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auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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Abstract : A shift toward shopping at (autonomous) wheeled vending stores is redefining urban retail.
Compared with traditional brick-and-mortar stores, such mobile stores are cost-efficient to deploy and
adaptive to fast-evolving business environments. However, mobile stores are confronted with unknown
demand and limited capacity. Store mobility enables demand learning and profit maximization, yet an
optimal dynamic store location policy remains unclear. We model this “learning-and-earning” prob-
lem by taking optimistic actions under parameter uncertainty. The joint optimization over parameter
and action set is complicated by the combinatorial nature and infinite choices within the action set.
We overcome these challenges by leveraging continuous approximation methods, and then propose a
continuous-approximation optimistic (CA-O) learning framework under some special problem struc-
tures. Nevertheless, for more general scenarios, the problem remains intricate due to the nonconvexity
in unknown parameters. We alternatively propose a CA-O faster learning algorithm by utilizing first-
order approximation techniques and further proving a closed-form gradient to guarantee computational
efficiency. We theoretically analyze and numerically validate the regret for the proposed algorithms.
In a Toronto case study, our algorithm significantly outperforms baselines. Mobile stores earn higher
profits than brick-and-mortar stores through demand learning and store mobility. More broadly, this
paper envisions the future landscape of urban retail enhanced by omnipresent mobile facilities.

Keywords: Mobile retail, facility location, contextual bandits, continuous approximation, joint learn-
ing and optimization
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1 Introduction

The retail landscape is witnessing a surge of innovation in both in-store and online shopping, brought

by autonomous technologies. Unmanned stores are redefining the in-store shopping experience by

providing cashierless and automated service to customers (e.g., Amazon Go stores in the US and UK).

The application of robotics and self-driving technology in fulfillment and delivery holds great promise

for advancing online shopping. Kroger collaborates with Nuro to introduce driverless cars to speed up

the adoption of grocery delivery, and Domino’s Pizza Inc. and Yum Brands Inc.’s Pizza Hut also are

exploring driverless vehicles for pizza deliveries (WSJ 2018).

Figure 1: Sample Mobile Retail Stores. (a) Robomart (2023). (b) Nuro (2023). (c) Neolix (2023).

Autonomous technologies now are spurring the retail industry to evolve further beyond unmanned

stores or deliveries. A business model of selling products through automated stores on wheels is emerg-

ing. In such a business model, the retailer is able to place mobile stores at various locations to leverage

demand dynamics and increase profits. For example, Unilever partnered with a startup “Robomart”

to deploy a fleet of robotic vehicles to sell ice cream through parts of Los Angeles (Forbes 2022).

Robomart launched a flexible platform for retailers to sell goods with running stores (Figure 1(a)).

Consumers just walk to a nearby van stocked with merchandise, open the van with a swipe on a phone

using their app, and complete purchases via their mobile device. The potential market for mobile

retail stores is substantial, and the advances in self-driving technology further stimulate the market.

Investors and operators are already investing heavily into self-driving vans, e.g., SoftBank invested

$940 million in start-up Nuro in 2019 for driverless retail (FT 2019), whose prototype is shown in Fig-

ure 1(b). Not only are companies in the US investigating the business model of mobile retail stores, but

overseas companies are also joining the trend. For instance, Neolix, a Beijing-based startup, received

the approval to operate their autonomous vehicles in both Europe and Asian countries (Bloomberg

2021). Neolix has successfully deployed their vehicles in various application scenarios, including mobile

retail stores, as shown in Figure 1(c).

Mobile retail stores are gaining increasing attention and practice in the industry, but research on

their operations remains scarce. The key to success is still a mystery. A thorough analysis of the

pros and cons is necessary, particularly since the market for mobile retail stores in cities is still in its

infancy. The potential of this new retail channel stems from the following two advantages.

Mobility. Mobile retail stores enable retailers to move their stores as swiftly as relocating a car, in

contrast to the stationary nature of brick-and-mortar stores. This adjustability of store locations

benefits both retailers and customers. Retailers can increase profits by relocating stores to high-

demand regions in a city. For customers, the mobile stores provide an engaging touch-and-feel

shopping experience and extra proximity as store locations change.

Cost efficiency. Three factors contribute to the cost efficiency of mobile retail stores. First, mobile

stores provide an opportunity to reduce labor costs, as demonstrated by the three robotics-

enabled practices in Figure 1. Second, retailers can avoid the heavy investment required for

physical real estate. Furthermore, mobile stores offer retailers the freedom to explore and test

new markets without having to commit to a permanent location.
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Despite being a novel retail channel, mobile retail stores come with their own set of unique obstacles.

We consulted experts from Kroger to better understand and address these issues. Two main obstacles,

if left unaddressed by the operators, could pose risks to this business.

Unknown demand. The extent of customer demand for the novel retail channel in a city is unknown.

If demand is misestimated, retailers will run the risk of reduced profitability if they deploy too

many stores in low-demand areas or too few in high-demand areas. The observed demand

is subject to noise due to the random nature of daily customer demand. Furthermore, demand

fluctuates over time as contextual covariates (such as weather, population density, and fuel price)

vary.

Limited capacity. The inventory capacity of mobile retail stores is more restricted than that of

brick-and-mortar stores. Increased frequency of inventory replenishment could result in higher

replenishment costs in the mobile retail channel. Thus, it is important to pay close attention to

the replenishment process and the related costs in supply chains for mobile stores.

Fortunately, these challenges can be addressed by utilizing the advantages mentioned. Retailers

are able to place mobile stores at various locations and identify local customer demand via daily sales.

Store mobility enables cost-efficient location adjustments to learn potential demand. Retailers further

mitigate the effects of limited capacity by developing a data-driven policy to optimize mobile store

operations.

Motivated by these operational challenges and opportunities of retail on wheels, this paper examines

the sequential location decisions made by a retailer managing a fleet of mobile stores in an online

setting. The retailer faces uncertainty in spatial demand distribution and determines store locations

based on current demand information. After observing the daily sales of each store, the retailer updates

their knowledge of demand and decides on the locations for the following day. In this learning-and-

earning environment, the retailer must carefully simultaneously explore (i.e., estimate parameters)

and exploit (i.e., maximize profit) over time. Meanwhile, spatial demand learning conditioned on

contextual covariates introduces greater complexity because the observation is the aggregate demand

expressed at these decided store locations. It is insufficient to simply apply established methodologies.

This paper proposes a novel online learning framework to help the retailer find a set of store locations

adaptively over the planning horizon.

