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tifique.

The series Les Cahiers du GERAD consists of working papers carried
out by our members. Most of these pre-prints have been submitted
to peer-reviewed journals. When accepted and published, if necessary,
the original pdf is removed and a link to the published article is
added.

Suggested citation: V. Houssou, J. Carreau (July 2025). Spatial
pattern regression for gridded meteorological data: A precipitation
and temperature case study, Technical report, Les Cahiers du
GERAD G–2025–48, GERAD, HEC Montréal, Canada.
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3000, chemin de la Côte-Sainte-Catherine
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Abstract : We introduce Spatial Pattern Regression (SPR), a method to generate gridded historical
meteorological data for climate adaptation. SPR operates in two steps : first extracting spatial structure
from high-resolution regional climate model (RCM) simulations as eigenvectors, then using them in
linear regression to reconstruct complete gridded fields from station observations at each time step. We
compare SPR with standard interpolation methods using data from RCM simulations, where virtual
stations are a subset of grid cells and interpolation is done on the rest. Thirty graded case studies
are created by varying three factors : region location, size, and network density. Daily precipitation,
maximum temperature, and minimum temperature are considered. Results show SPR outperforms
standard methods across all three variables for most of the graded case studies. A stress-test with very
low network density confirms SPR’s robustness. Finally, we systematically assessed how each graded
factor affects SPR’s performance.

Keywords : Spatial interpolation, principal component analysis, linear regression, high resolution
climate simulations, synthetic data framework
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1 Introduction

Climate change is intensifying meteorological hazards like heatwaves, extreme weather events, and

flooding, triggering an escalating cascade of economic and societal impacts (Warren et al., 2022). To

support better adaptation measures, impact studies rely on high-resolution gridded meteorological data

that must accurately represent extreme events and spatial heterogeneity. For instance, Lucas-Picher

et al. (2020) aimed to reproduce the extreme flood of the Richelieu River in southern Quebec, Canada,

which occurred in the spring of 2011. A key factor in achieving this was the use of a recent gridded

hydrometeorological dataset—including precipitation, maximum, and minimum temperatures—at a

resolution of approximately 7 km, which accounted for orographic precipitation (Livneh et al., 2015).

In addition, Lauer et al. (2023) investigated the urban heat island effect during two high-temperature

events lasting 2 to 3 days by evaluating various land use–based mitigation strategies. To support

their analysis, they relied on high-resolution numerical weather prediction data—including surface air

temperature, dew point temperature, and rainfall—at a horizontal resolution of 250 meters.

In most cases, gridded meteorological data are obtained through one of three main approaches :

spatial interpolation, physics-based models such as numerical weather prediction or regional climate

models, or reanalysis datasets. Spatial interpolation—the first approach—involves statistical techniques

that use observed values of meteorological variables at gauged sites to estimate values at ungauged

locations. To address the sparsity of gauged locations, auxiliary data available on high-resolution grids

and predictive of the meteorological variable of interest are often used. For example, Livneh et al. (2015)

used a technique called inverse distance weighting, in which observations from neighboring sites are

weighted inversely proportional to their distance from the target location. To enhance the interpolation,

orographic scaling was applied using data that incorporate topographic information. Another example

is Werner et al. (2019), who used a thin-plate spline interpolation algorithm that incorporates high-

resolution gridded climatology data. In some cases, impact studies rely on gridded meteorological

data produced by numerical weather prediction (NWP) models—the second of the three approaches

listed above. NWP uses physics-based models—complex numerical frameworks that integrate multiple

physical processes such as atmospheric dynamics, convection, and radiation. These models aim to

predict the state of the atmosphere as accurately as possible, supporting both short- to medium-range

weather forecasts (from minutes to months) and longer-term climate projections (from months to

several decades). In the latter case, the NWP model is typically referred to as a climate model. This

type of gridded data was used in the urban heat island study discussed above (Lauer et al., 2023).

Another example of such gridded data is Climex, a 50-member ensemble of regional climate simulations

with a spatial resolution of approximately 11 km (Leduc et al., 2019). In particular, Faghih and

Brissette (2023) used Climex data—after applying a bias correction step—to study the effect of climate

change on extreme rainfall and flooding. Lastly, reanalysis datasets—the third approach—are gridded

meteorological data produced by numerical weather prediction models that incorporate observational

data through data assimilation. Reanalysis aims to address some of the limitations of raw NWP

outputs, such as discrepancies with observed weather conditions and systematic biases. An example of

a high-resolution reanalysis dataset is CaSR, which provides precipitation and other surface variables

at a spatial resolution of 10 km over North America (Gasset et al., 2021). Another prominent example

is ERA-Land, a global reanalysis dataset with a spatial resolution of approximately 9 km (Muñoz

Sabater et al., 2021).

We present an approach called Spatial Pattern Regression (SPR), which can be viewed as an in-

termediate between spatial interpolation and reanalysis. SPR relies on information about the spatial

structure present in gridded meteorological data produced by a climate model—typically a regional

climate model (RCM), which offers sufficiently high resolution. The underlying hypothesis is that the

RCM adequately captures the spatial structure of the meteorological variable of interest. This assump-

tion is similar to that made by spatial interpolation methods that rely on RCM-based climatology (see

Werner et al. (2019), for instance). SPR operates in two steps. In the first step, the spatial structure is

extracted from high-resolution RCM data over the study region. In our implementation, principal com-
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ponent analysis (PCA) is used to identify spatial patterns, which are represented by the eigenvectors

derived from PCA. In this case, the complete field—i.e., the values of the meteorological variable over

the RCM grid—can be represented as a linear combination of the spatial patterns. In the second step,

linear regression is used to reconstruct the full field over the study region for a given time step (in our

application, a day), using observations of the meteorological variable at a number of sites within the

region. Since SPR relies on two statistical techniques—PCA and linear regression—it can be viewed as

a spatial interpolation method that blends spatial information derived from RCM data with temporal

information from gauged stations. At the same time, because it systematically exploits RCM data by

combining it with observations, it also shares similarities with reanalysis. However, unlike reanalysis,

the period covered by the RCM data does not need to coincide with the observation period. See § 4

for a detailed explanation of the SPR methodology.

