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Abstract

Convergence rate results are derived for a stochastic optimization problem
where a performance measure is minimized with respect to a vector parame-
ter θ. Assuming that a gradient estimator is available and that both the bias
and the variance of the estimator are (known) functions of the budget devoted
to its computation, the gradient estimator is employed in conjunction with a
stochastic approximation (SA) algorithm. Our interest is to figure out how to
allocate the total available computational budget to the successive SA itera-
tions. The effort is devoted to solving the asymptotic version of this problem
by finding the convergence rate of SA towards the optimizer, first as a function
of the number of iterations, and then as a function of the total computational
effort. As a result the optimal rate of increase of the computational budget per
iteration can be found. Explicit expressions for the case where the computa-
tional budget devoted to an iteration is a polynomial in the iteration number,
and where the bias and variance of the gradient estimator are polynomials of
the computational budget, are derived. Applications include the optimization
of steady-state simulation models with likelihood ratio, perturbation analysis,
or finite-difference gradient estimators, optimization of infinite-horizon mod-
els with discounting, optimization of functions of several expectations, and so
on. Several examples are discussed. Our results readily generalize to general
root-finding problems through stochastic approximation.

Résumé

Nous dérivons les taux de convergence pour l’approximation stochastique
(AS) dans le contexte d’un problème d’optimisation stochastique où une mesure
de performance est minimisée par rapport à un vecteur (paramètre) θ. L’ap-
proximation stochastique utilise à chaque itération un estimateur de gradient
dont le bias et la variance sont fonctions du budget de calcul. On veut déterminer
la façon optimale d’allouer le budget de calcul aux différentes itérations. Nous
résolvons une version asymptotique de ce problème en obtenant le taux de con-
vergence de l’AS d’abord en fonction du nombre d’itérations, puis en fonction
de l’effort total de calcul. Cela nous permet de trouver le taux optimal de crois-
sance du budget en fonction des itérations. Parmi les applications, on retrouve
l’optimisation d’un modèle de simulation à l’état stationnaire en utilisant des
estimateurs de gradient basés sur le rapport de vraisemblance, l’analyse de
perturbation ou les différences finies, l’optimisation de modèles sur horizon in-
fini avec actualisation, l’optimisation de fonctions de plusieurs espérances, et
ainsi de suite. Nous discutons de plusieurs exemples. Nos résultats s’étendent
facilement au problème de recherche du zéro d’une fonction par l’AS.





1. Introduction, Motivation, and Examples. Consider a stochastic model

parameterized by a vector θ ∈ G ⊆ IRr, where G is either the entire space IRr or

a closed and convex set. The objective is to minimize a cost functional α(·) over

G, assuming that α has a unique minimizer θ∗ in the interior of G. We are mainly

interested in the situation where the exact value of α(θ) (or its gradient) is too

hard to compute, and where only a gradient estimator is available, which can be

computed, say, by simulation. The quality of the estimator (e.g., bias, variance, . . . )

might depend on the parameter value θ at which it is evaluated, and also on the

computing budget that we are ready to spend to perform the simulation. To simplify

the notation, we assume henceforth that G = IRr. Algorithms with projections,

which we use when G 6= IRr, are discussed at the end of the paper. Their asymptotic

properties are similar, provided that θ∗ is in the interior of G. We do not consider the

more complicated situation where the optimum lies on the boundary of G; It requires

different techniques for obtaining the rates of convergence. Although we concentrate

on the stochastic optimization problems, for which we are finding a root of the gradient

of α, the results obtained are also applicable to more general root-finding problems

under noisy measurements or observations.

We consider the stochastic approximation (SA) algorithm

θn+1 = θn − anψn(1.1)

for n ≥ 1, where θ1 ∈ G is the initial parameter estimate, ψn is the value of a

gradient estimator (at parameter value θn) obtained at iteration n, and {an, n ≥ 1}
is a decreasing sequence such that an > 0,

∑

n an = ∞ and
∑

n a
2
n < ∞. Let Tn be

the size of the computing effort made to compute ψn. Here, ψn and Tn are (generally

correlated) random variables whose distributions depend in general on the parameter

value θn, on the initial conditions (or state) of the simulation at step n (say, sn), on

the simulation time-horizon and/or number of replications or number of regenerative

cycles at step n, and perhaps on other factors, such as the size of the finite differences

used at step n in the case where a finite-difference (FD) gradient estimator is used. We

assume that the probability distribution of (ψn, Tn, sn+1) depends on (n, sn, θn) and

that conditional on (n, sn, θn), that distribution is independent of the past. In other

words, {(n, ψn, Tn, sn+1, θn+1), n ≥ 1} evolves as a Markov chain. In some situations,

Tn could be a deterministic computing budget devoted to iteration n (its distribution

is then degenerate), while in other cases the number of replications is fixed and Tn is

random (although we have some indirect control over it). This formulation is quite

general. Denote by En the expectation conditional on (n, sn, θn).
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Let αθ(·) denote the gradient of α(·). We define the conditional bias and

variance of the gradient estimator at step n as

Bn = En[ψn]− αθ(θn)(1.2)

and

Vn = E[‖ψn − Enψn‖2],(1.3)

respectively, where ‖·‖ denotes the Euclidean norm. Bn is a random variable, but not

Vn. Note that Vn is the trace of the “covariance” matrix E[(ψn−Enψn)(ψn−Enψn)
′]

(here and throughout the paper, the prime denotes matrix transpose). Note that in

Vn, En is used in lieu of E as in the standard definition of variance, but for convenience,

we still call it variance. We shall use the following notation: if f and g are positive-

valued functions defined over the natural numbers, we say that “f(n) is of the order

g(n) as n → ∞,” denoted by f(n) = O(g(n)), if there exist a positive integer n0

and a constant K > 0 such that f(n) ≤ Kg(n) for all n ≥ n0. If f(n) = O(g(n))

and g(n) = O(f(n)), we say that “f(n) is of the exact order g(n),” denoted by

f(n) = Θ(g(n)). If f(n)/g(n)→ 1, we say that “f(n) is similar to g(n)”, denoted by

f(n) ∼ g(n).

SA algorithms have been studied extensively and employed in a wide range of

applications; see for example Wasan [40], Nevel’son and Khasminskii [32], Kushner

[19], Kushner and Clark [20], L’Ecuyer and Glynn [29], among others. For an exten-

sive survey on general stochastic approximation for parameterized models of either

continuous or discrete event systems, see Kushner and Vázquez-Abad [22] and the

references therein. Those analyses generally assume that the computational effort

Tn is (roughly) the same at all iterations, and the convergence rates are obtained in

terms of the number of iterations only.

In this paper, we consider a more general case where the computing budget

could vary between iterations, and analyze the convergence rate of the mean square

error (MSE), defined as E‖θn − θ∗‖2, in terms of the total computational effort

Cn =
n
∑

i=1

Ti.(1.4)

We seek to achieve

E
[

‖θn − θ∗‖2
]

= O((E[Cn])
−η)(1.5)
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for the largest possible constant η. This is motivated by the fact that in certain situ-

ations (see the examples below), Bn will converge to zero (and θn will converge to the

optimizer) only if the computing time Tn increases towards infinity as a function of n,

thus the Tn’s are not the same at all the iterations (and are also typically random). In

that context, the convergence rate expressed as a function of the total computational

effort is more meaningful than that expressed as a function of n. Typically, both Bn

and Vn are (roughly) polynomial functions of E[Tn] and the rate of change of the

latter can be chosen directly or indirectly. An interesting question is then: What is

the optimal rate of increase of E[Tn]? A first step toward answering this question is

to figure out how the mean square error depends on Bn and Vn.

Glynn and Whitt [16] have developed a framework for studying the asymp-

totic efficiency of simulation estimators as a function of the available computational

budget. Their goal was to capture the interplay between the variability of an estima-

tor and the computational effort required. They obtained limit theorems for several

examples including two SA settings: classical Robbins-Monro and Kiefer-Wolfowitz

based on central finite differences. Their analysis for these two examples is based

on convergence rate results (in terms of n) by Ruppert [36]. Our results generalize

those studies. To further motivate our development, we now introduce some examples

where our framework is appropriate.

Example 1.1. Consider a GI/GI/1 queue with mean arrival rate λ = 1

and mean service time θ ≥ 0, such that θ is a scale parameter of the service time

distribution. More specifically, each service time can be written as S = θZ where

Z has mean 1 and a distribution independent of θ. For 0 ≤ θ < 1, the system

is stable. Let w(θ) be the steady-state average wait (in the queue) per customer.

Suppose that we want to minimize the function α(θ) = w(θ) + C(θ), where C is

a smooth convex function with known derivative, over the interval G = [0, θ̄], for

some 0 < θ̄ < 1. We design the algorithm so that the iterate is projected back to

G = [0, θ̄] whenever it goes outside, and we take θ̄ < 1 to make sure that the system

is stable for each θ considered (in fact, this is necessary if one simulates a given

number of busy cycles at each step of the SA algorithm, but not if one simulates

a given number of customers at each step). Here, to estimate the derivative of w,

one can start the queue empty and simulate the system until the tth customer starts

its service, or until the end of the tth busy cycle, and compute a (generally biased)

derivative estimator from that. Then, one adds dC(θ)/dθ to obtain a derivative

estimator for α. Several specific estimators for the derivative of w(θ), based on a
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finite-horizon simulation, are discussed and experimented in L’Ecuyer and Glynn [29]

and L’Ecuyer, Giroux, and Glynn [28]. Generally, those estimators have a bias of

O(t−1) due to the truncation of the horizon, and sometimes additional bias such as

that due to the use of finite differences to estimate the gradient. Their variances

have different orders of magnitudes. For example, to mention a few, three estimators

called infinitesimal perturbation analysis (IPA), likelihood ratio (LR), and LR with

control variates (CLR), all based on the simulation of the first t customers, have

variances of O(t−1), O(t), and O(1), respectively. Here, the computing cost Tn may

be assumed roughly proportional to the number of customers simulated (the value of

t) at iteration n of SA. A similar situation occurs for other objective functions, more

general queueing networks, and many other Markov chains or discrete-event models.

For other specific examples, see Yin, Yan, and Lou [43], or Haurie, L’Ecuyer, and

van Delft [17], where IPA gradient estimators for the performance of an unreliable

manufacturing system, with respect to threshold (hedging point) values, are used

for optimization; these estimators have bias and variance both of O(t−1). In those

references, weak and w.p.1 convergence were proved, but no convergence rate was

obtained.

