Les Cahiers du GERAD

ISSN: 0711-2440

Spatial pattern regression for gridded meteorological data:
A precipitation and temperature case study

V. Houssou, J. Carreau

G-2025-48
July 2025

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis a des revues avec comité de révision. Lorsqu’'un
document est accepté et publié, le pdf original est retiré si c'est
nécessaire et un lien vers |'article publié est ajouté.

Citation suggérée : V. Houssou, J. Carreau (Juillet 2025). Spatial
pattern regression for gridded meteorological data: A precipitation
and temperature case study, Rapport technique, Les Cahiers du
GERAD G- 2025-48, GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2025-48) afin de mettre a
jour vos données de référence, s'il a été publié dans une revue scien-
tifique.

The series Les Cahiers du GERAD consists of working papers carried
out by our members. Most of these pre-prints have been submitted
to peer-reviewed journals. When accepted and published, if necessary,
the original pdf is removed and a link to the published article is
added.

Suggested citation: V. Houssou, J. Carreau (July 2025). Spatial
pattern regression for gridded meteorological data: A precipitation
and temperature case study, Technical report, Les Cahiers du
GERAD G-2025-48, GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https:
//vww.gerad.ca/en/papers/G-2025-48) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grace
au soutien de HEC Montréal, Polytechnique Montréal, Université Mc-
Gill, Université du Québec a Montréal, ainsi que du Fonds de recherche
du Québec — Nature et technologies.

Dépét légal — Bibliotheque et Archives nationales du Québec, 2025
— Bibliotheque et Archives Canada, 2025

The publication of these research reports is made possible thanks to
the support of HEC Montréal, Polytechnique Montréal, McGill Uni-
versity, Université du Québec a Montréal, as well as the Fonds de
recherche du Québec — Nature et technologies.

Legal deposit — Bibliotheque et Archives nationales du Québec, 2025
— Library and Archives Canada, 2025

GERAD HEC Montréal
3000, chemin de la Céte-Sainte-Catherine
Montréal (Québec) Canada H3T 2A7

Tél.: 514 340-6053
Téléc.: 514 340-5665
info@gerad.ca
www.gerad.ca



https://www.gerad.ca/fr/papers/G-2025-48
https://www.gerad.ca/en/papers/G-2025-48
https://www.gerad.ca/en/papers/G-2025-48

Spatial pattern regression for gridded meteorological data:
A precipitation and temperature case study

Vihotogbé Houssou 2'P

Julie Carreau '

2 Département de mathématiques et de génie in-
dustriel, Polytechnique Montréal (Qc), Canada

b Groupe d’Etudes et de Recherche en Analyse des
Décisions (GERAD), Montréal (QC), Canada

vihotogbe.houssou@polymtl.ca
julie.carreau@polymtl.ca

July 2025

Les Cahiers du GERAD
G-2025-48

Copyright (©) 2025 Houssou, Carreau

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n'engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s'engagent a reconnaitre et respecter
les exigences légales associées a ces droits. Ainsi, les utilisateurs:
— Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d'étude ou de recherche privée;
— Ne peuvent pas distribuer le matériel ou I'utiliser pour une
activité a but lucratif ou pour un gain commercial;
— Peuvent distribuer gratuitement I'URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d'auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
I'acceés au travail et enquéterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

— May download and print one copy of any publication from the
public portal for the purpose of private study or research;
— May not further distribute the material or use it for any profit-
making activity or commercial gain;
— May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



Les Cahiers du GERAD G-2025-48 ii

Abstract : We introduce Spatial Pattern Regression (SPR), a method to generate gridded historical
meteorological data for climate adaptation. SPR operates in two steps : first extracting spatial structure
from high-resolution regional climate model (RCM) simulations as eigenvectors, then using them in
linear regression to reconstruct complete gridded fields from station observations at each time step. We
compare SPR with standard interpolation methods using data from RCM simulations, where virtual
stations are a subset of grid cells and interpolation is done on the rest. Thirty graded case studies
are created by varying three factors : region location, size, and network density. Daily precipitation,
maximum temperature, and minimum temperature are considered. Results show SPR outperforms
standard methods across all three variables for most of the graded case studies. A stress-test with very
low network density confirms SPR’s robustness. Finally, we systematically assessed how each graded
factor affects SPR’s performance.

