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Abstract

We consider a class of stochastic models for which the performance measure
is defined as a mathematical expectation that depends on a parameter θ, say
α(θ), and we are interested in constructing estimators of α in functional form
(i.e., entire functions of θ), which can be computed from a single simulation
experiment. We focus on the case where θ is a continuous parameter, and also
consider estimation of the derivative α′(θ). One approach for doing that, when
θ is a parameter of the probability law that governs the system, is based on the
use of likelihood ratios and score functions. In this paper, we study a different
approach, called split-and-merge, for the case where θ is a threshold parameter.
This approach can be viewed as a practical way of running parallel simulations
at an infinite number of values of θ, with common random numbers. We give
several examples showing how different kinds of parameters such as the arrival
rate in a queue, the probability that an arriving customer be of a given type,
a scale parameter of a service time distribution, and so on, can be turned into
threshold parameters. We also discuss implementation issues.

Keywords: Simulation, functional estimation

Résumé

Nous considérons une classe de modèles stochastiques dont la mesure de per-
formance est définie par une espérance mathématique α(θ), qui dépend d’un
paramètre θ. On s’intéresse à construire des estimateurs de α sous forme fonc-
tionnelle (chaque estimateur est une fonction de θ), et que l’on peut calculer via
une seule simulation. Nous nous concentrons sur le cas où θ est un paramètre
continu et nous considérons aussi l’estimation de la dérivée α′(θ). Lorsque θ
est un paramètre de la loi de probabilité qui gouverne le système, on peut cons-
truire un estimateur fonctionnel en utilisant des rapports de vraisemblance et
des fonctions score. Nous étudions dans cet article une approche différente, que
nous appelons split-and-merge, pour le cas où θ est un paramètre de seuil. On
peut interpréter cette approche comme une façon “realisable” d’effectuer des
simulations en parallèle à une infinité de valeurs de θ, avec des valeurs aléatoires
communes. Nous donnons plusieurs exemples qui montrent comment différents
types de paramètres tels que le taux d’arrivée des clients à une file d’attente, la
probabilité qu’une arrivée soit d’un certain type, un paramètre d’échelle de la loi
des durées de service, et ainsi de suite, peuvent être transformés en paramètres
de seuil. Nous discutons aussi les aspects pratiques d’implantation.





1 Functional Estimation

Let {(Ω,Σ, Pθ), θ ∈ Θ} be a family of probability spaces defined over the same

measurable space, where Θ = [a, b] is a bounded interval of the real line. In general,

the probability law Pθ may depend on a parameter θ. Consider a finite-horizon

discrete event model defined over that family of probability spaces and let h(θ, ω) be

some random variable of interest (e.g. total sojourn time of all the customers served

during a given day in a queueing system, or the total number of rejected customers

in a finite-buffer system, etc). Suppose that we are interested in the function

α(θ) = Eθ[h(θ, ω)] =
∫
Ω
h(θ, ω)Pθ(dω).

Normally, a simulation performed at θ = θ0 permits one to estimate α(θ0)

and perhaps α′(θ0) or higher order derivatives. Techniques for doing that include

the likelihood ratio or score function method, as well as perturbation analysis and

its numerous variants (see [2, 5, 9, 12, 14, 15, 18] and the several references given

there). To obtain estimations at different values of θ, one would usually perform

different simulations (perhaps with common random numbers) at all of those values

of interest, which may become costly.

One approach for estimating α in a functional form, i.e., for estimating α(θ)

for all θ ∈ Θ from a single simulation run, is based on the “change of measure” idea,

sometimes called importance sampling [10]. To summarize the idea in a simplified

form, suppose that h(θ, ω) = h(ω) does not depend (directly) on θ and that Pθ has

a corresponding density fθ. Then, assuming that the likelihood ratio L(θ0, θ, ω) =

(fθ/fθ0)(ω) exists, α can be rewritten as

α(θ) =
∫
Ω
h(ω)fθ(ω)dω =

∫
Ω

[h(ω)L(θ0, θ, ω)]fθ0(ω)dω.

So, if the simulation is performed at θ0, then h(ω)L(θ0, ·, ω) provides an unbiased

functional estimator of α. The random variable h(ω) is computed only once, and the

likelihood ratio is calculated at any value of θ of interest to compute the estimator.

Under appropriate regularity conditions, an unbiased estimator of the derivative α′(θ)

is h(ω)S(θ, ω)L(θ0, θ, ω), where S(θ, ω) = ∂
∂θ

lnL(θ0, θ, ω) is called the score function.

Several examples of this approach, with numerical illustrations for some queue-

ing systems, are given in [18, 16]. Some of these examples show that the likelihood

ratio approach sometimes works fine, while others show how dramatically the vari-

ance of the functional estimators for α and α′ may increase (sometimes with vertical
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asymptotes) as θ gets away from θ0. The variance also increases exponentially fast

(typically) as a function of the length of the simulation time-horizon (see [18, 16]).

As a result, those functional estimators are often useful only in a small neighborhood

of θ0 and are better suited for short horizon models, or “steady-state” models with

short regenerative cycles. Moreover, they can be defined only if θ can be interpreted

as a parameter of the probability law Pθ.

In this paper, we examine an alternative split-and-merge method for estimating

α (or α′) in functional form, for the following situation. For the remainder of the

paper, we shall assume that the probability law Pθ ≡ P does not depend on θ (only

h does). The sample point ω can be viewed for example as a sequence of i.i.d. U(0, 1)

random variables that drive the simulation. The parameter θ is a threshold parameter

that determines a sequence of binary decisions to be made during the simulation, as

we now describe. Each time one of those decisions has to be made, the value of a

specific random variable Zi = Zi(θ, ω) that is part of the system’s state is compared

with θ; if it is larger, then the decision is 1, otherwise the decision is 0. The random

variable Zi can be a function of both the sample point ω and the parameter θ. This

covers a rich variety of situations, as our examples will show. In particular, the

possibility that θ be a parameter of a probability distribution is not ruled out; it

can be dealt with indirectly. For example, θ could be the parameter of a Bernoulli

distribution from which is generated a sequence of i.i.d. random variables during the

simulation (to generate a Bernoulli, one generates a uniform between 0 and 1, and

compares that uniform with the “threshold” θ).

The split-and-merge method is based on “branching” (or splitting) the simula-

tion every time a decision has to be made and differs, depending on θ, within the range

of parameter values of interest. A tree of simulations is thus constructed. Branches

of the tree could also “merge” eventually. The nodes in the tree correspond to the

simulation of a particular system and keep track of the system’s state variables and

relevant estimators. At the time when a decision has to be made in the simulation,

the value of the variable Zi at the corresponding node determines a threshold: for all

θ larger (or smaller) than that value, the current decision has value 1 (or 0). At this

point, the node can split into two nodes corresponding to different intervals of θ. Up

to that point, those two nodes share the same history. All nodes in the tree corre-

spond to a simulation based on a single sample point ω, but each node has a different

sequence of decisions, corresponding to a particular subinterval of Θ. If the state of

the system (including the future event list, and so on) eventually becomes the same

for different such (neighboring) subintervals, then we say that coupling has occured
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between the corresponding trajectories. This can be exploited to reduce the growth

of the simulation tree, by merging the corresponding parallel simulations. Hence the

name split-and-merge.

