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Abstract : A shift toward shopping at (autonomous) wheeled vending stores is redefining urban retail.
Compared with traditional brick-and-mortar stores, such mobile stores are cost-efficient to deploy and
adaptive to fast-evolving business environments. However, mobile stores are confronted with unknown
demand and limited capacity. Store mobility enables demand learning and profit maximization, yet an
optimal dynamic store location policy remains unclear. We model this “learning-and-earning” prob-
lem by taking optimistic actions under parameter uncertainty. The joint optimization over parameter
and action set is complicated by the combinatorial nature and infinite choices within the action set.
We overcome these challenges by leveraging continuous approximation methods, and then propose a
continuous-approximation optimistic (CA-O) learning framework under some special problem struc-
tures. Nevertheless, for more general scenarios, the problem remains intricate due to the nonconvexity
in unknown parameters. We alternatively propose a CA-O faster learning algorithm by utilizing first-
order approximation techniques and further proving a closed-form gradient to guarantee computational
efficiency. We theoretically analyze and numerically validate the regret for the proposed algorithms.
In a Toronto case study, our algorithm significantly outperforms baselines. Mobile stores earn higher
profits than brick-and-mortar stores through demand learning and store mobility. More broadly, this
paper envisions the future landscape of urban retail enhanced by omnipresent mobile facilities.

Keywords: Mobile retail, facility location, contextual bandits, continuous approximation, joint learn-
ing and optimization
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1 Introduction

The retail landscape is witnessing a surge of innovation in both in-store and online shopping, brought
by autonomous technologies. Unmanned stores are redefining the in-store shopping experience by
providing cashierless and automated service to customers (e.g., Amazon Go stores in the US and UK).
The application of robotics and self-driving technology in fulfillment and delivery holds great promise
for advancing online shopping. Kroger collaborates with Nuro to introduce driverless cars to speed up
the adoption of grocery delivery, and Domino’s Pizza Inc. and Yum Brands Inc.’s Pizza Hut also are
exploring driverless vehicles for pizza deliveries (WSJ 2018).

Figure 1: Sample Mobile Retail Stores. (a) Robomart (2023). (b) Nuro (2023). (c) Neolix (2023).

Autonomous technologies now are spurring the retail industry to evolve further beyond unmanned
stores or deliveries. A business model of selling products through automated stores on wheels is emerg-
ing. In such a business model, the retailer is able to place mobile stores at various locations to leverage
demand dynamics and increase profits. For example, Unilever partnered with a startup “Robomart”
to deploy a fleet of robotic vehicles to sell ice cream through parts of Los Angeles (Forbes 2022).
Robomart launched a flexible platform for retailers to sell goods with running stores (Figure 1(a)).
Consumers just walk to a nearby van stocked with merchandise, open the van with a swipe on a phone
using their app, and complete purchases via their mobile device. The potential market for mobile
retail stores is substantial, and the advances in self-driving technology further stimulate the market.
Investors and operators are already investing heavily into self-driving vans, e.g., SoftBank invested
$940 million in start-up Nuro in 2019 for driverless retail (FT 2019), whose prototype is shown in Fig-
ure 1(b). Not only are companies in the US investigating the business model of mobile retail stores, but
overseas companies are also joining the trend. For instance, Neolix, a Beijing-based startup, received
the approval to operate their autonomous vehicles in both Europe and Asian countries (Bloomberg
2021). Neolix has successfully deployed their vehicles in various application scenarios, including mobile
retail stores, as shown in Figure 1(c).

Mobile retail stores are gaining increasing attention and practice in the industry, but research on
their operations remains scarce. The key to success is still a mystery. A thorough analysis of the
pros and cons is necessary, particularly since the market for mobile retail stores in cities is still in its
infancy. The potential of this new retail channel stems from the following two advantages.

Mobility. Mobile retail stores enable retailers to move their stores as swiftly as relocating a car, in
contrast to the stationary nature of brick-and-mortar stores. This adjustability of store locations
benefits both retailers and customers. Retailers can increase profits by relocating stores to high-
demand regions in a city. For customers, the mobile stores provide an engaging touch-and-feel
shopping experience and extra proximity as store locations change.

Cost efficiency. Three factors contribute to the cost efficiency of mobile retail stores. First, mobile
stores provide an opportunity to reduce labor costs, as demonstrated by the three robotics-
enabled practices in Figure 1. Second, retailers can avoid the heavy investment required for
physical real estate. Furthermore, mobile stores offer retailers the freedom to explore and test
new markets without having to commit to a permanent location.
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Despite being a novel retail channel, mobile retail stores come with their own set of unique obstacles.
We consulted experts from Kroger to better understand and address these issues. Two main obstacles,
if left unaddressed by the operators, could pose risks to this business.

Unknown demand. The extent of customer demand for the novel retail channel in a city is unknown.
If demand is misestimated, retailers will run the risk of reduced profitability if they deploy too
many stores in low-demand areas or too few in high-demand areas. The observed demand
is subject to noise due to the random nature of daily customer demand. Furthermore, demand
fluctuates over time as contextual covariates (such as weather, population density, and fuel price)
vary.

Limited capacity. The inventory capacity of mobile retail stores is more restricted than that of
brick-and-mortar stores. Increased frequency of inventory replenishment could result in higher
replenishment costs in the mobile retail channel. Thus, it is important to pay close attention to
the replenishment process and the related costs in supply chains for mobile stores.

Fortunately, these challenges can be addressed by utilizing the advantages mentioned. Retailers
are able to place mobile stores at various locations and identify local customer demand via daily sales.
Store mobility enables cost-efficient location adjustments to learn potential demand. Retailers further
mitigate the effects of limited capacity by developing a data-driven policy to optimize mobile store
operations.

Motivated by these operational challenges and opportunities of retail on wheels, this paper examines
the sequential location decisions made by a retailer managing a fleet of mobile stores in an online
setting. The retailer faces uncertainty in spatial demand distribution and determines store locations
based on current demand information. After observing the daily sales of each store, the retailer updates
their knowledge of demand and decides on the locations for the following day. In this learning-and-
earning environment, the retailer must carefully simultaneously explore (i.e., estimate parameters)
and exploit (i.e., maximize profit) over time. Meanwhile, spatial demand learning conditioned on
contextual covariates introduces greater complexity because the observation is the aggregate demand
expressed at these decided store locations. It is insufficient to simply apply established methodologies.
This paper proposes a novel online learning framework to help the retailer find a set of store locations
adaptively over the planning horizon.

T T T T T T T T
: Online Facility Location :
' |
: Optimize by CA H Discretize the Design ‘—'{ Re-deploy & Observe :
R R R |
Fr Y= ' 77T
Solve for Optimistic ; Update the Parameter | Update Parameter
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I

Online Learning
Figure 2: The CA-O Learning Algorithmic Framework.

The main contributions of this paper are summarized as follows:

I. Formulation: To the best of our knowledge, this paper is an early attempt to consider a mobile
retail store location problem in an online setting with unknown parameters and contextual
covariates. We formulate a sequential location problem to maximize the overall profit and
analyze the profitability of mobile retail.
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I1. Theoretical Contributions: The major challenges of mobile retail store operations stem from
1) the complexity of action space (i.e., store locations) and 2) the interdependence between
actions and observations (i.e., demand). Our framework, visualized in Figure 2, addresses both
challenges by simplifying the problem and translating the recipe into discrete location decisions.
More specifically:

a) To balance between exploration and exploitation, we formulate an optimistic optimiza-
tion problem, in which the retailer selects the plausibly best estimator from a properly
constructed uncertainty set for unknown parameters and decides on store locations. The
optimistic decision facilitates both the acquisition of information to overcome uncertainty
and the maximization of profit.

b) Selecting store locations is an infinite-dimensional decision problem, much more compli-
cated than a problem of choosing a variable/vector in traditional bandits problems. Faced
with an action set of high complexity, we leverage the analytical convenience inherent in
facility location models and use continuous approximation (CA) to simplify the optimistic
optimization. In this way, we convert an infinite-dimensional online learning problem into
a decomposable and tractable one. We show that the proposed continuous-approximation
optimistic (CA-O) learning algorithm can be implemented efficiently when the objective
function exhibits special structures, such as concavity or convexity.

¢) For a broader scope of applications, maximizing over parameter uncertainty remains in-
tricate due to potential nonconvexity or even the absence of a closed-form expression.
Fortunately, owing to the continuous functions provided by CA, we propose an alternative
algorithm named CA-O Faster Learning by applying first-order approximation with respect
to parameters. We further derive a closed-form expression for the profit gradient used in the
improved algorithm, regardless of whether a closed-form solution to the CA model exists.
The closed-form gradient significantly improves precision and streamlines computation.

d) We theoretically analyze the regret performance of both algorithms by examining two main
gaps. The first is the CA gap, which occurs when translating a continuous solution into a
discrete location design. The second is the learning gap incurred in the learning process
due to a lack of knowledge of parameters. Coupling these two parts, we characterize the
regret bound as comprising a moderate linear term from the CA gap and a sublinear term
corresponding to the learning process.

III. Numerical performance: We test two algorithms with synthetic data. Both show sublinear regret,
but CA-O Faster Learning is approximately 200 times more computationally efficient. We then
apply the CA-O Faster Learning algorithm to a real-world case study in Toronto, where results
indicate rapid convergence to a near-optimal store location design in just a few rounds. The
CA-O Faster Learning algorithm helps retailers earn higher profits than benchmarks. The value
of mobile retail stems from two aspects: Store mobility boosts net profit by 2.07% by addressing
demand dynamics. Meanwhile, using the learning algorithm to overcome observational demand
noise contributes extra profit. The value of learning increases from 3.29% to 13.03% of the
overall profit in this case study as noise grows.

The remainder of this paper is organized as follows. Section 2 reviews the related literature.
Section 3 presents the online mobile retail store locations problem and discusses three main challenges.
Section 4 proposes the online learning framework and two algorithms. Examples are provided to
illustrate the application scope of different algorithms. Section 5 analyzes the CA gap and characterizes
the regret bound of online learning algorithms. Numerical experiments are presented in Section 6,
followed by the conclusion in Section 7. Detailed proofs are provided in the appendices.
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2 Literature review

Dynamic facility location. Online facility location is increasingly relevant to an urban future with
mobile facilities, but has drawn little attention in the literature. The majority of the dynamic facility
location models are deterministic, assuming fully known information over the planning horizon. This
stream of literature (e.g., Wesolowsky (1973), Canel et al. (2001), see Boloori and Zanjirani Farahani
(2012) for a comprehensive review) typically focuses on customizing solution algorithms that combine
dynamic programming with branch-and-bound or heuristic methods. On the other hand, studies on
the stochastic problem in which customer demands vary as stochastic processes are relatively few.

However, neither deterministic nor stochastic dynamic facility location models are readily applica-
ble to fast-evolving business environments, where the on-hand information is insufficient. Under such
circumstances, the ability of online learning to make decisions while updating demand estimation be-
comes imperative. Despite its significance, the literature on facility location in online learning settings
remains scarce. Bhatti et al. (2015) consider a two-stage location problem for planning alternative fuel
stations with the ability to learn the demand and add more stations in the second stage. Nevertheless,
it remains unknown how to constantly adjust locations in the presence of rich contextual data.

One stream of literature (Meyerson 2001) from the computer science community studies a variant
online facility location problem where demands arrive sequentially. The decision is whether and where
to build the next facility to minimize costs. However, facilities in their framework are irreversible,
and locations do not influence exogenous demand. Subsequent studies (Guo et al. 2020, Kaplan et al.
2023) are confined to clustering and network design. In contrast, we focus on an learning-and-earning
fashion, requiring a more flexible framework for rapidly changing urban business contexts. Moreover,
our framework accounts for the interdependence between facility locations and unknown demands.

Continuous approximation. Our proposed CA-O learning algorithm employs continuous approxima-
tion (CA) to overcome the computational challenge associated with large-scale discrete facility location
problems. The CA approach has been widely applied for various facility location problems. We re-
fer readers to Ansari et al. (2018) for a recent survey. Among the papers that advance the CA
method, Wang et al. (2017) propose a CA model to solve the dynamic facility location problem (yet
with known parameters). Our paper makes methodological contributions to the CA literature by
proposing an algorithmic framework to incorporate CA in an online-learning setup. Meanwhile, we
show that the gap incurred by CA is moderate. Other contexts that employ CA include, e.g., the
designs of supply chains (Lim et al. 2017), delivery system with drones (Carlsson and Song 2018),
and retail store layout (Belavina 2021). Most recently, Blanchard et al. (2024) provide probabilistic
approximations of k-traveling salesman problem and traveling repairman problem.

Combinatorial and continuous-armed bandits. Our paper advances the literature of bandits problems
in both combinatorial and continuous-armed settings. When the candidate set of facility location is
finite, online facility location degenerates into the area of combinatorial bandits. A combinatorial ban-
dit is a linear bandit problem with action set that belongs to a d-dimensional binary hypercube (Cohen
et al. 2017, Modaresi et al. 2020). In the online facility location problem, the total profit has a non-
linear structure, which much complicates the problem. If envisioning each possible combination as
an arm, the problem is related to bandits with correlated rewards but only a few paper addresses
this case (Ryzhov and Powell 2009, Ryzhov et al. 2012). When the possible facility locations lie in
a continuous space, our problem is closely related to bandits with continuous actions. Exploring all
arms is not feasible in bandits with continuous actions (non-combinatorial) (Agrawal 1995, Bubeck
et al. 2011, Krishnamurthy et al. 2020). Mersereau et al. (2009) and Rusmevichientong and Tsitsiklis
(2010) study bandits problem with possibly infinite numbers of arms when expected rewards are linear
functions of a scalar and a vector, respectively. More complicatedly, online facility location problem
can be envisioned as a coupling of bandits with continuous actions and combinatorial bandits. The
decision variable is a binary function on a multi-dimensional space where value 1 indicates the selection
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of the facility location. It is challenging to solve the online problem with both low regret guarantee
and low computational cost.

Decision-making with contextual information. For contextual bandits, upper-confidence bound
(UCB) algorithms are a celebrated class of algorithms that are shown to have nice empirical per-
formance (Bietti et al. 2021). A fair amount of works have been developed for linear bandits (Dani
et al. 2008, Chu et al. 2011, Agrawal and Devanur 2019) and generalized linear models (GLM) (Li et al.
2017, Kveton et al. 2020). More recently, in the optimization community, there is an emerging interest
in developing frameworks that integrate decision optimization and statistical model estimation (Ban
and Rudin 2019, Bertsimas and Kallus 2020, Elmachtoub and Grigas 2022, Ho-Nguyen and Kiling-
Karzan 2022, Han et al. 2023). In our framework, both profit and response functions are parametric
forms of contextual information. However, as the relationship is unknown, exploration is required to
infer the true functions, through which to adaptively optimize decisions.

Urban retail and logistics. More broadly, our paper contributes to the growing literature on innova-
tive urban retail and logistics. Examples of flexible retail stores include pop-up stores (Zhang et al.
2019), buy-online-pick-up-in-store fulfillment (Glaeser et al. 2019), and autonomous mobile vending
stalls (Cao and Qi 2023). In a broader scope of logistics, there have been studies such as agile con-
solidation hubs (Wang et al. 2020), lockers (Lyu and Teo 2022), and urban aerial mobility (Kai et al.
2022). Our work complements these papers by theorizing the online location adjustment of flexible
facilities.