Figure 2: The CA-O Learning Algorithmic Framework.

The main contributions of this paper are summarized as follows:

I. Formulation: To the best of our knowledge, this paper is an early attempt to consider a mobile

retail store location problem in an online setting with unknown parameters and contextual

covariates. We formulate a sequential location problem to maximize the overall profit and

analyze the profitability of mobile retail.
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II. Theoretical Contributions: The major challenges of mobile retail store operations stem from

1) the complexity of action space (i.e., store locations) and 2) the interdependence between

actions and observations (i.e., demand). Our framework, visualized in Figure 2, addresses both

challenges by simplifying the problem and translating the recipe into discrete location decisions.

More specifically:

a) To balance between exploration and exploitation, we formulate an optimistic optimiza-

tion problem, in which the retailer selects the plausibly best estimator from a properly

constructed uncertainty set for unknown parameters and decides on store locations. The

optimistic decision facilitates both the acquisition of information to overcome uncertainty

and the maximization of profit.

b) Selecting store locations is an infinite-dimensional decision problem, much more compli-

cated than a problem of choosing a variable/vector in traditional bandits problems. Faced

with an action set of high complexity, we leverage the analytical convenience inherent in

facility location models and use continuous approximation (CA) to simplify the optimistic

optimization. In this way, we convert an infinite-dimensional online learning problem into

a decomposable and tractable one. We show that the proposed continuous-approximation

optimistic (CA-O) learning algorithm can be implemented efficiently when the objective

function exhibits special structures, such as concavity or convexity.

c) For a broader scope of applications, maximizing over parameter uncertainty remains in-

tricate due to potential nonconvexity or even the absence of a closed-form expression.

Fortunately, owing to the continuous functions provided by CA, we propose an alternative

algorithm named CA-O Faster Learning by applying first-order approximation with respect

to parameters. We further derive a closed-form expression for the profit gradient used in the

improved algorithm, regardless of whether a closed-form solution to the CA model exists.

The closed-form gradient significantly improves precision and streamlines computation.

d) We theoretically analyze the regret performance of both algorithms by examining two main

gaps. The first is the CA gap, which occurs when translating a continuous solution into a

discrete location design. The second is the learning gap incurred in the learning process

due to a lack of knowledge of parameters. Coupling these two parts, we characterize the

regret bound as comprising a moderate linear term from the CA gap and a sublinear term

corresponding to the learning process.

III. Numerical performance: We test two algorithms with synthetic data. Both show sublinear regret,
but CA-O Faster Learning is approximately 200 times more computationally efficient. We then

apply the CA-O Faster Learning algorithm to a real-world case study in Toronto, where results

indicate rapid convergence to a near-optimal store location design in just a few rounds. The

CA-O Faster Learning algorithm helps retailers earn higher profits than benchmarks. The value

of mobile retail stems from two aspects: Store mobility boosts net profit by 2.07% by addressing

demand dynamics. Meanwhile, using the learning algorithm to overcome observational demand

noise contributes extra profit. The value of learning increases from 3.29% to 13.03% of the

overall profit in this case study as noise grows.

The remainder of this paper is organized as follows. Section 2 reviews the related literature.

Section 3 presents the online mobile retail store locations problem and discusses three main challenges.

Section 4 proposes the online learning framework and two algorithms. Examples are provided to

illustrate the application scope of different algorithms. Section 5 analyzes the CA gap and characterizes

the regret bound of online learning algorithms. Numerical experiments are presented in Section 6,

followed by the conclusion in Section 7. Detailed proofs are provided in the appendices.
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2 Literature review

Dynamic facility location. Online facility location is increasingly relevant to an urban future with

mobile facilities, but has drawn little attention in the literature. The majority of the dynamic facility

location models are deterministic, assuming fully known information over the planning horizon. This

stream of literature (e.g., Wesolowsky (1973), Canel et al. (2001), see Boloori and Zanjirani Farahani

(2012) for a comprehensive review) typically focuses on customizing solution algorithms that combine

dynamic programming with branch-and-bound or heuristic methods. On the other hand, studies on

the stochastic problem in which customer demands vary as stochastic processes are relatively few.

However, neither deterministic nor stochastic dynamic facility location models are readily applica-

ble to fast-evolving business environments, where the on-hand information is insufficient. Under such

circumstances, the ability of online learning to make decisions while updating demand estimation be-

comes imperative. Despite its significance, the literature on facility location in online learning settings

remains scarce. Bhatti et al. (2015) consider a two-stage location problem for planning alternative fuel

stations with the ability to learn the demand and add more stations in the second stage. Nevertheless,

it remains unknown how to constantly adjust locations in the presence of rich contextual data.

One stream of literature (Meyerson 2001) from the computer science community studies a variant

online facility location problem where demands arrive sequentially. The decision is whether and where

to build the next facility to minimize costs. However, facilities in their framework are irreversible,

and locations do not influence exogenous demand. Subsequent studies (Guo et al. 2020, Kaplan et al.

2023) are confined to clustering and network design. In contrast, we focus on an learning-and-earning

fashion, requiring a more flexible framework for rapidly changing urban business contexts. Moreover,

our framework accounts for the interdependence between facility locations and unknown demands.

Continuous approximation. Our proposed CA-O learning algorithm employs continuous approxima-

tion (CA) to overcome the computational challenge associated with large-scale discrete facility location

problems. The CA approach has been widely applied for various facility location problems. We re-

fer readers to Ansari et al. (2018) for a recent survey. Among the papers that advance the CA

method, Wang et al. (2017) propose a CA model to solve the dynamic facility location problem (yet

with known parameters). Our paper makes methodological contributions to the CA literature by

proposing an algorithmic framework to incorporate CA in an online-learning setup. Meanwhile, we

show that the gap incurred by CA is moderate. Other contexts that employ CA include, e.g., the

designs of supply chains (Lim et al. 2017), delivery system with drones (Carlsson and Song 2018),

and retail store layout (Belavina 2021). Most recently, Blanchard et al. (2024) provide probabilistic

approximations of k-traveling salesman problem and traveling repairman problem.

