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Abstract : Surrogate modeling with insufficient data can lead to high prediction uncertainty and
errors. A promising remedy to address this issue is the use of transfer learning techniques that leverage
models built using data from other problems that are implicitly related to the problem of interest.
We present an algorithm that uses transfer learning and mixtures of experts across different design
space regions to improve the predictive capability of surrogate models. The algorithm uses existing
data to divide a problem’s design space into clusters and build ensembles of surrogate models in
each cluster using a multi-criteria weighting method. The proposed algorithm is shown to be both
accurate and flexible, allowing for automated transfer learning with tuning parameters that cater for
different problem types. The multi-criteria approach enables transfer learning in constrained Bayesian
optimization by weighing models based on their shape, accuracy, and variance. The proposed method is
demonstrated using aircraft conceptual design examples and showed up to 10% reduction in prediction
errors.

Keywords: Transfer learning, surrogate modeling, ensemble of surrogates, mixture of experts, aircraft
design

Acknowledgements: The authors would like to thank Jasveer Singh from Bombardier for his insights
and support in setting up the industrial aircraft conceptual design problems.



Les Cahiers du GERAD G–2025–50 1

1 Introduction

Engineers and designers typically face problems that require the development of surrogate models that

emulate the behavior of computationally expensive functions. For aircraft design problems, typical

uses of surrogate modeling include the simulation of certain disciplines such as aerodynamics, struc-

tures, weight estimation, and aircraft performance. In addition, aircraft designers use surrogate-based

optimization algorithms to reduce the computational cost of aircraft design optimization problems [43]

or to aid in solving problems with hierarchical and mixed-discrete variables such as system architecture

optimization [8, 21, 48]. The ideal scenario in surrogate modeling is that there are enough training

data to build accurate models. Collecting sufficient training data can be expensive, time-consuming,

or even unrealistic.

Transfer learning is a sub-field of machine learning based on the idea of using information from one

domain to another different but related domain. For example, information can be transferred from

an existing machine learning model that classifies food images, built using existing data, to build a

model that classifies plant images using new data. In this work, we refer to existing data as source

data and data built based on the problem of interest as target data. Consequently, source models are

built using source data and target models are built using target data. Transfer learning of surrogate

models entails the use of information from source models to aid when there is insufficient target data

to build reliable target models, or when trying to reduce the computational costs of building the target

models [57, 67].

In this work, we consider transfer learning in surrogate modeling for aircraft design. Aircraft

manufacturers rely heavily on models to simulate and improve an aircraft’s design [11, 24, 42, 54]. A

challenge faced by aircraft designers is the high prediction uncertainty and errors faced when creating

surrogate models of certain disciplines with limited data [19]. Another challenge is the computational

costs and time associated with expensive simulations and optimization in aircraft design [46]. We

investigate the use of transfer learning for aircraft design and optimization to address the challenges

above. Brunton et al. provide a review of the use of machine learning in aerospace applications [6] and

highlight the need for transfer learning to aid in aircraft model-based engineering. Min et al. propose

the use of transfer learning in the design of different aircraft engines [39]. They use source data from

a different engine type relative to the target problem and add the source data to the target data to

create individual target surrogate models. Tong et al. explore the application of transfer learning on

aircraft engine design surrogate modeling by developing tools to predict turbo-fan core size using a

database of two hundred engines [56]. Min et al. propose a method to transfer knowledge between

source and target problems and apply their method to aircraft engine designs [38].

We are interested in Gaussian process surrogate models because of their flexibility and ability to

quantify uncertainty to enable Bayesian optimization [58]. Gaussian processes are a type of surrogate

model defined by their mean and covariance functions [58]. We introduce the use of Gaussian processes

in aircraft design, which are prevalent in many disciplines and optimization applications. In [9], the

authors used Gaussian process regression to determine both a mean estimate of the takeoff weight of

an aircraft and the associated prediction interval, using observed data from the takeoff ground roll.

The authors in [34] constructed surrogate models for airfoil design using multi-output Gaussian process

regression models to predict airfoil lift, drag, and pitching-moment coefficients. In the field of aircraft

design optimization, Gaussian processes are used in several applications. A conceptual design Bayesian

optimization of business aircraft is presented in [43]. A wing aerodynamic design optimization using

Gaussian processes is proposed in [44]. The authors of [55] used a co-Kriging method, a type of multi-

output Gaussian process, to perform a multipoint drag minimization. However, the use of individual

Gaussian processes in the context of transfer learning is not ideal due to the heterogeneity of data

between different problems and due to the potential increased computational costs associated with

increased amounts of data. Instead, we explore the use of ensembles of surrogate models for transfer

learning.
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The idea of using an ensemble of surrogates as a weighted average of individual surrogate models

is proposed in [22]. The authors claim that using an ensemble of surrogates, which can be constructed

without a significant expense compared to the cost of acquiring data, can prove effective in distilling

correct trends from the data and improve robustness over the use of individual surrogate models.

In [62], the authors demonstrated the use of ensembles of several types of surrogate models, including

Gaussian processes, on a set of problems showing improvement in the robustness of results. Using

ensembles of surrogates in transfer learning leverages existing data from source problems to combine

source and target models with the goal of improving approximation performance and reducing training

computational costs. The authors in [36] proposed an ensemble approach to transfer data between a

set of source problems to a single target problem. The method entails the use of maximum a posteriori

elaboration on a logistic regression model. In [14], the authors proposed a so-called multiple kernel

learning framework for transfer learning where they apply a linear combination of multiple predefined

kernels. In [40], the authors presented a framework for transfer learning based on modular variational

Gaussian processes. The framework relies on a dictionary of pre-existing Gaussian processes that are

used to complement a Gaussian process of a target task. The concept of ensemble of surrogates is

also used in transfer learning of Bayesian optimization in [16, 17, 59, 60] where a weighted-average of

models consisting of source surrogate models and target models is used.

This paper proposes a methodology for performing transfer learning between a set of source surro-

gate models and a target surrogate model, using an ensemble of surrogates defined over a partitioned

design space. The main contributions of this paper are:

1. The use of posterior information to efficiently adapt source surrogate models to the target prob-

lem.

2. The construction of clusters within the design space of the target problem and the development

of a mixture of experts in each cluster.

3. A multi-criteria weighting strategy to build the surrogate ensemble based on shape similarity,

predictive accuracy, and variance.

This paper is organized as follows. In Section 2, we outline the aircraft design motivations and

objectives that drive the need for transfer learning using ensembles of surrogate models, and we

review related work that performs transfer learning using methods other than ensembles of surrogates.

In Section 3, we propose the methodologies to develop ensembles of surrogate models using posterior

information of source surrogate models, a mixture of experts that divides the design space, and a

multi-criteria weighting method to combine the ensembles of surrogates. We then demonstrate the

methodologies using analytical and aircraft design problems in Section 4. In Section 5, we close the

paper by concluding on the methods presented and the claimed results.

2 Aircraft design surrogate modeling

This work is motivated by scenarios when aircraft designers have limited data from a specific target

discipline and abundant data from another, i.e., source, discipline. The target disciplines could be

complex to model and computationally expensive, or they could be not part of the core business of the

designers’ company and typically are obtained from external entities. In such scenarios we assume that

we can transfer knowledge from other source disciplines implicitly assuming that these disciplines are

relevant to the target discipline and therefore can be used to derive more accurate surrogate models

or to obtain sensitivities to key input variables. In addition, we are interested in performing transfer

learning for Bayesian optimization of aircraft to enable the use of existing (source) optimization data

while performing a new target optimization. Finally, we are interested in performing transfer learning

between different aircraft configurations, for example, we intend to leverage knowledge from available

source data from a high-speed and high-sweep aircraft wing when designing a low-speed and low-sweep

aircraft wing.
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Of particular note in the aircraft design surrogate modeling scenarios is the relationship between

source and target problems in specific areas of the design space. We discuss the example of the high-

speed and low-speed wings. The lift, drag, and pitching moment of an aircraft operating at a fixed

angle of attack change rapidly as the aircraft approaches the speed of sound. This change is called

compressibility effect [23]. Its onset begins at a specific airspeed called the critical Mach number. It

is driven by the formation of a normal shock that separates the flow on the aft part of an airfoil. An

airplane with low-speed wings and thick airfoils will experience it as early as Mach 0.6, whereas a

high-speed wing begins to experience it above Mach 0.80 as shown in Figure 1. The Mach number at

Figure 1: Sample curves showing the evolution of compressibility drag coefficient with the Mach number highlighting the
drag-divergence Mach (MDD) numbers between a low-speed and a high-speed wing (adapted from [23]).

which this happens is the drag-divergence Mach number MDD. If we use source data from a high-speed

wing model on a low-speed wing target problem, we will have large errors if the model is used across

the whole design space. However, at Mach numbers below 0.6, models built on both the target and

source data will produce equivalent wave drag results. Therefore, we are interested in methods to

enable weighting of source models in ensemble of surrogates in specific areas in the design space. We

present an illustrative numerical example to highlight our motivations in Figure 2.