3 The model of mobile retail stores with online location adjustment

This section models the sequential decision making for the mobile store location problem. We first in-
troduce the problem formulation in Section 3.1, and then, analyze three main challenges in Section 3.2.
In Section 3.3, we describe the technique to decide the store locations with known demand, i.e., the
single period offline counterpart. A summary of notation is provided in Appendix A.

3.1 Formulation

Operations of mobile retail stores. Consider a retailer running a fleet of mobile retail stores to serve
customers across an urban area X; onday t = 1,--- ,T. The customers naturally form Voronoi-shaped
service zones centered at mobile retail stores as they go to the nearest store to make purchases. The
retailer adjusts the locations of stores on a daily basis, with the objective of finding the optimal store
location design to maximize profit by selling more products and saving costs.

In the dynamic environment of mobile retail, exact demand locations are numerous and difficult
to identify. Mobile retail stores are small-scale and flexible in location decisions. Given the vast
number of potential store and demand locations, determining the exact locations becomes impractical.
Thus, instead of formulating conventional mixed-integer programs for location problems, we consider
a continuous service area, X;, which is also the set of candidate store locations. The decisions are to
dynamically adjust a set of N; store locations @; = {21, xta, ..., X+, } Over time ¢, such that As(x) =1
for © € x; and A:(x) = 0 otherwise, where A; € A; and A; is the set of all feasible actions on day t.
The choice of store locations automatically partitions space A into a set of non-overlapping influence
areas (i.e., service zones), Xy = { X1, Xyo, ..., Xin, }, such that X, = |J; Xy and Xy N A, = 0 for i # j.
Since the decision A; and (x¢, X';) have one-to-one mapping, we can rewrite A; as Ai(x¢, Xy), ie.,
Ai(x) = Ag(xy, Xy) () for all z € X.

The influence areas represent one core trade-off in the decision-making for A;. On one hand, when
setting larger influence areas, the retailer lowers operating costs by deploying fewer mobile retail stores.
However, the costs of replenishment per unit increase since trucks travel longer distances to restock
each store. Larger influence areas also result in disutility for customers, because customers have to
travel farther to visit these stores, which in turn reduces the retailer’s revenues.
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Demand function. We model the customer demand with contextual information. At the beginning of
day t, the retailer observes a context function Wy(x) : Xy — W;. We assume that demand locations
are distributed according to a continuous spatial density function, denoted by pg« (A, z; Wi(x)) (per
day per kilometer squared) for x € X'. This demand density function is parameterized by 6*, and also
depends on the action A; € A; and local context Wi(x). We specifically assume that a kernel vector
#(Ag, Wi(z)) € R? describes the features at location 2 € X’ such that

po(Ag, z; Wi(x)) = QTH(At,Wt(I)). (1)

The features can be, for example, local population, distance to the store, traffic condition, etc. In
Section 6, we also provide a thorough discussion of the features we used in the case study in Toronto.
Our setting is general to allow the kernel function k to potentially change over time t.

The profit of mobile retail stores depends on customer demand, but the retailer is unaware of the
demand because the parameter 6* is unknown and can only be estimated from historical observations.
However, the exact value of pg~(As, z; Wi(z)) at @ € A, is inaccessible, since demand is realized at
each store at location z;; rather than every point x € &} over the entire area. We assume Y;; is the
demand served by the store at location x;; on day ¢, such that its relationship with the explanatory
variables (A, W) is as follows:

Yij = for (Ap; W, X)) + €4,

where

fe(At;Wthj):/ po(Ag, x; Wi(x))dx.

Xy

Moreover, let
Ht = J(Ala Wla Y17 e 7Wt717 At717 S/%fla At7 Wt)

be the o-algebra summarizing the information available just before observing the response Y; :=
{Yi;;5 =1,...,N}. We assume that the observational noise €;; is H,;-measurable and E[e;;|H,] = 0.

Objectives. The retailer’s objective is to find a sequence of mobile retail store location decisions to
maximize the total expected profit. In other words, the retailer aims to solve a sequential problem:

T
{AteArtI;lta:Xl,..‘,T};m* (Ap; W), (2)
in which rg- (As; Wy) := E[Ry-|As, W;] denotes the conditional expected profit of day ¢, and 6* € R? is
the unknown parameter vector. On each day ¢, the retailer observes the context W;(x), chooses a store
location action A; € A;, observes the response Y;, and receives a profit R;. The fundamental problem
in this paper is to simultaneously explore (to estimate 6*) and exploit (to maximize profit) over time.
Through exploration, the retailer consciously sacrifices immediate profits in exchange for valuable
demand information, which empowers the retailer to make better decisions and consequently secure
higher future profits. However, if the retailer commits exclusively to exploiting current information
for actions, they run the risk of being blind to the demand variations in certain regions of area X; or
certain dimensions of #*. This oversight leads to missed prospects for long-term profit maximization.

Define g« (Ay, z; Wy (1)) as the per-km? expected profit of serving demands around location = via
a store deployed. The profit equals the revenue from selling products, minus the cost of inventory
replenishment, and the operating cost of mobile retail stores, which we also call facility cost in our
notation. More specifically, the functional form can be expressed as follows:
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0o (Ar, ;Wi (2)) = Ppo(Ar, 23 Wi(z)) — ¢ </X

Revenue density

gt

in which we define 7 as the average revenue per customer, d(z;, ) as the distance between a store at
x:; and a customer at x within its influence area. qu po(As, z; Wi(x))dx is the expected daily sales
handled by the store serving X;;. The inventory replenishment cost involves transporting goods from
a warehouse to multiple stores via truck routing. The facility cost includes fixed opening cost, and
goods handling cost (which is proportional to the daily sales). We omit the cost of repositioning stores
across days from A; to A¢y1, as the retailer dispatches mobile stores to their bases at the end of each
day t.

po(As, z; Wi(z))dx, Xij; Wt(x))

J

Inventory replenishment cost density

po(As, x; Wi(z))dx, Xy Wt(@) ,

J

Facility cost density

We include [ Py po(Ag, z; Wi(x))dx as an input in the inventory replenishment and the facility cost
density functions to emphasize that these two cost densities are calculated at the influence-area level
and then evenly allocated to each x € X;. We would also like to emphasize that the profit density
wo(Ag, x; We(x)) at © € X, by construction, depends not only on local action A;(x) and local covariates
Wy (z), but also on A;(a’) for 2’ # x, due to the combinatorial nature of the problem.

Under such a setting, the expected profit at day ¢ is

N

o« (Ay; W) = Z </€X | cpg*(At,x;Wt(m))d:v> ,

Jj=1

and the overall problem (2) can be more explicitly rewritten as the following online facility location
(OFL) problem:

TN
max (Ag(xy, X)), x; Wi(x))de | . OFL
{(m0,X)t=1,..,T} ;; </xextj po- (A(e, Xy) 1(2)) ) (OFL)

3.2 Challenges

Solving the online facility location problem (OFL) is nontrivial. We identify three main challenges:

Complexity of action space: Most papers in the existing bandits literature assume the action set
A to be a space of variables. In contrast, in the online facility location problem, A is instead a
space of functions over a multi-dimensional space. That is, each of its element A(z) is defined
on a continuous domain X. The problem of selecting an optimal function is much more com-
plicated than choosing a variable, especially in an online-learning setting in which exploration
and exploitation need to be balanced. Even if we instead assume X to be discrete and finite so
that the problem falls into the scope of combinatorial bandits, the problem is still much more
challenging than what existing generic algorithms can handle. This is because the total profit
function in location problems may often involve nonlinear structures (e.g., inventory costs and
routing costs) that couple individual costs. Alternatively, if treating each combination as an
independent arm, the regret would increase exponentially with the cardinality of X'. Therefore,
we need to leverage analytical convenience that is inherent in facility location models to design
a learning algorithm over an action space with high complexity (either a functional space or
combinatorial action space).

Computational intractability from optimistic algorithms: Computational tractability is an-
other challenge in designing the learning algorithm. The infinite action space usually incurs
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computational hurdles, even when optimizing over a variable rather than a function. In partic-
ular, the UCB algorithm constructs an uncertainty set for the parameter and solves a max-max
problem over the joint parameter and action set. However, solving the optimistic optimization
(max-max) problem for large or continuous action sets is often intractable due to the potential
nonconvexity of the problem. Even in a simple scenario of linear bandits with infinite actions,
solving the max-max problem entails a bilinear optimization problem. A similar issue also exists
in our (OFL) setup, where the domain X is continuous, and infinitely many choices exist since the
binary function space contains an infinite number of functions. Given the learning complexity
and optimization complexity, it is vital to design a computationally efficient online algorithm
with low-regret guarantees.

Regret analysis: Finally, we need to quantify the performance of the proposed optimal learning
algorithms. Since these new algorithms are customized for tackling the first two challenges,
we cannot directly borrow existing approaches, but have to conduct new analysis of the regret
benchmarked against the offline, full-information baseline.

3.3 Continuous approximation and cost analysis

We address the first challenge by simplifying the action space using a continuous approximation (CA)
approach. Meanwhile, we apply the CA approach to provide an estimation of the costs incurred in the
operations of mobile retail stores.

We start with an offline, single-period, static formulation, in which the retailer only considers a one-
shot optimization problem to maximize the profit function with complete information on the demand
(when the true parameter 6* is known). Even so, the store location model described in Section 3.1
is generally difficult to solve. As discussed in the first challenge in Section 3.2, the action space A is
infinite. Even if the action space is finite, enumerating all possibilities is likely to be computationally
infeasible. In addition, the profit density function ¢(-) involves norms such as ||z¢; — z|| to account
for the distance from a store to a point within its influence area A};. It is inconvenient to directly use
integrals of such norm functions to optimize discrete facility locations and partition the service zone.

To overcome these obstacles, we utilize a CA approach. The main idea of CA is that the size of
influence areas X;; can be approximated by a continuous influence area function z(x) for x € Ay, i.e.,
| Xi;| = 2z(z) where 2, € Z;. The set Z; is a class of non-negative and continuous functions over X;. The
decision of the CA problem is z:(x) instead of the binary action function A;(z). This approximation
has been extensively tested to result in small errors in approximating the optimal objective value if
z¢(x) is slow-varying in = and if the influence areas are near “round” with stores located near their
centers, which are the case in the operations of mobile retail stores and indeed the case in near-optimal
designs under mild parameter conditions (Daganzo 2005). Subsequently, the profit density function
wo(A¢(x, X); Wi(z)) in (OFL) can be approximated by a continuous function g (z:(x); Wi(x)), yielding
the following single-period CA model:

max /xEXt wo(Ag, x; We(x))de = max xEthg(zt(x);Wt(x))dx. (4)

The advantage of CA formulation on the right-hand side of (4) is that it can be decomposed and
then efficiently optimized with respect to each location z by finding the optimal solution z; (z) that
maximizes the integrand g(z:(z); Wi(x)). This is because, whereas pg( Ay, x; Wi(z)) depends on the
function A;(z’) for 2’ € X and 2’ # z, Yg(2:(x); Wi(z)) only depends on value z;(x) locally at z.
Specifically,

zf (z;0) = arg I Yo (2's Wi(x)). (5)
z'e
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The continuous profit density function vy(-) follows the similar structure as in (3) (for brevity, we
suppress the dependence of p and z on other quantities such as 6, W and ¢ wherever appropriate):

Go(2(@); W (@) = o(2) = &' (p(2)2(2), 2(2): W(2)) = & (p(2)2(2), 2(2): W) (6)
FEe’;:e Inventory replenishment cost Facility costs

These three terms are obtained through approximations: the store influence area |X;| is represented by
z(x) and daily sales thj p(x)dz by p(x)z(x). The demand density p(z) is short for pg(z(z), z; W(x)),
which depends on influence area z(z) and feature W () around location . The inventory replenishment
cost and facility cost are given by

@i (p(.’L')Z(CC),Z(:L‘)) _ p(l‘?sz($> . BTS(D;; — BTSP%p(-r) z(:L‘), (7&)
af p(x)z(x) + b/

Here S, ¢, frsp, al, b are cost parameters. We first quantify the daily truck routing costs for inventory
replenishment. Since a truck visits multiple stores per trip, the routing costs also depend on other
nearby store locations. Fortunately, we can approximate the replenishment frequency locally using CA.
For any store at a location z € X}, we determine the average number of daily replenishments so that the
volume of each refill, denoted as S, is a specific portion of the store’s capacity. Recall that the average
daily sales of the store is p(x)z(z). Therefore, we obtain the replenishment frequency as p(z)z(x)/S.
Suppose that the truck incurs a cost of ¢; per kilometer. The routing distance is obtained from the
traveling salesman problem (TSP) under Euclidean metric. The well-known BHH Theorem (Beard-
wood et al. 1959) provides an approximation of the optimal TSP tour as Brsp szXt 1/+/z(x)dx, where
Brsp is a constant; we use the estimation Srsp = 0.7124, as suggested in Applegate et al. (2010).
Thus, the cost density of one trip is Srspce/+/2(x). Multiplying the frequency by one trip routing cost
immediately yields the estimation of replenishment cost density *(-) in (7a). Afterward we estimate
the facility costs by denoting the goods handling costs as af p(x)z(x) and the fixed opening cost of
a store as bf. Since the facility costs are incurred by a store covering area z(z), one can obtain the
facility cost density ¢ () in (7b). We will analyze three cases within this basic setting in Section 4,
including concave, convex functions, and functions lacking a closed-form maximizer.

o (p@)2(@), 2(2)) = (7b)

Once obtaining the optimal solution z*(-; 8) with parameter 6, one can translate the CA recipe into
discrete store location decisions, denoted by A(z*(+;6)), by applying a discretization procedure. Then
the final profit of action A(z*(-;0)) is

ro(A(z"(0)); W) = / eo(A(z"(130)), ;W (z))dz ~ / Yo (2" (2 0); W(z))de.
TeEX TEX
For notation brevity, hereafter we define the approzimate objective function from the CA model (4) as
rg’(z;W) ::/ Xi/}g(z(:v);W(w))dx. ()
xE

We will analyze the error induced by CA in Section 5.

Remark. The functional form (7) is specific to the mobile retail problem. In Appendix E, we analyze
additional settings beyond the scope of mobile retail stores as model extensions to enhance the general
applicability of our model, such as one-to-one inventory replenishment, delivery products to customers,
and last-mile delivery using micro-depots.

4 The CA-O learning algorithm

We now proceed to develop learning algorithms that address the operations of mobile retail stores
over the planning horizon T', with the retailer seeking to maximize overall profits. In Section 4.1 we
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propose an algorithmic framework for solving the sequential decision making problem (OFL). Moving
on to Section 4.2, we tackle the second challenge mentioned in Section 3.2 by designing an alternative
algorithm that is computationally efficient. We will address the third challenge of quantifying regret
in Section 5.

4.1 A learning framework

Having described the CA technique for the single-period problem, we move on to the online and multi-
period setting with parameter learning incorporated. A general principle of such decision making is
optimism in the face of uncertainty. This principle is particularly embodied by the UCB algorithm,
which has been applied to a wide range of optimization problems. The benefit of the UCB algorithm in
mobile retail store operations is its ability to achieve balance between maximizing profits and gathering
information about demand across various service regions and dimensions of 8*, all while optimizing
actions efficiently over the time horizon.

