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Abstract

Uniformity tests based on a discrete form of entropy are introduced and

studied in the context of empirical testing of uniform random number gener-

ators. Numerical results are provided. It turns out that some currently used

generators fail the tests. The linear congruential and inversive generators with

power-of-two modulus perform especially badly.

Résumé

Des tests d’uniformité basés sur l’entropie d’une loi de probabilité discrète

sont introduits et étudiés pour tester empiriquement des générateurs de valeurs

aléatoires uniformes. Des résultats numériques montrent que plusieurs géné-

rateurs couramment utilisés échouent les tests. Les générateurs à congruence

linéaire et inversifs dont le module est une puissance de 2 sont particulièrement

mauvais face à ces tests.





Introduction

Random number generators should generally be built based on proper theoretical

analysis and understanding of their structural properties, and then tested empirically

to further improve one’s confidence in them. Different statistical tests are sensitive

to different types of deficiencies in generators, so it is useful to apply a wide range

of tests. For background on random number generators and statistical testing, see

for example [17, 20, 21, 24, 27]. Since by necessity all statistical tests are applied to

subsequences of finite length, they can never exclude the possibility that in extensive

applications effects arise that escaped detection in testing. In fact, all sequences of

numbers of a given length have the same total amount of correlation, as explained in

[3, 4]. But what we ask for is that the generators pass a collection of tests that take

a reasonable (or practically feasible) amount of computing time.

In this paper, we study uniformity and independence tests based on the con-

cept of entropy for discrete uniform distributions, following the suggestion in [5] that

entropy might provide a useful testing ground. In [5], the notation and terminol-

ogy were taken from statistical mechanics, while here the point of view is that of

probability theory and statistics.

Recall that for a discrete random variable X taking its values in a (discrete)

set S, with probability mass function px = P [X = x] for all x ∈ S, the entropy of p
(or of X) is defined by

Hd = −
∑

x∈S

pxlg(px), (1)

where lg denotes the logarithm in base 2. In particular, consider a string of L inde-

pendent random bits, each bit being 0 with probability 1/2 and 1 with probability

1/2. There are C = 2L possible outcomes for the string, each having probability

1/C = 2−L. Identify each such outcome (or bit string) with the integer x that it rep-

resents in binary arithmetic. Then, the random variable X has the discrete uniform

distribution over {0, 1, . . . , C − 1} and its entropy is

Hd = −
C−1
∑

x=0

(1/C)lg(1/C) = L. (2)

To test whether a random variable X distributed over S = {0, 1, . . . , C − 1}
effectively has the uniform distribution, we might estimate its entropy and compare
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the result with (2). Let X1, . . . , Xn be a sample of n presumably independent copies

of X and for each x ∈ S, let Nx be the number of times the value x was obtained:

Nx =
n
∑

i=1

I[Xi = x] (3)

where I denotes the indicator function; that is, I[Xi = x] = 1 if Xi = x, 0 otherwise.

A natural and standard discrete entropy estimator (or empirical entropy) is:

Ĥd(C, n) = −
C−1
∑

x=0

(Nx/n) lg(Nx/n). (4)

For a goodness-of-fit statistical test based on the statistic (4) to be practical,

the distribution function of this statistic (or a good approximation of it) must be

available. In Section 2, we provide explicit expressions for the exact mean and vari-

ance of Ĥd(C, n) under the uniformity assumption. Basharin [1] already showed its

asymptotic normality as n → ∞. For finite n, we shall use as an approximation the
normal distribution whose mean and variance are the exact values for that n. We

study the quality of this approximation by estimating the discrepancy between it and

the exact distribution, as a function of n.

Statistical tests based on the entropy of a continuous distribution have already

been proposed and applied [6, 13, 32]. Those tests are based on more complicated

(continuous) entropy estimators and have very little in common with those proposed

here. They are also discussed in [23].

In the next section, we explain how the bit strings can be constructed from

the output values of a generator that produces real numbers between 0 and 1. We

study the distribution of the empirical entropy and propose another test based on

the linear correlation between successive values of the entropy. We also introduce

a second type of entropy, still defined by (4), but based on all (overlapping) L-bit

substrings within a circular n-bit string. From this, we define an average entropy

test and a correlation test. In Section 2, we apply a selection of tests to a set of

random number generators. This set is small and not necessarily representative of

all the different methods proposed in the literature. However, our results certainly

show that these entropy tests are powerful enough to detect certain defects in random

number generators and are therefore justified.

2



1 Tests based on the discrete empirical entropy

1.1 Constructing the bit strings and computing entropies

Let u1, u2, u3, . . . be a sequence of successive output values of some random number

generator, which are supposed to behave as independent U(0, 1) random variables.