(a) Target function. (b) Source 1 function. (c) Source 2 function.

Figure 2: Numerical example illustrating motivations for methods to divide a target problem’s design space and to use
posterior information from source surrogates.

We consider a target problem defined by a one-dimensional function f(x) = sinx + cos 10x
3 , with

x ∈ [−2, 8]. We are interested in using two source functions: the first is defined as f(x) + 1 when
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x > 1.8 and 2+ ε otherwise, and the second is defined as f(x)− 2 when x < 4.5 and −2+ ε otherwise,

ε is a noise term. Both of the source functions have a similar shape to the target function in only a

region of the design space as shown in Figure 2 (b) and Figure 2 (c). We also note that the source

functions do not share the same output values with the target function even in regions of the design

space that their shapes are similar. Therefore, transfer learning methods must be able to use source

surrogate models only in specific regions of the design space. We will use this example as a running

example to demonstrate our methods in Section 3.

We summarize the motivating aircraft design scenarios as follows:

Scenario 1: an aircraft designer is interested in creating surrogate models of a computationally

expensive discipline by transferring knowledge from other disciplines.

Scenario 2: an aircraft designer is interested in combining the prediction capabilities of multiple

surrogate models that are valid in only specific regions of the design space.

To that end, we select the use of ensemble of surrogates when we have multiple surrogate models

built using datasets from source problems and a single dataset from the target problem as depicted

in Figure 3. This ensemble of surrogates must be able to perform any of the motivating scenarios

described above. There exists several methods to apply transfer learning on surrogate modeling other

than the use of ensembles of Gaussian processes. Authors in [33, 63] used a single surrogate model for

the target problem which can be used and adapted based on prior information from existing Gaussian

processes. In [63], the authors achieved this by applying different kernels: a squared exponential kernel

for points in the target problem, and a nearest neighbor kernel for points in the source problems. Several

methods also exist for transfer learning using multi-output Gaussian processes [2, 49, 61]. The authors

in [28] used a so-called deep Gaussian process [12] by projecting the target data on a source Gaussian

process which was then linearly combined with the second layer of a two-layer deep Gaussian process.

Another popular use of transfer learning in surrogate modeling is the use of neural networks, a type

of surrogate models that is comprised of multiple layers of interconnected nodes [51]. However, we

consider these methods inadequate for the problems of interest in this research due to their higher

computational costs compared to the ensemble of surrogates approach. In the following sections, we

Target data

Source 2
Source 2

Source data

Source 
surrogate 
models

Target 
surrogate 

model

Ensemble of 
surrogates

Figure 3: Illustration of transfer learning ensemble of surrogates.

present descriptions of the two aircraft design surrogate modeling problems based on Scenarios 1 & 2

that will be used in this paper as the application problems. We note that Scenario 3 is not applied in

this paper and will be part of future work.



Les Cahiers du GERAD G–2025–50 5

2.1 Aircraft noise prediction

Aircraft noise is a major consideration for aircraft and engine designers due to its impact on local

communities and natural habitats around airports. Noise sources from aircraft are complex and inter-

dependent as presented in Figure 4 (adapted from [65]). Predicting aircraft noise is a complex task

and is computationally expensive for higher fidelity methods [18, 65]. Furthermore, validation tests of

noise prediction methods are also expensive and rely on a variety of ground and flight tests. In this

scenario, we assume that a small set of input-output data for the target problem, aircraft approach

noise, is present; however, an aircraft acoustics model is not available to produce estimates for aircraft

approach noise for new sets of inputs. Aircraft noise during the approach flight phase, i.e., aircraft

approach noise, is always higher than other reference flight phases, i.e, lateral and flyover noise, and

is typically measured using the EPNL, effective perceived noise level, metric [18]. We hypothesize

that aircraft approach noise is correlated with aircraft maximum takeoff weight (MTOW) as a heavier

aircraft requires a larger airframe, engines, high lift devices, and landing gear. In this problem, we aim

to use transfer learning to build a surrogate model of aircraft approach noise based on a set of input

variables and a surrogate model of MTOW.

Yan Gouger

High lift devices

Engines

Airframe 
interactions

Landing gear

Figure 4: Aircraft approach noise sources (adapted from [65]). Photo by Yan Gouger.

2.2 Slats configuration impact on aircraft weight

For the second aircraft design problem we are interested in estimating the MTOW of an aircraft

depending on whether the aircraft has slats, i.e., slatted, or not, i.e., unslatted. Aircraft wing slats

are a type of leading edge high lift devices, an example of the Airbus A321 aircraft slat is shown

in Figure 5, that allow an aircraft’s wing to operate at a higher angle of attack without stalling

therefore allowing the aircraft to takeoff and land on shorter runways and at lower speeds [45]. By

enabling an aircraft to fly at lower speeds at takeoff and landing than unslatted aircraft, slats allow

designers to reduce the size of an aircraft’s wing which significantly reduces its cruise drag especially

for high-speed transonic aircraft. Slats are typically attached to the wing’s front spar (F/S) by means

of actuators and tracks where multiple competing constraints drive their design and implementation.

Although slats significantly improve the low speed, ground performance, and high-speed cruise drag of

an aircraft, their integration comes with significant challenges such as actuation installation, anti-icing,

cost and reliability. Therefore, the decision for installing slats or not on an aircraft is complex and

multi-disciplinary which necessitate the use of optimization and aircraft level trade studies. In this

problem, we are interested in performing analyses that predict the MTOW of an aircraft based on

aircraft sizing input variables in addition to whether an aircraft is slatted or unslatted. Consider a

scenario where we have two sets of simulation models: M1) the first model correctly models a slatted
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aircraft and predicts its MTOW but produces incorrect results if the aircraft is unslatted, and M2)

the second model behaves conversly by predicting correct MTOW only for unslatted aircraft. We are

interested in running an optimization where slat configuration is a design variable and we combine the

computationally expensive simulation models of M1 and M2 into the same framework. Our goal is to

perform transfer learning in the new framework using existing results we had obtained using either M1

or M2 solely. The transfer learning methodology must be able to capture the correct behavior of M1

and M2 in their respective applicable design spaces.

Figure 5: Airbus A321 wing cross section showing a deployed slat [45].

3 Methodology

As described in Section 2, we focus in this work on ensembles of Gaussian processes. In the following

sections, we describe the methodologies used to develop an ensemble of Gaussian processes using trans-

fer learning. Based on the motivations described above, we identify the following that our methodology

must achieve:

1. Build Gaussian processes from the source data but adjusted to the output of a target problem.

2. Divide the design space of a target problem based on the performance of source surrogate models.

3. Determine appropriate weighting of source models for both surrogate modeling.

To achieve the above, we first propose an approach to transfer the prior mean function from a source

surrogate model to a target model in Section 3.1. Secondly, we present a method to divide the design

space preparing for a mixture of experts algorithm in Section 3.2. Lastly, we propose a multi-criteria

weighting methodology to enable expert selection in each region of the design space in Section 3.3. In

the literature, there are several methods for the weighting of the ensemble surrogate model [10, 17, 22,

60, 62, 64]. However, these methods are not flexible for use in transfer learning for surrogate modeling

and optimization. In this work, we develop a multi-criteria approach that can be altered depending

on the use case at hand. The selectable criteria are based on the shape, accuracy, and variance of the

surrogates in an ensemble. We use Gaussian processes in all of the surrogates in this work to obtain

variance information to enable ensemble weighting and to use them in Bayesian optimization. Finally,

we combine the steps above into an algorithm for building an ensemble of surrogates using transfer

learning. The notation we use in this work is defined in Table 1.