Keywords : Spatial interpolation, principal component analysis, linear regression, high resolution
climate simulations, synthetic data framework
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1 Introduction

Climate change is intensifying meteorological hazards like heatwaves, extreme weather events, and
flooding, triggering an escalating cascade of economic and societal impacts (Warren et al., 2022). To
support better adaptation measures, impact studies rely on high-resolution gridded meteorological data
that must accurately represent extreme events and spatial heterogeneity. For instance, Lucas-Picher
et al. (2020) aimed to reproduce the extreme flood of the Richelieu River in southern Quebec, Canada,
which occurred in the spring of 2011. A key factor in achieving this was the use of a recent gridded
hydrometeorological dataset—including precipitation, maximum, and minimum temperatures—at a
resolution of approximately 7 km, which accounted for orographic precipitation (Livneh et al., 2015).
In addition, Lauer et al. (2023) investigated the urban heat island effect during two high-temperature
events lasting 2 to 3 days by evaluating various land use-based mitigation strategies. To support
their analysis, they relied on high-resolution numerical weather prediction data—including surface air
temperature, dew point temperature, and rainfall—at a horizontal resolution of 250 meters.

In most cases, gridded meteorological data are obtained through one of three main approaches :
spatial interpolation, physics-based models such as numerical weather prediction or regional climate
models, or reanalysis datasets. Spatial interpolation—the first approach—involves statistical techniques
that use observed values of meteorological variables at gauged sites to estimate values at ungauged
locations. To address the sparsity of gauged locations, auxiliary data available on high-resolution grids
and predictive of the meteorological variable of interest are often used. For example, Livneh et al. (2015)
used a technique called inverse distance weighting, in which observations from neighboring sites are
weighted inversely proportional to their distance from the target location. To enhance the interpolation,
orographic scaling was applied using data that incorporate topographic information. Another example
is Werner et al. (2019), who used a thin-plate spline interpolation algorithm that incorporates high-
resolution gridded climatology data. In some cases, impact studies rely on gridded meteorological
data produced by numerical weather prediction (NWP) models—the second of the three approaches
listed above. NWP uses physics-based models—complex numerical frameworks that integrate multiple
physical processes such as atmospheric dynamics, convection, and radiation. These models aim to
predict the state of the atmosphere as accurately as possible, supporting both short- to medium-range
weather forecasts (from minutes to months) and longer-term climate projections (from months to
several decades). In the latter case, the NWP model is typically referred to as a climate model. This
type of gridded data was used in the urban heat island study discussed above (Lauer et al., 2023).
Another example of such gridded data is Climex, a 50-member ensemble of regional climate simulations
with a spatial resolution of approximately 11 km (Leduc et al., 2019). In particular, Faghih and
Brissette (2023) used Climex data—after applying a bias correction step—to study the effect of climate
change on extreme rainfall and flooding. Lastly, reanalysis datasets—the third approach—are gridded
meteorological data produced by numerical weather prediction models that incorporate observational
data through data assimilation. Reanalysis aims to address some of the limitations of raw NWP
outputs, such as discrepancies with observed weather conditions and systematic biases. An example of
a high-resolution reanalysis dataset is CaSR, which provides precipitation and other surface variables
at a spatial resolution of 10 km over North America (Gasset et al., 2021). Another prominent example
is ERA-Land, a global reanalysis dataset with a spatial resolution of approximately 9 km (Mufioz
Sabater et al., 2021).