SPR is compared with standard spatial interpolation methods—considered baseline approaches and

frequently used in the literature—namely, inverse distance weighting, ordinary kriging, and kriging

with external drift. See § 3 for their description. To evaluate and compare the spatial interpolation

methods, we introduce graded case studies based on a synthetic data framework, where the rationale is

to control the experimental setup and enable systematic comparisons. The field—i.e., high-resolution

gridded meteorological data at a given time step—provided by an RCM is considered the ground truth.

A subset of grid cell values is treated as ”observations,” with interpolation aiming to reconstruct the

values at the remaining grid cells. This setup allows us to generate a large number of graded case studies,

which would not be feasible if ground truth were based on gauged network observations. See § 2 for

a detailed description of the graded case studies. We consider three meteorological variables at daily

resolution—precipitation, minimum temperature, and maximum temperature—which are commonly

used in spatial interpolation for hydrological studies, see for instance Lucas-Picher et al. (2020). All

spatial interpolation methods are applied sequentially, processing one day and one meteorological

variable at a time.

2 Synthetic data framework

Data generated from a regional climate model (see § 2.1) are used exclusively in order to have total

control of the data, eliminating common issues in station data—such as biases, missing observations,

sparse coverage in certain regions, instrument failures, inconsistencies in historical records, and discon-

tinuities in spatial and temporal coverage. More precisely, in the proposed synthetic data framework,

we assumed that virtual gauged stations, i.e., where synthetic observations are available, correspond to

a subset of the grid cells. The remaining cells are used as locations where to carry out the interpolation

and thus serve to assess the performance. The graded case studies, see § 2.2, are organized according

to different levels of complexity regarding station network density, region size and region location.

2.1 Regional climate model data : Study regions and periods

The ClimEx project investigated the impacts of climate change on extreme meteorological and

hydrological events using the Canadian Regional Climate Model over two domains : one in Europe and

one in NorthAmerica (Leduc et al., 2019). Among the available meteorological variables, we selected

daily precipitation (converted from kg/m2/s to mm/day), minimum temperature, and maximum tem-

perature (both converted from Kelvin (K) to degrees Celsius (◦C)). From the period covered by the

ClimEx project (1950–2099), we defined an auxiliary period (1980–2009) and an interpolation period

(2000–2009). The auxiliary period is used to extract the auxiliary information—such as the climatology

or spatial patterns (see § 3–4)— while the interpolation period is the period over which interpolation

is performed. It is important to note that the auxiliary and interpolation periods are not required to

overlap ; however, overlapping periods do not pose a problem.

The North-American domain spans a regular grid of size 280 x 280 (78400 cells) with a grid cell size

of approximately 11km (see the dark red rectangle in Fig. 1a). Within the subdomain outlined in black
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(a) North American domain of the ClimEx project (dark red rec-
tangle) and subdomain (black rectangle) considered in Fig. 1b.

(b) Two study regions—referred to as the south and north regions—
within the subdomain outlined in black in Fig. 1a, shown at three
different sizes (in different colours).

Figure 1 – Spatial domains used in this study.

in Fig. 1a) we selected two study regions, see Fig. 1b : one in the south and one in the north. Different

nested sub-regions were created within each study region to enrich the experimental framework. In the

following, we present statistical analyses comparing the northern and southern regions, focusing on

the larger area (blue rectangles in Fig. 1b), to assess climatic differences during the auxiliary period

(1980–2009).

The first notable difference between the two regions lies in their daily averages. A Student’s t-test

conducted at a 95% confidence level reveals that the average daily precipitation, minimum temperature,

and maximum temperature are all significantly higher in the southern region compared to the northern

region. Additionally, climatologies—representing long-term seasonal mean values— are shown in Fig 2.

While confirming that average values are higher in the south than in the north, the precipitation

climatologies also indicate distinct seasonal behaviours between the two regions.

(a) Precipitation (b) Minimum and maximum temperature

Figure 2 – Climatology of each meteorological variable in the larger study regions (blue rectangles in Fig. 1b) during the
auxiliary period (1980–2009).
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Moreover, the two regions exhibit different spatial variability. This variability is first assessed by

comparing the number of components required in a Principal Component Analysis (PCA) decompo-

sition to capture 90% of the total variance of a given meteorological variable. A greater number of

components indicates a higher level of spatial complexity in the data. For precipitation, at least 50

components were needed to capture 90% of the variance in the southern region, compared to only

27 in the northern region, indicating greater spatial complexity in the south. In contrast, for both

minimum and maximum temperatures, a single component was sufficient in each region. Furthermore,

spatial variability is assessed by comparing semivariance plots (see Fig. 3). Semivariance measures how

dissimilar variable values become with distance, with low values indicating strong similarity between

nearby points, and high values reflecting greater dissimilarity over larger distances. The plots show that

the semivariance in the southern region is significantly higher than in the northern region, with the

difference becoming more pronounced as the distance increases. This suggests that spatial variability

is greater in the south.

(a) Precipitation (b) Minimum and maximum temperature

Figure 3 – Semivariance plots for each meteorological variable in the larger study regions (blue rectangles in Fig. 1b)
during the auxiliary period (1980–2009).