Table 1: Notations in transfer learning for surrogate modeling.

Symbol Definition

DoE1,...,N

S
Design of experiments datasets containing input/output pairings from source problems 1, ..., N

DoET Design of experiments dataset containing input/output pairings from the target problem
XT Input vector data from DoET
YT Output vector data from DoET
ŷ1,...,Ns 1, ..., N source surrogate models built using source datasets DoE1,...,N

S
ŷ1,...,Ns′ 1, ..., N modified source surrogate models, ŷ1,...,Ns , using target dataset DoET
ŷt Target surrogate model built using target dataset DoET
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3.1 Transfer of prior

When transferring a source model to a target problem, the use of a source model as-is or its prior,

therefore maintaining the shape of the source model, is well established in literature We define the

shape of a model as the behaviour of the model’s outputs corresponding to changes in inputs values.

In this work, we also are interested in the value predictions of source models and not just their shapes.

Therefore, we propose to transfer source model posteriors, ŷs, and adjust their predictions to target

data DoET similar to the approach proposed in [52]. We then use these posteriors as the prior mean

functions m of a target problem, such that m(x) = αŷs(x), where ŷs is the posterior of a source model

and α is a scaling term. Starting from the squared exponential covariance function, the authors in [52]

proposed a new covariance function as follows

k
′
(xi, xj) = σ2

0 exp

[
−||xi − xj ||2

2l2

]
exp

[
− (ŷs(xi)− ŷs(xj))

2

2l2ŷs

]
, (1)

where hyperparameters σ0 and l are the variance and characteristic length-scale of the covariance

respectively, and lŷs is the length-scale obtained from ŷs and are calculated using maximum likelihood

estimation [1]. The covariance function in Equation (1) may potentially change the shape of the

source models ŷs between two points xi and xj since the covariance function k
′
and hyperparameters

σ0 and l are determined based on ŷs(xi) and ŷs(xj). However, in some cases, designers are interested

in maintaining the shape of the source model without modifying the covariance function. In addition,

the work in [52] developed their approach specifically for use in a Bayesian optimization context which

does not need to adjust the bias of the source models since the Gaussian process hyperparameters are

fit to the new observations. To that end, we propose an approach for adjusting a source model ŷns
considering both a scaling factor and a bias.

ŷns′(x) = αnŷ
n
s (x) + βn, (2)

where the scaling term αn and the bias term βn are constant parameters that can be fitted to the target

data DoET to create a modified set of source models as described in Algorithm 1. Alternatively, one

could still use the covariance function from Equation (1) with a prior mean function from Equation (2).

The output of Algorithm 1 is N modified source surrogate models that require aggregation into an

ensemble, which is addressed in the following sections.

Algorithm 1: Source surrogate model with posterior information.

Input: Source datasets DoE1,...,N

S
and target dataset DoET : (XT,YT)

Output: Modified source models ŷ1,...,Ns′ .

1 for n = 1, . . . , N do
2 Build source model ŷns based on DoEn

S
3 Use the posterior of the ŷns to calculate ŷns (XT).;
4 Calculate (αn, βn) = argmin

α,β∈R
ε(α, β) where ε is an error metric between ŷns′ (XT) and YT, ;

5 Calculate the hyperparameters σn
0 and ln.;

6 Set modified source surrogate model per Equation (2) and Equation (1);

7 end

3.2 Mixture of experts approach

To address the problem of fixed weights across the whole design space for ensembles of surrogates,

we propose a mixture of experts approach that divides the design space into clusters and calculates

the probability for each source model being the correct model for each cluster. Mixture of experts is

based on the divide-and-conquer principle in which the problem space is divided between a number of

weighted experts, i.e., surrogate models, that are supervised by a gating network. The authors in [27]
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presented a general architecture of mixture of experts for supervised learning. This architecture is a

tree structure where the tree splits are called a gating network. Each gating network produces soft tree

splits until the terminal leaves which produce an output by means of a generalized linear model. The

parameters of the different generalized linear models are estimated using the Expectation-Maximization

(EM) algorithm [13, 37] on the input-output space. In this work, we use source models that are already

developed, and we only need to develop a gating network without redeveloping the existing surrogate

models. In [4], the authors developed a mixture of experts algorithm aiming to increase the accuracy

of a function approximation by replacing a single global model by a weighted sum of local experts.

The approach is based on a partition of the problem domain into several subdomains via clustering

algorithms followed by a local expert training on each subdomain. Clustering does not use generalized

linear models but Gaussian mixture models obtained using the EM algorithm which allows for a

smooth transition between clusters. They use a latent discrete random variable κ that indicates which

component of the mixture is to be used. The authors in [31] applied the mixture of experts algorithm

from [4] on aircraft aerodynamic prediction problems. The classical expression of a mixture of experts

model is presented as follows

ŷ(x) =

K∑
i=1

P(κ = i|X = x)ŷi(x), (3)

where K is the number of clusters, κ ∈ {1, ...K} denotes the discrete random variable associated with

the clusters, P(κ = i|X = x) is the probability of a point x to lie in cluster with index i, and ŷi is

the local expert built on cluster i knowing that a Gaussian X = x. The ideal number of clusters is

problem dependent and can be obtained using the EM algorithm by utilizing the so-called Bayesian

Information Criterion or Akaike Information Criterion [7]. The gating network probability is derived

in [4]. Assuming a Gaussian mixture GM of K components, the EM algorithm [13, 37] is used to

estimate the parameters of each Gaussian k ∈ 1...K based on (X,Y ) pairings:

GM : (X,Y ) ∼
K∑

k=1

αkN (µk,Γk), (4)

where αk is the mixture parameter for each Gaussian such that αk ∈ [0, 1] and
∑K

k=1 αk = 1, µk is the

mean of the Gaussian distribution k of a Gaussian N (µk,Γk), and Γk is its variance-covariance matrix.

Using the EM algorithm, the law of κ knowing that X = x and without knowing its associated output

Y is obtained as follows

X ∼
K∑

k=1

αkN (µX
k ,ΓX

k ), (5)

where ΓX
k and µX

k are the variance-covariance matrix and mean of X for Gaussian k, respectively.

In this work, we propose to cluster the design space based on combinations of inputs values x and

an error metric E of each source model on the target data DoET. Therefore, the clustering matrix M

of dimensions p× (n+N) is defined as

M =

x11 · · · xn1 ϵ11 · · · ϵN1

...
. . .

...
...

. . .
...

x1p · · · xnp ϵ1p · · · ϵNp

 , (6)

where n is the dimension of the input vector x, N is the number of source models, p is the number

of points in DoET, xnp is the value of the nth dimension of a point with index p of DoET, and ϵNp

is the value of the N th source model error at a point with index p of DoET. In this work, we use

an average absolute error for ϵ; however, other metrics can be used depending on the use case needs.

Consequently, the Gaussian mixture (X,Y ) used in the EM algorithm is set to (X, E) which is built

based on the input vector x and error vector ϵ as per the clustering matrix M . Once the EM algorithm
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is used to calculate the Gaussian mixture parameters, the probability for a given point z = (x, ϵ) to lie

within a cluster i adapted from the derivation in [4] as a so-called hard clustering method as follows.