Strictly speaking, the estimators are not really computed in a “single” sim-

ulation run, because the simulation run will be “split” along the way into several

parallel runs. This approach can be viewed in fact as an implementation of parallel

simulations for an infinite number of values of θ, with common random numbers.

From the simulations, we can recover all the information required to compute what

would happen at all values of θ in [a, b]. We exploit the fact that with our choice of

probability space, the sample path changes as a function of θ only at a finite number

of points. These points correspond to the nodes that are created in the tree. In

general, the growth of the tree could be exponential in the worst case. However,

we show that, under some assumptions, the number of discontinuity points increases

only linearly with the number of binary decisions that are made. At the end of the

simulation, the tree contains as many nodes as the number of subintervals of Θ that

can be distinguished for the particular realization of ω generated by the simulation.

Therefore, we can reconstruct the value of the piecewise constant estimator in the

whole interval of interest.

The variance of the split-and-merge approach behaves much differently than

that of the likelihood ratio method. In fact, the mean and the variance of the func-

tional estimator at any given value of θ are exactly the same as if ordinary simulation

runs were performed at that value of θ only. Therefore, the variance depends only

on which underlying estimator is used, and is not influenced by the split-and-merge.

This also applies to derivative estimators: any estimator that satisfies our assump-

tions (see next section) can be used. See [2, 5, 12, 14, 15, 18, 20] for more on derivative

estmation. Furthermore, most variance reduction techniques that could be used when

simulating at a single parameter value (such as importance sampling, control variates,

antithetic variates, and so on), could be used with the split-and-merge approach as

well, and will have just the same variance reduction effect at each θ.

The split-and-merge is strongly related to the phantom method . From a nom-

inal simulation, the phantom method introduced in [19] computes one perturbed

sample path if a particular decision was reversed. Some of the decisions would be

reversed from the nominal simulation due to a small change in θ. In [24] the method

was implemented to estimate a finite difference. The phantom method is based on

a thought experiment, evaluating only that part of the perturbed system that dif-

fers from the nominal system under common random variables. It is generally more
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efficient than simulating in parallel the two systems with the same driving noise ω.

The phantom method has been used by [2, 4, 24] for derivative estimation and in [26]

for parallel computation for a finite number of system parameters. In [25], which was

in fact a short preliminary version of the current paper, we used the term phantom

method for the (somewhat more general) split-and-merge approach described here.

Vakili [21] describes an approach to perform simultaneous simulations at a

finite number of distinct parameter values, for a continuous-time Markov chain model

(all random variables that determine event times are exponential). That approach is

based on a uniformization of the chain, which permits one to use the same sequence

of event times for all the simulations. In contrast with our approach, it produces

an estimation only for a finite number of parameter values, which must be fixed in

advance. On the other hand, it allows for different kinds of parameters than the one

we consider. If a model fits both frameworks: all times to events are exponential, one

parameter satisfies our assumptions and others do not, then one can easily combine

the two approaches. Notice also that continuous-time Markov chains can most of the

time (when the performance measure is additive) be simulated without generating

event times at all: just use discrete-time conversion, which consists in replacing times

between events and transition costs by their (conditional) expectations (see [8, 7] and

Example 4.8 of [14]).

We define our setup more precisely and describe the split-and-merge functional

estimation method in Section 2. We also give an upper bound on the computational

work required by the method, as a function of the simulation time-horizon, under

specific (sufficient) assumptions. That work can increase exponentially fast in general.

But we show that under a condition that holds in several real-life situations, the

increase is only linear. In Section 3, we illustrate the approach with some examples,

most of which are variants of an admission control model for a GI/GI/1 queue,

where each customer is accepted with probability θ. Different kinds of performance

measures are considered, including some defined by derivatives. Numerical results

are given for two examples. The first one involves a finite-capacity queue with two

classes of customers, where customers of class 2 are admitted with probability θ and

various mathematical expectations are estimated as functions of θ. In the second one,

we estimate the derivative of the expected number of customers per busy cycle, with

respect to some parameter ν of the service time distribution, as a function of θ. In

both cases, the numerical behavior of the method agrees with the results of Section 2

and is quite encouraging.
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2 Simulation Trees for Functional Estimation

We consider a finite-horizon simulation, parameterized by θ ∈ Θ = [a, b] ⊆ IR, defined

over a probability space (Ω,Σ, P ). For each sample point ω, the evolution of the model

depends on the parameter θ as well as on ω (but the distribution of ω does not depend

on θ). Let Ft(θ) denote the sigma-field generated by the model’s evolution up to time

t (which can be viewed as representing all the information available by observing all

what happens up to time t, for a fixed θ ∈ Θ). We shall assume that the dependence

on θ takes the following form. For each θ, there is a sequence of (perhaps random)

times 0 ≤ T1 ≤ T2 ≤ · · · and a sequence of real-valued random variables Z1, Z2, . . .,

where Ti ≡ Ti(θ, ω) and Zi ≡ Zi(θ, ω) are FTi
(θ)-measurable for each i and θ. At time

Ti, Zi is compared with θ and a binary random variable (or decision) ηi is defined as:

ηi ≡ ηi(θ, ω) = I[Zi(θ, ω) ≤ θ], (1)

where I denotes the indicator function. Define η̃t,i = ηi · I[Ti ≤ t] and let F̃t(θ) be the

sigma-field generated by ω and (η̃t,1, η̃t,2, . . .). We shall assume that F̃t(θ) = Ft(θ);

i.e., that the model’s evolution up to time t depends on θ only through the binary

decisions ηi(θ, ω) that have been made at or before time t (i.e., such that Ti ≤ t).

This implies in particular that we can write

Ti = Ti(θ, ω) = ϕt
i(η1(θ, ω), . . . , ηi−1(θ, ω), ω) (2)

and

Zi = Zi(θ, ω) = ϕz
i (η1(θ, ω), . . . , ηi−1(θ, ω), ω), (3)

where each ϕz
i and ϕt

i are measurable real-valued functions defined on {0, 1}i−1 × Ω.

So, conditional on the values of the binary random variables (η1, . . . , ηi−1), Ti and Zi

are independent of θ.

We also assume that with probability one (w.p.1), the model has a finite (gen-

erally random) time-horizon T ≡ T (θ, ω) and that the number τ ≡ τ(θ, ω) of binary

decisions made by time T (θ, ω) is finite, uniformly over θ. More specifically, we have:

Assumption 1 For each θ ∈ [a, b], we have that

(i) F̃t(θ) = Ft(θ).
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(ii) There is a random variable T ≡ T (θ, ω) ≥ 0 such that T (θ, ω) and h(θ, ω) are

FT (θ,ω)(θ)-measurable and

sup
θ∈[a,b]

T (θ, ω) < ∞ w.p.1. (4)

(iii) For each i > 0, Ti(θ, ω) and Zi(θ, ω) are FTi(θ,ω)(θ)-measurable and ηi(θ, ω)

satisfies (1).

(iv) Define

τ(θ, ω) =
∞∑
i=1

I[Ti(θ, ω) ≤ T (θ, ω)].