2.2 Graded case studies

We designed various case studies with controlled complexity for each of the two selected regions

(see Fig. 1b) by varying two factors : the size of the region and the density of the virtual gauged station

network. The region size can take one of three values—large, medium, or small (corresponding to the

nested rectangles in Fig. 1b)—while the network density can take one of five values : 10%, 30%, 50%,

70%, or 90%. In total, 30 case studies were designed, varying by region location, size, and network

density (see Table 1).

3 Baseline interpolation methods

Common spatial interpolation methods from the literature serve as baselines to evaluate Spatial

Pattern Regression (SPR), the newly proposed method in this work which is described in § 4. Let Z

denote the random field of the meteorological variable of interest such that Z(s) represents the random

variable at location s. The baseline interpolation methods considered operate by computing a weighted

average of the observed values at nearby stations, with the general formula given as follows (Li and
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Heap, 2014; Bokke, 2017) :

ẑ0 =

n∑
i=1

wizi (1)

with ẑ0 the estimated value of Z(s0), the random field at the point of interest s0 ; wi the weight assigned

to point si ; zi the observed value of Z(si) at point si ; si the geographic coordinates of location i (e.g.,

si = (sloni , slati ), the longitude and latitude) ; n the number of neighbouring points used to make the

estimate.

Table 1 – Graded case study framework : For each region location (south or north), three region sizes (S, M, or L) and five
network density levels (from 90% to 10%) are considered. The number of missing grid cells—where interpolation must
be performed—is given by : (100 - density) x total number of grid cells.

Region South Region North

Size L Size M Size S Size L Size M Size S

Total # of grid cells 3025 1332 342 2970 1332 342

Network density # of missing grid cells

90% 303 133 34 297 133 34
70% 908 400 103 891 400 103
50% 1523 666 171 1485 666 171
30% 2118 932 239 2079 932 239
10% 2723 1199 308 2673 1199 308

3.1 Inverse Distance Weighting (IDW)

Inverse Distance Weighting (IDW) is a deterministic and univariate method (Hartkamp et al., 1999;

Li and Heap, 2008; Tan and Xu, 2014). It involves weighting the values of neighboring observation

stations by the inverse of the distance from the point of interest to these stations (Li and Heap, 2011,

2014; Sokolchuk and Sokac, 2022; Amin Burhanuddin et al., 2015; Pavão et al., 2012; Zimmerman

et al., 1999). The closer a station is to the point of interest, the more influence its value will have on

the interpolation result (Margaritidis, 2024; Li and Heap, 2008; Bokke, 2017). The formula used for

the weights is :

wi =

1
dp
i∑n

i=1
1
dp
i

(2)

with di =
√
(sloni − slon0 )2 + (slati − slat0 )2 the distance between the point of interest s0 and station

i where p ≥ 1 controls the relative importance of the distance ; n the number of stations in the

neighbourhood ; Wi the weight associated with the value of each station i.

The value of the power parameter p can have a significant impact on the interpolation results

(Hartkamp et al., 1999). These weights, whose sum equals one, are used in IDW interpolation with

the general formula (see (1)).

3.2 Ordinary Kriging (OK)

Ordinary Kriging (OK) is the most widely used method within the broader family of Kriging me-

thods (Li and Heap, 2008; Margaritidis, 2024; Snepvangers et al., 2003). It assumes that the spatial

correlation between observation points can explain the variability across the entire surface (Sokolchuk

and Sokac, 2022). It is a statistical (or geostatistical) method capable of providing a measure of uncer-

tainty related to predictions (Bokke, 2017; Pavão et al., 2012). OK estimates are optimal, unbiased,

and have minimum variance. The OK model is

Z(s0) = µ+ ϵ(s0) (3)
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with µ a constant (or global average) and ϵ(s0) a stochastic residual with mean zero and spatial auto-

correlation modelled using a so-called variogram function (e.g., exponential), which describes how the

correlation between observation points decreases as the distance between them increases. The kriging

weighting wi used in (1) are determined by solving a system of linear equations which involves the

variogram function. KO assumes stationary autocorrelation, meaning that the amount of correlation

depends only on the distance between points, and isotropy, meaning that the autocorrelation behavior

is the same in all directions.

3.3 Kriging with External Drift (KED)

Kriging with External Drift (KED) is a version of Kriging where the external drift introduces a

trend represented as a linear function of only one auxiliary variable (Hartkamp et al., 1999; Varentsov

et al., 2020). The auxiliary variable—in our implementation, we use the climatology—is any variable

that is thought to have an influence on the primary variable. The KED model is :

Z(s0) = µ(s0) + ϵ(s0) (4)

with µ(s0) = a + b X(s0) the external drift, a function of the auxiliary variable X at point s0 ; ϵ(s0)

a stochastic residual with mean zero and spatial auto-correlation modelled using a variogram function

as in OK. The prediction formula of KED (Hengl et al., 2003) is equivalent to that of OK, except that

the weights Wi used in (1) are determined by taking into account the external drift. As in OK, KED

assumes stationary autocorrelation and isotropy.

4 Spatial pattern regression (SPR)

We present the methodology of Spatial Pattern Regression (SPR), the method newly proposed in

this work. SPR relies on a representative basis of spatial patterns defined over a high-resolution grid

covering the study region. A spatial pattern of a given variable is a recurrent spatial organization of

that variable (Carreau and Guinot, 2021). The underlying rationale of SPR is that each field of a given

meteorological variable on a given day can be expressed as a function of the spatial patterns in the

basis. The first step (see Step 1 in Fig. 4 and § 4.1) thus consists in extracting spatial patterns, which,

in our implementation, correspond to the eigenvectors derived from applying PCA to the gridded

RCM data. These eigenvectors form a basis that captures the dominant spatial variability present in

the data. The second step (see Step 2 in Fig. 4 and § 4.2) consists in integrating temporal information

(for a given day, in our case) from values at the observation sites with spatial information captured by

the spatial patterns. In our implementation, Step 2 produces a complete field over the study region by

performing multiple linear regression to determine the linear combination of the spatial patterns that

best matches the observations for that day.