We want to test the uniformity and independence of, say, the first ` bits of the binary

fractional expansion of those ui’s, where ` is a positive constant indicating the finite

precision. If the binary expansion of ui to its first ` bits is written as

ui =
∑̀

j=1

bi,j2
−j,

then the null hypothesis H0 to be tested can be formulated as: “the sequence

b1,1, . . . , b1,`, b2,1, . . . , b2,`, b3,1, . . . (5)

is a sequence of independent random bits, each taking the value 1 with probability

1/2, independently of the others”.

To test H0, choose two positive integers n and L, extract n disjoint blocks (or

substrings) of L bits each from this sequence, and compute the empirical entropy

Ĥd(C, n) defined in (4). Suppose that this procedure is repeated N times, with

disjoint parts of the sequence, and let T1, . . . , TN denote the N values of Ĥd(C, n)

thus obtained. We examine the following two ways of testing H0: (a) construct the

empirical distribution of T1, . . . , TN and compare it with the theoretical distribution

of Ĥd(C, n) under H0 and (b) test if there is a significant correlation between the

pairs (Ti, Ti+1) of successive values of the entropy.

The n bit strings of length L can be extracted from (5) in different ways,

depending on the testing strategy that one has in mind. If one is interested in testing

only the few most significant bits of each ui, then one would take a small value of `.

For example, with ` = 1, only the most significant bit is tested. On the other hand,

to test the least significant bits, one may throw away (say) the r most significant bits

of each ui and extract only the ` − r bits that remain. The following setup covers

these situations. Choose an integer r such that 0 ≤ r < ` and let s = ` − r. (To

3



keep all the bits, just take r = 0.) Extract from each ui the bits bi,r+1, . . . , bi,r+s and

(conceptually) put them in a long string:

b1,r+1, . . . , b1,r+s, b2,r+1, . . . , b2,r+s, b3,r+1, . . . . (6)

Partition this string into substrings (or blocks) of L consecutive bits, without overlap.

To simplify the notation, assume that either s divides L, or L divides s. So, if s ≤ L,

the first substring is

b1,r+1, . . . , b1,r+s, . . . , bL/s,r+1, . . . , bL/s,r+s,

the second one is

b1+L/s,r+1, . . . , b1+L/s,r+s, . . . , b2L/s,r+1, . . . , b2L/s,r+s,

and so on. If s > L, then the first s/L blocks are taken from u1, the next s/L ones

from u2, and so on. Later on, we will also consider taking the blocks with overlap.

1.2 The distribution of the sample entropy

To compare the empirical distribution of T1, . . . , TN with the theoretical one, one

needs the distribution of Ĥd(C, n) under H0, or at least a good approximation of it.

Such an approximation is given by the next proposition. It says that for large n,

Ĥd(C, n) is approximately normally distributed, and it also gives the exact mean and

variance of Ĥd(C, n) (for any finite n).

Proposition 1. Under the hypothesis H0, one has:

E[Ĥd(C, n)] = −C
n
∑

j=0

j

n
lg
(

j

n

)(

n
j

)

(C − 1)n−j

Cn
, (7)

Var [Ĥd(C, n)] = C
n
∑

j=0

(

j

n
lg
(

j

n

))2 (n
j

)

(C − 1)n−j

Cn

+ C(C − 1)
n
∑

j=0

n
∑

k=0

j

n
lg
(

j

n

)

k

n
lg

(

k

n

)

(

n
j

)(

n− j
k

)

(C − 2)n−j−k

Cn

− E2[Ĥd(C, n)], (8)
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and

S(C, n)
def
=

Ĥd(C, n)− E[Ĥd(C, n)]
√

Var [Ĥd(C, n)]
⇒ N(0, 1) (9)

as n→∞ for fixed C.

Proof. Note that each Nx is a binomial, with

P [Nx = j] =
(

n
j

)(

1

C

)j (

1− 1

C

)n−j

.

Replacing this in the definition of E[Ĥd(C, n)] yields (7). Similarly, for 1 ≤ x ≤ x′ ≤
C, one has

P [Nx = j,Nx′ = k] =
(

n
j

)(

n− j
k

)(

1

C

)j ( 1

C

)k (

1− 2

C

)n−j−k

.