Combinatorial and continuous-armed bandits. Our paper advances the literature of bandits problems

in both combinatorial and continuous-armed settings. When the candidate set of facility location is

finite, online facility location degenerates into the area of combinatorial bandits. A combinatorial ban-

dit is a linear bandit problem with action set that belongs to a d-dimensional binary hypercube (Cohen

et al. 2017, Modaresi et al. 2020). In the online facility location problem, the total profit has a non-

linear structure, which much complicates the problem. If envisioning each possible combination as

an arm, the problem is related to bandits with correlated rewards but only a few paper addresses

this case (Ryzhov and Powell 2009, Ryzhov et al. 2012). When the possible facility locations lie in

a continuous space, our problem is closely related to bandits with continuous actions. Exploring all

arms is not feasible in bandits with continuous actions (non-combinatorial) (Agrawal 1995, Bubeck

et al. 2011, Krishnamurthy et al. 2020). Mersereau et al. (2009) and Rusmevichientong and Tsitsiklis

(2010) study bandits problem with possibly infinite numbers of arms when expected rewards are linear

functions of a scalar and a vector, respectively. More complicatedly, online facility location problem

can be envisioned as a coupling of bandits with continuous actions and combinatorial bandits. The

decision variable is a binary function on a multi-dimensional space where value 1 indicates the selection
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of the facility location. It is challenging to solve the online problem with both low regret guarantee

and low computational cost.

Decision-making with contextual information. For contextual bandits, upper-confidence bound

(UCB) algorithms are a celebrated class of algorithms that are shown to have nice empirical per-

formance (Bietti et al. 2021). A fair amount of works have been developed for linear bandits (Dani

et al. 2008, Chu et al. 2011, Agrawal and Devanur 2019) and generalized linear models (GLM) (Li et al.

2017, Kveton et al. 2020). More recently, in the optimization community, there is an emerging interest

in developing frameworks that integrate decision optimization and statistical model estimation (Ban

and Rudin 2019, Bertsimas and Kallus 2020, Elmachtoub and Grigas 2022, Ho-Nguyen and Kılınç-

Karzan 2022, Han et al. 2023). In our framework, both profit and response functions are parametric

forms of contextual information. However, as the relationship is unknown, exploration is required to

infer the true functions, through which to adaptively optimize decisions.

Urban retail and logistics. More broadly, our paper contributes to the growing literature on innova-

tive urban retail and logistics. Examples of flexible retail stores include pop-up stores (Zhang et al.

2019), buy-online-pick-up-in-store fulfillment (Glaeser et al. 2019), and autonomous mobile vending

stalls (Cao and Qi 2023). In a broader scope of logistics, there have been studies such as agile con-

solidation hubs (Wang et al. 2020), lockers (Lyu and Teo 2022), and urban aerial mobility (Kai et al.

2022). Our work complements these papers by theorizing the online location adjustment of flexible

facilities.

3 The model of mobile retail stores with online location adjustment

This section models the sequential decision making for the mobile store location problem. We first in-

troduce the problem formulation in Section 3.1, and then, analyze three main challenges in Section 3.2.

In Section 3.3, we describe the technique to decide the store locations with known demand, i.e., the

single period offline counterpart. A summary of notation is provided in Appendix A.

3.1 Formulation

Operations of mobile retail stores. Consider a retailer running a fleet of mobile retail stores to serve

customers across an urban area Xt on day t = 1, · · · , T . The customers naturally form Voronoi-shaped

service zones centered at mobile retail stores as they go to the nearest store to make purchases. The

retailer adjusts the locations of stores on a daily basis, with the objective of finding the optimal store

location design to maximize profit by selling more products and saving costs.

In the dynamic environment of mobile retail, exact demand locations are numerous and difficult

to identify. Mobile retail stores are small-scale and flexible in location decisions. Given the vast

number of potential store and demand locations, determining the exact locations becomes impractical.

Thus, instead of formulating conventional mixed-integer programs for location problems, we consider

a continuous service area, Xt, which is also the set of candidate store locations. The decisions are to

dynamically adjust a set of Nt store locations xt = {xt1, xt2, ..., xtNt} over time t, such that At(x) = 1

for x ∈ xt and At(x) = 0 otherwise, where At ∈ At and At is the set of all feasible actions on day t.

The choice of store locations automatically partitions space Xt into a set of non-overlapping influence

areas (i.e., service zones), X t = {Xt1,Xt2, ...,XtNt}, such that X t =
⋃
i Xti and Xti∩Xtj = ∅ for i ̸= j.

Since the decision At and (xt,X t) have one-to-one mapping, we can rewrite At as At(xt,X t), i.e.,

At(x) = At(xt,X t)(x) for all x ∈ X .

The influence areas represent one core trade-off in the decision-making for At. On one hand, when

setting larger influence areas, the retailer lowers operating costs by deploying fewer mobile retail stores.

However, the costs of replenishment per unit increase since trucks travel longer distances to restock

each store. Larger influence areas also result in disutility for customers, because customers have to

travel farther to visit these stores, which in turn reduces the retailer’s revenues.
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Demand function. We model the customer demand with contextual information. At the beginning of

day t, the retailer observes a context function Wt(x) : Xt → Wt. We assume that demand locations

are distributed according to a continuous spatial density function, denoted by ρθ∗(At, x;Wt(x)) (per

day per kilometer squared) for x ∈ X . This demand density function is parameterized by θ∗, and also

depends on the action At ∈ At and local context Wt(x). We specifically assume that a kernel vector

κ(At,Wt(x)) ∈ Rd describes the features at location x ∈ X such that

ρθ(At, x;Wt(x)) = θ⊤κ(At,Wt(x)). (1)

The features can be, for example, local population, distance to the store, traffic condition, etc. In

Section 6, we also provide a thorough discussion of the features we used in the case study in Toronto.

Our setting is general to allow the kernel function κ to potentially change over time t.

The profit of mobile retail stores depends on customer demand, but the retailer is unaware of the

demand because the parameter θ∗ is unknown and can only be estimated from historical observations.

However, the exact value of ρθ∗(At, x;Wt(x)) at x ∈ Xt is inaccessible, since demand is realized at

each store at location xtj rather than every point x ∈ Xt over the entire area. We assume Ytj is the

demand served by the store at location xtj on day t, such that its relationship with the explanatory

variables (At,Wt) is as follows:

Ytj = fθ∗(At;Wt,Xtj) + ϵtj ,

where

fθ(At;Wt,Xtj) =
∫
Xtj

ρθ(At, x;Wt(x))dx.

Moreover, let

Ht := σ(A1,W1, Y1, · · · ,Wt−1, At−1, Yt−1, At,Wt)

be the σ-algebra summarizing the information available just before observing the response Yt :=

{Ytj ; j = 1, ..., N}. We assume that the observational noise ϵtj is Ht-measurable and E[ϵtj |Ht] = 0.

