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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2025
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Abstract : Large-scale distributed wireless networks provide infrastructure-free and cost-effective con-
nectivity, supporting applications from disaster recovery to global digital inclusion. However, multi-hop
communication poses scalability challenges, as point-to-point (P2P) capacity decreases with the num-
ber of intermediate relays (hop count). Thus, we focus on the critical role of multi-hop communication
and user interaction probability, which empirical evidence indicates decays as a power-law with geo-
graphic distance. We present a comprehensive analysis of network scalability, from capacity estimation
to empirical evaluation of real-world interaction patterns. The capacity estimation problem is decom-
posed using a novel analytical methodology, along with symmetric topology selection and geometric
partitioning, to overcome the analytical complexities inherent in previous models. The estimated P2P
capacity bounds, derived from expected hop count, surpass previous benchmarks. Specifically, when
the power-law exponent exceeds a critical threshold, the expected hop count remains stable and P2P
capacity is sustained; otherwise, the hop count grows and capacity declines as the network scales. Thus,
an analytical method is devised to relate real-world interaction patterns to the power-law exponent,
quantified by the contact distribution. Then, analysis of multiple empirical datasets confirms that the
exponent falls within a range that naturally supports scalability. Consequently, multi-hop communica-
tion does not fundamentally hinder the wide-scale deployment of distributed wireless networks. This
capacity-based analysis provides a clear perspective on scalability under realistic assumptions and un-
derscores the promising future of such networks, as well as their potential for widespread deployment.

Keywords : Large-scale distributed wireless networks, multi-hop communication, wireless network
capacity, social interactions, distributed networking
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1 Introduction

Distributed wireless networks rely on multi-hop communication, where each device acts as a relay

to forward data across multiple wireless links. This decentralized approach allows long-range point-

to-point (P2P) connectivity without relying on a central backbone. As the demand for ultra-dense

connectivity is rapidly increasing [10], such networks could connect millions of users in urban-scale en-

vironments. These networks are also reasonable options with affordable costs for emerging applications

such as autonomous vehicles [42, 58], unmanned aerial vehicles (UAVs) [17, 39], vehicular communica-

tion [19, 42, 49], smart cities [12], smart agriculture [11, 22, 38, 57], distributed computing [30, 46, 50],

artificial intelligence [13, 40, 41, 43, 47], and the internet of things (IoT) [9]. Furthermore, they can

provide vital self-organized communication among personal devices during natural disasters [1] to en-

sure connectivity, and can enable internet access to underserved regions, benefiting nearly 3 billion

people currently offline [2]. However, realizing their full potential requires overcoming several key chal-

lenges, which have historically hindered scalable deployment [21]. Nevertheless, recent technological

advancements, depicted in Figure 1, have significantly improved capacity, adaptability [39], and energy

efficiency [18] and further enhance the feasibility of large-scale deployment. However, scalability is still

challenged by the nature of multi-hop communication, where as the number of hops per connection

increases, the available capacity per a P2P connection decreases. For instance, Figure 2 illustrates the

impact of hop count on resource sharing between P2P connections in a linear arrangement of nodes,

where each node establishes a multi-hop P2P connection spanning five hops to its forward neighbor.

In this configuration, each wireless link is shared by five distinct connections. Consequently, the avail-

able capacity per P2P connection constitutes a fraction of the total wireless link resources, which is

inversely proportional to the expected hop count (in this case, 1/5).
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Figure 1: The promising horizon of Large-scale distributed networking concerning new technology advancements.
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Figure 2: Multi-hop communication and wireless link resource sharing. Each node initiates a P2P connection to the node
located 5 hops to its right (e.g., path 1 → 6). Resources are allocated inversely proportional to the P2P connections’ hop
count.

Although prior studies have investigated network capacity, the precise impact of multi-hop commu-

nication remains unresolved, as most existing work has focused on wireless technologies [23, 25, 26, 45]

or node heterogeneity [3, 23]. However, the growth rate of the expected hop count, E(h), which de-

pends on the underlying interaction model, plays a critical role in determining the average P2P capacity,

CP2P . We later show, in Eq. (1), that the upper bound on CP2P is inversely proportional to E(h).
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Early studies using a uniform user interaction model [23] predicted that E(h) scales as Θ(
√
n) for a

network of n nodes. However, subsequent studies [4, 36, 55] have emphasized that the interaction

probability between two users separated by a distance d follows a power-law distribution proportional

to d−α, where α is the power-law exponent. This model slows down the growth rate of E(h), which may

effectively mitigate capacity degradation so that [4, 36, 55] suggested that for sufficiently large α, E(h)

could remain bounded or grow at a reduced rate. Yet, predictions for α are uncertain, and thus E(h)

varies from Θ(1) to Θ(
√
n), casting doubt on whether distributed networks can truly maintain scalable

P2P communication. To address this uncertainty in scalability, we present a comprehensive approach

that first investigates, in theory, the impact of multi-hop communication on P2P capacity under a

power-law interaction model, and then empirically extracts the power-law exponent from real-world

data to apply it in network scalability analysis.

Our methodology isolates the role of interaction probability in scalability and decomposes the

P2P capacity problem into independent analytical factors: link-level capacity, node heterogeneity, and

expected hop count. By adopting a simplified symmetric topology, we eliminate the need to revisit well-

studied link capacity and node heterogeneity, allowing to focus exclusively on hop count with minimal

analytical complexity. Thus, this work 1 ) estimates expected hop count trends and P2P capacity

bounds in a symmetric network where interaction probability follows a power-law distribution, 2 )

derives a method to extract the power-law exponent from empirical studies by analytically quantifying

interaction patterns as the contact distribution, and 3 ) assesses scalability by integrating theoretical

capacity bounds with real-world datasets of social interaction to evaluates whether the growth of E(h)

fundamentally limits large-scale distributed networking or not. Overall, this paper makes the following

key contributions:

Refined capacity bounds: We estimate CP2P asymptotic behavior for a network of n nodes. For

2 < α < 3, these CP2P bounds exceed previous estimates by a factor of ln(n)α/2−1, and by√
ln(n) for α > 3—enabled by a novel analytical framework and network scaling model.

A novel method for extracting the power-law exponent from empirical datasets: We quan-

tify the interaction pattern as the contact distribution, and obtain α from the slope line value of

the contact distribution over distance in the logarithmic scale. This provides a data-driven foun-

dation for scalability analysis and clarifies the power-law exponent interpretation for capacity

estimation, which reshapes conclusions about the scalability problem.

Scalability analysis through empirical evaluation of α: Empirical analysis of interaction pat-

terns in diverse communication datasets consistently shows that α falls within the range that

supports the scalability of distributed networking form multi-hop communication perspective, as

a bounded E(h) supports sustainable P2P capacity.

The remainder of the paper is organized as follows: Section 2 introduces key factors affecting

capacity and reviews the existing literature. Section 3 explains our methodology. Section 4 presents

the problem formulation and estimates E(h) and CP2P . Section 5 formulates the power-law exponent

extraction method. Section 6 evaluates the scalability of large-scale distributed networks. Finally,

Section 7 discusses the limitations, outlines future research directions, and concludes the paper.

2 Background

This section introduces key parameters influencing scalability and reviews foundational and recent

studies. By analyzing the constraints on the total network transmission rate and the impact of multi-

hop communication in Theorem 1, we show for a distributed wireless network of n nodes operating

under a TDMA communication model the P2P capacity CP2P , which is the expected capacity available

to any user at any given moment for sending data to a chosen destination, satisfies

CP2P ≤ E(CL)

E(h) ·E(Aρ)
. (1)
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Here E(CL) is the expected capacity of a single active link. E(h) can be expressed as E(h) ∝ E(d)/r(n),

where E(d) is the average P2P communication distance and r(n) is the transmission range per link.

Furthermore, E(Aρ) can be interpreted as the expected normalized area, by node density ρ, dedicated

to each active link. E(Aρ) depends on the transmission range square and the desired link capacity.