The key step in the UCB algorithm is to construct a confidence set ©; C R? based on H;. Similar
to linear bandits, there are conflicting desirable properties for constructing ©;: ©; should contain the
unknown parameter 8* with high probability and ©; should be as small as possible. When O, contains
the true parameter 6%, maxpco, maxaca, ro(A; Wi) provides an upper bound for the true optimal
objective value. For a given action A € A; and confidence set O, let

CB;(A) = A

UCB,(A) mnax ro(A; Wh)

be an upper-confidence-bound of the expected reward of action A, and the reward in our (OFL) setup
is the overall profit of a mobile retail store location design. Therefore, UCB;(A) is an optimistic
estimator. The UCB algorithm selects action A; at time ¢ such that

A; = argmax UCB(A) = argmaxmax rg(A; Wy). (9)
Ac A AcA; €64

To solve this problem, we propose a Continuous-Approximation Optimistic Learning (CA-O Learn-
ing.) Algorithm. The idea is to combine the CA technique with a new UCB algorithm. Specifically,
having simplified the action space to locationwise-decomposable influence area functions, the first step
is to simply replace problem (9) with the following CA problem

(W, 10

g 78 (W) o

to reduce the complexity of the action space. Since z}(x;6) for any given 6 can be efficiently evaluated
point by point, we can rewrite the optimization problem (10) as follows:

¥ ¥ = 0 FL-CA
max 1y (z; Wi) = maxmax rg (2; W) ¢ Hggg / Vo(z{ (x;0); Wi(x))dx © )

The next step is to construct the uncertainty set ©; in (OFL-CA). Each historical observation
is represented by a triple (Y, Wy, A;) where Y, € R™ is a vector of responses at time ¢t. Given
t — 1 observations, {(Y, Wi, As)}.Z], we suppose that the model parameter §* can be estimated by
minimizing a statistical squared-loss function on ¢} : R — R:

t—1 N,
0, € argmin £} (0) = arg min ZZ i — fo(As; W, X)) + M|0]13,
HcRd LS ——

where A > 0. We use the shorthand f,;(0) := fo(As; Wi, Xs;) to denote the mean demand at the
influence area X;;. Now consider a supervised learning oracle that outputs a root of the following
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equation of the gradient of the loss function:

t—1 N

Vol (0:) = Z Z(fsj(ét) — Yij)gsj + Ay = 0, (Oracle)

s=1j=1

where gs; = Vg fs;(0) = szj k(As, Ws(x))dz. (Oracle) can be viewed as the first-order condition for
minimizing the loss function. For a fixed ), define the design matrix

t—1 Ng

Vi=Y "> 95955 + M. (11)

s=1 j=1

The matrix V; is determined by historical actions and contexts. V; plays an important role in con-
structing the uncertainty set. At time step ¢, we define the uncertainty set as

Or = {0: 10 — bcllv, <},

which is an ellipsoid centred at 0, with principal axes being the eigenvectors of V; and the radius
being ;. The corresponding eigenvalues of V; are increasing with time, so the radius of the ellipse is
decreasing. With a proper choice of 7, the designed algorithm guarantees that the true parameter 6*
is contained in ©; with high probability.

Based on the above two steps, we outline CA-O Learning. Algorithm to solve Problem (OFL). In
line 1-3, we randomly explore actions in the first ¢y time periods. At time ¢t = tq+ 1,--- ,T, we first
compute an estimator 0, by solving (Oracle). Then we construct an elliptical uncertainty set ©, in
line 7. In line 8, we first solve problem (5) for the analytical expression of the size of the continuously
approximated influence area z;(z;0) as a function of 6, and then solve the optimistic optimization
problem (OFL-CA) for the optimistic parameter estimator ; over ©;. Finally, in line 9, we apply a
discretization procedure to functions z;(-;6;) and then implement location decisions A(z; (+;6;)).

Algorithm CA-O Learning.

Input: time horizon length T" and exploration periods %g

1: fort=1,--- ,tg do

2: Choose decision A; € A; according to the sampling rule, and receive response Yy;

3: end for

4: fort=to+1,---,T do

5: Compute ;¢ by solving (Oracle);

6: Update V; according to Equation (11);

7 Update ©¢ = {0 : |10 — O¢|lv, < v¢};

8: Derive the analytical expression z; (+;0) from problem (5), and then solve (OFL-CA) for the optimistic estimator
0t;

9: Implement A; = A¢(2;(-;0¢)) based on continuous solution z; (-; 0¢); Receive response Yi;

10: end for

The following case, a slight variant of the cost formulas specified in (7), illustrates how to apply
CA-O Learning. Algorithm. We consider the case where the objective function of (OFL-CA) is concave
in 0, so that the step (line 8) of solving (OFL-CA) can be efficient.

Case 1 (Concave Objective Function). In the initial stage of mobile retail store deployment, the retailer
has the option to utilize crowdsourcing delivery to restock their stores. Crowdsourcing offers retailers an
asset-light strategy for establishing their logistics. However, the cost of crowdsourcing might increase
with higher demand, as the drivers bid on tasks with fluctuating prices. Based on cost formulas (7),
we further assume the unit travel cost of replenishment increases with demand, i.e., ¢; = épy(x), in
which ¢ is a constant. We also consider the demand kernel function x(A:, Wi(z)) = Wi(z), so that
the demand density only depends on contextual covariates and pg(z) = 0T W;(x). The CA of profit
function is

rg’(zt;Wt) = Yo (ze; We(x))dx = /

_ po(a)a(e) + bf> dz.
TEX, TEX

(T,Oe(x) - 5TSP%P§($) 2(x) z(x)
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Applying the first-order condition to this CA model yields the following optimal solution and
optimal profit density function, respectively:

) 207 S 3
% (@) = (ﬁTspc‘tpﬁ (2) ) ’

2
1 ~, 3
Yo (2 (2;0); Wi(x)) = (7 — a’ ) pg(2) — 3 (bf)§ (ﬁ'r;;@) P§ (z).

Given that pg(-) is a linear function in 0, ¥y (z; (x; 0); Wi (x)) is concave in 6. Tt follows that the objective
of (OFL-CA), rg’ (25(:;0); Wy), is also concave in 0, as 7 (27 (+; 6); W) is an integral of vy (2] (x; 0); Wy ()
over x € X. Additionally, since ©; is a convex set, the maximization problem (OFL-CA) becomes a
tractable convex optimization problem with a differentiable objective function. This problem can be
efficiently solved using convex optimization algorithms. &

As one of the main algorithms proposed in this paper, CA-O Learning. resolves the complexity
of the action space by utilizing the structural convenience of CA, embeds a UCB-type of strategy to
balance the exploration vs. exploitation trade-off, and invokes an influence-area-discretization recipe.
Before jumping into the regret analysis for this algorithm, we need to overcome one more obstacle:
Echoing the second challenge stated in Section 3.2, the optimization problem (OFL-CA) in line 8 may
be computationally difficult. We solve this issue and alternatively propose Algorithm CA-O Faster
Learning in the next subsection.

4.2 Computational challenges and CA-QO faster learning

We first discuss when the optimization problem (OFL-CA) is readily solvable. As demonstrated in
Case 1, when the function T‘;b (z*(-;0); W) is concave in 0, the maximization over a convex set can be
addressed using the first-order condition. Conversely, if rg’(z*(-; 0); W) is convex in 6, optimizing it

may result in reduced computational efficiency, as illustrated in the subsequent case.

Case 2 (Convex Objective Function). We keep the same assumption as in Case 1 that the demand
density function is represented by pg(x) = 6T W;(z). We alternatively consider the basic operational
setting of mobile retail stores, with cost formulas as given by (7). The CA of profit function is expressed
as

Tg(zt; W) = Yo (ze; We(x))de = /

f f
a pg(x)zt(x)—i—b )dm.
TEX, rEX;

ze(2)

(Tpe(fv) ~ Brse L po(a) /(@)

At each z, the optimal solution z; (z;6) and the optimal profit density are given by

2b/ 9 )3
Brspcipo(x) )

STCUR

Vo (27 (x5 0); Wi(x)) = (7 — a ) pg(x) — 3 (bf)% (%pe(z)) ’ ,

which indicates that (2} (z;0); Wi(z)) is convex in 6, and it follows that rj (z;(-;8); W;) is convex
in 6. Thus, if ©; is a convex hull of a finite set, it suffices to enumerate values of # over a finite set
of extreme points, but the number of enumerations can be large. Especially, we construct ©; as an
ellipsoid set in this paper, which means that there are infinite many extreme points. As a result, the
maximization problem (OFL-CA) becomes intractable in this case. &

In general, directly solving problem (OFL-CA) can be computationally cumbersome due to noncon-
vexity. To overcome this difficulty, we propose Algorithm CA-O Faster Learning. The idea is to change
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Algorithm CA-O Faster Learning

Input: time horizon length 7" and exploration periods tg

1: fort=1,--- ,tg do
2: Choose decision A; € A; according to the sampling rule, and receive response Yy¢;
3: end for
4: fort =to+1,---,T do
5: Same as lines 5-7 in CA-O Learning.;
6: Compute 2] (+; ét) according to Equation (5) and compute 6; by solving:

0: = argmax 1% (25 (-;0); We) + Vr? (27 (5 0); W) T (0 — 6y);

oco, Ot O

7: Implement Ay = A¢(z7(+;6¢)) based on the continuous solution z7(+; 64); Receive response Yi;
8: end for

line 8 of CA-O Learning.. Specifically, to optimize over 6, we instead use the first-order approximation
as the objective function

ry (2 (50);Wa) = v (27 (500 We) + Vry (2 (5100 W) (0 — 0y),

where Vrg’t (2£(-;0:); Wy) is the gradient of the composite function 7 (27 (-;6); W;) with respect to 6
at 6;. Under this approximation, we only need to find # € ©; such that

0y = arg max VT;P (27 (:00); W) T (0 — 6). (12)
0€0; ¢

which has a closed-form solution at each day t as the following lemma shows.
VTVrE (27 (500):We)
HVrgbt (ZZ(';ét)§Wt)HV;1 '

Lemma 1. The optimal solution to Equation (12) is 6; = 0, + Vi

This is a one-step computation after obtaining the estimator ét, and thus significantly improves
the computational efficiency. Furthermore, there exists a scenario where CA-O Learning. fails and
only CA-O Faster Learning can be applied - specifically when z; cannot be solved analytically. In
such instances, the optimal objective function ¥y does not even have a closed-form expression, as the
following case illustrates.

Case 3 (No Closed-form Solution). When store influence areas are large, the travel disutility for cus-
tomers cannot be overlooked. Consequently, customer demand decreases as the distance to the stores
increases. Following the customer demand model proposed by Berman et al. (1995), we assume that
demand decays exponentially with distance. Specifically, for customers located at = € X}, suppose
the nearest store is situated at x¢;. i.e., these customers are within the influence area of store j. The
demand density function can be expressed as

po(Ap, 2 Wi(z)) = 0" k(Ay, Wi(z)) = 0T Wy(z) exp {—cod(z4;, )},

where ¢y represents a constant parameter, and d(z;, ) denotes the distance between customers at
location = and the nearest store.

The CA approach yields the average demand density over a store’s influence area z(x), given as
po(zt(z), 2; Wi(z)) = 0T Wi(x) exp {—60#\/@(30)}. In the logistics setting where cost formulas are
defined by (7), the resulting profit density function is as follows:

Yo (ze(x); Wi(z)) = (F —al — ﬁ-rsp%\/zt(x)) 0" W (x)exp {—003\2/7?\/4(33)} i (13)

- z(2)
Although we can numerically evaluate z; (x; 6) by solving aaff (z7; Wi(x)) = 0, a closed-form maximizer
zf (x;0) does not exist. The resulting integral function rj(z;; W) is thus implicit in the expression. &
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In Case 3, (OFL-CA) cannot be reduced to an optimization problem solely with respect to € in a
closed-form expression, rendering CA-O Learning. inapplicable. The next step is to examine whether
we can apply CA-O Faster Learning by computing Vr;f’ (zf; W) in line 6. As aforementioned, we

t

may not be able to obtain a closed-form solution for z;, which Vrgjt(z;k; W) depends on. In such a
scenario, it becomes impossible to obtain a closed-form formula of g (z; (z; 0); Wi(x)) with respect to 6.
The numerical computation of Vrg’(z*; W) = [ .cx Vovo(z*(x;0); W(x))dx is required. However, the
numerical differentiation Vgig(z*(z;6); W (z)) presents two issues. First, finite differences method is
potentially ill-conditioned for the implicit function. Second, as the calculation of Vgt (2* (z;6); W (z))
involves Vyz*(-;8), evaluating z*(-;6 4+ df) numerically introduces additional precision errors. Both
issues worsen the error in our approximation algorithm.

Nevertheless, fortunately and surprisingly, the above potential issues can be avoided by Lemma 2,
which provides an explicit and analytical formula for the gradient Vgug(z*(x;6); W(x)), without the
knowledge of Vgz*(+;0). The value of Lemma 2 lies in its ability to avoid the complex computation of
Vg z* (~; 9) .

Lemma 2. For any § € © and x € X, we can compute the gradient of 1y as follows
At ot

Vobs(s 05w e = |7 == 050) (Gt + sy )| @0 W

In summary, if a closed-form solution z;(+;6) exists and rg’ is concave in a maximization problem,
Algorithm CA-O Learning. operates efficiently. If z/(-;0) is in closed-form with convex r;’/’, one can
opt for CA-O Learning. and enumerate all extreme points of ©; if extreme points are of small size;
otherwise, CA-O Faster Learning is the better option. If there is no closed-form solution z;(-;8),
Algorithm CA-O Faster Learning can be employed to solve the online learning problem efficiently.

Remark. Lemma 2 offers a guideline for analytically obtaining a closed-form gradient Vrg’(z;*; Wh),
even when a closed-form solution for z; is unavailable. Utilizing Lemma 2 in CA-O Faster Learning is
a win-win contribution from computational perspectives since it enhances precision and streamlines
computation of the gradient. Moreover, CA-O Faster Learning accelerates computations, even in special
cases where r;b is concave. While certain cases require maximizing an intricate integral function over an
ellipsoid set ©;, CA-O Faster Learning simplifies the process by only needing one evaluation Vrg’ (255, We),
without relying on the concavity of rg. However, it is worth noting that the efficiency necessitates
additional initial explorations to ensure optimal regret performance, which will be further discussed in
Section 5.2.

5 Regret analysis

We are now ready to establish the regret bound for both CA-O Learning. and CA-O Faster Learning
Algorithms. Define Regret of policy 7 as

T T
Regret, (T) = En | Y Ri(A;; Wy, 07) — Ry(As Wi, 0%) | = > 1o+ (AF; We) — 1o+ (Ags Wh),

t=1 t=1

where A} is the optimal store location action; that is, A} = A;(z](-;0*)), the action discretized from
the optimal CA design based on true parameter 6*. A; is the action implemented at time ¢ according
to policy m. In our proposed algorithms, we take A; = A:(zf(-;60:)). We measure the profit gap
between Aj and A; in regret, given that A} represents the optimal discretized decision attainable by
the retailer. In order to analyze the regret, we must quantify two gaps, as detailed in Lemma 3: The
first, termed the CA gap and denoted by Gapca, is the disparity between the profit provided by the
CA model and that from the discretized action. The second, referred to as the learning gap, is the
difference between the profits implied by the same action under true and optimistic parameters.
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Lemma 3. When 6* is contained in the uncertainty set ©;, the regret contributed at time step ¢ in
our proposed algorithms can be decomposed as follows:

ro- (A2 (507)); W) — ro- (A2 (-1600)); We) < (ro, (A(z; (+360)); We) — 1o+ (A(2] (+560)); We))
learning gap
= (e (27 (50°); W) = 7= (A(=7 (507)); Wa) + (g (=5 (5 60); W) =, (A(= (5 6,)): W)

CA gap CA gap

(14)

In Section 5.1, we first quantify the CA gap, and show that the CA gap is moderate. Al-
though Ouyang and Daganzo (2006) use several numerical examples of offline location problems to
demonstrate that the CA gap is small, there lacks a universally valid theoretical upper bound for the
CA gap. However, such a bound is particularly relevant in an online setting, where the CA gap may
widen over time. We address this void in the literature by deriving an upper bound for the CA gap.
Initially, we examine a single period, thereby omitting the time index t. Subsequently, in Section 5.2,
we focus on the learning gap over the planning horizon, and then analyze the total regret.

