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Abstract : Rolling stock scheduling and crew scheduling are two fundamental problems that arise in
the planning of urban rail operations and that are especially important in the case of flexible opera-
tions in real-world networks. These problems are often solved separately and sequentially in different
planning stages, resulting in limited options to adjust crew schedules after rolling stock decisions have
been made. To better adjust these two decision-making processes and achieve better solutions, this
paper studies a joint rolling stock and crew scheduling problem in urban rail networks. A novel opti-
mization model is formulated with the aim of reducing the operational cost of rolling stock units and
crew members. In addition, the multi-train composition mode is considered to adequately match dif-
ferent frequency requirements and rolling stock transport capacities. To solve the model, a customized
branch-and-price-and-cut solution algorithm is proposed to find the optimal schedule schemes, in which
Benders decomposition is used to solve the linear programming relaxation of the path-based reformu-
lation. Two customized column generation methods with label correcting are embedded to solve the
master problem and pricing sub-problem for generating paths (columns) corresponding to rolling stock
units and crew groups, respectively. Finally, a branch-and-bound procedure with several acceleration
techniques is proposed to find integer solutions. To demonstrate the computational performance and
the robustness of the proposed approaches, a series of numerical experiments are performed in real-
world instances of the Beijing urban rail network under different settings. The computational results
confirm the high efficiency of the solution methodology and the benefits of the flexible operation
schemes based on the solutions found by the proposed methods.

Keywords: Urban rail network, rolling stock scheduling, crew scheduling, branch-and-price-and-cut,
Benders decomposition, column generation
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1 Introduction

Urban rail systems have several benefits over other urban transportation modes (e.g., bus, private

car) in terms of capacity, punctuality, and comfort. They have been developing rapidly in several

megacities (e.g., New York, Montréal, Hong Kong). In 2024, the total length of the Beijing urban

rail network has reached 880 kilometers, and has become the backbone of city commuting. In general,

the management of an urban rail network system involves a complex operational planning process,

illustrated in Fig. 1, which includes line planning, train scheduling, rolling stock circulation, and crew

scheduling (Heil et al., 2020).

Line planning Train scheduling
Rolling stock 

circulation

Train unit 

shunting
Crew scheduling

Strategic Tactical

Figure 1: Operational planning process in urban rail network systems

Among the different components of the operational process, the train scheduling problem, which

specifies the train departure and arrival times at stations based on the line planning scheme, plays a

core role in urban rail networks. Then, with the train schedule as an input, the rolling stock circulation

and train unit shunting plans assign rolling stock units to trips by minimizing the total operational

costs. Generally, the rolling stock scheduling problem aims to simultaneously specify the train schedul-

ing process with the rolling stock circulation and train unit shunting processes. To adequately match

the different frequency requirements at different physical segments and time windows, the multiple-

train composition mode is often used in the process of train unit shunting. Under this mode, a long

composition with larger passenger capacity can be constructed by coupling multiple rolling stock units

(Zhou et al., 2022; Pan et al., 2023; Wang et al., 2024), which is beneficial to satisfy different frequencies

by covering trips based on passenger demand at different physical segments and peak/off-peak hours.

We note that the rolling stock scheduling process with the multi-train composition mode in urban rail

networks increases the operational complexity since different operational components need to be con-

sidered simultaneously (e.g., train scheduling, rolling stock circulation, and train coupling/decoupling).

After designing rolling stock circulation plans with appropriate train unit shunting schemes, the next

step is to schedule crew members. That is, each crew member is assigned a sequence of appropriate

trips within the defined time window.

According to Heil et al. (2020) and Päprer et al. (2025), the above decision processes are generally

performed successively owing to their complex interdependencies. For example, the dispatchers need

to properly assign trips to individual crew members under the information of the given rolling stock

scheduling plan so that all trips can be covered by specific crew members with the satisfaction of labor

requirements. Thus, dispatchers have to give feedback repeatedly to re-plan the train schedule and

rolling stock circulation to eventually make these operation plans consistent.

Focusing on providing a system-optimal solution, this paper aims to investigate a joint rolling

stock and crew scheduling problem (JRCSP) with the multi-train composition in urban rail networks

to generate a consistent and optimal operation plan with respect to different operational components

(e.g., trips, trip connections, coupling/decoupling activities, pull-in/out operations, etc.). Then, the

goal of the JRCSP is to find a series of paths for rolling stock units and crew members, satisfying

all operational and labor requirements while minimizing the total cost of train routes, trips, trip

connections, and crew members.

The remainder of this paper is organized as follows. Section 2 introduces a review of the related

literature and summarizes the main contributions of this study. Section 3 provides a detailed problem

statement with some concepts and notation. In Section 4, a path-based model is introduced for the
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JRCSP. In Section 5, a customized BPC solution algorithm is designed to solve the proposed model,

and computational results are represented in Section 6. We finally conclude the paper in Section 7.

2 Literature review and paper contribution

Rolling stock and crew scheduling are two critical components in developing an urban rail operation

scheme, which have attracted tremendous attention from both academia and industry in recent decades

(see Lusby et al. (2011); Heil et al. (2020); Päprer et al. (2025); Correia Duarte et al. (2025) for detailed

reviews). In the following discussion, we focus on reviewing the state of the art in the field from three

angles: rolling stock scheduling, crew scheduling, and joint optimization of these two problems.

2.1 Rolling stock scheduling

The rolling stock scheduling problem aims to specify the train departure and arrival times at stations

together with the circulation of rolling stock units in an urban rail system. In some early literature,

to reduce the computational complexity, the train schedule is predetermined and given as an input to

assign trips and their connections to complete rolling stock circulations (Cacchiani et al., 2010b, 2013;

Lin and Kwan, 2016), with the aim of minimizing operational costs of the rolling stock units. With

the rapid development of urban rail systems, the topic of rolling stock scheduling has evolved in three

directions to further improve efficiency: passenger-oriented operations, multi-train composition, and

network-based operations.

First, compared to the traditional rolling stock scheduling problem, the passenger-demand-oriented

operation focuses on the operation schemes based on the effect of passenger demand distribution (Löbel,

1998; Cordeau et al., 2001b; Abbink et al., 2004). In this context, the train frequency is dependent on

the time-varying passenger volume at segments and stations (Kroon et al., 2014, 2015; Canca et al.,

2018; Amberg et al., 2019), and both the train operational cost and the passenger service level are

formulated as objective functions (Niu et al., 2015; Kidd et al., 2019). Second, in recent years, some

flexible operation schemes have been implemented for the scheduling of rolling stock units. For example,

rolling stock units can be allocated to each trip efficiently by using the multi-train composition mode

(Pan et al., 2023; Wang et al., 2024) and the short-turning strategy (Schettini et al., 2022; Yuan et al.,

2022), to better match passenger demand with non-equilibrium spatial and temporal distributions.

Regarding the solution algorithm, the column generation framework is usually used to solve the rolling

stock scheduling problems by specifying space-time paths for rolling stock units (Cacchiani et al., 2008,

2010a; Correia Duarte et al., 2025).

Third, by implementing network-based operations in urban rail networks, rolling stock units can

travel flexibly by using connection tracks among different physical urban rail lines. In the literature, the

network-based operation is mainly studied from two aspects: train timetable coordination to improve

passenger service levels, and rolling stock cross-line utilization to improve efficiency. In the first case,

the passenger service level can be largely improved with fewer alighting and waiting activities at transfer

stations after coordinating train schedules among different physical lines (Nguyen et al., 2001; Wong

et al., 2008; Yin et al., 2021). In the second case, there are a few publications considering rolling stock

operations in urban rail networks with multiple connected lines and depots, such as the integrated

timetabling and vehicle circulation scheduling with periodic and cyclic scenarios (Van Lieshout et al.,

2021), and macroscopic rolling stock assignment with appropriate depots (Van Lieshout, 2021). In

contrast, our study considers a more holistic view where the crew scheduling and the multi-train

composition are jointly planned with rolling stock decisions in urban rail networks.

2.2 Crew scheduling

The existing studies on the crew scheduling problem mainly focuses on assigning trips and meal/rest

tasks to crew members based on the rolling stock scheduling plan. Heil et al. (2020) give a detailed
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overview in the area of railway crew scheduling with models, methods, and applications. The crew

scheduling process often comprises two planning stages: short-term (e.g., one day or shorter) and long-

term (e.g., one week or longer). In the short-term problem, each crew member is assigned to several

appropriate trips for a relatively short period (e.g., one day). From the perspective of urban rail

operators, some practical operation rules are usually incorporated into the crew scheduling problem,

such as trip connections (Kroon and Fischetti, 2001), deadheading trips (Abbink et al., 2005), trip

numbers (Park and Ryu, 2006), disturbances/disruptions (Breugem et al., 2022b), uncertain passenger

demand (Rählmann et al., 2021), planner preferences (Gattermann-Itschert et al., 2023), etc. Then,

some legal regulations are also restricted to ensure sustainable working hours for crew members, such

as the average working times (Kroon and Fischetti, 2001), time windows/durations of meal/rest breaks

(Han and Li, 2014), paid time per duty (Hoffmann et al., 2017), etc. Next, in the long-term crew (roster)

scheduling process, short-term crew schedules are combined weekly or monthly with the premise of the

long-term planned cycle time, work time, and rest time requirements for crew members (Cordeau et al.,

2001b; Caprara et al., 2007). Compared to the short-term crew scheduling problem, more individual

crew requirements are considered inevitably to achieve a sustainable mix of work and vacation days,

such as work/vacation time accounts (Huisman et al., 2005), fair work distributions among crew

members (Breugem et al., 2022a), etc.

Lastly, three major model formulations, including set covering (Kroon et al., 2009), set packing

(Borndörfer et al., 2017), and network flow models (Vaidyanathan, 2015), are usually developed for the

crew scheduling problems in the literature (i.e., >90% according to Heil et al. (2020)) with the objective

functions of the schedule efficiency (Heil et al., 2020), robustness (Lusby et al., 2018) and employee

satisfaction (Jütte et al., 2017; Breugem et al., 2022a). In addition, column generation methods can

be incorporated into the branch-and-price (B&P) modeling frameworks, then pricing sub-problems

are tackled by dynamic programming (Abbink et al., 2011), label setting (Desaulniers and Hickman,

2007), constraint programming (Han and Li, 2014), or genetic algorithms (Hoffmann et al., 2017), etc.

2.3 Joint rolling stock and crew scheduling

In general, the rolling stock schedule is mainly composed of space-time paths of rolling stock units,

while the crew schedule has more flexible and complex paths with trip connections and meal/rest

requirements for crew members (Heil et al., 2020). In the operation, due to the limitation of rolling

stock unit and crew member resources, some studies begin to explore the benefits of joint scheduling

optimization in conventional rail systems (Tatsuhiro et al., 2009; Dauzère-Pérès et al., 2015; Bach et al.,

2016; Pan et al., 2021). At the same time, some joint optimization problems with similar modeling

framework structures have also been studied in other transportation modes, such as the integrated

simultaneous aircraft routing and crew scheduling problem in airlines (Cordeau et al., 2001b; Sandhu

and Klabjan, 2007; Ruther et al., 2017), berth allocation and pilotage planning in seaport vessel

services (Wu et al., 2022), vehicle routing and driver scheduling in road public transportation (Goel

and Irnich, 2017; Andrade-Michel et al., 2021), etc.

To highlight the contributions and differences of the present paper, Table 1 presents a detailed

comparison of notable studies related to joint rolling stock and crew scheduling or network-based

rolling stock operations, from the perspectives of problem features, model, solution method, and largest

instance solved. Our main contributions are the following:

• A unified path-based modeling framework is proposed to solve the JRCSP, which is amenable

to solution by Benders decomposition (BD) and column generation (CG). Compared with the

joint optimization of the rolling stock circulation and crew scheduling problem in urban rail lines

(Tatsuhiro et al., 2009; Dauzère-Pérès et al., 2015; Bach et al., 2016; Pan et al., 2021), this study

extends more practical problem considerations of rolling stock schedule (i.e., joint train schedule

and rolling stock circulation), multi-train composition, and cross-line operations in urban rail

networks.
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Table 1: Characteristics comparison of some closely related studies

Publication
Problem consideration

Model
Solution
method

Largest instance scale

Train
schedule

Rolling
stock

circulation

Crew
schedule

Network
based

operation
# of units # of trips

Tatsuhiro et al. (2009) No Re- Re- No NFM+SPM/SCM LS 185 786
Potthoff et al. (2010) No No Re- CL SCM+SPM CG+LH 59 N/A
Veelenturf et al. (2012) Re- No Re- No GILP INE 46 835
Dauzère-Pérès et al. (2015) No Yes Yes No GILP LR 29 416
Bach et al. (2016) Yes Yes Yes No SPM/SCM BP 30 228
Pan et al. (2021) No Yes Yes No NFM+SPM CG 25 400
Van Lieshout (2021) Yes Yes No CL GILP CT+VI 140 N/A
Yin et al. (2021) Yes No No TC GILP ALNS N/A 58

This paper Yes Yes Yes CL NFM+SPM/SCM BPC 43 685

(1) Problem consideration: Train re-scheduling (Re-); Re-planning rolling stock circulation (Re-); Crew
re-scheduling (Re-); Train schedule coordination (TC); Cross-line rolling stock/crew operation (CL).
(2) Model: Network-flow model (NFM); Set packing model (SPM); Set covering model (SCM); General integer
linear programming model (GILP).
(3) Solution method: Local search (LS); Lagrangian heuristic (LH); Iterative neighborhood exploration (INE);
Lagrangian relaxation (LR); Branch-and-price (BP); Column generation (CG); Contraction technique (CT); Valid
inequality (VI); Adaptive Large Neighborhood Search (ALNS); Branch-and-price-and-cut (BPC).
(4) Largest instance scale: Number of rolling stock units (# of units); Number of trips (# of trips); Not available
(N/A), i.e., the specific numbers are not directly given in the study.

• An exact branch-and-price-and-cut (BPC) solution algorithm is developed to solve the JRCSP.

By applying Benders decomposition, the relaxed path-based model is first decomposed into a

master problem and pricing sub-problems, which are solved by a column generation procedure.

To generate crew variables through this process, the customized multi-stage label correcting (LC)

algorithm is designed to incorporate crew labor requirements of meal/rest tasks.

• The overall basic BPC approach is enhanced by several acceleration techniques, which are able to

obtain (near) optimal solutions with valid lower bounds in a shorter computing time compared

with the general-purpose solvers and the standard Benders decomposition (Veelenturf et al., 2012;

Dauzère-Pérès et al., 2015). Specifically, we propose lower-bound-lifting (LBL) valid inequalities

and priority heuristic rules to better adapt rolling stock and crew operations, and adapt five

other techniques from vehicle routing literature.

• A series of computational experiments demonstrate that the proposed approach can obtain high

quality solutions to real-world instances with multiple physical lines throughout the day. Our

exact algorithm could efficiently handle comparable or even larger instance sizes than those that

were considered in other relevant JRCSP studies that employ exact algorithms (i.e., more than

20–30 rolling stock units and 200–500 trips in Dauzère-Pérès et al. (2015); Bach et al. (2016); Pan

et al. (2021)). We analyze and present the value of the JRCSP with multi-train composition and

cross-line operations are further demonstrated as opposed to the traditional sequential scheduling,

single train composition, and single rail-line operations.

3 Problem statement

This paper considers an urban rail network with multiple bidirectional physical lines and multiple

depots, which pre-store a number of rolling stock units, as shown in Fig. 2(a). Specifically, we denote

by K, indexed by k, the set of rolling stock units. With the multi-train composition mode in the JRCSP,

we define two types of stations in the urban rail network: common stations, which only process trip

dwelling operations but cannot couple or decouple rolling stock units, and operating stations (including

terminal stations) which permit coupling or decoupling activities in addition to general trip dwelling

operations. Then, a physical segment is defined as the connection between two adjacent operating

stations. In practice, the train compositions and traveling times are usually kept constant on segments
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for rolling stock units, especially in urban rail network systems. Thus, we denote the sets of operating

stations and physical segments as I and A, respectively, by omitting common stations along segments.

Lastly, the indices i and a are used to denote operating stations and physical segments in the rail

network (i.e., i ∈ I, a ∈ A), respectively.

To properly characterize the movements of rolling stock units among different physical segments

in the rail network and avoid some obviously inappropriate movements in the solution, a train route

is defined to represent the movement from origin depot to destination depot for specific rolling stock

units, as shown in Fig. 2(b). Specifically, for each rolling stock unit k ∈ K, a set of train routes

Lk ⊆ L, indexed by l, is pre-determined, and only one train route l can be chosen from set Lk for the

actual operation. In addition, the maintenance cost of assigning a rolling stock unit k to train route l

is denoted by c1k,l. Then, one train route l ∈ L consists of a sequence of trips, indexed by r, which can

be defined as the movement of a rolling stock unit from one operating station to another on a physical

segment. We denote by RT
l the set of trips associated with train route l, and RT =

⋃
l∈LRT

l the set

of trips associated with all rolling stock units. Next, we note traveling time TR
r and the departure

time window Tr = Z⌊TR
r ,TR

r ⌋
of trip r, where T

R

r and TR
r denote the earliest and the latest feasible

departure times of trip r ∈ RT . Lastly, the cost of a trip r starting at timestamp t (denoted by c2r,t)

refers to the fixed energy consumption cost on the corresponding segment.

We note that trip set RT
l is related to the train route l from set L, and the train route set Lk is

related to rolling stock unit k from set K. As a consequence, the modification in one set will also change

the other related sets. Thus, compared with the well-known definition of “trip” in the rolling stock

scheduling field, one trip index cannot be shared by different rolling stock units. However, multiple

trips can overlap in the visualization (but with different trip indices) to represent the multi-train

composition.

d1

i1

i3

i2

i4

Legend: 

i1

i2 i3 i4

DepotDepot Operating stationOperating station

Common stationCommon stationPhysical segmentPhysical segment

(a) Urban rail network (b) Train route

Scheme 1

Scheme 2

Scheme 4

Scheme 3

i1

i1

i1

i1

i1

i1

i1

i1

i1

i2

i2

i2

i2

i2

i2

i2 i3

i3

i3

i3

i3

i3

i3

i4

i4

i4

i4

i4

i4

i4

i4

i4

Figure 2: Urban rail network with associated train routes

For clarity, an illustration of the urban rail network is given in Fig. 2(a), which includes one depot

d1, four operating stations i1–i4, and five physical segments. Then, based on the urban rail network in

Fig. 2(a), four train routes are involved to represent the candidate passing operating station sequences

for rolling stock units, as shown in Fig. 2(b). Particularly, we identify train routes 3 and 4 as different

schemes with different movements. That is, train route 3 refers to one rolling stock unit starting from

depot d1, then passing operating stations i1 → i2 → i3 → i4 → i3 → i2 → i1, and returning to depot

d1 with one complete loop. Train route 4 refers to one rolling stock unit starting from depot d1, then

passing operating stations i1 → i2 → i3 → i4 → i3 → i2 → i1 → i2 → i3 → i4 → i3 → i2 → i1, and

returning to depot d1 with two complete loops.