Therefore, by substituting E(Aρ) ∝ r2(n) and E(h) ∝ E(d)/r(n) into Eq. (1), we have CP2P ∝ E(CL)
E(d)·r(n)

which demonstrates CP2P asymptotic behavior dependency on the key factors when scaling up the

network, can be summarized as:

CP2P = Θ(
E(CL)

r(n) ·E(d)
). (2)

Eq. (2) enables separate analysis of these key factors’ impact on scalability and serves as a foun-

dation for reviewing previous work. As highlighted in Eq. (2), minimizing the transmission range

r(n) is crucial for maximizing CP2P . However, r(n) must also guarantee network connectivity, par-

ticularly in random node arrangements where isolated nodes can arise. The foundational work of

Gupta and Kumar [23] derived that the minimum transmission range required to ensure connectivity

is Θ(
√
ln(n)) and established E(CL) is proportional with available frequency resource W which mean

total interference on a receiver even in a scale free network is bounded. Additionally, by assuming

uniform interaction probability between users, they showed that E(d) scales as Θ(
√
n). Thus, the

resulting P2P capacity was calculated as CP2P = Θ(W/
√
n ln(n)). This result, while foundational,

suggests that as network size scales, the P2P capacity diminishes rapidly, making ad hoc networking

feasible only for small networks with a few thousand nodes. However, studies in social science and

social networks [5, 34] suggest that interaction probability between an individual with other is not

uniform over the network coverage area, and it follows a power-law decay d−α, where d is distance

and α is the power-law exponent. Using this, [36] estimated E(d) and CP2P , where with α > 2 in a

one-dimensional network, E(d) is Θ(1). Similarly, Azimdoost et al. [4] examined the capacity bounds

in the context of social networks, where each individual in the network has a finite number of contacts

and the interaction between them follows the power-law distribution. Their research indicates that

when α > 3, CP2P scales as Θ (W/ log(n)). Fu et al. [20] expanded this by investigating the capacity

for multicast communication scenarios. Wei et al. [55] determined the capacity of three-dimensional

wireless social networks by considering advancements in aeronautical telecommunication and UAVs,

where the wireless social network exhibits scalability for α > 4. Hou et al. [26] investigated the capacity

of hybrid networks comprising both ad hoc and cellular transmissions.

Node distribution also affects capacity trends. In grid-based networks r(n) is Θ(1), but for randomly

distributed nodes, r(n) scales as Θ(
√

ln(n)) [23]. Alfano et al. [3] modeled clustering behavior using

a shot-noise process. He et al. [24] introduced the car-following model to estimate and simulate the

transmission capacity in vehicular ad hoc networks (VANETs). Zhou et al. [59] analyzed asymptotic

capacity and delay in social-aware MANETs using a constrained mobility and rank-based social model.

Cheng et al. [14] proposed a 3D cell-gridded wireless network model based on Zipf’s law [61]. Qin et

al. [45] evaluated full-duplex ad hoc networks with distance-limited communication pairs. Hou et al. [25]

investigated beamforming techniques to enhance capacity, while Wang et al. [54] studied networks with

Poisson-distributed nodes using multi-beam directional antennas.

Table 1 summarizes key theoretical models and results on capacity estimation under various as-

sumptions. From the factors influencing CP2P , the parameter E(CL) reflects the wireless transmis-

sion characteristics, such as channel models, path-loss effects, transmission technologies, modulation

schemes, noise, interference, and power constraints. Studies [23, 54, 55] have shown that E(CL) is

typically Θ(W ) across various scenarios, which implies link level capacity does not degrade drastically

even for a scale free network (n → ∞). Furthermore, random node distributions affect capacity and

lead to performance reduction scaling as Θ(1/
√
ln(n)), which is manageable even for large networks.

Conversely, the communication distance E(d) remains a critical uncertainty. In the worst-case situa-

tion, it scales with network diameter: Θ(
√
n). The primary source of this uncertainty is the lack of

proper research on the interaction probability model and its parameters. This issue cannot be resolved



Les Cahiers du GERAD G–2025–46 4

through capacity-bound estimation alone; rather, it requires empirical studies on real-world interaction

data to accurately extract the model parameters and provide a clear answer to the scalability problem.

Table 1: Summary of Capacity Estimation Studies in Distributed Wireless Networks.

Reference
Network
Setting

Communication
Model

Interaction
Model

E(CL) r(n) E(d) CP2P

Gupta & Kumar
(2000) [23]

Unit disk
+ Random
Arrangement

TDMA Uniform Θ(W ) Θ(
√

ln(n)) Θ(
√
n) Θ(W/

√
n ln(n))

Li et al.
(2001) [36]

1-D (Dimensional) -
Power-law
(α > 2)

- - Θ(1) -

Azimdoost et al.
(2012) [4]

Unit square
+ Random

TDMA
Power-law
(α > 3)

- - Θ(1) Θ(W/ log(n))

Fu et al.
(2016) [20]

Multi / Uni-cast
Communication

TDMA
Rank based
(α > 3/2)

Θ(W ) - -
O(W )−

Ω(W/ log(n))

Wei et al.
(2018) [55]

3-D (unit cube)
+ Random

TDMA
Power-law
(α > 4)

Θ(W ) Θ(
√

ln(n)) Θ(1) Θ(1/ log(n))

Hou et al.
(2015) [26]

Hybrid
(Ad hoc +
Cellular)

Mixed
Technologies

Power-law Θ(W ) - -
Mixed

parameters

Alfano et al.
(2010) [3]

Unit square
+ Shot-noise
Cox Process

TDMA Uniform Θ(W ) Mixed - -

He et al.
(2018) [24]

Vehicular
(VANETs)

IEEE 802.11p - Θ(W ) - - -

Zhou et al.
(2020) [59]

Social-aware
MANET

-
Rank-based
power-law

- - Mixed Mixed

Cheng et al.
(2022) [14]

3-D
Cell-gridded

TDMA
Zipf’s
Law-based

- Mixed Mixed Mixed

Qin et al.
(2016) [45]

Full-duplex Ad hoc
Full-duplex +
TDMA

Distance-
limited pairs

Θ(W ) - Limited
Bounded by

design

Hou et al.
(2018) [25]

2-D
Full-Duplex
+ MIMO

- Θ(W ) - -
Improved by

MIMO

Wang et al.
(2021) [54]

2-D + Poisson
Node Distribution

Multi-beam
Antennas

Uniform Θ(W ) - -
Improved by
beam-forming

3 Methodology

To address the scalability question, a comprehensive yet effective solution is needed that is beyond

the capacity estimation problem. This problem itself is inherently complex due to interactions across

multiple network layers – including physical, data link, network, and transport. It complicates the

analytical derivation of capacity bounds, often resulting in underestimated or misleading outcomes.

For instance, in [4], a unit-square network area is divided into subareas based on transmission range

r(n), resulting in quantized distances. Consequently, the power-law interaction probability, dependent

solely on source-destination distance, becomes intertwined with r(n), causing parameter conflation, as

detailed in Section 4.4. Similarly, [23] utilized the physically shortest path algorithm that favors longer

links—contradicting both their own assumptions and Eq. (2)’s claim that minimizing r(n) maximizes

CP2P , leading to pessimistic capacity estimations. It is essential to address these issues and, beyond

that, to extract the power-law parameter directly from empirical datasets. Thus, we reassess and

restructure the analytical approach used in state-of-the-art methodologies in the following aspects:

(1) Modular decomposition: We decompose the capacity estimation problem into independent ana-

lytical factors, including wireless link capacity, single-link transmission range, and the expected number

of hops for a P2P connection, by deriving a stochastic analysis for a general network model as out-

lined in Theorem 1. This separation of key factors, formulated in Eq. (2), allows us to focus on the
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primary research gap and bottleneck in scalability analysis: the role of multi-hop communication and

interaction probabilities. Even when assuming fixed capacity across all wireless links, scalability is still

fundamentally limited by multi-hop communication and interaction probability impact. Indeed, ana-

lyzing overly complex scenarios that closely model link-level communication and node heterogeneity is

futile without first addressing the uncertainty of the power-law exponent. On the other hand, extensive

prior work has shown that the scaling behavior of link-level capacity, E(CL), under various network

settings and communication models, consistently follows Θ(W ), as summarized in Table 1. Therefore,

to estimate CP2P , we incorporate link-level capacity and node arrangement models from prior litera-

ture, leveraging the factorized framework established in Eq. (2). This approach eliminates the need to

revisit detailed communication models for wireless links or account for heterogeneous node placement.