Then,

sup
θ∈[a,b]

τ(θ, ω) < ∞ w.p.1. (5)

These assumptions imply that h(θ, ω) can be written as

h(θ, ω) = ϕh
τ(θ,ω)(η1(θ, ω), . . . , ητ(θ,ω)(θ, ω), ω), (6)

where ϕh
i : {0, 1}i−1 ×Ω → IR for each i, and τ(θ, ω) represents the number of binary

decisions made when (or before) the finite horizon T (θ, ω) is reached. The latter is a

stopping time with respect to {Ft(θ), t ≥ 0}.

From our assumptions, Z1 and T1 are functions of ω only, then η1 is a function

of Z1 and θ, then Z2 and T2 are functions of ω and η1, then η2 is a function of Z2 and

θ, and so on. We have used the notation Zi(θ, ω) instead of expressing Zi explicitly as

a function of (η1, . . . , ηi−1, ω) as in the right side of (3), and similarly for Ti, because

our ultimate interest is a functional estimator which is a function of θ. However, our

assumptions about the form of the dependence on θ are key assumptions for the rest

of our development. For the remainder of the paper, to simplify, we will remove ω

from the notation of the random variables h, T , τ , Ti, and Zi.

Consider a fixed sample point ω ∈ Ω. For each i ≥ 1, let Ψi = {zi,1, zi,2, . . .}
denote the set of values of θ in [a, b] such that i ≤ τ(θ) and Zi(θ) = θ. Let

Ψ = ∪∞
i=1Ψi.

Proposition 1 Under Assumption 1, we have that 0 ≤ |Ψi| ≤ 2i−1 for each ω. We

also have that w.p.1, Ψi eventually becomes empty for large enough i, so Ψ is finite.
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Proof: For each i and sample point ω, since Zi(θ) = ϕz
i (η1(θ), . . . , ηi−1(θ), ω) may

depend on θ only via η1(θ), . . . , ηi−1(θ), Zi(θ) can take at most 2i−1 different values

when θ varies in [a, b]. Therefore, the equation Zi(θ) = θ has at most 2i−1 roots in

[a, b] and the first part follows. The second part is a direct consequence of (5) in

Assumption 1.

Let τ ′ be the cardinality of Ψ, and let v1 ≤ · · · ≤ vτ ′ denote the values contained

in Ψ, sorted by increasing order. Let also v0 = a and vτ ′+1 = b. We can now state

the following.

Proposition 2 Under Assumption 1, w.p.1, h(·) is piecewise constant over [a, b],

with at most τ ′ + 1 pieces, and possible jumps only at v1, . . . , vτ ′.

Proof: Note that the vj’s are the values of θ at which ηi(θ) switches from 1 to 0 for

some i such that Ti(θ) ≤ T (θ). Therefore, for each j ∈ {0, 1, . . . , τ ′} and each i such

that Ti(θ) ≤ T (θ) (i.e., such that i ≤ τ(θ)), ηi(θ) must remain constant as a function

of θ for θ ∈ (vj, vj+1). From Assumption 1 (i) and (ii), T (θ) and h(θ) must then be

constant over each (vj, vj+1).

We call the values v1, . . . , vτ ′ the breakpoints of h(·). Proposition 2 can be used

to estimate α(θ) simultaneously for all θ ∈ [a, b] as follows. Perform the simulation,

obtaining the zi,k’s along the way (further details on that will follow). Sort the zi,k’s

dynamically while they are generated (e.g., using a heap, as suggested in Problem

1.9.7 of Bratley, Fox, and Schrage [1]). At the end of all the simulations, let Ij denote

the interval Ij = [vj, vj+1), for j = 0, . . . , τ ′. The value of h(θ) is constant (and the

sample path is the same) within each of those intervals, but may differ considerably

between the intervals. To obtain a functional estimator, one must generate the sample

path and compute h within each interval. Roughly, this is computationally equivalent

to performing τ ′ simulation runs in parallel. Of course, a large fraction of the required

computations is often common to many intervals and does not have to be repeated.

Think for example of the situation where ηi(θ) represents the decision of accepting

customer i into a queueing system. Changing ηi(θ) then changes the evolution of the

system, but many of the other random variables generated are the same for both values

of ηi(θ). Furthermore, the sample paths associated with two neighboring intervals Ij−1

and Ij are exactly the same up to the time when the Zi(θ) that corresponds to vj is

generated, and potentially differ only from that time on. So, before that time, there

is not need to duplicate the simulation in order to distinguish between those intervals.
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The split-and-merge functional estimation can be implemented by constructing
a tree of sample paths as follows. Run the simulation until time T1 and observe Z1

(up to then, things do not depend on θ). Then, we consider two possible situations:
(i) the value z1,1 of Z1 is in [a, b] and (ii) the value of Z1 is outside [a, b]. For situation
(i), split the sample path in two pieces: one for the case θ < z1,1 (with η1(θ) = 0)
and one for the case θ ≥ z1,1 (with η1(θ) = 1). Continue the simulation for each of
the two pieces (with the same ω). There are now two simulations running in parallel,
associated with the intervals [a, z1,1) and [z1,1, b], respectively. Run each of those
simulations up to time T2 (the evolution and the value of T2 may be different for
each of those two intervals). In situation (ii), the value of Z1 being outside [a, b], no
splitting occurs at time T1: there will still be a single sample path, at least up to
time T2.

For each interval (i.e., each value of η1), at time T2, observe the value of Z2

for that interval and repeat the above with Z1 and [a, b] replaced by Z2 and the
interval considered, respectively. For example, if splitting has occured at T1 and
if Z2 = z2,1 ∈ [a, z1,1) for η1 = 0, then the interval [a, z1,1) is split in two pieces:
[a, z2,1), for which η2 = 0, and [z2,1, z1,1), for which η2 = 1. The simulation must be
continued separately for each of those two intervals, which now yields three sample
paths evolving in parallel. If Z2 �∈ [a, z1,1) for η1 = 0, then no splitting occurs for
that interval at time T2. Similarly, if Z2 = z2,2 ∈ [z1,1, b] for η1 = 1, then [z1,1, b] is
split into [z1,1, z2,2) and [z2,2, b] at time T2, otherwise it is not. Therefore, after time
T2 (where T2 may take a different value for each value of η1), the number of sample
paths that are maintained in parallel could be anywhere from 1 to 4.

The process is continued that way: some of the sample paths (intervals) are
split in two when Z3 is observed, and so on. We thus construct a tree of sample paths,
also called simulation tree. Each branch of the tree (or sample path) stops when the
value of τ(θ) associated with the corresponding interval is reached. Some branches
may end up sooner than others and since Ψ is finite w.p.1, the tree is finite w.p.1.
When all the sample paths have ended, we recover from our parallel simulations
the values of h(θ) for each interval and, from that, construct the piecewise constant
function h(·) of Proposition 2. This entire process can be repeated, say, N times, and
a functional estimator h̄(·) of α be constructed by averaging out those N piecewise
constant functions.

