 3.2:

By Theorem 3.1, there is a finite r.v. n§ such that after n§ steps the algorithm (2.12) will

become the usual RM algorithm, i.e.,
0n+1 = Gn - an(f(é?n) + €n+1)7 V n Z ?’l;

Then, for a deterministic integer ng, on the event {n > ng > ng}, one has

Opi1 —6° 212 §-1/2

7 _ 0 1/2 .

1/2—¢ = Op4y 77&”»"0 (eno -6 ) —pp Z 1/}",j+1a183+1
Crt1 Jj=no

—a¥ T2 S Yo ira(F(85) — My (85 — 6°)).

j=no
Let r < rp, where rg is given by condition (A5). Define
. inf{j : j > mno, ||6; - 6% >},
o =
0, if ||6p — 6% >

By (3.11) and (3.13), it is easy to see that

1—1/2 —g° < &~1/2 ( 9ng 124 _ - g, —@°
lans1”*Ynno(Bno — 6O < coaly; exp | —¢ ) aj | [|6n, — 6°]|

Jj=no

Let cf be a constant such that

Lo\ V2
sup ? <¢.
5>1 | \ @j+1

By condition (A5), (3.11) and (3.13) we have

n
f,+11/2 3" ¥njr1ai(£(6;) — My(6; — °)I{o* > n+1, &y < 1o}

Jj=no

n
< coclan_H Z exp (—c Z as) a;||6; —0°21{c* > j, aiy < Mo}

j=no s=j+1
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i i a; \Y279 |16, — 8| I{c* > j, ai, < o
< coerr Y exp (—c > as) a; (———’ > 19 “ {a1/2_5/ - )

j=ng s=j+1 Gn+1 j
i c & 8; — 6°|| I{c* > j, aiy < mo
< cjeocrr Z exp | ~3 Z as ” I {1/2 = ‘o } (3.41)
j=no s=i+1 a;

if ng is large enough.
By Lemma 3.3, (3.40)-(3.41), it follows from (3.38) that

6 —1/2
1841 — O I{0* > n +1, aip < mo}a’ 1%,

n n
< ofl) +cjeocrr Y exp (=5 3 a | asll6; — O°IPT{o" > j, aig < moYaj %, (3.42)
Jj=no 2s=j+1

which, incorporating with the Bellman-Gronwall inequality, leads to

160 — O I{o* > n, ay, < no}al ~1/?

n n—1
o(1) +o(1 Z exp (—--2- > as) a;j exp (cﬁcoclr > as)

j=no s=j+1 s=j+1

IA

n—1 n—1
< o(1)+0(1) Z a;j exp (-—2 Z as)

Jj=no

= o(1), (3.43)

where 7 is sufficiently small such that c§cocir < ¢/4. From (3.43), it is readily seen that ||6, — 8% =
o(arll/z—‘s ) as n — 00, a.s..

4 Asymptotic Efficiency of the PARMSR Algorithm with
Averaging for L =1

By combining (2.12),(3.1) and (2.17) we obtain the PARMSR algorithm with averaging, with
observation period L = 1. Our main result in this section is as follows.
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Theorem 4.1 Suppose that conditions (A0)-(A11) hold with vy (1 —1/p1) > 1/2 and 0 < §' <
1/2(1 — 1/(2v)). Then, for the PARMSR algorithm with averaging, composed of (2.12),(3.1) and
(2.17), one has

ViBn —8)——N(0, o)

n — oo

where S3 = 7(6°) 1 MS(MTY).
In order to prove Theorem 4.1, we need several lemmas. From the definition (3.9), we have

n
Ynj = Pn-1j — 0nMithp15=1— M E a; ;1,55

=3
which gives
n
aj—1 Z 1/)1'——1,] Zaz¢z 1,7 + Z(a] 1— az)"ubz 1, = M1 + Gn,]: (4'1)
i=j =J i=j
where

i=j

Lemma 4.1 Let the conditions of Theorem 4.1 be satisfied. Then

n—1
lim —= 3" (M + Gnjp1)(f(8;) — My(8; - 6°) =0, as.
—
Proof. For any & € (0, 1/2(1 — 1/(2v))), by condition (A4) and Theorem 3.2 it follows

¢ 012 125’ = 1 1
> lo; -~ 6°17 = ZJ Zz(mwg<wm”

:1 z:l

that

which gives

n—>00

1 n—1
lim — 6, —0%°=0 as, 4.3
\/ﬁ;“ j | (4.3)

via the Kronecker lemma (see, e.g., [12]).