Consequently, this separation allows us to adopt a deliberately simplified scenario, enabling accurate

computation of the expected hop count E(h) without confounding effects from complex lower-layer

modeling.

(2) Topology control: Previous studies focused primarily on limited-area scenarios such as unit

discs [23], squares [4, 20, 26], or cubes [14, 55] and increased node density to model scaling behav-

ior. However, real-world scenarios typically involve expanding network areas rather than increasing

densities. Thus, we employ a scenario with constant node density and scaled network areas. More-

over, to isolate the effects of interaction probability, we adopt a fixed transmission range scenario by

symmetrically positioning nodes at the vertices of a square lattice (see Figure 3). Besides, we do not

recompute link-level capacity, and the network model only specifies how nodes are interconnected,

abstracting away details of the communication model, interference, and transmission power. Links are

assumed to have fixed capacity, and the focus is placed on computing the expected number of relays

required for P2P communication. In this symmetric topology, both inter-node distances (immediate

neighbors) and transmission range remain constant regardless of network size, ensuring that all links

have equal metric and weight. Thus, the physically shortest path—which minimizes the number of

relays for a P2P connection—serves as the optimal route for maximizing CP2P . Furthermore, this sym-

metric setting facilitates mapping distance-based interaction probabilities to hop-count probabilities,

thereby avoiding parameter conflation and preventing underestimated capacity bounds, as illustrated

in Section 4.4.

(3) Analysis simplification: Utilizing the properties of power-law interaction probabilities, we simplify

analytical complexity. Studies such as [4, 23] typically partition the network area into smaller equidis-

tant subareas, which are effective for uniform interaction probabilities but inefficient for power-law

distributions. A geometric partitioning, however, aligns naturally with the properties of the power-law

distribution. In this distribution, P (d) ∝ 1/dα, and δP (d)/δd ∝ −α/dα+1, indicating negligible proba-

bility variation at large distances (d ≫ 1). Conversely, relative changes δP (d)/P (d) = −αδd/d fit well

into a geometric progression of distances. With the geometric step change, the interaction probability

of nodes in consecutive groups also follows a geometric progression, significantly simplifying analytical

derivation.

(4) Comprehensive theoretical and empirical analysis: Recognizing limitations in prior research, we

propose a fundamentally distinct analytical framework. We first theoretically identify critical factors

influencing capacity. Next, we select an appropriate scenario that isolates key scalability factors

and simplifies analytical complexity. This structured approach allows us to estimate E(h), derive

capacity bounds, and extract interaction probability parameters from empirical data. Finally, we

integrate multiple datasets of social interactions across various communication contexts, providing a

comprehensive answer to network scalability.
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4 Expected hop count and capacity estimation

We first formulate the problem model for the symmetric network setting shown in Figure 3, assuming

that node interactions follow a power-law probability distribution. Then, we compute E(h) and derive

asymptotic bounds for CP2P .

4.1 Problem model

We assume a symmetric topology, where nodes are positioned at the vertices of a square lattice (see

Figure 3). The physical link distance between neighboring nodes is constant and denoted as l. Thus,

the node density is given by 1/l2, and the total network coverage is approximately l2n, where n

represents the total number of nodes. The expected hop count of all possible P2P connections is

defined as:

E(h) =

kmax∑
k=1

k · P (h = k), (3)

where E(h) represents the expected number of hops required to establish a P2P connection. This is

calculated as the summation over all possible hop counts, denoted by k, each weighted by the proba-

bility P (h = k) and ranges from the minimum possible hop count (k = 1) to the maximum possible

hop count kmax for a P2P connection. While the hop count k reflects the number of relays required

for a connection, it is the interaction probability between nodes that shapes how these connections

are established. Thus, P (h = k) is not directly accessible. However, due to the symmetric network

configuration, the optimal routing that maximizes CP2P naturally follows the shortest physical path.

Consequently, there exists a linear relationship between the number of hops and the physical distance

between nodes. This linear relation allows the original power-law interaction model, where

P (d) = γ/dα, (4)

with γ as a constant, to be translated directly into a hop-based interaction model. Under this dis-

tribution, all nodes equidistant from a source node share the same interaction probability with that

source. Hence, nodes can be grouped based on their distance from the source to compute E(h) for

each group, and then summed across all groups. Each group can be represented as a ring of thickness

l (link length), as shown in Figure A.2, with nodes in the i-th ring at distance di = li. However, for

i ≫ 1, the interaction probabilities for nodes at distances di = il and di+1 = (i + 1)l become nearly

identical, as iα/(i+ 1)α ≈ 1.

Since nodes at similar distances share nearly identical interaction probabilities, we approximate

the continuous power-law distribution with a discrete tiered structure. Taking this into account,

we implement multi-resolution grouping using a geometric progression, adjusting the step size from

1, 2, . . . , i to 1, ζ2, . . . , ζi (ζ > 1). This approach partitions the network into nested tiers of nodes

around the source node, where all nodes of a same tier hold similar probability of interaction with

that source node. In the first tier, nodes are enclosed within a square of area a (see Figure 3). Nodes

located between distances di =
√
aζi−1 and di+1 =

√
aζi are assigned to the ith tier, and so forth. To

approximate the interaction probability for the ith tier as Pi, we consider the P (d) value at the side

length of the square containing the nodes in that tier from Eq. (4):

Pi = P (di) =
γ

√
a
α
ζα(i−1)

. (5)

As the ratio of side lengths between consecutive tiers is ζ, interaction probabilities follow an expo-

nential decay:

Pi+1

Pi
=

γ
dα
i+1

γ
dα
i

=

(
di

di+1

)α

= ζ−α. (6)
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l2

l
√
n

√
a

ζ
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√
a l

1th tier

2th tier

S

Figure 3: Symmetric lattice structure of the distributed network with concentric grouping with ratio ζ = 2 and
√
a
l

= 4.

Thus, if nodes located in the first tier around a source node S have an interaction probability

P1, then nodes in subsequent tiers have their interaction probabilities scaled accordingly. Specifically,

nodes in the second tier have an interaction probability P2 = ζ−αP1, and more generally, for the ith

tier (i ≥ 2), the interaction probability is given by:

Pi = P1ζ
−(i−1)α. (7)

Since the sum of all interaction probabilities must equal one, P1 is determined accordingly in the

following subsection. To cover the entire network, we extend the tiers until the network’s side length

l
√
n approximately matches the side length of the square enclosing the nodes in the last tier,

√
aζm−1.

This allows us to express the number of tiers m as:

√
aζm−1 = l

√
n ⇒ m− 1 = logζ

(
l

√
n

a

)
. (8)

Next, we determine the number of nodes in each tier. The node density is 1/l2, so the number of

nodes within the initial square (first tier) is approximately, neglecting edge effects:

N1 =
a

l2
. (9)

For subsequent tiers, the second tier is enclosed by two squares with side lengths
√
a and ζ

√
a,

covering ζ2a/l2 = ζ2N1 nodes. The number of nodes in the second tier alone is therefore:

N2 = ζ2N1 −N1 = (ζ2 − 1)N1. (10)

For higher tiers, the number of nodes follows a geometric progression:

Ni+1 = Niζ
2, for i ≥ 2. (11)
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Since N1 ≫ 1, we approximate N1 − 1 ≈ N1. Finally, the general formula for Ni is:

Ni =

{
a
l2 , i = 1
a
l2 (ζ

2 − 1)ζ2(i−2), i ≥ 2.
(12)

Table 2: Parameters description.