We present an approach called Spatial Pattern Regression (SPR), which can be viewed as an in-
termediate between spatial interpolation and reanalysis. SPR relies on information about the spatial
structure present in gridded meteorological data produced by a climate model—typically a regional
climate model (RCM), which offers sufficiently high resolution. The underlying hypothesis is that the
RCM adequately captures the spatial structure of the meteorological variable of interest. This assump-
tion is similar to that made by spatial interpolation methods that rely on RCM-based climatology (see
Werner et al. (2019), for instance). SPR operates in two steps. In the first step, the spatial structure is
extracted from high-resolution RCM data over the study region. In our implementation, principal com-
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ponent analysis (PCA) is used to identify spatial patterns, which are represented by the eigenvectors
derived from PCA. In this case, the complete field—i.e., the values of the meteorological variable over
the RCM grid—can be represented as a linear combination of the spatial patterns. In the second step,
linear regression is used to reconstruct the full field over the study region for a given time step (in our
application, a day), using observations of the meteorological variable at a number of sites within the
region. Since SPR relies on two statistical techniques—PCA and linear regression—it can be viewed as
a spatial interpolation method that blends spatial information derived from RCM data with temporal
information from gauged stations. At the same time, because it systematically exploits RCM data by
combining it with observations, it also shares similarities with reanalysis. However, unlike reanalysis,
the period covered by the RCM data does not need to coincide with the observation period. See § 4
for a detailed explanation of the SPR methodology.

SPR is compared with standard spatial interpolation methods—considered baseline approaches and
frequently used in the literature—mnamely, inverse distance weighting, ordinary kriging, and kriging
with external drift. See § 3 for their description. To evaluate and compare the spatial interpolation
methods, we introduce graded case studies based on a synthetic data framework, where the rationale is
to control the experimental setup and enable systematic comparisons. The field—i.e., high-resolution
gridded meteorological data at a given time step—provided by an RCM is considered the ground truth.
A subset of grid cell values is treated as ”observations,” with interpolation aiming to reconstruct the
values at the remaining grid cells. This setup allows us to generate a large number of graded case studies,
which would not be feasible if ground truth were based on gauged network observations. See § 2 for
a detailed description of the graded case studies. We consider three meteorological variables at daily
resolution—precipitation, minimum temperature, and maximum temperature—which are commonly
used in spatial interpolation for hydrological studies, see for instance Lucas-Picher et al. (2020). All
spatial interpolation methods are applied sequentially, processing one day and one meteorological
variable at a time.

2 Synthetic data framework

Data generated from a regional climate model (see § 2.1) are used exclusively in order to have total
control of the data, eliminating common issues in station data—such as biases, missing observations,
sparse coverage in certain regions, instrument failures, inconsistencies in historical records, and discon-
tinuities in spatial and temporal coverage. More precisely, in the proposed synthetic data framework,
we assumed that virtual gauged stations, i.e., where synthetic observations are available, correspond to
a subset of the grid cells. The remaining cells are used as locations where to carry out the interpolation
and thus serve to assess the performance. The graded case studies, see § 2.2, are organized according
to different levels of complexity regarding station network density, region size and region location.

2.1 Regional climate model data : Study regions and periods

The ClimEx project investigated the impacts of climate change on extreme meteorological and
hydrological events using the Canadian Regional Climate Model over two domains : one in Europe and
one in NorthAmerica (Leduc et al., 2019). Among the available meteorological variables, we selected
daily precipitation (converted from kg/m?/s to mm/day), minimum temperature, and maximum tem-
perature (both converted from Kelvin (K) to degrees Celsius (°C)). From the period covered by the
ClimEx project (1950-2099), we defined an auxiliary period (1980-2009) and an interpolation period
(2000—2009). The auxiliary period is used to extract the auxiliary information—such as the climatology
or spatial patterns (see § 3-4)— while the interpolation period is the period over which interpolation
is performed. It is important to note that the auxiliary and interpolation periods are not required to
overlap ; however, overlapping periods do not pose a problem.