Remark 1 Our assumptions imply that h(·) is piecewise-constant with jumps only
at the vi’s. Our model could of course be slightly generalized to deal with objective
functions that are (known) transformations of a function which satisfies our assump-
tions, and that are not necessarily piecewise-constant themselves. For example, let
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h̃(θ) = g(θ)h(θ) + f(θ), where g and f are known well-behaved (deterministic) func-
tions of θ while h(θ) is random and satisfies our assumptions. In that case, we can
use the split-and-merge approach to estimate E[h(·)] in functional form, then com-
pute and unbiased functional estimator of E[h̃(·)]. In general, the latter will not be
piecewise-constant.

A major drawback of the split-and-merge method just presented, that most
readers have certainly noticed already, is the fact that the size of the simulation tree
(and the number of breakpoints) may increase exponentially fast w.r.t. supθ τ(θ).
That would make the method impractical when a large number of binary decisions
are made. Indeed, it is easily seen from the preceding discussion (and from Proposition
1) that the simulation tree could have (in the worst case) 2i nodes after generating
Zi for all θ. Of course, this pessimistic scenario is an artificial worst case that may
never happen for a given application. Nevertheless, the size of the tree is likely to
grow very fast.

There are interesting situations, however, where the growth rate of the simu-
lation tree can be proved to be much slower than exponential. For instance, if there
is a constant K such that no more than K splittings (in total) could occur at any
level i of the tree, then the width of the tree could not grow faster than linearly: the
number of parallel simulations after time Ti is bounded by iK. An important special
case of this is when K = 1, which happens under the following assumption.

Assumption 2 For almost all ω ∈ Ω and for each i, there is at most one value of θ
in [a, b] for which Zi(θ) = θ.

This assumption holds for several interesting applications, as illustrated in
the next section. Notice that the assumption automatically holds if the Zi’s are
independent of θ, which will in fact be the case for most of the applications that we
have in mind. This happens in particular when the decisions are Bernoulli random
variables with parameter θ, in which case the Zi are U(0, 1) random variables.

Proposition 3 Under Assumptions 1 and 2, one has

τ ′ ≤ sup
θ∈[a,b]

τ(θ).

Proof: Under Assumption 2, it is clear that |Ψi| ≤ 1 for each i. Therefore, |Ψ| ≤
supθ τ(θ) and the result follows.
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For typical simulation models, the expected computational effort to perform

a single simulation at a fixed parameter value θ is roughly proportional to the time-

horizon length T (θ), at least for large time horizons. If Cf denotes the total simulation

effort for functional estimation, then, at worst, with the implementation discussed

above, one has Cf = O(τ ′ supθ T (θ)). Let us further assume that τ(θ) is proportional

to T (θ) (which is also typical) and the constant t is an upper bound for the expression

(4); that is, supθ T (θ) ≤ t w.p.1. Then, τ ′ = O(t) and Cf = O(t2) if Assumption 2

holds, while τ ′ = O(2t) and Cf = O(2tt) (in the worst case) otherwise.

If n independent replicates of the functional estimator are computed over,

say, a finite horizon t, and then averaged out to obtain a better functional estima-

tor h̄, then we should typically have the following under Assumption 2: the total

computational effort for performing the n simulations will be O(nt2), the total num-

ber of breakpoints of h̄ will be O(nt), and the total effort to compute h̄ will be

O(nt2 + nt log(nt)) = O(nt(t + log(nt)), where O(nt log(nt)) is the time required for

sorting all the breakpoints in increasing order.

When coupling occurs between the trajectories of two or more neighboring

intervals, there is no longer need to maintain distinct parallel simulations for those

intervals. We will discuss how this can be exploited to reduce the computations, in

the context of the G/G/1 example of the next section. Note, however, that when

neighboring intervals are merged due to coupling, the fact that the system evolution

has been different for a while over those intervals could result in different values of

h(θ), depending on how this function is defined. So, coupling reduces the number of

simulations that must be performed in parallel, but does not necessarily reduce the

number of breakpoints τ ′, in the sense that the information relative to the computa-

tion of h(θ) must still be maintained (in general) over each of the intervals merged by

coupling. In Example 9, we give an illustration where the total computational effort

for functional estimation is in O(t log t) where t is the total number of customers

simulated in a single queue.

If θ is a d-dimensional vector with d ≥ 2 (several parameters), functional

estimation can still be performed in principle. However, in that case, the number of

pieces where h(·) is constant (i.e., the number of nodes in the simulation tree) could

increase as O((τ ′)d). This quickly becomes impractical in general if d exceeds 2 or 3.
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3 Applications and Examples

3.1 A G/G/1 Queue with Mixed Service Time Distribution

Consider a single queue with arbitrary interarrival and service time distributions.

Assume that the interarrival times are i.i.d. and that each arrival is of type I (or II)

with probability θ (respectively, 1 − θ), independently of all other randomness in the

model, where θ ∈ Θ = [0, 1]. For i ≥ 1, let Wi(θ), Si(θ), and Xi(θ) = Wi(θ) + Si(θ)

denote the waiting time, service time, and sojourn time of customer i, respectively,

and let Ai be the time between arrivals of customers i and i + 1. Define ηi(θ) = 1 if

arrival i is of type I, ηi(θ) = 0 otherwise. Here, the Zi’s can be made as a sequence

of i.i.d. uniform random variables over the interval (0,1), independent of everything

else, therefore Assumption 2 is satisfied. We suppose that the two types of customers

have different service time distributions, say BI for type I and BII for type II. For

each i, let Si,1 and Si,2 be two random variables with respective distributions BI and

BII (independent of the interarrival and other service times, and also independent of

the Zi’s) and let

Si(θ) = ηi(θ)Si,1 + (1 − ηi(θ))Si,2.

Assuming that the queue has infinite capacity, the evolution of this system can be

described as usual by Lindley’s equation:

Wi+1(θ) = (Wi(θ) + Si(θ) − Ai)
+, (7)

for i ≥ 1, where x+ means max(x, 0), and W1(θ) = s ≥ 0 is the initial state of

the queue (W1(θ) = 0 corresponds to an initially empty system). Note that Wi(θ)

depends on θ only through η1(θ), . . . , ηi−1(θ).

A sample point ω can be identified with {(Ai, Si,1, Si,2, Zi), i ≥ 1}. Let τ be a

(possibly random) stopping time for this system and suppose that the performance

measure of interest is additive:

h(θ) =
τ∑

i=1

fi(Wi(θ), Si(θ), ηi(θ))

for some measurable functions f1, f2, . . .. Then, Propositions 1–3 apply and the vj’s

are just the values of the Zi’s, sorted by increasing order. For example, τ can be

the number of customers entering the system during a given fixed time interval when

θ = 1 (in that case, τ would be independent of θ). The random variable h(θ) could

represent for example the total waiting time for a given type of customer, or the
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number of customers whose waiting time exceeds a given constant, and so on. In some

cases, what we really want to estimate is a nonlinear function of several mathematical

expectations (such as a ratio of two expectations; see Examples 7 and 9), each being

the expectation of an additive function as above. In that case, each such expectation

is estimated separately as described here, from a single simulation experiment, by

maintaining the required number of statistical accumulators in parallel. This could

be replicated several times and each expectation estimated by the corresponding

sample average.

Let us look more closely at how the simulation tree will evolve in this case.