Furthermore, a certain number of individual crew members (denoted by index c and set C) are

available to start work at any operating station. Note that we consider the drivers as crew members

in the urban rail system. These crew members are divided into a set G of crew groups, indexed by g.
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Let Cg ⊆ C be the set of crew members in crew group g. All crew members who belong to one crew

group g should perform their work within the same predetermined time window. In addition, each

crew member should be assigned with a series of tasks based on a certain set of requirements, such as

meal/rest activities, appropriate connection times, etc.

This study focuses on investigating a JRCSP with multi-train compositions in an urban rail network.

The input data consists of the physical structure of the involved rail network, the number of available

rolling stock units, and the number of crew groups, etc. The aim is to determine train route selections

for rolling stock units, departure times at the first stations for trips, and task sequences for in-service

crew members while minimizing both the operational cost for rolling stock units and in-service crew

members. Then, the departure/arrival times at common stations along the trips can be calculated

based on the departure time at the first stations of trips. Next, we introduce key concepts and

notation to formulate the problem in the following.

3.1 Rolling stock unit and crew member operational activities

To capture the spatial and temporal operational activities of rolling stock units and crew members in a

rail system, the considered time horizon from time t0 to time |T | is discretized into a set of timestamps

T = Z[t0,|T |] with a predefined time granularity. Then, we use origin depot vertex (dori(k), t0) and

destination depot vertex (ddes(k), t|T |) to indicate the source and sink for rolling stock unit k. For

modeling convenience, we next introduce the following three types of rolling stock operational activities.

Pull-in/out operation: The pull-in/pull-out operation represents the activity of entering/leaving

depots for rolling stock units, respectively. Specifically, for rolling stock unit k, one pull-out

operation can be defined with the activity of leaving depot dori(k) and arriving at its connected

operating station i. The pull-in operation can be defined similarly.

Connection operation: Considering that the adjacent previous trip (denoted by σ(r)) is determined

uniquely for trip r based on the associated train route, the connection operations occur between

a pair of consecutive trips (i.e., σ(r), r) at the same operating station i with respect to the same

train routes and rolling stock units. Then, the unit-cost of a connection operation between trips

σ(r) and r (denoted by c3k,σ(r),r) refers to the fixed operational cost per min by rolling stock unit

k at the operating station.

Rolling stock path: A rolling stock path comprises a sequence of pull-out operations, trips, connec-

tion operations, and pull-in operations from the origin depot vertex (dori(k), t0) to the destination

depot vertex (ddes(k), t|T |) for rolling stock unit k during the considered planning horizon. For
clarity, we let PR

k,l, indexed by p, denote the set of feasible paths for rolling stock k and train

route l. Then, let PR
k =

⋃
l∈Lk

PR
k,l be the set of feasible paths for rolling stock k, and let

PR =
⋃

k∈K PR
k be the set of feasible paths for all rolling stock units. Then, based on the

rolling stock path representation, all departure and arrival times at stations (including oper-

ating and common stations) can be specified accurately for each rolling stock unit. For each

path p, let k(p) and l(p) denote the associated rolling stock unit and the train route, respec-

tively. Lastly, we denote the cost of path p by CR
p with the summation of the train route

cost, trip traveling cost and connection cost, i.e., CR
p = c1k(p),l(p) +

∑
r∈RT

l(p)

∑
t∈Tr c

2
r,t · αp,r,t +∑

r∈RT
l(p)

c3σ(r),r

(∑
t∈Tr t · αp,r,t −

∑
t∈Tσ(r)

t · αp,σ(r),t

)
. In this expression, we define two binary

parameters αp,r,t,∀p ∈ PR, r ∈ RT , t ∈ T and βp,a,t,∀p ∈ PR, a ∈ A, t ∈ T , where αp,r,t is equal

to 1 if and only if trip r is included in path p and starts at timestamp t, and βp,a,t is equal to 1

if and only if path p passes through physical segment a from timestamp t.

Furthermore, the crew task should also be included in the operation to characterize the operational

activities of crew members. Let Tg be the set of available timestamps for crew members in crew group

g (
⋃

g∈G Tg = T ), and let Gt be the set of available crew groups at timestamp t. The operational cost

c4g for assigning one crew member in crew group g is constant during the planning horizon with no
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relation to the specific number of assigned trips. Note that this is a common payroll regulation with

real-world urban rail company applications (e.g., daily wage for crew members based on the labour

law). Next, we formally introduce two activities with respect to the meal/rest task and crew task

sequence for crew members.

Meal/rest task: The meal tasks and rest tasks, indexed by r, which start within predetermined time

windows and last for a given time duration, should be assigned to any crew member c who is

scheduled to work in service. Let RM
c and RR

c be the sets of the required meal/rest tasks for

crew member c, and further define RM =
⋃

c∈CRM
c and RR =

⋃
c∈CRR

c . For each meal task

r ∈ RM or rest task r ∈ RR, we define Tr = Z⌊TC
r ,T

C
r ⌋

as the available meal/rest task time

window, and TC
r /T

C

r as the feasible earlist/latest starting time of meal/rest task r.

Crew task sequence: A crew task sequence performed by a crew member can also be represented

by a path that records assigned trips, meal tasks, and rest tasks in the total planning horizon.

Then, considering that the available crew task sequences are exactly the same for crew members

in the same group with the same working time windows, we let PC
g , indexed by p, denote the set

of feasible task sequences for crew group g. Then, let PC =
⋃

g∈G PC
g be the set of feasible task

sequences for all crew groups. Next, let g(p) denote the associated crew group for task sequence

p. Lastly, the cost of a crew task sequence p ∈ PC
g is denoted by CC

p , which equals c4g.

For clarity, an illustration of the rolling stock schedule and Gantt diagram with respect to the

instance in Fig. 2 is given in Fig. 3, which includes five physical lines, four operating stations, and

one depot. Specifically, station i1 is connected with depot d1, and operating stations i2, i3, i4 have

turn-around and connection tracks for coupling/decoupling activities, respectively. In this case, we

discretize a 40 min planning horizon into 21 timestamps based on a 2 min time granularity. Three

types of train routes (i.e., schemes 1–3 in Fig. 2(b)) are considered in this case with different train

physical routes and stop patterns. We use space-time paths to represent the involved operations for

four rolling stock units, where all rolling stock units k1–k4 are dispatched from depot d1. As shown in

Fig. 3(a), rolling stock units k1 and k2 are assigned to train routes 1 and 2 of Fig. 2(b), respectively,

with different physical stations and segments to cover. In addition, rolling stock units k3 and k4 are

assigned to the same train route 3 with a coupled large composition from depot d1. Then, this long

train composition is decoupled into two separate rolling stock units k3 and k4, which execute trips r7
and r8, and then go back to depot d1 respectively. Lastly, four crew members are scheduled to cover

these eight trips while time requirements for the meal/rest tasks are respected, as shown in Fig. 3(b).

Compared with the rolling stock units, when it is time to take the meal/rest, the crew members (i.e.,

drivers) would get off the current rolling stock unit, then take the meal/rest, and get on another rolling

stock unit after the meal/rest at the same operating station. For example, crew member 1 first takes

a meal task at timestamp 2, then is assigned to trip r3 associated with rolling stock unit k3. After

taking the rest from time 19 to 24, crew member 1 is assigned to trip r6 associated with rolling stock

unit k2.

10 20 300
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Station i3
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Station i2

Station i4
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stock unit
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2
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1
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member
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(a) Rolling stock schedule (b) Gantt diagram for rolling stock units and crew members
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Rest task
Legend: 

4

Time

r1

r3

r4

r2

r5

r6

r1

r2

r3

r4

r5

r6

r7

r8

r7

r8

Assigned trips for rolling stock units

Assigned trips for crew members

Connection 

operation

Connection 

operation
Trip Trip 

Pull-in/out 

operation

Pull-in/out 

operation

Figure 3: Rolling stock schedule and Gantt diagram for the JRCSP instance
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3.2 Assumptions

Without loss of generality, we make five assumptions associated with the characteristics of the rolling

stock and crew scheduling operations.

Assumption 1. To make the problem tractable for the proposed BPC algorithm, in the data preparation

process, the dynamic passenger demand volume is treated and transformed into the number of required

trips (i.e., different frequency requirements) at the corresponding physical segments and time windows.

This allows a significant reduction in the number of decision variables related to passenger activities.

Assumption 2. The number of rolling stock units at depots is given as input data and rolling stock

units are required to start from and return to the same depot. This maintains the consistency of rolling

stock operation schemes over successive days.

Assumption 3. The coupling and decoupling operations are only permitted at operating stations,

i.e., transfer stations that connect with multiple physical lines and terminal stations that connect with

depots. In addition, the all-stop mode is taken into consideration in the involved problem (i.e., all trips

should dwell at all stations). In reality, this is a common operation strategy for real-world applications,

e.g., Hong Kong, Montréal, and Beijing urban rail systems.

Assumption 4. As a medium-term plan at the tactical level, the crew scheduling process focuses on

determining the number of required crew members to finish the trip tasks with the minimum cost

before employing and allocating the specific crew members. Thus, the number of crew members in

each group is not limited. However, the objective is to cover all selected trips by assigning the minimum

number of crew members as indicated in the objective function.

Assumption 5. The specific locations for starting the first and ending the last trips are flexible at any

operating station for all crew members. Then, in the modeling process, all crew members are allowed

to depart/end at a virtual source/sink that connects to all operating stations without deadheading

trips and pull-in/out operations.

4 Mathematical formulation

This section presents a path-based mathematical optimization model M1 for the JRSCP. We first

introduce the notation in Section 4.1. This is followed by the objective function and system constraints

in Section 4.2. Considering that the path-based model cannot be implemented with the general-purpose

solvers (e.g., CPLEX) directly due to the impractical enumeration of the full set of rolling stock paths

and crew task sequences, the equivalent primal model of the JRCSP is also formulated in the electronic

companion EC. A for reference.

4.1 Notations

For convenience, the notation used in this study (including the problem statement and the mathemat-

ical formulation) is summarized in Table 2. The following path-based binary decision variables are

used to model the problem: rolling stock path selection variable λp taking value 1 if rolling stock path

p is selected (otherwise λp = 0), and crew task sequence selection variable µp taking value 1 if crew

task sequence p is selected (otherwise µp = 0).

Table 2: Notations and parameters in the study

Notation Definition

Indices
k Index of rolling stock units
i Index of operating stations
a Index of physical segments
l Index of train routes
r, r′, r′′ Index of trips
σ(r), σ−1(r) Index of the adjacent previous/next trip of trip r
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Table 2: Notations and parameters in the study

Notation Definition

t Index of timestamps
g Index of crew groups
p Index of rolling stock paths/crew task sequences
s Index of trip frequency requirement scenarios

Sets
K Set of rolling stock units
I Set of operating stations
A Set of physical segments
Lk Set of train routes for rolling stock unit k
L Set of train routes
RT

l Set of trips for train route l
RT Set of trips
Tr Set of departure times at the first stations for trip r
G Set of crew groups
C Set of crew members
Cg Set of crew members belonging to crew group g
T Set of timestamps
PR
k,l, P

R
k , PR Set of feasible paths for rolling stock unit k and train route l / rolling stock unit k /

all rolling stock units
T g Set of available timestamps for crew members in group g
Gt Set of available crew groups at timestamp t
RM

c , RR
c Set of meal/rest tasks for crew member c

RM
g , RR

g Set of meal/rest tasks for crew members in crew group g

PC
g , PC Set of feasible task sequences for crew group g / all crew groups
V Set of possible conflicting trip pairs
Sa Set of trip frequency requirement scenarios for physical segment a
Ts Set of involved timestamps for trip frequency requirement scenario s

Parameters
c1k,l Fixed cost for train route l of rolling stock unit k

c2r,t Traveling cost for trip r starting at timestamp t

c3
σ(r),r

Unit cost of a connection operation between trips σ(r) and r

c4g Fixed cost for arranging one crew member in crew group g

TR
r , T

R
r Earliest/latest feasible departure timestamps of trip r

TC
r , T

C
r Earliest/latest feasible start timestamps of meal/rest task r

CR
p , CC

p Cost for rolling stock path / crew task sequence p

hmin
r,r′ Minimum headway between the departure timestamps of trips r and r′

Nmin
s Minimum number of trips with the associated time window of passenger frequency

requirement scenario s
Nmax

a Maximum number of covering rolling stock units on segment a at one timestamp
TR
r Traveling time of trip r

αp,r,t Binary indicator, =1 if trip r is included in path p and starts at timestamp t; =0 otherwise
βp,r,t Binary indicator, =1 if rolling stock path p passes through physical segment a from

timestamp t; =0 otherwise
γp,r Binary indicator, =1 if task r is covered by crew task sequence p; =0 otherwise

Decision variables
λp Binary variables, =1 if rolling stock path p is selected; =0 otherwise
µp Binary variables, =1 if crew task sequence p is selected; =0 otherwise

4.2 Objective function and system constraints

We formulate the general path-based objective functions and constraints based on the overall path

set PR =
⋃

k∈K PR
k =

⋃
l∈Lk,k∈K P

R
k,l for rolling stock units and train routes, and the overall task

sequence set PC =
⋃

g∈G PC
g for all crew groups. Specifically, we first formulate the objective function

in Eq. (1), which aims to minimize the total cost of rolling stock paths and crew task sequences, where

parameters CR
p and CC

p denote the costs for rolling stock path p ∈ PR and crew task sequence p ∈ PC ,

respectively. In particular, the second term of Eq. (1) aims to minimize the number of assigned crew

members in each group to cover all the in-service trips. For the case when the maximum crew capacity
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must be imposed as a hard constraint, we can set a large penalty value for the maximum crew capacity

violation.

min
∑
p∈PR

CR
p · λp +

∑
p∈PC

CC
p · µp (1)

Note that since the operational requirements, i.e., train route selection, trip connection time, crew

task flow balance, meal/rest tasks, and crew groups, are only associated with individual rolling stock

paths and crew task sequences (i.e., columns), these operational requirements are part of the pricing

sub-problems that will be presented in Section 5.4 to generate feasible columns to this model. The

feasibility and consistency of the model are guaranteed by three groups of system constraints formulated

below, where the rolling stock scheduling related constraints, crew scheduling coupling constraints,

and the domain of the decision variables are expressed in Groups I, II, and III, which are described as

follows:

Group I: Rolling stock scheduling constraints∑
p

∈ PR
k λp =1 ∀k ∈ K (2)

∑
p∈PR

αp,r,tλp +
∑
p∈PR

λp

min{t+hmin
r,r′−1,|T |}∑

t′=t+1

αp,r′,t′ ≤1 ∀t ∈ T , (r, r′) ∈ V (3)

Constraints (2) ensure that each rolling stock unit k ∈ K is assigned to one rolling stock path p ∈
PR
k . Then, constraints (3) are the safety headway constraints among trips, where αp,r,t is equal to

1 if and only if trip r is included in path p and starts at timestamp t. For operational safety, the

minimum headway hmin
r,r′ should be guaranteed between the departure timestamps of trips r and r′.

Compared with the headway formulation in existing studies (Caprara et al., 2002; Cacchiani et al.,

2008), considering that the trip traveling times are fixed from one to the next operating stations, we

simplified the headway constraints by guaranteeing no conflicts between two trips only at the departure

time to avoid enumerating a large number of incompatible pairs. Specifically, we pre-generate a set

V of potential conflicting trip pairs, which run on the same physical segment within overlapping trip

departure time windows, such that V =
{
(r, r′) ∈ RT ×RT |a(r) = a(r′)

}
, where a(r) and a(r′) denote

the associated physical segments of trips r and r′ respectively. Then, given a timestamp t and a pair of

trips (r, r′) ∈ V, if trip r starts from timestamp t, then the minimum headway requirement prevents trip

r′ from starting within incompatible time window Z[
t+1,min

{
t+hmin

r,r′−1,|T |
}]. Next, since departure time

windows for trips have been predetermined, these constraints remain valid only within time windows

Tr and Tr′ for trips r and r′ respectively. Lastly, we note that the multi-train composition operation

requirement can be satisfied with such safety headway constraints (Wang et al., 2024). In other words,

if a trip r starts from timestamp t on one physical segment, this segment can also be serviced by other

trips which start from the same timestamp.∑
p∈PR

∑
t∈Ts

βp,a,t · λp ≥ Nmin
s ∀s ∈ Sa, a ∈ A (4)

Constraints (4) impose the minimum trip frequency constraints, where βp,a,t is equal to 1 if and only if

path p passes through physical segment a from timestamp t. Considering that different trip frequency

requirements should be adopted in different physical segments and periods, we pre-generate a set

Sa of trip frequency requirement scenarios (indexed by s) within different time windows for physical

segment a. Then, based on the input data of the passenger demand over multiple scenarios (e.g., 5

working days), we first calculate the average passenger demand on physical segments a within the

associated time windows Ts of scenarios s ∈ Sa. Next, by dividing the average passenger demand by

the rolling stock capacity, we obtain the minimum required numbers of trips Nmin
s within the involved

time windows Ts of scenarios s.∑
p∈PR

βp,a,t · λp ≤ Nmax
a ∀a ∈ A, t ∈ T (5)



Les Cahiers du GERAD G–2025–47 11

Constraints (5) are the covering constraints of rolling stock units for physical segment a at timestamp t.

With the multi-train composition mode, we assume the maximum number of rolling stock units (i.e.,

Nmax
a ), which are permitted to cover one physical segment a at one timestamp.