The North-American domain spans a regular grid of size 280 x 280 (78400 cells) with a grid cell size
of approximately 11km (see the dark red rectangle in Fig. 1a). Within the subdomain outlined in black
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(a) North American domain of the ClimEx project (dark red rec- (b) Two study regions—referred to as the south and north regions—
tangle) and subdomain (black rectangle) considered in Fig. 1b. within the subdomain outlined in black in Fig. 1a, shown at three
different sizes (in different colours).

Figure 1 — Spatial domains used in this study.

in Fig. 1a) we selected two study regions, see Fig. 1b : one in the south and one in the north. Different
nested sub-regions were created within each study region to enrich the experimental framework. In the
following, we present statistical analyses comparing the northern and southern regions, focusing on

the larger area (blue rectangles in Fig. 1b), to assess climatic differences during the auxiliary period
(1980-2009).

The first notable difference between the two regions lies in their daily averages. A Student’s t-test
conducted at a 95% confidence level reveals that the average daily precipitation, minimum temperature,
and maximum temperature are all significantly higher in the southern region compared to the northern
region. Additionally, climatologies—representing long-term seasonal mean values— are shown in Fig 2.
While confirming that average values are higher in the south than in the north, the precipitation
climatologies also indicate distinct seasonal behaviours between the two regions.
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Figure 2 — Climatology of each meteorological variable in the larger study regions (blue rectangles in Fig. 1b) during the
auxiliary period (1980-2009).
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Moreover, the two regions exhibit different spatial variability. This variability is first assessed by
comparing the number of components required in a Principal Component Analysis (PCA) decompo-
sition to capture 90% of the total variance of a given meteorological variable. A greater number of
components indicates a higher level of spatial complexity in the data. For precipitation, at least 50
components were needed to capture 90% of the variance in the southern region, compared to only
27 in the northern region, indicating greater spatial complexity in the south. In contrast, for both
minimum and maximum temperatures, a single component was sufficient in each region. Furthermore,
spatial variability is assessed by comparing semivariance plots (see Fig. 3). Semivariance measures how
dissimilar variable values become with distance, with low values indicating strong similarity between
nearby points, and high values reflecting greater dissimilarity over larger distances. The plots show that
the semivariance in the southern region is significantly higher than in the northern region, with the
difference becoming more pronounced as the distance increases. This suggests that spatial variability
is greater in the south.

4 .
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g 0.05 1 — Tmax
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0.00 0
1 2 1 2
Distance Distance
(a) Precipitation (b) Minimum and maximum temperature

Figure 3 — Semivariance plots for each meteorological variable in the larger study regions (blue rectangles in Fig. 1b)
during the auxiliary period (1980-2009).

2.2 Graded case studies

We designed various case studies with controlled complexity for each of the two selected regions
(see Fig. 1b) by varying two factors : the size of the region and the density of the virtual gauged station
network. The region size can take one of three values—large, medium, or small (corresponding to the
nested rectangles in Fig. 1b)—while the network density can take one of five values : 10%, 30%, 50%,
70%, or 90%. In total, 30 case studies were designed, varying by region location, size, and network
density (see Table 1).

3 Baseline interpolation methods

Common spatial interpolation methods from the literature serve as baselines to evaluate Spatial
Pattern Regression (SPR), the newly proposed method in this work which is described in § 4. Let Z
denote the random field of the meteorological variable of interest such that Z(s) represents the random
variable at location s. The baseline interpolation methods considered operate by computing a weighted
average of the observed values at nearby stations, with the general formula given as follows (Li and
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Heap, 2014; Bokke, 2017) :
n
20 = Z w2 (1)
i=1

with 2y the estimated value of Z(sg), the random field at the point of interest sg ; w; the weight assigned
to point s; ; z; the observed value of Z(s;) at point s; ; s; the geographic coordinates of location ¢ (e.g.,
s; = (skon, siat)| the longitude and latitude); n the number of neighbouring points used to make the
estimate.