5.1 CA Gap Analysis

In this subsection, we provide the intuition and technical assumptions to derive an upper bound of the
CA gap. For brevity, we relegate detailed proof and a discretization procedure in Appendix C.1.

To determine the bounds for the CA gap, we are motivated by a pivotal alternative influence area
function z°(x), constrained as a step function, such that z%(z) = ||, Vo € X;. We refer to this
alternative as the step CA. The definition of step CA allows us to decompose the CA gap for each
influence area j into two parts: 1) the gap from the optimal CA z*(z) to the step CA, denoted by
Gap; y25; 2) the gap from the step CA to the actual design obtained from the discretization procedure,
denoted by Gap; ;54. Thus, the CA gap can be bounded as Gapca = }_; Gap; o2, + Gap; s4-

The approach to quantify Gap; ., is to apply Taylor expansion at z*, where the linear term vanishes
due to the first-order condition. Referring to Cases 1-3, we assume that the profit density function
¥(2) is twice differentiable and quasi-concave in z (which generally holds for mobile store location
problems). Afterward,

Gopanei= [ (0l (@)~ v @))de = = [ D o) - o @)t

J J

¥ (2)
p(x)
per-customer profit density function with a constant upper bound given by % < n¥. Since 2°(z)

where Z(z) is a convex combination of z°(z) and z*(z). In the above integral, is the curvature of

can be regarded as the mean of z*(x) over &;, [ _, (2°(x) — z*(x))?p(x)dx measures the variability
J
of 2*(z) over X;. Combining the two terms together yields the following upper bound for Gap; ,o:

Lemma 4. Define the variance of z*(z) over area X; as Var(z*; X;) := fxexj (z*(x) — E[z*])?p(x)dx.
The profit gap between the optimal CA and the step CA for each influence area j is bounded as follows:

nw
0 < Gapj,o2s < TVGJT(Z*; XJ)

In general, if the underlying customer distribution profile p(-) is a slow-varying function (which is
often the case in practice), so is the influence area function z*(-). Then the variance of z*(:) should be
close to zero. We thus expect that Gap; .o, should be reasonably small.

We next quantify Gap; ;o4 Upon examining Cases 1-3, we summarize key profit function structures
of mobile store location problems in Assumption 1.
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Assumption 1 (Operations of Mobile Retail Stores).

(I) Store locations & = {x1,x2,...,xn} are centroids of the influence areas.
(IT) Both the revenue and the facility cost ¢f are affine functions of the daily sales at the store.

(III) The inventory replenishment cost ¢’ is a concave function of both the truck routing distance
and the daily sales at the store.

We adopt these assumptions given their relevance to the context of the problem, not solely for
the sake of analytical convenience. Notably, Assumption 1(I) reflects real-world practices: stores are
commonly located at influence area centroids because customers tend to prefer the nearest stores.
Assumption 1(II) is widely used in facility location models. Assumption 1(III) is valid for Cases 2
and 3, although it is not entirely realistic for Case 1. In fact, the proof of Lemma 5 will show that
our derived upper bound is always valid without Assumption 1(III) if we do not need to preserve the
direction of the gap.

The magnitude of Gap; 5, depends on the variability in the profit function. Consider X as a
random location in X}, and X’ as a random location in X. Var(d(X’, X); X;) denotes the variance of
the random replenishment trip distance d(X’, X); Var(p(X); X;) denotes the variance of the random
demand density p(X). With the additional value caps imposed in Assumption 2, Lemma 5 provides
quantification of this gap.

Assumption 2 (Functional Boundedness). The second derivative of the inventory replenishment cost ¢°
with respect to inbound truck routing distance exists, and its absolute value is bounded from above
by n°. The second derivative of ' with respect to daily sales exists, and its absolute value is bounded
from above by 7.

Lemma 5. (I) Suppose Assumptions 1 and 2 hold, the profit gap between the step CA and the discrete
design for each influence area j is bounded as follows:

i P
0 < Gap; 1oy < TVar(d(X', X): X;) + T Var(p(X); ;).
(IT) Alternatively, relaxing Assumption 1(III) yields

n' 7’
|Gap; s2q4] < §Var(d(X’7X);Xj)) + ?Var(p(X); ;).

Referring to the results of Lemma 5, one can expect that the gap between the step CA and the
discrete design is likely to be mild, too. If the customer distribution p(-) is a slow-varying function,
Var(p(X); X;) should be close to zero, and the values of n* and 7” will be small. In addition, if the
influence areas are small (i.e., stores are densely deployed), Var(d(X’, X); X;) also tends to diminish.
These conditions are commonly observed in practice.

Combining Lemma 4 and 5 immediately yields the following Theorem 1 of the CA gap. Gapca
is moderate since both Gap; ,5, and Gap; ;o4 should be small. For ease of notation, we define the
universal CA gap as

n” \ "' / "’
Bea = ?il; Z 7‘/@7“(2 ) + 5VGT(d(X X)) + ?VW(P(X);XJ‘) )
J

where {X} is the set of feasible partitions of influence areas divided by stores. [ca represents the
supremum obtained by considering all possible store locations and summing the CA gap for each
influence area.

Theorem 1 (CA Gap). Suppose Assumptions 1 and 2 hold. The CA gap incurred in each period is
bounded as 0 < Gapcp < fBca. Furthermore, if relaxing Assumption 1(III), the CA gap is bounded as
follows: |Gapcal < Bea.
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Theorem 1 provides two bounds for the CA gap. The first bound guarantees that Gapc, is always
non-negative, but holds under more restrictive assumptions. In what follows, we use the second bound
in the regret analysis to account for a more general setting in mobile retail problem.

5.2 Regret analysis of learning algorithms

In this subsection, we prove the regret bounds for Algorithm CA-O Learning. and CA-O Faster Learning.
Recall that the regret is decomposed into the CA gap and the learning gap in Lemma 3 where the
learning gap is defined as rg, (A(z; (-;0:)); We) — ro«(A(z5(-;6:)); We). In this way, the gap between
profits under different actions is transformed into the gap between the profit functions with parameters
0* and 6; under the same action A(z;(+;0;)). Intuitively, when the difference between 6* and 6 is small,
so is the regret incurred at time step ¢t. Therefore, to derive the theoretical regret guarantees, we first
aim to bound the uncertainty radius, which should be in the form of a norm of 6, — 6*. With the
assistance of the following two assumptions that are commonly acknowledged in the bandits literature,
we are able to derive the bound for the radius of the uncertainty set.

Assumption 3 (Conditional Sub-Gaussianity). There exists ¢ > 0 such that for every t = 1,...,T and
for all 0 < j < N; and u € R, it holds that Elexp(ue;) | He] < exp(u?c?/2).

Assumption 4 (Boundedness). The following conditions hold:

—

I) Tmax = SUPac A wew o+ (4; W) < 00 and 7ax > 1.
(I) Ry := supgee wew [IV3ry (2*(-:0); W)z < oo.

(III) The maximal number of stores is Nyax < 00.

(IV) Be = supyee 0|2 < oo

(V) B :=supscx wew,aea max{||s(A z; W(z))[2} < oc.

—

(VI) ! is Lipschitz continuous on store daily sales (pz) with modulus a;.
s
(VII) ay :=sup ‘aa(iz) < 00.

Essentially, the o-subgaussianity in Assumption 3 regulates that the tails of the response noise ¢;
decay at reasonably fast rate. Assumption 4 offers bounding constants that are instrumental in the
derivation of regret guarantees. We now proceed to give a high-level idea of constructing the uncer-
tainty set for parameter 6*. Recall that g,; denotes the gradient V fy(Ag; W, Xs;) and X is used in the

t—1 N,

squared-loss function ¢. Define & =" —; =1 €sj9s5- We obtain the following lemma by reformulat-

ing (Oracle) into [|0; — 0*||v, = ||& — A0*||y—1 and applying Cauchy-Schwarz inequality, with detailed
proof in Appendix C.2.

Lemma 6. It is established that ||6; — 6% ||y, = ||&; — MO [[y-1 < I&elly— + VBe.

In light of Lemma 6, ||€tH\/;1 +vABe provides an upper bound for a proper choice of the radius of

the uncertainty set, i.e., ||f; — 6*||y,. This inequality motivates us to provide a high-probability upper
bound for the stochastic term ||§t||‘2/,,1 using the definition of o-subgaussian noise in Assumption 3, as

demonstrated in the following lemma. The high-level idea is to construct a non-negative supermartin-
2

gale M (x) = exp((z,&) — % ||z[3,_,;) and then apply method of mixtures, the proof of which is in

Appendix C.2.

Lemma 7. For any d € (0, 1], we have

1 det(V;)
P (Elt >1, |\£t||%/;1 > o? (210g <5> + log ( X >)> <.

Lemma 7 shows that ||§t||%/,1 is in order O(log(t)) with probability at least 1 — §. Combining
t

Lemma 6 and 7 provides an upper bound for Hét — 0*|]v,. Further, by establishing an upper bound
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for det(V;)/\? with Assumption 4(V), we immediately obtain the following result on the radius of the
parameter uncertainty set:

Lemma 8 (Radius of uncertainty set). Assuming that Assumptions 3 and 4 are in force, it holds with
probability at least 1 — § that, for all ¢ € [T7,

16 — 0" [lv; < e,

where v, = VA\Bo + U\/210g (1) + dlog (1 + %)

Lemma 8 shows that the radius of the uncertainty set ||6; — 0*||3, is in order O(log(t)). At each
time step ¢, Algorithm CA-O Learning. and CA-O Faster Learning solve the optimization problem over
the confidence set ||6; — ||y, < ;. According to Lemma 8, 6* falls into this confidence set with high
probability, which also implies that the algorithm finds an optimistic solution.

According to the CA gap result in Theorem 1, for all 1 <t < T, we obtain
[ro- (A(2 (07)); Wi) = (25 (50°); W)l < Bea, |, (A(=7 (500)); Wa) = v (27 (+560); W) | < Bea.

Define event & = {||6; — 0*||y, < ~:}. When & holds, based on the regret decomposition (14), the
regret accumulated at time step ¢ can be bounded as follows:

(1= (A(2{ (5:07)); Wi) — rox (A2 (+50)); Wi))1(Er)
<(ro, (A(z{ (04)); Wi) — o« (A2 (1 0¢)); Wi))1(Et) + 2Bca.

It remains to bound the learning gap, represented by the first term on the right-hand side of the
inequality. While our observation is on the demand, the learning gap is measured in terms of profit.
To address this discrepancy, the following lemma shows that a profit gap can be bounded by a demand
gap.

Lemma 9. Suppose Assumption 4 holds. There exist constants L, > 0 such that for every 6 € ©, and
for every subzone X; C X, Ac A, W eW,and 1 <t <T,

o (A; W, X)) — ro (AW, X)) < L[ fo(A; W, &) — for (A; W, &),
where L, = 7 + |X|a; + | X]ay.

Lemma 9 implies that the learning gap is bounded by L, ZJN:H |(6; — 0%) T g¢;]. Combining Lem-
mas 6-9, the following theorem establishes the regret bound for Algorithm CA-O Learning.. In the
regret analysis, we first show that the algorithm finds an optimistic solution at each step, and then
quantify the profit gap incurred by both the learning gap and the CA gap. The detailed proof is
provided in Appendix C.2.

Theorem 2 (Regret of Algorithm CA-O Learning.). Assume Assumptions 1-4 are in force. Let 6 € (0, 1).
With probability at least 1 — §, we can bound Regret, (T') as follows:

X\ + T| X232

Regret, (T) < rmaxto + 2rmaxLryT \/QNmaxdT log ( N

) +2BcaT.

Next we characterize the regret bound for Algorithm CA-O Faster Learning. To expedite the learning
process, we utilize the first-order approximation, which incurs additional error of O(]|0* — 64]|2 + ||0; —
6:]/3). This approximation performs better when the estimated parameter gets closer to the true
parameter. Thus, we first explore ¢ time periods to guarantee that the estimated parameter is close
to the true parameter, then we simultaneously explore and exploit using the faster learning algorithm.
We impose the following assumption on the context divergence, which makes it possible to gather
information from the exploration periods.
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Assumption 5 (Context Diversity). During the exploration periods, the retailer adopts a randomized
policy 7 to generate the number of stores N(A) and location decisions A from uniform distributions.
There exists a constant 0 < A < oo such that the eigenvalues can be bounded by

N(A)

MM Eanra),w Z/ (A ;W (x ))dx/ k(A z;W(z))Tde| | > A

X

The two algorithms require different numbers of exploration periods. Algorithm CA-O Learning.
needs only O(1) initial explorations, while Algorithm CA-O Faster Learning requires more to ensure

a good approximation. We define tf' = max{(lfg X (Egi(g):;ﬁfég%)llﬁjﬁ\i } Under Assumption 5,

Lemma 12 in Appendix C.2 demonstrates that, after tJ" exploration periods, the distance between 0
and 6* is at most O(—=) with high probability. With this order of approximation, we quantify the
regret of Algorithm C[O Faster Learning in Theorem 3.

Theorem 3 (Regret of Algorithm CA-O Faster Learning). Assume Assumptions 1-5 are in force. Let
0 € (0,1). With probability at least 1 — 2§, we can bound Regret_(7T') as follows:

dX + T|X|232

X ) + th’}/%\/f + 2BcaT.

Regret, (T') < rmaxtg + 27 max Lr YT \/2NmaxdT log (

Theorems 2 and 3 suggest that the regret decomposes primarily into O(dv/T) and O(ScaT). The
former arises from inherent parameter uncertainty in the learning algorithm, while the latter results
from using the CA approach to address computational and analytical challenges. However, our numer-
ical experiments reveal that the regret remains sublinear. Furthermore, when our estimator is close to
the true parameters, the two CA gaps in (14) largely cancel each other out, making the impact of the
CA gap minimal.

We conclude this section on regret analysis by highlighting the contributions of our proposed algo-
rithms. First, our algorithms resolve the complexity raised by the task of demand learning in location
models. We adopt the CA approach to convert combinatorial action and objective functions into con-
tinuous models and thus simplify the action space. Second, we address the computational challenges
in optimistic algorithms due to the potential nonconvexity. The continuous functions provided by
CA enable the application of first-order approximation, which, coupled with the closed-form gradient
expression, jointly enhances the efficiency of Algorithm CA-O Faster Learning, even if the optimization
is non-convex or lacks a closed-form expression of z*(-). Meanwhile, this algorithm maintains the same
order of regret with respect to T', indicating minimal precision loss. Moreover, beyond the realm of
mobile retail store locations, the efficiency of CA-O Faster Learning holds potential for other bandits
problems with intricate structures, such as online vehicle routing.

6 Computational studies and managerial insights

To evaluate the empirical efficacy of the algorithms proposed in this paper, we conduct two main
numerical experiments. Section 6.1 presents a comparison using synthetic data in a mobile store
location problem to highlight the benefits of approximation. In Section 6.2, we conduct a case study
based on real-world data from Toronto. Section 6.3 then builds on these findings, contrasting our
algorithms’ performance against established benchmarks to underscore the value of mobility and online
learning in urban retail contexts.