Objectives. The retailer’s objective is to find a sequence of mobile retail store location decisions to

maximize the total expected profit. In other words, the retailer aims to solve a sequential problem:

max
{At∈At;t=1,...,T}

T∑
t=1

rθ∗(At;Wt), (2)

in which rθ∗(At;Wt) := E[Rθ∗ |At,Wt] denotes the conditional expected profit of day t, and θ∗ ∈ Rd is

the unknown parameter vector. On each day t, the retailer observes the contextWt(x), chooses a store

location action At ∈ At, observes the response Yt, and receives a profit Rt. The fundamental problem

in this paper is to simultaneously explore (to estimate θ∗) and exploit (to maximize profit) over time.

Through exploration, the retailer consciously sacrifices immediate profits in exchange for valuable

demand information, which empowers the retailer to make better decisions and consequently secure

higher future profits. However, if the retailer commits exclusively to exploiting current information

for actions, they run the risk of being blind to the demand variations in certain regions of area Xt or
certain dimensions of θ∗. This oversight leads to missed prospects for long-term profit maximization.

Define φθ∗(At, x;Wt(x)) as the per-km2 expected profit of serving demands around location x via

a store deployed. The profit equals the revenue from selling products, minus the cost of inventory

replenishment, and the operating cost of mobile retail stores, which we also call facility cost in our

notation. More specifically, the functional form can be expressed as follows:
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φθ(At, x;Wt(x)) = r̄ρθ(At, x;Wt(x))︸ ︷︷ ︸
Revenue density

− φi

(∫
Xtj

ρθ(At, x;Wt(x))dx,Xtj ;Wt(x)

)
︸ ︷︷ ︸

Inventory replenishment cost density

− φf

(∫
Xtj

ρθ(At, x;Wt(x))dx,Xtj ;Wt(x)

)
︸ ︷︷ ︸

Facility cost density

,

(3)

in which we define r̄ as the average revenue per customer, d(xtj , x) as the distance between a store at

xtj and a customer at x within its influence area.
∫
Xtj ρθ(At, x;Wt(x))dx is the expected daily sales

handled by the store serving Xtj . The inventory replenishment cost involves transporting goods from

a warehouse to multiple stores via truck routing. The facility cost includes fixed opening cost, and

goods handling cost (which is proportional to the daily sales). We omit the cost of repositioning stores

across days from At to At+1, as the retailer dispatches mobile stores to their bases at the end of each

day t.

We include
∫
Xtj ρθ(At, x;Wt(x))dx as an input in the inventory replenishment and the facility cost

density functions to emphasize that these two cost densities are calculated at the influence-area level

and then evenly allocated to each x ∈ Xt. We would also like to emphasize that the profit density

φθ(At, x;Wt(x)) at x ∈ X , by construction, depends not only on local action At(x) and local covariates

Wt(x), but also on At(x
′) for x′ ̸= x, due to the combinatorial nature of the problem.

Under such a setting, the expected profit at day t is

rθ∗(At;Wt) =

Nt∑
j=1

(∫
x∈Xtj

φθ∗(At, x;Wt(x))dx

)
,

and the overall problem (2) can be more explicitly rewritten as the following online facility location

(OFL) problem:

max
{(xt,X t);t=1,...,T}

T∑
t=1

Nt∑
j=1

(∫
x∈Xtj

φθ∗(At(xt,X t), x;Wt(x))dx

)
. (OFL)

3.2 Challenges

Solving the online facility location problem (OFL) is nontrivial. We identify three main challenges:

Complexity of action space: Most papers in the existing bandits literature assume the action set

A to be a space of variables. In contrast, in the online facility location problem, A is instead a

space of functions over a multi-dimensional space. That is, each of its element A(x) is defined

on a continuous domain X . The problem of selecting an optimal function is much more com-

plicated than choosing a variable, especially in an online-learning setting in which exploration

and exploitation need to be balanced. Even if we instead assume X to be discrete and finite so

that the problem falls into the scope of combinatorial bandits, the problem is still much more

challenging than what existing generic algorithms can handle. This is because the total profit

function in location problems may often involve nonlinear structures (e.g., inventory costs and

routing costs) that couple individual costs. Alternatively, if treating each combination as an

independent arm, the regret would increase exponentially with the cardinality of X . Therefore,

we need to leverage analytical convenience that is inherent in facility location models to design

a learning algorithm over an action space with high complexity (either a functional space or

combinatorial action space).

Computational intractability from optimistic algorithms: Computational tractability is an-

other challenge in designing the learning algorithm. The infinite action space usually incurs
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computational hurdles, even when optimizing over a variable rather than a function. In partic-

ular, the UCB algorithm constructs an uncertainty set for the parameter and solves a max-max

problem over the joint parameter and action set. However, solving the optimistic optimization

(max-max) problem for large or continuous action sets is often intractable due to the potential

nonconvexity of the problem. Even in a simple scenario of linear bandits with infinite actions,

solving the max-max problem entails a bilinear optimization problem. A similar issue also exists

in our (OFL) setup, where the domain X is continuous, and infinitely many choices exist since the

binary function space contains an infinite number of functions. Given the learning complexity

and optimization complexity, it is vital to design a computationally efficient online algorithm

with low-regret guarantees.

Regret analysis: Finally, we need to quantify the performance of the proposed optimal learning

algorithms. Since these new algorithms are customized for tackling the first two challenges,

we cannot directly borrow existing approaches, but have to conduct new analysis of the regret

benchmarked against the offline, full-information baseline.

3.3 Continuous approximation and cost analysis

We address the first challenge by simplifying the action space using a continuous approximation (CA)

approach. Meanwhile, we apply the CA approach to provide an estimation of the costs incurred in the

operations of mobile retail stores.

We start with an offline, single-period, static formulation, in which the retailer only considers a one-

shot optimization problem to maximize the profit function with complete information on the demand

(when the true parameter θ∗ is known). Even so, the store location model described in Section 3.1

is generally difficult to solve. As discussed in the first challenge in Section 3.2, the action space A is

infinite. Even if the action space is finite, enumerating all possibilities is likely to be computationally

infeasible. In addition, the profit density function φ(·) involves norms such as ∥xtj − x∥ to account

for the distance from a store to a point within its influence area Xtj . It is inconvenient to directly use

integrals of such norm functions to optimize discrete facility locations and partition the service zone.