Describe Parameter

n Number of nodes in network
d Physical distance

P (d) Interaction probability over distance d
α Power-law distribution exponent

E(h) Expected hop count per connection
CP2P Expected point to point capacity per connection
Θ(·) Asymptotic growth rate
CL Single hope transmission capacity (bps)

Cnet Total network transmission rate (bps)
E(CL) The expected transmission rate per link (bps)

W Available frequency (Hz)
ρ Node density (number of nodes per unit area)

E(Aρ) Expected normalized area per link by node density
E(d) Expected Communication distance
r(n) Transmission range

l Physical link distance
a Area of the first tier
S Source node
v Node index
j Link index
k Hop index
i Tire index

m Number of tiers
Pi Node’s interaction probability of tire ith

Ni Number of nodes per tier
Ei(h) Average path length of tire ith

F (·) Aggregate node hop count in a triangle
γ Interaction probability constant
ζ Exponential step size

C(d) contacts distribution over distance d
E(Ci) Expected contact number per tier

4.2 Probability constant estimation

To determine the probability constant P1 in Eq. (7), we ensure that when a source node S selects a

destination, any other node v in the network, at distance dv from S, has a nonzero probability P (dv)

of being chosen. This probability must satisfy the condition
∑

v ̸=S P (dv) = 1. Since all nodes within

the same tier have an equal probability of selection, we reformulate this condition in terms of the

interaction probabilities, summing over all m tiers:
m∑
i=1

NiPi = 1. (13)

Depending on the position of the source node S, parameters of Eq. (13) may vary. Thus, we consider

boundary cases: one where the source node is at the network center and another where it is at the

network corner, representing the best-case and worst-case scenarios, respectively, as illustrated in

Figure 4. In both cases, the first tier contains N1 nodes with probability P1, while nodes in the ith

tier (i ≥ 2) have probability Pi = ζ−(i−1)αP1. Substituting Ni and Pi from Eq. (12) and Eq. (7) into

Eq. (13), and after some simplification, we obtain:

a

l2
P1 + (ζ2 − 1)

a

l2

m∑
i=2

P1ζ
−αζ(2−α)(i−2) = P1

a

l2

(
1 + (ζ2 − 1)ζ−α

m∑
i=2

ζ(2−α)(i−2)

)
= 1. (14)
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Before proceeding, we establish in Theorem 2 that any interaction probability dependent solely on

source-destination distance falls with at least Θ
(
1/d2

)
over the distance from the source node, which

also applies to the power-law model. Thus, for ζ > 1 and α > 2, the summation
∑m

i=2 ζ
(2−α)(i−2)

forms a geometric series:
m−2∑
i=0

ζ(2−α)i =
ζ(2−α)(m−1) − 1

ζ(2−α) − 1
. (15)

Based on Eq. (8),m−1 = logζ

(
l
√
n/a

)
that gives us ζ(2−α)(m−1) = ζ(2−α)(logζ(l

√
n
a )) = 1/( l

2n
a )

α−2
2 .

If n → ∞, 1/(l2n/a)
α−2
2 ≪ 1, leading to:

lim
n→∞

m−2∑
i=0

ζ(2−α)i =
1

1− ζ(2−α)
. (16)

Finally, putting this in Eq. (14) results P1 as:

P1 =
l2

a
(
1 + (ζ2−1)ζ−α

1−ζ(2−α)

) . (17)

S

√
a
2

ζ
√
a

2

N
18

N
2

8

(a) Best case scenario (Network center)

S

√
a

N
12

N
22

ζ
√
a

(b) Worst case scenario (Network edge)

Figure 4: Boundary scenarios for expected path values. N1 and N2 are the number of nodes in the first and second tiers.

4.3 Expected hop count estimation

We now calculate the expected hop count, E(h), which is the sum of all possible hop counts weighted

by their respective probabilities, as given in Eq. (3). However, as we grouped nodes into nested tiers,

it is convenient to express E(h) as the sum of expected hop counts per tier:

E(h) =

m∑
i=1

Ei(h)︸ ︷︷ ︸
Tier path length

· NiPi︸ ︷︷ ︸
Tier probability

. (18)

In this formulation, we have already determined Ni and Pi, while Ei(h) represents the average path

length per tier. Ei(h) is the total hop distance of all nodes from the source, divided by the number of

nodes in that tier. Because all nodes within the same tier have the same probability Pi of interacting

with the source node, Ei(h) characterizes the tier’s contribution to the overall hop count. As E(h)
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depends on the source node’s position in the network, we again consider boundary cases: the best-

case scenario and the worst-case scenario, illustrated in Figure 4. They represent the minimum and

maximum possible values of E(h). Now, to compute Ei(h) tier by tier, we start with the first tier in

the best-case scenario, where nodes in this tier are arranged in eight symmetric isosceles triangles, as

shown in Figure 4. Each triangle contains N1/8 = a/8l2 nodes. Using Lemma 1, the total hop distance

of all nodes within the initial triangle is given by F (
√
a

2l ), where each equal-length side contains
√
a

2l

nodes from the source. Thus, Ecenter
1 (h) is computed as:

Ecenter
1 (h) =

8l2F (
√
a

2l )

a
=

8l2(
√
a

2l )
3

a
=

√
a

2l
.

For the second tier of the best-case scenario, which is also divided into eight geometrically similar

areas, each containing (ζ2 − 1)N1/8 nodes, the path length is calculated over the region between two

isosceles triangles with side lengths
√
a

2l and ζ
√
a

2l , as shown in Figure 4. Applying Lemma 1 for nodes’

distance summation F ( ζ
√
a

2l )− F (
√
a

2l )), we have:

Ecenter
2 (h) =

8l2(F ( ζ
√
a

2l )− F (
√
a

2l ))

(ζ2 − 1)a
=

(ζ3 − 1)
√
a

2(ζ2 − 1)l
.

For the worst-case scenario, where the source node is positioned at the network edge, see Figure 4.

Applying same approach and using Lemma 1, we could simply show average path length for the first

and second tire follows:

Eedge
1 (h) =

√
a

l
, Eedge

2 (h) =
(ζ3 − 1)

√
a

(ζ2 − 1)l
.

Due to geometric similarity, the average distance increases by a factor of ζ with each subsequent

tier in both cases as:

Ei+1(h) = ζEi(h) , i ≥ 2. (19)

Since the number of nodes Ni and the interaction probabilities Pi remain identical in both cases, and

given that the worst case Ei(h) is exactly twice the best case Ei(h), we conclude:

Eedge
i (h) = 2Ecenter

i (h). (20)

Thus, the worst-case E(h) serves as an upper bound, while the general expected hop count is no

lower than half this worst-case estimate. To maintain analytical simplicity, we pick the worst-case

scenario Ei(h) to derive an upper bound for the E(h) estimation:

Ei(h) =

{√
a
l , i = 1

(ζ3−1)
√
a

(ζ2−1)l ζi−2, i ≥ 2.
(21)

Now, by substituting the values of Pi, Ni, and Ei(h) from Eq. (7), Eq. (12), and Eq. (21), respec-

tively, into Eq. (18), we can express E(h) as:

E(h) = (

√
a

l
)3P1 +

m∑
i=2

P1(ζ
3 − 1)(

√
a

l
)3ζ−αζ−α(i−2)ζ3(i−2). (22)

Substituting probability constant P1 from Eq. (17) for α > 2, we get:

E(h) =

√
a

l(1 + (ζ2−1)ζ−α

1−ζ(2−α) )

(
1 + (ζ3 − 1)ζ−α

m∑
i=2

ζ(3−α)(i−2)

)
. (23)



Les Cahiers du GERAD G–2025–46 11

For m ≫ 1, the geometric series
∑m

i=2 ζ
(3−α)(i−2) results could be computed, and then the expected

hop count E(h) under a power-law distribution follows the generalized form:

E(h) =



√
a(1+

(ζ3−1)ζ−α(1−( l2n
a

)
( 3−α

2
)
)

1−ζ(3−α)
)

l(1+
(ζ2−1)ζ−α

1−ζ(2−α)
)

, α > 3

√
a(1+(1−ζ−3) logζ(l

√
n
a ))

l(1+
(ζ2−1)ζ−3

1−ζ−1 )
, α = 3

√
a(ζ3−1)ζ−α( l2n

a )
( 3−α

2
)

l(ζ(3−α)−1)(1+
(ζ2−1)ζ−α

1−ζ(2−α)
)
, 2 < α < 3.