4.1 Identification of a representative basis of spatial patterns

The basis of spatial patterns is identified using PCA, computed via Singular Value Decomposition

(SVD) (Link et al., 2019). In what follows, boldface capital letters are used to denote matrices. Let

Zgrid
n,p denote the gridded RCM data, where n is the number of time steps (days) in the auxiliary period

and p is the number of grid cells in the region considered. Applying SVD to Zgrid
n,p with k singular

vectors, we obtain the following decomposition :

Zgrid
n,p = Ugrid

n,k Sgrid
k,k (Vgrid

p,k )T + (Z̄grid
p 1Tn )

T (5)

where Ugrid
n,k is the matrix of left singular vectors, Sgrid

k,k is the diagonal matrix of singular values, Vgrid
p,k

is the matrix of right singular vectors (corresponding to the eigenvectors in PCA), T denotes the

transpose operation, 1n is a vector of ones of length n and Z̄grid
p is a vector of length p that contains

the columnwise average of Zgrid
n,p . The basis of spatial patterns, V

grid
p,k , are used (see § 4.2) to reconstruct

a complete field over the study region by leveraging the observations at gauged stations.
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Figure 4 – SPR framework illustration : Step 1 extracts spatial patterns from high-resolution climate model data. Step 2 fits
a linear model between observations at gauged stations and the corresponding restricted spatial patterns. The coefficients
of the linear model thus contain the appropriate temporal information to reconstruct complete gridded fields using the full
spatial patterns.

4.2 Spatio-temporal integration

The purpose of the regression model is to accurately reproduce the observed values at the gauged

locations using a linear combination of k spatial patterns. To this end, only the grid cells corresponding

to the virtual gauged stations are retained, meaning the spatial patterns are restricted to this reduced

set of grid cells. Let Zd = (Z(s1), . . . , Z(sd))
T

denote the vector of random variables representing

the meteorological variable at the d gauged stations for a given day. The spatial extent of the spatial

patterns is restricted to correspond precisely to the locations of these stations. The spatial patterns

Vgrid
p,k , originally of dimensions p × k, are thus restricted to spatial patterns Vgrid

d,k , with dimensions
d× k, where d < p.

We assume the following linear model to characterize the relationship between the vector of random

variables Zd—centered using Z̄grid
d , the mean values from the RCM data—and the restricted spatial

patterns :

Zd − Z̄grid
d = Vgrid

d,k βk + ϵd (6)

with βk the vector of spatial patterns coefficients of length k and ϵd the vector of random errors of length

d for the day considered. This model is inspired by the SVD/PCA decomposition where, if Zd = Zp

for a fixed day 1 ≤ i ≤ n, it corresponds to the ith row of Zgrid
n,p . In this setting, βk = Ugrid

i,k Sgrid
k,k as in

Eq. (5). The model ensures that the reconstructed values reflect both the temporal variability observed

at the stations, captured by the coefficients βk, and the spatial structure from the RCM, represented

by the restricted patterns Vgrid
d,k , while remaining computationally efficient and interpretable. The

coefficients are estimated independently for each day of the interpolation period, yielding a sequence

of regression vectors βk. These coefficients capture local temporal information by describing how the

amplitudes of the spatial patterns evolve from day to day. To reconstruct the complete field over the

RCM grid for each day, the coefficients βk are applied to the full basis of spatial patterns Vgrid
p,k . In

other words, Zp, the vector representing the complete field over the RCM grid for the same day as Zd
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in Eq. (6) is estimated as follows :

Ẑp = Vgrid
p,k β̂k + Z̄grid

p , (7)

where β̂k is the vector of fitted regression coefficients from Eq. (6).

5 Model evaluation and hyperparameters selection

For each meteorological variable, interpolation was performed independently for each day and then

aggregated over the interpolation period. For precipitation, a transformation of the form log(exp(·)−1)

was applied prior to interpolation to enforce positivity. To ensure the transformation remained valid,

precipitation values were first bounded below by 10−5. After interpolation, the results were back-

transformed to the original units using (log(exp(·)− 1)). Additionally, following Werner et al. (2019),

interpolated precipitation values below 0.5 after being back-transformed were set to zero ; otherwise,

the interpolated values were retained.

Since interpolation is performed independently for each day, the training, validation, and test sets

are defined in terms of grid cells. The training set consists of the virtual gauged stations, representing

a proportion of the total grid cells equal to the network density. The test set includes the remaining

grid cells, representing N = 100-density % of the total, see Table 1. A validation set is also defined

by randomly selecting N% of the training grid cells. Using the same percentage N% for both the

validation and test sets allows for a consistent and comparable assessment of the interpolation models’

generalization capacity on each set.

5.1 Hyperparameters selection

For each interpolation method, hyperparameters are selected to maximize performance on the

validation set, which is withheld from the training set. In principle, since interpolation is performed

day by day, one could select a different set of optimal hyperparameters for each day. However, to simplify

the procedure, we instead select hyperparameters based on global performance—i.e., the values that

yield the best average performance on the validation set across all days in the interpolation period.

While this may not be optimal for every individual day, it is a reasonable and pragmatic choice, as

our goal is to identify models that perform well overall across the interpolation period.