To overcome these obstacles, we utilize a CA approach. The main idea of CA is that the size of

influence areas Xtj can be approximated by a continuous influence area function zt(x) for x ∈ Xtj , i.e.,
|Xtj | ≈ zt(x) where zt ∈ Zt. The set Zt is a class of non-negative and continuous functions over Xt. The
decision of the CA problem is zt(x) instead of the binary action function At(x). This approximation

has been extensively tested to result in small errors in approximating the optimal objective value if

zt(x) is slow-varying in x and if the influence areas are near “round” with stores located near their

centers, which are the case in the operations of mobile retail stores and indeed the case in near-optimal

designs under mild parameter conditions (Daganzo 2005). Subsequently, the profit density function

φθ(At(x,X );Wt(x)) in (OFL) can be approximated by a continuous function ψθ(zt(x);Wt(x)), yielding

the following single-period CA model:

max
At∈At

∫
x∈Xt

φθ(At, x;Wt(x))dx ≈ max
zt∈Zt

∫
x∈Xt

ψθ(zt(x);Wt(x))dx. (4)

The advantage of CA formulation on the right-hand side of (4) is that it can be decomposed and

then efficiently optimized with respect to each location x by finding the optimal solution z∗t (x) that

maximizes the integrand ψθ(zt(x);Wt(x)). This is because, whereas φθ(At, x;Wt(x)) depends on the

function At(x
′) for x′ ∈ X and x′ ̸= x, ψθ(zt(x);Wt(x)) only depends on value zt(x) locally at x.

Specifically,

z∗t (x; θ) = argmax
z′∈R

ψθ(z
′;Wt(x)). (5)
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The continuous profit density function ψθ(·) follows the similar structure as in (3) (for brevity, we

suppress the dependence of ρ and z on other quantities such as θ, W and t wherever appropriate):

ψθ(z(x);W (x)) = r̄ρ(x)︸ ︷︷ ︸
Revenue

− φi
(
ρ(x)z(x), z(x);W (x)

)
︸ ︷︷ ︸
Inventory replenishment cost

− φf
(
ρ(x)z(x), z(x);W (x)

)
︸ ︷︷ ︸

Facility costs

. (6)

These three terms are obtained through approximations: the store influence area |Xtj | is represented by

z(x) and daily sales
∫
Xtj ρ(x)dx by ρ(x)z(x). The demand density ρ(x) is short for ρθ(z(x), x;W (x)),

which depends on influence area z(x) and featureW (x) around location x. The inventory replenishment

cost and facility cost are given by

φi
(
ρ(x)z(x), z(x)

)
=
ρ(x)z(x)

S
· βTSPct√

z(x)
= βTSP

ct
S
ρ(x)

√
z(x), (7a)

φf
(
ρ(x)z(x), z(x)

)
=
afρ(x)z(x) + bf

z(x)
. (7b)

Here S, ct, βTSP, a
f , bf are cost parameters. We first quantify the daily truck routing costs for inventory

replenishment. Since a truck visits multiple stores per trip, the routing costs also depend on other

nearby store locations. Fortunately, we can approximate the replenishment frequency locally using CA.

For any store at a location x ∈ Xt, we determine the average number of daily replenishments so that the

volume of each refill, denoted as S, is a specific portion of the store’s capacity. Recall that the average

daily sales of the store is ρ(x)z(x). Therefore, we obtain the replenishment frequency as ρ(x)z(x)/S.

Suppose that the truck incurs a cost of ct per kilometer. The routing distance is obtained from the

traveling salesman problem (TSP) under Euclidean metric. The well-known BHH Theorem (Beard-

wood et al. 1959) provides an approximation of the optimal TSP tour as βTSP
∫
x∈Xt 1/

√
z(x)dx, where

βTSP is a constant; we use the estimation βTSP ≈ 0.7124, as suggested in Applegate et al. (2010).

Thus, the cost density of one trip is βTSPct/
√
z(x). Multiplying the frequency by one trip routing cost

immediately yields the estimation of replenishment cost density φi(·) in (7a). Afterward we estimate

the facility costs by denoting the goods handling costs as afρ(x)z(x) and the fixed opening cost of

a store as bf . Since the facility costs are incurred by a store covering area z(x), one can obtain the

facility cost density φf (·) in (7b). We will analyze three cases within this basic setting in Section 4,

including concave, convex functions, and functions lacking a closed-form maximizer.

Once obtaining the optimal solution z∗(·; θ) with parameter θ, one can translate the CA recipe into

discrete store location decisions, denoted by A(z∗(·; θ)), by applying a discretization procedure. Then

the final profit of action A(z∗(·; θ)) is

rθ(A(z
∗(·; θ));W ) =

∫
x∈X

φθ(A(z
∗(·; θ)), x;W (x))dx ≈

∫
x∈X

ψθ(z
∗(x; θ);W (x))dx.

For notation brevity, hereafter we define the approximate objective function from the CA model (4) as

rψθ (z;W ) :=

∫
x∈X

ψθ(z(x);W (x))dx. (8)

We will analyze the error induced by CA in Section 5.

Remark. The functional form (7) is specific to the mobile retail problem. In Appendix E, we analyze

additional settings beyond the scope of mobile retail stores as model extensions to enhance the general

applicability of our model, such as one-to-one inventory replenishment, delivery products to customers,

and last-mile delivery using micro-depots.

4 The CA-O learning algorithm

We now proceed to develop learning algorithms that address the operations of mobile retail stores

over the planning horizon T , with the retailer seeking to maximize overall profits. In Section 4.1 we



Les Cahiers du GERAD G–2025–45 10

propose an algorithmic framework for solving the sequential decision making problem (OFL). Moving

on to Section 4.2, we tackle the second challenge mentioned in Section 3.2 by designing an alternative

algorithm that is computationally efficient. We will address the third challenge of quantifying regret

in Section 5.

4.1 A learning framework

Having described the CA technique for the single-period problem, we move on to the online and multi-

period setting with parameter learning incorporated. A general principle of such decision making is

optimism in the face of uncertainty. This principle is particularly embodied by the UCB algorithm,

which has been applied to a wide range of optimization problems. The benefit of the UCB algorithm in

mobile retail store operations is its ability to achieve balance between maximizing profits and gathering

information about demand across various service regions and dimensions of θ∗, all while optimizing

actions efficiently over the time horizon.