Example 1.2. Suppose that α(θ) is expressed as a (differentiable) nonlinear

function of one or more mathematical expectations, say, α(θ) = g(µ1(θ), . . . , µd(θ)),

where g : IRd → IR and µj(θ) = E[Xj] for some random variable Xj whose distri-

bution depends on θ. Suppose that an unbiased estimator Yj is available for µj,θ(θ),

the gradient of µj with respect to θ, which is assumed to exist. Let Xj,1, . . . , Xj,N

and Yj,1, . . . , Yj,N be N i.i.d. copies of Xj and Yj, respectively, and let X̄j(N) =

(1/N)
∑N

i=1Xj,i and Ȳj(N) = (1/N)
∑N

i=1 Yj,i be their sample averages. A consistent

estimator for the gradient of α is then

ψ =
d
∑

j=1

gj(X̄1(N), . . . , X̄d(N)) · Ȳj(N),

where gj denotes the derivative of g with respect to its jth parameter. This estimator

is generally biased because of the non-linearity of g. Under appropriate conditions on

g and on the estimators Xj and Yj, it can be proved that both the bias and variance of

ψ are of Θ(N−1) (see Glynn and Heidelberger [13]). Let T (N) be the computing time

for performing the required simulations and computing ψ. If E[T (N)]/N converges

to some positive constant as N →∞, uniformly in θ, then E[Tn]E[Bn] and E[Tn]Vn
are Θ(1).
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One special case of this example is when g is (or involves) the ratio of two

expectations: g(µ1, µ2) = µ1/µ2. This case arises for example when the regenerative

method is applied to construct steady-state estimators, or when estimating condi-

tional probabilities is desired, as well as in other practical situations. The gradient

estimator is then

ψ =
Ȳ1(N)X̄2(N)− X̄1(N)Ȳ2(N)

(X̄2(N))2
.

Gradient estimators for ratios of expectations are studied in Glynn, L’Ecuyer, and

Adès [15].

Example 1.3. Consider a continuous-time stochastic process {Z(t), t ≥ 0},
whose probability law depends on θ, and which represents a time-varying cost-rate.

Let ρ > 0 be the discount rate and suppose that we want to minimize the total

expected discounted cost

α(θ) = E
[∫ ∞

0
e−ρtZ(t)dt

]

,

with respect to θ, where the expectation depends on θ. An unbiased estimator of αθ

might not be available, but a biased estimator can generally be obtained by simulat-

ing the process over a truncated (finite) horizon t, using either finite differences, or

perturbation analysis, or perhaps other methods. Fox and Glynn [8] analyze different

estimators of α(θ) in terms of their convergence rates as a function of the computa-

tional budget. They show in particular that if the cost rate is non-negative, then the

truncated-horizon estimator of α(θ) has bias O(e−ρt) and bounded variance. When

estimating the gradient, the bias and variance would also be functions of the horizon

t, depending on the gradient-estimation method. The optimal choice of t as a function

of n should then depend on that.

In the preceding examples, conditional on n and θn, the gradient estimator ψn

is independent of sn. In Example 1.1, the condition is satisfied because we restarted

the system empty at every iteration. However, one can instead restart the queue at

iteration n from the same state as it was at the end of iteration n− 1. In that case,

ψn depends also on sn and this is covered by our results.

The rest of the paper is arranged as follows. In Section 2, we give the precise

formulation of the problem, state our assumptions, and present a preliminary result

saying that convergence w.p.1 to θ∗ occurs under our assumptions. Section 3 is
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devoted to obtaining a bound on the order of magnitude of the MSE. We first obtain

such a bound as a function of n. Roughly, we show that if ‖Bn‖ = O(n−β) w.p.1,

Vn = O(n−δ) and an = n−γ , for some real-valued constants β, δ, and 1/2 < γ ≤ 1,

and if some other technical conditions on the shape of α are satisfied, then

E‖θn − θ∗‖2 = O(n−κ),(1.6)

where

κ = (2β) ∧ (γ + δ)(1.7)

and x∧ y denotes min{x, y}. Later on, we express that bound as a function of E[Cn]

for the case where E[Tn] grows polynomially fast and where Bn and Vn grow at specific

rates as functions of E[Tn].

Section 4 deals with the asymptotic distribution of nκ/2(θn − θ∗), where κ is a

constant that gives the appropriate scaling for that distribution to be nontrivial. We

show that the asymptotic distribution depends on β and δ, i.e., different decreasing

rates for the bias or variance result in different scalings in the asymptotic distribution.

Additional conditions to those of Section 2 are required for that analysis. These

conditions require in particular that nβ‖Bn‖ and nδVn converge to a constant scalar

and vector, respectively, and our results imply that nκ/2(θn−θ∗) either converges to a

constant or to a normal random variable. In Section 5, we derive the (asymptotically)

optimal growth rates of Tn for several practical situations, including variants of the

previous examples. As an illustration, if (E[Tn])
b‖Bn‖ = Θ(1), (E[Tn])

dVn = Θ(1),

n−pE[Tn] = Θ(1) for some constants b ≥ 0, d, p ≥ 0, and under some additional

assumptions, one has

E‖θn − θ∗‖2 = Θ((E[Cn])
−((2β)∧(γ+δ))/(p+1)) = Θ((E[Cn])

−η)(1.8)

with β = bp and δ = dp. From that, one can then find the optimal values of p and γ,

i.e., those that maximize η in (1.8), for any given values of b and d. Note that if there

is no bias (β = b =∞) and 1/2 < γ ≤ 1, then it makes sense to have E[Tn] bounded

(p = 0), which yields δ = 0 (the variance Vn is bounded) and η = γ. We then recover

the basic results of classical SA. On the other hand, if b < ∞, then we must take

p > 0, otherwise we get −η ≥ 0. Of course, the asymptotically optimal growth rate

for E[Tn] is not always of the form Θ(np); for instance, for Example 1.3, Θ(log n)

is better (see Section 5). Some technical details related to those different rates are

relegated to Appendix 2. Finally, further discussions and concluding remarks are

made in Section 6.
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2. Model Assumptions and Almost-Sure Convergence. For notational

simplicity, we assume θ∗ = 0 henceforth. This can be done without loss of gener-

ality, since we can always shift (translate) the origin to make θ∗ = 0. We make the

following assumptions.

(A0) One has an = n−γ , where 1/2 < γ ≤ 1. Also, E‖θ1‖2 <∞.

(A1) There are constants β > 0 and Kβ ≥ 0 such that γ + β > 1 and for all n,

‖Bn‖ ≤ Kβn
−β w.p.1 and E‖Bn‖2 ≤ K2

βn
−2β.

(A2) There are constants δ ∈ IR and Kδ ≥ 0 such that 2γ + δ > 1 and for all n,

Vn = E‖ψn − Enψn‖2 ≤ Kδn
−δ.

Condition (A0) gives an explicit form for an. If in lieu of n−γ , we use Γ0n
−γ ,

where Γ0 is a constant or a positive definite matrix, then all the results of this paper

carry over with minor modifications. However, for notational simplicity, we choose

the current setting. Introducing Γ0 is in fact equivalent to rescaling αθ(·) and ψn by

left-multiplying them by Γ0 and then using an = n−γ . Therefore, there is no loss of

generality in assuming Γ0 = I and the algorithm is thus much simpler. On the other

hand, doing such a rescaling generally has an important impact on the convergence

speed of the SA algorithm (1.1) and finding the “optimal” rescaling (or even a good

one) is generally hard. SA algorithms with averaging (see Section 6) address that

problem.

In most applications, especially in Monte Carlo optimization via simulation,

the initial value θ1 is a usually a deterministic constant and the second part of (A0)

holds trivially. It is also typically verified when θ1 is random.

Condition (A1) requires that the bias decreases as O(n−β). The bound holds

uniformly in ω (the sample point), i.e., Kβ does not depend on ω (or is non-random).

To check that condition, we should normally look for a bound on the conditional bias

as a function of the computational effort (e.g., number of replications) uniform over

(sn, θn). Condition (A2) would be verified in a similar way. See [29, 30] for examples

of how that can be achieved. In (A2), δ can be either positive, zero or negative,

which corresponds to a variance that (asymptotically) decreases, remains bounded,

or increases with n, respectively. The condition that 2γ + δ > 1 forces the variance

not to increase too fast. Kβ = 0 would mean that there is no bias; Kδ = 0 stands for

zero variance.
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To carry out the convergence analysis, we also need the following additional

assumptions on the function αθ(·):

(A3) The function (gradient) αθ(·) is continuous.
(A4) The ODE (ordinary differential equation)

θ̇ = −αθ(θ)(2.1)

has a unique solution for each initial condition and αθ(θ) = 0 has a unique

root (= θ∗).

(A5) There is a finite constant Kα > 0 such that ‖αθ(θ)‖ ≤ Kα(1+‖θ‖) and there

is an ε > 0 and a matrix H such that αθ(θ) = Hθ+O(‖θ‖2) for ‖θ‖ ≤ ε. All

eigenvalues of H have positive real parts. Let λmin > 0 be the minimum of

those real parts.

Remark 2.1. Assumption (A4) requires the corresponding ODE to be “well

behaved”. Assumption (A5) requires the function α to be quadratic near the opti-

mizer. In the one-dimensional case, this means that the second derivative must be

bounded away from zero. It also requires αθ to grow at most linearly. To derive our

convergence rate results in Theorem 3.1 and Section 4, when γ = 1, we will need

λmin to be “large enough”. If it is not, then the problem should be rescaled by some

matrix Γ0, as discussed previously. In principle, one can always make λmin as large

as needed by rescaling with an appropriate Γ0. On the other hand, finding the ap-

propriate Γ0 is not necessarily easy. If the growth rate of the objective function is

not linearly bounded, then one possible solution is to project θn over a compact set

G at each step of (1.1), as in Example 1.1 (see also Section 6, or Komlos and Révész

[18], Kushner and Clark [20], Azadivar and Talavage [2], and the references therein).

That compact set could vary adaptively between iterations, yielding a SA algorithm

with varying bounds, as suggested in, for example, Chen and Zhu [4], Yin and Zhu

[45], and Andradóttir [1].

Before studying convergence rates, we first state the convergence of the algo-

rithm in the sense of w.p.1. By virtue of the ODE approach developed in Kushner

and Clark [20] (see in particular the argument of their Theorem 2.3.1), the following

proposition holds.

Proposition 2.1. Under assumptions (A0)–(A5), θn → θ∗ w.p.1 as n→∞.

8



3. An Asymptotic Bound on the MSE E‖θn − θ∗‖2. We now give an up-

per bound on E‖θn − θ∗‖2, again assuming that θ∗ = 0. As a first step, the next

theorem gives such a bound as a function of n. Then, in Corollary 3.2, the bound

is related to the expected computational expenditures E[Tn] and E[Cn], for the case

of a polynomially-growing (in n) E[Cn]. Note that the condition (3.2) is not really

restrictive; see the remarks that follow (A5). The proof of Theorem 3.1 is given in

Appendix 1.

Theorem 3.1. Under the conditions (A0)–(A5), with γ < 1, there is an n0

such that for all n ≥ n0,

E‖θn+1‖2 ≤ K2
β

λ2min

n−2β +
3Kδ

2λmin
n−γ−δ +O(n−2β−1 + n−γ−δ−1)(3.1)

= O(n−((2β)∧(γ+δ))) = O(n−κ).

The estimate above also holds for γ = 1, under the additional condition that

λmin > max{β, (1 + δ)/2}.(3.2)

Remark 3.1. We can see from the previous theorem how the convergence rate

is tied up with the values of β and δ. In absence of bias, the order is purely determined

by how the “noise” behaves. In particular, for δ = 0 (bounded variance), our result

agrees with the classical result (cf., Kushner [19]) which says that E‖θn‖2 = O(n−γ).