For the baseline interpolation methods (OK, KED, and IDW ; see § 3), the hyperparameters consi-

dered are as follows : for OK and KED, the variogram model (Gaussian, Spherical, Exponential) ; and

for IDW, the weighting power (1, 2, 3, 4, 5). For the proposed method, SPR (see § 4), the number

of spatial patterns (k in Eq. (5)) must be selected. Since the maximum number of spatial patterns

typically corresponds to the number of grid cells, which varies across regions of different sizes (see

Table 1), we define the hyperparameter as a percentage (10% to 90%) of this maximum to ensure a

consistent search across all regions. See § 7 for detailed results on the selected hyperparameters.

5.2 Performance evaluation

Each interpolation method is retrained on the full training set using the optimal hyperparameters

selected through the training–validation procedure described in 5.1. Performance is then evaluated by

comparing the true values zj with the corresponding interpolated values ẑj from each method, where

j denotes a grid cell in the test set. Two metrics are used for performance evaluation. The first metric

is the Root Mean Squared Error (RMSE), a standard measure in regression tasks in general, and in

interpolation settings in particular. It is computed for each day in the interpolation period as :√√√√ 1

d′

d′∑
j=1

(zj − ẑj)2, (8)
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where d′ = p− d, the number of grid cells in the test set ; and averaged globally over the interpolation

period. The second metric is the Structural Similarity Index Measure (SSIM), commonly used to assess

the similarity between a compressed and an original image by considering luminance, contrast, and

structure (Wang et al., 2004; Mirbod et al., 2022; Falola et al., 2024). It can be extended to quantify

differences in spatial structure between two gridded datasets (Wang et al., 2004). Higher SSIM values

indicate better reconstruction, with 1 representing perfect similarity and -1 representing complete

dissimilarity. SSIM is computed on interpolated values for each interpolation day as :

(2µzµẑ + C1)(2σzẑ + C2)

(µ2
z + µ2

ẑ + C1)(σ2
z + σ2

ẑ + C2)
, (9)

where all quantities are computed over the test set grid cells indexed by 1 ≤ j ≤ d′ ; specifically, µz

and µẑ are the mean values of the true values zj and the interpolated values ẑj , respectively ; σ
2
z and

σ2
ẑ are their respective variances ; σzẑ is the covariance between zj and ẑj ; and C1 and C2 are small

constants used for numerical stabilization.

6 Results

We first present an overall comparison of the three baseline methods with SPR across all graded

case studies (see § 6.1). We then place the interpolation methods KED—the best-performing baseline

method—and SPR under greater challenge by considering a realistic stress-test case study with a

network density of 0.1% (see § 6.2). In § 6.3, we assess the effect of individual factors—namely, network

density, region size, and region location (see Table 1)—on the interpolation performance of SPR.

6.1 Overall comparison

The three baseline methods and SPR are assessed across all graded case studies by computing daily

RMSE (Eq. (8)) and SSIM (Eq. (9)) over the test grid cells. These daily scores are then averaged over

the interpolation period (see Fig. 5 for the southern region and Fig. 6 for the northern region). Each

panel in the figures corresponds to a specific variable and region size, with each symbol representing the

performance of a given interpolation method at a specific network density. The x-axis shows RMSE,

and the y-axis shows 1-SSIM ; thus, symbols closer to the origin (0,0) indicate better performance.

The proposed method, SPR, shows strong and consistent performance across all three variables —

precipitation, minimum temperature, and maximum temperature—in the majority of case studies. In

the southern region, for both medium and large sizes (Fig. 5), SPR achieves the best results, with the

lowest RMSE and highest SSIM for all three variables. However, KED and OK slightly outperform

it for precipitation in the large region at 10% station density. In the small southern region, SPR

generally ranks first, although KED and OK perform slightly better for precipitation at 30% density.

For minimum and maximum temperatures in the small region with 10% density, SPR and KED perform

similarly.

Across methods, OK and IDW are consistently ranked third and fourth in terms of performance. As

in the southern region, SPR remains the top-performing method in most northern region case studies

(Fig. 6), followed by KED, while OK and IDW trail behind.

From a station density of 50% and above, SPR clearly outperforms all baseline methods, regardless

of region size or geographic location. At lower densities (< 50%), the competition is mainly between

SPR and KED, with similar trends observed in both regions. KED performs slightly better in specific

cases : 10% density in large southern regions, 30% density in medium and small southern regions for

precipitation, and lowest densities for minimum and maximum temperatures in small southern regions.

In some of these situations, KED achieves the lowest RMSE, while SPR maintains better SSIM—for

example, in the large northern region for precipitation at 10% density.
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This trade-off between RMSE and SSIM generally favors SPR, which tends to better preserve

the structural patterns of the virtual observations across most scenarios. Overall, out of 90 synthetic

configurations, KED outperforms SPR in just six cases and matches its performance in three.

(a) Precipitation (b) Minimum temperature (c) Maximum temperature

Figure 5 – Comparison of the three baseline methods and SPR in the southern region, in terms of averaged RMSE (x-axis)
and averaged 1-SSIM (y-axis). Each column represents a specific meteorological variable, while each row corresponds
to a region size—ranging from the largest at the top to the smallest at the bottom. Each color represents a different
interpolation method, and each plotting symbol corresponds to a specific network density. The closer a symbol is to the
origin, the better the performance.