Observe that for a fixed ω, when θ goes down from, say, Ij to Ij−1, the only changes in

the system’s evolution are due to the fact that ηi(θ) goes from 1 to 0, i.e., Si(θ) changes

from Si,1 to Si,2, where i is the index such that vj is the value of Zi. In other words,

the Lindley equations associated with adjacent intervals evolve in almost exactly the

same way. The generation of the random variables Ai, Si,1, Si,2 and Zi need not

be duplicated. During the simulation, the value of Wi(θ) must be maintained, using

equation (7), for each interval, i.e., for each node of the simulation tree. When Wi+1(θ)

is to be computed, i customers have arrived, and so the interval [0, 1] is divided at

that moment into i + 1 subintervals (the simulation tree has i + 1 nodes).

Coupling would occur when the values of Wi(θ) become the same for two

or more neighboring intervals Ij. The corresponding intervals can then be merged

for the computation of Wj(θ) for j > i by Lindley’s equation, at least until further

splitting occurs within those merged intervals. On the other hand, the different values

of
∑i

j=1 fj(Wj(θ), Sj(θ), ηj(θ)), over the different intervals which have been merged,

must be memorized for the evaluation of h(θ) later on. Of course, if we are estimating

M mathematical expectations in parallel, then there are M values to memorize over

each interval.

Remark 2 We have assumed in this section that [a, b] = [0, 1]. The decision epochs

Ti(θ) correspond to the arrivals epochs, which are shared by all the nodes in the simu-

lation, since these epochs are independent of θ. At each arrival, due to Assumption 2,

only one node splits and a single breakpoint zi,1 is added to Ω. This means that the

total number of breakpoints (and also the size of the simulation tree, if we assume

that no merging is performed) is proportional to the number of arrivals so far, which

is τ(θ) at the end of the simulation. The computational cost for a simulation is then

proportional to
∑τ(θ)

i=1 i ≈ τ 2(θ)/2 if no merging is performed. On the other hand, if

the interval [a, b] for which we are interested in having a functional estimation is only

12



a strict subinterval of [0, 1], then we only need to take care of the uniform variates Zi

that fall in that subinterval for the construction of the simulation tree. The number

of such variates will be τ ′ and one has E[τ ′]/E[τ ] = b − a < 1. More generally,

the expected number of breakpoints after the ith arrival should be proportional to

(b−a)i, which implies that for a fixed simulation length, the expected computational

cost for functional estimation is roughly proportional to the size of the interval [a, b]

of interest.

Remark 3 This setup is straigthforward to generalize to the case where only some

of the customers are of type I or II. For example, as a slight generalization of [13],

we may assume that there are several classes of customers, each class having its own

arrival stream (with possible correlations between the streams or within each stream),

and that only the customers of a specific class (say, class c) can be of type I or II as

above. The Ai’s in (7) are then the interarrivals for the superposition of all arrival

streams. The setup is also easily generalized to the case where the queue has more

than one server; however, the Lindley equations (7) must then be replaced by slightly

more complicated equations.

Remark 4 This single queue could be part of a large open queueing network. Call

it queue q. If we assume that the customers leaving queue q cannot influence any

longer the arrival process to queue q (e.g., no feedback), then all the development of

this subsection still holds. Note that feedback is still allowed within other parts of

the network.

We will now examine more specific variants of that single-queue example and

see how our approach works for each of them. The first example is an admission con-

trol problem, where each arriving customer is accepted with probability θ. Examples

2–6 discuss different problems which fit the framework of Example 1.

Example 1 Suppose that Si,2 = 0 w.p.1 for all i. This represents a system with only

one type of customers, with service time distribution BI, but where each customer is

rejected with probability 1−θ, independently of everything else. Here, ηi(θ) represents

the decision of accepting the i-th arrival into the system (admission control). For the

rejected customers, Wi(θ) and Xi(θ) are “virtual” waiting times and sojourn times,

but are nevertheless well defined, and Si(θ) = 0.
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In this case, our method is strongly linked with the so-called phantom method

[19, 24, 2, 4]. In the last three references, the phantom RPA method is used to

estimate derivatives. With that method, a nominal simulation is run at the parameter

value θ = 1 (no rejection); the performance h is also evaluated for the case where

customer i is “phantomized” (rejected), for each i, and a derivative estimator is

constructed from that. In [26], the phantom method was implemented for estimating

the expected response of a system at a finite number of prespecified values of two

control parameters. In the present example, the rejected customers can be viewed as

“phantomized” and we could also call our approach “phantom method”.

Here, whenever Wi(θ0) becomes zero for some θ0, we also have Wi(θ) = 0 for

all θ ≤ θ0 and coupling is achieved. In other words, the systems with θ < θ0 are

dominated by the system with θ = θ0; that is, the sample paths are monotone in θ.

A particular case of such coupling is when the system empties out in the nominal

sample path, i.e., when Wi(1) becomes zero. Then, the simulation tree shrinks back

to a single node. If the cost function h(θ) is additive between busy cycles, which is

typically the case, then one only needs to memorize the piecewise constant (sample)

cost functions associated with the different busy cycles. The number of pieces in each

such piecewise constant function will be equal to the number of customers in the

cycle, plus one. Functional estimation can then be performed very efficiently if the

number of customers in a busy cycle has a relatively small second moment (recall that

the work per busy cycle is roughly proportional to that second moment). In view of

Remark 3, this also covers (with trivial adaptations) all the examples given in [13].

Example 2 The domination discussed in the previous example occurs more gen-

erally. For example, suppose that the service distribution is of the form Si(θ) =

ν1I[ηi(θ) = 1] + ν2I[ηi(θ) = 0], where ν1 > ν2. Here the two types of customers

have different service requirements and each bifurcation in the simulation tree cor-

responds to changing the attribute of a customer from ν1 to ν2. Since we are using

common random variables Zi across the nodes of the tree, then clearly Si(θ1) ≤ Si(θ2)

whenever θ1 ≤ θ2, which implies domination.

Example 3 Consider an M/G/1 queue with arrival rate λ, and suppose that we want

to estimate some (expected) performance measure as a function of λ, for 0 ≤ λ ≤ λ0,

where λ0 is a positive constant smaller than the inverse of the mean service time (so

that the system is stable). Define θ = λ/λ0. Then, simulating that system at λ is

equivalent to simulating it at λ0 and rejecting each arrival with probability 1 − θ.
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This “thinning” idea is well-known in the area of stochastic processes and is often

used for simulating non-homogeneous Poisson processes; see [1, 2, 3, 17]. Estimating

a performance measure as a function of λ is equivalent to estimating it as a function

of θ, which was the subject of the previous example.

For a specific example where this can be applied, consider the model (taken

from [4]) of a central machine which allocates service slots to Q different servers.

The total arrival rate is λ and each arrival is routed to server q with probability

pq, independently of everything else, for 1 ≤ q ≤ Q. From the point of view of

queue q, this is equivalent to accepting any arrival with probability pq, so an expected

performance measure that is a function of pq alone can be estimated via our approach.

Also, if the performance measure of interest can be expressed as
∑Q

q=1 hq(pq) for some

functions hq that satisfy the assumptions of our framework, then we readily obtain

a functional estimator of the expected value of each hq (and so, of the expected

performance measure as a function of (p1, . . . , pQ)) by Q applications (perhaps in

parallel) of our functional estimation approach.