Group II: Crew scheduling coupling constraints∑
p∈PR

αp,r,t · λp −
∑

p∈PC

γp,r · µp =0 ∀t ∈ Tr, r ∈ RT (6)

Constraints (6) represent the coupling relationships between rolling stock paths and crew task se-

quences. Specifically, if trip r starts from timestamp t with one rolling stock path (i.e.,
∑

p∈PR αp,r,t ·λp

= 1), it must be covered by one crew task sequence (i.e.,
∑

p∈PC γp,r ·µp = 1), where γp,r,∀p ∈ PC , r ∈
RT ∪ RM ∪ RR is a binary parameter with setting to 1 if and only if task r is covered by crew task

sequence p.

Group III: Range of the decision variables

All the rolling stock path and crew task sequence selection decisions are binary variables, as for-

mulated in the following constraints.

λp ∈ {0, 1} ∀p ∈ PR (7)

µp ∈ {0, 1} ∀p ∈ PC (8)

With Eqs. (1)–(8), the path-based mathematical formulation M1 is modeled for the JRCSP. Com-

pared with existing path-based models at the rolling stock scheduling level in the literature (e.g.,

Cacchiani et al. (2008, 2010a)), we extend the set partitioning constraints to incorporate rolling

stock path selection constraints (2), extend set covering constraints to incorporate minimum trip

frequency requirement constraints (4), and extend the set packing constraints to incorporate head-

way constraints (3) and the maximum rolling stock covering constraints (5). Lastly, we observe that

the complexity of the proposed model is related to the number of trips and rolling stock units. In

addition, there is possibly a large number of rolling stock paths and crew task sequences, as well as

their coupling constraints (6). Thus, it is challenging and not practical to solve the model M1 directly

by enumerating all the rolling stock paths and crew task sequences. Based on this observation, to

find high-quality solutions within an acceptable computing time, an efficient and exact branch-and-

price-and-cut algorithm is next designed to solve the path-based model M1, which is discussed in the

following section.

5 Solution algorithm

We develop a branch-and-price-and-cut (BPC) algorithm that combines a branch-and-price (B&P)

and Benders decomposition to efficiently solve the JRCSP. In addition, we generalize this solution

framework and design a novel scheme tailored to the JRCSP with several acceleration techniques

to improve the performance of the approach. First, we pre-process the time windows for departure

times of trips to strengthen the path-based model into a more compact formulation (Section 5.1).

Then, at each node of the search tree, Benders decomposition is embedded to solve the LP relaxation

of model M1 (Section 5.2). To avoid a large number of Benders cuts in the Benders decomposition

process, the lower bound from the Benders master problem is lifted by using lower-bound lifting (LBL)

valid inequalities (Section 5.3). Subsequently, the decomposed Benders master problem (BMP) and

Benders sub-problem (BSP) can be viewed as the LP relaxations of the rolling stock scheduling and

crew scheduling problems, respectively. Both problems can be tackled by column generation algorithms

(Section 5.4), in which pricing sub-problems are solved by finding the shortest paths for rolling stock

units and crew groups, respectively. If an integer optimal solution is obtained for model M1, it means

that a feasible integer solution and a new upper bound are obtained at the corresponding branch-and-

bound (B&B) node. Otherwise, two new nodes will be created by branching on a fractional variable
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(Section 5.5). At each node, Benders decomposition with column generation is used again to solve the

LP relaxation of model M1 with the branching conditions. The aforementioned approach iterates with

the bounding and pruning processes until the termination criteria are met, and the best encountered

feasible solution is returned as an (exact) optimal solution to the model M1. Lastly, Section 5.6 refers

to a series of acceleration techniques to improve the performance of the solution approach.

5.1 Pre-processing

We observe from the path-based model M1 that the complexity of the rolling stock and crew column

generation process is largely dependent on the trip departure time windows (i.e., Tr). For this reason,
this section introduces a pre-processing method that shrinks time windows for departure times of

trips, which can strengthen the path-based model M1 into a more compact formulation. Specifically,

we denote by rq(l) the q-th trip with respect to train route l ∈ Lk for rolling stock unit k. Then,

the earliest timestamp to start the q-th trip (denoted by T rq(l)
) can be calculated by Eq. (9), where

T r0(l)
is the earliest timestamp to start the first trip, and TRmin

rq′ (l),rq′+1(l)
is the minimum connection

time between the q′-th and (q′ + 1)-th trips based on train route l. Similarly, the latest timestamp

to start the q-th trip (denoted by T rq(l)) can be calculated by Eq. (10), where T r0(l) is the latest

timestamp to start the first trip and TRmax
rq′ (l),rq′+1(l)

is the maximum connection time between the q′-th

and (q′ + 1)-th trips based on train route l. Therefore, the time window Tr to start trip r is updated

by Tr ← Tr ∩ Z[T r,T r] in the column generation process to orient rolling stock units to schedule trips

within effective time windows.

T rq(l)
= T r0(l)

+

q−1∑
q′=0

(
TR
rq′ (l)

+ TRmin
rq′ (l),rq′+1(l)

)
∀q ∈ {1, 2, ...,

∣∣RT
l

∣∣− 1}, l ∈ Lk, k ∈ K (9)

T rq(l) = T r0(l) +

q−1∑
q′=0

(
TR
rq′ (l)

+ TRmax
rq′ (l),rq′+1(l)

)
∀q ∈ {1, 2, ...,

∣∣RT
l

∣∣− 1}, l ∈ Lk, k ∈ K (10)

5.2 Benders decomposition

In the path-based model M1, there possibility exists a large number of coupling constraints (6) between

rolling stock paths and crew task sequences, and it is still challenging and time-consuming to solve the

LP relaxation of model M1 by the column generation method directly. Furthermore, we observe that

once variables λp, p ∈ PR are fixed, the reduced problem becomes a crew scheduling problem with

fixed trips, which is much easier to solve. Thus, based on this observation, we first decompose the

LP relaxation of model M1 by using the Benders decomposition method in this section. Specifically,

let Λ be the set of vectors for the rolling stock path selection variables that satisfy 0 ≤ λp ≤ 1 and

constraints (2)–(5), i.e., Λ =
{
λ =

(
λ1, · · · , λp, · · · , λ|PR|

)T ∣∣0 ≤ λp ≤ 1, constraints (2)–(5), p ∈ PR
}
.

For any given rolling stock path selection solution vector λ ∈ Λ, the LP relaxation of model M1 is

reduced to the BSP M2 in Eq. (11) involving only crew task sequence selection variables (i.e., µp) and

related constraints. In this LP model, we denote the dual variables associated with constraints (11b)–

(11c) by θ1 =
{
θ1r,t

∣∣t ∈ Tr, r ∈ RT
}
, θ2 =

{
θ2p

∣∣p ∈ PR
}
.

M2:



min
∑

p∈PC

CC
p · µp (11a)

s.t.
∑

p∈PR

αp,r,t · λp −
∑

p∈PC

γp,r · µp = 0 ∀t ∈ Tr, r ∈ RT (11b)

µp ≤ 1 ∀p ∈ PC (11c)

µp ≥ 0 ∀p ∈ PC (11d)

Based on Proposition 1 (see electronic companion EC. B for details), BSP M2 is always feasible

and bounded for any given feasible vector λ ∈ Λ, which implies that it is sufficient to add only
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Benders optimality cuts into the BMP. Thus, let ∆ denote the polyhedron defined by the dual solutions

of the BSP M2 and let O∆ be the set of current enumerated extreme points with respect to dual

solutions of the BSP M2. Then, by introducing the auxiliary variable η, the LP relaxation of model

M1 can be reformulated as the following relaxed BMP M3 in Eq. (12) with Benders optimality cuts

in constraints (12c):

M3:



min
∑

p∈PR

CR
p · λp + η (12a)

s.t. Constraints (2)–(5) (12b)

η ≥
∑

r∈RT

∑
t∈Tr

∑
p∈PC

αp,r,tθ
1
r,t · λp +

∑
p∈PC

θ2p ∀(θ1,θ2) ∈ O∆ (12c)

λp ≤ 1 ∀p ∈ PR (12d)

λp ≥ 0 ∀p ∈ PR (12e)

η ≥ 0 (12f)

5.3 Lower-bound-lifting (LBL) valid inequalities

In our preliminary experiments, we observed that the optimality gap of the relaxed BMP M3 is large

with low-quality lower bounds in the early iterations of the Benders decomposition process since the

BSP M2 is projected out from the relaxed BMP M3. Thus, it is inevitable that a large number of

Benders cuts are generated to improve lower bounds and close the relative gap (Adulyasak et al., 2015).

To address this issue, we lift the lower bound of the relaxed BMP M3 by using the lower-bound-lifting

(LBL) valid inequalities, which contain some information with respect to the crew scheduling cost that

is removed from the BMP. Particularly, it is possible to formulate the LBL cut to represent a lower

bound by estimating crew scheduling costs without solving the BSP.

Time
t

Station i1

Station i2

Station i3

Trip

Figure 4: Illustration of the LBL cut

Specifically, for each trip r starting at timestamp t, we first denote the set Tr,r′,t in Eq. (13) to

represent possible departure timestamps of adjacent next trip r′, if trip r is possible to connect with

trip r′, as shown in Fig. 4. In this equation, g(r, t) denotes the associated crew group for trip r starting

at timestamp t, and T g(r,t) denotes the upper bound of the time window to schedule crew members in

crew group g(r, t).

Tr,r′,t =
{
t′
∣∣t+ TR

r + TC min
r,r′ ≤ t′ ≤ min

{
T g(r,t), t+ TR

r + TC max
r,r′

}}
(13)

Then, we denote all possible next adjacent trips by the set Rr,t =
{
r′
∣∣r′ ∈ RT , Tr,r′,t ∩ Tr′ ̸= ∅, r′ ̸= r

}
for trip r starting at timestamp t. Next, we calculate one timestamp before the minimum departure

time within the possible next trips in set Rr,t (i.e., T
D
r,t) for trip r starting at timestamp t in Eq. (14).
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Particularly, when no possible next adjacent trip is involved for trip r starting from timestamp t (i.e.,

empty set Rr,t = ∅), we let TD
r,t = t in Eq. (14a) to ensure the feasibility of the LBL cut in Eq. (15).

TD
r,t =

 t, if Rr,t = ∅ (14a)

min
r′∈Rr,t

min
t′∈Tr,r′,t∩Tr′

(t′ − 1) , if Rr,t ̸= ∅ (14b)

For one trip starting from one timestamp t, the minimum number of required crew members can be

calculated from the current timestamp t to one timestamp before the minimum departure time of the

next adjacent trip of trip r (i.e., min
{
TD

r,t, T g(r,t)

}
), i.e., the shadow area filled with the green color in

Fig. 4. Thus, for any timestamp t, we let variable η be no smaller than the summation of estimated

operational cost of required crew members within the time window
[
t,min

{
TD

r,t, T g(r,t)

}]
on all trips

r ∈ RT and rolling stock paths p ∈ PR (see Proposition 2 in electronic companion EC. B for proof

details).

η ≥
∑
p∈PR

∑
r∈RT

min{TD
r,t,T g(r,t)}∑
t′=t

c4g(r,t)αp,r,tλp ∀t ∈ T (15)

Lastly, according to the relaxed BMP M3 and LBL valid inequalities (15), the enhanced and relaxed

BMP M4 can be formulated in Eq. (16).

M4:


min

∑
p∈PR

CR
p · λp + η (16a)

s.t. Constraints (12b)− (12f) (16b)

Constraints (15) (16c)

5.4 Column generation

From the BSP M2 and the relaxed BMP M4, we can see that there is potentially a very large number of

possible paths for rolling stock units and crew groups, and it is not practical to enumerate all of them.

Column generation has been used in rolling stock scheduling problems by characterizing and combining

space-time paths for rolling stock units (Cacchiani et al., 2008, 2010a). Therefore, in this section, we

aim to solve the BSP M2 and relaxed BMP M4 through a customized column generation framework

by embedding Benders/LBL cuts and a procedure to handle meal/rest requirements. Specifically, at

the beginning of the column generation process, two sets of artificial columns with large costs are first

included in the restricted master problems (i.e., BSP M2 and relaxed BMP M4), which can ensure

the feasibility of BSP and BMP models. Specifically, let PR
and PC

be the initial column pools

composed of paths for all rolling stock units and task sequences for all crew groups, respectively. After

solving the BSP M2 and relaxed BMP M4, the pricing sub-problem is constructed to find new columns

based on the dual variables (i.e., π,θ) of constraints, which could reduce the objective values of the

restricted master problems. If all the reduced costs for the pricing sub-problems obtained by the label

correcting (LC) algorithm are greater than 0, an optimal solution is obtained for the restricted master

problems (i.e., BSP M2 and relaxed BMP M4). Otherwise, the newly generated columns are added to

the column pool in the next iterations. The column generation procedure is terminated when no more

columns are found with negative reduced costs. Detailed column generation methods for solving the

relaxed BMP M4 and BSP M2 are discussed in Sections 5.4.1 and 5.4.2, respectively.

5.4.1 Pricing sub-problems and label correcting for the relaxed BMP M4

In order to formulate the pricing sub-problems of the relaxed BMP M4, we first denote the dual

variables corresponding to constraints (2)–(5), (12c) and (15) by π1–π6 respectively, i.e, π1 =
{
π1
k

}
k∈K,

π2 =
{
π2
t,r,r′

}
t∈T ,(r,r′)∈V , π3 =

{
π3
s,a

}
s∈Sa,a∈A

, π4 =
{
π4
a,t

}
a∈A,t∈T , π5 =

{
π5
(θ1,θ2)

}
(θ1,θ2)∈O∆

,
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π6 =
{
π6
t

}
t∈T . Thus, the reduced cost for each path p of train route l and rolling stock unit k can

be calculated in Eqs. (17)–(20). Similar to Eqs. (13)–(14), we let T
D

r,t denote one timestamp after

the maximum departure time of the previous trip for trip r which starts at timestamp t, let T g(r,t)

denote the lower bound of the time window to schedule crew members in crew group g(r, t), and let

Tr′,r,t denote the possible departure timestamps of trip r′, if trip r′ is possible to connect with trip r

(which starts at timestamp t). Particularly, we observe that the third and fourth terms in Eq. (17)

correspond to the headway constraints (12b), and then the seventh and eighth terms correspond to

the Benders cut constraints (12f) and LBL cut constraints (15), respectively, which could orient the

LC algorithm to find the best space-time paths for rolling stock units with the consideration of newly

generated (cut) constraints in the Benders decomposition process.

CR
k,l,p =CR

p − π1
k −

∑
t∈T

∑
(r′,r)∈V

αp,r,tπ
2
t,r′,r −

∑
t∈T

∑
(r,r′)∈V

t−1∑
t′=max

{
t−hmin

r,r′+1,0
}αp,r′,t′π

2
t′,r,r′

+
∑
a∈A

∑
s∈Sa

∑
t∈Ts

Nmin
s βp,a,tπ

3
s,a −

∑
t∈T

∑
a∈A

Nmax
a βp,a,tπ

4
a,t

−
∑

(θ1,θ2)∈O∆

∑
r∈RT

l

∑
t∈Tr

θ1r,tαp,r,tπ
5
(θ1,θ2)

+
∑
t∈T

∑
r∈RT

l

t∑
t′=max

{
T

D
r,t,T g(r,t)

}αp,r,t′π
6
t′

∀p ∈ PR
k,l, l ∈ Lk, k ∈ K

(17)

T
D

r,t =

{
t, if R′r,t = ∅
max

r′∈R′
r,t

max
t∈Tr′,r,t∩Tr

(t+ 1), if R′r,t ̸= ∅ (18)

R′r,t =
{
r′
∣∣r′ ∈ RT , Tr′,r,t ∩ Tr ̸= ∅, r′ ̸= r

}
(19)

Tr′,r,t′ =
{
t′
∣∣∣t− TR

r′ − TC max
r′,r ≤ t′ ≤ max

{
T g(r,t), t− TR

r′ − TC min
r′,r

}}
(20)

The pricing sub-problem of the relaxed BMP M4 aims to find new paths for rolling stock units,

which could reduce the objective value of the relaxed BMP M4. Therefore, the pricing sub-problem

associated with train route l ∈ Lk and rolling stock unit k ∈ K (i.e., SPRk,l) becomes a problem

to find a path p ∈ PR
k,l with the minimum reduced cost (i.e., minp∈PR

k,l
CR

k,l,p). Thus, only the flow

balance constraints should be imposed to keep the feasibility of the global path for rolling stock

units. In addition, the complexity of the pricing sub-problem is closely related to the number of trips,

trip connections, and departure timestamps. Furthermore, the pricing problem of the relaxed BMP

M4 can be formulated as a shortest path problem after applying the topological sort method. This

problem can be solved by the LC algorithm in parallel without keeping track of a (potentially very

large) number of paths in the searching process, which makes the procedure highly scalable (see the

electronic companion EC. C.1 for the LC algorithm details). In addition, the branching rule verification

step is also required to exclude infeasible trips, trip connections, and departure timestamps from the

feasible solution space. After applying the LC algorithm, we obtain the shortest path p∗ as the optimal

solution of model SPRk,l. If CR
k,l,p∗ ≥ 0 (i.e., all columns with positive reduced costs), the column

generation procedure terminates. Otherwise, the optimal solution of SPRk,l becomes a new column

which will be inserted to column pool PR
in subsequent iterations.

5.4.2 Pricing sub-problems and multi-stage label correcting for the BSP M2

To characterize the movements of crew members in crew groups, the fixed solution of rolling stock

path columns obtained from the relaxed BMP M4 will be embedded into the BSP M2 for scheduling

crew tasks. Specifically, given a vector λ to represent the solution of obtained decision variables of
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the associated relaxed BMP M4, we use set RC

λ =
{
(r, t)

∣∣∣∑p∈PR λpαp,r,t > 0 ,∀t ∈ Tr, r ∈ RT
}

to

represent fixed trips and set RC

g =
{
(r, t)

∣∣∣g ∈ Gt, (r, t) ∈ RC
}

to represent fixed trips available for

crew group g ∈ G. At the same time, we denote the dual variables associated with constraints (11b)

by θ1, i.e., θ1 = {θ1r,t}t∈Tr,r∈RT . Thus, the reduced cost for each task sequence p belonging to crew

group g can be calculated by Eq. (21):

CC
g,p = CC

g,p −
∑

r∈RC
g

∑
t∈Tr

γp,r · θ1r,t ∀p ∈ PC
g , g ∈ G (21)

The pricing sub-problem of the BSP M2 aims to find task sequences for crew members, which might

improve the quality of the solution for the BSP M2. The pricing sub-problem for crew group g (i.e.,

SPCg) is solved to find a task sequence p ∈ PC
g with the minimum reduced cost (i.e., minp∈PC

g
CC

g,p).