Table 1 — Graded case study framework : For each region location (south or north), three region sizes (S, M, or L) and five

network density levels (from 90% to 10%) are considered. The number of missing grid cells—where interpolation must
be performed—is given by : (100 - density) x total number of grid cells.

Region South Region North
Size L. Size M  Size S Size L Size M  Size S
Total # of grid cells 3025 1332 342 2970 1332 342

Network density # of missing grid cells
90% 303 133 34 297 133 34
70% 908 400 103 891 400 103
50% 1523 666 171 1485 666 171
30% 2118 932 239 2079 932 239
10% 2723 1199 308 2673 1199 308

3.1 Inverse Distance Weighting (IDW)

Inverse Distance Weighting (IDW) is a deterministic and univariate method (Hartkamp et al., 1999;
Li and Heap, 2008; Tan and Xu, 2014). It involves weighting the values of neighboring observation
stations by the inverse of the distance from the point of interest to these stations (Li and Heap, 2011,
2014; Sokolchuk and Sokac, 2022; Amin Burhanuddin et al., 2015; Pavao et al., 2012; Zimmerman
et al., 1999). The closer a station is to the point of interest, the more influence its value will have on
the interpolation result (Margaritidis, 2024; Li and Heap, 2008; Bokke, 2017). The formula used for
the weights is :

d?

i@

i

(2)

w; =

with d; = /(51" — sl™)2 + (sl** — s18%)2 the distance between the point of interest sy and station
i where p > 1 controls the relative importance of the distance; n the number of stations in the
neighbourhood ; W; the weight associated with the value of each station 1.

The value of the power parameter p can have a significant impact on the interpolation results
(Hartkamp et al., 1999). These weights, whose sum equals one, are used in IDW interpolation with
the general formula (see (1)).

3.2 Ordinary Kriging (OK)

Ordinary Kriging (OK) is the most widely used method within the broader family of Kriging me-
thods (Li and Heap, 2008; Margaritidis, 2024; Snepvangers et al., 2003). It assumes that the spatial
correlation between observation points can explain the variability across the entire surface (Sokolchuk
and Sokac, 2022). It is a statistical (or geostatistical) method capable of providing a measure of uncer-
tainty related to predictions (Bokke, 2017; Pavéo et al., 2012). OK estimates are optimal, unbiased,
and have minimum variance. The OK model is

Z(s0) = p+ €(s0) (3)
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with p a constant (or global average) and €(sg) a stochastic residual with mean zero and spatial auto-
correlation modelled using a so-called variogram function (e.g., exponential), which describes how the
correlation between observation points decreases as the distance between them increases. The kriging
weighting w; used in (1) are determined by solving a system of linear equations which involves the
variogram function. KO assumes stationary autocorrelation, meaning that the amount of correlation
depends only on the distance between points, and isotropy, meaning that the autocorrelation behavior
is the same in all directions.

3.3 Kriging with External Drift (KED)

Kriging with External Drift (KED) is a version of Kriging where the external drift introduces a
trend represented as a linear function of only one auxiliary variable (Hartkamp et al., 1999; Varentsov
et al., 2020). The auxiliary variable—in our implementation, we use the climatology—is any variable
that is thought to have an influence on the primary variable. The KED model is :

Z(s0) = p(so) + €(s0) (4)

with p(sg) = a + b X(so) the external drift, a function of the auxiliary variable X at point sq; €(so)
a stochastic residual with mean zero and spatial auto-correlation modelled using a variogram function
as in OK. The prediction formula of KED (Hengl et al., 2003) is equivalent to that of OK, except that
the weights W; used in (1) are determined by taking into account the external drift. As in OK, KED
assumes stationary autocorrelation and isotropy.