If γ+ δ > 2β, then the error bound becomes E‖θn‖2 = O(n−2β), i.e., the convergence

speed depends on how fast the bias diminishes. If δ < 0, then 2β∧ (γ+ δ) < γ, so the

convergence rate will be slower than that of the classical algorithm, no matter how

fast the bias tends to 0. If δ = 0, the order cannot be better than O(n−γ). Finally,

for the totally degenerate case where β = δ = ∞, that is, no bias and no noise, the

theorem implies that E‖θn‖2 converges faster (asymptotically) than n−κ for any κ,

which agrees with the classical results of nonlinear programming.

We now express the MSE bound in terms of the computer budget, for the

important special case where E[Tn] grows polynomially fast: n−pE[Tn] → κ1 for

some p ≥ 0. The total computing budget Cn =
∑n

i=1 Ti then satisfies n−p−1E[Cn]→
κ1/(p + 1) as n → ∞. We further assume that the bias and variance are bounded

uniformly in terms of the computer budget Tn, as follows: (E[Tn])
b‖Bn‖ ≤ Kb w.p.1

and (E[Tn])
dVn ≤ Kd for some positive (fixed) constants Kb and Kd. The convergence

rate in Corollary 3.2 depends on p in a significant way.
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Corollary 3.2. Under the above assumptions and the conditions of Theo-

rem 3.1, with n−β and n−δ in (A1) and (A2) replaced by (E[Tn])
−b and (E[Tn])

−d,

respectively, we have that

E‖θn+1‖2 = O((E[Cn])
−(2bp)∧(γ+dp)/(p+1)).(3.3)

Proof. This is a direct consequence of Theorem 3.1. Replace β, δ, Kβ, and

Kδ in Theorem 3.1 by bp, dp, Kbκ
−b
1 , and Kdκ

−d
1 , respectively, and observe that

n−1(E[Cn])
1/(p+1) = Θ(1).

4. Asymptotic distribution of nκ/2θn. In this section, we devote our attention

to studying the asymptotic distribution of a suitably scaled sequence of the estimation

errors by means of the weak convergence methods. Again, we assume that θ∗ = 0

for notational simplicity. In the literature, the rate of convergence is often studied

through the asymptotic distribution of a normalized error sequence. The most rele-

vant question in the present context is to derive a nontrivial limit result for nκ/2θn and

calculate explicitly the asymptotic covariance matrix. The exponent κ/2 represents

the rate of convergence (see, e.g., Kushner and Clark [20], p.233). The covariance

matrix of the limiting normal distribution is another important characterization of

the convergence speed. Such results are more precise than the bounds obtained in the

previous section and may provide further opportunities to improve the performance

of the algorithms. Limit theorems of that sort already appeared in Fabian [7] and

earlier papers cited there, under assumptions different than ours. The derivation of

limit theorems, in the analysis that follows, exploits the roles played by the bias and

variance under different sets of assumptions and indicates the dominating factor and

main influence to the asymptotic distribution and rate of convergence in each case.

In the next section, those results will be applied to several examples, including those

introduced in Section 1.

Again, we first derive the results in terms of n and later discuss their interpre-

tation in terms of Cn. In view of (3.3), the relative values of 2β and γ+δ are expected

to play an important role in the result. For simplicity, the discussion is focused on the

case of γ = 1, which is the most common case in practice. Similar results hold for the

case 1/2 < γ < 1, although one then needs to work with an interpolated sequence as

in Kushner and Huang [21] to obtain the limit theorems. In order not to disrupt the

flow of discussion, the proofs of the technical results are placed in Appendix 1. Our

study will be divided into the following three cases: (1) 1 + δ < 2β; (2) 1 + δ > 2β;

(3) 1 + δ = 2β.
10



4.1. Case 1: 1 + δ < 2β. In this case, from Theorem 3.1, one has

E‖θn‖2 = O(n−(1+δ)).

To obtain the desired asymptotic distribution, we first need to determine an appro-

priate scaling. We wish to select a real number κ > 0 such that nκ/2θn converges

weakly to a nontrivial distribution. It turns out that in this case, the correct order

is given by κ = 1 + δ, which is motivated by the classical central limit theorem. We

derive a functional invariance principle, or functional central limit theorem, which

shows how the scaled sequence evolves as a stochastic process. This gives a stronger

result than convergence in distribution alone.

To begin with, define

Wn(t) =
bntc1+δ/2

√
n

θbntc+1

for t ∈ [0, 1], where bzc denotes the integral part of z, for z ∈ IR. Assume that the

following conditions hold.

(A6) There is a positive definite matrix R such that

nδEn[Enψn − ψn][Enψn − ψn]
′ p−→ R(4.1)

as n→∞, where
p−→ denotes convergence in probability.

Theorem 4.1. Suppose that the conditions (A0)–(A6) and (3.2) are in force.

Then Wn(·) converges weakly to a process W (·) which has independent Gaussian in-

crements and covariance matrix Σt, where

Σ =
∫ ∞

0
exp(−H̃u)R exp(−H̃ ′u)du.(4.2)

Setting t = 1 in Theorem 4.1, the following corollary is immediate, which

gives us the usual asymptotic normality result although the scaling factor n(1+δ)/2

is different from the classical theorems due to the formulation of our problem. For

δ = 0, we recover the canonical convergence rate of the classical results. In the case

where the parameter θ is one-dimensional, (4.2) simplifies to Σ = R/(2H̃), where

H̃ = αθθ(0)− (1 + δ)I/2.

Corollary 4.2. Under the conditions of Theorem 4.1, n(1+δ)/2θn converges

in distribution to the normal distribution N(0,Σ).
11



Theorem 4.1 and Corollary 4.2 indicate that in case 1 + δ < 2β, the bias

diminishes rather fast and is asymptotically negligible compared to the variance. The

next case is the opposite situation.

4.2. Case 2: 2β < 1 + δ. In this case, the bias term becomes the dominating

factor. Similar to Case 1, one may wish to have a limiting distribution result for

the scaled sequence nβθn. We show in what follows that the limiting distribution is

degenerate. To proceed, suppose that the following assumptions hold.

(A7) There is a B̄ ∈ IRr such that as n→∞,

nβBn
p−→ −B̄,

where Bn is the bias defined in (1.2).

Theorem 4.3. Suppose that the conditions of Theorem 4.1 are satisfied, with

(A6) replaced by (A7). Then, as n→∞,

nβθn
p−→ H−1

b B̄.

Remark 4.1. Owing to (3.2), Hb is nonsingular and stable. Theorem 4.3

indicates that the limiting distribution of nβθn is degenerate. Hence one cannot

expect any asymptotic normality. As n gets large, the noise effect becomes negligible

and θn ∼ n−βH−1
b B̄ in the sense of in probability. There is also a functional form of

that limiting result. However, due to the degenerate nature, the functional limit does

not provide much more than the current statement of the theorem.

4.3. Case 3. 2β = 1 + δ. In accordance with the results of the last two sub-

sections, we find that in the current situation, both the noise and the bias contribute

to the asymptotic distribution. The next theorem shows that asymptotic normality

holds in this case. However, the limiting normal distribution is generally not centered;

its mean is given by H−1
b B̄ (= H̃−1B̄ in this case), which is also the constant nβθn

converges to in case 2 of the previous subsection.

Theorem 4.4. Assume that the conditions of Theorem 4.1 and Theorem 4.3

are satisfied with 2β = 1 + δ. Then

12



n(1+δ)/2θn −H−1
b B̄

d−→ N(0,Σ)

as n→∞, where Σ is given by (4.2) and
d−→ denotes convergence in distribution.

Theorem 4.4 could be viewed in a sense as a generalization of the results of

the two previous cases. Indeed, if (A6) and (A7) hold with 1 + δ < 2β, then (A7)

will hold with B̄ = 0 and β replaced by (1 + δ)/2 < β. Then, applying Theorem 4.4

with β replaced by (1+ δ)/2, we recover Corollary 4.2. Similarly, if 1 + δ > 2β, then,

with δ replaced by 2β − 1 < δ, (A6) holds with R ≡ 0 and we also recover Theorem

4.3 from Theorem 4.4.

4.4. Asymptotic distribution in terms of the budget Cn. The results ob-

tained in this section can easily be transferred to statements with nκ/2 replaced by

Cη/2
n for some real number η. To be more specific, suppose that

(A8) n−p−1Cn → κb in probability for some κb > 0.

Under the conditions of the previous theorems, we obtain the following:

Corollary 4.5. Assume that conditions (A0)–(A8) and (3.2) are satisfied.

If 1 + δ < 2β, then

(Cn/κb)
(1+δ)/(2(p+1))θn

d−→ N(0,Σ) as n→∞.

If 1 + δ > 2β, then

(Cn/κb)
β/(p+1)θn

p−→ H−1
b B̄ as n→∞.

If 1 + δ = 2β, then

(Cn/κb)
β/(p+1)θn −H−1

b B̄
d−→ N(0,Σ) as n→∞.

Remark 4.2. If n−pTn → κ1 in probability as n → ∞, then (A8) holds

with κb = κ1/(p + 1). In accordance with Theorem 2 of Glynn and Whitt [16], if

n−pEn[Tn] → κ1 w.p.1 and n−2p−1+εE[Tn − En[Tn]]
2 → κ2 w.p.1 for some positive

constants κ1, κ2, and ε, then n
−p−1Cn → κb = κ1/(p + 1) w.p.1. Hence (A8) holds

with κb = κ1/(p+ 1). Note, however, that only convergence in probability is needed

in our result.
13



5. Specific Setups and Examples. We now study the implications of our re-

sults in different situations related to the examples given in the introduction. We

shall assume in this section that γ = 1 and (sometimes implicitly) that the func-

tions considered satisfy (A3)–(A8) and (3.2). We analyze a series of rather general

cases arising in the simulation of stochastic discrete-event systems, most of which are

summarized in Tables 5.1–5.3. In view of our previous results, we say that the opti-

mal asymptotic rate of convergence is reached if, with the largest possible η, either

(1.5) holds or Cη/2
n θn converges in distribution (with a possibly degenerate limit). We

spell out the conditions needed, but relegate some technical details to Appendix 2.

It turns out that for several situations of interest, the optimal asymptotic rate can

be reached for any (non-negative) polynomial rate of increase of Tn; that is, either

by spending increasingly more time to get better estimates or by going quickly with

cheap estimates.

From Corollary 4.5, one can obtain not only the convergence rate, but also

the asymptotic mean square error of Cη/2
n θn as a function of the other asymptotic

constants in the problem. We give examples of that in Appendix 2. In principle, one

could then minimize the asymptotic mean square error as well. This may be hard

to implement, because the asymptotic constants such as B̄, Hb, etc., are typically

unknown, but is nevertheless interesting to study from the theoretical point of view.

5.1. Finite-horizon models.

Example 5.1. Let α(θ) = E[X] whereX is a random variable whose distribu-

tion F (θ, ·) depends on θ, and for which i.i.d. samples can be obtained via simulation

(or by any other method). We suppose that the function α satisfies Assumptions

(A3)–(A5) and we want to minimize this function with respect to θ, via SA. At each

iteration of SA, we need a gradient estimator ψn at θ = θn. A classical way of estimat-

ing the gradient αθ(θ) is through the use of finite differences (FD) (see, e.g., Kushner

and Clark [20], L’Ecuyer and Perron [27], or Zazanis and Suri [46] for more details

on FD methods). To simplify the notation here, let θ be a scalar. A generalization

to the multidimensional case is straightforward and the rates (e.g., in Table 5.1) are

the same (see also Fabian [7] for multidimensional results).