Unlike the pricing sub-problems for rolling stock units in Section 5.4.1, the meal/rest requirements

must also be imposed to generate feasible task sequences for crew groups. Thus, the pricing sub-

problems for crew groups are the shortest path problems with additional constraints, and they cannot

be solved directly by using the standard LC algorithm. At the same time, each meal/rest task (e.g.,

lunch meal task) is assigned once to a crew member within its admissible time windows (e.g., 11:00–

13:00). Thus, it is possible to partition the whole task sequence finding process into multiple stages

using the division of meal/rest tasks. Then, the sub-task-sequence finding process at a single stage can

be modeled as the shortest path problem with flow balance constraints, which can be solved by the

LC algorithm directly. Lastly, the sub-task-sequences at individual stages can be merged and joined

to generate globally feasible task sequences with satisfying crew meal/rest requirements.

r0

Time……

…
…
…
…
…

Time window of meal/rest task

r1

t0 t|T|

Legend:

Stage h0

Stage h1 Stage

Sub-task sequence

Figure 5: Illustration of the multi-stage LC algorithm

To this end, we develop a multi-stage LC algorithm to tackle additional meal/rest requirements.

Specifically, as illustrated in Fig. 5, the entire planning horizon [t0, t|T |] is first partitioned into a

finite number of stages, denoted by H =
{
h0, h1, h2, ..., h|RM

g |+|RR
g |

}
, where |RM

g | + |RR
g | is the total

number of meal/rest tasks for crew members in crew group g. In addition, [T r, T r] is the time window

of meal/rest task r ∈ RM
g ∪ RR

g . Then, in the first stage h0, it only calls the LC algorithm once to

determine sub-task-sequences from virtual source at time t0 to trip tasks within time window [T r0
, T r0 ]

of first meal/rest task r0. Next, in the middle stages h1, · · · , h|H|−2, it needs to call the LC algorithm

with (Tσ(r)−Tσ(r)) times to determine sub-task-sequences which start from trip tasks within the time

window [Tσ(r), Tσ(r)] of meal/rest task σ(r), and end with trip tasks within time window [T r, T r] of

meal/rest task r, where σ(r) is the adjacent previous meal/rest task of meal/rest task r. Lastly, it also

applies one time the LC algorithm to determine sub-task-sequences from the virtual sink to trip task

within [T |RM
g |+|RR

g |−1, T |RM
g |+|RR

g |−1] associated with the last meal/rest task r|RM
g |+|RR

g |−1.

After applying the multi-stage LC algorithm at individual stages (see electronic companion EC. C.2

for the multi-stage LC algorithm details), the global feasible task sequences are generated by merging

sub-task-sequences at stages while satisfying the required time for each meal/rest task. Then, the

global task sequence p∗ from virtual source to virtual sink with the minimum reduced cost is obtained
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as the optimal solution of model SPCg. If CC
g,p∗ ≥ 0 (i.e., all columns with the positive reduced costs),

the column generation procedure terminates. Otherwise, the optimal solution of SPCg becomes a new

column, which will be inserted into the column pool PC
in subsequent iterations.

5.5 Branch-and-bound (B&B)

After solving the linear programming relaxation of path-based model M1 by using Benders decompo-

sition and column generation at each B&B node, if an integer solution is obtained, this solution can

be regarded as a feasible solution corresponding to the model M1; otherwise, the branching strategy

is required to transform the obtained fractional solutions into integer feasible solutions. This section

presents the details of the branching, bounding, and pruning rules, which are used to determine an

optimal integer solution.

(1) Branching rules: It is not tractable to branch on column variables (i.e., λp, µp) directly due to a

large number of columns for rolling stock units and crew groups in this model. Instead, we first make use

of the following four groups of auxiliary branching variables to represent (a) the assignments between

rolling stock units and train routes; (b) the departure timestamps of trips; (c) the assignments between

crew groups and trips; and (d) the connections of trips for crew members, where λ =
{
λp

∣∣∣p ∈ PR
}

and µ =
{
µp

∣∣∣p ∈ PC
}

are the optimal solutions to the associated relaxed BMP M4 and BSP M2 at

the current node, respectively. We can easily verify that a solution to the path-based model M1 is

integral in the JRCSP if and only if all auxiliary variables (i.e., u,x,n, z) are integers.

(a) u =

uk,l =
∑
p∈PR

λp

∑
r∈RT

l

∑
t∈Tr

αp,r,t

∣∣∣∣∣∣∀l ∈ Lk, k ∈ K


(b) x =

xr,t =
∑
p∈PR

λpαp,r,t

∣∣∣∣∣∣∀t ∈ Tr, r ∈ RT


(c) n =

ng,r =
∑

p∈PC
,g(p)=g

µpγp,r

∣∣∣∣∣∣∀r ∈ RT ∪RM ∪RR, g ∈ G


(d) z =

zg,r,r′ =
∑

p∈PC
,g(p)=g

µpγp,rγp,r′

∣∣∣∣∣∣∀r, r′ ∈ RT ∪RM
g ∪RR

g ∪ {0}, r ̸= r′, g ∈ G


We then select a branching variable whose value is the nearest to 0.5 among these four groups of

auxiliary branching variables and create two child nodes n1 with =0 and n2 with =1 for the selected

branching variable. In order to preserve the structure of the BSP M2 and relaxed BMP M4 without

adding more branching constraints, all branching rules are imposed into the pricing sub-problems (i.e.,

SPRk,l and SPCg) by directly skipping certain label updating processes of the involved trips and

tasks in the LC algorithm (see electronic companion EC. C for details). Lastly, the two new branching

nodes will be added into the active node list (ANL).

(2) Bounding and pruning rules: We adopt the commonly used lower bound updating rules based on

the minimum lower bound among branching nodes on the same layer, and upper bound updating rules

based on the newly obtained feasible solutions. Then, we remove redundant branching nodes when

infeasible solutions, integer solutions, or larger lower bounds than the upper bound are encountered

at the current node (Lin and Kwan, 2016; Lusby et al., 2017; Wang et al., 2024).
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5.6 Acceleration techniques

5.6.1 Dynamic constraint generation (DCG)

The solution efficiency of the proposed algorithm largely depends on the efficiency and difficulty of

solving the relaxed BMP M4 model. We observe that the number of constraints (3)–(5) is too large

to be handled explicitly to real-world instances and increases exponentially with the number of rolling

stock units, trips, and considered timestamps. However, most of these constraints are inactive for an

arbitrary feasible solution. For this reason, we use a dynamic constraint generation (DCG) technique

to deal with them. In the beginning, we omit all the associated constraints (3)–(5) and construct an

empty constraint pool. After performing Benders decomposition for one iteration, we check the solution

of the relaxed BMP M4 and identify the violated constraints (3)–(5). If some constraints are violated

but not yet in the constraint pool, we add them into the constraint pool and then update the relaxed

BMP M4 associated with the constraint pool. Then, the relaxed BMP M4 is solved again. This DCG

procedure repeats until no violated constraints can be found.

5.6.2 Pareto-optimal cuts (POC)

We observe that the dual variables of the BMPM4 has multiple optimal solutions (i.e., extreme points),

and some solutions may be used to generate stronger Benders optimality cuts than other solutions.

Along this line, the Pareto-optimal cut is introduced to construct stronger and non-dominated cuts to

improve the convergence of the Benders decomposition process (Magnanti and Wong, 1981; Cordeau

et al., 2001a). Specifically, we identify and generate a Pareto-optimal cut in Eq. (22) from the extreme

point (θ̃
1
, θ̃

2
), which could dominate the cuts generated from other extreme points (θ1,θ2) ∈ O∆ if

and only if satisfying the following condition for all λ = {λp}p∈PC ∈ Λ with the strict inequality for

at least one point.∑
r∈RT

∑
t∈Tr

∑
p∈PR

αp,r,tθ̃
1
r,t · λp +

∑
p∈PC

θ̃2p ≥
∑

r∈RT

∑
t∈Tr

∑
p∈PR

αp,r,tθ
1
r,t · λp +

∑
p∈PC

θ2p ∀(θ1,θ2) ∈ O∆ (22)

Lastly, based on the preliminary experiments, we observed that, although the Pareto-optimal cuts

can certainly reduce the number of Benders decomposition iterations, the total computing time may

increase due to the additional computing time required for solving the auxiliary models. To alleviate

this effect, the maximum computing time is restricted (e.g., 1s) for solving the auxiliary models in the

implementations.

5.6.3 Dynamic management of column pool (DMC)

We observe that a total of
∑

k∈K |Lk| pricing sub-problems needs to be solved to generate new columns

for rolling stock units at each iteration of the column generation process. In fact, it is possible to update

the column pool for rolling stock units dynamically to simplify the column generation procedure by

checking whether rolling stock columns may appear in the optimal solution. Specifically, after solving

the relaxed BMP M4 in the column generation process at a node in the B&B tree, we use the criterion

provided by Proposition 2 to dynamically remove some rolling stock columns associated with the

specific train routes and rolling stock units. After applying this proposition, the column pool PR
for

rolling stock units is updated safely by removing and forbidding the generation of columns associated

with the selected rolling stock units and train routes.

Proposition 2. Let zM4 and UB be the current lower bound and upper bound on the optimal value of

the relaxed BMP M4, respectively. If λp is a non-basic variable in the optimal solution to the relaxed

BMP M4 and zM4 + RCk,l > UB, where RCk,l is the reduced cost associated with rolling stock unit

k = k(p) and train route l = l(p), then λp = 0 in any optimal solution of the relaxed BMP M4.

In addition, to further reduce the size of the column pool, all columns that are infeasible with

respect to safety headway constraints of trip r and associated departure time t will also be eliminated

from the column pool if branching rule xr,t is fixed to 1.
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5.6.4 Column and cut initialization (CCI)

During the solution process, we observe that some of the generated columns and Benders cuts could still

be valid at their child nodes. Thus, we could warm-start the Benders decomposition and column gener-

ation procedures by initializing columns and Benders cuts to avoid some repetitive column generations.

Specifically, at a new B&B node, all valid columns with strict positive column selection solution values

at their parent node will be inherited and reserved as the initial column pools PR

0 and PC

0 for rolling

stock units and crew groups respectively, i.e., PR

0 =
{
p
∣∣∣λp > 0, p ∈ PR

}
, PC

0 =
{
p
∣∣∣µp > 0, p ∈ PC

}
.

Next, the method to inherit Benders cuts is presented in Proposition 3 to identify those valid Benders

cuts. After applying this proposition, we let the initial set of Benders cuts include all Benders cut from

nodes with only branching on variables u,x and their parent nodes with branching on variables n, z.

Proposition 3. For two child nodes n1 and n2 of parent node n0: (a) When one of the branching rules

regarding auxiliary variables u,x in the relaxed BMP M4 of node n0 is selected for generating nodes

n1 and n2, the Benders cuts generated at node n1 are still valid at both nodes n1 and n2 with their

descendent nodes. At the same time, the Benders cuts generated at node n2 are also valid at both

nodes n1 and n2 with their descendent nodes. However, (b) when one of the branching rules regarding

auxiliary variables n, z in the BSP M2 of node n0 is selected for generating nodes n1 and n2, the

Benders cuts generated at node n1 (n2) are only valid at the descendent nodes of node n1 (n2) with

the same branch.

5.6.5 Priority heuristic rule (PHR)

When the proposed BPC algorithm can find a feasible joint rolling stock and crew schedule solution

with same global lower and upper bounds, this solution must be the optimal solution to the model

M1. However, it is difficult to obtain a feasible joint solution in the early stages of the B&B process

due to a large number of columns, especially in some large-scale instances. Given this concern, we

design the priority rule to transform the linear lower bound solution at the B&B node into a feasible

integer solution to update the (integer) upper bound and prune unnecessary nodes. In detail, we use

the priority rule to select and fix columns of rolling stock units according to the descending order of

the value of the column selection solution (i.e., λp) greedily. Then, for those rolling stock units without

selected columns, we generate paths based on the LC algorithm by avoiding the marked space-time

resources of fixed columns. Lastly, we select and fix columns of crew groups according to the descending

order of the column selection solution (i.e., µp) in priority, and assign extra available crew members

for residual uncovered trip tasks. For clarity, the detailed pseudocode of the PHR is displayed in
Algorithm 3 of the electronic companion EC. D.

5.6.6 Parallel B&B computing (PC) technique

The parallel B&B computing technique can be implemented to improve computational efficiency by

collaboratively exploring multiple-core CPU computation resources. Specifically, in the breadth first

search (BFS) implementation, the nodes on one branching layer will be first allocated averagely across

multiple processors in accordance with the number of CPU threads. After solving these nodes inde-

pendently across different CPU threads in a parallel manner, the BFS lower bound is updated with the

minimum objective value of involved nodes on the same layer. Obviously, the parallel B&B computing

technique can perform faster lower and upper bound updating processes than the serial B&B process.

The detailed pseudocode of the parallel B&B algorithm is displayed in Algorithm 4 of the electronic

companion EC. E.

6 Numerical experiments

In this section, we conduct a series of numerical experiments, including small-scale and real-world case

studies, to assess the effectiveness of the proposed methods. All numerical experiments are implemented
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in C++ and CPLEX 20.10 on a computer with an Intel(R) Core(R) i7-13700 processor running at

2.10GHz CPU and 32GB of RAM. For clarity, the small-scale instances are solved using both the

CPLEX solver and the proposed BPC algorithm to validate the correctness and the performance of our

method. The large-scale instances are only solved using the proposed BPC algorithm since it is difficult

to solve the primal model M6 (see electronic companion EC. A for the details of this baseline model)

by using the commercial solvers directly. The instances and detailed computational results related to

this research are available on the GitHub website https://github.com/EntaiWang99/BPC JRCSP.

6.1 Small-scale case study

In this experiment, we consider a small-scale “Y-shaped” urban rail network with four operating

stations S1–S4 and three depots D1–D3 connecting with stations S1, S3 and S4 respectively, as shown

in Fig. 6. For clarity, the traveling times with respect to the physical segments are also labeled

in Fig. 6(a). Then, a total of 2 to 8 rolling stock units are stored at the three depots in different

instances, and three types of train routes in Fig. 6(b) are considered for scheduling rolling stock units

from different depots. All rolling stock units need to leave and enter the same home depots at the

beginning and the end of the planning horizon. Lastly, to ensure the consistency and feasibility of the

trip frequency requirement constraints (4) under different numbers of rolling stock units (especially in

some instances with a small number of rolling stock units), at least one trip is required to pass each

physical segment within the total planning horizon. The maximum number of coupled rolling stock

units is set to 2 (i.e., Nmax
a = 2,∀a ∈ A) for all physical segments.
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S2
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Figure 6: A small “Y-shape” bi-directional urban rail network with associated train routes

In the small-scale instances, the planning horizon is set to be the time interval [0 min, 60 min].

Regarding the input data of crew groups and crew members, we consider only one crew group, which
is all available during the planning horizon (i.e., [0 min, 60 min]). All crew members can change their

trips flexibly on different rolling stock units. Because we assume that the number of crew members in

one crew group g (i.e., |Cg|) is not binding (see Assumption 4), for the convenience of implementing

the mathematical model with the CPLEX solver, we set the maximum number of crew members equal

to the number of trips to ensure the feasibility of the model (i.e., one trip is assigned to one individual

crew member in the worst case). Lastly, the fixed operational costs for one rolling stock unit and one

crew member are set to ¥100/unit and ¥404/member, and the variable costs for scheduling trips and

connection operations are set to ¥35/min and ¥70/min, respectively. Based on the input data for

rolling stock units and crew members, the corresponding path-based model M1 and the primal model

M6 can be formulated.

6.1.1 Experimental results

In this section, we conduct experiments under various settings to evaluate the performance of our

proposed methods. To this end, we consider a set of 7 instances and a total of 70 experiments in

different settings, which are solved using both the CPLEX solver and the proposed BPC algorithm

to validate the correctness and performance of our method. For convenience of description, we here

introduce a notation with the format (|K|, |L|, |R|) to denote the experiment features, in which “|K|”
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represents the number of rolling stock units, “|L|” represents the number of train routes, and “|R|”
represents the number of trips. Based on some preliminary experiments, we observed that both upper

and lower bounds by using the CPLEX solver or the BPC algorithm tend to be stable with only tiny

improvements (or even no improvements) after 3600s of computing time. Thus, to balance the solution

quality and the computing time, we use both the CPLEX solver and our BPC algorithm to solve these

instances with a maximum computing time of 60 min (3600s).

The computational results are listed in Table 3 for all different instances, including acceleration

techniques, lower bounds, upper bounds, gaps, and computing times. The BPC with all the acceleration

techniques clearly outperforms the primal model M6 solved by CPLEX, and it could determine optimal

or near-optimal solutions for all the instances. With the same termination condition, the average lower

bound and computing time by using the BPC algorithm with all acceleration techniques (i.e., 10,972,

1278.6s in column “BPC algorithm with all techniques” of Table 3) are improved by 13.10% and

38.78%, respectively, compared to those of the primal model M6 solved by the CPLEX solver (i.e.,

9701, 2088.7s in column “CPLEX solver” of Table 3).