6.1 Efficacy of the Faster Learning algorithm

As discussed in Case 1, both CA-O Learning. and CA-O Faster Learning can be applied to a mobile
store location problem when a closed-form solution exists. In this subsection, we specifically compare
these two algorithms from two aspects - the regret performance and the computational time.
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We set up numerical experiments as follows. We set 7 = 6, af = 2, b/ = 100, ¢ = 0.03, S = 50.
The contextual covariates W (z) € R are generated by Gaussian kernel functions. Customer demands
are distributed in a square region X} := [0,1] x [0, 1]. The observational noise is drawn from a Normal
distribution with mean zero and standard deviation being 50% of the actual demand of each influence
area. Both algorithms run for 4000 times using an AMD EPYC 7532 processor at 2.4GHz.

1 CA-O Learning [ CA-O Faster Learning

1.647s
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Figure 3: The comparison of CA-O Learning. and CA-O Faster Learning: (a) optimality gap; (b) regret; (c) run time per
round. (a) and (b) are evaluated at three different rounds. (c) is evaluated by the average value of the planning horizon T'.

We compare the two algorithms using three metrics as the bar-charts in Figure 3 illustrate. Specif-
ically, the first metric is the optimality gap, defined as

ro- (A2 (50)); W) — ro- (A2 (5 61)); W)

100%.
ro-(A(z; (67)); W) it

optimality gap :=

In other words, the optimality gap is the relative gap between the optimal reward obtained when know-
ing the true parameter 6* and the reward obtained based on the optimistic estimator 6;. Figure 3(a)
shows that both algorithms learn very fast: The optimality gaps are under 5% after 10 rounds and
under 1% after 100 rounds. Furthermore, Figures 3(b) and (c) show that CA-O Faster Learning is able
to achieve similar regrets as CA-O Learning. at a 95% confidence level, but boasts about 200 times
higher computational efficiency.

6.2 Algorithmic advantages in real-world applications

To illustrate how Algorithm CA-O Faster Learning can be applied to solve a real-world problem without
a closed-form g (z; (x;0); Wi(x)), we examine the mobile retail problem specified in Case 3. Following
the CA model in (13), note that we are not able to obtain a closed-form maximizer. The optimization
involved in CA-O Learning. would be intractable. However, Algorithm CA-O Faster Learning can be
used to overcome this computational hurdle.

The experiment setting is as follows:. We set ¥ = 6, af = 2, b/ = 400, ¢! = 3, S = 50, ¢ = 0.5.
The context information of 23-dimensional data is obtained from real-world data in an urban area of
Toronto, Canada. In this context, 10 spatial attributes are selected from 2021 Census of Population (st
atcan.gc.ca). The other 13 attributes are time series data for the year 2022, including temperature,
precipitation, speed of gust, Fisher commodity price index for grocery and energy, historical retail trade
sales, and 7 indicators for weekdays. Figure 4(a) visualizes the demand density. The observational
noise is drawn from a normal distribution with a mean of zero and a standard deviation of 50% of the
actual demand in each influence area.

The decision-maker improves the store layout in the process of online learning. The update fre-
quency of store locations is set daily. We set tJ" = 1 for an initial exploration. After day t = 2, when
the online learning algorithm just starts, the store layout provided by our algorithm in Figure 4(c)


statcan.gc.ca
statcan.gc.ca
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(b) Optimal Store Density
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(c) Store Locations on Day t = 2 (d) Store Locations on Day t = 30

Figure 4: Spatial visualization of ground truth information and stores locations in Toronto case study. The deeper green
color in (a) indicates higher demand density. The deeper blue color in (b)(c)(d) indicates smaller store influence area (i.e.,
higher stores density). The length of the vertical orange bar next to mobile store indicates the daily sales of the store.

deviates significantly from the ground truth optimal store density shown in Figure 4(b). Nevertheless,
by day t = 30 when we have a better estimation of the demand, the store layout decided by our
algorithm is already near-optimal, as shown in Figure 4(d). At this point, the profit is quite close to
the maximal profit. The figures show that a significant profit increment is achieved within only a few
rounds. This result demonstrates that CA-O Faster Learning quickly learns and converges.

To show the regret performance, we run Algorithm CA-O Faster Learning 200 times. Figure 5(a)
shows a clear sublinear trend of the regret. This numerical performance is better than our expectation
from Theorem 3, in which a linear term 25caT shows up to bound the CA gap. This favorable
numerical result is consistent with our preceding reasoning in Section 5.2 that the actual effect of
CA gaps is minimal. Indeed, Figure 5(b) provides visualization of how the value of the two CA gaps
incurred by the optimistic solution and by the optimal solution are of similar magnitude, and of how
these two gaps largely offset each other because they arise in the opposite direction on the basis of (14).
Such offset is why the linear term in the theoretical analysis vanishes in our experiment, and the error
resulting from the CA gap is much smaller than the conservative bound given in Theorem 3.

We also are interested in the performance comparison between CA-O Faster Learning and the baseline
algorithms. In particular, we use as baselines a class of online learning algorithm named explore-
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Figure 5: Regret performance of Algorithm CA-O Faster Learning. (a) Mean value and 95% confidence interval of regret;
(b) Two CA gaps: during online learning and under the ground truth; (c) Regret of algorithms at day ¢ = 90; (d) Regret
of algorithms at day t = 365. “Faster”: CA-O Faster Learning; “ETC(t()": Explore-then-commit algorithm, with different
exploration periods t{,.

then-commit (ETC) (Lattimore and Szepesvari 2020, Chapter 6). An ETC algorithm first explores
by randomly designing a facility layout within a fixed number of rounds ¢ty and then exploits by
committing to the § estimated during exploration. We test the ETC algorithms with various ¢y values
(to = 1,2,4,6,8) and compare the regrets of the ETC algorithms with the regret of the CA-O Faster
Learning Algorithm. The superiority of CA-O Faster Learning is clearly shown in Figure 5(c)(d), where
the regrets are accumulated both over the first quarter (including the first ¢y time periods) and over
the whole year. In the latter case, the optimal exploration period for ETC is tg = 20 with a regret of
1.726 x 10°. In contrast, CA-O Faster Learning results in a regret that is smaller than the regret from
the best ETC algorithm by 67.5% on the day ¢ = 365.

6.3 The value of learning & mobility

The mobile retail store business model offers advantages in two main aspects: demand learning and
store mobility. To quantify these benefits, we extend experiments in Section 6.2. Additionally, we
assess the impact of varying observation noise.

Value of Learning. The value of learning arises from resolving demand uncertainty. To distinguish this
from the benefits of store mobility, we maintain fixed locations when assessing the value of learning.
We consider two benchmark retail models:

i. “Stationary Retail”, where store locations, determined at the beginning of the planning period
based on the yearly average of ground truth demand density data, remain unchanged.
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ii. “Learn and Fix”, which involves a one-day demand exploration followed by fixed store location
decisions for the remainder. Given only one exploration step, the estimation is inevitably impre-
cise.

We employ the average daily profit from the start to day ¢ as our evaluation metric for retail
models. With minimal demand uncertainty, Figure 6(a) reveals a profit gap between the “Stationary
Retail” and “Learn and Fix” of 3.29% by the end of the year, highlighting the benefits of demand
learning. Conversely, under high demand uncertainty as in Figure 6(b), the gap expands to 13.03%.
This gap expansion is expected, because resolving larger uncertainties yields greater profit. Although
our learning algorithms are not directly applied here, these gaps illustrates the importance of demand
learning in the mobile store location problem. Notably, mobile retail stores offer superior demand
learning capabilities compared to traditional ones where assuming ground truth information may be
unrealistic.

18000 - Additional value of Mobility: 2.07% 18000 1 Additional value of Mobility: 1.96%
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Figure 6: The value of demand learning and store mobility. “Smaller” and “larger” noise indicate the noise with a standard
deviation of 20% and 80% of the actual demand, respectively.

Additional Value of Mobility. While “Stationary Retail” provides optimal parameter estimation, it
lacks adaptability to changing contexts. In contrast, the Algorithm CA-O Faster Learning leverages
mobility to adapt to dynamic contexts and successively refines parameter estimation. As shown in
Figure 6(a), the additional profit generated by Algorithm CA-O Faster Learning compared to “Sta-
tionary Retail” converges to 2.07%, representing the added value of mobility. This surplus is almost
consistent at 1.96% in Figure 6(b). It’s important to note that in real-world scenarios, this value
could be much greater. The “Stationary retail” model, which assumes perfect demand knowledge, is
idealistic, while Algorithm CA-O Faster Learning offers a practical approach.

Impact of Noise in Observation. Each of the three business models is tested under observational
noise affecting demand, with a standard deviation of 20% of the actual demand in Figure 6(a) and
80% in Figure 6(b). In the scenario with the higher noise level, which is typical in practice, there is
a significant rise in the value of learning. In Figure 6(a), the curves of mobile stores and “Stationary
Retail” intersect by day 84. Conversely, Figure 6(b) shows an intersection by day 95. Although it takes
more days for Algorithm CA-O Faster Learning to surpass “Stationary Retail” in cumulative profits
compared to the scenario with the smaller noise level (Figure 6(a)), the overall profits decrease by a
mere 0.11%. These results highlight the advantages of mobile retail stores and the robustness of our
algorithms against noise.
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7 Conclusion

This paper is motivated by the growing trend of mobility in urban retail. The emergence of mobile
retail stores suggests that the store location design can be made at the operational level with short-
time adjustments, inspiring us to expand the scope of facility location problems into an online setting.
We develop an online learning framework for OFL problems with contextual information. The retailer
designs mobile store locations while learning from past observations. To overcome the challenge stem-
ming from the infinite-dimensional action space and the dependence between actions and observations,
we propose CA-O Learning. Algorithm by combining the CA technique with an optimistic optimization
problem. Moreover, we propose CA-O Faster Learning to handle a more general class of model structures
and significantly improve the computational efficiency. The theoretical regret characterization reveals
that both algorithms guarantee low regret. Through our experiments, we verify this low regret for both
algorithms and also highlight the high computational efficiency of CA-O Faster Learning. Moreover,
our case study underscores the significant benefits of demand learning and the inherent mobility of
mobile retail stores when using CA-O Faster Learning.

While our research centers on mobile retail store locations, the algorithms developed have applica-
bility extending beyond this. The transition from stationary locations to enhanced mobility in urban
dynamics, as evidenced by the examples below, further motivates and justifies this paper:

e Mobile chargers. The electric vehicle (EV) industry faces challenges meeting the increasing charg-
ing demand. Traditional stationary infrastructure, burdened by long construction times and high
capital investment, struggles to adapt to the evolving landscape of EV technologies and spatial dis-
tribution of new EV owners. These concerns have motivated the adoption of mobile charging in the
form of battery-equipped robots or vans. Such innovations, advocated by industry leaders such as
Volkswagen (IDTechEx 2020), offer rapid deployment and adaptability at reduced costs.

e Micro-depots. DPD Germany launched a new form of city logistics in Dresden by placing containers
in parking areas as local micro-depots (DPD 2023). These micro-depots serve as a storage and
transshipment point, facilitating the outbound last-mile deliveries by cargo bikes or crowdsourced
mobility. Their ease of deployment, combined with lower emissions and better access to narrow city
streets compared to conventional vans, highlights the potential of micro-depots.

Our work represents an early attempt to deploy mobile stores in an online fashion and we consider
this paper a prompt for an open thread. Several potential extensions to our work are worth inves-
tigating. First, due to the limited capacity of mobile stores, it becomes important to decide what
products to display and how many to stock based on consumer behavior. As consumers may become
loyal to these stores over time, understanding and incorporating their preferences in location design
becomes increasingly important. Integrating consumer choice behavior into the location design prob-
lem, especially when considering the long-term effects of store deployment, is a substantial challenge.
Furthermore, when consumer preferences towards different products are unknown, how to dynamically
adjust the assortment while simultaneously learning about these preferences is an intriguing area for
exploration. Second, many other important and practical business constraints also need to be consid-
ered. For example, moving the location of mobile facilities may incur a moving or routing cost, which is
not considered in our mobile store location problem. Future work on these extensions will broaden and
deepen our understanding about mobile facility deployment toward a vibrant urban future energized
by data-driven and agile services.
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A Notation

Table 1: Notation.

Symbol Description
round (or time) in the online learning process

T number of rounds in total

X, X entire region at time ¢

Xij influence area of store j at time ¢

T a location in the region

Tt a set of store locations at time ¢

Tij store location of influence area j at time ¢t

N number of stores for time ¢

Wy contextual information set for time ¢

Wi () local contextual covariates at location x at time ¢

Ay action set for time t

A, Ag(e, Xt) discrete store location decisions at time ¢

Y: observed demand served by the store at location x¢; at time ¢, i.e., response vector

R profit received at time t

0+ estimation of parameter vector at time t

0* ground truth parameter vector

[SH uncertainty set for parameter 6 at time ¢

ro(Ag; Wi) expected profit at round ¢ given action At

rox (Ag; W) expected true profit at round ¢ given action A

p(x), po(At, z; Wi(x)) demand density for z given action A¢

K(Ag, Wi(x)) kernel vector of the features at location = given action A¢ and context Wi (zx)

po(As, z; W) expected profit density around location x given action At at time ¢

T average revenue per customer

ot of inventory replenishment cost and facility cost density function, respectively

d(-,-) distance function

Sfo(Ag; Wi, Xij), fs5(0) fitted demand given parameter 6 and action A; at time ¢

€t observational noise of demand served by the store located at z;; at time ¢

Z a set of non-negative and continuous functions for influence area function

zt(x), z¢(x; 0) influence area function for location x at time ¢, the decision of CA model

z*,2f(+0) CA recipe, the optimal solution of CA under parameter 0

Yo (z¢(2); Wi(z)) continuous profit density provided by CA approach at location x at time ¢ given
action z;

S the volume of each refill for inventory replenishment

ct the routing cost of trucks in inventory replenishment per kilometer of travel

Btsp traveling salesman problem (TSP) constant

al goods-handling cost per item of mobile retail stores

bf fixed opening cost per store

A(z*(+;0)) discrete store location decisions tranlated from CA recipe z*(-,0)

Af, A (2f(560%)) discrete store location decisions from CA recipe based on true parameter 6*

r}f (z, W) approximate profit function from the CA model given action z
squared-loss function

A lo-norm regularization parameter for the loss function

Jsj gradient of fitted demand f,;(6) with respect to 6

Vi the design matrix at time ¢ to construct ellipsoid uncertainty set

Yt radius of ellipsoid uncertainty set

to, tg number of rounds to randomly explore actions in Algorithm CA-O Learning. and CA-
O Faster Learning, respectively

Beca a universal upper bound for CA gap

Et the event that 6* is contained in the uncertainty set ©;

Ly a Lipschitz constant for profit function ry with respect to demand

B Proofs in Section 4
Proof of Lemma 1. Let v = Vrg’t (27 (-;0,); W,) and u = 6 — 6, the optimization problem is

max v u.
w||ully, <78
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The Lagrangian function is £(u,n) = vTu — n(||ull}, —~7) where > 0. Then the gradient of £(u,n)

equals
V‘C(u7 77) =V- 277%“ =0,

w1y, -1
which gives u = ﬁV[lu. Complementary slackness gives Hu||%,t = ~2, which implies that n = 2::2
-1
Therefore, we have u = %Vflv = W;‘I\/t ': The optimal 6; has a closed-form solution that
Vt7
A VoVt (27 (00 W)
015 = 925 + ")/t t D

IVry (25 (00); Wa)lly, -+

Proof of Lemma 2. Consider the general expression of the continuous profit density function (6):

Yo((2): W (2)) =7p(a) — &' (pl@)2 (), 2(2); W (x)) = & (ple)2(x). 2(2); W(2)),

where p(z) is an abbreviation of pg(z(x),z; W (x)), depending on z(x), W(z) and 6. Note that
Yo(z(x); W(x)) is a function of p(x), z(x), W(x) and 6. Since ¥g(z(z); W(x)) is differentiable on
z(x), one can easily obtain optimal solution z*(z;6) by solving the first order condition

Do _ b Opla) | ow
0=~ 0(p(x) 0= (2:0) (=" (%;0)

=0, (15)

where % means the partial derivative of 1g(z(x); W (x)) with respect to the argument p(x), and

the solution z*(x;0) is a function of 8 at each point z. So far the maximal profit ¢} is obtained by
vy = (2" (2;0); W (x)).