P(κ = i|(X, E) = (x, ϵ)) =
det(Γi)

−1/2αi exp[− 1
2 (z − µi)

TΓ−1
i (z − µi)]

K∑
k=1

det(Γk)
−1/2αk exp[−

1

2
(z − µk)

TΓ−1
k (z − µk)]

. (7)

Each cluster i ∈ [1, ...,K] is then defined where each point (x, ϵ) yields the highest probability

from Equation (7) as follows,

i = argmaxj∈[1,...,K] P(κ = j|(X, E) = (x, ϵ)). (8)

The probability of a point being in a cluster i is then calculated using only the input vector x using a

so-called smooth clustering setting as follows,

P(κ = i|X = x) =
det(ΓX

i )−
1
2αi exp[− 1

2 (x− µi)
TΓX−1

i (x− µi)]
K∑

k=1

det(ΓX
k )−

1
2αk exp[−

1

2
(x− µx

k)
TΓX−1

k (x− µX
k )]

. (9)

Alternatively, in a hard clustering setting, P(κ = i|X = x) in Equation (3) is replaced by 1PX
i
(x) given

by

1PX
i
(x) =

{
1.0, if i = argmaxj=1,...,KP(κ = j|X = x),

0.0, otherwise.
(10)

We validate this approach on the one-dimensional function from Figure 2. We build two source

surrogate models based on the source functions in Figure 2 (b) and Figure 2 (c) and apply Algorithm 1

from Section 3.1 to obtain modified source surrogates, ŷ1s′ and ŷ2s′ . We then calculate the errors, E1
and E2 of ŷ1s′ and ŷ2s′ respectively, when compared to the target function f(x) across the whole design

space using 100 equally spaced points (X, E). We create the clustering matrix M in Equation (6) using

X and E . Finally, we set the number of clusters to three, apply the EM algorithm, calculate the hard

clustering probabilities from Equation (10), and obtain the clusters from Equation (8). The results of

the clusters and clustering matrix are presented in Figure 6 demonstrating the ability of the proposed

method in correctly dividing the design space based on the accuracy of the source surrogate models.

(a) Clusters visualization on the target function. (b) Visualization of the clustering matrix M comprised of X, E1 and E2.

Figure 6: Illustration of clustering on a one-dimensional target function with 3 clusters and 2 source surrogate models.

The resulting mixture of experts algorithm for clustering based on input vectors and source model

errors is presented in Algorithm 2. We note that the Gaussian mixture clustering method used in this

work may not be accurate for non-Gaussian functions. In application cases where such functions exist,
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future work may adapt different clustering approaches [50, 66] to obtain the clusters and the gating

network.

Algorithm 2: Design space clustering and mixture of experts gating network.

Input: Modified source models ŷ1,...,Ns′ , target dataset DoET : (XT,YT), and number of clusters K
Output: Clusters K and gating network definition

1 Calculate the errors En between each modified source model ŷns′ (XT) and YT for n = 1, ..., N . ;

2 Assemble the clustering matrix M in Equation (6) using XT and the errors E1,...,N .
3 Apply EM algorithm to M with clusters K to get estimates of the Gaussian mixture parameters αk, µk and Γk

for k = 1, ...,K.
4 Perform the hard clustering step of the data using Equation (7) and Equation (8) to obtain the set of

clusters K.
5 Set the gating network P(κ = i|X = x) at any point x for each cluster i ∈ K using Equation (9)

Although the separation of clustering and learning in [4] is beneficial for our transfer learning

problem, this algorithm builds a set of different surrogate model types on the same data and calculates

a weight for each surrogate based on its performance in each subset of the design space relative to a

predefined metric. This approach does not match the needs of transfer learning problems where the

intended local experts are already predefined. In addition, mixture of experts algorithms in [4, 31]

assume that the number of surrogate models is pre-set based on the selected types of surrogates, and

that the cluster definition is a prior step to build the surrogate models.

In the transfer learning problem setting, the number of source models may not match the number

of clusters and the clusters are dependent on the source models. Therefore, we propose an algorithm

that first divides the problem space based on (X, E) to obtain the gating network. Then, we add a

term to obtain the probability that each source model is the correct model to be used in each cluster.

The expression defining the prediction ŷ at a point x of our proposed algorithm is given by

ŷ(x) =

K∑
i=1

N∑
j=1

P(κ = i|X = x)P(ŷj = ŷi)ŷj(x), (11)

where K is the number of clusters, N is the number of source models, i is the index of existing clusters,

ŷi is the Gaussian model representing the indexed cluster, and ŷj is the j
th source model. Equation (11)

can be considered a smooth prediction setting assuming both P(κ = i|X = x) and P(ŷj = ŷi) are

smooth. Alternatively, a hard prediction setting can re-written as follows

ŷhard(x) =

K∑
i=1

N∑
j=1

1PX
i
(x)1Pj

i
(j)ŷj(x), (12)

where 1Pj
i
is determined as the source model with highest probability to represent the model of cluster

with index i, and 1PX
i

is the hard clustering method from Equation (10).

1Pj
i
(j) =

{
1.0, if i = argmaxj=1,...,KP(ŷj = ŷi),

0.0, if i ̸= argmaxj=1,...,KP(ŷj = ŷi).
(13)

To obtain the standard deviation ŝ of the ensemble of surrogates ŷ, we present two methods:

1. target surrogate model variance ŝt as proposed in [60]

ŝ2(x) = ŝ2t (x). (14)

2. weighted ensemble of surrogates variances based on smooth clustering and prediction as follows

ŝ2(x) =

K∑
i=1

N∑
j=1

(P(κ = i|X = x))2(P(ŷj = ŷi))
2ŝ2j (x), (15)

where ŝj(x) is the standard deviation of the jth source model.
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In the following section, we complement the methods presented so far to obtain P(ŷj = ŷi), the

probability that source model j is the correct model to be used in cluster i.

3.3 Multi-criteria weighted ensembles

In existing literature, the use of transfer learning in ensembles of Gaussian processes relies on the

mis-ranked or discordant pairs approach [16, 30, 60]. The idea is to select all paired combinations

of a source model’s predictions and the target data and estimate how often this prediction and the

target point agree on the ranking of outputs. This approach promises to measure a source model’s

ability to generalize to the target data based on its shape. Such methods are appropriate for Bayesian

optimization (for the objective function only) where the shape of a function is more important than

the actual prediction values. However, the use of transfer learning for applications other than objective

functions in optimization requires the use of different criteria for model selection. We propose a multi-

criteria ranking approach that can be selected depending on the intended application. Even for the case

of Bayesian optimization, the ideal criterion may not always depend on the shape of a function. For

example, handling constraints requires model selection based on accuracy and not just the shape of the

constraint functions. The mis-ranked pairs approach for model selection is more useful for performing

acquisition function optimization since we are interested in the shape of the predicted function rather

than its values. In [16], the authors developed an ensemble of Gaussian processes transfer learning

method where source models, along with the target model, are weighted based on the shape of the

function, i.e., mis-ranked pairs. They used a loss function to calculate the weights of each source model

when applied to the target data.

L(ŷs,DoET) =

n∑
m=1

n∑
k=2

1((ŷs(x
t
m) < ŷs(x

t
k))⊕ (ytm < ytk)), (16)

where ⊕ is the exclusive-or operator, DoET is the input-output data (XT,YT) of the target problem T

with n points, and ŷs is a source model. The posterior of each source model is then used at the target

data creating a set of samples where the ranking losses are evaluated using Equation (16). Weights for

each source model are then calculated by the summation of the samples’ ranking losses divided by the

number of samples. In [60], the authors developed a similar ensemble of Gaussian processes algorithm

also based on function shape. However, to calculate the ensemble weights of the source models, they

first calculate the ratio τ of discordant pairs to total pairs n of DoET [29] between source models and

the target model. Then they use a weighted average to predict the combined output of the source and

target models. The Epanechnikov quadratic kernel [15] is used as follows

κρ(χS ,DoET) = δ(
τ(χS ,DoET)

ρ
) (17)

with

δ(t) =

{
3
4 (1− t2) if t ⩽ 1

0 otherwise
(18)

and

τ(χS ,DoET) =

∑n
m=1

∑n
k=2 1((y

s
m < ysk)⊕ (ytm < ytk))

n
, (19)

where ρ > 0 is a predefined bandwidth, DoET is the input-output data of the target problem T, and

χS are the data predictions Ys on the inputs XT of DoET using a source model S with n points.