(24)

If we reduce the step grow rate to its minimum limit (ζ → 1), then limζ→1 E(h) computed as below,

which minimize the effect of the discrete layering in E(h) approximation:

lim
ζ→1

E(h) =


√
a(α−2)(α−3( l2n

a )
( 3−α

2
)
)

lα(α−3) , α > 3
√
a(1+3 ln(l

√
n
a ))

3l , α = 3

(
√

a
l )

α−2
3(α−2)n( 3−α

2
)

α(3−α) , 2 < α < 3.

(25)

Although the ultimate goal is the analysis of asymptotic behavior of E(h) and not its exact value,

Eq. (25) could provide also a numerical approximation of the E(h) based on the network size n and

power-law exponent α. Finally, E(h) asymptotic behavior could be derived from Eq. (25) as:

E(h) =


Θ(1), α > 3

Θ(ln(n)), α = 3

Θ(n
(3−α)

2 ), 2 < α < 3.

(26)

4.4 Capacity bounds and comparison

In Section 2, we identify key factors influencing P2P capacity: link capacity E(CL), transmission range

r(n), and expected hop count E(h), and establish their relationship with CP2P. For a symmetric node

arrangement with r(n) = Θ(1) and E(d) has have similar scaling behavior with E(h), as link lengths

are constant. It is also well established that E(CL) = Θ(W ) [23, 54, 55]. Thus, Eq. (2) using for the

upper CP2P bounds Eq. (2), the P2P capacity asymptotic behavior is expressed as:

CP2P = Θ(
E(CL)

r(n)E(d)
) = Θ(

W

E(h)
). (27)

Substituting E(h) asymptotic behavior from Eq. (26) into Eq. (27), the CP2P asymptotic behavior

can be formulated as:

CP2P =


Θ(W ), α > 3

Θ( W
ln(n) ), α = 3

Θ( W

n
(3−α)

2

), 2 < α < 3.

(28)

To benchmark our findings against the state-of-the-art, we compare our results with the work

of Azimdoost et al. [4], which establishes the following capacity bounds, with the same power-law

interaction model: {
Θ( n−q−1

n2rα−1(n) ), 2 ≤ α ≤ 3, q < ∞
Θ( n−q−1

n2r2(n) ), α ≥ 3, q < ∞.
(29)
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By incorporating the function r(n) =
√
ln(n)/n, as suggested in [23] to ensure network connectivity,

and assuming a contact number of q = 1, the capacity bounds in [4] are simplified to:Θ( 1

n
(3−α)

2 ln(n)
(α−1)

2

), 2 ≤ α ≤ 3

Θ( 1
ln(n) ), α > 3.

(30)

However, Azimdoost et al.’s model [4] does not necessarily assume a symmetric node arrangement.

Gupta et al. [23] demonstrated that the achievable capacity bound for symmetric settings is
√
ln(n)

times higher than in random configurations. To enable a fair comparison, we normalize the capacity

bounds from [4] by multiplying them by
√
ln(n), yielding:Θ( 1

n
(3−α)

2 ln(n)
α
2

−1
), 2 ≤ α ≤ 3

Θ( 1√
ln(n)

), α > 3.
(31)

Then, our capacity bounds in Eq. (28) outperform those presented in [4] as follows:{
ln(n)

α
2 −1, 2 < α < 3√

ln(n), α ≥ 3.
(32)

This indicates that for 2 < α < 3, our capacity bound is superior by a factor of ln(n)α/2−1, and

for α > 3, our bound is
√
ln(n) times better than [4]. This improvement arises primarily from two

differences:

1. Scaling model and network structure: To analyze network scalability as the number of nodes n

grows, [4] maintains a fixed unit square area, increasing node density, whereas our model expands

the network size while preserving node density, which aligns more closely with empirical power-

law interaction models. Moreover, our symmetrical scenario enables grouping nodes solely based

on physical distances to calculate E(h), which allows us to convert a purely distance-dependent

interaction probability into a hop count probability independently of r(n) or other parameters.

2. Analytical separation of key parameters: our framework, consistent with Gupta [23], expresses

the capacity as CP2P = Θ(1/r(n)) instead of Θ
(
1/r2(n)

)
[4], and E(h) = E(d)/r(n), exhibiting

only linear dependence on r(n). Conversely, [4] divides the unit square area into a grid of

cells with lengths proportional to transmission range r(n), forming the basis for calculating the

expected hop count. Thus, [4] directly ties interaction probability to r(n), implying that changes

in transmission range alter interaction probabilities even if physical distance is constant, which

lacks physical justification. Consequently, the formulation in [4] includes higher-order terms such

as rα−2(n) and r2(n), which may lead to an underestimation of capacity and an implicit coupling

between the transmission range r(n) and the interaction probability parameter α.

5 Power-law exponent estimation

The ultimate goal of capacity estimation is to determine whether wireless distributed networking is

scalable. Since the capacity bounds, given by Eq. (28), are influenced by the power-law exponent

α, the scalability outcome depends on the value of α. However, none of the capacity estimation

studies—including those focused on power-law interactions [4, 20, 36, 55]—have investigated how to

measure the power-law exponent or what range of α values occur in real-world settings. Moreover,

empirical studies on social ties that identified power-law patterns in human interactions offer diverse

interpretations of this behavior depending on context. Most of these works, introduced in Section 6, do

not examine social interaction datasets from a network perspective. Consequently, there is currently no
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fundamental framework for directly applying empirical social data to capacity and scalability analysis.

To bridge this gap, we introduce a structured mathematical approach to extract α directly from sta-

tistical data, ensuring consistency with both theoretical capacity bounds and real-world observations.

Empirical studies [5, 16, 34, 44] consistently represent social ties quantified by the contacts distribu-

tion or the frequency of interaction over distance using a logarithmic curve, where both distance and

contacts distribution follow exponential growth patterns. This scheme closely aligns with our network

model in Section 4.1, where we partition the network into multi-resolution tiers that expand exponen-

tially to estimate E(h). Under this scenario, the contacts distribution, within each tier i as ζ → 1,

converges to the contacts distribution over distance, denoted as C(d). This C(d) matches the empirical

representation of social ties presented in previous studies. Consequently, analyzing the slope of the

log-log relationship between contact numbers and distance rigorously determines the parameters of

the power-law model. This correspondence enables a robust extraction of the power-law distribution

parameters directly from empirical datasets. Thus, we define the expected contacts distribution for a

given node within each tier, E(Ci), as the product of the interaction probability and the total number

of nodes in that specific tier, expressed as follows:

E(Ci) = PiNi . (33)

By substituting Pi and Ni from Eqs. (7) and (12) when (i ≥ 2), we can write:

E(Ci) = P1ζ
−(i−1)(α)(ζ2 − 1)

a

l2
ζ2(i−2) = P1ζ

−α(ζ2 − 1)
a

l2
ζ(2−α)(i−2) . (34)

Now, we can define the average distance of each tier from the source node as d̄i =
dmax
i +dmin

i

2 =
√
aζi−1+

√
aζi

2 =
√
aζζi−2(1+ζ)

2 . Therefore,

ζi−2 =
2d̄i√

aζ(1 + ζ)
. (35)

Substituting Eq. (35) into Eq. (34), E(Ci) is written as

E(Ci) = P1ζ
−α(ζ2 − 1)

a

l2
(

2d̄i√
aζ(1 + ζ)

)

(2−α)

.

Based on Theorem 2, for any power-law distribution interaction probability, when the network size

goes to infinity, we should have α > 2. Hence, by using the value of P1 from Eq. (17), where α > 2,

E(Ci) =
1

(1 + (ζ2−1)ζ−α

1−ζ(2−α) )
ζ−α(ζ2 − 1)(

2d̄i√
aζ(1 + ζ)

)

(2−α)

.