Equation (8) follows easily by using this in the definition of Var [Ĥd(C, n)] =

E[Ĥ2
d(C, n)] − (E[Ĥd(C, n)])

2. Basharin [1] has shown the asymptotic normality of

the estimator Ĥd(C, n), for fixed C, using its Taylor expansion in terms of (p̂1 −
p1, . . . , p̂C − pC). His result is stated in the context of a general discrete distribu-

tion over a finite set, using asymptotic expressions with O(n−2) error for the mean

and variance. Here, we replace these approximations by the exact values. Note that

(slightly more complicated) exact expressions for the mean and variance were also

given for the case of a more general discrete distribution in [15], using a development

based on the generating function of the multinomial distribution. 2

This proposition provides the ingredients for a goodness-of-fit test based on the

discrete empirical entropy: generate N independent values of S(C, n), say S1, . . . , SN ,

and compare their empirical distribution to the N(0, 1). These Si’s are in fact the

normalized values of the Ti’s introduced in the previous subsection: Under H0, Si =

(Ti − E[Ti])/(Var [Ti])
1/2. Table 1 gives the exact mean and standard deviation of

Ĥd(C, n) under H0, computed from (7) and (8), for different values of L, and n =

C = 2L. As L increases, these values become rather costly to compute because of the

double sum in (8).
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Table 1: Mean and standard deviation of the sample entropy for C = n = 2L.

L E[Ĥd(C, n)] (Var [Ĥd(C, n)])
1/2

1 0.50000 0.50000
2 1.32399 0.38950
3 2.24579 0.28677
4 3.20868 0.20647
5 4.19057 0.14725
6 5.18163 0.10455
7 6.17718 0.07408
8 7.17497 0.05244
9 8.17386 0.03710
10 9.17331 0.02624
11 10.17303 0.01856
12 11.17289 0.01312
13 12.17282 0.00928
14 13.17279 0.00656
15 14.17277 0.00464
16 15.17276 0.00328

1.3 Testing the goodness-of-fit via a KS statistic

A Kolmogorov-Smirnov (KS) test can be used to compare the empirical distribution

of S1, . . . , SN to the standard normal distribution. It works as follows (see [17, 31]

for more details). Let S(1) ≤ . . . ≤ S(N) be the N ordered values of S1, . . . , SN and Φ

be the distribution function of the standard normal: Φ(z) = P [N(0, 1) ≤ z]. Define

D+
N = max

1≤j≤N
(j/N − Φ(S(j)))

and

D−
N = max

1≤j≤N
(Φ(S(j))− (j − 1)/N).

Approximations of the distribution of D+
N and D−

N under H0 are given in [17, 31] and

other references there. Let d+ and d− be the values taken by D+
N and D−

N in a given

experiment and define the corresponding significance levels as δ+ = P [D+
N > d+]

and δ− = P [D−
N > d−], respectively. The hypothesis H0 is rejected if one of the
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significance levels, δ+ or δ−, is extremely close to zero or one. In case of doubt, one

may replicate the entire test (independently) and reject H0 if the significance levels

are consistently too close to zero or one. We call this the discrete entropy distribution

test .

1.4 How good is the normal approximation ?

For finite n, the N(0, 1) distribution is only an approximation of the exact distribution

of S(C, n). The quality of this approximation must be controlled, because even if the

empirical distribution of S1, . . . , SN is very close to the true distribution of S(C, n)

under H0, if the latter distribution is too far from the standard normal, then D+
N or

D−
N will take a large value. In other words, if the approximation is not good enough,

the KS test may detect the approximation error and reject the generator because of

this.

The distribution of Ĥd(C, n) is asymmetric about its mean, but closer to sym-

metry as n → ∞. The normal approximation is poor for small n also because of
larger jumps in the distribution. When n is small compared to C, only a few bit

strings are observed more than once, so most values of Nx are 0 or 1. As a result,

the distribution of Ĥd(C, n) is concentrated on just a few values and is thus far from

normal.

To assess the quality of the approximation for moderately large n, we made

the following empirical investigation. Our aim is to bound the maximum vertical

distances between the true distribution function of S(C, n) under H0 and its normal

approximation. More specifically, we would like to know the values of

∆+(C, n)
def
= sup

0≤u≤1
(P [Φ(S(C, n)) ≤ u]− u),

∆−(C, n)
def
= sup

0≤u≤1
(u− P [Φ(S(C, n)) ≤ u]).

Computing these error bounds exactly is too difficult in general, so we shall set-

tle for estimators. It turns out that the most natural estimators of ∆+(C, n) and

∆−(C, n) are ∆̂+(C, n) = D+
N and ∆̂−(C, n) = D−

N , respectively, for N as large as

possible. These estimators can be computed by standard Monte Carlo simulation,
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using “reliable” random number generators (for the results reported here, we checked

our experiments with several random number generators of different types, and the

results agreed). The percentage points of the KS distribution can be used to compute

confidence intervals for ∆+(C, n) and ∆−(C, n), as explained in Section 4.5.4 of [30].