The key step in the UCB algorithm is to construct a confidence set Θt ⊂ Rd based on Ht. Similar

to linear bandits, there are conflicting desirable properties for constructing Θt: Θt should contain the

unknown parameter θ∗ with high probability and Θt should be as small as possible. When Θt contains

the true parameter θ∗, maxθ∈Θt maxA∈At rθ(A;Wt) provides an upper bound for the true optimal

objective value. For a given action A ∈ At and confidence set Θt, let

UCBt(A) = max
θ∈Θt

rθ(A;Wt)

be an upper-confidence-bound of the expected reward of action A, and the reward in our (OFL) setup
is the overall profit of a mobile retail store location design. Therefore, UCBt(A) is an optimistic

estimator. The UCB algorithm selects action At at time t such that

At = argmax
A∈At

UCBt(A) = argmax
A∈At

max
θ∈Θt

rθ(A;Wt). (9)

To solve this problem, we propose a Continuous-Approximation Optimistic Learning (CA-O Learn-
ing.) Algorithm. The idea is to combine the CA technique with a new UCB algorithm. Specifically,

having simplified the action space to locationwise-decomposable influence area functions, the first step

is to simply replace problem (9) with the following CA problem

max
θ∈Θt

max
z∈Zt

rψθ (z;Wt) (10)

to reduce the complexity of the action space. Since z∗t (x; θ) for any given θ can be efficiently evaluated

point by point, we can rewrite the optimization problem (10) as follows:

max
θ∈Θt

rψθ (z
∗
t ;Wt) = max

θ∈Θt
max
z∈Zt

rψθ (z;Wt)
(5)
= max

θ∈Θt

∫
x∈X

ψθ(z
∗
t (x; θ);Wt(x))dx. (OFL-CA)

The next step is to construct the uncertainty set Θt in (OFL-CA). Each historical observation

is represented by a triple (Yt,Wt, At) where Yt ∈ RNt is a vector of responses at time t. Given

t − 1 observations, {(Ys,Ws, As)}t−1
s=1, we suppose that the model parameter θ∗ can be estimated by

minimizing a statistical squared-loss function on ℓλt : Rd → R:

θ̂t ∈ argmin
θ∈Rd

ℓλt (θ) = argmin
θ∈Rd

t−1∑
s=1

Ns∑
j=1

(Ysj − fθ(As;Ws,Xsj))2 + λ∥θ∥22,

where λ > 0. We use the shorthand fsj(θ) := fθ(As;Ws,Xsj) to denote the mean demand at the

influence area Xsj . Now consider a supervised learning oracle that outputs a root of the following



Les Cahiers du GERAD G–2025–45 11

equation of the gradient of the loss function:

∇θℓ
λ
t (θ̂t) =

t−1∑
s=1

Ns∑
j=1

(fsj(θ̂t)− Ysj)gsj + λθ̂t = 0, (Oracle)

where gsj = ∇θfsj(θ) =
∫
Xsj κ(As,Ws(x))dx. (Oracle) can be viewed as the first-order condition for

minimizing the loss function. For a fixed λ, define the design matrix

Vt =

t−1∑
s=1

Ns∑
j=1

gsjgsj
⊤ + λI. (11)

The matrix Vt is determined by historical actions and contexts. Vt plays an important role in con-

structing the uncertainty set. At time step t, we define the uncertainty set as

Θt = {θ : ∥θ − θ̂t∥Vt ≤ γt},

which is an ellipsoid centred at θ̂t with principal axes being the eigenvectors of Vt and the radius

being γt. The corresponding eigenvalues of Vt are increasing with time, so the radius of the ellipse is

decreasing. With a proper choice of γt, the designed algorithm guarantees that the true parameter θ∗

is contained in Θt with high probability.

Based on the above two steps, we outline CA-O Learning. Algorithm to solve Problem (OFL). In

line 1-3, we randomly explore actions in the first t0 time periods. At time t = t0 + 1, · · · , T , we first

compute an estimator θ̂t by solving (Oracle). Then we construct an elliptical uncertainty set Θt in

line 7. In line 8, we first solve problem (5) for the analytical expression of the size of the continuously

approximated influence area z∗t (x; θ) as a function of θ, and then solve the optimistic optimization

problem (OFL-CA) for the optimistic parameter estimator θt over Θt. Finally, in line 9, we apply a

discretization procedure to functions z∗t (·; θt) and then implement location decisions A(z∗t (·; θt)).

Algorithm CA-O Learning.

Input: time horizon length T and exploration periods t0
1: for t = 1, · · · , t0 do
2: Choose decision At ∈ At according to the sampling rule, and receive response Yt;
3: end for
4: for t = t0 + 1, · · · , T do
5: Compute θ̂t by solving (Oracle);
6: Update Vt according to Equation (11);

7: Update Θt = {θ : ∥θ − θ̂t∥Vt ≤ γt};
8: Derive the analytical expression z∗t (·; θ) from problem (5), and then solve (OFL-CA) for the optimistic estimator
θt;

9: Implement At = At(z∗t (·; θt)) based on continuous solution z∗t (·; θt); Receive response Yt;
10: end for

The following case, a slight variant of the cost formulas specified in (7), illustrates how to apply

CA-O Learning. Algorithm. We consider the case where the objective function of (OFL-CA) is concave
in θ, so that the step (line 8) of solving (OFL-CA) can be efficient.

Case 1 (Concave Objective Function). In the initial stage of mobile retail store deployment, the retailer

has the option to utilize crowdsourcing delivery to restock their stores. Crowdsourcing offers retailers an

asset-light strategy for establishing their logistics. However, the cost of crowdsourcing might increase

with higher demand, as the drivers bid on tasks with fluctuating prices. Based on cost formulas (7),

we further assume the unit travel cost of replenishment increases with demand, i.e., ct = c̄tρθ(x), in

which c̄t is a constant. We also consider the demand kernel function κ(At,Wt(x)) = Wt(x), so that

the demand density only depends on contextual covariates and ρθ(x) = θ⊤Wt(x). The CA of profit

function is

rψθ (zt;Wt) =

∫
x∈Xt

ψθ(zt;Wt(x))dx =

∫
x∈Xt

(
r̄ρθ(x)− βTSP

c̄t
S
ρ2θ(x)

√
zt(x)−

afρθ(x)zt(x) + bf

zt(x)

)
dx.
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Applying the first-order condition to this CA model yields the following optimal solution and

optimal profit density function, respectively:

z∗t (x; θ) =

(
2bfS

βTSPc̄tρ2θ(x)

) 2
3

,

ψθ(z
∗
t (x; θ);Wt(x)) = (r̄ − af )ρθ(x)− 3

(
bf
) 1

3

(
βTSPc̄t
2S

) 2
3

ρ
4
3

θ (x).