4 Spatial pattern regression (SPR)

We present the methodology of Spatial Pattern Regression (SPR), the method newly proposed in
this work. SPR relies on a representative basis of spatial patterns defined over a high-resolution grid
covering the study region. A spatial pattern of a given variable is a recurrent spatial organization of
that variable (Carreau and Guinot, 2021). The underlying rationale of SPR is that each field of a given
meteorological variable on a given day can be expressed as a function of the spatial patterns in the
basis. The first step (see Step 1 in Fig. 4 and § 4.1) thus consists in extracting spatial patterns, which,
in our implementation, correspond to the eigenvectors derived from applying PCA to the gridded
RCM data. These eigenvectors form a basis that captures the dominant spatial variability present in
the data. The second step (see Step 2 in Fig. 4 and § 4.2) consists in integrating temporal information
(for a given day, in our case) from values at the observation sites with spatial information captured by
the spatial patterns. In our implementation, Step 2 produces a complete field over the study region by
performing multiple linear regression to determine the linear combination of the spatial patterns that
best matches the observations for that day.

4.1 Identification of a representative basis of spatial patterns

The basis of spatial patterns is identified using PCA, computed via Singular Value Decomposition
(SVD) (Link et al., 2019). In what follows, boldface capital letters are used to denote matrices. Let
Z%‘:ipd denote the gridded RCM data, where n is the number of time steps (days) in the auxiliary period
and p is the number of grid cells in the region considered. Applying SVD to Zir’ipd with k singular
vectors, we obtain the following decomposition :

Zg = Us SEY (VERDT +(Zg )" (5)
where Ufiikd is the matrix of left singular vectors, S%f}ﬁd is the diagonal matrix of singular values, Vir,icd
is the matrix of right singular vectors (corresponding to the eigenvectors in PCA), T denotes the
transpose operation, 1,, is a vector of ones of length n and Zgrid is a vector of length p that contains
4. The basis of spatial patterns, Vir,ifd, are used (see § 4.2) to reconstruct
a complete field over the study region by leveraging the observations at gauged stations.

the columnwise average of Z&'
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Figure 4 — SPR framework illustration : Step 1 extracts spatial patterns from high-resolution climate model data. Step 2 fits
a linear model between observations at gauged stations and the corresponding restricted spatial patterns. The coefficients
of the linear model thus contain the appropriate temporal information to reconstruct complete gridded fields using the full
spatial patterns.

4.2 Spatio-temporal integration

The purpose of the regression model is to accurately reproduce the observed values at the gauged
locations using a linear combination of k spatial patterns. To this end, only the grid cells corresponding
to the virtual gauged stations are retained, meaning the spatial patterns are restricted to this reduced
set of grid cells. Let Zy = (Z(s1),...,Z(sq4))” denote the vector of random variables representing
the meteorological variable at the d gauged stations for a given day. The spatial extent of the spatial
patterns is restricted to correspond precisely to the locations of these stations. The spatial patterns
Vveid - originally of dimensions p x k, are thus restricted to spatial patterns ng,icd, with dimensions

P,k
d x k, where d < p.

We assume the following linear model to characterize the relationship between the vector of random
variables Z;—centered using Zgrid, the mean values from the RCM data—and the restricted spatial
patterns :

Zg— 28" = VI B+ e (6)

with S the vector of spatial patterns coefficients of length k and €4 the vector of random errors of length
d for the day considered. This model is inspired by the SVD/PCA decomposition where, if Zy = Z,
for a fixed day 1 <i < n, it corresponds to the i*h row of Z&I. In this setting, 8 = U¥! S¥¢ as in
Eq. (5). The model ensures that the reconstructed values reflect both the temporal variability observed
at the stations, captured by the coefficients ., and the spatial structure from the RCM, represented
by the restricted patterns Vsr,ivd, while remaining computationally efficient and interpretable. The
coefficients are estimated indef)endently for each day of the interpolation period, yielding a sequence
of regression vectors ;. These coefficients capture local temporal information by describing how the
amplitudes of the spatial patterns evolve from day to day. To reconstruct the complete field over the
RCM grid for each day, the coefficients (; are applied to the full basis of spatial patterns Virlicd. In
other words, Zp,, the vector representing the complete field over the RCM grid for the same day as Z,
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in Eq. (6) is estimated as follows : X o
Zy =V B+ 28, (7)

where By is the vector of fitted regression coefficients from Eq. (6).