For a 95% confidence level, for example, the half-widths of the confidence intervals

are approximately 0.043 for N = 103 and 0.004 for N = 105.

Table 2 gives the estimates ∆̂+(C, n) and ∆̂−(C, n) obtained with N = 105,

for different values of L and n, with n = C = 2L and n = C2 = 22L. The intersection

of the interval [∆̂+(C, n) − 0.004, ∆̂+(C, n) + 0.004] with the interval [0, 1] yields a

95% confidence interval for ∆+(C, n), and similarly for ∆−(C, n). The approximation

error clearly decreases with n as n and L increase simultaneously, and also seems to

decrease with L for fixed n. For n = C ≥ 210 and for n = C2 ≥ 216, the values

observed in the table are mostly noise, in the sense that the confidence intervals on

the error bounds contain zero.

Table 2: Values of ∆̂+(C, n) and ∆̂+(C, n)

n = C = 2L n = C2 = 22L

L n ∆̂+(C, n) ∆̂−(C, n) n ∆̂+(C, n) ∆̂−(C, n)

2 22 0.233 0.328 24 0.141 0.175
4 24 0.051 0.091 28 0.030 0.052
6 26 0.011 0.024 212 0.009 0.021
8 28 0.003 0.011 216 0.003 0.004
10 210 0.002 0.004
12 212 0.001 0.003
14 214 0.002 0.003
16 216 0.001 0.003

What are the practical effects of these approximation errors and how can one

use the table to choose test parameters ? As an illustration, consider a test with

parameters N = 1000 and n = C > 1000. With this N , for the significance level δ+

to be smaller than 0.01 (say), D+
N must be larger than 0.05 (approximately). Since the

approximation error ∆+(C, n) in this case appears certainly smaller than 0.01, a value

of D+
N larger than 0.05 should be caused by something else than this approximation
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error. The bias on the significance level is acceptable. This is more so as n gets larger.

The same also applies to D−
N . Being conservative, for N = 1000 and n = C ≥ 212, or

for N = 10000 and n = C ≥ 215, one can safely neglect the approximation error.

1.5 A correlation test

A second way to test H0 is to check whether the pairs (Ti, Ti+1), for 1 ≤ i ≤ N − 1,
are significantly correlated. If they are, it means that a low [high] entropy in one

part of the sequence (5) tends to be followed by a low [high] entropy in the next part.

Equivalently, one may test the correlation between the pairs (Si, Si+1), which is more

convenient because the Si have zero mean and unit variance. The sample correlation

between the Si’s is simply

ρ̂N =
1

N − 1
N−1
∑

i=1

SiSi−1. (10)

Under H0, as N → ∞, ρ̂N converges to zero with probability one and
√
Nρ̂N con-

verges in distribution to the N(0, 1). A statistical test readily follows from the latter

property: compute
√
Nρ̂N for a large value of N and reject H0 if it is too far away

from zero to be considered as a typical N(0, 1) variate. We call this the discrete

entropy correlation test . Here, n can be small but N must be large, which is the

opposite as for the discrete entropy distribution test.

1.6 Constructing the bit strings with overlap

In Section 1.1, the n bit strings of length L were constructed without overlap; that

is, from disjoint parts of the sequence (6). We now consider a setup in which they

are constructed with overlap. Take the first n bits of the sequence (6), relabel them

as b1, . . . , bn, and put them in a circle (i.e., define b0 = bn and bj = bj mod n for all

integers j). For i = 1, . . . , n, let Xi be the integer represented by the bit string of

length L starting at position i:

Xi =
L−1
∑

j=0

bi+L−j−12
j. (11)
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Define Nx and the empirical entropy Ĥd(C, n) as in (3) and (4), and let T1 be the

value of Ĥd(C, n) thus obtained. Repeat the same procedure with the bits n + 1 to

2n of the sequence (6), yielding an entropy value T2, and so on. So, for i ≥ 1, Ti is

the value of Ĥd(C, n) obtained by putting the bits (i− 1)n+ 1, . . . , in in a circle and
looking at all n strings of L consecutive bits over that circle.

A possible advantage of this overlapping variant is that is squeezes more in-

formation from the bit string (6) compared to the non-overlapping case. However, in

the overlapping case, Nx is no longer a binomial random variable and the mean and

variance formulæ of Proposition 1 no longer apply. For small values of n, one can

compute the exact mean and variance directly from their definitions (which involves

a sum of 2n terms corresponding to the 2n possibilities for {b1, . . . , bn}). The exact
values for some pairs (L, n) are reported in Table 3. With these values in hand, one

can compute S1, . . . , SN , the N values of S(C, n), as before. For large N ,

√
NS̄N = N−1/2

N
∑

i=1

Si

is approximately N(0, 1) under H0. The overlapping average entropy test computes

this statistic to test the empirical mean of the entropy against its theoretical value.