Given that ρθ(·) is a linear function in θ, ψθ(z
∗
t (x; θ);Wt(x)) is concave in θ. It follows that the objective

of (OFL-CA), rψθ (z
∗
t (·; θ);Wt), is also concave in θ, as r

ψ
θ (z

∗
t (·; θ);Wt) is an integral of ψθ(z

∗
t (x; θ);Wt(x))

over x ∈ X . Additionally, since Θt is a convex set, the maximization problem (OFL-CA) becomes a

tractable convex optimization problem with a differentiable objective function. This problem can be

efficiently solved using convex optimization algorithms. ♣

As one of the main algorithms proposed in this paper, CA-O Learning. resolves the complexity

of the action space by utilizing the structural convenience of CA, embeds a UCB-type of strategy to

balance the exploration vs. exploitation trade-off, and invokes an influence-area-discretization recipe.

Before jumping into the regret analysis for this algorithm, we need to overcome one more obstacle:

Echoing the second challenge stated in Section 3.2, the optimization problem (OFL-CA) in line 8 may

be computationally difficult. We solve this issue and alternatively propose Algorithm CA-O Faster
Learning in the next subsection.

4.2 Computational challenges and CA-O faster learning

We first discuss when the optimization problem (OFL-CA) is readily solvable. As demonstrated in

Case 1, when the function rψθ (z
∗(·; θ);W ) is concave in θ, the maximization over a convex set can be

addressed using the first-order condition. Conversely, if rψθ (z
∗(·; θ);W ) is convex in θ, optimizing it

may result in reduced computational efficiency, as illustrated in the subsequent case.

Case 2 (Convex Objective Function). We keep the same assumption as in Case 1 that the demand

density function is represented by ρθ(x) = θ⊤Wt(x). We alternatively consider the basic operational

setting of mobile retail stores, with cost formulas as given by (7). The CA of profit function is expressed

as

rψθ (zt;Wt) =

∫
x∈Xt

ψθ(zt;Wt(x))dx =

∫
x∈Xt

(
r̄ρθ(x)− βTSP

ct
S
ρθ(x)

√
zt(x)−

afρθ(x)zt(x) + bf

zt(x)

)
dx.

At each x, the optimal solution z∗t (x; θ) and the optimal profit density are given by

z∗t (x; θ) =

(
2bfS

βTSPctρθ(x)

) 2
3

,

ψθ(z
∗
t (x; θ);Wt(x)) = (r̄ − af )ρθ(x)− 3

(
bf
) 1

3

(
βTSPct
2S

ρθ(x)

) 2
3

,

which indicates that ψθ(z
∗
t (x; θ);Wt(x)) is convex in θ, and it follows that rψθ (z

∗
t (·; θ);Wt) is convex

in θ. Thus, if Θt is a convex hull of a finite set, it suffices to enumerate values of θ over a finite set

of extreme points, but the number of enumerations can be large. Especially, we construct Θt as an

ellipsoid set in this paper, which means that there are infinite many extreme points. As a result, the

maximization problem (OFL-CA) becomes intractable in this case. ♣

In general, directly solving problem (OFL-CA) can be computationally cumbersome due to noncon-

vexity. To overcome this difficulty, we propose Algorithm CA-O Faster Learning. The idea is to change
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Algorithm CA-O Faster Learning

Input: time horizon length T and exploration periods tF0
1: for t = 1, · · · , tF0 do
2: Choose decision At ∈ At according to the sampling rule, and receive response Yt;
3: end for
4: for t = t0 + 1, · · · , T do
5: Same as lines 5-7 in CA-O Learning.;
6: Compute z∗t (·; θ̂t) according to Equation (5) and compute θt by solving:

θt = argmax
θ∈Θt

rψ
θ̂t
(z∗t (·; θ̂t);Wt) +∇rψ

θ̂t
(z∗t (·; θ̂t);Wt)

⊤(θ − θ̂t);

7: Implement At = At(z∗t (·; θt)) based on the continuous solution z∗t (·; θt); Receive response Yt;
8: end for

line 8 of CA-O Learning.. Specifically, to optimize over θ, we instead use the first-order approximation

as the objective function

rψθ (z
∗
t (·; θ);Wt) ≈ rψ

θ̂t
(z∗t (·; θ̂t);Wt) +∇rψ

θ̂t
(z∗t (·; θ̂t);Wt)

⊤(θ − θ̂t),

where ∇rψ
θ̂t
(z∗t (·; θ̂t);Wt) is the gradient of the composite function rψθ (z

∗
t (·; θ);Wt) with respect to θ

at θ̂t. Under this approximation, we only need to find θ ∈ Θt such that

θt = argmax
θ∈Θt

∇rψ
θ̂t
(z∗t (·; θ̂t);Wt)

⊤(θ − θ̂t). (12)

which has a closed-form solution at each day t as the following lemma shows.

Lemma 1. The optimal solution to Equation (12) is θt = θ̂t + γt
V −1
t ∇rψ

θ̂t
(z∗t (·;θ̂t);Wt)

∥∇rψ
θ̂t

(z∗t (·;θ̂t);Wt)∥V−1
t

.

This is a one-step computation after obtaining the estimator θ̂t, and thus significantly improves

the computational efficiency. Furthermore, there exists a scenario where CA-O Learning. fails and

only CA-O Faster Learning can be applied - specifically when z∗t cannot be solved analytically. In

such instances, the optimal objective function ψθ does not even have a closed-form expression, as the

following case illustrates.

Case 3 (No Closed-form Solution). When store influence areas are large, the travel disutility for cus-

tomers cannot be overlooked. Consequently, customer demand decreases as the distance to the stores

increases. Following the customer demand model proposed by Berman et al. (1995), we assume that

demand decays exponentially with distance. Specifically, for customers located at x ∈ Xt, suppose
the nearest store is situated at xtj . i.e., these customers are within the influence area of store j. The

demand density function can be expressed as

ρθ(At, x;Wt(x)) = θ⊤κ(At,Wt(x)) = θ⊤Wt(x) exp {−c0d(xtj , x)} ,

where c0 represents a constant parameter, and d(xtj , x) denotes the distance between customers at

location x and the nearest store.