Therefore, if α > 2 and i ≥ 2, E(Ci) is

E(Ci) =
22−α

√
a
α−2

(1− ζ−2)

(1 + (ζ2−1)ζ−α

1−ζ(2−α) )(1 + ζ)
2−α

d̄i
2−α

. (36)

If we reduce the step size as much as possible (ζ → 1), d̄i ≈ di and limζ→1 E(Ci) can be written as

Eq. (37):

E(Ci) =
2(α− 2)

√
a
α−2

α
di

2−α . (37)

By taking the logarithm on both sides of Eq. (37), we have:

log(C(d)) = −(α− 2) log(d) + C0 . (38)
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Hence, if we define b as the slope of the C(d) curve in the log-log scale, then α = 2 − b. Eq. (38)

enables the examination of network scalability using empirical observations.

Eq. (38) clarifies the interpretation of the measurement of power-law exponent from real empirical

data. To illustrate it, we return to the interaction probability, which is defined as P (d) = γ/dα, and

take the logarithm on both sides, we obtain:

log(P (d)) = −α log(d) + log(γ). (39)

This equation shows that the slope of the log-log curve for interaction probability is −α. This high-

lights a significant difference between interaction probability and the contacts distribution in Eq. (38).

All empirical studies listed in Table 3 have analyzed the relationship between distance and interac-

tions by focusing on the contacts distribution or similar metrics, rather than the interaction probability

itself. While their proposed power-law models accurately describe the empirical relationship, they do

not directly correspond to the interaction probability used in theoretical analysis. To further illustrate

this distinction, Figure 5 presents simulation results showing the distribution of a node’s contacts as

a function of distance, under a power-law interaction probability model. These results demonstrate

that the observed contact distribution—commonly measured in empirical studies—decays as 1/dα−2,

rather than as 1/dα. However, in capacity estimation research, contacts distribution has not been

distinguished from the interaction probability and they have been equated implicitly. Overlooking

this critical distinction between social ties and interaction probability underestimates network capac-

ity as illustrated in Figure 6. Our work corrects this misinterpretation by introducing an analytical

framework that explicitly links the computation of E(h), a measure of capacity, with C(d), which

reflects empirical interaction data—both within the same network structure. This model captures the

logarithmic scaling of empirical data using a nested, exponentially growing arrangement and prop-

erly accounts for spatial dimensionality, which has been overlooked in prior studies. This structural

approach creates a direct mathematical connection between capacity-bound derivations and empirical

social tie estimation. Consequently, presenting a robust method for measuring the interaction probabil-

ity parameter and clarifying its interpretation enables more accurate predictions of wireless distributed

network scalability, fundamentally reshaping conclusions about the scalability of these networks, as

detailed in Section 6.
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Figure 5: This plot shows the contact count as a function of distance for a node at the center of a 2-D plane, obtained via
logarithmic binning, from a simulation of n = 1.2× 108 nodes randomly distributed in a 100× 100 square. The probability
that each node forms a contact with another node decays with their distance as P (d) ∝ 1/dα.

6 Scalability of distributed wireless networks

Using the result from Section 5, we can extract the power-law exponent α directly from empirical

datasets. In this section, we first apply Eq. (38) to various empirical datasets covering diverse com-

munication contexts, including social networks, email communication, video games, phone calls, and
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physical interactions, to identify a realistic range of α. Subsequently, leveraging the capacity bounds

established in Section 4, we analyze how these bounds scale within this identified range and provide a

clear insight into the scalability of distributed wireless networks from a capacity perspective.

Empirical Stud-
ies on Social Ties

( Contacts distribu-
tion vs. Distance)

Contacts distribu-
tion C(d) ∝ d2−α

Log-log Plot of Con-
tacts vs. Distance

Is estimate
slope = −α?

Misinterpretation:
Contacts ≡ Inter-
action Probability

Correct: Slope
= b implies
α = 2 − b

Interaction Proba-
bility P (d) ∝ d−α

Correct Capac-
ity Estimation

and Scalability Prediction

Yes

No

Figure 6: Correction of power-Law exponent interpretation in empirical analysis. The flowchart illustrates how applying
the correct relation, α = 2− b, enables accurate derivation of network scalability from empirical data.

6.1 Empirical datasets

Latane [34] analyzed social interactions across different geographic regions, consistently finding a log-

log slope near −1, corresponding to α ≈ 3. This finding aligns with the social impact theory [34],

which posits a fundamental relationship between social ties and distance, independent of technological

advancements. More recent large-scale studies further validate these findings. Backstrom et al. [5]

analyzed social interactions among 3 million Facebook users, again finding a slope of −1.05 (α = 3.05).

Similarly, [16] found α values between [2.969, 2.996] in Australian community networks. [52] analyzed

data from a massively multiplayer online game where players interact by communicating, trading,

or fighting. They measured the frequency of exchanges versus distance on a log-log scale, with an

approximated power-law exponent of α = 3.3. [37] investigated friendship ties in a social network of

1 million bloggers on LiveJournal, which implies α = 3.2. [35] studied social ties on Facebook and

email communication, reporting α = 3.08 and α = 2.99, respectively. [32] studied 3.3 million mobile

phone users and estimated the number of connected pairs versus distance, finding a power-law slope of

−2, yielding α = 4. This behavior was explained using the gravity model. Similarly, [29] analyzed 2.5

million mobile phone users and showed that inter-city communication follows a gravity model, with

interaction frequency proportional to the product of city sizes divided by the square of their distance,

leading to α = 4. [44] further confirmed this trend in mobile communication, observing α values of

3.58 and 3.49 for voice and text interactions, respectively.

[33] analyzed the online social ties of more than 10 million users of the Tuenti social network. They

found that friendships were predominantly local, following a heavy-tailed power-law form. The study

identified two distinct regimes: short-range links (under 300 km) with exponents α ∈ [3.1, 3.5] and long-

range links (beyond 300 km) with a steeper exponent of approximately α = 4.4. [6] introduced the Social

Connectedness Index (SCI) using Facebook friendships in the United States. They observed that the

elasticity of friendship ties with distance followed a power-law relationship, with exponents of α = 3.48.

This confirms that, despite digital connectivity, geographic distance remains a dominant factor in

social interaction. In a later study, [7] analyzed social connectedness in urban areas, particularly

New York City, and found an exponent of α = 3.23. The case of NYC demonstrates that even
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in a highly diverse and technologically advanced metropolis with widespread cellular network coverage

(2020), geographic proximity remains a dominant factor influencing social ties. Despite the absence

of significant political, cultural, or natural divisions, social connections within the city still cluster

into ten distinct subcommunities aligned closely with geographic areas. Furthermore, their study on

online friendship between European societies [8] calculated α = 3.38 for Paris and identified 50 distinct

regional communities in 20 countries.

Studies such as [48] and [15] reported power-law exponents below 3 (e.g., α = 2.8 for location-based

services and α = 2.7 for Twitter data). However, in check-in-based services such as [48], users may

travel to multiple cities and keep friends across locations, but their actual interactions remain largely

local. This limitation suggests that such analyses may not accurately reflect meaningful social ties in

terms of network capacity. Similarly, Twitter differs from typical P2P networks, as it is follower-based

and interest-oriented rather than composed of direct social connections [31], where 10% of Twitter

users are responsible for 92% of all tweets [51], and 20% of all users possess more than 96% of all

followers [60]. Therefore, it has been proposed that interaction graphs should be extracted from

broader social networks, such as Facebook, by considering only connections with a significant amount

of explicit or implicit communication [28, 56]. Moreover, even in P2P networks, the distribution

of friendships does not always align with the distribution of interactions, as [53] demonstrated that

the frequency of messages exchanged over distance declines more strongly than the distribution of

friendships. For example, people who created a Facebook profile 10 years ago may have migrated to

another country. Although they still have many friends from home, over time, their interactions with

them become increasingly infrequent.

In summary, the power-law model for P2P human interaction has been widely observed, leading

to several theoretical explanations and justifications. These include Zipf’s Law [61], Social Impact

Theory [34], and the Gravity Model [32, 35, 52]. Additionally, it has been proposed that the spatial

structure of social networks is scale-invariant, following a universal contact distribution of 1/d [27].