By the chain rule, the gradient of 15 with respect to ¢ is represented as

) Ip(x) o AL * (e
Vot = Gty (70 ety 50) + gy Ve
Mg ( Iy Ip(x) Iy ) .
3o " 86 9w ) T oGy ) VT 19)
At the right-hand side of (16), the second term vanishes because z*(z; ) satisfies (15). Thus, we have
« Ot
YO Bpta

Note that pg(2*(z;0), ;W (x)) = 0T k(z*(x;0), W(x)) implies Vgp(z) = x(z*(x;0), W(x)), and the
partial derivative of the profit density function ¢y (z(x); W (z)) with respect to p(x) is as follows:
% i Z(.’L‘) ( 8@1‘ N 8@f )
A(p(x)) Ap(x)z(x)) ~ O(p(x)z(x))

Therefore, the gradient of the maximal profit i is provided by

5= |T— 2" (w; Ot O k(2" (x; x
Vot = |7 200 (g * AT | W)

It concludes that one only needs the value of z*(x; ) rather than any derivative of z*(x;6). Recall
that z*(x; #) can be evaluated pointwise through the first-order condition, facilitated by the convenience
of CA. Therefore, the gradient is easy to compute even in the absence of a closed-form solution z*(x;8),
meaning that z*(z;0) is an implicit function but always numerically computable. O
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C Proofs in Section 5

Proof of Lemma 3. When 6* is contained in the uncertainty set ©;, we have

learning gap
= (rg (2 (507 W) = 1= (A(Z7 (07)); Wa)) + (rg (2 (000 We) = 7, (A(= (+0,)); Wi) ),

CA gap CA gap

where the inequality holds due to 6; being an optimistic CA solution, ensuring that rg’* (z5(0%); W) <
Tgt(zz‘(-;Ht);Wt) when 6* € ©;. O

C.1 Proofs in Section 5.1

To prove Theorem 1, we first introduce the necessary preliminaries to analyze the gap. Next, we
analyze the gap between the optimal CA and the step CA, the gap between the step CA and the
discrete design. Finally, we conclude by the proof of Theorem 1.

Preliminaries of the CA Gap.

The continuous influence area design z; () can be discretized for implementation of single-period
store locations (See Ouyang and Daganzo (2006) for a discretization procedure, which is beyond
the scope of our paper). We also summarize the procedure in the following paragraph for readers’
convenience.

The objective of discretization is to determine discrete store locations such that the influence areas
of stores closely align with the values provided by the continuous function z(z) across the entire space
X. The discretization procedure, as outlined in the referenced paper, can be summarized as three
key steps: To translate a CA recipe z(x) into N discrete influence areas, where N =~ [ [z(z)]~'d,
we represent these influence areas as circular disks centered at N arbitrary locations in the initial
step. The size of each disk is determined by the value of z(z) at its center. The second step is to
iteratively slide and shrink the N disks to eliminate overlap. In each iteration, disks are slid due to
repulsive forces from other overlapping disks to prevent overlap, and from boundary forces if a disk
is outside of the region X. At the same time, disk sizes are adjusted according to the value of z(z)
at each disk’s center. The shrinking is done by simultaneously shortening the radii for disks each
centering at a location x. Iterations end once the non-overlapping disks collectively cover most of X
without extending beyond it, with each disk k£ centered at location xj. In the third step, we partition
X into N influence areas using a weighted-Voronoi tessellation. Specifically, each small patch of space
is allocated to an influence area X; with the rule j = argmin,{|lz — zx||/\/2(xx)}, where x is the
center of the patch. Consequently, we achieve a discrete design where the influence areas fully span
the service space X', with each area containing one disk and a store located at its center. This design is
notably near-optimal, as discovering the globally optimal design of locations in the continuous domain
is generally infeasible.

Our examination of the bounds for the CA gap draws inspiration from the proof of the CA gap
direction provided by Ouyang and Daganzo (2006). In particular, a pivotal concept in their proof
involves introducing the alternative influence area function z°(z), which we refer to as the step CA. As
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aforementioned, the CA gap can be decomposed as Gapcp = Zj Gap; 25 + Gap, s04- The subsequent
two parts present bounds for these two gaps, respectively.

From the Optimal CA to the Step CA.

We first quantify the gap between the two profits implied by the optimal CA (z*) and the step CA
(2°) for each influence area j, defined as follows:

Gap, e = /Mjw( ))dz — / RCOIEE /M (62" (@) — ¥(=*(2))) da-

J

Here we omit W () and 0 in function (-) for brevity since the result holds for any W (x) and 6.

Proof. Proof of Lemma 4. Recall we assume that 1 (z) is twice differentiable and quasi-concave in z.
Then, applying the Taylor expansion with the mean-value form of the remainder, there exists a Z as a
convex combination of z® and z* such that

P = 9 ) o)+ D ey,

in which ¢’(2*) = 0 due to the optimality of z*. Subsequently,

Gopon == [ TG ) - @pde = [ ED ) s @)p@an )

TEX; )

In the above integral, recall that p(x) is the function of the spatial density distribution of customer
demands, and that z°(x) is defined as a constant number for x € X; such that z°(z) = |X;|. Therefore,
z°(x) can be regarded as the mean of z*(x) over Xj, ie., 2°(z) = E[z*(X;)] = fa:’er 2*(z")p(2")dx’
for all z € X;. We introduce the notation of variance of z*(x) over area X; as Var(z*;X;) =
fzexj (z*(z) — E[2*(X))])?*p(z)dz. It follows that

J

Var(z*; ;) = / @) = @) (18)

J

represents the curvature (with respect to Z(x)) of the per-customer profit density

Moreover, 7¢/,(Eg )

function. In (19), we extend this point-wise curvature definition to be influence area-wise and assume
that an upper bound of such a curvature exists as follows:

(=
|1/)((z(,;1)c))| <n¥, V2 e Xj, Z(xz) € Conv ({z°(x), 2" (x)}) (19)

oz
where n¥ > 0 is a constant value, and Conv(-) is a convex hull. Then substituting (18) and (19)
into (17) completes the proof. O

From the Step CA to the Discrete Design.

We next quantify the gap between the two profits implied by the step CA and the discrete design
for each influence area j, i.e.,

Gap, o0 = / RECICS /GXj‘P(A(Z*))d“’_ /M (6(=*(2)) — (A(z"))) da.

J

In the operations of mobile retail stores, this gap stems from the disparities between continuous
profit and discrete design profit. The CA recipe z°(x) = |Xj| is derived from discretized decisions
about store locations, compelling a detailed examination of both the discretization procedure and the
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profit function. Assumption 1 offers analytical convenience that captures the essence implied by the
gap between the step CA and the discrete design. Ouyang and Daganzo (2006) use Assumptions 1(I)—
(III) and another strict assumption that p(x) is a constant within X; to prove that the cost implied by
the CA recipe is a lower bound for that of the discrete implementation for problems without facility
costs. In our analysis of the CA gap, our objective is to determine both its direction and magnitude,
building upon the findings from Ouyang and Daganzo (2006). To achieve, we further impose the value
caps in Assumption 2. Our quantification of this gap can be considered as a sharpening and extension
of the result in Ouyang and Daganzo (2006), as stated in Lemma 5.

Proof of Lemma 5. The proof is based on the proof of the theorem in Ouyang and Daganzo (2006),
with additional sharpening results. Before presenting the proof, we provide the following sharpened
Jensen’s inequality due to Liao and Berg (2019):

Lemma 10. Suppose that o(d) is a twice differentiable function of d € D and that D is a one-
dimensional random variable with variance Var(D). Then

Var(D) jof ©12 < Blp(D)) - o(EID)) < Var(D)sup £ (.

Back to Lemma 5, recall that the profit density function ¢ consists of the revenue term, the
inventory replenishment cost, and the facility cost, as expressed in (3) and (6) for the discrete and the
CA models, respectively. We compare these two models component by component.

First notice that the total facility cost over the entire influence area X;, [, ¢ x; x)dzx, depends
only on the total daily sales in that area. The mean of daily sales in the step CA model is
fX x)dz/|X;| = fx x)dz (since z°(x) = |X}|), which is equal to the daily sales in the discrete

model. Therefore by Assumption 1(II) that ¢/ is an affine function, there is no gap in the facility
cost between the step CA model and the discrete design. In other words,

o

j
Following the same argument, the gap due to the revenue term is zero, too.

p(x)d:z:) dx — /X o (p(x)2*(z)) dz = 0. (20)

J

We next examine the inventory replenishment cost, which depends on both truck routing distance
and the total daily sales. The gap in the inventory replenishment cost between these two models is

deCOIIlpObe(l nto
Xj X

.p(m)dx,Xj> dx — /X o' (p(x)2° (), 2° (z))dx
X;

/x,. /Xj P(ﬁﬂ)dﬂc,zs(x)) dm]

p(z)dx, X; | dz —/ o
J Xj
/ p(x)dx,f(z)) o~ | sa%p(x)z%x),z%z))dx] , (21)
X &
where the first term represents the difference in truck routing distances, and the second term represents
the difference in daily sales in the area X;. As previously discussed, the CA approach in this cost
segment involves replacing the restocking truck routing trip distance d(z’,z;) with d(z,z) for any
2’ € X and = € X&j, thereby yielding the optimal routing distance fSrsp [,y 1/+/2(z)dz. Since
d(z',x;) is the average of d(z’, ) by Assumption 1(I), we obtain

0< /X @’ (/X p(:v)dffv"j> dm_/Xj ¢ </x

J J

+

i

p(x)de(m)) dz < %Var(d(X’,X);Xj). (22)
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Here the first inequality is due to Jensen’s inequality and the concavity of ¢° in distance (Assump-
tion 1(III)). The second inequality is due to the sharpened Jensen’s inequality (i.e., Lemma 10) and
Assumptions 2.

Note that z°(z) = |X;| implies that fXj p(x)z*(x)dz/|X;| = f)cj p(x)dz, which means the second
term of (21) is the gap of taking average over daily sales. Similar to (22), we have the following

inequalities:
0= / i /
X; x;

p(x)dﬂws(x)) d — / o (o)t (@), (@) dr < DVar(p(X); %), (23)
X.

J

Combining (20)—(23) completes the proof of Lemma 5(I). Lemma 5(II) can be similarly proved by
applying the sharpened Jensen’s inequality instead of Assumption 1(III) for the first inequality in (22)
and (23). O

Closing the CA Gap.
Proof of Theorem 1. Suppose Assumptions 1 and 2 hold. Combining Lemmas 4 and 5(T) immediately
yields the following bound for each influences zone j:
n” "’ , "’
0 < Gap; ppq + Gapjsa < | 5 Var(a: ) + 5 Var(d(X', X); &) + - Var(p(X); &) |

It follows that the CA gap is bounded as follows:

N 0 i p
0<Gapa <. (”ZVar(z*; )+ TVar(d(X', X): ;) + ’;vmmX);xj)) < fea.

j=1
Alternatively, if relaxing Assumption 1(IIT), combining Lemmas 4 and 5(II) yields:

np

n” '
Var(z"; X;) — 5Var(d(X’,X);Xj) 5

D3 Var(p(X); Xj)> <

Gap, .+ Gap, .z < (”2v@r<z*; ;) + LVar(@(x', X); ) + TVar(p(X); Xn).

Summing over all influence areas, we can reach our conclusion that

|Gapcal < fBea- O

C.2 Proofs in Section 5.2

Proof of Lemma 6. Recall that g,; denotes the gradient Vg fo(As; W, X,;) and A is the regularization
parameter. Since V; = Zi;ll ;Vzl gsjgsz + M = M = 0, we have Vt_1 < A7'I. Cauchy-Schwarz
inequality implies

||£t - )\9*”\/;1 < ||£tHVt—1 + H)‘Q*HV[1
< Neilly, o + 1/ 06) T AL (36
— ldlly, -+ + VA6
< ||§tHV';1 + \/Xﬁ@
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Observe that (Oracle) gives

t—1 Ng R ~
ZZ(fSJ(et) - fsg(e*) - Esj)gsj + )\et = 07
s=1 j=1
which yields
t—1 N t—1 Ng .
Z Z €sj9sj — DUMES Z Z ij 9,5 fsg ))gSj + /\(et - 9*) (24)
s=1j=1 s=1j=1

Thus we have

(l€elly-1 +VABo)? = g — 0", -

T
t—1 N t—

1N,
= Do (Ve — f55(07))gs5 — AO" D 9sigss | A
s=1j=1 s=1j=1
t—1 Ns
Ysj — f55(07))gs; — AO”
s=1j=1
T —1

oy (121 & ) ) t—1 N, .

=D (i (00) = £o5(0))gas + Ay — 26* Y 9si9si | + A
s=1j=1 s=1j=1
t—1 N,
22 si(0) = fu5(07))ge; + 200 = N0"
s=1j=1

Recall that the mean demand fy;(6) = [ X, 07 k(As, Wi(x))dz is a linear function in 6. Therefore,

the gradient Vg f,;(6) is a constant that does not depend on 6, and we have Vo fsj(0) = gs; holds for
every 6. Applying the mean-value theorem, there exists 6; which is a convex combination of §* and 6;
such that

Fsi(02) — f55(07) = Vg, f55(00) T (B — 6) = g (6, — 07),

which implies that
t—1 N,

ij 9t fSJ ))gsj + )‘(ét - 9*)

s=1g=1

t—1 N,
Z ngjgsz + AL (0 —07).
s=1j=1

According to the symmetric property,

(l€elly-+ +VABe)?

t—1 Ng t—1 Ng t—1 Ng
0 _9* Zzgéjgb] + A ngjgsz + A Zzga]ga] + Al (et _0*)
s=1 j=1 s=1j=1 s=1j=1

=116 = 67117,
O
Proof of Lemma 7. It follows similarly from Theorem 20.4 in Lattimore and Szepesvéri (2020).

The difference is that, in our setting, multiple observations are received at the same moment. For
completeness, we provide the full proof here.
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Let Uy = Y01 5% gsjg0; and H = X € R4 50 V; = U, + H. We first prove that for all
2

z € R? the process My(x) = exp((z,&) — % ||z[?,) is an H-adapted non-negative supermatingale with

Moy(xz) < 1. We need to show that E[M; 1 (z)|F;] < M¢(x) almost surely. Since €;; is conditionally

o-subgaussian, then for any 1 < j < N;, we have

2
T g 2
e o (xTewms = ol ) o] <1

Hence 9
(o
E{Mia(o) ] = E e ({0.6000) = G, )| 4
Ny 0_2
= M;(z)E | exp ZCETthgtj - 7||x||22Nt " He
= j=19ti9¢j

< Mi(x) a.s.
Since My(z) < 1, we reach the conclusion that M;(z) is a non-negative supermartingale.