In this work, we propose a multi-criteria approach to obtain the probability of a surrogate model

j being a correct representation in a cluster i. A summation of weighted multi-criteria C(ŷj = ŷi) to

calculate a score for a model ŷj being a correct model in cluster i is presented as

C(ŷj = ŷi) =

NC∑
l=1

wlcl(ŷj = ŷi), (20)
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where wl ∈ [0, 1] for l = 1, ..., NC are the weights assigned to the selected criteria such that
∑NC

l=1 wl =

1, cl is the measure of the selected criterion, NC is the number of measured criteria. We propose the

following set of criteria to select from: shape, accuracy, and variance.

The measure of the selected criteria is up to the user and depends on the type of algorithm where

the surrogate model is used. The shape criterion denotes a measure of the degree to which a source

surrogate model is representative relative to the shape of the target data. The methods from [16, 30, 60]

are all considered different types of shape criteria. In this work, we use the discordant pairs method

from Equation (17) [60] as the shape criterion.

The accuracy and variance criteria compare the values of the model predictions with the values

of the target data using modified versions of the shape criterion by replacing τ in Equation (17) by

τa and τv respectively. Similarly, bandwidths for the accuracy and the variance criteria, ρa and ρv
respectively, are assigned instead of ρ in Equation (17).

For the accuracy criterion, we use a measure of the absolute relative error metric across the target

dataset DoET to obtain τa as follows

τa(χS ,DoET) =
1

n

n∑
m=1

1

(
|ysm − ytm|

|ytm|
> ϵmax

)
, (21)

where ϵmax is a predefined maximum relative error.

Similarly for the variance criterion, we propose the use of the same kernel in Equation (17) with

τ = τv and ρ = ρv as follows

τv(χS ,DoET) =
1

n

n∑
m=1

1

(
σs
m

ytmax

> σmax

)
, (22)

where σmax is a predefined maximum relative variance, ytmax is the maximum observed absolute output

value in DoET, and σs
m is the variance of point m measured using source model S.

Once the criteria measures are calculated, we assume that the probability of a model being the

correct model over a cluster is proportional to its criteria measure in this cluster. Therefore, the

probability of a source model j predicting a correct output of target data in cluster i is then estimated as

P(ŷj = ŷi) ≈
C(ŷj = ŷi)

N∑
n=1

C(ŷn = ŷi)

, (23)

where N is the number of source models.

So far, we have presented the prediction of the mean and variance of the ensemble of surrogates

while ignoring the predictions of the target model ŷt assuming that its predictions are inaccurate due

to insufficient data. Alternatively, one could assign a fixed probability of the target model ŷt and

include it in the predictions of the ensemble of surrogates ŷ. The corresponding second probability

term is defined as

P(ŷm = ŷi) ≈
C(ŷm = ŷi)

N∑
n=1

C(ŷn = ŷi) + C(ŷt = ŷi)

, (24)

where ŷm is the mth model in a list comprised of N source models and 1 target model, and C(ŷt = ŷi) is

the fixed score for the target model. In the case of the Epanechnikov quadratic kernel, C(ŷt = ŷi) is set

to 0.75 in [60]. Equation (23) or (24) can then be used in the second probability term of Equation (11)

from Section 3.2 and complete the prediction of the mixture of experts.
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3.4 Ensemble of surrogates using transfer learning

The ensemble of surrogates using transfer learning algorithm can be summarized based on the method-

ologies described above. The algorithm starts by building a set of source surrogate models using the

available source data. The algorithm modifies the source models per the approach proposed in Sec-

tion 3.1, then develops a mixture of experts as described in Section 3.2. Finally, the weighting of each

surrogate in the ensemble is determined using the multi-criteria approach we proposed in Section 3.3.

The detailed procedure to obtain the ensemble of surrogates is described in Algorithm 3.

Algorithm 3: Ensembles of surrogate models using transfer learning.

Input: Source datasets DoE1,...,N

S
, target dataset DoET, number of clusters K, selected criteria NC, and

criteria weights wl and bandwidths ρl for l ∈ 1, ...NC
Output: Ensemble of surrogates using transfer learning

1 Build target surrogate model ŷt using DoET.;
2 for n = 1, . . . , N do

3 Build nth source surrogate model ŷns using DoEn
S.;

4 Use the posterior of ŷns and DoET to create a modified source surrogate model ŷns′ using Algorithm 1.;

5 end
6 Create a set of K clusters using the mixture of experts approach defined in Algorithm 2 to obtain the gating

network P(κ = i|X = x).;
7 for k = 1, . . . ,K do
8 for n = 1, . . . , N do
9 Calculate the criteria scores C(ŷns′ = ŷk) of each ŷns′ in each cluster k using Equation (20).;

10 Calculate the probability P(ŷns′ = ŷk) of each ŷns′ in each cluster k using Equation (23)

or Equation (24).;

11 end

12 end
13 Return the ensemble of surrogates model (ŷ, ŝ).

After creating the ensemble of surrogates, clusters, and model probabilities for each cluster of the

mixture of experts, a prediction ŷ(x) using input data x is calculated using Equation (11) or Equa-

tion (13), and standard deviation s(x) is calculated using Equation (14) or Equation (15). We note

that users can elect to maintain source surrogate models without modification by skipping line 4

in Algorithm 3 and assigning ŷns′ = ŷns for the rest of the algorithm.

We presented in Equation (20) the weights, wl for l = 1, ..., NC associated with each criterion cl.

These weights can be obtained by formulating an optimization problem that minimizes a prediction

error metric of choice using the ensemble of surrogates model on target data. In [3], the authors

proposed a similar metric named Penalized Predictive Score (PPS), and they use PPS directly as an

optimization objective to obtain the weights within (we note that PPS uses different criteria than

those we propose in Section 3.3). In our work, we need to be able to calculate common weights for

all source models and all clusters to build the ensemble of surrogates. Therefore, simply minimizing

a predictive error metric on a single surrogate model as in [3] does not work. Instead, we propose

an optimization problem that encompasses all of the transfer learning problem including all clusters

K and source models N to obtain the weights wl for l = 1, ..., NC associated with each criterion as

follows, 
minimize
w∈[0,1]NC

K∑
i=1

E(Ŷ
i
,Yi

T, w)

subject to

NC∑
l=1

wl = 1,

(25)

where w is a vector of all wl weights, and E(Ŷ
i

n,Y
i
T, w) is an error metric between the output of the

ensemble of surrogates model, Ŷ
i
, and the target data, Yi

T, that lie in cluster i.



Les Cahiers du GERAD G–2025–50 14

Alternatively, a designer may decide to set fixed weights or a variable weight selection strategy

based on the envisioned transfer learning problem. For example, an unconstrained optimization prob-

lem benefits from the shape of a source surrogate model whereas a single point sizing problem benefits

from a source surrogate model’s accuracy and variance. Therefore, designers interested in optimiza-

tion problems can assign higher weights for the shape criterion, whereas designers requiring accurate

predictions from a surrogate can assign higher weights for the accuracy and variance criteria.

We also note that if a similar kernel to Equation (20) is used for criteria calculations, the bandwidths

ρl for l = 1, ..., NC associated with each criterion cl can also be added as design variables in the

formulation of Equation (25). The optimization problem can then be formulated as
minimize

w,ρ

K∑
i=1

E(Ŷ
i
,Yi

T, w, ρ)

subject to

NC∑
l=1

wl = 1,

(26)

where w is a vector of all wl weights such that wl ∈ [0, 1] and ρ is a vector of all ρl bandwidths such

that ρl > 0 for l = 1, ..., NC.

We note that the transfer learning algorithms presented in this work could be used by relying on

source data that does not correlate with the target problem. In certain cases where source and/or

data are not sufficient to create the ensembles of surrogates, inaccurate predictions may be expected.