It rejects H0 if
√
N |S̄N | is too large.

Table 3: Mean and variance of the overlapping entropy for some pairs (L, n).

L n E[Ĥd(C, n)] Var [Ĥd(C, n)]
2 4 1.375000 0.3593750
3 8 2.299772 0.1867293
4 16 3.238725 0.1007388
5 20 3.817000 0.0815392
5 25 4.014291 0.0694637
5 30 4.160005 0.0591489

The correlation test of the previous subsection can also be applied in the same

way; we call this version the overlapping entropy correlation test . For large n (say,

n > 30), the exact mean and variance of Ti take too much time to compute in

reasonable time, but one can simply replace them by their sample counterparts. The

sample correlation between T1, . . . , TN then becomes:

10



ρ̂N =
(N − 1)−1∑N−1

i=1 TiTi+1 − (N − 1)(T̄ )2
σ̂2

T

(12)

where T̄ and σ̂2
T are the sample mean and sample variance of the Ti’s:

T̄ =
1

N

N
∑

i=1

Ti

and

σ̂2
T =

1

N − 1
N
∑

i=1

(Ti − T̄ )2.

Under H0, since the Ti’s are i.i.d.,
√
Nρ̂N again converges in distribution to the

N(0, 1) as N → ∞, so it can be used for a correlation test in the same way as (10)
for large N .

2 Experimental results

2.1 A selection of random number generators

We selected a few popular or recently-proposed random number generators, listed in

Table 4, and submitted them to entropy tests. Of course, this list is not exhaustive;

there are several more good and poor generators that we could test. However, our aim

here is not to test all known generators, nor to recommend any specific generator, but

rather to investigate the power of entropy-based tests to detect deficiencies in certain

types of generators.

First, we observe that the generators G1 to G12 are rather “baby” generators

from our point of view: we think that their period lengths are much to short for

current needs, so none of them can be recommended for general use. G13 to G16,

on the other hand, have reasonable period lengths, althought G13 and G14 have

well-documented statistical defects [4, 5, 26].

The generators G1 to G7 are well-known linear congruential generators (LCGs),

based on a recurrence of the form xi = (axi−1 + c) mod m, with output ui = xi/m

at step i. G1 and G2 are recommended by Fishman and Moore [12], and Law and

Kelton [18], respectively. G3 and G4 are in several software packages [2, 29], G5 is
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Table 4: List of selected generators.

G1. LCG with m = 231 − 1 and a = 742938285.
G2. LCG with m = 231 − 1 and a = 630360016.
G3. LCG with m = 231 − 1 and a = 16807.
G4. LCG with m = 232, a = 69069, and c = 1.
G5. LCG with m = 231 and a = 65539.
G6. LCG with m = 231 and a = 452807053.
G7. LCG with m = 231, a = 1103515245, c = 12345.
G8. Implicit inversive with m = 231 − 1 and a1 = a2 = 1.
G9. Explicit inversive with m = 231 − 1 and a = b = 1.
G10. Implicit inversive with m = 232, a = b = 1, and z0 = 5.
G11. Explicit inversive of [11] with m = 232, a = 6, and b = 1.
G12. Modified explicit inversive of [9] with m = 232, a = 6, and b = 1.
G13. GFSR-521 in the Appendix of [29].
G14. GFSR proposed in [16].
G15. Combined LCG in Fig. 3 of [19].
G16. Combined MRG in Fig. 1 of [22].

the infamous RANDU, G6 corresponds to the URN12 generator of [7], and G7 is

the LCG implemented in the rand function of the standard library of the C pro-

gramming language [28]. The next five generators are inversive generators modulo

m. Their output at step i is always ui = zi/m. G8 is an implicit inversive gen-

erator of the form zi = (a1 + a2z
−1
n−1) mod m, where 0

−1 mod m is defined as 0

(see [8]). G9 is an explicit inversive generator of the form xi = (ai + b) mod m,

zi = x−1
i mod m = xm−2

i mod m [8, 14]. G10 is an implicit inversive generator

with power-of-two modulus m = 2e, based on the recurrence: zi = T (zi−1) where

T (2`z) = (a1 + 2
`a2z

−1) mod 2e for odd z (see [10]). G11 and G12 are explicit inver-

sive generators with power-of-two modulus; G11 is defined in [11] and G12 is defined

as in [9], with the recurrence: zi = i(ai + c)−1 mod 2e. G13 is the GFSR generator

based on the recurrence xi := xi−521⊕xi−32, where ⊕ denotes the bitwise exclusive-or,
and with the initialization procedure given in the Appendix of Ripley [29]. G14 is

another GFSR generator, given in Kirkpatrick and Stoll [16]. G15 and G16 are the

combined LCG of L’Ecuyer [19] and the combined MRG given in Figure 1 of [22].
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2.2 Results of discrete entropy distribution tests

We now report on a few experiments with the selected generators, using the entropy

distribution test based on the statistic S(C, n). We selected 9 parameter sets (or

tests) with the generators of Table 4. Those parameter sets, called S1 to S9, are

given in Table 5. The last column of the table gives the total number of calls to the

generator for each test.