14



One FD estimator of αθ(θ) is given by

ψ =
X+ −X−

2c
,(5.1)

where X+ and X− are independent r.v.’s with distributions F (θ+, ·) and F (θ−, ·),
respectively, θ+ = θ + c, θ− = θ − c, and c ≥ 0 is the half-size of the FD interval.

The latter estimator is called a central (or two-sided) FD estimator with independent

random numbers and we shall refer to it by the acronym FDc. A forward (or one-

sided) estimator, which we call FDf, is defined by

ψ =
X+ −X

c
,(5.2)

where X now has distribution F (θ, ·) and is also independent of X+. Both estimators

are biased. Their bias decreases to 0 as c → 0, but then their variance increases

towards infinity.

To reduce the variance, we can take the average of several copies of ψ at any

given iteration of the SA algorithm. Suppose that at step n of SA, we generate Nn

i.i.d. replicates of ψ as defined by either (5.1) or (5.2), with θ = θn and c = cn, and

take the average as a derivative estimator ψn. Let ψn,i denote the ith copy of ψ thus

generated at step n, and τn,i be the (random) computing time required to generate

it. The pairs (ψn,i, τn,i), 1 ≤ i ≤ Nn, are then i.i.d., the gradient estimator at step n

is

ψn =
1

Nn

Nn
∑

i=1

ψn,i,

and the computational expenditure at step n is Tn =
∑Nn

i=1 τn,i (we neglect the time

for computing the average and for updating θn from ψn in (1.1)). Here, Nn is deter-

ministic, but Tn and Cn =
∑n

i=1 Ci (the cumulated computing time up to step n) are

random.

Suppose that the sequences {Nn} and {cn} are chosen such that (as n → ∞)

n−pNn → κN and nνcn → κc for some constants p ≥ 0, ν > 0, κN > 0, and κc > 0.

Thus, ν reflects the rate of decreasing of the finite difference interval (as a function of

the iteration number), while p is the rate of increase of the number of replicates of ψ

(or computing budget) per SA iteration. We make the (reasonable) assumption that

n
∑

i=1

Ti/
n
∑

i=1

Ni
w.p.1−→ κT(5.3)
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as n → ∞, where κT represents the average cost for computing ψ. The left side

in (5.3) is the average computing time per replicate of ψ computed during the first

n iterations of SA. If θ was fixed, then (5.3) would follow directly from the strong

law of large numbers, so this assumption is quite reasonable when θ converges to the

optimizer.

Under these conditions, we have that as n→∞, w.p.1,

Cn =
n
∑

i=1

Ti ∼ κT
n
∑

i=1

Ni ∼ κTκN
n
∑

i=1

np ∼ κTκNn
p+1/(p+ 1).

In other words, the cumulative computing cost Cn increases with n as follows:

n−p−1Cn
w.p.1−→ κTκN/(p+ 1)

def
= κb.

(A9) Assume that (3.2) holds, that Var [X] is bounded over G and converges to a

positive constant as θ → 0 (recall that X has distribution F (θ, ·)). Suppose

also that α is twice continuously differentiable in G if we use FDf and three

times continuously differentiable in G if we use FDc.

In Appendix 2, we obtain the optimal values of p and ν, and the correspond-

ing values of κ and η, under Assumption (A9). The optimal values are those that

maximize η; they are given in the first two lines of Table 5.1. The optimal η can be

obtained by taking any p ≥ 0, provided that ν (the convergence rate of cn) is chosen

as specified in the table. Recall that η tells us the convergence rate of θn in terms of

the computing budget Cn, whereas κ gives the convergence rate as a function of the

number of iterations. The values of β and δ in the table are the largest values that

satisfy Assumptions (A1) and (A2) (or the values that satisfy (3.2)). They give the

convergence rate of the “bias” ‖Bn‖ and “variance” Vn of the gradient estimator ψn,

as functions of n. A negative value of δ means that Vn increases with n.

The case p = 0 means that the number Nn of replicates of ψ is the same at

all iterations n. In this case, the optimal values are (ν, κ, η) = (1/4, 1/2, 1/2) for FDf

and (ν, κ, η) = (1/6, 2/3, 2/3) for FDc. These values are well-known (see, e.g., Fabian

[7], Kushner and Clark [20], and Kushner and Huang [21]) and the SA algorithm is

then called the Kiefer-Wolfowitz algorithm.

For p > 0, Nn increases with n, so we spend more and more time per iteration

as n goes up. This increases the cost per iteration, but reduces the variance of ψn.

We can then decrease cn at a faster rate, to make the bias decrease faster, so that the
16



Table 5.1

Convergence rates of SA for a finite-horizon model (γ = 1)

model p ν β δ κ η

FDf ≥ 0 (p+ 1)/4 ν p− 2ν (p+ 1)/2 1/2
FDc ≥ 0 (p+ 1)/6 2ν p− 2ν 2(p+ 1)/3 2/3
FDf (CRN1) ≥ 0 (p+ 1)/3 ν p− ν 2(p+ 1)/3 2/3
FDc (CRN1) ≥ 0 (p+ 1)/5 2ν p− ν 4(p+ 1)/5 4/5
FDf (CRN2) ≥ 0 ≥ (p+ 1)/2 ν p p+ 1 1
FDc (CRN2) ≥ 0 ≥ (p+ 1)/4 2ν p p+ 1 1
IPA, LR ≥ 0 ∞ p p+ 1 1

variance and squared bias decrease at the same rate. This gives the optimal ν. When

p > 0, the convergence rate in terms of the number of iterations is “faster” than that

in terms of Cn. For large enough p, we even obtain a supercanonical rate (κ > 1) in

terms of n (but not in terms of Cn). The optimal η is the same for all p ≥ 0; i.e.,

for an increase of Nn at any polynomial rate, we get the same asymptotic efficiency,

provided that cn decreases at rate n−ν with the ν specified in the table. This holds

for all the “models” considered in Table 5.1. In Appendix 2, we also examine the

asymptotic mean and variance of Cη/2
n θn in terms of the asymptotic constants κc, κN ,

and so on.

Finite difference estimators can be improved by using common random num-

bers (CRN), as explained by, e.g., Glynn [11], Glasserman and Yao [10], and L’Ecuyer

and Perron [27]. The basic idea is to view X as a function of θ and ω, say X(θ, ω),

where ω represents an underlying sample point whose distribution does not depend

on θ. For example, in a simulation model, ω may represent a sequence of i.i.d. U(0, 1)

random variables used to drive the simulation. CRN means using the same ω in the

same way for both X− and X+ in (5.1), or for both X and X+ in (5.2). The aim is

to induce a strong positive correlation between X− and X+ (or X and X+), without

changing their expectations. For a fixed FD interval, the bias of the FD estimator ψ

is unchanged by using CRNs, but the variance can be reduced dramatically. L’Ecuyer

and Perron [27] show that under the following assumption (A10), the variance of ψ

with CRN is O(1) (i.e., bounded) as cn → 0. Under (A11), the bound is uniform over

G, so (A2) holds with δ = p. Recall that with independent random numbers, the

variance of ψ is O(c−2n ).
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(A10) Assume that in some neighborhood of 0, w.p.1, X(θ) ≡ X(θ, ω) is a continu-

ous function of θ, differentiable except perhaps at a denumerable number of

points. Also, the derivative Xθ(θ), where it exists, is uniformly bounded by

a square-integrable random variable (independent of θ).

(A11) Assumption (A10) holds with the neighborhood of 0 replaced by G.

We shall denote the CRN approach by “CRN2” when (A11) is satisfied. The

optimal asymptotic rate of η = 1 is obtained under the conditions specified in Ta-

ble 5.1: Take any p ≥ 0, ν ≥ (p + 1)/2 for FDf, and ν ≥ (p + 1)/4 for FDc. So, it

suffices that cn → 0 fast enough. In fact, one can as well take “cn = 0” for all n, i.e.,

take the limit as c → 0 in (5.1) or (5.2), which yields the sample derivative Xθ(θ).

Under (A11), this sample derivative turns out to be an unbiased derivative estimator,

with variance uniformly bounded over G. It is called the infinitesimal perturbation

analysis (IPA) estimator (Glasserman [9]). For CRN2 and IPA, θn converges at rate

O(C−1/2n ), which is the canonical rate in terms of Cn. The convergence in terms of n

is supercanonical (κ > 1) when p > 0.

If (A11) fails to hold, the variance may still increase much slower, as c → 0,

with CRN than with independent random numbers. Under the following conditions,

for instance, the variance of ψ is improved to O(c−1) (not quite as good as O(1), but

better than O(c−2)).

(A12) There exist finite constants K1, K2, and c̄, such that

sup
θ0∈G

sup
‖θ−θ0‖≤c̄

|X(θ, ω)−X(θ0, ω)| ≤ K1 w.p.1

and for all c ≤ c̄,

P [X(·, ω) is continuous in (θ0 − c, θ0 + c)] ≥ 1−K2c.

Using an argument similar to that in the proof of Proposition 3 of L’Ecuyer

and Perron [27], one can show that Var [ψ] = O(c−1) (uniformly in θ) under (A12).

We may further assume (as in Glynn [11]) that there is a constant σD > 0 such that

cVar [ψ] → σ2D as c → 0 and θ → 0, and call this the “CRN1” setup. The optimal

asymptotic rates for CRN1 are η = 2/3 for FDf and η = 4/5 for FDc, which is a

significant improvement over the case of independent random numbers. These rates

are obtained under the conditions given in Table 5.1: ν = (p + 1)/3 for FDf and

ν = (p+ 1)/5 for FDc.
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Besides IPA, there is another approach for obtaining an unbiased derivative

estimator, called the likelihood ratio (LR) method (Glynn [12], L’Ecuyer [25], Rubin-

stein and Shapiro [35]). Its variance decreases at the same rate as that of IPA as a

function of the computing budget, but it is typically larger by a constant factor. On

the other hand, there are several classes of systems for which the LR method applies

whereas IPA (in its direct form) does not.

Example 5.2. Let us return to Example 1.2. Suppose that g is twice contin-

uously differentiable, that all Xj and Yj have finite moments of all orders, and that

(A3)–(A5) hold. The gradient can be written as

αθ(θ) =
d
∑

j=1

gj(µ1(θ), . . . , µd(θ))µj,θ(θ)

def
= g̃(µ1(θ), . . . , µd(θ), µ1,θ(θ), . . . , µd,θ(θ)).