Define h = N(0, (62H)~1). According to the “sections” lemma in (Kallenberg 1997, Lemma 1.28),
Jga Mi(x)dh(x) is Hi-measurable and is also a non-negative supermartingale. Let

M; = My (z)dh(x)
Rd

O'd 0.2 ) 0_2 )
- - —— da.
(@n) det(H-1) /R exp <<x’5t> 3 llo, =3 ”x”H) x

Note that My < 1 is immediate. By the maximal inequality for the supermartingale M, we have

P (sup log(M;) > log (;)) =P (Sup M; > ;) <. (25)

teN teN

Now we turn to studying M;. In the definition of M;, we reformulate the polynomial within the
integrand as follows

o o? 1, _ 1 1
(@,6) = Tlloll, = Tl = Sllo ™ 6l — llow = (H +U) " o 0,

1, _ 1 1
= Sl = Sllor = Vo

The first term %||0‘1§t||%/,1 does not depend on z and can be moved outside of the integral. In such
t

a way, the integration equals

My = cexp ( sllo T &7 - )/ ex (— ox — Vo7 |3 )dx,
t (QW)ddet(H_l) p 2” gtHVt 1 iy p 2“ t gtHVt

in which only a quadratic Gaussian term is integrated. By multidimensional Gaussian integral, we

have
1 . —q | (2m)¢
/Rd exp (—2”03:—‘/} o 1515”%4) dr = o ¢ At (V)

_ det(H)\"? 1
i = (D) " e (gmalel ).

Then substituting this expression in Equation (25), we reach the conclusion. O

which implies that
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Proof of Lemma 8. Lemma 6 provides that [|6; — 0%y, < ||§tHv;1 + v ABe. From Lemma 7 that it
holds with probability at least 1 — ¢ that, for all ¢ € [T,

[1€elly, -1 < 0\/2 log (;) + log (det)\(th))

Let Aq,---, Ag be the eigenvalues of V;. Note that Assumption 4(V) implies ||gsjll2 < |Xs;|B8x. By the
inequality of arithmetic and geometric means,

d

o) - (5

d
det(V;) 1 1%~ _ 1
vbvl | LY

>
Qu
IS

d
ot (/\I + Y Y gsjgsz)
B Ad
—1 N, d
. 22:1 j=1 195513
Ad
t—1 (N, 2\ ¢
< 1 Zs:l ZJZI ||gS]||2
< + d
-1 ($Ne |y 2\ ¢
< 1 n Zs:l Z]:l Sj|5l€
- Ad
(t = DIX262\*
=1+ L
(5
Therefore, we conclude that with probability at least 1 — §, we have
16: = 0% [lv, < 3,
where ’ytzxf)\ﬁg—i—a\/Zlog (3) +dlog (1—%—%). O

Proof of Lemma 9. Suppose the action A partitions the region X into a set of NV influence areas, i.e.,
X ={X1, Xy, -, Xn}. Fix j and we prove for X;. Let p; be the brevity of the daily sales handled by
a store serving X, which is used an argument of ¢' and ¢ in the following assumption; accordingly,
0j = ij po(A,x;W(x))dx = fo(A; W, X;) in discrete model and ¢ = p(x)z(x) in CA model.

For notation simplicity, we use pp(x) as the brevity of pg(A4,z; W(z)) and ¢} as the brevity of
@* (fx po(x)dx, X;; W(x)) in the proof of this lemma, with gag being similar abbreviation.
J

/X; Tpo(x)dx — /X 7po-(x)dx </XJ Qhdr — /X %*dx)‘

J J J

/gogdxf/ gag*d:z:
X; X;

J

[ro(A; W, X)) — o= (A; W, X)| < +

+

where the gap on gross revenue can be simply rewritten as 7| fo(A; W, X') — fo- (A; W, X)].
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By Lipschitz continuity, the gap on inbound cost can be bounded as

[ o= [ dieas)|< [ ail( [ m@ac— [ po@ac)|ay
X; X; X; X; X;
= i X[ fo(A; W, ;) — for (A; W, &)
The following inequality can be similarly obtained
' </ pgdz — / @g*d$> < g || fo(A; W, &5) = fo- (A; W, &)
X; X;
Thus we conclude that L, =7 + |X|a; + | X|ay. O

Finally, our proof of the regret bound will also depend on a technical result, which we call the
Elliptical Potential Lemma.

Lemma 11 (Elliptical potential lemma).

- al 2122
. dA\+T|X|°
2 K
Z min lelgtjl\vt7171 < 2dlog (d/\ '
i

t=to+1

Proof of Lemma 11. Recall that V; = >/} ;V:sl 9sjg4; + M. Then we have

N Ny
Vigr = Vi + thjg;; — th/2 (I 4 Z %—1/29”9;;%—1/2)%1/2.
j=1

Jj=1

According to the definition of V;, we have

Ny
det(Vipr) = det (Vi + > gij07;)

Jj=1

Ny
= det(V;)det | I+ V, gyglvi '

Jj=1

Let A1, -+, g be the eigenvalues of Z;\il utjutTj where u;; = Vt_l/2

matrix I + Zjvztl utjutTj are (14 );) for j =1,--- ,d. Then we have

g+;- Note that the eigenvalues of

N, d d Ny Ny
det | T+ uyufy | =[O +X) =14+ N =1+t [ D ujuf | =1+ [lugl3.
i=1 =1 i=1 =1 i=1

Therefore, we have the inequality

N
det(Vigr) > det(Va) [ 14> llgsll3,
j=1
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Using that for any > 0, min{z, 1} < 2log(1 + z), we get

Z mm{ZIIgt]IIV, b }

t=to+1
det(VT )) ( det(VT+1) )
<2 log | 1+ <210 ( < 2log [ S THL)
t%l g( ZHgt]”Vt ) 8\ Get(Vi, 1) (3w
det(Vr41) d\ + T|X|* 52
<21og [ LVTH) ) < 9g1og (LTI
= Og( ) < 2dlos d

Proof of Theorem 2. According to Theorem 1, we have
Iro(A(27); Wi) — 5 (253 Wi)| < Bea for all 1 < ¢ < T.

Define event & = {||0; — 6* ||y, < 7 }. Under event &, 0* is contained in the uncertainty set ©, = {0 :
10 — 0:]lv, < ~:}. Since 6; is the optimal optimistic solution over the set ©;, we have

ro- (25 (507 W) <, (2 (.60 W), (26)
Thus, we can bound one-step regret as
ro= (A2 (:07)); We) — 1o+ (A(z{ (-5 64)); We)
=rg- (A(z7 (507); W) = i (2 (5 07); Wa) + 1 (7 (5.07°); We) — r= (A(27 (4 00)); Wo)
¢ ror (A(z] (507)); Wh) = 1 (25 (5.07); Wa) + 7y (21 (+56); We) — v (A(27 (560)); W)
=rge (A(2] (507)); W) = i (27 (5.07); W) + 1) (27 (5 60); Wi) — rge (A(2] (60)); W)
+ 70, (A2 (+:0)); Wi) — 79, (A2 (+:64)); W2)

:
= (o, (A(= (500)): Wa) = m= (A= (5.60)); W) )
= (P (507 W) = o (A7 (500 W) + () (25100 Wa) = 7, (A(E (500)) W ).
Theorem 1 regarding the CA gap implies that

(ro(A(z; (567)); W) — 1= (A(2 (5 01)); W) 1(Er)
<lro, (A(z7 (561)); Wi) — ro- (A(2/ (6:)); Wi) [ 1(E2) + 26ca. (27)

According to Lemma 9, we have
|T9t( (2 (50¢)); We) — o= (A(27 (13 0¢)); W)

<§:Vm 0.)); Wi, Xij) — ro- (A(25 (560)); Wi, Xoy)

<L§:Ma 00)): Wi, Xij) — for (A2 (00)); Wi, X)) (28)

Applying mean-value Theorem, there exists étj which is a convex combination of 8* and 6; such that

| fo, (A2 (+50¢)); Wi, Xij) — for (A2 (+504)); Wi, Xij)|
= (00— 0") TV f5, (A(z] (500)); Wi, i)
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_ (g, — o) /X (Ar, W) da

=[(6: — 6) " g5
<16 — % lly, llgeslly-1 (29)

where the last inequality is obtained from the Cauchy-Schwarz inequality.

Note that under event & = {|0; —6* ||y, < 4}, we have [0, — 6% ||y, < 0;—0,|v, +10: —0%||v, < 2v..
Combining inequalities (27)—(29) immediately yields

(ro- (A(z; (507)); W) — 1= (A(2 (5 00)); Wi))1(Er)
<ro, (A(z/ (501)); Wi) = ro- (A(2/ (5 00)); W) 1(E) + 25ca

Ny
<L |07 = 6¢lv, Z llgeslly—11(E) + 2Bca
=1
Ny

<2L;v Z lgesllv—1 + 2Bca.
=1

According to Assumption 4(I), the maximal profit is bounded by ryax. Thus, we can bound the
regret by

T T
RegretW(T)-1< ﬂ 5t> <rmaxto + Z wl(ros (Ags We) — o« (A(27 (15 0¢)); We))1(Er)]

t=to+1 t=to+1

T Ny
grmaxto + 2LT‘/YT Z Tmax A Z ||gtj ||Vt_1 + 2BCATK

t=to+1

Note that the equation 1 A z = V1 A 2 holds for every z > 0, and the Cauchy-Schwarz inequality
2
yields (Zjv:tl Hgtj”vt‘l) < N Z;V:tl ||gtj||‘2/_1. Since we assume rmax > 1, it follows that
t

Regret, (T) -1 ( ﬁ 6})

t=to+1

T Nt
Srmaxto + 2Tmaer'yT Z 1A Z Hgtj ||Vt*1 + 2ﬁCAjj
t=to+1 j =

<Tmaxt0 + 27"max r VT Z V Nt 1A Z ||gtj ||2 o 2ﬂCA11

t=to+1

T N,
<Tmaxt0 + 2Tmax r VT < Z Nt) Z 1A Z ||gtj H%/t—l + 26CAT

t=to+1 t=to+1 j=1

A + T|X|232

<Tmaxto + 2rmaxLryT \/2NmaxdT lOg ( X

> + 28caT,

where the last inequality holds according to Lemma 11.
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Lemma 8 states that the event ﬂtT:tO 41 & occurs with probability at least 1 — . The probability
C
of the event (ﬂthto 41 Et) is no greater than §. Thus, we conclude that

d\+ T X232
P (Regretﬂ (T) > rmaxtO + 2rmaxLT’7T \/QNmaXdT IOg (w> + 2BCAT‘>
T
1 (Regretw(T)l < ﬂ 5}) > Tmax?o

t=to+1

d\+ T X232
+2rmaxL7"yT \/QNmaxdT log (W) + 2BCAT1>

dA
T C
E[OH]ID(( N &))
t=to+1

<.

<E

#((0))

O

(1-9)A7 (0+(1-09)log(1-0))A
7 for tJ time periods, then it holds that

P (Awin (Viga) <VT) <0,

Lemma 12. Set t)" = max{ VT (los(d)—los(®)I XI5 } Suppose Assumption 5 holds. If using policy

Proof of Lemma 12. Define Z, = E;E§A> szj k(A, z; W(x))dx szj k(A,z;Wy(x)) Tde. For any
randomized action A, an upper bound for the eigenvalues of Z; is given by

d N N
Amax(Zs) < Z)\Z(Zs) - tr(Zs) =tr ngjg;rj = Ztr(g;l;'gsj) < |X|25i almost Surely'
i=1 j=1

Jj=1

Recall V; = 22;11 Zs+ Al. From Assumption 5, under policy 7, we have

A(IEJ [Vtgﬂ]) =\ f:E[ZS]HI > ME 4
s=1

Let fimin = MY + A, the minimum eigenvalue of IE[V;{SDH]. Applying Lemma 13 (Tropp (2012,
Theorem 1.1)), we can bound Amin(Vir41) by

P (Amin (Vigs1) < VT) < B (uin (Vigr) < (1 - 0)0e])

<P (Amin (Vi1) < (1= 0)ptmin)

where the first inequality is because t§" > (1‘_/?) , and the last inequality is because

(log(d) — log(6))|X[282
(6+ (1—0)log(1— o)A’

[>

t§ >

Thus, we reach our conclusion. O
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Proof of Theorem 3. Recall that we solve the maximization problem (12) in order to obtain 6.
Therefore, 6; satisfies that for any 6 € Oy, it holds that

ro (27 (500)s W) + Vi (27 (5.00); Wo) T (00 = 00) = 7 (2] (5 60): W)+ Vg (27 (56,); W) (6 —6,). (30)

Applying the mean-value theorem, there exists 6; which is a convex combination of 6, and 6* such that
rg (21 (507 We) = 1) (27 (560 W) + Vg (27 (56,); W) (67 — 6), (31)
and there exists é,’f which is a convex combination of ét and 6; such that
rp (27 (500 W) = g, (27 (500 W) + Vg, (27 (561 W) T (8, — 6). (32)

Then when event &; holds, we have

rox (A(27 (+50%)); We) — 1o (A2 (5 01)); W)
=rg- (A(2] (507)); W) = 1 (27 (07); W) + 1 (27 (5 07); W) — 1o+ (A(2] (5 60)); W)
Drge (A(ef (507)); W) = il (5 (307): W) + 72 (25 (5 00); W) + (27 (500 W) T (0" = By)
— o= (A(2; (6)); W)
=ro- (A(27 (50°)); Wa) = 73 (27 (5 0°) Wa) 7 (27 (5100 W) + U (27 (5100 W) T (0" = 0y)

+ Vg (2 (00 Wa) 707 = 00) = Vry (27 (500; W) T(07 = 0,) = ro- (A(=] (56,)); W)

< o (A2 (567)); Wo) = 1. (27 (5. 07); W) 1 (27 (00 W) + Vi, (2 (16,); W) T (6, — 00)
+Vry (27 (500 W) T(07 = 00) = Vg (27 (00 Wo) T(87 — 02) — - (A(2] (:60)); W)
70, (A(= (500 W) = 15, (27 (5 00): Wa)) + 1, (2 (+.00): W) = 79, (A(2 (+.01)): W),

where the last inequality is because 8* € ©; under event &. By regrouping these terms in the above
inequality, we further have

o (A(= (40°)) We) = 7o~ (A(z (560)); Wo)
< (70, (A (300) W) = 7= (A(21 (500)); W) ) + (v (A(z5 (56%) W) = 7 (£ (.07 W)

(700 (22 (5000 W) = o, (AG (5.00) W) ) + (7 (21 (580 Wa) = 7, (24 (.00 W) )

+Vr ( $(50,); W) T (0, — Ht)+Vr;f(zt( 0:); W) " (9*—9})—%" ( S(500); W) T(0F - 6y).

t

+
+

Theorem 1 regarding the CA gap implies that
ro- (A= (+07)): W) = ro- (A= (56:)); W)
< (o, (A(7 (5100)): We) = e (A(=7 (5 60)); Wa) ) + 28
(1 (5003 W) = i (=5 (5000 W) ) + Wy (27 (500 W) T (6, — 0r)
+ Vrét (25 (500 W) T (6" = 6,) — vrét(zt (:00); W) T(0" — 6)
Wh) = ro- (A= (60)); W2) ) + 28ca
)T (6 = 60) = Vry (27 (560); W) T (6, — 6,)
+Vry (27 (500 W) 10" = 0,) = Vg (=7 (0: W) (67 — 0r)
) = o (A( (56,)): W) ) + 2B
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+ (Vg (2 (501 Wo) = Vg (27 (560 W) T (6, — 6,)
+(Vrg (2 (300 We) T = Vg (2 (560 W) T (0 — ).