6.1.2 Performance analyses regarding acceleration techniques

To further investigate the computing performance of our proposed models and algorithms, we im-

plement numerical experiments with the absence of all or one acceleration technique(s), as shown in

Table 3 with the computational results. Overall, the average lower bound and computing time by

using the BPC algorithm with all acceleration techniques (i.e., 10,972, 1278.6s, see column “BPC al-

gorithm with all techniques”) is improved by 0.82% and 50.40%, respectively, compared to the basic

version (i.e., 10,883, 2577.6s, see column “BPC algorithm”). Particularly, when the computing time

reaches 3600s, both the CPLEX solver and the standard BPC algorithm cannot find feasible upper

bound solutions without the help of acceleration techniques for instances 6 and 7. We also observe that

each acceleration technique can yield decreases in relative gaps and computing time by 53%–67% and

9%–46%, respectively. Lastly, we observe that some performances with respect to the individual accel-

eration techniques are similar in seven instances of Table 3. We present the convergence of instance 3

of Table 3 in Fig. (7) as an example to illustrate the improvement based on the Benders decomposition

process at the root node and the B&B process. Specifically, we observe that both LBL and POC

mainly accelerate the Benders decomposition process by improving lower bounds with tighter Benders

cuts in the initial iterations. While the DCG, DMC, CCI, PHR, and PC techniques mainly accelerate

the B&B process by generating constraints dynamically, excluding unnecessary columns, inheriting

columns, generating upper bounds, and parallel node computation, respectively.
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Figure 7: Illustrations of the convergence of instance 3 (as an example)
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Table 3: Optimization results with different acceleration techniques in small-scale instances

ID (|K|, |L|, |R|) CPLEX solver BPC with all techniques BPC algorithm Without PC Without DCG

LB UB
Gap
(%)

CT
(s)

LB UB
Gap
(%)

CT
(s)

LB UB
Gap
(%)

CT
(s)

LB UB
Gap
(%)

CT
(s)

LB UB
Gap
(%)

CT
(s)

1 (2,2,8) 5736 5736 0.0 0.6 5736 5736 0.0 0.2 5736 5736 0.0 0.1 5736 5736 0.0 0.2 5736 5736 0.0 0.3
2 (3,4,14) 7500 7500 0.0 3.6 7500 7500 0.0 3.7 7500 7500 0.0 43.1 7500 7500 0.0 15.2 7500 7500 0.0 12.8
3 (4,6,20) 9264 9264 0.0 216.4 9264 9264 0.0 88.7 9208 9264 0.6 3600.0 9264 9264 0.0 219.5 9264 9264 0.0 241.1
4 (5,8,26) 10220 11028 7.3 3600.0 11028 11028 0.0 299.9 10961 11028 0.6 3600.0 11028 11028 0.0 929.8 11028 11028 0.0 891.0
5 (6,10,32) 10368 12792 18.9 3600.0 12792 12792 0.0 1357.8 12741 - - 3600.0 12777 12792 0.1 3600.0 12792 12792 0.0 3315.8
6 (7,12,38) 11728 - - 3600.0 14529 14556 0.2 3600.0 14291 - - 3600.0 14269 14980 4.7 3600.0 14185 14980 5.3 3600.0
7 (8,14,44) 13088 - - 3600.0 15955 16754 4.8 3600.0 15746 - - 3600.0 15761 16754 5.9 3600.0 15648 16764 6.7 3600.0

Ave. 9701 - - 2088.7 10972 11090 0.7 1278.6 10883 - - 2577.6 10905 11151 1.5 1709.2 10879 11152 1.7 1665.9

ID (|K|, |L|, |R|) Without DMC Without CCI Without PHR Without LBL Without POC

LB UB
Gap
(%)

CT
(s)

LB UB
Gap
(%)

CT
(s)

LB UB
Gap
(%)

CT
(s)

LB UB
Gap
(%)

CT
(s)

LB UB
Gap
(%)

CT
(s)

1 (2,2,8) 5736 5736 0.0 0.2 5736 5736 0.0 0.2 5736 5736 0.0 0.1 5736 5736 0.0 0.2 5736 5736 0.0 0.2
2 (3,4,14) 7500 7500 0.0 12.5 7500 7500 0.0 113.5 7500 7500 0.0 16.2 7500 7500 0.0 29.9 7500 7500 0.0 19.5
3 (4,6,20) 9264 9264 0.0 214.7 9264 9264 0.0 2073.9 9264 9264 0.0 224.0 9264 9264 0.0 249.0 9264 9264 0.0 123.9
4 (5,8,26) 11028 11028 0.0 842.1 10947 11028 0.7 3600.0 11028 11028 0.0 807.9 11028 11028 0.0 826.5 11028 11028 0.0 564.5
5 (6,10,32) 12792 12792 0.0 3114.9 12690 13206 3.9 3600.0 12792 12792 0.0 3417.3 12792 12792 0.0 3154.1 12792 12792 0.0 1924.2
6 (7,12,38) 14268 15000 4.9 3600.0 14265 14990 4.8 3600.0 14267 - - 3600.0 14255 14980 4.8 3600.0 14323 14980 4.4 3600.0
7 (8,14,44) 15772 16754 5.9 3600.0 15881 16754 5.2 3600.0 15778 - - 3600.0 15782 16764 5.9 3600.0 15799 16764 5.8 3600.0

Ave. 10909 11153 1.5 1626.3 10898 11211 2.1 2369.7 10909 - - 1666.5 10908 11152 1.5 1637.1 10920 11152 1.5 1404.6

(1) ID: Instance index; LB: Lower bound; UB: Upper bound; Gap = UB - LB
UB

× 100%; CT: Computing time.
(2) Acceleration technique: Parallel computing (PC); Dynamic constraint generation (DCG); Dynamic management of column pool (DMC); Column and cut initialization
(CCI), Priority heuristic rule (PHR), lower-bound lifting valid inequalities (LBL); Pareto-optimal cuts (POC).
(3) Solution status: Unfounded feasible solution with infinity upper bound and relative gap (“-”).
(4) Ave.: Average performance for instances without infinity upper bounds and gaps.
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6.2 Real-world case study

We consider a real-world case based on the Beijing urban rail system, including four bi-directional

physical lines (i.e., lines 1, 2, 4, and 5) with 76 stations, to further explore the performance of the

proposed methods and provide managerial insights for urban rail operators. Details of the urban

rail network illustration are shown in Fig. 8 with detailed physical segment and station layouts. We

assume that there are seven depots in this network, in which turn-around, coupling, and decoupling

operations are allowed at operating stations (including terminal stations associated with depots and

transfer stations).
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Figure 8: Overview of the Beijing urban rail network

6.2.1 Experimental settings

In this set of experiments, we consider a 16h planning horizon with the time interval [7:00, 23:00] and

a total of 43 rolling stock units stored in seven depots. All rolling stock units need to leave and enter

the same home depots at the beginning and the end of the planning horizon. Specifically, considering

that the suburb depots (i.e., PGY, SHD, AHQB, GYXQ, TTYB, and SJZ) have larger spaces to store

more rolling stock units with lower costs than the downtown depot XZM, it is possible for rolling

stock units from lines 1, 4, and 5 to perform the cross-line operations, for satisfying the high trip

frequency requirements of downtown line 2. Thus, as shown in Table 4, for rolling stock units at the

suburb depots PGY, SHD, AHQB, GYXQ, TTYB, and SJZ associated with physical lines 1, 4, and

5, two types of candidate train routes are constructed for each rolling stock unit, including one local

train route with only traveling on their local lines, and one cross-line train route with crossing line 2.

Then, one local route is constructed for the rolling stock units at the downtown depot XZM with only

traveling on line 2. Particularly, considering that one train route includes multiple loops of passing

operating stations within the planning horizon, for clarity in column “TR sequence” of Table 4, for

example, notation “· · · →Line 1→ · · · ” represents that the train route passes stations on physical line

1 continuously without crossing to other physical lines. Next, based on the generated train routes

for rolling stock units, a total of 685 trips can be generated by splitting the train routes at operating

stations. Lastly, the maximum number of coupled rolling stock units is set to 2 (i.e., Nmax
a = 2,∀a ∈ A)

in a train composition. The variable cost for scheduling trips and trip connection operations are set

to ¥35/min and ¥70/min, respectively.

Regarding the trip frequency, we set the parameter Nmin
s based on the average passenger demand

on the involved segments in the Beijing urban rail system. Specifically, at least 8 min trip frequency

time (i.e., 105 trips in one direction) on average should be guaranteed for busy downtown line 2, and
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Table 4: Parameters for the rolling stock operations

ID Depot TR type TR sequence TR cost

1
PGY

Local line 1 PGY→ · · · →Line 1→ · · · →PGY 500
2 Cross line 1 PGY→FXM→XZM→ · · · →Line 2→ · · · →XWM→FXM→PGY 500
3

SHD
Local line 1 SHD→ · · · →Line 1→ · · · →SHD 500

4 Cross line 1 SHD→JGM→YHG→ · · · →Line 2→ · · · →CWM→JGM→SHD 500
5

XZM
Local line 2 XZM→FXM→ · · · →Line 2→ · · · →YHG→XZM 1000

6 Local line 2 XZM→YHG→ · · · →Line 2→ · · · →FXM→XZM 1000
7

AHQB
Local line 4 AHQB→ · · · →Line 4→ · · · →AHQB 500

8 Cross line 4 AHQB→XZM→YHG→ · · · →Line 2→ · · · →FXM→XZM→AHQB 500
9

GYXQ
Local line 4 GYXQ→ · · · →Line 4→ · · · →GYXQ 500

10 Cross line 4 GYXQ→XWM→CWM→ · · · →Line 2→ · · · →FXM→XWM→QYXQ 500
11

TTYB
Local line 5 TTYB→ · · · →Line 5→ · · · →TTYB 500

12 Cross line 5 TTYB→YHG→JGM→ · · · →Line 2→ · · · →XZM→YHG→TTYB 500
13

SJZ
Local line 5 SJZ→ · · · →Line 5→ · · · →SJZ 500

14 Cross line 5 SJZ→CWM→JGM→ · · · →Line 2→ · · · →XWM→CWM→SJZ 500

ID: Train route ID; Depot: Home depot of train route; TR type: Train route type; TR sequence:
Passing operating station sequence of train route; TR cost: Fixed cost of train route.

at least 10 min trip frequency time (i.e., 84 trips in one direction) on average should be guaranteed for

unbusy lines 1, 4, and 5 within time window [8:00, 22:00] by eliminating rolling stock warm-up time

window [7:00, 8:00] and finalization time window [22:00, 23:00]. Lastly, as for the input data of crew

groups and crew members, we consider two crew groups that are available during time windows [7:00,

15:00] and [15:00, 23:00], respectively. All crew members can change their trips flexibly on different

rolling stock units and different physical segments. In addition, two meal/rest tasks are available to

start within time windows [10:30, 13:00] and [17:30, 20:00]. The fixed operational costs for one crew

member are set to ¥404/member.

6.2.2 Experimental results

In the experiment, to avoid the memory overflow with a large number of B&B nodes in latter B&B

iterations, the termination criteria are set with a maximum of 10 branching layers (i.e., maximum of

1024 B&B nodes per branching layer) and a maximum computing time 24h (1440 min). We could

determine a solution for this instance with a lower bound of 311,842, an upper bound objective value

of 336,802, and a relative gap of 7.41%. For clarity, the optimized train schedule and the corresponding

Gantt charts for rolling stock units and crew members are displayed in Figs. 9–11, respectively. Note

that one trip with the bold line represents a long composition with two coupled rolling stock units.

We observe that when higher trip frequencies are required on line 2 with larger passenger demand, 12

rolling stock units are scheduled to cross from lines 1, 4, and 5 to line 2, which could satisfy the higher

trip frequency requirement of busy line 2. In addition, 38 trips are scheduled with long compositions to

further improve the flexibility and reduce the cost of operations. Lastly, in the visualization of the crew

schedule with Fig. 11, 180 crew members are assigned and scheduled to cover all in-service rolling stock

units and trips. Particularly, some crew members (e.g., crew members 68–89) are scheduled to start

within the meal/rest task time window (e.g., [10:30, 11:30] instead of the beginning of the planning

horizon) due to the crew member resource shortage during the meal/rest period. Overall, most crew

members can work 6-8 hours per day, which corresponds to the reality of crew operations. Typically,

all crew members are scheduled with meal/rest tasks during time windows [10:30, 13:00] and [17:30,

20:00] within the trip task sequences throughout the day. Then, most crew members are scheduled to

work consistently with other rolling stock units and trips after the meal/rest tasks.

6.2.3 Performance analyses in different experiment instances

To further investigate the performance of our proposed methods, we further consider 24 instances

based on different parameter settings with the index form of (|N |, |K|, |R|), in which “|N |” represents

the number of considered physical lines, “|K|” represents the number of rolling stock units, and “|R|”
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Figure 9: Visualization for rolling stock schedule in the Beijing urban rail network
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Figure 10: Visualization for rolling stock Gantt chart in the Beijing urban rail network
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Figure 11: Visualization for crew Gantt chart in the Beijing urban rail network
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represents the number of trips. Specifically, we perform 154 experiments with different features and

acceleration technique combinations under a maximum of 10 branching layers and 24h (1440 min) of

computing time as the algorithm termination criteria. To balance the distributions of rolling stock

units in different physical lines, we start by allocating one rolling stock unit to one physical line for

instance 1 with a 2-line network, instance 9 with a 3-line network, and instance 17 with a 4-line network

(see column “(|N |, |K|, |R|)” of Table 5). Then, we increase one unit once for one physical line as the

rate of increment to generate instances 2–8, 10–16, and 18–24, respectively. Lastly, to ensure the

consistency and feasibility of the trip frequency requirement constraints (4) under different number of

rolling stock units, at least one trip is required to pass each physical segment within the total planning

horizon (as in Section 6.1).

Table 5: Computational results for different acceleration techniques in real-world instance

ID (|N |, |K|, |R|) Only with PHR All techniques

#UC #CC #C LB UB
Gap
(%)

CT (min) #UC #CC #C LB UB
Gap
(%)

CT (min)

1 (2,2,39) 2396 64033 493 16215.0 16524 1.9 0.7 115 15947 50 16524.0 16524 0.0 0.1
2 (2,4,78) 12805 416721 1420 32255.9 34360 6.1 14.2 600 94729 64 32380.8 34310 5.6 0.7
3 (2,6,117) 37680 1318485 2651 48412.5 52500 7.8 102.6 1295 200082 114 48541.6 52146 6.9 4.1
4 (2,8,158) 99915 3828993 4957 64488.5 69378 7.0 443.2 1811 312582 112 64598.5 69074 6.5 15.0
5 (2,10,195) 77547 3389506 3112 80553.3 88376 8.6 1440.0 2974 425182 168 80682.1 88022 8.3 38.2
6 (2,12,233) 36701 1779257 1209 96640.1 106466 9.2 1440.0 4243 598752 266 96777.3 104446 7.3 85.5
7 (2,14,271) 23668 1177276 651 112760.012536410.1 1440.0 5592 725194 282 112894.0 124706 9.5 199.9
8 (2,16,308) 17131 911518 438 128855.014315010.0 1440.0 16406 2569778 504 129024.0 142038 9.2 456.0
9 (3,3,55) 6093 152026 858 23861.3 24142 1.2 2.8 235 34048 58 23911.0 24042 0.5 0.2
10 (3,6,107) 39118 1244528 2775 47643.6 50054 4.8 54.3 1599 218447 172 47766.3 49750 4.0 3.5
11 (3,9,159) 105937 4348369 5169 71335.6 76116 6.3 765.7 2371 387713 162 71536.3 75358 5.1 16.1
12 (3,12,213) 51358 2258036 1687 95064.8 103340 8.0 1440.0 3464 592938 218 95287.5 102582 7.1 60.1
13 (3,15,263) 40382 1955863 1081 118868.0129756 8.4 1440.0 5291 697377 286 118990.0 129352 8.0 143.8
14 (3,18,317) 25821 1286206 570 142607.0158092 9.8 1440.0 7988 1066267 452 142661.0 156626 8.9 711.5
15 (3,21,367) 14188 737429 270 166388.0 - - 1440.0 10960 1475930 642 166480.0 181576 8.3 1037.2
16 (3,24,419) 8378 430137 149 188258.0 - - 1440.0 15340 1657586 1186 189227.0 210520 10.1 1440.0
17 (4,4,70) 11820 333882 1282 31654.0 33316 5.0 8.9 682 96546 90 31755.2 32862 3.4 0.8
18 (4,8,137) 91628 3220352 4807 63216.7 67644 6.5 430.8 1980 333215 118 63367.6 67644 6.3 8.8
19 (4,12,206) 2574 3145960 2574 94688.3 101868 7.0 1440.0 3708 556508 218 94896.8 101414 6.4 52.9
20 (4,16,273) 41154 1906007 1014 126284.0137358 8.1 1440.0 5845 913678 342 126313.0 135842 7.0 185.1
21 (4,20,340) 17424 904298 359 157873.0173602 9.1 1440.0 8947 1272577 474 157902.0 171936 8.2 748.0
22 (4,24,406) 11067 590530 200 187949.0207022 9.2 1440.0 17157 2127208 982 189495.0 206968 8.4 1440.0
23 (4,28,473) 9667 490230 152 217718.0 - - 1440.0 32357 3169964 2058 218503.0 243420 10.2 1440.0
24 (4,32,537) 8360 402398 117 246330.7 - - 1440.0 30491 2926492 1886 246336.0 275424 10.6 1440.0

Ave. 33033.81512168.31583.1106663.3 976.0 7560.5936197.5454.3106910.4116524.3 6.9 397.0

(1) Acceleration techniques: Priority heuristic rule (PHR).
(2) Solution status: Unfounded feasible solution with infinity upper bound and relative gap (“-”).
(3) ID: Instance index; #UC: number of unit columns; #CC: number of crew columns; #C: number of cuts; LB: Lower
bound; UB: Upper bound; Gap = UB - LB

UB × 100%; CT: Computing time; Ave.: Average.