Example 4 The same approach as in Example 3 can also be used if the queue has

finite capacity K, although Si(θ) would have to be defined differently than in the

previous setup: let Si(θ) = Si,1 if ηi(θ) = 1 and the queue is not full when customer i

arrives (which also depends on θ through η1(θ), . . . , ηi−1(θ)); Si(θ) = 0 otherwise. In

that case, the sample paths are no longer monotone in θ, i.e., we loose the domination

property of the systems with θ < θ0 by the system with θ = θ0. Indeed, when lowering

θ slightly, we might cut out an arrival that has an extremely long service time, and

as a result, accept more customers later on. Nevertheless, coupling will occur and

can be exploited as well. See Example 7 for a numerical illustration. It is possible to

recover domination by associating the service times with the server instead of with

the arriving customers (i.e., by using Si,1 as the service time of the ith customer that

is served for any given value of θ, as suggested for example in Problems 2.1.1 et 2.1.8

of [1]), but implementing functional estimation using that approach seems messy and

not so much useful.

Example 5 Consider again an M/G/1 queue with arrival rate λ, and let ν be a

scale parameter of the service time distribution Bν . In other words, each service time

Si can be generated by generating a random variable Vi from distribution B1, and

defining Si = νVi. Alternatively, one can use surrogate estimation via time rescaling

(see [22]): generate the service times Si = Vi using distribution B1, the arrivals at rate
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λν0 (where ν0 is the largest parameter value of interest), and accept any given arrival

with probability θ = ν/ν0. Here, estimating a performance measure as a function of

ν is clearly equivalent to estimating it as a function of θ. The time units have been

rescaled by the factor θν0, which should be taken into account in the evaluation of

h(θ).

Example 6 In the admission control setup, let τ = t, a fixed constant, and

h(θ) =
t∑

i=1

ηi(θ)Xi(θ), (8)

the sum of sojourn times of all the customers that are accepted in the system. We

have seen how to obtain a functional estimator of α(θ), 0 ≤ θ ≤ 1, but now, suppose

that we want to estimate the derivative of α(ν) with respect to some parameter ν of

the service time distribution BI ≡ Bν , and we want to estimate it everywhere as a

function of θ. Let α′(ν, θ) denote that derivative. To estimate it, one can use under

appropriate conditions (see [5, 14]) the following infinitesimal perturbation analysis

(IPA) estimator:

h′(ν, θ) =
t∑

i=1

ηi(θ)
i∑

j=φi(θ)

ηj(θ)S ′
j, (9)

where S ′
j = (∂B−1

ν /∂ν)(Bν(Sj,1)), and φi(θ) = max{j | 1 ≤ j ≤ i and Wj(θ) = 0} if

that set is non-empty, φi(θ) = 1 otherwise. In other words, φi(θ) is the first customer

with index ≥ 1 in the busy period to which customer i belongs, for that value of θ.

To estimate α′(ν, ·) in functional form, just apply the same technique as discussed

previously, with h replaced by h′. Note that this can also be accomplished with other

kinds of derivative estimators [16].

Example 7 For a more specific non-trivial illustration, we consider a queue with two

classes of customers (as in Remark 3), and with finite capacity K. As in Example 4, K

is the maximum number of customers in the queue or in service, and all the customers

arriving when the buffer is full are lost. Each class of customers has its own arrival

stream. Within each class, the interarrival times and service times are i.i.d., with

respective distributions F1 and G1 for class 1, and F2 and G2 for class 2. Suppose

that F1 is the U(a1, a2) distribution (uniform between a1 and a2), F2 is exponential

with mean 1/λ, G1 is degenerate: all class 1 customers have their service times equal

to ν1, and G2 is exponential with mean ν2. Each class 1 customer is admitted unless
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the buffer is full, but each class 2 customer is “considered” only with probability θ,

and then admitted if there is room.

We want to estimate some performance measures as functions of θ. More

specifically, we are interested in the expectations of the following statistics, for the

first t arriving customers (accepted or rejected), starting with an empty system, where

t is a fixed constant:

(1) The average waiting time in the queue per customer, for the customers that are

accepted;

(2) The fraction of admitted customers whose waiting time exceeds a given constant

(threshold) L;

(3) The fraction of customers that are rejected because of a full buffer (for class 2

customers, only those that are “considered” are counted).

We shall denote these statistics by hw(θ), h�(θ), and hk(θ), and their expectations by

αw(θ), α�(θ), and αk(θ), respectively.

Let Ma(θ) denote the number of admitted customers (among the first t), M�(θ)

the number af admitted customers whose waiting time exceeds L, and Mk(θ) the

number of customers rejected because of a full buffer. For each i, let Ri(θ) = 1

if customer i is admitted; Ri(θ) = 0 otherwise. To define ηi(θ), let Zi be a U(0, 1)

random variable if customer i is of class 2, Zi = 0 otherwise, and let ηi(θ) = I[Zi ≤ θ].

Then, Ri(θ) = 1 if and only if ηi(θ) = 1 and the buffer is not full when customer i

arrives. With that notation, we have

hw(θ) =
1

Ma(θ)

t∑
i=1

Ri(θ)Wi(θ);

h�(θ) =
M�(θ)

Ma(θ)
;

hk(θ) =
Mk(θ)

Ma(θ) + Mk(θ)
.

We now report simulation experiments with the following values: K = 10,

L = 3, θ ∈ [a, b] = [0.8, 1.0], ν1 = 1.5, ν2 = 0.5, a1 = 2, a2 = 3, and 1/λ = 2. With

these parameter values, the system would be utilized (in the long run) at 85% if all

the customers were accepted. We made N = 1000 replications of the simulation, for
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an horizon of t = 100 customers, obtaining thus a sample of N i.i.d. observations at

each value of θ, for each quantity of interest. We then computed the average and

standard deviation of those observations.

Figures 1–3 show the average (solid lines), for the three quantities of interest.

The dotted lines are two (empirical) standard deviations above and below the em-

pirical mean. Recall that both the empirical and theoretical means and variances of

each estimator at any given value of θ are exactly the same as if the simulation was

performed only at that value of θ. We verified that in our simulations. As expected,

the variance is pretty much the same all over the interval considered for θ, and the

functional estimator is nicely behaved. The three functions are piecewise constant.

This is apparent for h̄k, which turns out to have few jumps because Mk(θ) tends to

take very small values (it is equal to zero over [0.8, 1.0] for most replications). On the

other hand, h̄w and h̄� have so many breakpoints that one cannot visually distinguish

the constant pieces on the graphics. Note that each of Mk(θ) and Ma(θ) + Mk(θ)

are monotone increasing in θ, but their ratio hk(θ) is not necessarily monotone, as

illustrated by Figure 3.

0.8 0.9 1

0.8

0.9

1

Figure 1: h̄w(θ) for 0.8 ≤ θ ≤ 1, t = 100, N = 1000
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Figure 2: h̄�(θ) for 0.8 ≤ θ ≤ 1, t = 100, N = 1000
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Figure 3: h̄k(θ) for 0.8 ≤ θ ≤ 1, t = 100, N = 1000
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We also ran simulations and produced graphics (not reported here) for several

other parameter sets, including different values of t and different system utilizations,

and the results were similar, except, of course, that the variances were higher for

higher utilizations and lower for larger values of t.