A common aspect of all these models is that they predict an interaction probability decay of Θ(1/d3),

and empirical studies on P2P communication consistently support an exponent within this range that

supports scalability. Small variations in these values can be attributed to multiple factors. Part of

the discrepancy arises from differences in communication contexts, while other variations stem from

geographical, demographic, and political factors. Additionally, the resolution of location data used

in analysis significantly impacts results. Many studies rely on approximate user locations, which

can vary in accuracy—including city-level resolution [33], IP-based resolution, or zip-code-level res-

olution [32]—which introduce potential errors in the estimation of the power-law exponent. Finally,

while friendships in social networks exhibit strong correlations, they do not necessarily translate into

memorable interactions [34, 53]. Social connectedness can be viewed as an upper bound on long-

distance interactions, whereas real-world interactions tend to be more localized [53]. This suggests

that approximations based on social networks may vary depending on context.

6.2 Scalability analysis

The extracted values of α form multiple sources are given in Table 3. These homogeneous results Ta-

ble 3 reinforce that social interaction probabilities consistently follow a power law with α values around

3 or exceeding it, which aligns with the social impact theory proposed by [34]. However, the cause of

this behavior can also be justified by a capacity analysis perspective as the real-world values of α are

within the range required for scalable distributed networking. To illustrate it, we consider real-world

transportation through the streets of a city, which is a physical type of distributed network. Model-

ing real-world interaction using a power-law model, path lengths in physical transportation networks

follow a similar trend as the expected hop count (E(h)) in distributed networks (Section 4). Conse-

quently, available P2P physical communication capacity closely follows Eq. (28), where W represents

communication channel capacity, akin to street width. Under these conditions, if α > 3, distributed

networking remains scalable regardless of network size. For α ≤ 3, consider a numerical example
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Table 3: Empirical work on social ties. α is calculated as the additive inverse of interaction frequency over distance plus
two based on Eq. (38).

Research Work Case Study
Slope Line

(log-log scale)
α

Memorable Interaction (US)[fig1] -1.01 3.01
Latane (1995) [34] Memorable Interaction (China)[fig2] -1.05 3.05

Social Sociologists Interaction[fig3] -0.93 2.93
Backstrom (2010) [5] Facebook Friendship [fig4] -1.05 3.05
Onella (2011) [44] Voice tie (phone call) [Figure 2] -1.58 3.58
Onella (2011) [44] Text tie [Figure 2] -1.49 3.49
Daraganova (2012) [16] Community network [table 4(λ column)] [-1,-0.97] [2.97,3]
Thurner (2015) [52] Video game (communicating, trading, or fighting.)[Fig 2.] -1.3 3.3
Lambiotte (2008) [32] Phone call[Fig 2.] -2 4
Krings (2009) [29] Inter-city phone call intensity [Figure 3.b] -2 4
Liben (2005) [37] Livejournal bloggers[Fig. 3] -1.2 3.2
Levy (2014) [35] Facebook friendship [Fig. 2] -1.08 3.08
Levy (2014) [35] Email communication [Fig. 4] -0.99 2.99
Laniado (2018) [33] Tuenti Friendship [Fig. 6] [-1.5,-1.1] [3.1,3.5]
Bailey (2018) [6] Facebook Friendship [Table 2 (Column 2)] -1.48 3.48

(2020) [7] Facebook Friendship [Table 1] -1.23 3.23

(2020) [8] Facebook Friendship [Table 1] -1.38 3.38

involving two cities with populations n1 = 105 and n2 = 107.5 (≈ 31.6 million), where the real-world

empirical distribution is Θ(1/d2.2) (α = 2.2). From Eq. (28), the P2P capacity scales as

CP2P ∝ W

n
3−2.2

2

=
W

n0.4
.

If W1 and W2 are the average street widths in these cities, maintaining equal transportation capacity

requires W1/n
0.4
1 = W2/n

0.4
2 . Thus, the larger city would need streets approximately 10 times wider, as:

W2

W1
=

(
n2

n1

)0.4

= (102.5)0.4 = 10.

However, in reality, street widths remain relatively constant or increase only slightly in larger cities.

Now, if α = 3, keeping the same capacity would require the street width ratio to be:

W2

ln(n2)
=

W1

ln(n1)
⇒ W2

W1
=

ln(n2)

ln(n1)
=

7.5 ln(10)

5 ln(10)
= 1.5,

which is much closer to reality. These results indicate scalable distributed communication—whether

physical or digital—requires an interaction probability exponent α close to or exceeding 3, ensuring an

interaction probability of Θ(1/d3) in real-world scenarios. It serves as the capacity-based mathematical

expression of the social impact theory [34].

Returning to our central question, our comprehensive analysis—integrating theoretical capacity

bounds with empirical data—demonstrates that multi-hop communication does not fundamentally

limit the scalability of distributed wireless networks. As shown in Table 3, real-world empirical values

of the power-law exponent α typically range from [2.9, 4]. According to the derived expression for CP2P

(Eq. (28)), capacity remains stable for α > 3, even as the network scales significantly. Furthermore,

for values of α in the narrower range [2.9, 3], CP2P decreases gradually without critically impacting

scalability. To demonstrate this clearly, Figure 7 visualizes the scaling behavior of the capacity bounds

using a base network size of n = 105. Here, normalized capacity is defined as the ratio of CP2P at a

given network size n = y relative to Cn=105

P2P . As shown in Figure 7, by scaling up the network size

even for networks with up to 109 nodes, normalized capacity only moderately decreases—by factors of

0.79, 0.63, and 0.57 for α = 2.95, 2.9, and 3, respectively. However, significantly lower α values, such
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as α = 2.5, cause drastic reductions (a factor of approximately 10), potentially challenging scalability.

Thus, our analysis confirms that, given realistic empirical ranges for α, even networks comprising

millions or billions of users experience minimal reductions in CP2P due to multi-hop communication.

Furthermore, Eq. (2) highlights the key factors influencing network capacity, noting that extensively

studied wireless transmission characteristics and network topologies—quantified through parameters

E(CL) and r(n)—do not fundamentally limit scalability, as discussed in Section 2. Historically, the

primary uncertainty has involved the expected hop count E(h) or communication distance E(d), whose

scalability impact remained unclear. Through rigorous theoretical derivation and empirical evaluation

presented in this work around the role of interaction probability, we clarify that: multi-hop communica-

tion impact on P2P capacity does not hinder the scalability of distributed wireless networks as expected

communication distance and number of relays of a connection remain bounded, even for very large

networks. These findings have significant implications for the scalability of distributed wireless net-

works and suggest that large-scale multi-hop communication remains feasible without severe capacity

degradation.
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Figure 7: Scaling behavior under different values of the power-law exponent α. Starting from a base network with n = 105,
as depicted in Figure 3, the network is scaled up by increasing the number of nodes while keeping the node density and
network structure constant. The plot shows the ratio of asymptotic P2P capacity for a network of size n = y to that of

the base network, Cn=105

P2P . This ratio is presented as the normalized P2P capacity: (Cn=y
P2P /Cn=105

P2P ).

7 Conclusion and future work

This study explored the scalability of distributed networking, where theoretical capacity bounds and

statistical datasets on social ties support the potential for large-scale distributed networks. However,

additional empirical studies are needed to refine our understanding of P2P traffic patterns and origin-

destination communications. Moreover, in practice, the symmetric topology is uncommon; however,

it simplifies routing and capacity analysis, providing a structured framework to focus on the role of

the interaction probability and multi-hop communication. Although this assumption serves as a useful

theoretical baseline for the asymptotic behavior of the P2P capacity, future research should explore

more realistic assumptions to achieve a comprehensive numerical performance analysis. Specifically, the

impact of real-world communication models (such as interference and fading), emerging technologies,

and practical network topologies should be assessed to provide an accurate numerical evaluation of

such networks. Future work should address the following key challenges.
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• Wireless network performance metrics: Analyzing key performance indicators such as

average capacity per user, delay, power consumption, and spectral efficiency concerning wireless

transmission factors.

• Impact of random node arrangements: Evaluating non-symmetric network topologies to

reflect real-world scenarios.

• Routing and resource allocation: Investigating efficient routing strategies and resource man-

agement to optimize network performance.

• Empirical studies: Expanding statistical analysis to better understand various P2P commu-

nication traffic patterns.