It is shown in Lemma 1 of [3] that for all n > j > 1, Gy, ; defined by (4.2) are bounded. By
Theorem 3.1, condition (A5) and (4.3), it is derived that

ﬁ” j;(ﬂ’-ﬁ L G jr1)(£(85) — My(8; — 6°)| = —\/7 Z=: 16; — 6°117 mo a.s.,

from which the lemma follows.
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Lemma 4.2 Suppose that conditions (A0)-(A11) are satisfied. Then

\/H ZE,-:(;)N(O S4)

where Sq = 77(8°)71S.

n

Proof. Asin (3.8), —1\/; Z ¢; can be decomposed into the following terms
i=1
FYa = = ¥ gte 33 G~ Dnd)
\/-ﬁ =1 \/ﬁ j=ko-(n)+1 \/_ i=1
1 d(n)—l nm+1
= 3 Y (f(6r,) = f(Okpti-1)
" m=0 =1

1 a(n)~-1 [/

+ = Z (Dm,i - f(okm))l{nm-H > 77m+1(9km)}
m=0 =1, 41 (O )+1

o(n)=1 Mng1 Okm)

_% Z (Dm,i — f(akm))I{nm-f—l < 77m+1(9km)}

m=0 =7,.,+1

1 a(n)-1
—_— M1, 44
\/’l—’),- mzz:o Wm+1 ( )

where w41 is defined by (3.15).

We first show that each of the first five terms on the right hand side of (4.4) converges to
zero a.s., as n — oo. Then we show that the last term converges to N (0, Sy) in distribution. Hence

the desired result follows.

(i). Similar to (3.19), it is easy to show that

(ii). By (3.23) it is derived that

i 1 n"'il (m)
(fbmti — Dmji) ‘f ™
m=1 m i=1 '
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[ o]
= rg—:1 m [”m+1(9) Zm+1(6%) r(n)+1]
P 7(0)
B mX=:1W [nm+1(9) Zm+1(6%) m+1] <00, a.s.,
which implies
N1
3 LS s D) <0 s, «5)

by the local convergence theorem of martmgales (see, e.g., [11], [33]). By the Kronecker lemma, it
follows from (4.5) that

n 77m+1
n_,oo \/—mz—:o ; (Ffemti — Dmi) =0 a.s,
which gives
o(n)=1Mms1
lim —= Z Z (fem+i — Dmyi) =0 a.s., (4.6)

n—00 \/—

since o(n) <n, Vn > 1.

(iii). By (3.20), similar to (4.6) we can prove that the third term on the right side of (4.4)
converges to zero as n — 00, a.s.

(iv). By (3.35) and condition (A4), we derive that

1 77m+1

oo
E|Y — > (Dmyi — f Ok N {Nms1 > M1 Ok )}
=N g1 Ok )+1

m

[ o]
< Y ok (E [y mman (6))7]) 7 an Ot

< o0 (4.7)

if vy1(1 = 1/py) > 1/2. By (4.7), it is easy to prove that the fourth term on the right hand side of
(4.4) converges to zero as n — 00, a.s.

(v). Similar to (iv), we can prove that the fifth term on the right hand side of (4.4) converges

to zero a.s., as n — 00.

(vi). By the central limit theorem for martingales (see, e.g., [12] and [18]), it is seen that

\;— Z wm+1——+N 0, S). (4.8)

28



We now show that )
a(n) y——, as. (4.9)
n n-eo 7(6)

One can decompose

LS = 23 =) + o Oh) ~Oh)
L S w0, @) + 76" (4.10)
i=1

By conditions (A9) and (A10), we have

Z—Ilm m(Gk.-_l)lI] < Z%E[mw*)f{m#mwk. D

i=1 =1
< 3 pVEm@ P # o)}
< Vaoy/Efm( 9*)2]6““/22 il
< oo,

which, combining with the Kronecker lemma, yields

1
nll)rgo - ;(ni —0i(0k,_,)) < o0, a.s. (4.11)