We now discuss the empirically observed performance of the method. We may

want to compare the total cpu time required to perform the functional estimations

with that required to obtain an estimation only at θ = 1.0. Our implementation of

the functional estimation exploited the fact that coupling occurs whenever the system

empties out for two or more neighboring intervals. When coupling occurs for several

intervals during a simulation, the statistics cumulated up to that point for those

intervals must be stored (e.g., in a list, to be processed later on), and the statistical

counters reset to zero. At the end of the simulation, all the statistics are properly

merged, yielding the piecewise-constant functions hw, h�, and hk. Then, when all the

simulations are done, the N replicates of each function are averaged out, yielding a

piecewise-constant function with much more pieces: its breakpoints are the union of

all the breakpoints of all the replicates. Therefore, the second-level merge involves

sorting all those breakpoints. To achieve that, our implementation uses a heap that

contains the N lists obtained after the first-level merges. Each list is positioned into

the heap according to the value of its smallest breakpoint not yet considered by the

second level merge. At each step, one breakpoint from the list at the root of the

heap is “considered” (added to the sorted list of all breakpoints) and the heap is then

updated.

When counting cpu times, we distinguish (a) the time for performing the N

simulations; (b) the time for doing all the first-level merges (this is relevant only

when coupling is exploited); and (c) the time of the second-level merge using the

heap. Note that if only an estimation at a fixed value of θ is desired, then only (a) is

relevant. Table 1 gives certain statistics on the cpu times, list and heap sizes, number

of breakpoints, coupling frequency, and so on, for the numerical example considered

above, with different values of the horizon t. We also ran (separate) simulations

without performing any coupling, and simulations for estimating the performance

measures only at θ = 1; the corresponding cpu times appear in the table under the

headings “no coupling” and “θ = 1”. All the cpu times are in seconds and represent

the total time for the N replications (they exclude the time required to output the

results to computer files). The numbers of couplings and of breakpoints are also the

totals for the N replications (so, 11214 is the number of breakpoints in the graphics

of Figures 1–3, with the proviso that the functions do not necessarily have jumps at
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each breakpoint, since adjacent intervals may have the same value of the estimator;

this is what happens in Figure 3 for instance). The average maximum size of the tree

is the maximum size of the simulation tree during a simulation, averaged over the

N replications. Similarly, the average size of the merge list is the average (over the

replications) number of intervals at the end of a simulation. The number of intervals

is the number of breakpoints, plus one. The maximum size of the tree can be smaller

than the number of intervals only when coupling occurs.

t 50 100 200 400 800 1600

Simul. with coupling
Total cpu time (sec) 20.2 39.7 95.9 174.8 376.9 837.0

simulation 10.4 20.8 51.1 89.0 194.4 433.5
level 1 merge 1.2 2.5 5.8 12.1 35.9 123.2
level 2 merge 7.2 15.1 36.3 72.0 144.1 277.1

total nb. couplings 3086 6420 13250 26704 53459 107139
total nb. breakpoints 5648 11214 22389 44695 89154 177864
Aver. max. size of tree 3.7 4.7 5.8 7.0 8.2 9.4
Aver. size of merge list 6.6 12.2 23.4 45.7 90.2 178.9

No coupling
Total cpu time 22.3 68.1 143.0 480.6 1396.2 4928.3

simulation 12.5 44.1 104.7 393.1 1259.2 4635.0
level 2 merge 7.7 19.6 33.8 79.9 127.7 277.7

Aver. max. size of tree 6.6 12.2 23.4 45.7 90.2 178.9
Aver. size of merge list 6.6 12.2 23.4 45.7 90.2 178.9

Estim. only for θ = 1
cpu time (simulation) 6.4 12.1 24.4 53.3 115.0 218.4

Table 1: Statistics on the performance of the split-and-merge for Example 7.

From these statistics, one can see that when coupling is performed, the size of

the simulation tree does not grow significantly and the cpu time increases (roughly)

linearly with the horizon length t. Without coupling, the increase looks more like

quadratic, which agrees with the fact that the simulation tree increases linearly with

t. For large t, the functional estimation with coupling requires between 3 and 4 times

that required by an estimation at θ = 1 alone, if we include the overhead for the

two levels of merging. Without including that overhead, the simulation time for the
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functional estimation is less than twice that for θ = 1 alone. Therefore, repeating the

simulation over a fine grid of values of θ without splitting and merging, to obtain a

functional estimator, would not be competitive with the split-and-merge approach in

this case.

Our simulation programs were written in the Modula-2 language and run on a

SUN SPARCstation 2. We made no special effort to optimize the code, but tried to

make it reasonable. The cpu times that we report are just giving a rough indication of

what goes on. They may certainly change somewhat by refining the implementation

or changing the compiler; however, we believe that the general conclusions will remain

the same.

3.2 A GI/GI/1 queue over one regenerative cycle

Consider the same queueing model as in the previous subsection, with independent

interarrival and service times. This time, however, we assume that h(θ) is a function

of the system’s behavior over one regenerative cycle, where the regeneration points

are defined as the instants at which a customer enters an empty system. For example,

h(θ) could be the number of customers of type I served in a cycle, or the total waiting

time of type I customers in a cycle, and so on. Note that by definition, a regenerative

cycle must contain at least one customer, whatever the value of θ. This must be taken

into account, as shown by the next example.

Example 8 Let us return to the admission control model of Example 1. To make

sure that we are dealing with one regenerative cycle for any θ, we can use the same

trick as in [2, 24]: always accept the first customer, independently of η1(θ), and

start admission control only from the second customer on. Then, τ(θ) is equal to

the number of customers in the cycle; it is a nondecreasing step function of θ, with

τ(0) = 1, and τ(1) equal to the number of customers in the cycle when no customer

is rejected.

Example 9 In the preceding example, suppose that the queue is GI/GI/1 with

interarrival and service time distributions F and Bν , respectively, where F is con-

tinuous with density f , and Bν depends on a parameter ν as in Example 6. Let

α(ν, θ) = Eν [τ(θ)] and α′(ν, θ) its derivative with respect to ν. To estimate these

quantities in functional form, as functions of θ, we can use the following SPA deriva-

tive estimator, adapted from [24].
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Observe that 1/α(ν, θ) is equal to the fraction of customers that are first in

their busy cycles, in steady-state, among those that are accepted. So,

α(ν, θ) = 1/Pν,θ[W = 0],

where Pν,θ[W = 0] is the probability that a randomly chosen customer, in steady-

state, has a zero waiting time, given ν and θ. Differentiating that, we obtain

α′(ν, θ) = − 1

(Pν,θ[W = 0])2

∂

∂ν
Pν,θ[W = 0],

which can be estimated indirectly by estimating Pν,θ[W = 0] and its derivative. Now,

since each customer is accepted with probability θ independently of the past, we have

that Pν,θ[W = 0] is also equal to the probability that a random arriving customer,

accepted or rejected, in steady-state, sees the system empty when it arrives. Assuming

that the system starts empty, let Wi+1(θ) denote the waiting time that customer i+1

would have if it was accepted, for i ≥ 1. An unbiased estimator of P [Wi+1(θ) = 0] is

given by the conditional probability:

Pi(θ) = P [Wi+1(θ) = 0 | Xi(θ)]

= P [Ai ≥ Xi(θ) | Xi(θ)]

= 1 − F (Xi(θ)),

where Xi(θ) = Wi(θ) + Siηi(θ) and Wi+1(θ) = (Xi(θ) − Ai)
+. When we perform

our simulations, the first customer is always accepted independently of η1(θ), but the

value of η1(θ) (a Bernoulli random variable with parameter θ) is nevertheless used in

the expression for X1(θ). Here, we take as a regenerative cycle (for all θ) the busy

period that corresponds to θ = 1. It is okay to always accept the first customer for

the same reason as in Example 8. However, the expression for P1(θ) must take into

account the possibility that W2(θ) = 0 for a smaller θ due to a rejection of customer 1;

this is why η1(θ) should not be always 1. From standard renewal-reward theory, one

has

Pν,θ[W = 0] =
E

[∑τ(1)
i=1 Pi(θ)

]
E [τ(1)]

a.s.
= lim

t→∞
1

t

t∑
i=1

Pi(θ),

where τ(1) is the number of customers in the first busy cycle at θ = 1 (the smallest

i ≥ 1 such that Wi+1(1) = 0). Likewise, under appropriate uniform integrability

conditions (see [5, 14]), one has

∂

∂ν
Pν,θ[W = 0] =

E
[∑τ(1)

i=1 P ′
i (θ)

]
E [τ(1)]
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where P ′
i (θ) is the sample derivative of Pi(θ) w.r.t. ν:

P ′
i (θ) =

∂

∂ν
(1 − F (Xi(θ))) = −f(Xi(θ)) ·X ′

i(θ)

and

X ′
i(θ) =

i∑
j=φi(θ)

ηj(θ)S ′
j

similar to Example 6.

To estimate α′(ν, θ), one can simulate the system over n regenerative cycles

at θ = 1 and compute the following quantities as functions of θ. Let Yj(θ), Y ′
j (θ),

and τj(1) denote the values of
∑τ(1)

i=1 Pi(θ),
∑τ(1)

i=1 P ′
i (θ), and τ(1), respectively, for the

jth regenerative cycle. Assuming that the uniform integrability conditions hold and

that the system is stable at θ = 1, the following is a strongly consistent estimator of

α′(ν, θ):


 n∑

j=1

τj(1)





 n∑

j=1

Y ′
j (θ)





 n∑

j=1

Yj(θ)




−2

= −T
T∑

i=1

P ′
i (θ)

(
T∑

i=1

Pi(θ)

)−2

, (10)

where T =
∑n

j=1 τj(1) is the total number of arrivals (accepted or discarded) during

the n cycles. A strongly consistent estimator of α(ν, θ) is given by:


 n∑

j=1

τj(1)





 n∑

j=1

Yj(θ)




−1

=

(
1

T

T∑
i=1

Pi(θ)

)−1

. (11)

Here, all the regenerative cycles (for θ = 1) can be simulated independently of each

other and the simulation tree rarely gets large unless the system utilization is very

close to one.

We performed numerical experiments with this example. In order to compare

our results with the exact (theoretical) values, we took an M/M/1 queue as in [24],

with arrival rate of 1 and mean service time ν. In that case, one has S ′
j = Sj/ν.

Figures 4 and 5 show the values of the functional estimators (11) and (10) for ν = 0.5,

0 ≤ θ ≤ 1, and n = 1000. Those values are given by the dotted lines, whereas the solid

lines indicate the theoretical values. Note that the expected number of customers per

cycle at θ = 1 is only 2. We also performed experiments with larger values of n and

the two curves quickly became very close to each other. We tried different values of

ν and the results were similar.
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Figure 4: α(ν, θ) (solid line) and its estimator (dotted line) for ν = 0.5 and n = 1000.
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Figure 5: α′(ν, θ) (solid line) and its estimator (dotted line) for ν = 0.5 and n = 1000.
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Table 2 gives some statistics on the performance of the algorithm, similar to

those given in Table 1 for Example 7, for different values of n, with ν = 0.5. Similar

results were obtained for other values of ν, with the proviso that the average number

of customers per cycle (and therefore the work) increases rapidly with ν. Here, the

average size of the simulation tree at the end of a cycle is approximately 3 (the

number of customers in the cycle, plus one), and the total number of breakpoints

is the same as the total number of customers simulated, which is approximately 2n

(for all values of θ). The simulation time is approximately proportional to n; that

is, proportional to the total number of customers. On the other hand, the merging

times are in O(n log n), so the total computational effort increases slightly faster than

linearly.

n 2500 5000 10000 20000 40000 80000

Functional estimation
Total cpu time (sec) 5.8 12.4 25.2 58.0 114.1 241.3

simulation 3.2 6.3 12.1 27.3 52.2 107.3
heap sort and merge 2.6 6.1 13.1 30.7 61.9 134.0

total nb. breakpoints 5042 9990 19775 39651 79364 158818
total nb. customers 5042 9990 19775 39651 79364 158818
Aver. max. size of tree 3.02 3.00 2.98 2.98 2.98 2.99
Aver. size of merge list 3.02 3.00 2.98 2.98 2.98 2.99

Estim. only for θ = 1
cpu time (simulation) 1.9 4.5 8.4 17.6 35.9 72.1

Table 2: Statistics on the performance of the split-and-merge for Example 9.

3.3 Age replacement policies in a multicomponent system

Example 10 This example is taken from [11, 14]. A system is comprised of N

components, evolving independently, each with the same lifetime distribution, with

increasing failure rate. We assume that the maintenance policy is defined by two

thresholds θ1 > θ2 > 0 as follows. Whenever a failure occurs or a component reaches

age θ1, then all the components older than θ2 are replaced (instantaneously) by new

ones. The replacement cost at each intervention is ci, plus cr times the number of
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components that are replaced. There is also an additional cost cf incurred each time

a component fails. Here, the randomness ω may be viewed as corresponding to the

sequence of component lifetimes. Let T be a fixed time horizon and h(θ) be the total

cost incurred up to time T , where θ = (θ1, θ2), and α(θ) its expectation.

In [11], it is shown how to compute an optimal policy for this problem by

dynamic programming, for either the finite horizon or the infinite-horizon case with

discounting. It turns out that the class of two-threshold policies defined above is

suboptimal; the optimal policy is generally much more complicated than that. Nev-

ertheless, the two-threshold policies are interesting because they are much simpler to

implement and the best one is typically very close to the optimum. Moreover, the

numerical methods used in [11] work well for small N (say, N ≤ 3 or 4), but become

impractical for large N due to the curse of dimensionality.

Suppose that for a fixed θ1, we want to estimate α(θ1, θ2) as a function of θ2.

In the framework of Section 2, the binary decisions here are whether to replace or not

each of the remaining components whenever an intervention occurs. In general, at

each intervention, there are (up to) N − 1 such binary decisions. Unfortunately, this

example does not satisfy Assumption 2, so it is conceivable that the expected com-

putational effort grows much faster than linearly with T . However, our preliminary

numerical experiments indicate that it is not necessarily so, and we intend to pursue

further investigation (both numerical and theoretical) on this application.
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