6.2 Realistic stress-test case study

We designed the following stress-test case study to reflect the main challenge faced by spatial

interpolation : the often very low density of station networks. Indeed, especially in remote regions,

the number of gauged stations tends to be very low across vast areas. To evaluate the performance

of KED and SPR under these typical practical conditions, we selected the larger region in northern

Quebec (see Fig. 1b), consisting of 2,970 grid cells. Only three of these grid cells—approximately 0.1%

of the total—were randomly selected to serve as virtual stations. The hyperparameters—the variogram

model for KED and the number of eigenvectors for SPR—are set to the same values as those selected

for the region of the same size with the lowest station network density. The results, reported in Table 2,

show that SPR has the lowest average and median RMSE for all variables. It also achieves the highest

SSIM for minimum and maximum temperature, except for precipitation, where KED yields a higher

SSIM.
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(a) Precipitation (b) Minimum temperature (c) Maximum temperature

Figure 6 – Comparison of the three baseline methods and SPR in the northern region, in terms of RMSE (x-axis) and 1-SSIM
(y-axis). Each column represents a specific meteorological variable, while each row corresponds to a region size—ranging
from the largest at the top to the smallest at the bottom. Each color represents a different interpolation method, and each
plotting symbol corresponds to a specific network density. The closer a symbol is to the origin, the better the performance.

Table 2 – Realistic stress-case study : daily RMSE statistics (mean, median, standard deviation (SD) and 2.5% and 97.5%
quantiles) and average SSIM values for each variable and interpolation method. Lower RMSE and higher SSIM values
indicate better performance. The best values for average and median RMSE, as well as SSIM, are shown in bold.

Variable Method
RMSE

SSIM
Mean Median SD 2.5% 97.5%

PR
SPR 3.18 1.97 3.63 0.01 13.17 0.6654
KED 3.39 2.16 4.06 0.04 14.02 0.8044

TMIN
SPR 3.53 3.19 1.8 1.08 7.79 0.9636
KED 3.99 3.54 2.10 1.24 9.00 0.9541

TMAX
SPR 2.59 2.29 1.39 0.86 6.10 0.9757
KED 2.97 2.59 1.61 1.01 7.09 0.9687

To illustrate the differences in the internal mechanisms of SPR and KED, complete interpolated

fields along with the corresponding ground truth (i.e., synthetic observations) are shown for three

different days for each of the following variables : precipitation, minimum temperature, and maximum

temperature (see Fig. 7). In addition, the corresponding spatial RMSE is presented in Fig. 8. KED

interpolated fields are more strongly correlated with the climatology than SPR’s (average Spearman

correlation : 0.9997 for KED and 0.7910 for SPR) across the three variables on the three different

days considered in Fig. 7 and Fig. 8. However, SPR interpolated fields are structurally more similar

to the observations (average SSIM : 0.4151 for SPR and 0.2504 for KED). This suggests that, when
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observational information is limited, KED relies heavily on the auxiliary data provided as external drift.

In contrast, SPR is able to generate fields that resemble the climatology, even though the climatology

is not explicitly used as input.

(a) OBS (b) KED (c) SPR

Figure 7 – Realistic stress-case study : interpolated fields of SPR and KED over the larger north region. The observed
fields (ground truth) are also included. Green squares indicate the virtual station locations. Solid squares indicate that KED
does not interpolate at virtual station locations. Rows correspond to precipitation, minimum temperature, and maximum
temperature (top to bottom) on three different days.

6.3 Sensitivity of SPR to individual factors

A factor-wise assessment of SPR is conducted across all three meteorological variables (see Table 1

for the list of factors and their corresponding values).

6.3.1 Effect of station network density

We investigate the influence of network density on the performance of SPR in terms of RMSE,

averaged over all days in the interpolation period. In addition, a 95% confidence band is reported,

computed as the 2.5% and 97.5% quantiles of the daily RMSE values (see Fig. 9 for the region in the

south and Fig. 10 for the region in the north).

We notice that increasing the density of the station network leads to a decrease in average RMSE in

both regions, as expected. Beyond 50% density, further increases in network density lead to only mar-

ginal improvements in error reduction, regardless of region size or region location. Thus, the higher the

station network density, the lower the error and the narrower the confidence interval. Looking at diffe-

rences across the meteorological variables, we find the following. The average RMSE for precipitation
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is higher than that for minimum and maximum temperatures. Additionally, the confidence interval

for precipitation is wider, indicating greater uncertainty in interpolating precipitation compared to

temperature variables.

(a) KED (b) SPR

Figure 8 – Realistic stress-case study : comparison of SPR and KED in the larger northern region, based on their spatial
RMSE. Each column represents a specific method (SPR or KED), while rows represent a specific variable : precipita-
tion, minimum temperature,temperature, from top to bottom. Green squares indicate the virtual station locations. Solid
squares indicate that KED does not interpolate at virtual station locations. Rows correspond to precipitation, minimum
temperature, and maximum temperature (top to bottom), shown on the same three days as in Fig. 7.

6.3.2 Effect of region size

We conduct a similar investigation into the influence of the region size on the performance of SPR,

based on RMSE averages and confidence bands (see Fig. 11 for the southern region and Fig. 12 for the

northern region). Interestingly, the interpolation performance does not decrease steadily with region

size—a somewhat surprising result. For each network density and meteorological variable (precipita-

tion, minimum and maximum temperatures), the average RMSE remains relatively stable across region

sizes in both study areas. In some cases, larger regions show slightly higher RMSE than smaller ones

at the same network density, while smaller regions may exhibit wider confidence bands. However, the

confidence interval becomes wider as the region size decreases. These findings suggest that region size

has limited impact on the average interpolation performance of SPR.
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(a) Precipitation (b) Minimum temperature (c) Maximum temperature

Figure 9 – Assessment of the effect of the station network density on SPR performance : analysis in the southern region, in
terms of averaged RMSE (red dot) and 95% confidence band (in blue). Each column represents a specific meteorological
variable, while each row corresponds to a region size—ranging from the largest at the top to the smallest at the bottom.
For each density (on the x-axis) and variable, a lower RMSE combined with a narrower confidence band indicates better
performance.