5 Model evaluation and hyperparameters selection

For each meteorological variable, interpolation was performed independently for each day and then
aggregated over the interpolation period. For precipitation, a transformation of the form log(exp(-)—1)
was applied prior to interpolation to enforce positivity. To ensure the transformation remained valid,
precipitation values were first bounded below by 107°. After interpolation, the results were back-
transformed to the original units using (log(exp(:) — 1)). Additionally, following Werner et al. (2019),
interpolated precipitation values below 0.5 after being back-transformed were set to zero; otherwise,
the interpolated values were retained.

Since interpolation is performed independently for each day, the training, validation, and test sets
are defined in terms of grid cells. The training set consists of the virtual gauged stations, representing
a proportion of the total grid cells equal to the network density. The test set includes the remaining
grid cells, representing N = 100-density % of the total, see Table 1. A validation set is also defined
by randomly selecting N% of the training grid cells. Using the same percentage N% for both the
validation and test sets allows for a consistent and comparable assessment of the interpolation models’
generalization capacity on each set.

5.1 Hyperparameters selection

For each interpolation method, hyperparameters are selected to maximize performance on the
validation set, which is withheld from the training set. In principle, since interpolation is performed
day by day, one could select a different set of optimal hyperparameters for each day. However, to simplify
the procedure, we instead select hyperparameters based on global performance—i.e., the values that
yield the best average performance on the validation set across all days in the interpolation period.
While this may not be optimal for every individual day, it is a reasonable and pragmatic choice, as
our goal is to identify models that perform well overall across the interpolation period.

For the baseline interpolation methods (OK, KED, and IDW ; see § 3), the hyperparameters consi-
dered are as follows : for OK and KED, the variogram model (Gaussian, Spherical, Exponential) ; and
for IDW, the weighting power (1, 2, 3, 4, 5). For the proposed method, SPR (see § 4), the number
of spatial patterns (k in Eq. (5)) must be selected. Since the maximum number of spatial patterns
typically corresponds to the number of grid cells, which varies across regions of different sizes (see
Table 1), we define the hyperparameter as a percentage (10% to 90%) of this maximum to ensure a
consistent search across all regions. See § 7 for detailed results on the selected hyperparameters.

5.2 Performance evaluation

Each interpolation method is retrained on the full training set using the optimal hyperparameters
selected through the training—validation procedure described in 5.1. Performance is then evaluated by
comparing the true values z; with the corresponding interpolated values Z; from each method, where
j denotes a grid cell in the test set. Two metrics are used for performance evaluation. The first metric
is the Root Mean Squared Error (RMSE), a standard measure in regression tasks in general, and in
interpolation settings in particular. It is computed for each day in the interpolation period as :

d’

23— ), (®)

j=1
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where d’ = p — d, the number of grid cells in the test set; and averaged globally over the interpolation
period. The second metric is the Structural Similarity Index Measure (SSIM), commonly used to assess
the similarity between a compressed and an original image by considering luminance, contrast, and
structure (Wang et al., 2004; Mirbod et al., 2022; Falola et al., 2024). It can be extended to quantify
differences in spatial structure between two gridded datasets (Wang et al., 2004). Higher SSIM values
indicate better reconstruction, with 1 representing perfect similarity and -1 representing complete
dissimilarity. SSIM is computed on interpolated values for each interpolation day as :

(2pzps + C1) (2025 + C3)
(12 + p2 +C) (02 + 02+ Ca)’