Suppose that the gradient estimator ψn at step n is ψ, as given in Example 1.2,

based on N = Nn replications of Xj and Yj, whose bias and variance are assumed

to be bounded uniformly in θ, and let p, κN , Tn, κT , and κb be as in Example

5.1. For 1 ≤ i, k ≤ 2d, let Γik denote the (i, k)-th entry of the covariance matrix

Γ = Cov (X1, . . . , Xd, Y1, . . . , Yd), let g̃i be the ith component of the gradient of g̃,

and let g̃ik be the (i, k)-th entry of the Hessian of g̃. One has

g̃i =

{

∑d
j=1 gij(µ)µj,θ(θ) for i = 1, . . . , d;

gi(µ) for i = d+ 1, . . . , 2d,

and

g̃ik =











∑d
j=1 gijk(µ)µj,θ(θ) for 1 ≤ i, k ≤ d;

gik(µ) for 1 ≤ i ≤ d < k ≤ 2d;
0 for d < i, k ≤ 2d,

where µ = (µ1(θ), . . . , µd(θ)), while gik and gijk denote the second and the third

derivatives of g with respect to its parameters (i, k) and (i, j, k), respectively. By

applying the results of Glynn and Heidelberger [13] and Glynn and Whitt [16, Exam-

ple 2] to g̃, we find that (A6) and (A7) hold with β = δ = p, B̄ = −(1/2)∑d
i=1

∑d
k=1 g̃ikΓik,

and R =
∑d

i=1

∑d
k=1 g̃ig̃kΓik.

It then follows from Corollary 4.5 that

C1/2
n θn ⇒















κ
p/(p+1)
b H−1

b B̄ if 0 ≤ p < 1;

κ
1/2
b N(H−1

b B̄,Σ) if p = 1;

κ
1/2
b N(0,Σ) if p > 1.

(5.4)
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This gives η = 1 for p ≥ 1. To get the best asymptotic properties, one should choose

p > 1, because the asymptotic bias vanishes while the asymptotic covariance matrix

remains the same as for p = 1.

As a special case, suppose that we are interested in minimizing a ratio of

expectations, so g(µ1(θ), µ2(θ)) = µ1(θ)/µ2(θ)) and

g̃(µ1(θ), µ2(θ), µ1,θ(θ), µ2,θ(θ)) =
µ2(θ)µ1,θ(θ)− µ1(θ)µ2,θ(θ)

µ22(θ)
.

The components of the gradient of g̃ are then

g̃1 = −µ2,θ(θ)/µ22(θ),
g̃2 = µ1,θ(θ)/µ

2
2(θ),

g̃3 = 1/µ22(θ),

g̃4 = −µ1(θ)/µ22(θ),

and the second order derivatives g̃ik are easily obtained by differentiating these ex-

pressions. The matrix Γ is highly problem-dependent.

5.2. Steady-state models.

Example 5.3. Suppose we want to minimize the infinite-horizon time-average

of a real-valued stochastic process Z, whose evolution depends on θ:

α(θ)
def
= lim

t→∞

1

t
E
∫ t

0
Z(θ, s)ds.

At step n of the SA algorithm, we intent to estimate the gradient αθ(θn) by its

truncated version αθ(θn, tn), defined as the gradient of

α(θn, tn)
def
=

1

tn
E
∫ tn

0
Z(θ, s)ds.

For (fixed) finite tn, the latter can be estimated by any of the methods discussed in

Example 5.1. However, the bias and variance will also depend on the truncation point

tn. Let {tn, n ≥ 1} be a deterministic sequence such that n−qtn → κt > 0 as n→∞,

for some constants q and κt. We shall assume the following.
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(A13) As t→∞, the bias component due to the truncated horizon satisfies t(αθ(θ, t)−
αθ(θ)) → κ1(θ), where supθ |κ1(θ)| < ∞, and the variance of the estimator

of α(θ, t) (for the FD methods) or of αθ(θ, t) (for IPA) decreases as O(t−1),

uniformly in θ.

Assumption (A13) typically holds and can be proved rigorously for a large

class of regenerative models (L’Ecuyer and Glynn [30]). L’Ecuyer [26] studies the

convergence rates of several gradient estimators in that context; here, we are rather

interested in the convergence rate of SA. Notice that even when the model is regen-

erative, it is often much more convenient to use truncated-horizon estimators instead

of estimators directly based on the regenerative cycles, because for the former, there

is no need to recognize the regeneration epochs during the simulation. These epochs

may be rare, or their identification may require non-negligible effort, especially if the

system is modeled as a Harris-recurrent Markov chain (see, e.g., Sigman and Wolff

[39] or Meyn and Tweedie [31]).

Table 5.2 tells us how the values of p, q, and ν can be chosen in order to

maximize η, for the different types of gradient estimators. See Appendix 2 for the

technical details. A typical choice would be to take a single replication at each SA

iteration (p = 0), use an horizon length tn = bκtnqc at iteration n, where q is defined

by its lower bound in the table. For example, for FDc under CRN1, take q = 2/3

and ν = 1/3, so tn = Θ(n2/3), cn = Θ(n−1/3), ‖Bn‖ = O(n−2/3), Vn = O(n1/3), and

E[‖θn‖2] = O(n−4/3) = O(C−4/5n ). The constraints given in Table 5.2 only make sure

that η is maximized; a more refined analysis would be required to also minimize the

asymptotic MSE constant Kmse defined by (A.19) in Appendix 2. Again, we see that

E‖θn‖2 may converge faster than O(n−1) as a function of n (for large values of p+ q),

but not faster than Θ(C−1n ) as a function of the total budget. The optimal values

of p and ν here are not the same as for the finite horizon case (Table 5.1); however

the same η is reached. For example, for FDc with independent random numbers,

p = 0 and ν = 1/6 gives the optimal rate in the finite-horizon case, but not in the

infinite-horizon case.

In the infinite-horizon case, the likelihood ratio (LR) estimator typically be-

haves much differently than IPA, since its variance typically increases linearly w.r.t.

the horizon length tn (Glynn [12], Rubinstein and Shapiro [35]). One must then

select a small value of q to control the variance, and as a result, the overall conver-

gence turns out to be quite slow (η = 1/2). There is also a control-variate variant of

LR (L’Ecuyer [26]) for which (under some conditions) the variance Vn is Θ(1). It is

denoted by CLR in the table.
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Table 5.2

Convergence rates for the truncated-horizon steady-state model (γ = 1, p ≥ 0)

model q ν β δ κ η

FDf ≥ (p + 1)/3 (p + q + 1)/4 ν 2ν − 1 2ν 1/2
FDc ≥ (p + 1)/2 (p + q + 1)/6 2ν 4ν − 1 4ν 2/3
FDf (CRN1) ≥ (p + 1)/2 (p + q + 1)/3 ν 2ν − 1 2ν 2/3
FDc (CRN1) ≥ 2(p + 1)/3 (p + q + 1)/5 2ν 4ν − 1 4ν 4/5
FDf (CRN2) ≥ p + 1 ≥ (p + q + 1)/2 ν ∧ q p + q p + q + 1 1
FDc (CRN2) ≥ p + 1 ≥ (p + q + 1)/4 2ν ∧ q p + q p + q + 1 1
IPA ≥ p + 1 q p + q p + q + 1 1
LR (p + 1)/3 q p− q 2q 1/2
CLR (p + 1)/2 q p 2q 2/3

Example 5.4. Let us return to the GI/GI/1 queue of Example 1.1. For

that problem, L’Ecuyer and Glynn [14] have proven the convergence w.p.1 of SA

(using projection over a finite interval) combined with each of the gradient estimation

methods discussed so far in this section, under a given set of assumptions. They did

not study the convergence rates. By combining their methods of proofs with the

results of L’Ecuyer and Glynn [30], it is easy to show that under their assumptions

(A–C), together with additional assumptions on C(θ) to ensure (A3)–(A5), the exact

orders found in the previous example for the truncated-horizon case apply to this

model (for the common random numbers, the variant that applies is CRN2). In

particular, Table 5.2 gives the appropriate convergence rates for several of the variants

which were experimented by L’Ecuyer, Giroux, and Glynn [28] for theM/M/1 queue,

and therefore explains much of the numerical results obtained by these authors.

Since the single queue considered in this example is a regenerative system, the

function α(θ) can also be written as a ratio of two expectations, and the methodology

of Example 5.2 can be applied with g defined as g(µ1, µ2) = µ1/µ1. This gives η = 1

provided that p ≥ 1.

Example 5.5. Haurie, L’Ecuyer, and Van Delft [17] proved the convergence

w.p.1 of SA combined with IPA for a class of piecewise-deterministic control systems

encountered in manufacturing. They did not find the convergence rates. However,

under their assumptions 2.1 and 2.2, and using again the results of L’Ecuyer and

Glynn [30], one can show that ‖Bn‖ and Vn are both Θ(t−1n ) for the IPA estimator,
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so the results of Table 5.2 for IPA apply to this model, provided that (A3)–(A5) also

hold for the performance measure considered.

5.3. An infinite-horizon model with discounting.

Example 5.6. We now return to the infinite-horizon discounting model of

Example 1.3, assuming that Z(·) is strictly positive and bounded. Consider the

truncated-horizon cost estimator

X(θ, t) =
∫ t

0
e−ρsZ(s)ds

and let α(θ, t) = E[X(θ, t)].

(A14) Suppose that Var [X(θ, t)] and eρt(α(θ)−α(θ, t)) are both bounded away from

0 and from infinity, uniformly in θ. Let Var [X(θ, t)] → σ2 and eρt(α(θ) −
α(θ, t))→ κβ when θ → 0 and t→∞, where σ and κβ are positive constants.

This assumption is reasonable; see Fox and Glynn [8] for justifications. Suppose

also that the time required for computing X(θ, t) is approximately κT t, for some

constant κT . Fox and Glynn [8] have shown that to optimize the convergence rate

of the MSE when i.i.d. replicates of X(θ, t) are used to estimate α(θ) under the

constraint of a limited budget of size C, the horizon length t should increase in such a

way that t/ lnC → 1/(2ρ) as C →∞. The budget C is then split into approximately

2ρC/(κT lnC) simulation runs of length t = κT lnC/(2ρ).

We show in Appendix 2 that in the SA context, if an horizon length tn is used

at iteration n, then tn/ lnn must converge to a positive constant in order to optimize

the convergence rate of the MSE of θn, and the convergence rate actually depends on

the product of that constant with the discount rate ρ. We consider IPA and the FD

variants introduced in Example 5.1. In the case of IPA, we assume that

Xθ(θ, t) =
∫ t

0
e−ρsZ̃(s)ds

is an unbiased estimator of αθ(θ, t), and that the assumptions (A14) hold with X

and α replaced by Xθ and αθ. For the six variants of FD, X(θ, t) replaces X(θ) in

the setups of Example 5.1. At step n of SA, we compute Nn i.i.d. replications of

the gradient estimator ψ over an horizon-length tn (e.g., ψ = Xθ(θn, tn) in the case

of IPA, ψ given by (5.1) for FDc, etc.). The average of those Nn replications is the
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Table 5.3

Asymptotic behavior of SA: The infinite-horizon model with discounting

method ρκt ν β δ κ η̃

FDf ≥ (p+ 1)/2 (p+ 1)/4 ν p− ν (p+ 1)/2 1/2
FDc ≥ (p+ 1)/3 (p+ 1)/6 2ν p− 2ν 2(p+ 1)/3 2/3
FDf (CRN1) ≥ 2(p+ 1)/3 (p+ 1)/3 ν p− ν 2(p+ 1)/3 2/3
FDc (CRN1) ≥ 2(p+ 1)/5 (p+ 1)/5 2ν p− 2ν 4(p+ 1)/5 4/5
FDf (CRN2) ≥ p+ 1 ≥ (p+ 1)/2 ρκt ∧ ν p p+ 1 1
FDc (CRN2) ≥ (p+ 1)/2 ≥ (p+ 1)/4 ρκt ∧ 2ν p p+ 1 1
IPA ≥ (p+ 1)/2 ρκt p p+ 1 1

gradient estimator ψn. We suppose that npNn → κN and tn/ lnn → κt as n → ∞,

where p ≥ 0, κN > 0, and κt ∈ [0,∞] are fixed constants (Here, κt = ∞ is a loose

notation to indicate the case where tn increases faster than Θ(lnn).)