By the local convergence theorem of martingales and the Kronecker lemma, it is derived
that

n

.1 _
Jim -~ > i(Ok_y) = T(0r,_,)) =0, as. (4.12)
i=1

By Theorem 3.1, 8, —— 6° a.s., which implies

n — o0
n
Z (Or,_,) —7(8°)) ——0, a.s. (4.13)
i1 n— oo
via the continuity of 7(8) at 6°.
By (4.11)-(4.13), it follows from (4.10) that
— Z ni ——7(0°), a.s. (4.14)

n — oo
1'._.
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From the definition (3.10), we have

o(n)+1
n < E m<n+ No(n)+1>
i=1
which gives
(n)+1
o(n) 1) 1 ° on)+1 1 .
—_— ; < 0%). 4.1
This yields (4.9) by (4.14) and Lemma 3.1.
To prove
1 o(n)-1
-\/_ﬁ mz=:o Wm+1 mN(O, S4), (4.16)

we need a central limit theorem for stopped martingales. We note that if the Kolmogorov inequality
is replaced by the Doob’s inequality (see, e.g., [12]), the proof of Theorem 9.4.1 in [12] goes through
for the stopped martingales. Then, by (4.8) and (4.9), (4.16) follows.

O

Lemma 4.3 If the conditions of Theorem 4.1 are fulfilled, then

\/_ Z G ,]e,—->0

P
where —— means convergence in probability.

Proof. Similar to (4.4), we have

1 n
—=2_ Gnitj
Vn

1 zn: a(% 1n§1

= = Gn,jej + Grepnti(fom+i — Dmii)

\/—] "70(1'3)"}'1 \/_ =0

1 o(n)=1Tm
Y 2 2 CrdntilF ) = F i)

m=

1 a(n)-1 [/

tE XY GukerilDmi = [0 ) s > s B}

m=0 i=nm+1 (okm )+1
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o(n)—1 M y1 (Okyn)
“— Z E Grem+i(Dmi = Ok N {mi1 < Mmt1(6km)}

m=0 z_.'r]m+1+1
o(n)~1 Npt1(Okm)

+i > Z Gk (Dmi — f(6kn))
m=0 1
o(n)— 1n,,,+1(0km)
Z Z (Gronti = Gk ) (Dmi — F(6k..))- (4.17)

Since Gy, j is bounded for all n > j > 1, it follows from the proof of Lemma 4.2 that each of the
first five terms on the right hand side of (4.17) converges to zero a.s., as n — oco. In what follows
we prove that as the n — oo the sixth term converges to zero in probability, while the last term
converges to zero, a.s.

(1). By the definition (4.2), we get

AL, 2 1 [
Bl 7% X Guntmnr| | < B |3 [GnknlPEllwmial*17)
m=0 m=0
< E [ty - Zf|am||2——+o (4.18)

=0
via Lemma 1 of [3].
By (4.18), it is easy to derive that

1 a(n)-1

G —-——)0
\/ﬁ Tg__:o n,km Wm+1

(ii). By (3.9) and (4.1), we have

Gn,j — Gn,j-1ll

n n
= f(aj-1—aj—2) > o1+ aj—2 D _(Ys1,j — Ys-1,-1) — Gj-2¥j—2,j-1

s=j s=j
< @®aj-165—2 E l|s— 1,1” +aj-2 ZG’J 1| M| |lbs— l,J” + a2

5=j s=j
< ((al + (| M) Sup{“-‘} Sup{a: 1 Z ll%hs—1,ill} + SUP{‘_})
s=j

< ezaj-1, Van>j>1, (4.19)

where o; and c3 are some constants.
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By (4.19) and (3.23), it follows that

o(n)=1Mmt1(Okm)

E Z (G kmti — Gk )(Dmji — f(Bkn))

a(n) 1 nm+1(0km) i

< Z Z 1> (Gnmti = Grpmti—1)ll - 1 Dmi = F Okl
m=0 j=1
O'(n) -1
< 3 S ama@ W 20 s
via similar arguments as for (4.6).
Thus, the proof of Lemma 4.3 is completed.
Proof of Theorem 4.1:
By (4.1), from (3.37) it follows that
Vvn(@, —6% = Z (6; — 6°)
z-n
n i-1
= \/— Z i ~1,n ona - 00 Z Z VYi—1,j+105Ej+1
i=ng j=ng
n
Z Z bi—1,j4105(F(8;) — M1(8; — 6°))
'l =n{ j=n}
= o)+ L (M 4 G ) Bz — 6°
= of )+—\/_ﬁan _1( 1+ Gnpng)(Ong —6°)
1 n—1
~n > (M + Gr j1)(F(85) — Ma(8; — 6°))
Jj= no
—1 n—1