Therefore, it is important for users to conduct thorough design of experiments and assessments of the

suitability of the source and target data prior to deployment of the transfer learning methods.

4 Numerical results

We present analytical and aircraft design examples to demonstrate the proposed methodologies in this

work. We first explain the implementation details we used then present the illustration and aircraft

design examples that verify each novel functionality.

4.1 Implementation details

The code is developed in Python 3 building on the following toolboxes: Scikit-learn v1.5.2 [41], SMT

2.0: Surrogate Modeling Toolbox [47], SMAC3 [32], RGPE [17], TST-R [60], and the Bayesian opti-

mization library in [20]. All results are obtained using an Intel® Xeon® CPU E5-1650 v3 @ 3.50

GHz core and 32 GB of memory. The illustration tests the behavior of the following methods:

• Target surrogate model (ŷt),

• Source surrogate model n (ŷns ),

• Modified source surrogate model n (ŷns′).

• Ensemble of surrogates without clustering (Ensemble-TL),

• Ensemble of surrogates with smooth clustering and prediction from Equation (11) (Ensemble

Smooth-C),

• Ensemble of surrogates with hard clustering and prediction from Equation (12) (Ensemble Hard-

C).

4.2 Analytical examples

In this section, we present two analytical examples along with sensitivity analyses. In the first example,

we illustrate the prior transfer algorithm with an ensemble of Gaussian processes (GP), i.e., Algorithm 3

without clustering in step 6. In the second example, we illustrate the clustering algorithm with an

ensemble of GP, i.e., Algorithm 3 without source model modification in step 4.
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4.2.1 Modified Bohachevsky functions

We use modified versions of the two-dimensional Bohachevsky functions [5, 26] such that the functions

share similar shapes. We use three source functions, f1, f2, f3, and one target function, ft, as follows:

f1(x1, x2) =x2
1 + 2x2

2 − 0.3 cos(πx1)− 0.4 cos(2πx2) + 0.7, (27)

f2(x1, x2) =x2
1 + 2x2

2 − 0.3 cos(πx1) cos(2πx2), (28)

f3(x1, x2) =2x2
1 + 4x2

2 − 0.3 cos(3πx1 + 4πx2)− 0.5, (29)

and

ft(x1, x2) =0.5x2
1 + x2

2 − 0.3 cos(3πx1 + 4πx2) + 0.4. (30)

Each source function was used to create a DOE from the same design space as the target problem

design space such that x1 ∈ [−5, 5]⊤, x2 ∈ [−5, 5]⊤. A low number of DOE evaluations is selected for

the target problem to demonstrate the ability of the transfer learning to adjust model priors and select

source surrogate models with limited target data. In our tests, we use a DOE of size 10 for the target

problem (ft) and a DOE of 50 for each of the three source problems (i.e., f1, f2 and f3).

We first perform the DOE evaluation of all the problems as presented in Figure 7. Algorithm 1 is

then used to obtain the modified source models ŷ1s′ , ŷ
2
s′ and ŷ3s′ . Since we are interested to demonstrate
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(a) Target function, ft.
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(b) Source 1 function, f1.
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(c) Source 2 function, f2.
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(d) Source 3 function, f3.

Figure 7: Contour plots of the target and source functions showing the DOE evaluation points corresponding to each
problem.

the prediction accuracy in this illustration example, we use fixed criteria weights in Equation (20) by

setting a value of 1 to the weight of accuracy criterion. We do not assign any values for the weight of

shape criterion since we know that all the studied functions in Equations (27–30) share a similar bowl

shape. Similarly, we do not assign any values for the weight of the variance criterion since the source

models are all built on a LHS sampling of the same design space. We set the number of clusters in
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this illustration example to one since all the source models behave similarly across the whole design

space. We then use Algorithm 3 to obtain the ensemble of surrogates model. We create 20 random

evaluations in the design space of the target problem and use them as test data DoEtest : (Xtest, Ytest).

We test the following methods in this illustration problem: the target model (ŷt), the source surro-

gate models (ŷ1,...,Ns ), the modified source surrogate models (ŷ1,...,Ns′ ), and the ensemble of surrogates

without clustering (Ensemble-TL). All the tested surrogate models, built solely on the 10-evaluation

DoET , are then used to estimate ft based on the input vector of the test data Xtest. Figure 8 presents

the results comparing the prediction errors of the tested models showing the benefits of transfer learn-

ing in adjusting the source models and correctly creating an ensemble of surrogates. The x-axis lists

all the models that are compared for predicting the 50 random test evaluations in the full design space

of the target problem. The y-axis presents box plots showing the errors of each model at the 20 tested

evaluations. We note that all modified source models, ŷ1s′ , ŷ
2
s′ and ŷ3s′ , show lower prediction errors

than the target model ŷt even if they are built on inaccurate source models, ŷ1s, ŷ
2
s and ŷ3s. In addition,

the ensemble of surrogates prediction errors show that the ensemble probability weighting algorithm

from Equation (23) is able to select the modified source models that maximize accuracy.

Figure 8: Box plot comparing ensemble of surrogates with transfer learning using prior with model predictions of the
modified sources and target at 20 test evaluations.

We also compare the ensemble of surrogates without clustering (Ensemble-TL) with existing state-

of-the-art methods: Two-Stage Transfer surrogate model with Rankings (TST-R) from [60] and
Ranking-weighted Gaussian Process Ensemble (RGPE) from [16]. We present box plots of the pre-

dictions in Figure 9 noting the capability of our methods of predicting accurate function evaluations.

Results of TST-R and RGPE are expected since both of these methods rely on the shape of source

functions for target predictions.

Figure 9: Box plot comparing ensemble of surrogates with existing state-of-the-art methods using 20 test evaluations..
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4.2.2 Modified Giunta functions

For the second analytical problem, we aim to demonstrate the capability of the mixture of experts

algorithm combined with the ensemble of surrogates. We use the Giunta function [25], a continuous

multi-modal two-dimensional function, as the target function ft(x).

ft(x) = 0.6 +

2∑
i=1

[
sin(

16

15
xi − 1) + sin2(

16

15
xi − 1) +

1

50
sin(4(

16

15
xi − 1))]

]
subject to −1 ⩽ xi ⩽ 1 for i ∈ [1, 2]. The goal of this analytical problem is to show that Algorithm 3

correctly clusters the design space based on outputs of a set of source surrogate models and then

calculates the probabilities of the ensemble of surrogates in each of the identified clusters. We define

two source functions, f1(x) and f2(x) that are equal to the target function ft(x) only in specific regions

of the design space such that:

f1(x) =

{
ft(x) if x2 > 0.5

ft(x) + 3x2
2 otherwise,

and

f2(x) =

{
ft(x) if x2 < 0.5,

ft(x)− 3x2
2 otherwise.

We create a DOE of 100 evaluations for each of the source problems and 30 evaluations for the

target problem. We set the number of clusters to 3 which is the minimum clusters needed to properly

separate the different regions of the design space. We run Algorithm 3 to produce the clusters K and

the ensemble of surrogates without modifying the source surrogate models, i.e., ŷns′ = ŷns . Figure 10

shows contour plots of the two source functions, f1(x) and f2(x), the target function ft(x), and their

associated function evaluations, DoE1
S,DoE2

S and DoET.After the ensemble of surrogates is built, we

randomly select 100 test points from the full design space DoEtest : (Xtest,Ytest), divide the points

by the clusters K, and apply the source surrogate models, (ŷ1s) and (ŷ2s), the ensemble of surrogates

without clustering (Ensemble-TL), the ensemble of surrogates with smooth clustering and prediction

(Ensemble Smooth-C), and the ensemble of surrogates with hard clustering and prediction (Ensemble

Hard-C).

We show box plots of the methods tested in each of the clusters and in the entire design space

in Figure 11. We note that (Ensemble Hard-C) shows the lowest prediction errors on the test data in

all the clusters, as is expected in problems where there is an abrupt transition between the clusters.