Applying the mean-value theorem, there exists 91 which is a convex combination of #, and 6, such
that

(Vrg, (21 (500 W) = Vg (27 (560 W) T (e — 6)
=(0; - ét)TVZT;%(Zt*('é 6,); W1)(0; — 6,)
<hs|6; — 6.3,
where the inequality is due to the Cauchy-Schwarz inequality and our Assumption 4(II) that 7y is an
upper bound for the Euclidean norm of gradient V%g’, (z5 (5 é,{), W¢). Similarly, there exists 6, which

is a convex combination of 8; and ét such that
(Vrg, (2 (000 We) = Vg (2 (5.00); Wa)) T (6" — 6)
=(0; — ét)TVZT;{ (27 (- 6); W) (6" — 61)
<hgll6” —6.3.

Next, we need to bound the norms ||6; — 6;]|2 and [|§* — 6;]|2. Let Amin(V;) denote the minimum
eigenvalue of the matrix V;. Since ||0; — 04|y, < v; holds by our constructed uncertainty set, we have

1

)\min(‘/t)
_
)\min(‘/t)
R AN
N )\min(‘/t) ! tlive
1 2
Amin(v;ﬁ)’Yt.

16, — 013 = (0r = 0) T i (Vi) T) (B — 04)

< (ét - et)TVt(ét —6)

<

Similarly, under the event & = {||ét — 0*|lv, <9}, we also have ||0* — ét||% < %(Vt)'yf

Therefore, we can bound the one-step regret by

(1o« (A2 (+:07)); Wi) — ro- (A(2( (5 01)); Wi))1(Er)
<(ro, (A(2] (-100)); We) — 1o+ (A(27 (+100)); W) + hig |0, — 0l[3 + g |07 — 0413 + 28ca)1(Er)
2h¢

< (m (AGE C5000) W) = - (AG (5000 W) + 5200 m) 1(E). (33)

In the proof of Theorem 2, we have already shown that
(ro, (A2 (5:00)); W) —ro- (A2 (5 01)); W) 1(E4)

Ny
<Ly Y | fo, (A2 (500)): W, Xij) — for (A7 (500)); We, Xi5)| 1(E2)
j=1

N,
<LAI0% = Ocllv, Y llgeslly, -1 1(E)
j=1
N

<2Lvt Z llgeslly—1-

j=1
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It follows that one-step regret in (33) is bounded by
(ro=(A(z{ (5 0%)); Wi) — o= (A2 (-5 00)); We))1(E2)

Al 2h v}
2L,y 1g25lly,-+ + )\#(‘t/t) + 26ca-

Jj=1

Recall that & = {]|0; — 0*||y, <~} and we define £* = {AVir) = VT}. According to Lemma 12,
it holds that P(£*) > 1 — §. Therefore, we can bound the regret by

T
Regret, (T)1 | () &né&r
t=t{+1

a4+ S Exl(ro- (A5 We) — ro- (A(z7 (6)); W) L(E N EY)]

t=t{'+1
T N T 1
Srmaxt(}; + QLT"YT Z T'max A Z ”gtj”\/;l + Z 2hf : 7152/\7(‘/)1(5A) + 2BCAT
t=tF +1 j=1 t=tF +1 mini
T N T 1
Srmaxtg + 2Lr7T Z Tmax A Z ||gtj||v';1 + 2hf’)/% Z ﬁ + QBCAT
t=t{+1 Jj=1 t=t{'+1
d\+ T X232
<Tmaxtt + 2rmax LeyT \/ 2NmaxdT log (W) + 20 YAVT 4 26caT,

where the last inequality holds according to Lemma 11, similar to the proof of Theorem 2.

Since Lemma 8 implies P ((ﬂtT:thrl 5,:) ) < 6, and Lemma 12 implies P((£*)¢) < §, we conclude
that

d\ + T|X|252
P (Regret‘n (T) > Tmaxt(l):‘ + 2Tmaer'7T \/ZNmaxdT IOg (W) + 2hf’7%ﬁ + 2BCAT>

T
X + T|X|232
<E |1 |Regret (1)1 | () &NEN | = rmaxth +2rmawaT\/ 2 Ny dT log <+|BH>

dA
t=t{+1
T c
+2ﬁf’y%\/f+2ﬁcAT)] +P m & +P((5)\)C)
t=t&+1
T c
=E[0] + P M & +P((E)°)
t=tf+1

<29.

D Supplementary results

D.1 Supplementary lemmas

Lemma 13 (Theorem 1.1 in Tropp (2012)). Consider a finite sequence {X;} of independent, random,
self-adjoint matrices with dimension d. Assume that each random matrix satisfies

Xp =0 and Apax(Xg) < R almost surely.
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Define

Mmin = >\min (Z ]E[Xk]> and Hmax = )\max (Z E[Xk]> .
k

k
Then

676 Hmin/R
P <)\min (Z Xk> <(1- 5)#min> <d <(1 — 5)1_5> for § € [0,1), and
k
65 NmaX/R
P (Amaw (Z Xk) > (1 + 6)Mmax> < d (WS) for & > 0.
k

E Extensions

There are several extensions of the mobile retail problem that are worth further exploring. In this
section, we discuss the effect of one-to-one inventory replenishment, delivering products to customers.
In addition, we analyze the online location decision for last-mile delivery with micro-depots.

E.1 One-to-one inventory replenishment

In the three cases in our paper, we assume there is a truck visiting multiple stores to replenish the
inventory. To extend the analysis, we replace the assumption of one-to-many replenishment in Case 3
by an one-to-one setting. Namely, a truck loads products from a distribution center at x4 and visits
one store at a time for restocking. There is fixed cost for replenishment and we denote it by a;. As
discussed in Section 3.3, for a store located at x;; and serving the area X3, the replenishment frequency
is fze/’m po(x)dz/S. A truck incurs cost ¢; per kilometer of travel and travels 2d(xzq,x¢;) kilometer
for each replenishment. Therefore, the daily inventory replenishment cost for that store is given by
?in_y 2cid(za, 1) fxEth po(x)dx/S. The CA of cost density function for replenishment is given as
ollows:

) a’ + 2cid(zq, x po(@)z4(z) at c
g01<d(xd,x),p9(a:)zt(m),zt(ac);Wt(x)) = d(za,7) S = +2§td(xd7x)pg(x).

2t () ze ()

Similar to Case 3, the resulting CA of profit function is

W = [ vy W)

- /I% ((7‘ —af — 2% d(e,)) 0T Wi(a) exp {603\2/7?@} - “bf) da.

()
At each z € X}, we can evaluate the optimal solution z; (x; ) by first-order condition

e, . _
g(z,Wt(x)) = 0}

) & 2 3y(a’ +b7) _
(r —al — 2§d($da$)) 0" Wi(x) exp {—CO 3\/7?\/2} T O} :

2 (2:0) € {z

:{Z

Specifically, the optimal z; (z;0) has a closed-form solution

1 2
PN 1 € 2 (a4 bF)c? 3
@0 =32 (WO <_3 <97r(r —al —2%d(z4,2))0T Wy (x) ’

where Wy (+) is the principal branch of Lambert W function.
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Despite the closed-form z*(x; ), the maximization problem (OFL-CA) is still intricate to solve.
Therefore, we can choose to apply the Algorithm CA-O Faster Learning to easily solve the online store
location problem. Lemma 2 provides the closed-form expression of gradient of CA profit function as

v A _ c 2 A
Vrg’t (25 (-, 0;); Wy) = /wext (r —af — 2§td(xd,x)) exp {—COM 25 (; 9,5)} Wi(x)dx

Given that Assumptions 1-4 remain valid in this one-to-one inventory replenishment setting, The-
orem 3 still provides an evaluation of the regret performance of Algorithm CA-O Faster Learning.

E.2 Delivery to customers

When the retailer has to deliver the goods in mobile stores to customers, there are additional trade-
offs to consider. The outbound delivery cost typically increases with the distance between stores and
customers. As a result, the retailer has the incentive to set smaller influence areas of stores, so that
the delivery cost becomes lower. More specifically, we assume the delivery incurs cost d° per kilometer
of distance between a store at x;; and a customer at € Xy;. The outbound delivery cost for a store
serving area Xj; is fx cx,; bOd(x;, x)pe(x)dz. The outbound delivery cost density, denoted by ¢°, is
thus given by

@ (dlwej, @), po(w): Wila) ) = b d(rj, ) paa).

The related CA function can be evaluated by averaging the distance d(x;;,x) using #\/zt(m‘),

ie.,
2
‘Po(ﬂ\/ zt(x), po(x); Wi ) == \/ z)pg(z
Hereafter we omit the constant ;== for brevity since we can include it in the constant b°. By incor-

porating the outbound delivery Cost density into the CA profit density function, as described in (6)
and (7), we have the following result:

rg(zt§ W) = o oz (x); We(x))dx

Ct llf €X)Ze\ T f
= /GX (Tpa(l‘) - /BTSPEPG(x) ze() — pol z)t(é) )Y _ b°po(z)/ Zt(x)> dz.

The optimal solution z; (z;6) and the optimal profit density can be point-wisely obtained by

# (2:0) = ((ﬁTSPCt + b05)09($)> ,

(s 05 W) = (7= nle) =3 (6) (LS ) )

We next analyze the effect of outbound delivery on the CA gap. In addition to Assumptions 1-2,
we conclude the following technical assumption from the scenario of delivery to customers.

Assumption 6.

(I) The delivery cost ¢° is a convex function of the potential trip distance d(z;, x).

(IT) The second derivative of the delivery cost ¢° with respect to d(x;,x) exists, and its absolute
value is bounded from above by 7°.

(IIT) Let X be arandom location in &;. The variance of random delivery distance d(z;, X) is denoted
by Var(d(z;, X); ;).



Les Cahiers du GERAD G-2025-45 43

(IV) Within each influence area j, the difference between the average delivery trip distance and
(2/(3yv/m))+/|X;] is bounded within [0, 7).

(V) The delivery cost ¢° is Lipschitz continuous on d(z;, «) with modulus L.

As to the outbound delivery cost, the CA is to replace the delivery trip distance d(z;,x) with
2/(3y/m)+/|X;|. The latter is the average distance from the center of a round disk with area |X;| to
a point on this disk. However, in general, the average delivery trip distance, denoted by Jj, is not
necessarily equal to 2/(3+/m)+/|X;| since the influence area is not a circle in practice. If the CA were
instead to replace the delivery trip distance d(x;, ) with Jj, then we would obtain

0< [ ¢ aya)p@) o= [ odp@)de < GV ardle, X)), (31)

i Xj

Here the first inequality is due to the convexity of ¢° in d(z;,z) and Jensen’s inequality (Assump-
tion 6(I)). The second inequality is due to the sharpened Jensen’s inequality and Assumptions 6(11)
and (IIT).

It remains to quantify the error induced by using d; instead of 2/(3/7)/|X;| in (34). Following
Assumption 6(IV) and (V), this error is bounded as follows:

o< [ (wtdrpto) - (a8l o) o< [ Lotae—rfinl o
X, X;

The first inequality is due to d; > 2/(3v/7)+/|X;] and the fact that the outbound cost is non-decreasing

in delivery trip distance. Combining Theorem 1 with (34)—(35), we obtain the modified univeral bounds

for the CA gap in the scenario of delivery to customers as follows:

Bea = {sup} Z( Var(z )—I— Var(d( LX) X)) + %pVar(p(X);Xj)
z, X

+ %Var(d(xj,X); X)) + Lwdl/‘fﬂ)-

We now proceed to analyze the regret bound for proposed algorithms in this scenario of delivery
to customers. Note that in the mobile retail store location problem involving delivery, the outbound
delivery cost exhibits a similarity to Assumption 4(VI). If we denote the Lipschitz constant of ¢° by
o, Lemma 9 will still hold by letting L, = 7 + |X|a; + |X|af + |X|a,. Therefore, one can opt to
use CA-O Learning. or CA-O Faster Learning to solve this problem, and the regret performance remains
bounded by Theorem 2 or Theorem 3, respectively.

E.3 Last-mile delivery with micro-depots

Finally, we investigate a micro-depot location problem for last-mile delivery. The application of micro-
depots arises directly from the context of urban logistics. Specifically, we adopt the problem of using
crowdsourced ride-share mobility for last-mile package deliveries, as developed in Qi et al. (2018). The
decision involves delimiting the entire service region into individual zones, with a micro-depot centered
at each zone as the trans-shipment terminal. A truck loads packages from a distribution center at
xq and traverses terminals to unload packages. Within each zone, idle ride-share vehicles are paid to
pick up packages at the micro-depot and fulfill the last-mile deliveries. The objective is to minimize
costs incurred. The problem involves intricate modeling of the open-loop vehicle route lengths and
the driver compensation schemes. However, the CA model ultimately can be reduced to the following
form:
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min Yo(zi(); Wi(z))da
z¢(+) TEX;

-/ . (W (402, pol@)a(): W) + (S22 Vo). o) Wt@))) az,

in which the inbound trucking cost and the outbound delivery cost are given by

(0,20, poa)2a@): W) = = Vil 2)n(e),

so"(?m, po(@); Wi()) = (E/pa(w) + F) po(w)/z1() + Gpo(@) + H\/po(w),

respectively, where U, V, E, F, G, and H are constant numbers composed of system parameters. (See
Equations (11), (12), (9), and (10) in Qi et al. (2018) for detailed derivations.) We also adopt the
calibrated parameter values from Qi et al. (2018): U = 0.9580, V = 0.0045, E = 5.1167 x 1074,
F = 0.0250, G = 0.1422, and H = 1.4092). Determining the value of these constants involves
approximating vehicle route lengths. We ignore this approximation error, given not just the scope of
this paper but also the practice in the literature of location-routing problems. Also note that, in this
problem, we follow the assumption in Qi et al. (2018) of using “Manhattan distance”; as a result, the
mean distance from the center of a zone (which is now a rhombus) with size z;(z) to a random point
in the zone is v/21/z(x)/3 instead of 2/(3+/7)+/2 (). Similar to the previous application, applying
the first-order condition yields the optimal solution and the optimal cost density function, as follows:

U
(Ev/po(z) + F)po(x)7

U5 (25 (@30);Wil@) = 2 (UE (po(@))? + UFpo(2)) " + Vd(0,2)po(w) + Gpo(w) + Hpa(w))*.

zi (z;0) =

We solve an online version of this problem, in which the decisions of micro-depot siting or, equiv-
alently, service zoning are adjusted over time ¢t. We run CA-O Faster Learning 500 times. Figure 7
shows the evolution of the regret. The blue shaded area is the 95% confidence interval. The sublinear
trend of the regret is consistent with the theory given by Theorem 3 without the linear term 28caT .
(Here, the CA gap is irrelevant because we omit the design dicretization and directly use the objective
function of the CA model.) In addition, the optimization problem involved in the learning process can
be solved within seconds by CA-O Faster Learning at each round. To sum up, the sublinear regret and
the high computational efficiency suggest that our proposed framework potentially is widely applicable
in solving practical online facility location problems.
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Figure 7: Regret of cost in the online micro-depot location problem.
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