Table 5.3 gives the values of κ and η̃ such that E‖θn‖2 = Θ(n−κ) = Θ(((E[Cn])
−1

lnE[Cn])
η̃) for the largest possible η̃, for the different cases. Note that η̃ has a slightly

different meaning than η in the previous examples. Here, (E[Cn])
−1 lnE[Cn] =

Θ(n−p−1), so η̃ = κ/(p + 1). The optimal rates are attained when the constant

κt is finite and large enough, as indicated in the second column of Table 5.3. So, the

horizon length tn must increase at a logarithmic rate, and the factor of increase must

be large enough. The optimal strategy is to take ρκt equal to (or slightly larger than)

the lower bound given in the table (e.g., κt ≥ (p + 1)/(2ρ) for IPA). The values of

κ and η̃ here are the same as κ and η in Example 5.1; However the convergence in

terms of Cn is at a slightly slower rate, due to the additional logarithmic factor.

6. Further remarks and conclusion. In this section, we briefly discuss other

possible variants of our setup, such as SA with averaging and projection methods,

then give a conclusion.

6.1. Algorithms with averaging. Very recently, some new methods were pro-

posed and suggested for stochastic approximation, by Polyak [33], Ruppert [37], and

Bather [3]. See also Yin [42], Polyak and Juditsky [34] and Kushner and Yang [23]. It

has been a long time effort (dated back to Chung [5]) to improve the performance of

SA algorithms. Among the choices of step size an = 1/nγ for 1/2 < γ < 1, an = 1/n
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gives the highest order of convergence. However, if the step size is too small in the

initial stage, the iterates wonder around and take a long time to settle down. From

this point of view, one may wish to choose a large step size instead. But large step

size gives rise to lower rate of convergence. The averaging procedures provide a good

alternative in taking care of these trade-offs. The procedures are multistep iterative

schemes. With a large initial step size, they produce a “squeezing effect” forcing

the iterates to reach a vicinity of θ∗ = 0 faster. Meanwhile, by means of averaging,

they keep the convergence at the optimal rate with the smallest possible asymptotic

covariance.

Inspired by the averaging approach suggested by Polyak [33] and Ruppert [37],

for our problem we may consider the algorithm

θn+1 = θn − n−γψn; θ̄n =
1

n

n
∑

j=1

θj.(6.1)

Notice that the averaging here creates no additional burden since the average can be

recursively updated as θ̄n+1 = θ̄n + (θn+1 − θ̄n)/(n+ 1).

Motivated by the work of Bather [3] (see also Schwabe [38] and Yin and Yin

[44]), we may consider another algorithm, which uses averaging in both trajectories

and observations (measurements). In addition to the advantages mentioned above,

that algorithm appears to be more stable in the initial period (see [44]). Consider

θn+1 = θ̄n − n−γ
n
∑

i=1

ψi; θ̄n =
1

n

n
∑

j=1

θj,(6.2)

where 1/2 < γ < 1. The study of asymptotic properties of the averaging algorithms

in conjunction with the setup of this paper could be carried out. The idea would be

to combine the approach in Yin [42] and Yin and Yin [44] with the results of this

work. This is a topic for further investigation.

6.2. Projection algorithms. The discussion in this paper is based on the basic

recursive SA algorithm (1.1). Many variants of the algorithm can also be considered.

For instance, our results can easily be incorporated into algorithms with projection

and truncations. Such algorithms have the advantage that growth conditions on the

underlying functions are no longer required.

Suppose G is a closed and convex set (for example, a closed ball or a closed

hyper-rectangle in IRr), and suppose that all the desirable equilibrium points of α(θ)
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are interior to G. If x 6∈ G, define πG(x) to be the nearest point to x in G. Then the

algorithm (1.1) can be replaced by

θn+1 = πG(θn − n−γψn).(6.3)

The limiting ordinary differential equation then reads:

θ̇ = πG(αθ(θ)).

The results of this paper still hold, and the discussions are the same as before. A

variant of such a projection procedure is an algorithm with random truncation bounds

or random projection regions, along the lines of, for example, Chen and Zhu [4].

Let qi(·), i ≤ ν, be continuously differentiable functions and

G = {θ : qi(θ) ≤ 0 for i = 1, 2, . . . , ν}.

Suppose that G is bounded, convex, and is the closure of its interior. If we use

the projection algorithm in this case, the limit of {θn} will be related to the set of

Fritz-John points or Kuhn-Tucker points (see p. 191 of Kushner and Clark [20] for

more details; see also and Kushner and Yin [24] for a comprehensive and updated

development of constrained and unconstrained algorithms). Again, our convergence

rate results apply if θ∗ lies in the interior of G, but not if it is on the boundary.

For more general constrained optimization problems, other methods, such as large

deviations techniques (see the discussion in Chapter 10 of [24] and the references

therein) may be needed to obtain the rate of convergence.

6.3. Conclusion. We have studied budget- and moment-dependent stochastic

optimization algorithms, and ascertained their rates of convergence for different situa-

tions arising in discrete-event simulation. The corresponding asymptotic distributions

were also derived together with some far reaching functional invariance theorems.

Several examples showed how those results can be used to find the “optimal” pa-

rameters of the algorithm in various SA settings. Such knowledge is important for

understanding how SA algorithms behave from the theoretical point of view. As for

most optimization algorithms, it is true that the practitioner rarely has all the infor-

mation available (e.g., the Hessian matrix) to actually implement the algorithm with

the optimal parameters and scaling. But some “rough” information could be used

when available and adaptive schemes, which estimate the optimal parameters as the

algorithm proceeds, may also work in some situations. Recent results suggest that
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SA methods with averaging are less sensitive to the choice of scaling and algorithm

parameters. Studying those averaging methods within the setup of this paper is a

topic of ongoing research.

Appendix 1: Proofs of the theorems. This appendix provides the proofs of

Theorems 3.1, 4.1, 4.3, and 4.4.

Proof of Theorem 3.1. Define U(θ) = (1/2)‖θ‖2. We first treat the case γ < 1.

The proof is divided into two steps. In Step 1, we show that supnEU(θn) <∞. The

w.p.1 convergence and the estimate above allow us to infer EU(θn) → 0. Then in

Step 2, we refine the order of magnitude estimate.

Step 1. Since θn is measurable with respect to the σ-algebra that measures

(n, sn, θn), one has

En[n
−γθ′n(ψn − Enψn)] = n−γθ′nEn[ψn − Enψn] = 0.(A.4)

Take an arbitrary 0 < ε0 ≤ ε and an n0 such that 2βnγ−10 ≤ ε0. The reason of this

choice will become clear in the sequel. For the remainder of this proof, we suppose

that n ≥ n0. Observe that

‖θ′(Hθ − αθ(θ))‖ ≤ ‖θ‖(‖H‖ · ‖θ‖+Kα(1 + ||θ||)) ≤ K1(1 + U(θ)),

for all θ and for some K1 > 0. From a Taylor series expansion, using

θn+1 = θn − n−γαθ(θn) + n−γ(αθ(θn)− Enψn) + n−γ(Enψn − ψn),(A.5)

Eq. (A.4), the fact that Uθ(θn) = θn, and (A5), we obtain that

EU(θn+1)− EU(θn)(A.6)

= E(EnU(θn+1)− U(θn))

= EEnU
′
θ(θn)(θn+1 − θn) + (1/2)E‖θn+1 − θn‖2

= n−γEθ′n[−Hθn + (Hθn − αθ(θn)) + (αθ(θn)− Enψn)]

+ (1/2)E‖θn+1 − θn‖2

≤ −2n−γλminEU(θn) +K1n
−γ(1 + EU(θn)) + n−γEθ′n(αθ(θn)− Enψn)

+ (3/2)n−2γE
(

‖αθ(θn)‖2 + ‖αθ(θn)− Enψn‖2 + ‖ψn − Enψn‖2
)

.

Using (A5), we find

E‖αθ(θn)‖2 ≤ 2K2
α(1 + 2EU(θn)).(A.7)
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We also have

E‖θ′n(αθ(θn)− Enψn)‖ ≤ E1/2‖θn‖2E1/2‖αθ(θn)− Enψn‖2.

Using the inequality ab ≤ (a2 + b2)/2 with

a2 = (Kβ/λmin)n
−β and b2 = E‖θn‖2/a2,(A.8)

we arrive at

E1/2‖θn‖2 ≤ (Kβ/2λmin)n
−β + (λmin/2Kβ)n

βE‖θn‖2

= (Kβ/2λmin)n
−β + (λmin/Kβ)n

βEU(θn).

From the inequalities above and (A1), we have

E‖θ′n(αθ(θn)− Enψn)‖ ≤ (K2
β/2λmin)n

−2β + λminEU(θn).(A.9)

By virtue of (A.6), (A.7), and (A.9), we obtain

EU(θn+1)− EU(θn)(A.10)

≤ −λminn
−γEU(θn) +K1n

−γEU(θn) +K1n
−γ + (K2

β/2λmin)n
−γ−2β

+3K2
αn
−2γ(1 + 2EU(θn)) + (3/2)K2

βn
−2γ−2β

+(3/2)n−2γE‖ψn − Enψn‖2,

where E‖ψn − Enψn‖2 ≤ Kδn
−δ in accordance with (A2). Choose λ0 such that

0 < λ0 < λmin. We may assume that n0 has been chosen large enough such that

0 < λ0 ≤ λmin − 6K2
αn
−γ
0 and 3n−γ0 ≤ ε0/λmin.

Notice that there is a K2 > 0 such that for n ≥ n0, K1n
−γ + 3K2

αn
−2γ ≤ K2n

−γ .

Using the inequalities above, and iterating on (A.10) yields that for n ≥ n0,

EU(θn+1)(A.11)

≤ (1− λ0n
−γ)EU(θn) +K1n

−γEU(θn)

+
K2

β

λmin
n−γ−2β +

3Kδ

2
n−2γ−δ +K2n

−γ

= An,n0−1EU(θn0
) +K1

n
∑

i=n0

i−γAniEU(θi) +
K2

β

λmin

n
∑

i=n0

i−γ−2βAni

+
3Kδ

2

n
∑

i=n0

i−2γ−δAni +K2

n
∑

i=n0

i−γAni,
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where

Anj
def
=
{∏n

k=j+1(1− λ0k
−γ), j < n;

1, j = n.