Moreover, the homogeneous behavior observed in empirical studies can be justified by theoretical work

on capacity. This represents an interesting interdisciplinary topic that connects theoretical capacity

analysis with social ties beyond digital communication.

Appendix
Theorem 1 (Upper bound on per-node P2P capacity). Consider a distributed wireless network operating

under a TDMA-based communication model, where n denotes the number of nodes and ρ is the node

density. Assume that 1) the system is ergodic so that time averages equal ensemble averages, and 2)

the total spatial area occupied by active links cannot exceed n/ρ. Let E(A) be the expected area allocated

per active link, E(CL) be the expected capacity of a single active link, and E(h) be the expected hop

count of a P2P connection. Then, the P2P capacity CP2P satisfies

CP2P ≤ E(CL)

E(h)E(Aρ)
,

where E(Aρ) = E(A) ρ is denoted to the expected area occupied by an active link normalized by network

density.

Proof. We consider a TDMA-based communication model where, in each time slot, all active links

utilize all frequency resources. Let the total network transmission rate in a given time slot be denoted

as Cnet. This total transmission rate is the summation of the capacities of all active links in that slot.

Let nL represent the number of active links in each slot, and let Cj
L denote the capacity of the j-th

link. Then, Cnet can be expressed as:

Cnet =

nL∑
j=1

Cj
L.

To ensure convergence when moving from summations to expected values, we assume ergodicity, which

ensures that the time average equals the ensemble average for network parameters such as the number

of active links and link capacities. The maximum number of active links, nL, is constrained by the

total spatial area required for each link to limit interference. Let Aj represent the area assigned to

link j. The total area occupied by all active links must not exceed the total area of the network, given

by the product of the number of nodes, n, and the inverse of the density of the nodes, ρ. Thus, we

have:
nL∑
j=1

Aj ≤
n

ρ
.

Taking the expected value on both sides and applying the linearity of expectation:

E

 nL∑
j=1

Aj

 = E(nL) ·E(A) ≤ n

ρ
,
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where E(nL) and E(A) are respectively the expected number of simultaneous active links and the

expected area allocated to each active link. Rearranging this inequality provides an upper bound for

E(nL):

E(nL) ≤
n

E(A) · ρ
. (A.1)

The total network transmission rate, Cnet, is the sum of the capacities of all active links. Taking

the expected value:

E(Cnet) = E

 nL∑
j=1

Cj
L

 .

Using the linearity of expectation:

E(Cnet) = E(nL) ·E(CL),

where E(CL) is the expected capacity of a single active link. Substituting the upper bound for E(nL)

from Eq. (A.1), we obtain:

E(Cnet) ≤
n ·E(CL)

E(A) · ρ
. (A.2)

On the other hand, the P2P capacity, CP2P , represents the capacity allocated to a single P2P

connection. If any node v transmits data on a P2P connection at an average rate of CP2P and a hop

count of hv, the total concurrent transmission resources used by all P2P connections can be expressed

as
∑n

v=1 CP2Phv. Taking the expectation, we have:

E

(
n∑

v=1

CP2Phv

)
= CP2P ·E

(
n∑

v=1

hv

)
= nCP2P ·E(h),

where E(h) is the expected number of hops for a P2P connection. The expected value of the total

consumed resources is constrained by the total network transmission rate so that

nCP2P ·E(h) ≤ E(Cnet).

Substituting the upper bound of E(Cnet) from Eq. (A.2),

nCP2P ·E(h) ≤ n ·E(CL)

E(A) · ρ
,

By considering E(Aρ) = E(A) ρ as the the expected area occupied by an active link normalized by

network density and simplifying the total number of nodes from both sides, the per-node P2P capacity

is expressed as

CP2P ≤ E(CL)

E(h) ·E(Aρ)
. (A.3)

Lemma 1. Let a source node be placed at the vertex of an isosceles triangle with κ nodes along each

side of equal length, where κ ≫ 1. The sum of all nodes’ (minimum) hop counts from the source node

within this triangle is approximated by:

F (κ) =
κ3

2
.
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Proof. The triangle contains κ nodes along each side that can be further divided into κ layers, where

layer x contains x+ 1 nodes, as shown in Figure A.1. The shortest distance from the center node for

a node v in layer x is (x+ v). Summing over all layers:

κ∑
i=1

x∑
v=1

(x+ v) =

κ∑
x=1

(
x2 +

x∑
v=1

v

)
≈

κ∑
x=1

3x2

2
.

Using the identity
∑n

x=1 x
2 = n(n+ 1)(2n+ 1)/6,, we define:

F (κ) =

κ∑
x=1

3x2

2
=

κ(κ+ 1)(2κ+ 1)

4
.

For large κ, we approximate limκ≫1 F (κ) = κ3/2.

xth layer nodes

v node

S

κ
l

Figure A.1: Isosceles triangle and its node arrangement.

Lemma 2 (Exclusively distance-dependent distribution). Consider a network with n nodes uniformly

distributed in a planar (2D) area with node density ρ = 1/l2. Suppose we sum the number of nodes

multiplied by the interaction probability at any distance di = li in nested tiers, as depicted in Figure A.2.
Then, as n → ∞:

∞∑
i=1

P (di)di must converge .

Proof. Suppose each node v ̸= S interacts with a source node S with probability P (dv), dependent

exclusively on distance. Then, the total probability satisfies:

n∑
v ̸=S

P (dv) = 1 .

Since nodes at equal distances from the source node have equal interaction probabilities, we can sum

the number of nodes multiplied by the interaction probability at any distance di = li in nested tiers

around the source node, giving:
imax∑
i=1

P (di)N(di) = 1 ,
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where imax is the number of tiers and N(di) is the number of nodes within the distance interval

di ∈ [l(i−0.5), l(i+0.5)] from the source node, as depicted in Figure A.2. Given the uniform distribution

of nodes and approximating di = il, we have:

N(di) = ρ · 2π
[
l2(i+ 0.5)2 − l2(i− 0.5)2

]
= 2πi =

2πdi
l

.

Furthermore, as the diameter of the network is l
√
n, the number of tiers imax is proportional to√

n. Thus, the condition becomes:
√
n∑

i=1

2πP (di)di = 1 .

To satisfy the condition that the sum of all interaction probabilities equals one, this simplifies to:

∞∑
i=1

P (di)di < ∞.

If this series diverges, the cumulative interaction probability would exceed 1 as n → ∞, violating

the assumption that each node must choose exactly one destination. Therefore, for the interaction

probability distribution P (di) to be valid in a large-scale uniformly distributed network, the series∑
P (di)di must converge.

l
√
n

l

di = li
l(i

− 0.5
)

l(i
+
0.5

)

Area = l2i

S

Figure A.2: Grouping nodes of any distance di.

Theorem 2. For any exclusively distance-dependent interaction probability, where n nodes are uni-

formly distributed; if n → ∞, P (d) should fall faster than Θ(1/d2), so that limd→∞ d2P (d) = 0.

Proof. In Lemma 2, we showed that the necessary condition on the interaction probability over distance

is that
∑∞

P (d)d converges. P (d) is considered as Θ(P ′(d)/dα), where limd→∞ P ′(d) = c < ∞, and

α = {maxα′ | P (d) is Θ(P ′(d)/dα
′
)}. In order to obtain a finite sum for the series

∑l
√
n

1 P ′(d)d(1−α),

we use the Cauchy condensation test, which states: if {an} is a positive monotone decreasing sequence,
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then
∑∞

n=1 an converges if and only if
∑∞

k=1 2
ka2k converges. By applying it to

∑√
n

1 P ′(d)d(1−α), we

get
∑

P ′(2d)2d(2−α). If α > 2 and P ′(2d) is bounded, the series will converge, while it diverges when

α < 2, regardless of P ′(2d). When α = 2,
∑

P ′(2d) converges only if
∑

P ′(d) is a series such as∑
n

1

log d · log log d · · · log◦(k−1) d · (log◦k d)λ
,

where λ > 1. In other words, to satisfy
∑n−1

v=1 Pv = 1, P (d) should fall faster than Θ(1/d2), so that

limd→∞ d2P (d) = 0.
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