Table 5: Parameters for entropy distribution tests
Test N n L r s Nb. Calls
S1 1000 212 12 0 12 4 048 000
S2 1000 212 12 0 4 12 144 000
S3 1000 212 12 20 4 12 144 000
S4 1000 216 8 0 8 65 536 000
S5 1000 216 8 0 4 131 072 000
S6 1000 216 8 20 4 131 072 000
S7 1000 216 16 0 16 65 536 000
S8 1000 216 16 0 4 262 144 000
S9 1000 216 16 20 4 262 144 000

For each combination of generator and parameter set (or test), we computed

the significance levels δ+ and δ− of the KS statistics for the entropy distribution tests.

Table 6 reports the highly suspect significance levels; that is, those smaller than 0.01

or larger than 0.99. The other entries are left blank. The generators not mentioned

in the table had no suspect significance levels (in this sense) for these tests. We

also computed (in parallel) the sample correlation ρ̂N in (10) for the same sets of

parameters. The results of these entropy correlation tests were consistent with those

of the distribution tests, in the sense that clear failures were observed for the same

combinations of parameter set and generator.

All the LCGs with power-of-two modulus fail. Their failure for the tests based

on the least significant bits (S3, S6, S9) was expected, because these bits have short

period length for those generators. However, they also fail the tests based on the other

bits. The inversive generators with power-of-two moduli also fail the tests based on

the least significant bits, which can also be explained by the short period length of

these bits. G5 (RANDU) is the only generator failing the test S2, which constructs

12-bit strings by taking 4 bits from each of 3 successive values. This is to be expected,
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Table 6: Results of the entropy distribution tests
Test Side G1 G4 G5 G6 G7 G10 G11 G12

S1 δ+

δ−

S2 δ+ < 10−10

δ− 1.0000

S3 δ+ 1.0000 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 1.0000

δ− < 10−10 1.0000 1.0000 1.0000 1.0000 1.0000 < 10−10

S4 δ+ 7.0E-4 5.7E-5

δ− < 10−10

S5 δ+ < 10−10 0.0010

δ− < 10−10 < 10−10 0.9948

S6 δ+ < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10

δ− 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

S7 δ+ 0.9987 0.9926 0.9993

δ− 0.0017 < 10−10 < 10−10

S8 δ+ < 10−10 1.0000

δ− 1.0000 < 10−10

S9 δ+ < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 < 10−10

δ− 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

because RANDU is known to be bad with respect to the equidistribution of its triples

of successive values (they all lie in 16 equidistant hyperplanes [17, 18]). The test S2

successfully detects this. Besides the generators with power-of-two moduli, only G1

has a suspect significance level, for test S7.

2.3 Results of entropy tests with overlapping

Tables 8 and 9 report results of the average entropy test and entropy correlation test

with overlapping. The test parameters are given in Table 7. The total number of

calls to the generator for these tests is smaller than for the entropy distribution tests

of Table 5, but we are doing more work with each number, so the computational

times are roughly of the same order. They seem to detect as much (at least for these

examples) as the tests of Table 5. The first four tests look at the 30 most significant

bits of each number and compute the corresponding overlapping entropy. The last

four take the bits 21 to 23 of each number, and 10 successive output values are used

to construct each block of 30 bits. So, in this case, the testing concentrates on these

3 bits.
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Table 7: Parameters for the entropy tests with overlapping
Test N n L r s Nb. Calls
C1 104 30 5 0 30 10 000
C2 105 30 5 0 30 100 000
C3 106 30 5 0 30 1 000 000
C4 107 30 5 0 30 10 000 000
C5 104 30 5 20 3 100 000
C6 105 30 5 20 3 1 000 000
C7 106 30 5 20 3 10 000 000
C8 107 30 5 20 3 100 000 000

Table 8: Results of the overlapping average entropy test
Test G4 G5 G6 G7 G9 G10 G11 G12
C1 6.26E-8 1.0000
C2 0.0106 < 10−10 2.50E-7 0.9999
C3 < 10−10 < 10−10