Observe that for each fixed j 6= n,

|Anj| ≤ exp



−λ0
n
∑

k=j+1

k−γ



(A.12)

≤ exp
(

λ0j
−γ − λ0

∫ n

j
x−γdx

)

= exp

(

λ0j
−γ − λ0(n

1−γ − j1−γ)

1− γ

)

As a consequence, the first term on the r.h.s. of (A.11) is O(exp(−λ0n1−γ/(1− γ))).

Consider now the third term in the last part of (A.11). By virtue of a partial sum-

mation, one has

n
∑

i=n0

i−γ−2βAni = n−2β
n
∑

i=n0

i−γAni +
n−1
∑

i=n0

(

1

i2β
− 1

(i+ 1)2β

)

i
∑

j=n0

j−γAnj.(A.13)

Since

Anj − An,j−1 = Anj(1− (1− λ0j
−γ)) = λ0j

−γAnj,

we have

i
∑

j=n0

j−γAnj = λ0
−1

i
∑

j=n0

(Anj − An,j−1) = λ0
−1(Ani − An,n0−1).

Owing to (A.12),

n−1
∑

i=n0

(

1

i2β
− 1

(i+ 1)2β

)

An,n0−1 = O(An,n0−1) = O(exp(−n1−γ)).

Noticing the choice of n0 and that

1

n2β
− 1

(n+ 1)2β
= n−2β

(

2βn−1 +O(n−2)
)

= 2βn−2β−1 +O(n−2β−2),
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and using (A.12) again, we have that

n−1
∑

i=n0

(

1

i2β
− 1

(i+ 1)2β

)

Ani =
n−1
∑

i=n0

(

2βi−2β−1 +O(i−2β−2)
)

Ani

≤
n
∑

i=n0

ε0i
−2β−γAni +O(n−2β−1).

Combining this with (A.13) and observing that exp(−n1−γ) = O(n−2β−1), we obtain

that

n
∑

i=n0

i−γ−2βAni ≤ λ−10 (Ann − An,n0−1)n
−2β + ε0λ

−1
0

n
∑

i=n0

i−γ−2βAni +O(n−2β−1),

and hence

(1− ε0/λ0)
n
∑

i=n0

i−γ−2βAni = λ−10 n−2β +O(n−2β−1).

By virtue of (A2), one has γ + δ > 1− γ > 0. Repeating the argument above,

we also obtain

(1− ε0/λ0)
n
∑

i=n0

i−2γ−δAni = λ−10 n−γ−δ +O(n−γ−δ−1).(A.14)

Owing to (A.11)–(A.14), there is a K3 > 0 such that

EU(θn+1) ≤ K2
β

λminλ0(1− ε0/λ0)
n−2β +

3Kδ

2λ0(1− ε0/λ0)
n−γ−δ(A.15)

+O(n−2β−1 + n−γ−δ−1) +K1

n
∑

i=n0

i−γAniEU(θi) +K3.

By virtue of the Gronwall’s inequality, there is a K4 > 0 such that

EU(θn+1) ≤ K4 exp



K1

n
∑

i=n0

i−γAni



 ,

and hence supnEU(θn) ≤ K5 for some K5 > 0. This together with the w.p.1 conver-

gence of θn → 0 implies that EU(θn)→ 0.

Step 2. In view of (A5) and Step 1, E[θ′nαθ(θn)] = E[θ′nHθn] + o(EU(θn)) and

E‖αθ(θn)‖2 ≤ E[θ′nH
′Hθn] + o(E[U(θn)]). As in the analysis in Step 1, however, we

30



may assume that n0 is chosen large enough so that ‖o(EU(θn))‖ ≤ (1/2)λminEU(θn).

In (A.8), choose a2 = (Kβ/2λmin)n
−β. Substitute this into (A.6), and proceed exactly

the same as before. However, this time, neither the term K1n
−γEU(θn) nor K1n

−γ

appears. In lieu of (A.15), we obtain

EU(θn+1) ≤
K2

β

λminλ0(1− ε0/λ0)
n−2β +

3Kδ

2λ0(1− ε0/λ0)
n−γ−δ +O(n−2β−1 + n−γ−δ−1).

Now, observe that it is possible to choose ε0 and λ0 such that 1/(λ0 − ε0) ≤ (1 +

ε)/λmin; e.g., take λ0 = λmin/(1 + ε/2) and then 0 < ε0 < λ0 − λmin/(1 + ε). Since

‖θn‖2 = 2U(θn), and since ε can be taken arbitrarily small in (A5), the first part of

the theorem (for 1/2 < γ < 1) follows.

The proof for the case γ = 1 is similar to that of 1/2 < γ < 1. We only

point out the difference below. Notice that (A.11) and (A.13) still hold with γ = 1.

Equation (A.12) can be replaced by

|Anj| ≤ exp
(

λ0/j − λ0

∫ n

j
x−1dx

)

= exp (λ0/j − λ0 ln(n/j))

= exp (λ0/j) (j/n)
λ0 .

We thus have

n−1
∑

i=n0

i−2β−1|Ani| ≤ exp(λ0/n0)
n−1
∑

i=n0

i−2β−1(i/n)λ0

≤ exp(λ0/n0)n
−λ0

∫ n

n0

xλ0−2β−1dx

≤ exp(λ0/n0)(λ0 − 2β)−1n−2β.

Similarly,

n−1
∑

i=n0

i−2−δ|Ani| ≤ exp(λ0/n0)
n−1
∑

i=n0

i−2−δ(i/n)λ0

≤ exp(λ0/n0)(λ0 − δ − 1)−1n−δ−1.

Since n0 can be chosen sufficiently large, the proof of the second part then follows.

Note that in the above, we have assumed that without of loss generality, λ0 6=
2β and λ0 6= 1+ δ. If, for example, λ0 = 2β, then for some ∆ > 0, λ̃0

def
= λ0− ∆̃ < λ0

such that (i/n)λ0 ≤ (i/n)λ̃0 . We can then use the same calculation above with λ0
replaced by λ̃0.
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Proof of Theorem 4.1. The proof is divided into three steps. In the first step, we

establish an asymptotic equivalence, while in the second and third steps, we obtain

the weak convergence by virtue of a result of Ethier and Kurtz [6], and compute the

asymptotic covariance matrix. We first prove a lemma which gives an asymptotic

equivalence.

Lemma A.1. Under the conditions of Theorem 4.1,

Wn(t) =Mn(t) + o(1), for all t ∈ [0, 1]

where

Mn(t) =
bntc1+δ/2

√
n

bntc
∑

i=1

i−1Dbntci(Eiψi − ψi),

Dni is defined by

Dni =
{
∏n

j=i+1(I −H/j), n > i;
I, n = i,

(A.16)

and o(1)
p−→ 0 as n→∞, uniformly in t.

Proof of Lemma A.1. Direct computation leads to

θbntc+1 =
(

I −Hbntc−1
)

θbntc + bntc−1h(θbntc)
+bntc−1(αθ(θbntc)− Ebntcψbntc) + bntc−1(Ebntcψbntc − ψbntc)

= Dbntc,n0−1θn0
+

bntc
∑

i=n0

i−1Dbntc,ih(θi)

+
bntc
∑

i=n0

i−1Dbntc,i(αθ(θi)− Eiψi) +
bntc
∑

i=n0

i−1Dbntci (Eiψi − ψi) ,

where n0 is the same as in the proof of Theorem 3.1 and h(θ) = Hθ − αθ(θ). It then

yields

bntc1+δ/2

√
n

θbntc+1 =
bntc1+δ/2

√
n

Dbntc,n0−1θn0
+
bntc1+δ/2

√
n

bntc
∑

i=n0

i−1Dbntc,ih(θi)

+
bntc1+δ/2

√
n

bntc
∑

i=n0

i−1Dbntc,i(αθ(θi)− Eiψi)

+
bntc1+δ/2

√
n

bntc
∑

i=n0

i−1Dbntci (Eiψi − ψi) .(A.17)
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By virtue of the structure of Dk,j, it is easily seen that

bntc1+δ/2

√
n

Dbntc,n0−1θn0

w.p.1−→ 0 as n→∞.

Next, we obtain

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

bntc1+δ/2

√
n

bntc
∑

i=n0

i−1Dbntc,ih(θi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ K
bntc1+δ/2

√
n

bntc
∑

i=n0

i−1‖Dbntc,i‖E‖θi‖2

≤ K
1√
n

1

bntc1+δ/2

bntc
∑

i=n0

(

i

bntc

)λmin−2−δ

≤ Kn−
1+δ
2

∫ 1

0
uλmin−2−δdu

n→∞−→ 0

uniformly in t. Similarly,

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

bntc1+δ/2

√
n

bntc
∑

i=n0

i−1Dbntc,i(αθ(θi)− Eiψi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n→∞−→ 0 uniformly in t.

In addition,

bntc1+δ/2

√
n

n0−1
∑

i=1

i−1Dbntci(Eiψi − ψi)
p−→ 0 as n→∞, uniformly in t.

Thus the lemma follows.

First, following from Theorem 3.1, Mn(·) is a square integrable martingale.

Similar to Yin [41], it can be shown that

E

(

sup
t∈[0,1]

‖Mn(t)−Mn(t
−)‖2

)

n→∞−→ 0,

E

(

sup
t∈[0,1]

‖Ãij
n (t)− Ãij

n (t
−)‖

)

n→∞−→ 0,

where Ãn(·) (with Ãij
n (·) denoting its ijth entry) is defined by

Ãij
n (t) =

bntc2+δ

n

bntc
∑

k=1

k−2Ek

(

Dbntc,k(Ekψk − ψk)
)i (

Dbntc,k(Ekψk − ψk)
)j
,

with the superscripts i and j (in the summand above) denoting the ith and jth

components of the corresponding vectors, respectively. Furthermore, for each i, j =
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1, 2, · · · , r, M i
n(t)M

j
n(t)− Ãij

n (t) is a martingale, where M i
n(·) denotes the ith compo-

nent of Mn(·). To complete the proof of Theorem 4.1, we can thus apply Theorem

7.1.4 of Ethier and Kurtz [6].

Notice that Ãn(·) is non-negative definite. By virtue of Condition (A6) and

the square integrability of Mn(·),

Ãn(t) = An(t) + o(1),

where

An(t) =
bntc2+δ

n

bntc
∑

i=1

i−2−δDbntc,iRD
′
bntc,i

and o(1)
p−→ 0 as n → ∞, uniformly in t. In addition, An(·) is also non-negative

definite.

It is now clear that to derive the limit covariance matrix, we need only look at

Aij
n (·). For a fixed t ∈ [0, 1],

An(t) =
bntc2+δ

n

bntc
∑

i=1

i−2−δ exp (H ln(i/bntc))R exp (H ′ ln(i/bntc))

+
bntc2+δ

n

bntc
∑

i=1

i−2−δ
(

Dbntc,iRD
′
bntc,i

− exp (H ln(i/bntc))R exp (H ′ ln(i/bntc))
)

.