(1) Performance analyses regarding acceleration techniques We observe that the performance im-

provements using the acceleration techniques in real-world case studies are similar to those in small-

scale instances. In addition, we observed that feasible solutions could not be found in most of instances

when using the standard BPC algorithm. Thus, it is necessary to apply the PHR acceleration tech-

nique to find feasible solutions. We present the performance results in Table 5 with respect to the

PHR and other acceleration techniques. From the results, the average lower bound with all accelera-

tion techniques (i.e., 106,910.4) can be improved by 0.23% compared to using only the PHR technique

(i.e., 106,663.3), and the improvement is as high as 1.87% in some instances. In addition, the average

number of rolling stock columns, the number of crew columns, the number of cuts, and the computing

time with all acceleration techniques (i.e., 7560.5, 936,197.5, 454.3, 23,818.8) can be reduced by 77.11%,

38.09%, 71.30% and 51.32% compared to using only the PHR technique (i.e., 33,033.8, 1,512,168.3,

1583.1, 58,557.8), respectively.
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(2) Performance analyses regarding sequential/joint rolling stock and crew scheduling schemes To

demonstrate the benefits of the joint rolling stock scheduling and crew scheduling schemes, we define

the sequential rolling stock and crew scheduling problem (SRCSP) with the mathematical model M5

in Eq. (23) for the comparisons with the JRCSP. Specifically, in this model, set Λ indicates the set of

vectors for the rolling stock path selection variables that satisfy 0 ≤ λp ≤ 1 and constraints (2)–(5),

i.e., Λ =

{
λ =

(
λ1, · · · , λp, · · · , λ|PR

k |

)T ∣∣0 ≤ λp ≤ 1, constraints (2)–(5), p ∈ PR
k

}
, and setM (λ) in-

dicates the set of vectors for the crew task sequence selection variables that satisfy 0 ≤ µp ≤ 1 and

constraints (6) based on rolling stock path solution λ, i.e.,

M (λ) =
{
µ =

(
µ1, · · · , µp, · · · , µ|PC |

)T ∣∣∣ 0 ≤ µp ≤ 1, constraints (6), p ∈ PC
}
.

We first optimize the rolling stock scheduling model (i.e., minλ∈Λ

{∑
p∈PR CC

p · λp

}
), and then op-

timize the crew scheduling model based on given rolling stock path selection variable λ ∈ Λ (i.e.,

minµ∈M(λ)

{∑
p∈PC CC

p · µp

}
). Both the rolling stock and crew scheduling models are tackled by the

standard B&P algorithm, respectively.

M5: min
µ∈M(λ)

 ∑
p∈PC

CC
p · µp +min

λ∈Λ

 ∑
p∈PR

CC
p · λp


 (23)

To our knowledge, salary levels vary widely in different countries around the world. Based on the

preliminary experiment, we observed that different salary levels for the crew members have a crucial

impact on the balance of the rolling stock and crew scheduling solutions. Thus, we test the SRCSP

and the JRCSP instances by considering two cases: case A with ¥404 per member per day and case B

with ¥808 per member per day. Then, Table 6 displays the computational results with respect to the

operational costs for rolling stock units and crew members by implementing sequential/joint scheduling

schemes on different salary levels. From these results, the solutions of case A obtained by the joint

Table 6: Summary of optimization results in sequential/joint rolling stock and crew scheduling schemes

ID (|N |, |K|, |R|)
Case A Case B

SRCSP JRCSP SRCSP JRCSP

RSC CC TC RSC CC TC RSC CC TC RSC CC TC

1 (2,2,39) 14100 2424 16524 14100 2424 16524 14100 4848 18948 14100 4848 18948
2 (2,4,78) 28200 6464 34664 28250 6060 34310 28200 12928 41128 28300 11312 39612
3 (2,6,117) 42300 10504 52804 42450 9696 52146 42300 21008 63308 42400 16968 59368
4 (2,8,158) 56400 15756 72156 56550 12524 69074 56400 31512 87912 56600 26664 83264
5 (2,10,195) 70500 18988 89488 70650 17372 88022 70500 37976 108476 70600 35552 106152
6 (2,12,233) 84600 22220 106820 84650 19796 104446 84600 44440 129040 84800 41208 126008
7 (2,14,271) 98700 26664 125364 98850 25856 124706 98700 53328 152028 99000 47672 146672
8 (3,3,55) 20760 6868 27628 20810 3232 24042 20760 13736 34496 20760 7272 28032
9 (3,6,107) 41520 8484 50004 41670 8080 49750 41520 16968 58488 41620 16160 57780
10 (3,9,159) 62280 15756 78036 62430 12928 75358 62280 31512 93792 62380 27472 89852
11 (3,12,213) 83040 19796 102836 83190 19392 102582 83040 39592 122632 83340 38784 122124
12 (3,15,263) 103800 26260 130060 103900 25452 129352 103800 52520 156320 104000 46056 150056
13 (3,18,317) 124560 35956 160516 124710 31916 156626 124560 71912 196472 125060 60600 185660
14 (3,21,367) 145320 39188 184508 145620 35956 181576 145320 78376 223696 145570 76760 222330
15 (4,4,70) 27560 8080 35640 27610 5252 32862 27560 16160 43720 27710 10504 38214
16 (4,8,137) 55120 15352 70472 55120 12524 67644 55120 30704 85824 55420 24240 79660
17 (4,12,206) 82680 23028 105708 82830 18584 101414 82680 46056 128736 82880 37976 120856
18 (4,16,273) 110240 27472 137712 110390 25452 135842 110240 54944 165184 110540 51712 162252
19 (4,20,340) 137800 38784 176584 138000 33936 171936 137800 77568 215368 138000 64640 202640

Ave. 73130.519370.792501.373251.617180.690432.273130.538741.5111872.073320.034021.1107341.1

ID: Instance index; SRCSP: Sequential rolling stock and crew scheduling problem; JRCSP: Joint rolling stock and crew
scheduling problem; RSC: Rolling stock cost; CC: Crew cost; TC: Total cost; Ave.: Average.
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scheduling scheme have an average objective function value of 90,432.2, resulting in an average reduc-

tion of 2.24% as opposed to the solution obtained by the sequential scheduling scheme (the reduction

is as high as 12.98% in some instances). The reduction mainly comes from the significant reduction in

crew scheduling costs (11.31% on average) and the slight increase (0.17% on average) in rolling stock

scheduling costs. In case B with higher salary, the solutions obtained by the joint scheduling scheme

have an average objective function value of 107,341.1, resulting in an average reduction of 4.05% com-

pared to the solution obtained by the sequential scheduling scheme (the reduction is as high as 18.74%

in some instances). The reduction mainly comes from the significant reduction in crew scheduling

costs (12.18% on average) and the slight increase (0.26% on average) in rolling stock scheduling costs

between the joint and sequential schemes.

(3) Performance analyses regarding the flexible operation schemes Compared with the single train

composition operation scheme on urban rail lines, the multi-train composition and cross-line operation

(i.e., rolling stock units can travel flexibly by using connection tracks among different physical rail lines)

schemes might improve the flexibility of scheduling rolling stock and crew members in rail networks.

We next test 10 extra instances with 30 experiments based on different multi-train compositions and

cross-line operation schemes. The computational results for different tested instances are displayed in

Table 7, including the costs of rolling stock units, crew members, and total operations. Particularly, the

column with “Basic operation” indicates that both the multi-train composition (MTC) and cross-line

operation schemes are not involved; the column with “CL” indicates that only the cross-line operation

scheme is involved; and the column with “CL+MTC” indicates that both the cross-line and MTC

operation schemes are involved for scheduling rolling stock units.

From these results, with the cross-line operation scheme (see column “CL”), the average objective

value (i.e., 110,782.4) decreased by 5.94% compared to the common scheme without both the cross-

line and MTC operations (i.e., 117,772.8, see column “Basic operation”). This is mainly because some

rolling stock units can be scheduled from the suburb depots with lower train route costs, and then

service downtown trips by using cross-line train routes. Specifically, rolling stock units can cross to

downtown line 2 from other suburb lines 1, 4, 5 with the cross-line operations, to satisfy the higher

trip frequency requirement of line 2. In comparison, in the case without the cross-line operation

scheme, some rolling stock units have to be allocated and depart from the downtown depot with

higher train route costs. Furthermore, with both the MTC and cross-line operation schemes (see

column “CL+MTC”), the average objective value (i.e., 104,849.7) decreases by 10.97% compared to

the common scheme without both the cross-line and MTC operations (i.e., 117,772.8, see column
“Basic operation”), since multiple rolling stock units can further share one trip cost in a long train

composition on the basis of the cross-line operation. Thus, when the trip frequency requirements

(i.e., passenger demand) vary in different urban rail lines, it is helpful to match passenger demand

distributions with rolling stock units flexibly crossing multiple lines, so as to maximize the efficiency

of rolling stock units and reduce the operation costs.

7 Conclusions and future research

In this study, with the aim of scheduling joint rolling stock and crew operation schemes in urban

rail networks, we formulated the JRCSP into a path-based model with considering both multi-train

composition and cross-line operations. To handle real-world instances, an exact branch-and-price-and-

cut (BPC) solution algorithm was designed based on Benders decomposition and column generation

methods. Then, the proposed BPC algorithm was unbraced through several acceleration techniques.

Finally, we conducted the performance of the proposed methods based in small-scale instances and

real-world instances. The proposed methodology can adequately schedule rolling stock units and

crew members flexibly in rail networks, which might allows rail dispatchers to make consistent rolling

stock and crew scheduling plans. The proposed approach and enhancements can be generalized and

extended for solving other integrated scheduling problems in railway systems. In general, most rail
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Table 7: Summary of optimization results in instances with different operation schemes

ID (|N |,|K|) Basic operation CL CL+MTC

RSC CC TC RSC CC TC RSC CC TC

1 (2,4) 28250 6060 34310 26360 6060 32420 25834 5656 31490
2 (2,8) 56550 12524 69074 52720 12524 65244 50076 13332 63408
3 (2,12) 84650 19796 104446 79080 20604 99684 72674 21412 94086
4 (2,16) 112950 29088 142038 105440 25856 131296 92058 28280 120338
5 (3,6) 41670 8080 49750 39190 9696 48886 37524 7676 45200
6 (3,12) 83190 19392 102582 78240 17372 95612 74188 19796 93984
7 (3,18) 124710 31916 156626 117430 27472 144902 107551 30704 138255
8 (3,24) 166080 44440 210520 156480 38380 194860 138080 42824 180904
9 (4,12) 82830 18584 101414 79570 18180 97750 75763 19392 95155
10 (4,24) 165760 41208 206968 158790 38380 197170 144873 40804 185677

Ave. 94664.0 23108.8 117772.8 89330.0 21452.4 110782.4 81862.1 22987.6 104849.7

(1) ID: Instance index; RSC: Rolling stock cost; CC: Crew cost; TC: Total cost; Ave.: Average.
(2) Basic operation: Without the cross-line and multiple train composition operation schemes;
CL: With only the cross-line operation scheme; CL+MTC: With both cross-line and multi-train
composition operation schemes.

operational problems are solved separately and sequentially in different decision stages, such as line

planning and train scheduling (Yao et al., 2023), train scheduling and routing (Wang et al., 2023).

Thus, our proposed BPC solution algorithm can be applied to solving these integrated problems by

decomposing them into BMP and BSP models and then employing the column generation method in

the corresponding pricing sub-problems.

From the managerial perspective of the urban rail operations, the operational efficiency of schedul-

ing rolling stock units and crew members can be improved in two ways: (1) Compared with the

sequential rolling stock and crew scheduling scheme, the joint scheduling scheme benefits urban rail

dispatchers by reducing the total operational costs for rolling stock units and crew members; (2) Com-

pared to the operation scheme with the fixed train composition mode and without crossing physical

rail lines, the multi-train-composition and cross-line operation schemes can improve the solution flex-

ibility to satisfy passenger demand requirements with the limited rolling stock unit and crew member

resources. Further research will focus on the following aspects: (1) A robust joint operation plan could

be implemented to schedule rolling stock units and crew members based on spatio-temporal dynamic

(e.g., OD-based time-dependent) and uncertain passenger demand. A promising research direction is

to develop stochastic/robust optimization methods to tackle such a JRCSP based on the uncertain

passenger demand over multiple scenarios; (2) The proposed models and algorithms from this paper

can be extended to solve long-term JRSCP (e.g., one week/month) that incorporates rolling stock

maintenance and crew rostering (Feng et al., 2024).

Electronic companion

A Equivalent primal model of the JRCSP

In this section, we present a compact mathematical optimization model of the JRSCP for the validation

and the comparison with the proposed approach, which is equivalent to the path-based model M1

in Section 4 and can be solved by a general-purpose solver (e.g., CPLEX) directly. Specifically, we

introduce the notation, objective function, and system constraints is Sections A.1 and A.2, respectively.
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A.1 Notation

For convenience, the additional notations used in this primal model M6 is summarized in Table 8 for

reference. Specifically, the following binary decision variables are used to model the problem: train

route selection variable uk,l taking value 1 if train route l is selected by rolling stock unit k in the rail

network (otherwise uk,l = 0), trip departure time selection variable xr,t taking value 1 if trip r starts at

timestamp t in the train schedule (otherwise xr,t = 0), crew task starting variable zc,0,r taking value 1

if trip/task r is connected from the virtual source for crew member c (otherwise zc,0,r = 0), crew task

connection variable zc,r,r′ taking value 1 if trip/task r is connected with trip/task r′ for crew member c

(otherwise zc,r,r′ = 0), and crew task ending variable zc,r,0 taking value 1 if trip/task r is connected to

the virtual sink for crew member c (otherwise zc,r,0 = 0). In addition, we define the following positive

integer variables: trip connection time vk,σ(r),r indicating the connection time between trips σ(r) and r

for rolling stock k, and total crew number mg indicating the number of assigned crew members for

each crew group g.

Table 8: Additional notations in the primal model

Notation Definition

Indices
c Index of crew members

Sets

RT+
r , RT−

r Set of possible adjacent next/previous trips of trip r

Parameters
TRmin
σ(r),r

, TRmax
σ(r),r

Minimum/Maximum connection time between trips σ(r) and r for rolling stock units

TC min
r,r′ , TC max

r,r′ Minimum/Maximum connection time between trips r and r′ for crew members

Decision variables
uk,l Binary variables, =1 if train route l is selected by rolling stock unit k; =0 otherwise
xr,t Binary variables, =1 if trip r starts at timestamp t; =0 otherwise
vk,σ(r),r Integer variables, representing connection time between trips σ(r) and r by rolling stock

unit k; =0 otherwise
zc,0,r Binary variables, =1 if trip r is assigned as the first task from the virtual source by crew

member c; =0 otherwise
zc,r,r′ Binary variables, =1 if trips r and r′ are connected by crew member c; =0 otherwise
zc,r,0 Binary variables, =1 if trip r is assigned as the last task to the virtual sink by crew member

c; =0 otherwise
mg Integer variables, representing total number of used crew members in crew group g

A.2 Objective function and system constraints

We first formulate the objective function in Eq. (24), which aims to minimize the total cost of the

rolling stock and crew scheduling plans and is equivalent to Eq. (1) in the path-based model M1.

Specifically, the first term represents the total fixed cost of the selected train routes for rolling stock

units. The second term represents the fixed cost for the trips. The third term represents the total

cost of the trip connection operations for rolling stock units. The last term represents the total cost

of assigning crew members.

min
∑
k∈K

∑
l∈Lk

c1k,luk,l+
∑
k∈K

∑
l∈Lk

∑
r∈RT

l

∑
t∈Tr

c2r,txr,t+
∑
k∈K

∑
l∈Lk

∑
r∈RT

l \{r0(l)}

c3σ(r),rvk,σ(r),r+
∑
g∈G

c4gmg (24)

The feasibility and consistency of the model are guaranteed by three groups of system constraints

formulated below, where the rolling stock scheduling related constraints, crew scheduling related con-

straints, and the range of the decision variables are expressed in Groups I, II, and III, respectively.

For clarity, we first discuss the Group I system constraints in the following.

Group I: Rolling stock scheduling constraints∑
l∈Lk

uk,l =1 ∀k ∈ K (25)
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∑
t∈Tr

xr,t =uk,l ∀r ∈ RT
l , l ∈ Lk, k ∈ K (26)

∑
t′∈Tr∩{t}

xr,t′ +
∑

t′∈Tr′∩Z[
t+1,min

{
t+hmin

r,r′
−1,|T |

}]
xr′,t′ ≤1 ∀t ∈ T , (r, r′) ∈ V (27)

∑
r∈RT

∑
t∈Ts∩Tr

xr,t · δr,a ≥Nmin
s ∀s ∈ Sa, a ∈ A (28)

∑
r∈RT

xr,t · δr,a ≤Nmax
a ∀a ∈ A, t ∈ T (29)

Constraints (25) require one suitable train route l to be selected from the corresponding train route set

Lk for scheduling each rolling stock unit k. Then, constraints (26) ensure that all trips that belong to

train route l (i.e., r ∈ RT
l ) start at one timestamp within their given time window (i.e., Tr) if train route

l is selected by rolling stock unit k (i.e., uk,l = 1). Constraints (27) are the safety headway constraints

among trips, which are equivalent to constraints (3). Constraints (28) impose the trip frequency

constraints, which are equivalent to constraints (4). Particularly, we define parameter δr,a, which is

equal to 1 if trip r passes through physical segment a. Constraints (29) are the covering constraints

of rolling stock units for physical segment a at timestamp t, which is equivalent to constraints (5).∑
t∈Tr

t · xr,t ≥
∑

t∈Tσ(r)

t · xσ(r),t +
(
TR
σ(r) + TRmin

σ(r),r

)
· uk,l ∀r ∈ RT

l \ {r0(l)} , l ∈ Lk, k ∈ K (30)

∑
t∈Tr

t · xr,t ≤
∑

t∈Tσ(r)

t · xσ(r),t +
(
TR
σ(r) + TRmax

σ(r),r

)
· uk,l ∀r ∈ RT

l \ {r0(l)} , l ∈ Lk, k ∈ K (31)

vk,σ(r),r =
∑
t∈Tr

t · xr,t−
∑

t∈Tσ(r)

t · xσ(r),t −
(
TR
σ(r) + TRmax

σ(r),r

)
· uk,l ∀r ∈ RT

l \ {r0(l)} , l ∈ Lk, k ∈ K (32)

Constraints (30)–(31) ensure that one rolling stock unit connects trip r (except the first trip r0(l)

with train route l) and its adjacent previous trip σ(r) with the given minimum connection time TRmin
σ(r),r

and maximum connection time TRmax
σ(r),r , respectively, if rolling stock unit k selects train route l (i.e.,

uk,l = 1). Then, we calculate the actual connection time between two adjacent trips σ(r) and r for

rolling stock unit k in constraints (32).

With constraints (25)–(32), we can optimize the rolling stock scheduling problem in the rail network.