The behavior of the source surrogates (ŷ1s) and (ŷ2s) depends on the cluster selected as expected where

(ŷ1s) shows low prediction errors in cluster 1 in Figure 11 (b) whereas (ŷ2s) shows low prediction errors

in cluster 3 in Figure 11 (c). (Ensemble-TL) results show the that method balances the between (ŷ1s)

and (ŷ2s) across the whole design space which leads to higher prediction errors than (Ensemble Hard-C)

and (Ensemble Smooth-C).

We present in Figure 12 contour plots of (Ensemble Hard-C) and (Ensemble Smooth-C) across the

design space. We note the behavior of (Ensemble Smooth-C) in cluster 3 (x2 > 0.5) is a combination

of the shapes of the surrogate models from Source 1 and Source 2 which explains the higher prediction

errors of (Ensemble Smooth-C) in Figure 11 (d). Whereas (Ensemble Hard-C) is based solely on the

surrogate model of Source 2 in cluster 3 and consequently has the lowest prediction errors.

The above results are based on equal weights for the shape, accuracy, and variance criteria with

equal bandwidths set at 1 assuming that you have no prior knowledge about the transfer learning

problem. We perform the hyperparameter optimization formulation in Equation (26) to obtain the

optimal criteria weights and bandwidths for this problem using (Ensemble Smooth-C). The minimum

errors achieved were achieved when only the accuracy criterion is used and its bandwidth is set to 0.1.

We also perform a parametric analysis for the criteria weights and bandwidths hyperparameters that

influence the behavior of the (Ensemble Smooth-C) algorithm.
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(a) Source 1 function, f1, contour plot and DOE evaluations. (b) Source 2 function, f2, contour plot and DOE evaluations.

(c) Target function, ft, contour plot and DOE evaluations.
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Figure 10: Giunta problem illustration contour plots of the source and target functions showing the DOE evaluation points
corresponding to each problem.

(a) Box plot of results across all clusters. (b) Box plots of results in cluster 1.

(c) Box plots of results in cluster 2. (d) Box plots of results in cluster 3.

Figure 11: Box plots comparing the results of the different surrogate models and ensemble of surrogates tested on 20
evaluation tests and showing (Ensemble Hard-C) as the best performing method across all clusters.

In Figure 13, we compare the results using either the accuracy, shape, or variance criteria. We note

that using the variance criterion solely is not ideal for this type of problems especially that all source

data is obtained from the same design space. The accuracy criterion produces the lowest prediction
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errors. However, we are aware that based on the weighting of the ensemble of surrogates solely on

accuracy may yield inaccurate results in some problems as discussed in [16].

(a) Ensemble Hard-C (b) Ensemble Smooth-C

Figure 12: Contour plots using (Ensemble Hard-C) in (a) and (Ensemble Smooth-C) in (b).

Figure 13: Box plots of results using either the accuracy wa, shape ws, or variance wv criteria using 20 test evaluations.

In Figure 14, we compare the results using different set values for the accuracy bandwidth ρa when

using only the accuracy criterion showing the importance of selecting appropriate bandwidths for each

problem. The results so far are based on the Epanechnikov kernel in Equation (18). In Figure 15,

we study the impact of kernel selection on prediction errors. We select two popular kernels [35]: the

triweight kernel, denoted as TRI-W, and the Gaussian kernel, denoted asGAUS. The results show no

significant difference in prediction errors when compared to the baseline Epanechnikov kernel, denoted

as EPAN. Therefore, we use the Epanechnikov kernel for the remainder of this work. It is noted that

the results presented are dependent on the considered DOE as they are based on a single run.

We also compare our proposed methods with existing state-of-the-art methods: (TST-R) from [60]

and (RGPE) from [16]. We present box plots of the predictions across all clusters in Figure 16 noting

the capability of (Ensemble Hard-C) of predicting accurate function evaluations.

4.3 Aircraft conceptual design problems

We use an aircraft conceptual design problem to demonstrate our transfer learning approach. We

present two different scenarios based on the problems defined in Section 2:

Scenario 1: heterogeneous output transfer learning, i.e., source problems that do not share the same

output as the target problem.
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Scenario 2: surrogate modeling transfer learning across regions of the design space, i.e., source surro-

gate models that do not correlate to the target problem similarly across the whole defined design

space.

Figure 14: Box plots of results using different set values for the accuracy bandwidth ρa using 20 test evaluations.

Figure 15: Box plots of results using different kernel selection using 20 test evaluations.

Figure 16: Box plot comparing our ensemble surrogate models with existing state-of-the-art methods using 20 test
evaluations.
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The first scenario is based on the aircraft noise prediction problem presented in Section 2.1. We

extend the problem by considering four sets of source data that have different outputs from a target

problem while assuming a relationship exists between each of the source problems’ outputs and the

target problem output. There are numerous cases where designers are interested in a certain parameter

but the models needed to produce this parameter are either unavailable or computationally expensive.

As we describe in Section 2.1, we are interested in building a noise prediction model based on a limited

amount of data from an aircraft noise simulation code based on an input vector x. We intend to use

abundantly available data that link these same inputs with aircraft MTOW assuming that the behavior

of MTOW and noise are similar in response to changes in x. Aircraft block fuel consumption is the

total amount of fuel an aircraft burns throughout its design mission. Similarly, aircraft CO2 emissions

are the total emitted CO2 throughout the design mission of the aircraft. Although, a correlation

between aircraft approach noise and either block fuel or CO2 emissions is not guaranteed since an

aircraft’s range, a major contributor to the block fuel and CO2 emissions, is not correlated with

aircraft noise, we still use these two parameters in the source data to test how our methods are able to

select which source problem is relevant to the predictions of the target problem. Aircraft cost is also

another parameter that we use to test our methods although no obvious relationship exist between

cost and noise. The setup of the source and target problems is presented in Table 2. We consider

that each set of source data has a DOE of 200 evaluations; whereas, the target problem has a smaller

DOE of only 10 evaluations. We use LHS as the sampling method for all DOE’s in this scenario.

Although the input variables of the source and target models are not identical, we use an aircraft

level multidisciplinary analysis framework [42, 43, 53] to obtain a common set of inputs and design

space that generate the corresponding inputs needed for each of the source and target problems as

defined in Table 3. Algorithm 3 is then used to obtain the modified source models and ensemble of

surrogates. In this scenario, we are interested in obtaining prediction accuracy in addition to ensuring

that the relationships of the target input-output are captured. Therefore, we use fixed criteria weights

in Equation (20) by setting equal values of 1/3 to the weights of shape, accuracy, and variance criteria.

We assign the number of clusters to 1 in this scenario to focus this problem only on the model scaling

and ensemble weighting parts of Algorithm 3.

Table 2: Setup of source and target problems in aircraft design scenario 1.

Problem Output DOE Size

Source 1 Aircraft Block Fuel Consumption 200
Source 2 Aircraft CO2 Emissions 200
Source 3 Aircraft Cost 200
Source 4 Aircraft MTOW 200
Target Aircraft Approach Noise 10

Table 3: A list of the source and target model inputs related to the aircraft conceptual design problems.

Input Description

x1 Rubber engine scaling factor
x2 Rubber engine bypass ratio
x3 Rubber engine overall pressure ratio
x4 Wing aspect ratio
x5 Wing area
x6 Wing trailing edge sweep
x7 and x8 Wing rear spar chord-wise location
x9 Wing sweep
x10 Wing taper ratio
x11, . . . , x14 Wing thickness-to-chord ratios

For the test data, we create 50 additional evaluations of the target model and use these evaluations

to test the developed models. As shown in Figure 17, the proposed algorithm shows lower prediction

errors against the test data when compared to the target model ŷt that is solely built on the target
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DOE. We also note that the method is able to only select the source models that correlate to the

target problem as source models associated with block fuel consumption and CO2 emissions were not

selected. Also, an interesting outcome shows that the cost source model results in low prediction errors

that can be explained due to the relationship between aircraft cost and MTOW, which aircraft noise

correlates to.

Figure 17: Box plot comparing (Ensemble-TL) with model predictions of the modified sources and target of aircraft design
scenario 1.