(9)

where all quantities are computed over the test set grid cells indexed by 1 < j < d’; specifically, p,
and pz are the mean values of the true values z; and the interpolated values Z;, respectively ; o2 and
2 are their respective variances; o,z is the covariance between z; and 2;; and C; and Cy are small

constants used for numerical stabilization.

g

6 Results

We first present an overall comparison of the three baseline methods with SPR across all graded
case studies (see § 6.1). We then place the interpolation methods KED—the best-performing baseline
method—and SPR under greater challenge by considering a realistic stress-test case study with a
network density of 0.1% (see § 6.2). In § 6.3, we assess the effect of individual factors—namely, network
density, region size, and region location (see Table 1)—on the interpolation performance of SPR.

6.1 Overall comparison

The three baseline methods and SPR are assessed across all graded case studies by computing daily
RMSE (Eq. (8)) and SSIM (Eq. (9)) over the test grid cells. These daily scores are then averaged over
the interpolation period (see Fig. 5 for the southern region and Fig. 6 for the northern region). Each
panel in the figures corresponds to a specific variable and region size, with each symbol representing the
performance of a given interpolation method at a specific network density. The x-axis shows RMSE,
and the y-axis shows 1-SSIM ; thus, symbols closer to the origin (0,0) indicate better performance.

The proposed method, SPR, shows strong and consistent performance across all three variables —
precipitation, minimum temperature, and maximum temperature—in the majority of case studies. In
the southern region, for both medium and large sizes (Fig. 5), SPR achieves the best results, with the
lowest RMSE and highest SSIM for all three variables. However, KED and OK slightly outperform
it for precipitation in the large region at 10% station density. In the small southern region, SPR
generally ranks first, although KED and OK perform slightly better for precipitation at 30% density.
For minimum and maximum temperatures in the small region with 10% density, SPR and KED perform
similarly.

Across methods, OK and IDW are consistently ranked third and fourth in terms of performance. As
in the southern region, SPR remains the top-performing method in most northern region case studies
(Fig. 6), followed by KED, while OK and IDW trail behind.

From a station density of 50% and above, SPR clearly outperforms all baseline methods, regardless
of region size or geographic location. At lower densities (< 50%), the competition is mainly between
SPR and KED, with similar trends observed in both regions. KED performs slightly better in specific
cases : 10% density in large southern regions, 30% density in medium and small southern regions for
precipitation, and lowest densities for minimum and maximum temperatures in small southern regions.
In some of these situations, KED achieves the lowest RMSE, while SPR maintains better SSIM—for
example, in the large northern region for precipitation at 10% density.
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This trade-off between RMSE and SSIM generally favors SPR, which tends to better preserve
the structural patterns of the virtual observations across most scenarios. Overall, out of 90 synthetic
configurations, KED outperforms SPR. in just six cases and matches its performance in three.
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Figure 5 — Comparison of the three baseline methods and SPR in the southern region, in terms of averaged RMSE (x-axis)
and averaged 1-SSIM (y-axis). Each column represents a specific meteorological variable, while each row corresponds
to a region size—ranging from the largest at the top to the smallest at the bottom. Each color represents a different
interpolation method, and each plotting symbol corresponds to a specific network density. The closer a symbol is to the
origin, the better the performance.

6.2 Realistic stress-test case study

We designed the following stress-test case study to reflect the main challenge faced by spatial
interpolation : the often very low density of station networks. Indeed, especially in remote regions,
the number of gauged stations tends to be very low across vast areas. To evaluate the performance
of KED and SPR under these typical practical conditions, we selected the larger region in northern
Quebec (see Fig. 1b), consisting of 2,970 grid cells. Only three of these grid cells—approximately 0.1%
of the total—were randomly selected to serve as virtual stations. The hyperparameters—the variogram
model for KED and the number of eigenvectors for SPR—are set to the same values as those selected
for the region of the same size with the lowest station network density. The results, reported in Table 2,
show that SPR has the lowest average and median RMSE for all variables. It 