6.3.3 Effect of region location

Finally, we examine the influence of region location on the performance of SPR, using boxplots of

the daily RMSE (see Fig. 13). Indeed, as noted in § 2.1, the northern and southern regions exhibit

distinct climatic characteristics, both in terms of magnitude and spatial variability. For each variable

and station network density, the distribution of daily average RMSE is different depending on whether it

is precipitation or temperature (see Fig. 13). For precipitation, the average RMSE is lower in the north

than in the south. This suggests that higher spatial variability—reflected by the need for more PCA

components to explain at least 90% of the variance—leads to higher interpolation errors. In contrast,

for minimum and maximum temperatures, the average RMSE is higher in the north, despite both

regions requiring only one PCA component to reach 90% of the variance. In this case, the difference

is likely due to the shape of the spatial variability, which differs between regions, as shown in the

semivariance plots (see § 2.1).
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(a) Precipitation (b) Minimum temperature (c) Maximum temperature

Figure 10 – Assessment of the effect of the station network density on SPR performance : analysis in northern region, in
terms of averaged RMSE (red dot) and 95% confidence band (in blue). Each column represents a specific meteorological
variable, while each row corresponds to a region size—ranging from the largest at the top to the smallest at the bottom.
For each density (on the x-axis) and variable, a lower RMSE combined with a narrower confidence band indicates better
performance.

7 Discussion and conclusion

In this work, we introduced Spatial Pattern Regression (SPR), a new method for interpolating me-

teorological data by leveraging the spatial structure of regional climate model (RCM) simulations. SPR

first extracts spatial patterns from these simulations as the eigenvectors obtained from an SVD/PCA

decomposition, modeling each meteorological field as a linear combination of these patterns. It then

uses multiple linear regression to estimate the coefficients of this linear combination—i.e., the weights

that best reconstruct the observed values at gauged stations for a given day. The effectiveness of SPR

depends on the representativeness of the extracted spatial patterns and the accuracy of the temporal

information captured through regression. Our results show that SPR delivers accurate estimates and

outperforms baseline interpolation methods (KED, OK, and IDW) in the majority of the graded case

studies within our synthetic data framework. Among the baseline methods, however, KED remains

the strongest, consistent with previous findings by Bishop and McBratney (2001) in the context of soil

property mapping. Our analysis confirmed that station density and region location significantly in-

fluence interpolation performance—findings supported by previous studies such as Stahl et al. (2006);

Li and Heap (2014, 2008) and Wagner et al. (2012).
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(a) Precipitation (b) Minimum temperature (c) Maximum temperature

Figure 11 – Assessment of the effect of the region size on SPR performance : analysis in the southern region, in terms of
averaged RMSE (red dot) and 95% confidence band (in blue). Each column represents a specific meteorological variable,
while rows represent increasing network densities : 90%, 50% and 10% from top to bottom. For each region size (on the
x-axis) and variable, a lower RMSE combined with a narrower confidence band indicates better performance.

An interesting feature of SPR lies in the fact that it seeks to reproduce the spatial structure

observed in RCM simulations within the interpolated fields. In climate change impact studies—such as

in hydrology—interpolated fields are typically used for calibrating models over historical periods, while

future RCM simulations are used to assess climate change. By aligning the spatial structures of past

interpolated fields with those of future simulations, SPR offers improved consistency between historical

calibration and future projection. Unlike traditional interpolation methods, which may incorporate

auxiliary information such as elevation or RCM-derived climatology in a somewhat ad hoc manner, SPR

offers a systematic and principled approach to integrating such information. The auxiliary period which

serves to extract the spatial patterns must be such that key meteorological events and the variability

relevant to the targeted meteorological variable are well represented. Apart from this requirement, the

auxiliary period can be chosen flexibly and may or may not overlap with the interpolation period when

observations are available. Compared to reanalysis products, SPR is simpler to implement for several

reasons (Gasset et al., 2021). First, as previously mentioned, the auxiliary RCM data used to extract

spatial patterns does not need to cover the same period as the observations. Second, SPR relies on

basic statistical tools—SVD/PCA and linear regression—without requiring complex data assimilation

procedures. Finally, SPR can incorporate other types of auxiliary gridded data that capture spatial

structure, such as elevation, radar, or remote sensing data.



Les Cahiers du GERAD G–2025–48 17

(a) Precipitation (b) Minimum temperature (c) Maximum temperature

Figure 12 – Assessment of the effect of the region size on SPR performance : analysis in the northern region, in terms of
averaged RMSE (red dot) and 95% confidence band (in blue). Each column represents a specific meteorological variable,
while rows represent increasing network densities : 90%, 50% and 10% from top to bottom. For each region size (on the
x-axis) and variable, a lower RMSE combined with a narrower confidence band indicates better performance.

There are several possible avenues for improving SPR. One potential enhancement is to move

beyond selecting a fixed number of leading spatial patterns and instead allow, for each time step,

the selection of any subset—not necessarily the top n% based on explained variance. This added

flexibility could help capture distinctive features that may appear in lower-ranked eigenvectors, which

are often overlooked in the current approach. Additionally, SPR currently fits one regression per day

independently, ignoring the temporal continuity of the patterns. A global modeling approach that

captures temporal dependencies—given the relatively stable nature of spatial patterns—could improve

performance, as suggested by Amato et al. (2020). In summary, SPR offers a promising and efficient

alternative for spatial interpolation, with demonstrated accuracy. The current version will serve as a

baseline for future developments aimed at incorporating non-linear and temporal dependencies.
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(a) Precipitation (b) Minimum temperature (c) Maximum temperature

Figure 13 – Assessment of the effect of the region location (large size regions) on SPR performance : analysis in terms
of boxplots of daily RMSE. Each column represents a specific meteorological variable, while rows represent increasing
network densities : 90%, 50% and 10% from top to bottom.

Software and data availability

Software used : All analyses were conducted using the R programming language (version 4.4.3)

within Visual Studio Code (VSCode).