The second scenario is based on the problem defined in Section 2.2 where the problem of interest

is the prediction of MTOW of an aircraft depending on whether it is slatted or unslatted. In this

scenario, we are interested in performing analyses that predict the MTOW of an aircraft based on

typical aircraft sizing variables from Table 3. Therefore, we append the design space of Table 3 to

include a discrete input, x15 ∈ {0, 1}, that defines whether slats are used on the aircraft or not. As

presented in Section 2.2, we use two source problems that are obtained using two different models:

the first is able to properly model the MTOW for aircraft with slats, and the second is able to properly

model the MTOW for unslatted aircraft. The scenario DOE setup is presented in Table 4. Each source

problem is used to model their corresponding output for the majority of the DOE with the exception
of a small number of evaluations that use the opposing slat discrete input variable value. The latter

DOE evaluations are expected to yield incorrect results compared to their respective correct models

in regions of the design space where x15 does not match the source problem. The target problem

uses correct models for both the slatted and unslatted aircraft configurations. Therefore, in the target

problem we expect that surrogate models obtained from the slatted aircraft source problem produce

accurate results in the region of the design space where x15 = 1 and inaccurate results in the region of

the design space where x15 = 0; the opposite assumption is expected for surrogates obtained from the

unslatted aircraft source problem.

Table 4: Setup of source and target problems in aircraft design scenario 2.

Problem DOE Size with Slats DOE Size without Slats

Source 1 (slatted) 100 10
Source 2 (unslatted) 10 100
Target 10 10

We set the number of clusters in this scenario to two which is equivalent to the split design space

of x15. Similar to scenario 1, we set equal values of 1/3 to the weights of shape, accuracy, and variance

criteria to be used in Equation (20). We create a test dataset from the target problem containing
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both slatted and unslatted aircraft and use it to validate the results of the ensemble of surrogates.

We note from the presented results in Figure 18 that (Ensemble Hard-C) performs best compared to

other ensemble models and the source and target models across the whole design space similar to the

results of the second numerical example. Although the motivations and application cases presented

in this work focus on aircraft design, the transfer learning methods presented can also be beneficial

for other domains. Our methods can be applied to any target discipline where generating data is

computationally expensive and other existing data that can be correlated to this discipline is available.

Ensemble-
Hard C

Ensemble-
Smooth C

Ensemble-
TL

y1
s′ y2

s′ yt

0

5

10

15

20

25

%
 P

re
di

ct
io

n 
Er

ro
r

(a) Results in full design space
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(b) Results in cluster 1 (slatted)
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(c) Results in cluster 2 (unslatted)

Figure 18: Box plots comparing the results of the ensemble of surrogates, modified source surrogate models, and target
surrogate model.

5 Conclusions

In this paper, we presented a methodology to perform transfer learning between a set of source problems

and a target problem using an ensemble of surrogates in a divided design space. Our methodology first

creates modified surrogate models of the source problems fitted to the target data using the posteriors of

the source surrogate models. We then divide the design space of the target problem using the clustering

EM algorithm in order to create a mixture of experts in each cluster. Finally, we developed a multi-

criteria weighting approach to build the ensemble of surrogates based on shape, accuracy, and variance

of the surrogates. We validated the proposed methodology using two scenarios of aircraft conceptual

design problems by performing a comparative analysis of prediction errors of the ensemble of surrogates

and the target surrogate models without transfer learning. We demonstrate that the transfer learning

approach is able to capture the behavior of source models and adjust it to the target problem showing

significant improvements in prediction errors (up to 10%). Our proposed multi-criteria ensemble

weighting approach provides users tuning parameters that adjust how information is transferred and

can be adapted based on the studied problem. Since the presented ensemble of surrogate models

provides information for both mean and variance predictions, it can be also employed in the context

of constrained Bayesian optimization to speed up the convergence. In fact, in such scenarios, aircraft

designers are interested in creating surrogate models of objective and constraint functions in Bayesian

optimization based on previous optimization results. We note however that using the transfer learning

algorithms presented herein at every Bayesian optimization iteration may significantly increase the

computational cost. Methods to address this potential computational overhead will be investigated in

future work.
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Eric Nguyen Van, and Sébastien Defoort. Bayesian optimization for mixed variables using an adaptive
dimension reduction process: applications to aircraft design. In AIAA SciTech 2022 Forum, pages AIAA
2022–0082, 2022.

[49] Grigorios Skolidis. Transfer learning with Gaussian processes. PhD thesis, The University of Edinburgh,
2012.



Les Cahiers du GERAD G–2025–50 26

[50] Takashi Takekawa. Clustering of non-gaussian data by variational bayes for normal inverse gaussian
mixture models. arXiv preprint arXiv:2009.06002, 2020.

[51] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A survey on deep
transfer learning. In Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International
Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part III 27,
pages 270–279. Springer, 2018.

[52] Timothy Tay and Carolina Osorio. Bayesian optimization techniques for high-dimensional simulation-
based transportation problems. Transportation Research Part B: Methodological, 164:210–243, 2022.

[53] Ali Tfaily, Youssef Diouane, Nathalie Bartoli, and Michael Kokkolaras. Bayesian optimization with hidden
constraints for aircraft design. Structural and Multidisciplinary Optimization, 67(7):123, 2024.

[54] Ali Tfaily and Michael Kokkolaras. Integrating air systems in aircraft multidisciplinary design optimiza-
tion. In 2018 Multidisciplinary Analysis and Optimization Conference, pages AIAA 2018–3742, 2018.

[55] David J.J. Toal and Andy J. Keane. Efficient multipoint aerodynamic design optimization via cokriging.
Journal of Aircraft, 48(5):1685–1695, 2011.

[56] Michael T. Tong. Using machine learning to predict core sizes of high-efficiency turbofan engines. Journal
of Engineering for Gas Turbines and Power, 141(11):111023, 2019.

[57] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of Big
Data, 3:1–40, 2016.

[58] Christopher Williams and Carl Rasmussen. Gaussian processes for machine learning. MIT press, Cam-
bridge, MA, 2006.

[59] Martin Wistuba and Josif Grabocka. Few-shot Bayesian optimization with deep kernel surrogates.
arXiv:2101.07667, 2021.

[60] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Two-stage transfer surrogate model for
automatic hyperparameter optimization. In Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings,
Part I 16, pages 199–214. Springer, 2016.

[61] Rui Xia, Wessel Bruinsma, William Tebbutt, and Richard E Turner. The gaussian process latent autore-
gressive model. In Third Symposium on Advances in Approximate Bayesian Inference, 2020.

[62] Pengcheng Ye and Guang Pan. Selecting the best quantity and variety of surrogates for an ensemble
model. Mathematics, 8(10):1721, 2020.

[63] Dani Yogatama and Gideon Mann. Efficient transfer learning method for automatic hyperparameter
tuning. In Artificial intelligence and statistics, pages 1077–1085. PMLR, 2014.

[64] Byoung Hyun Yoo, Junhwan Kim, Byun-Woo Lee, Gerrit Hoogenboom, and Kwang Soo Kim. A surrogate
weighted mean ensemble method to reduce the uncertainty at a regional scale for the calculation of
potential evapotranspiration. Scientific Reports, 10(1):870, 2020.

[65] Oleksandr Zaporozhets, Vadim Tokarev, and Keith Attenborough. Aircraft Noise: Assessment, Prediction
and Control. CRC Press, Boca Raton, FL, 2011.

[66] Qingzhi Zhong, Huazhen Lin, and Yi Li. Cluster non-gaussian functional data. Biometrics, 77(3):852–865,
08 2020.

[67] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing
He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):43–76, 2020.


	Introduction
	Aircraft design surrogate modeling 
	Aircraft noise prediction
	Slats configuration impact on aircraft weight

	Methodology
	Transfer of prior
	Mixture of experts approach
	Multi-criteria weighted ensembles
	Ensemble of surrogates using transfer learning

	Numerical results
	Implementation details
	Analytical examples
	Modified Bohachevsky functions
	Modified Giunta functions

	Aircraft conceptual design problems

	Conclusions