C4 < 10−10 < 10−10

C5 1.0000 < 10−10 0.0001 1.0000 1.0000
C6 1.0000 < 10−10 < 10−10 1.0000 1.0000 1.0000
C7 0.9993 1.0000 < 10−10 < 10−10 1.0000 1.0000 1.0000
C8 1.0000 1.0000 < 10−10 < 10−10 1.0000 1.0000 1.0000

Table 9: Results of the overlapping entropy correlation test
Test G4 G5 G6 G7 G9 G10 G11 G12 G13
C1 < 10−10 < 10−10 < 10−10 1.6E-4
C2 0.0056 < 10−10 0.0015 4.1E-10 < 10−10 0.9997
C3 0.0009 < 10−10 < 10−10 0.9993 1.83E-5 < 10−10 6.7E-5
C4 < 10−10 < 10−10 < 10−10 1.0000 < 10−10 < 10−10 1.1E-6
C5 1.0000 0.0007 0.9999 < 10−10

C6 1.0000 < 10−10 1.0000 < 10−10

C7 1.0000 1.0000 < 10−10 1.0000 < 10−10

C8 1.0000 1.0000 < 10−10 1.0000 < 10−10 1.2E-7
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Again, all the generators with power-of-two moduli clearly fail the tests. Most

fail even with rather small sample sizes. For the average entropy tests, the inversive

generators with power-of-two moduli only fail the tests based on low order bits (the

average entropy tends to be too low), but for the correlation tests, they also fail for

the high order bits. The explicit inversive generator G9 also fails, but only with small

sample sizes for the high order bits. This may appear curious at first sight, but can

be explained as follows: the first n values produced by this generator are the inverses

(modulo 231 − 1) of the first n positive integers, divided by 231 − 1, and it turns out
that the inverses of smaller integers tend to have lower entropy for their high order

bits. We applied the same tests to the explicit inverse generator with parameter

values m = 231 − 1, a = 1 and b = 993652 (the last value was chosen randomly), and
it passed. The GFSR recommended by Ripley (G15) fails the last entropy correlation

test.

We actually made more experiments with these tests than what is reported

here. For example, we tried the same tests as C5–C8, but with r = 0 instead of

r = 20 (i.e., testing the 3 most significant bits), and replicated three times the

entire set of tests. The GFSR generators G13 and G14 failed some of the tests (at

significance levels less than 10−5) in some of the replications, but passed in others.

So, these tests often detect that there is something wrong with those generators,

but not always (depending on the initial seed of the generator). However, for most

of the results reported here, the spectacular failures (significance levels of 1.0000 or

< 10−10) observed for one seed are typically observed for almost any random seed.

One exception is the generator G9, for which changing the seed changes the behavior

as explained previously.

3 Conclusion

The entropy tests reported here are powerful to detect defects in linear and nonlinear

generators with power-of-two moduli. The tests reject those generators after looking

at only a small fraction of the period length. They also show problems with the

explicit inversive and GFSR generators, whose behavior is sensitive to their initial

state. The GFSR generators are know to have important weaknesses, such as poor

bit-mixing properties [5, 25, 26], but for most initial seeds of the generators, those

defects do not show up in the entropy tests. To our knowledge, this paperis the first
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to report problems with inversive generators based on empirical testing.The linear

congruential generators with prime moduli considered here fail other tests [20], but

not these entropy tests.

Of course, if one increases the sample sizes, all generators will eventually fail,

because of their finite period length and because of the conservation law for the total

amount of correlation valid for all finite sequences [5]. But if the generator is well-

designed and has long-enough period, a test may require a (practically) infeasible

amount of computing time before failure occurs.

Ideally, meaningful statistical tests should be sensitive to the weaknesses that

are regarded most harmful in arbitrary applications. However, without restricting

the class of admissible applications, this is an elusive requirement. General purpose

random number generators should pass a rich battery of statistical tests of different

types. Since entropy is one of the most fundamental measures of randomness, entropy

tests are certainly a useful addition to the existing collection of tests for random num-

ber generators.
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Québec grant # 93ER1654, and by the Dutch grants NWO B62-424 and STW-

DTI66.4085.

References

[1] G. P. Basharin. On a statistical estimate for the entropy of a sequence of inde-

pendent random variables. Theory of Probability and its Applications, 4:333–336,

1959. Translated from Russian.

[2] P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to Simulation. Springer-Verlag,

New York, second edition, 1987.

[3] A. Compagner. Definitions of randomness. American Journal of Physics, 59:700–

705, 1991.

[4] A. Compagner. The hierarchy of correlations in random binary sequences. Jour-

nal of Statistical Physics, 63:883–896, 1991.

17



[5] A. Compagner. Operational conditions for random number generation. Physical

Review E, 52(5-B):5634–5645, 1995.