Key R packages : bigmemory, bigstatsr, doParallel, foreach, gstat, sf, sp, terra.

Code availability : The analysis scripts are not publicly shared, but can be made available upon

reasonable request to the corresponding author.

Program language : R.

Hardware requirements : PC/Mac/Linux with at least 8GB RAM recommended for full dataset

processing.

Primary data source : Daily climate simulations from the ClimEx project (https://climex-data.

srv.lrz.de/Public/). We used one ensemble member (kcj) from the CanESM2-driven simula-

tions, including variables : precipitation, minimum temperature, and maximum temperature.

Data license : Usage of ClimEx data is subject to their terms of use as described on the ClimEx

portal.

https://climex-data.srv.lrz.de/Public/
https://climex-data.srv.lrz.de/Public/
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Appendix : Selected hyperparameters

Table 3 – SPR Optimal proportion of spatial patterns selected for each variable, region (South and North), and region
size (L, M, S), at different network densities.

Density Variable
Region South Region North

Size L Size M Size S Size L Size M Size S

90%
Precipitation 0.45 0.45 0.45 0.50 0.60 0.50

Minimum Temp. 0.30 0.30 0.30 0.30 0.30 0.25
Maximum Temp. 0.40 0.35 0.35 0.40 0.35 0.35

70%
Precipitation 0.45 0.40 0.45 0.50 0.60 0.45

Minimum Temp. 0.30 0.25 0.30 0.30 0.30 0.30
Maximum Temp. 0.40 0.30 0.35 0.40 0.40 0.40

50%
Precipitation 0.45 0.40 0.40 0.45 0.45 0.40

Minimum Temp. 0.25 0.30 0.30 0.20 0.25 0.25
Maximum Temp. 0.30 0.30 0.40 0.30 0.30 0.30

30%
Precipitation 0.40 0.20 0.30 0.40 0.30 0.30

Minimum Temp. 0.30 0.25 0.25 0.25 0.25 0.25
Maximum Temp. 0.30 0.30 0.25 0.30 0.25 0.25

10%
Precipitation 0.25 0.40 0.50 0.30 0.40 0.50

Minimum Temp. 0.40 0.45 0.50 0.30 0.50 0.50
Maximum Temp. 0.35 0.40 0.50 0.30 0.50 0.50

Table 4 – IDW Optimal weighting powers selected for each variable, region (South and North), and region size (L, M, S),
at different network densities.

Density Variable
Region South Region North

Size L Size M Size S Size L Size M Size S

90%
Precipitation 5 5 5 5 5 5

Minimum Temp. 5 5 5 5 5 5
Maximum Temp. 5 5 5 5 5 5

70%
Precipitation 5 5 5 5 5 5

Minimum Temp. 5 4 5 5 4 5
Maximum Temp. 5 4 5 5 5 5

50%
Precipitation 4 4 4 4 4 4

Minimum Temp. 4 4 4 4 4 4
Maximum Temp. 4 4 4 4 4 4

30%
Precipitation 4 4 4 4 4 4

Minimum Temp. 3 3 3 3 3 3
Maximum Temp. 3 4 4 4 4 4

10%
Precipitation 3 2 2 4 3 3

Minimum Temp. 3 3 2 4 2 2
Maximum Temp. 3 3 4 5 3 3
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Table 5 – OK Optimal kriging models selected for each variable, region (South and North), and region size (L, M, S), at
different network densities.

Density Variable
Region South Region North

Size L Size M Size S Size L Size M Size S

90%
Precipitation Sph Sph Sph Sph Sph Sph

Minimum Temp. Sph Sph Sph Sph Sph Sph
Maximum Temp. Exp Sph Sph Sph Sph Sph

70%
Precipitation Sph Sph Sph Sph Sph Sph

Minimum Temp. Sph Sph Sph Sph Sph Sph
Maximum Temp. Exp Sph Sph Sph Sph Sph

50%
Precipitation Sph Sph Sph Sph Sph Sph

Minimum Temp. Sph Sph Sph Sph Sph Sph
Maximum Temp. Sph Sph Sph Sph Sph Sph

30%
Precipitation Sph Sph Sph Sph Sph Sph

Minimum Temp. Sph Sph Exp Sph Sph Sph
Maximum Temp. Sph Sph Exp Sph Sph Exp

10%
Precipitation Sph Exp Exp Sph Exp Exp

Minimum Temp. Sph Exp Exp Sph Exp Exp
Maximum Temp. Sph Exp Exp Exp Exp Exp

Table 6 – KED Optimal kriging models selected for each variable, region (South and North), and region size (L, M, S),
at different network densities.

Density Variable
Region South Region North

Size L Size M Size S Size L Size M Size S

90%
Precipitation Sph Sph Sph Sph Sph Sph

Minimum Temp. Sph Sph Sph Sph Sph Sph
Maximum Temp. Sph Sph Sph Sph Sph Sph

70%
Precipitation Sph Sph Sph Sph Sph Sph

Minimum Temp. Sph Sph Sph Sph Sph Sph
Maximum Temp. Sph Sph Sph Sph Sph Sph

50%
Precipitation Sph Sph Sph Sph Sph Sph

Minimum Temp. Sph Sph Sph Sph Sph Sph
Maximum Temp. Sph Sph Sph Sph Sph Sph

30%
Precipitation Sph Sph Sph Sph Sph Sph

Minimum Temp. Sph Sph Sph Sph Sph Sph
Maximum Temp. Sph Sph Exp Sph Sph Exp

10%
Precipitation Sph Exp Exp Sph Exp Exp

Minimum Temp. Sph Exp Exp Sph Exp Exp
Maximum Temp. Sph Exp Exp Sph Exp Exp
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