At the same time, the feasibility and consistency constraints for scheduling crew members are also

needed to generate joint optimization solutions, which will be discussed in the following group.

Group II: Crew scheduling constraints∑
r∈RT∪RM

c

zc,0,r ≤1 ∀c ∈ C (33)

In constraints (33), each crew member c has at most one starting task in the planning horizon, including

a trip in set RT , or a meal task in set RM
c associated with crew member c.

zc,0,r +
∑

r′∈RT−
r ∪RM

c ∪RR
c

zc,r′,r =zc,r,0 +
∑

r′∈RT+
r ∪RM

c ∪RR
c

zc,r,r′ ∀r ∈ RT ∪RM
c ∪RR

c , c ∈ C (34)

zc,0,r +
∑

r′∈RT−
r

zc,r′,r =zc,r,0 +
∑

r′∈RT+
r

zc,r,r′ ∀r ∈ RM
c ∪RR

c , c ∈ C (35)

∑
r∈RT∪RM

c

zc,0,r =
∑

r∈RT∪RM
c

zc,r,0 ∀c ∈ C (36)

Constraints (34)–(36) refer to task flow balance constraints for each crew member c. Two sets, i.e.,

RT+
r and RT−

r , denote the sets of possible next and previous trips for trip r. Particularly, one trip
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(i.e., r ∈ RT ) can be connected with two trips, meal tasks, or rest tasks as its next/previous adjacent

tasks (see constraints (34)). While one meal/rest task (i.e., r ∈ RM
c

⋃
RR

c for crew member c) can only

be connected with trips as its next/previous adjacent tasks (see constraints (35)), as two consecutive

meal/rest tasks are not permitted in the JRCSP as well as real-world situations. Lastly, based on

constraints (33) and (36), the crew members are only allowed to start or end with trip r ∈ RT , or

meal task r ∈ RM , but not allowed to start or end with rest task r ∈ RR, which are consistent with

the real-world labor requirements.∑
t∈Tr′

txr′,t ≥
∑
t∈Tr

txr,t + TR
r + TC min

r,r′ +Mr,r′(zc,r,r′ − 1) ∀r, r′ ∈ RT ∪RM
c ∪RR

c , r ̸= r′, c ∈ C

(37)∑
t∈Tr′

txr′,t ≤
∑
t∈Tr

txr,t + TR
r + TC max

r,r′ +Mr,r′(1− zc,r,r′) ∀r, r′ ∈ RT ∪RM
c ∪RR

c , r ̸= r′, c ∈ C

(38)

Constraints (37)–(38) refer to the minimum connection time (i.e., TC min
r,r′ ) and maximum connection

time (i.e., TC max
r,r′ ) requirements, if two consecutive tasks r, r′ are performed by one crew member c

(i.e., zc,r,r′ = 1).

Mr,r′ =

{
max

{
0, T r′ − T r + TC max

r,r′ + TR
r

}
, if r′ ∈ RT

T r′ + TC max
r,r′ + TR

r , if r′ ∈ RM ∪RR
∀r, r′ ∈ RT ∪RM ∪RR, r ̸= r′ (39)

Moreover, to tighten the ILP model of the JRCSP, constraints (37)–(38) should be set with smallest

feasible big-M values. To this end, let Mr,r′ be the big-M value associated with trips/tasks r and r′

in Eq. (39), where T r represent the earliest start time of trip/task r and T r′ represent the latest start

time of trip/task r′.

zc,0,r +
∑

r′∈RT−
r

zc,r′,r =
∑

r′∈RT∪RM
c

zc,0,r′ ∀r ∈ RM
c ∪RR

c , c ∈ C (40)

∑
t∈Tr

xr,t =
∑

r′∈RT∪RM
c

zc,0,r′ ∀r ∈ RM
c ∪RR

c , c ∈ C (41)

Constraints (40)–(41) ensure that each meal/rest task r ∈ RM
c

⋃
RR

c is planned for a crew member c

that works in the planning horizon (i.e.,
∑

r′∈RT∪RM
c
zc,0,r′ = 1), and it should start with the given

time window Tr (e.g., lunch/dinner time windows).

xr,t ≤
∑
c∈C

zc,0,r +
∑
c∈C

∑
r′∈RT−

r ∪RM
c ∪RR

c

zc,r′,r ∀t ∈ Tr, r ∈ RT (42)

mg =
∑
c∈Cg

∑
r∈RT∪RM

c ∪RR
c

zc,0,r ∀g ∈ G (43)

Constraints (42) represent the coupling constraints between rolling stock units and crew members on

trips. Specifically, if trip r starts at timestamp t (i.e., xr,t = 1), it must be assigned to one crew from the

source (i.e.,
∑

c∈C zc,0,r = 1) as the first task or other tasks (i.e.,
∑

c∈C
∑

r′∈RT−
r ∪RM

c ∪RR
c
zc,r′,r = 1).

Lastly, we calculate the total number of crew members required for each crew group g in con-

straints (43).

Group III: Range of the decision variables

All the train route selection, trip departure time selection, and crew task connection decision

variables are binary variables, and all decision variables for trip connection times, and number of

required crew members are positive integer variables, as formulated in the following constraints.

uk,l ∈ {0, 1} ∀l ∈ Lk, k ∈ K (44)
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xr,t ∈ {0, 1} ∀t ∈ Tr, r ∈ RT ∪RM ∪RR (45)

zc,0,r, zc,r,r′ , zc,r,0 ∈ {0, 1} ∀r, r′ ∈ RT ∪RM
c ∪RR

c , r ̸= r′, c ∈ C (46)

vk,σ(r),r ∈ Z+ ∀r ∈ RT
l \ {r0(l)} , l ∈ Lk, k ∈ K (47)

mg ∈ Z+ ∀g ∈ G (48)

With Eqs. (24)–(48), the primal mathematical formulation M6 is modeled for the JRCSP. Then, a

general-purpose solver (e.g., CPLEX) can be employed to solve the primal model M6 in small-scale

instances (see Section 6.1 for numerical experiments). However, owing to a large number of system

constraints and integer decision variables with their complex coupling relationships, it is difficult to

solve the model for large-scale instances. Specifically, in order to find feasible trip sequences and task

sequences for rolling stock units and crew members, a large number of constraints (i.e., constraints (25)–

(26), (30)–(41)) are required to enforce the flow conservation for rolling stock units and crew members,

which could result in poor computational efficiency.

B Mathematical model properties and proofs

Proposition 1. The Benders sub-problem M2 and Benders dual sub-problem (DSP) M7 in Eq. (49)

are always feasible and bounded for any given feasible vector λ ∈ Λ.

M7:



min
∑

r∈RT

∑
t∈Tr

∑
p∈PR

λpαp,r,t · θ1r,t +
∑

p∈PC

θ2p (49a)

s.t.
∑

r∈RT

∑
t∈Tr

γp,r · θ1r,t + θ2p ≤ CC
p ∀p ∈ PC (49b)

θ1r,t ≤ 0 ∀t ∈ Tr, r ∈ RT (49c)

θ2p ≤ 0 ∀p ∈ PC (49d)

Proof. We first prove that the BSP M2 is always feasible and bounded, and then the DSP M7 is

also always feasible and bounded based on the complementary slackness condition. Without loss of

generality, given a feasible solution λ =
{
λp

}
p∈PR ∈ Λ of the relaxed BMP M4, we generate a set

of trips RC

λ =
{
(r, t)

∣∣∣∑p∈PR λpαp,r,t ≥ 1 ,∀t ∈ Tr, r ∈ RT
}

that are required to be covered by crew

members. For convenience, virtual source vertex (dCori, t0) and virtual sink vertex (dCdes, t|T |) are used

to indicate the source and sink for crew members. Then, we construct an artificial feasible solution

by assigning one available crew member c ∈ Cg, g ∈ Gt to cover only one trip (r, t) ∈ RC

λ , which

corresponds to a feasible task sequence p with the satisfaction of meal/rest task requirements (e.g.,

p = (dCori, t0) → (r, t) → (dCdes, t|T |)). Considering that the total number of crew members is not

limited (see Assumption 4) and the total available time horizon for available crew groups lasts for the

whole time horizon (i.e.,
⋃

g∈G Tg = T ), it is always feasible to construct a solution µ∗ of the BSP M2

with the bounded operational cost as
∑

g∈G c
4
gφg,p(r), where φg,p(r) is equal to 1 if and only if crew

task sequence p(r) associated with trip r is assigned to one crew member in crew group g. Then, the

feasibility and bounded conditions are guaranteed for BSP M2 and DSP M7.

Proposition 2. The lower-bound lifting (LBL) valid inequalities in Eq. (15) is effective for the Benders

mater problem M4.

Proof. Considering the BMP M4 with LBL cuts, based on the given column selection solution λ ={
λp

}
p∈PR ∈ Λ for rolling stock units, the objective value of LBL cuts with respect to variable η



Les Cahiers du GERAD G–2025–47 34

(denoted by η∗LBL(λ)) could be calculated based on Eq. (50).

η∗LBL(λ) ≥
∑
p∈PR

∑
r∈RT

min{TD
r,t,T g(r,t)}∑
t′=t

c4g(r,t)αp,r,tλ̄p ∀λ ∈ Λ (50)

At the same time, considering the BMP M3 without LBL cuts, we denote by η∗BMP (λ) as the

optimal objective value of variable η with the extreme point set O∆, based on the given column

selection solution λ for rolling stock units. To prove that the LBL cuts are valid to lift valid lower

bounds to the BMP M4, if and only if we could prove the condition in Eq. (51) equivalently.

η∗LBL(λ) ≤ η∗BMP (λ) ∀λ ∈ Λ (51)

On the one hand, we denote by µ∗(λ) =
{
µ∗p(λ)

}
p∈PC as the optimal solution of crew columns with

respect to the BSP M2 with given solution λ for rolling stock units. Then, the following Eq. (52)

always holds, where η∗BSP (λ) denotes the optimal value of the BSP M2, where φg,p is equal to 1 if and

only if path p is assigned to one crew member in crew group g.

η∗BMP (λ) ≥ η∗BSP (λ) =
∑
g∈G

∑
p∈PC

c4gµ
∗
pφg,p (52)

On the other hand, for one trip r starting at timestamp t with respect to rolling stock column p ∈ PR,

we observe that there is at most one trip can be covered by one crew member in crew group g(r, t)

during the time window
[
t,min

{
TD

r,t, T g(r,t)

}]
, then the following Eq. (53) holds. Particularly, to

guarantee the uniqueness of the associated crew group g(r, t) of trip r with starting from timestamp

t, we assume that the intersections of the available time windows between any two crew groups are

empty sets (i.e., Tg
⋂
Tg′ = ∅,∀g, g′ ∈ G, g ̸= g′).

min{TD
r,t,T g(r,t)}∑
t′=t

αp,r,t′ ≤ 1 p ∈ PR, t ∈ Tr, r ∈ RT (53)

Since µ∗p ≥ 0, p ∈ PC and 0 ≤ γp,r ≤ 1, r ∈ RT , p ∈ PC , we could formulate Eq. (54) by multiplying

each term in Eq. (53) with c4g(r,t), µ
∗
p and γp,r, and then summarize them over path p ∈ PC .

min{TD
r,t,T g(r,t)}∑
t′=t

c4g(r,t)αp,r,t′

∑
p′∈PC

γp′,rµ
∗
p′ ≤

∑
p′∈PC

c4g(r,t)µ
∗
p′ p ∈ PR, t ∈ Tr, r ∈ RT (54)

By submitting Eq. (6) into Eq. (54) and summarizing them over r ∈ RT , we then have Eq. (55).

∑
r∈RT

∑
p∈PR

min{TD
r,t,T g(r,t)}∑
t′=t

c4g(r,t)αp,r,t′λp ≤
∑

r∈RT

∑
p∈PC

c4g(r,t)µ
∗
p t ∈ T (55)

We observe that the left hand of Eq. (55) is equivalent to the objective value of variable η with respect

to LBL cut (i.e., η∗LBL(λ)), and the right hand of Eq. (55) is equivalent to the objective value of BSP

(i.e., η∗BSP (λ)). Then, the condition is guaranteed with combining Eqs. (51), (52), and (55), as given

in the following Eq. (56). Therefore, the LBL valid equation in Eq. (15) is effective for the BMP M3.

η∗LBL(λ) ≤ η∗BSP (λ) ≤ η∗BMP (λ) (56)
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Proposition 3. Let zM4 and UB be the current lower bound and upper bound on the optimal value of

the relaxed BMP M4, respectively. If λp is a non-basic variable in the optimal solution to the relaxed

BMP M4 and zM4 + RCk,l > UB, where RCk,l is the reduced cost associated with rolling stock unit

k = k(p) and train route l = l(p), then λp = 0 in any optimal solution of the relaxed BMP M4.

Proof. The result follows from the fact that zM4 + RCk,l is a lower bound on the objective function

value of the relaxed BMP M4 if one column associated with rolling stock unit k and train route l (i.e.,

p ∈ PR

k,l) is selected. Therefore, if zM4 + RCk,l > UB, then λp = 0,∀p ∈ PR

k,l in any final optimal

integer solution.

Proposition 4. For two child nodes n1 and n2 of parent node n0: (a) When one of the branching rules

regarding auxiliary variables u,x in the relaxed BMP M4 of node n0 is selected for generating nodes

n1 and n2, the Benders cuts generated at node n1 are still valid at both nodes n1 and n2 with their

descendent nodes. At the same time, the Benders cuts generated at node n2 are also valid at both

nodes n1 and n2 with their descendent nodes. However, (b) when one of the branching rules regarding

auxiliary variables n, z in the BSP M2 of node n0 is selected for generating nodes n1 and n2, the

Benders cuts generated at node n1 (n2) are only valid at the descendent nodes of node n1 (n2) with

the same branch.

Proof. Let ∆ denote the polyhedron defined by the dual solution from the DSP M7, as defined in

Section 5.2. When one of the branching rules at node n0 regarding auxiliary variables u,x in the

relaxed BMP M4 is selected, the polyhedrons ∆ are same between two child nodes n1 and n2, which

means the generated Benders cuts at node n1 are still valid at node n2, and the generated Benders cuts

at node n2 are also valid at node n1. However, when one of the branching rules at node n0 regarding

auxiliary variables n, z in the relaxed BSP M2 is selected, the polyhedrons ∆ are really different

between two child nodes n1 and n2 due to the branching rule at node n0. Thus, the generated Benders

cuts at node n1 (n2) are only valid at its child and descendent nodes with polyhedrons ∆′ ⊆ ∆.

C Label correcting (LC) algorithm

C.1 LC algorithm for rolling stock units

To apply the LC algorithm for rolling stock units, a new space-time network GRk,l =
{
VR
k,l,AR

k,l

}
for

train route l and rolling stock unit k is constructed based on the involved trips, where VR
k,l is the set

of related space-time vertices and AR
k,l is the set of related space-time arcs. In particular,

VR
k,l = {(r, t) |t ∈ Tr, r ∈ Rk,l }

and

AR
k,l =

{
(r, r′, t, t′)

∣∣(r, t) ∈ VR
l , (r′, t′) ∈ VR

k,l, T
Rmin
r,r′ + TR

r ≤ t′ − t ≤ TRmax
r,r′ + TR

r

}
, l ∈ Lk, k ∈ K,

where notation (r, r′, t, t′) represent a space-time arc from space-time vertex (r, t) to vertex (r′, t′).

Lastly, each space-time arc (r, r′, t, t′) is associated with a cost c̃Rr,r′,t,t′ , which is calculated based on

Eqs. (57)–(58), where a(r) and a(r′) are the associated physical segments of trips r and r′, respectively.

c̃Rr,r′,t,t′ =


c1k,l − πk + c̃Rr′,t′ , if (r, r′, t, t′) = (dori(k), r

′, t0, t
′), t′ ∈ Tr′ , r′ ∈ RT

l

c3r,r′(t
′ − t− TR

r ) + c̃Rr′,t′ , if t ∈ Tr, t′ ∈ Tr′ , r, r′ ∈ RT
l , r ̸= r′

0, if (r, r′, t, t′) = (r, ddes(k), t, t|T |), t ∈ Tr, r ∈ RT
l

0, otherwise

(57)
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c̃Rr′,t′ =c2r′,t′ −
∑

(r′,r′′)∈V

t′−1∑
τ=max

{
t′−hmin

r′,r′′+1,0
}π2

τ,r′,r′′

−
∑

(r′′,r′)∈V

π2
t′,r′′,r′ −

∑
s∈Sa(r′)

(
−Nmin

a(r′)

)
π3
a(r′),t′

−Nmax
a(r′)π

4
a(r′),t′ +

∑
(θ1,θ2)∈O∆

π5
(θ1,θ2)

θ1r′,t′ +

t′∑
τ=max

{
T

D
r′,t′ ,T g(r′,t′)

}π6
τ

(58)

After the pricing problem of the relaxed BMP M4 is decomposed into a series of sub-problems

for each rolling stock unit and train route (see Section 5.4.1), one pricing sub-problem SPRk,l for

rolling stock unit k and train route l can be viewed as a time-dependent shortest path problem in the

space-time network GRk,l, which can be solved by the LC algorithm with the pseudocode in Algorithm 1.

Algorithm 1 LC algorithm for solving SPRk,l of rolling stock units

Input:
1: The space-time network GRk,l = (VR

k,l,A
R
k,l) for rolling stock unit k and train route l; current dual solutions π1 ∼ π6

for constraints in the relaxed BMP M4.
Output:
2: One best space-time path p∗k,l for rolling stock unit k and train route l.

3: # parallel for (each rolling stock unit k and train route l)
4: Note: The hashtag “# parallel for” represents the number of parallel CPU processors, and all threads must wait

at the joint point until all threads are completed.
5: Step 1 (Label Initialization):
6: • Initialize label cost RCdori(k),t0

= −π1
k + c1k,l at origin depot vertex (dori(k), t0).

7: • Initialize label costs RCr,t = +∞ at other vertices (r, t), (i, t) ∈ VR
k,l \ {(dori(k), t0)}.