\/— Z €j+1 — \/— Z G j+1€j+1-

Since Gy, j, for all n > i > 1, are bounded uniformly, it is easy to see that

1 1

-1 0
Va1 G ) = 6 20, e

By (4.21) and Lemmas 4.1-4.3, the desired result follows from (4.20).
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5 Asymptotic Efficiency of the PARMSR Algorithm with
Averaging for L > 1

In this section we extend the results of Sections 3 and 4 to L > 1. We use the projected RM
algorithm (2.12) to update the control parameter, where fny; is the (n + 1)-th estimate for f(6n)
based on IPA. Set

§n=9[n/LJ, Yn2>0. (56.1)

By the perturbation propagation rule, the (n + 1)-th estimator for f(6,) is defined by

1 L
fat1 = 7 > Bar+is (5.2)
=1

where §; is an estimator of d J;(6)/d6, Vi > 1. The expression for §; is, in general, complicated,
and depends on the concrete situation. Let fm+1 be the (m + 1)-th regenerative cycle length. As
in (3.1), we assume that (, ; has the form of

Bimti = Yirnai Ok Okmntis - Okmio1)y V1 <6 < my, (5.3)

where ky, = Y7, 7;. In the setting of (2.1), we have

0§m+1) = gkm+i fOI‘ all 1 _<_ ) S NMm+1, M Z O,

which is in accordance with the definition (2.7).

The PARMSR algorithm with observation period L (without averaging) consists of (2.12),(5.2),
and (5.3) (see, e.g., [22], [35], [36], and [37]). The PARMSR algorithm with averaging, with obser-
vation period L, consists of (2.12),(5.2),(5.3), and (2.17). The observation noise can be expressed
as (3.3).

Theorem 5.1 (i) Suppose that the conditions of Theorems 3.1 and 3.2 are satisfied with O,
replaced by 6,, ¥V n > 1 in conditions (A9) and (A10). Then these theorems remain true for the
PARMSR algorithm with observation period L (without averaging). (ii) Suppose that the conditions
of Theorem 4.1 are satisfied with 0, replaced by 6,, ¥ n>1 in conditions (A9) and (A10). Then,
the PARMSR algorithm with averaging and with observation period L obeys

Vi@~ 68°)——N(0, 55) (5.4)

where S5 = L™15(8°) 1M 1S(M ).
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Proof. Let
En="0n—f(6p-1), YVn>1 (5.5)
The proofs in Sections 3 and 4 can be applied to the present setting if we replace 8,, €, fn by

6, &n, and S, respectively. Details are omitted here (cf. [36] and [37]). We only mention the key
point for (5.4). By the definitions (3.3), (5.2) and (5.5), it is seen that

;& n 1 (n+1)L ~
%z;&. = ; LZ,@,HJ =I/n ; (B — f(6i-1))
p (DL
- R L& (5.6)

By the same proof as that of Lemma 4.2, it can be shown that
1 &N, d
—= S &——N(0, Sa),
n — 0
which, combining with (5.6), gives
d
— > ei——N(0, 5}),
- n— oo

where S} = L7154 = L17(6°)"1S. The rest of the proof works the same way as that of Theorem
4.1.

|

For the first n SA iterations, the total computing budget of the algorithm with observation
period L is N, = nL. Theorem 5.1 yields the following central limit theorem, in terms of IV,,.

Corollary 5.1 Suppose that the conditions of Theorem 5.1 (i1) are satisfied. Then, the PARMSR

algorithm with averaging and with observation period L satisfies

V(B — 89)——N(0, ),

n — oo

where S* is defined in Corollary 2.1.

It follows from Corollaries 2.1 and 5.1 that the PARMSR algorithms with averaging, updated
either after every regenerative cycle or after every L steps of the process {J;}, have the same
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convergence rate and the same limit covariance matrix, for arbitrary L > 1, as a function of the

computing budget.

It should be pointed out that the small-sample or transient behavior of these algorithms
may, however, be quite different. We also recall that our analysis of the asymptotic behavior is
~ based on what happens after no projection of 6, on D occurs anymore. Thus, our results do not
apply if the optimizer 8° lies on the boundary of D. Moreover, if 6° is very close to the boundary,
it may take a long while before no projection occurs, and this may affect the convergence speed.
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