[6] E. J. Dudewicz and E. C. van der Meulen. Entropy-based tests of uniformity.

Journal of the American Statistical Association, 76(376):967–974, 1981.

[7] E. J. Dudewicz, E. C. van der Meulen, M. G. SriRam, and N. K. W. Teoh.

Entropy-based random number evaluation. Americal Journal of Mathematical

and Management Sciences, 15:115–153, 1995.

[8] J. Eichenauer-Herrmann. Inversive congruential pseudorandom numbers: A tu-

torial. International Statistical Reviews, 60:167–176, 1992.

[9] J. Eichenauer-Herrmann. Modified explicit inversive congruential pseudorandom

numbers with power-of-two modulus. Statistics and Computing, 6:31–36, 1996.

[10] J. Eichenauer-Herrmann and H. Grothe. A new inversive congruential pseudo-

random number generator with power of two modulus. ACM Transactions on

Modeling and Computer Simulation, 2(1):1–11, 1992.

[11] J. Eichenauer-Herrmann and K. Ickstadt. Explicit inversive congruential pseu-

dorandom numbers with power of two modulus. Mathematics of Computation,

62(206):787–797, 1994.

[12] G. S. Fishman and L. S. Moore III. An exhaustive analysis of multiplicative

congruential random number generators with modulus 231 − 1. SIAM Journal

on Scientific and Statistical Computing, 7(1):24–45, 1986.

[13] D. V. Gokhale. On entropy-based goodness-of-fit tests. Computational Statistics

and Data Analysis, 1:157–165, 1983.

[14] P. Hellekalek. Inversive pseudorandom number generators: Concepts, results,

and links. In C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman,

editors, Proceedings of the 1995 Winter Simulation Conference, pages 255–262.

IEEE Press, 1995.

[15] K. Hutcheson and L. R. Shenton. Some moments of an estimate of Shannon’s

measure of information. Communications in Statistics, 3(1):89–94, 1974.

18



[16] S. Kirkpatrick and E. Stoll. A very fast shift-register sequence random number

generator. Journal of Computational Physics, 40:517–526, 1981.

[17] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical

Algorithms. Addison-Wesley, Reading, Mass., second edition, 1981.

[18] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill,

New York, second edition, 1991.

[19] P. L’Ecuyer. Efficient and portable combined random number generators. Com-

munications of the ACM, 31(6):742–749 and 774, 1988. See also the correspon-

dance in the same journal, 32, 8 (1989) 1019–1024.

[20] P. L’Ecuyer. Testing random number generators. In Proceedings of the 1992

Winter Simulation Conference, pages 305–313. IEEE Press, Dec 1992.

[21] P. L’Ecuyer. Uniform random number generation. Annals of Operations Re-

search, 53:77–120, 1994.

[22] P. L’Ecuyer. Combined multiple recursive generators. Operations Research, 1996.

To appear.

[23] P. L’Ecuyer. Tests based on sum-functions of spacings for uniform random num-

bers. In preparation, 1996.

[24] G. Marsaglia. A current view of random number generators. In in Computer

Science and Statistics, Sixteenth Symposium on the Interface, pages 3–10, North-

Holland, Amsterdam, 1985. Elsevier Science Publishers.

[25] M. Matsumoto and Y. Kurita. Twisted GFSR generators II. ACM Transactions

on Modeling and Computer Simulation, 4(3):254–266, 1994.

[26] M. Matsumoto and Y. Kurita. Strong deviations from randomness in m-

sequences based on trinomials. ACM Transactions on Modeling and Computer

Simulation, 6(2), 1996. To appear.

[27] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods,

volume 63 of SIAM CBMS-NSF Regional Conference Series in Applied Mathe-

matics. SIAM, Philadelphia, 1992.

19



[28] P. J. Plauger. The Standard C Library. Prentice Hall, Englewood Cliffs, New

Jersey, 1992.

[29] B. D. Ripley. Thoughts on pseudorandom number generators. Journal of Com-

putational and Applied Mathematics, 31:153–163, 1990.

[30] M. S. Stephens. Tests based on EDF statistics. In R. B. D’Agostino and M. S.

Stephens, editors, Goodness-of-Fit Techniques. Marcel Dekker, New York and

Basel, 1986.

[31] M. S. Stephens. Tests for the uniform distribution. In R. B. D’Agostino and M. S.

Stephens, editors, Goodness-of-Fit Techniques, pages 331–366. Marcel Dekker,

New York and Basel, 1986.

[32] O. Vasicek. A test for normality based on sample entropy. Journal of the Royal

Statistical Society: Series B, 38:54–59, 1976.

20