8: • Sequence labels (r, t) in an order from origin depot vertex (dori(k), t0) by using the topological sorting process.
9: • Initialize label predecessors, i.e., predr,t = −1.
10: Step 2 (Forward updating label dynamically):
11: for each label b = (r, t), (r, t) ∈ VR

k,l do

12: for each label b′ = (r′, t′), (r′, t′) ∈ VR
k,l, t

′ ≥ t do

13: • Check branching rules
14: if xr,t == 0||xr′,t′ == 0||ng(r,t),r == 0||ng(r′,t′),r′ == 0 then
15: continue
16: end if
17: if (r == σ(r′)) & (r ̸= r′ & TR

r + TRmin
r,r′ ≤ t′ − t ≤ TR

r + TRmax
r,r′ ) then

18: • Calculate new label cost RC′
r′,t′ = RCr,t + c̃R

r,r′,t,t′ based on Eqs. (57)–(58).

19: if RC′
r′,t′ ≤ RCr′,t′ then

20: • Update label RCr′,t′ ← RC′
r′,t′ .

21: • Update label predecessor predr′,t′ = (r, t).
22: end if
23: end if
24: end for
25: end for
26: Step 3 (Backtrace):
27: • For rolling stock unit k and train route l, use the label predecessor predr,t and label costs RCr,t to trace back

from destination depot vertex (ddes(k), |T |) to origin depot vertex (dori(k), t0), and obtain a new optimal column.

Then, the generated column should be added to the column pool PR
in subsequent iterations.

Specifically, at the beginning of the searching process, we first check the branching rule regarding

the train route assignments with rolling stock units. That is, if train route l is forbidden for rolling

stock unit k by using the branching rule of the current node (i.e., uk,l = 0), the whole labeling process

will be skipped for the train route l and rolling stock unit k. Then, in the label initialization step,

a topological sort is performed to sequence vertices in a non-decreasing order from the origin depot

vertex (dori(k), t0) for rolling stock unit k. Next, in the forward labeling step, the total reduced cost

RCr,t from depot vertex (ddes(k), t0) to vertex (r, t) is used as the label cost at vertex (r, t). In addition,

we use two branching rules to exclude infeasible trips, that is (a) if trip r (or r′) is forbidden to start
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from timestamp t (or t′) (i.e., xr,t = 0 or xr′,t′ = 0), or (b) if trip r (or r′) cannot be paired with

crew members in crew group g (or g′) (i.e., ng,r = 0 or ng′,r′ = 0), then the label updating process

associated with trip r at timestamp t will be skipped. A new label cost RC ′r′,t′ at vertex (r′, t′) is

calculated based on label cost RCr,t, trip costs, connection costs, and dual values of arc (r, r′, t, t′) in

Eq. (57)–(58). Lastly, after applying the LC algorithm, the shortest path with the minimum negative

label cost (i.e., reduced cost) can be found by using the back-tracing procedure from the destination

depot vertex (ddes(k), t|T |) to the origin depot vertex (dori(k), t0) of the corresponding rolling stock

unit.

Based on the constructed space-time network GRk,l and the description of the pseudocode in LC

Algorithm 1, we discuss the time complexity in Proposition 5. Particularly, we observe that the time

complexity of the pricing problem of the relaxed BMP M4 is dependent on the scales of space-time

vertices (i.e., trips with their available departure timestamps) and their available outgoing arcs of trip

connections.

Proposition 5. Based on the space-time network GRk,l =
{
VR
k,l,AR

k,l

}
for train route l and rolling stock

unit k, the shortest path p∗ with the minimum reduced cost CR
k,l,p∗ can be found by the LC algorithm

with the time complexity O
(∑

v∈VR
k,l
|Av+ |

)
, where Av+ is the set of outgoing arcs from vertex v after

implementing the topological sorting process.

C.2 Multi-stage LC algorithm for crew groups

Similarly, to apply the LC algorithm for crew members, a new space-time network GCg =
{
VC
g ,AC

g

}
is

constructed to implement the LC algorithm for specific crew group g, where VC
g and AC

g denote the

sets of space-time vertices and arcs related to crew group g. Specifically,

VC
g = RC

λ ∪RM
g ∪RR

g ∪ {(dCori, t0), (dCdes, t|T |)},

AC
g =

{
(r, r′, t, t′)

∣∣r′ ∈ RT+
r , TC min

r,r′ ≤ t′ − t− TR
r ≤ TC max

r,r′ , (r, t), (r′, t′) ∈ VC
g , (r, t) ̸= (r′, t′)

}
,

where λ is the solution obtained from the relaxed BMP M4, (dCori, t0) and (dCdes, t|T |) are the virtual

source and sink vertices for showing the source and sink for crew members. Lastly, each space-time

arc (r, r′, t, t′) is associated with a cost c̃Cr,r′,t,t′ , which is calculated in Eq. (59).

c̃Cr,r′,t,t′ =


c4g, if (r, r′, t, t′) = (dCori, r

′, t0, t
′), (r′, t′) ∈ VC

g

−θ1r,t, if (r, r′, t, t′) ∈ AC
g

−θ1r,t, if (r, r′, t, t′) = (r, dCdes, t, t|T |), (r, t) ∈ VC
g

0, otherwise

(59)

As displayed in the pseudocode of the multi-stage LC algorithm for solving SPCg of crew group g

in Algorithm 2, based on the stage partition method in Section 5.4.2, the entire planning horizon is first

partitioned into a finite number of stages based on the ascending order of meal/rest tasks, denoted by

H =
{
h0, h1, h2, · · · , h|RM

g |+|RR
g |

}
, where |RM

g |+ |RR
g | is the total number of meal/rest tasks for crew

members in crew group g, as illustrated in Fig. 5. Then, the space-time network GCg can be decomposed

into space-time sub-networks GCg,h =
{
VC
g,h,AC

g,h

}
for crew group g and stage h. Note that vertex set

VC
g,h of stage h contains all trip tasks that start after time Th and before time Th of stage h, which

means that we cannot miss any feasible optimal solution with respect to the sub-task-sequence within

the time window
[
Th, Th

]
. Lastly, each space-time vertex (r̃, t̃) ∈ VC

g,h is associated with a label in

stage h.

In the search process, we apply the LC algorithm to find all feasible sub-task-sequences of fixed

trips within the time window
[
Th, Th

]
. Specifically, at the initialization of the LC algorithm in one
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Algorithm 2 Multi-stage LC algorithm for solving SPCg of crew groups

Input:
1: The space-time network GCg = (VC

g ,AC
g ) of crew group g; current dual solutions θ1 ∼ θ2 for constraints in BSP M2;

meal tasks RM
g and rest tasks RR

g with respect to crew group g.
Output:
2: One best space-time task sequence p∗g for crew group g with the requirements of meal/rest tasks.
3: # parallel for (each crew group g)
4: Step 1 (Multi-stage network partition):

5: • Initialize multiple stages H =
{
h0, h1, h2, ..., h|RM

g |+|RR
g |

}
.

6: for each stage h = h0, h1, h2, · · · , h|H|−1 do

7: Construct space-time sub-network GCg,h =
{
VC
g,h,A

C
g,h

}
;

8: Step 2 (Label Initialization):
9: • Initialize label cost RCdCori,Th

= 0 at stage virtual source vertex (dCori, Th).

10: • Initialize label costs RCr,t = +∞ at other vertices (r, t) ∈ VC
g \

{
(dCori, Th)

}
.

11: • Sequence labels (r, t) in non-decreasing order of timestamp t.
12: • Initialize label predecessors, i.e., predr,t = −1.
13: Step 3 (Forward updating label dynamically):
14: for each label b = (r, t) ∈ VC

g,h and label b′ = (r′, t′) ∈ VC
g,h, (r, t) ̸= (r′, t′) do

15: • Check branching rules
16: if ng,r == 0||ng,r′ == 0||zg,r,r′ == 0 then
17: continue
18: end if
19: if (r ̸= r′) & (TR

r + TC min
r,r′ ≤ t′ − t ≤ TR

r + TC max
r,r′ ) then

20: • Calculate new label cost RC′
r′,t′ = RCr,t + c̃C

r,r′,t,t′ based on Eq. (59).

21: if RC′
r′,t′ ≥ RCr′,t′ then

22: • Update label RCr′,t′ ← RC′
r′,t′ .

23: • Update label predecessor predr′,t′ = (r, t).
24: end if
25: end if
26: end for
27: Step 4 (Backtrace):
28: • For each crew group g, use the label predecessor predr,t and label costs RCr,t to trace back from stage virtual

sink vertex (dCdes, Th) and determine feasible sub-task-sequences. Then, the generated sub-task-sequences should be

added to the column pool PC
g,h with their partial reduced cost RCh,p at current stage h.

29: end for
30: Step 5 (Task sequence merging for multiple stages):
31: for each stage h = |H| − 1, · · · , 1 do
32: • Adjacent previous stage h′ = h− 1

33: for p = 1, 2, · · · , |PC
g,h| and p′ = 1, 2, · · · , |PC

g,h′ | do
34: r0 ← first assigned trip task of task sequence p
35: rend ← last assigned trip task of task sequence p′

36: rh′ ← associated meal/rest task of stage h′

37: i0 ← departure station of trip task r0
38: iend ← arrival station of trip task rend

39: if (rend! = r0) & (tr0 − trend ≥ TR
r′ + TR

rend
+ TC

rend,r
′ + TC

r′,r0
) & (i0 == iend) then

40: • Check branching rules
41: if ng,rend == 0||ng,r′ == 0||ng,r0 == 0||zg,rend,r

′ == 0||zg,r′,r0 == 0 then
42: continue
43: end if
44: • Construct a new task sequence p′′ by merging sub-task-sequences p and p′

45: p′′ = p ∪ p′;PC
g,h′ = PC

g,h′ ∪ {p′′}.
46: if h′ == 1 then
47: RCh,p′′ = RCh,p +RCh,p′ + c4g
48: else
49: RCh,p′′ = RCh,p +RCh,p′

50: end if
51: end if
52: end for
53: end for
54: Step 6 (Task sequence selection):

55: • Select a new optimal column p∗ from PC
g,h=0 with the minimum reduced cost (i.e., RCh=0,p∗). Then, the generated

column should be added to the column pool PC
for crew group g in the subsequent iterations.
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stage, all tasks associated with fixed trips are first filtered within the effective working time windows of

crew group g, then sorted with the increasing order sequence of their departure times. By this way, the

searching sequence of the involved vertices and arcs can be guaranteed to generate feasible and optimal

crew task sequences. Then, in the forward labeling step, we first check two branching rules to exclude

infeasible trip tasks and task connections, that is, if (a) task r cannot be paired with crew members

in crew group g (i.e., ng,r = 0), or (b) task r cannot be paired with other trips with crew members

in crew group g (i.e.,
∑

r′∈RT+
r

zg,r,r′ = 0 or
∑

r′∈RT−
r

zg,r′,r = 0), then the label updating process

associated with task r will be skipped. After updating all involved labels in the network, a set of sub-

task-sequences can be generated between the vertices within time windows of two adjacent meal/rest

tasks. Next, after applying the LC algorithm at all stages, global feasible task sequences could be

generated with merging sub-task-sequences at each stage with satisfying the minimum required time

for each meal/rest task. Lastly, we select the optimal task sequence based on the minimum total label

cost (i.e., reduced cost) along all stages from the virtual source to virtual sink vertices of crew group g.

Proposition 6. Based on the space-time network GCg =
{
VC
g ,AC

g

}
for crew group g, a shortest task

sequence p∗ with the minimum reduced cost CC
g,p∗ can be found by the multi-stage LC algorithm with

the time complexity O
(∑

v∈VC
g,h0

|A+
v |
)
for the first stage h0, O

(∑
h∈H\{h0,h|H|−1}

∑
v∈VC

g,h
|A+

v |
)
for

middle stages h ∈ H\
{
h0, h|H|−1

}
, and O

(∑
v∈VC

g,h|H|−1

|A+
v |
)

for the last stage |H| − 1, where Av+

is the set of outgoing arcs from vertex v after partitioning trips and tasks into individual stages.

Based on the description and pseudocode of the multi-stage LC Algorithm 2, we discuss the time

complexity in Proposition 6. Particularly, we observe that the time complexity of the pricing problem of

BSP M2 is related to not only the number of fixed trip tasks but also the number of stages associated

with meal/rest tasks. Specifically, in the first or last stage, it only calls the LC algorithm once to

determine sub-task-sequences from timestamp t0 to vertices in the time window
[
T r0

, T r0

]
(associated

with first meal/rest task r0), or from vertices in the time window

[
T r|RM

g |+|RR
g |−1

, T r|RM
g |+|RR

g |−1

]
(associated with last meal/rest task r|RM

g |+|RR
g |−1) to timestamp tend, respectively. While in the

middle stages, it needs call the LC algorithm with
(
T r − T r

)
times, to determine all-to-all sub-task-

sequences starting from vertices in time window
[
Tσ(r), Tσ(r)

]
(associated with previous meal/rest

task σ(r)) and ending vertices in time window
[
T r, T r

]
(associated with meal/rest task r), as shown

in Fig. 5.

D Priority heuristic rule (PHR) algorithm

In this section, we aim to present a pseudocode for the priority heuristic rule in Algorithm 3 to

transform the fractional solution of the relaxed BMP M4 and BSP M2 to a feasible joint rolling stock

and crew schedule solution with satisfying all involved constraints. Specifically, we denote by λ and

µ as the optimal fractional solution associated with the LP relaxation of model M1 after processing

Benders decomposition at a node in the B&B tree.

E Parallel B&B computing technique

In this section, we aim to present a pseudocode for the branch-and-bound process with the parallel

B&B computing (PC) techniques in Algorithm 4. Note that hashtag “# parallel for” represents the

number of parallel CPU processors, and all threads must wait at the joint point until all threads are

completed. Then, tasks with the operator “—” are executed by multiple threads simultaneously.
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Algorithm 3 Priority heuristic rule to generate a feasible solution

Input:
1: A linear optimal solution (λ,µ) of the column selection variables with respect to the LP relaxation of the model M1.
Output:
2: An integer feasible joint optimal solution (λ∗,µ∗) (i.e., an upper bound solution).

3: if !IsInteger(λ) then
4: for each rolling stock unit k = 1, 2, · · · , |K| do
5: Step 1.1: Generate set PR

k by filtering columns associated with rolling stock unit k.
6: Step 1.2: Sort the indices of columns of rolling stock unit k as p′

1, · · · , p
′
q, · · · , p

′
|PR

k |
according to the descending

7: order of the column selection solution (i.e., λp, p ∈ P
R
k ).

8: Column Flag ← False
9: for each column p′

q = p′
1, · · · , p

′
|PR

k |
do

10: Step 2: Check conflicts between column p′
q and the marked space-time resources.

11: if CheckFeasible(constraints (12c)) then
12: Step 3: Mark the space-time occupation resources and related headway resources of column p′

q .

13: • Note: The space-time resource of one physical segment (e.g., segment a) can be occupied by at most Nmax
a

14: trips which pass segment a at one timestamp. While the space-time resource within the related headway
15: regions of trips cannot be occupied by any other subsequent columns again.
16: if CheckFeasible(constraints (12d)–(12e)) then
17: Column Flag ← True
18: λ∗

p′q
= 1

19: λ∗
p = 0, ∀p ∈ PR

k \ {p
′
q}.

20: Break
21: end if
22: end if
23: end for
24: if Column Flag == False then
25: Step 4: Find and construct a new space-time shortest path p|PR

k |+1
by applying the LC algorithm (see Section

26: 5.4.1 and EC. C.1)

27: in network GR
k,l within all train routes l of rolling stock k without passing the marked resources with respect to

28: other rolling stock units.
29: if CheckFeasible(constraints (12d)–(12e)) then
30: Column Flag ← True

31: PR
k = PR

k ∪
{
p|PR

k |+1

}
32: λ∗

p
|PR

k |+1
= 1

33: λ∗ = λ∗ ∪
{
λ∗
p
|PR

k |+1

}
34: λ∗

p = 0, ∀p ∈ PR
k \

{
p|PR

k |+1

}
35: end if
36: end if
37: end for
38: Step 5: Solve the BSP M2 again and update µ by using the column generation method (see Section 5.4.2 and EC. C.2)
39: based on the newly selected and constructed rolling stock columns.
40: end if
41: if !IsInteger(µ) then
42: Step 6: Sort the indices of columns for crew members as p′

1, · · · , p
′
q, · · · , p

′
|PC |

according to the descending order of

43: the column selection solution (i.e., µp, p ∈ P
C
).

44: for each column p′
q = p′

1, · · · , p
′
|PC |

do

45: Step 7.1: For column p′
q , calculate the number Np′q

of covered trip tasks which have not been marked for selected

46: columns.
47: if Np′q

> 0 then

48: Step 7.2: Mark the newly generated trip tasks of column p′
q (The marked tasks cannot be occupied by any other

49: subsequent columns again).
50: µ∗

p′q
= 1

51: end if
52: end for
53: while Not all trip tasks are covered do
54: Step 8.1: Find and construct a new shortest path p|PC |+1

by applying the multi-stage LC algorithm (see Section

55: 5.4.2 and EC. C.2) with assigning a new available crew member.
56: Step 8.2: Mark the trip tasks of column p|PC |+1

(The marked tasks cannot be occupied by any other subsequent

57: columns again).

58: PC
= PC ∪

{
p|PC |+1

}
59: µ∗

p
|PC |+1

= 1

60: µ∗ = µ∗ ∪
{
µ∗
p
|PC |+1

}
61: end while
62: end if
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Algorithm 4 Parallel branch-and-bound algorithm

1: function Breadth first search (BFS)(origin node)
2: • Push back origin node into the active node list ANL: ANL← PUSH(ANL, origin node).
3: while True do
4: if ANL == ϕ or gap = (GUB −GLB)/GUB < ϵ then
5: Break
6: end if
7: • Initialize local upper bound LUB = GUB and local lower bound LLB = GLB on the current layer.
8: • Distribute all nodes in ANL to m processors.
9: # parallel for m processors (Inner parallel computation)
10: —Solve nodes parallelly and averagely in each processor, and obtain upper bound / lower bound / child
11: nodes on each node.
12: • Update local upper bound LUB / local lower bound LLB with the minimum lower bound / upper bound
13: within all solutions of nodes.
14: if LUB < GUB then
15: GUB ← LUB
16: end if
17: if LLB > GLB then
18: GLB ← LLB
19: end if
20: • Push back all child nodes from different processors into ANL.
21: end while
22: end function
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