The last term on the right-hand side above tends to 0 in probability as n → ∞
(uniformly in t). As for the first term, we have

bntc2+δ

n

bntc
∑

i=1

i−2−δ exp (H ln(i/bntc))R exp (H ′ ln(i/bntc))

n→∞−→ t
∫ 1

0
u−2−δ exp(H lnu)R exp(H ′ lnu)du

= t
∫ ∞

0
exp((1 + δ)v) exp(−Hv)R exp(−H ′v)dv (with v = − ln u)

= t
∫ ∞

0
exp(−H̃v)R exp(−H̃ ′v)dv.

Up to now, all the conditions in Theorem 7.1.4 of Ethier and Kurtz [6] are

satisfied. The desired result then follows from that theorem.
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Proof of Theorem 4.3. Similar to (A.17),

nβθn+1 = nβDn,n0−1θn0
+ nβ

n
∑

i=n0

i−1Dnih(θi)

+ nβ
n
∑

i=n0

i−1Dni(αθ(θi)− Eiψi)

+ nβ
n
∑

i=n0

i−1Dni(Eiψi − ψi).

As in the derivation of Lemma A.1, upon using the condition 2β < 1 + δ and the

estimate E‖θn‖2 = O(n2β), we have

nβθn+1 = nβ
n
∑

i=1

i−1Dni(αθ(θi)− Eiψi) + o(1)(A.18)

where o(1)
p−→ 0 as n→∞.

Concentrating on the first term on the right-hand side above, we obtain

nβ
n
∑

i=1

i−1Dni(αθ(θi)− Eiψi)

= −nβ
n
∑

i=1

i−1DniBi

= n−1
n
∑

i=1

(i/n)−1−βDniB̄ − n−1
n
∑

i=1

(i/n)−1−βDni[i
βBi + B̄]

p−→
∫ 1

0
u−1−β exp(H lnu)B̄du as n→∞

=
∫ ∞

0
exp(−Hbv)B̄dv

= H−1
b B̄.

This yields the desired result.

Proof of Theorem 4.4. Owing to the fact that δ = 2β − 1, we have

n(1+δ)/2θn+1 = n(1+δ)/2
n
∑

i=1

i−1Dni(Eiψi − ψi)

+ n(1+δ)/2
n
∑

i=1

i−1Dni(αθ(θi)− Eiψi) + o(1),
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where o(1)
p−→ 0 as n → ∞. Subtracting H−1

b B̄ from both sides of the equation

above, noticing that β = (1 + δ)/2 and applying Theorem 4.3, we establish that

n(1+δ)/2θn+1 −H−1
b B̄ = n(1+δ)/2

n
∑

i=1

i−1Dni(Eiψi − ψi) + o(1),

where o(1)
p−→ 0 as n→∞. This, together with Theorem 4.1, completes the proof.

Appendix 2: Details on convergence for specific setups. This appendix

provides some technical details on the convergence of SA for the specific setups studied

in Section 5.

Finite-horizon models (Example 5.1). Let the assumptions made in Example 5.1

hold and assume that Var [X] → σ2 as θ → 0. In the case of FD with independent

random numbers, we have the following (see L’Ecuyer and Perron [27] or Zazanis and

Suri [46]): For FDf, if α is twice continuously differentiable at θ∗ = 0 with second

derivative H = λmin > 0, then nνBn → Hκc/2 and np−2νVn → 2κ−1N κ−2c σ2. For

FDc, if α is three times continuously differentiable at 0 and H3 denotes the third

derivative, then n2νBn → H3κ
2
c/6 and np−2νVn → κ−1N κ−2c σ2/2. Assumptions (A6)

and (A7) then hold for δ = p− 2ν, β = ν for FDf, and β = 2ν for FDc. We assume

that (3.2) holds and that θ is restricted (e.g., by projection if necessary) to a convex

region of G where the second and the third derivatives of α and the variance of X

are bounded uniformly in θ. Then, (A1) and (A2) also hold, and we have all the

ingredients to apply Theorem 3.1 as well as the results of Section 4.

According to Corollary 4.5, if H is “large enough” to satisfy (3.2), the optimal

values of ν and p must satisfy 1+δ = 2β; i.e., ν = (1+p)/4 for FDf and ν = (1+p)/6

for FDc. This yields

Cη/2
n θn

d−→ κ
η/2
b N(−µ,Σ),

where η = 1/2, µ = Hκc/(2(H − ν)), and Σ = σ2/(κNκ
2
c(H − ν)) for FDf, while

η = 2/3, µ = H3κ
2
c/(6(H − 2ν)), and Σ = σ2/(4κNκ

2
c(H − 2ν)) for FDc. The

asymptotic rate η does not depend on p, but the asymptotic MSE constant

Kmse = κηb (µ
2 + Σ)

w.p.1
= lim

n→∞
Cη
nE[‖θn‖2](A.19)

does. Note that p = 0 is not necessarily the optimal choice. If we restrict ourselves

to p = 0, the constant Kmse is minimized for FDf by choosing κN and κc such that
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κNκ
4
c = 4(H−1/4)σ2H−2, which yields Kmse = σκ

1/2
T (H−1/4)−3/2. For FDc, again

for p = 0, the constantKmse is minimized by choosing κNκ
6
c = (9/2)(H−1/3)σ2H−2

3 ,

which yields Kmse = (σ4H2
3 (H − 1/3)−4κ2T/9)

1/3(21/3 + 2−2/3)/4.

In the case where common random numbers are used and the CRN2 conditions

hold, let σ2P = Var [Xθ(0)]. Then, for both (5.1) and (5.2), Var [ψ] converges to σ2
P

as c→ 0 and θ → 0. This gives npVn → κ−1N σ2P and Σ = σ2P/(2κN(H − ν)). The bias

satisfies nνBn → Hκc/2 for FDf, and n2νBn → H3κ
2
c/6 for FDc. Under the conditions

given in Table 5.1, we obtain η = 1. More precisely, under those conditions,

C1/2
n θn

d−→ κ
1/2
b N(−µ,Σ),

where κb = κTκN/(p + 1), Σ = σ2P/(2κN(H − (1 + p)/2)), µ = I[2ν = p + 1] ·
Hκc/(2(H − ν)) for FDf, µ = I[4ν = p + 1] · H3κ

2
c/(6(H − 2ν)) for FDc, and I[A]

denotes the indicator function which takes the value 1 when the underlying variable

belongs to A and is 0 otherwise. It is best to take ν such that 2β > p + 1, because

it cancels out the bias term µ. Then, Kmse = κbΣ can be minimized by taking

p = H − 1, which yields Kmse = σ2PκTH
−2. Recall that the value of H can also be

changed by rescaling the problem.

In the CRN1 case, we have µ = Hκc/(2(H − ν)) and Σ = σ2
D/(2κN(H − ν))

for FDf, while µ = H3κ
2
c/(6(H−2ν)) and Σ = σ2

D/(4κN(H−ν)) for FDc. Again, the

value of p that minimizes the asymptotic MSE constant is not necessarily zero.

Steady-state average cost (Example 5.3). The expressions for Vn and Bn here are

related to those of Example 5.1, modified as follows: Multiply Vn by Θ(t−1n ) = Θ(n−q)

and add Θ(t−1n ) to ‖Bn‖. It is reasonable to suppose that (5.3) holds with Nn replaced

by Nntn, which implies that n−p−q−1Cn → κb w.p.1 for some positive constant κb.

Under those assumptions (and those made in Example 5.1 for the finite hori-

zon), we obtain the following. For the FD estimators with independent random num-

bers, we have Vn = Θ(t−1n N−1
n c−2n ) = Θ(n2ν−p−q), for both FDf and FDc, ‖Bn‖ =

Θ(t−1n + cn) = Θ(n−(q∧ν)) for FDf, and ‖Bn‖ = Θ(t−1n + c2n) = Θ(n−(q∧2ν)) for

FDc. With common random numbers, Bn is the same, while Vn = Θ((t−1n N−1
n c−1n ) =

Θ(nν−p−q) for CRN1 and Vn = Θ((t−1n N−1
n ) = Θ(n−p−q) for CRN2. For IPA, both

‖Bn‖ and Vn are Θ(t−1n Nn) = Θ(n−p−q).

For the LR estimator, we assume here that Vn = Θ(tn) = Θ(nq) and ‖Bn‖ =

Θ(t−1n ) = Θ(n−q). For CLR, we have Vn = Θ(1) and ‖Bn‖ = Θ(t−1n ) = Θ(n−q). From

that, the optimal values given in Table 5.2 are easily obtained.
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Infinite-horizon discounted model (Example 5.6). Let tn/ lnn → κt as n → ∞,

where κt ∈ [0,∞]. We want to show that κt must be finite and large enough (as

specified in Table 5.3) to maximize η̃, and that the convergence rate actually depends

on the product ρκt. Recall that the derivative estimator ψn is the average of Nn =

κNn
p i.i.d. replications of either Xθ(θn, tn) (for IPA) or of a finite difference (for FD).

For IPA, we have npVn → σ2 ≡ R as θn → 0, Bn ∼ κβ exp(−ρtn) ∼ κβn
−ρκt ,

and the results of Sections 3–4 apply with β = ρκt and δ = p (assuming that max(1+

2ρκt, 2 + p) < λmin). This yields E[‖θn‖2] = Θ(n−κ) with κ = 2ρκt ∧ (p + 1).

We also have (w.p.1) Tn ∼ κTκNκtn
p lnn, E[Cn] ∼ κTκNκtn

(p+1) lnn/(p + 1), and

(lnE[Cn])/E[Cn] ∼ (p + 1)2(κTκNκt)
−1n−(p+1). For κt ≥ (p + 1)/(2ρ), this gives

E[‖θn‖2] = Θ(n−p−1) = Θ((lnE[Cn])/E[Cn]). Upon a closer examination, we also

see that the latter MSE increases linearly with κt and that the bias term disappears

(2β > 1+δ) when κt > (p+1)/(2ρ). If κt =∞ (i.e., tn increases faster than Θ(lnn)),

then the MSE must increase faster than Θ((lnE[Cn])/E[Cn]). For κt < (p+ 1)/(2ρ)

(including κt = 0), we obtain E[‖θn‖2] = Θ(n−2ρκt), which converges at a slower rate

than Θ(n−p−1). Therefore, the optimal strategy is to take κt equal to (or slightly

larger than) (p+ 1)/(2ρ). We just showed that the optimal rate in terms of E[Cn] is

obtained if and only if tn/ lnn→ κt where κt is a large enough but finite constant.

Similar analysis can be carried out when αθ(θ, t) is estimated via finite differ-

ences, using X(θ, t) instead of X(θ) in each of the setups of Example 5.1. For FDc

with independent random numbers, for example, one has ‖Bn‖ = Θ(n−2ν + e−ρtn) =

Θ(n−(2ν∧ρκt)) and Vn = Θ(n2ν−p). Take ν = (p + 1)/6 and κt ≥ (p + 1)/(3ρ).

Then, ‖Bn‖ = Θ(n−(p+1)/3), Vn = Θ(n(p+1)/3), and E‖θn‖2 = Θ(n−2(p+1)/3) =

Θ(((E[Cn])
−1 lnE[Cn])

2/3). It is not hard to see that one cannot improve upon that

convergence rate, and that the rate is lower if κt < (p + 1)/(3ρ) or if tn/ lnn → ∞.

The results of the other lines of Table 5.3 can be obtained in a similar fashion, we

leave out the details.
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