The CA approach yields the average demand density over a store’s influence area z(x), given as

ρθ(zt(x), x;Wt(x)) = θ⊤Wt(x) exp
{
−c0 2

3
√
π

√
zt(x)

}
. In the logistics setting where cost formulas are

defined by (7), the resulting profit density function is as follows:

ψθ(zt(x);Wt(x)) =
(
r̄ − af − βTSP

ct
S

√
zt(x)

)
θ⊤Wt(x) exp

{
−c0

2

3
√
π

√
zt(x)

}
− bf

zt(x)
. (13)

Although we can numerically evaluate z∗t (x; θ) by solving ∂ψθ
∂zt

(z∗t ;Wt(x)) = 0, a closed-form maximizer

z∗t (x; θ) does not exist. The resulting integral function r∗θ(z
∗
t ;Wt) is thus implicit in the expression. ♣
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In Case 3, (OFL-CA) cannot be reduced to an optimization problem solely with respect to θ in a

closed-form expression, rendering CA-O Learning. inapplicable. The next step is to examine whether

we can apply CA-O Faster Learning by computing ∇rψ
θ̂t
(z∗t ;Wt) in line 6. As aforementioned, we

may not be able to obtain a closed-form solution for z∗t , which ∇rψ
θ̂t
(z∗t ;Wt) depends on. In such a

scenario, it becomes impossible to obtain a closed-form formula of ψθ(z
∗
t (x; θ);Wt(x)) with respect to θ.

The numerical computation of ∇rψθ (z∗;W ) =
∫
x∈X ∇θψθ(z

∗(x; θ);W (x))dx is required. However, the

numerical differentiation ∇θψθ(z
∗(x; θ);W (x)) presents two issues. First, finite differences method is

potentially ill-conditioned for the implicit function. Second, as the calculation of ∇θψθ(z
∗(x; θ);W (x))

involves ∇θz
∗(·; θ), evaluating z∗(·; θ + dθ) numerically introduces additional precision errors. Both

issues worsen the error in our approximation algorithm.

Nevertheless, fortunately and surprisingly, the above potential issues can be avoided by Lemma 2,

which provides an explicit and analytical formula for the gradient ∇θψθ(z
∗(x; θ);W (x)), without the

knowledge of ∇θz
∗(·; θ). The value of Lemma 2 lies in its ability to avoid the complex computation of

∇θz
∗(·; θ).

Lemma 2. For any θ ∈ Θ and x ∈ X , we can compute the gradient of ψθ as follows

∇θψθ(z
∗(x; θ);W (x)) =

[
r̄ − z∗(x; θ)

(
∂φi

∂(ρ(x)z∗(x; θ))
+

∂φf

∂(ρ(x)z∗(x; θ))

)]
κ(z∗(x; θ),W (x)).

In summary, if a closed-form solution z∗t (·; θ) exists and r
ψ
θ is concave in a maximization problem,

Algorithm CA-O Learning. operates efficiently. If z∗t (·; θ) is in closed-form with convex rψθ , one can

opt for CA-O Learning. and enumerate all extreme points of Θt if extreme points are of small size;

otherwise, CA-O Faster Learning is the better option. If there is no closed-form solution z∗t (·; θ),
Algorithm CA-O Faster Learning can be employed to solve the online learning problem efficiently.

Remark. Lemma 2 offers a guideline for analytically obtaining a closed-form gradient ∇rψθ (z∗t ;Wt),

even when a closed-form solution for z∗t is unavailable. Utilizing Lemma 2 in CA-O Faster Learning is

a win-win contribution from computational perspectives since it enhances precision and streamlines

computation of the gradient. Moreover, CA-O Faster Learning accelerates computations, even in special

cases where rψθ is concave. While certain cases require maximizing an intricate integral function over an

ellipsoid set Θt, CA-O Faster Learning simplifies the process by only needing one evaluation∇rψθ (z∗t ;Wt),

without relying on the concavity of rψθ . However, it is worth noting that the efficiency necessitates

additional initial explorations to ensure optimal regret performance, which will be further discussed in

Section 5.2.

5 Regret analysis

We are now ready to establish the regret bound for both CA-O Learning. and CA-O Faster Learning
Algorithms. Define Regret of policy π as

Regretπ(T ) = Eπ

[
T∑
t=1

Rt(A
∗
t ;Wt, θ

∗)−Rt(At;Wt, θ
∗)

]
=

T∑
t=1

rθ∗(A
∗
t ;Wt)− rθ∗(At;Wt),

where A∗
t is the optimal store location action; that is, A∗

t = At(z
∗
t (·; θ∗)), the action discretized from

the optimal CA design based on true parameter θ∗. At is the action implemented at time t according

to policy π. In our proposed algorithms, we take At = At(z
∗
t (·; θt)). We measure the profit gap

between A∗
t and At in regret, given that A∗

t represents the optimal discretized decision attainable by

the retailer. In order to analyze the regret, we must quantify two gaps, as detailed in Lemma 3: The

first, termed the CA gap and denoted by GapCA, is the disparity between the profit provided by the

CA model and that from the discretized action. The second, referred to as the learning gap, is the

difference between the profits implied by the same action under true and optimistic parameters.
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Lemma 3. When θ∗ is contained in the uncertainty set Θt, the regret contributed at time step t in

our proposed algorithms can be decomposed as follows:

rθ∗(A(z
∗
t (·; θ∗));Wt)− rθ∗(A(z

∗
t (·; θt));Wt) ≤

(
rθt(A(z

∗
t (·; θt));Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

)︸ ︷︷ ︸
learning gap

−
(
rψθ∗(z

∗
t (·; θ∗);Wt)− rθ∗(A(z

∗
t (·; θ∗));Wt)

)︸ ︷︷ ︸
CA gap

+
(
rψθt(z

∗
t (·; θt);Wt)− rθt(A(z

∗
t (·; θt));Wt)

)︸ ︷︷ ︸
CA gap

.
(14)

In Section 5.1, we first quantify the CA gap, and show that the CA gap is moderate. Al-

though Ouyang and Daganzo (2006) use several numerical examples of offline location problems to

demonstrate that the CA gap is small, there lacks a universally valid theoretical upper bound for the

CA gap. However, such a bound is particularly relevant in an online setting, where the CA gap may

widen over time. We address this void in the literature by deriving an upper bound for the CA gap.

Initially, we examine a single period, thereby omitting the time index t. Subsequently, in Section 5.2,

we focus on the learning gap over the planning horizon, and then analyze the total regret.

5.1 CA Gap Analysis

In this subsection, we provide the intuition and technical assumptions to derive an upper bound of the

CA gap. For brevity, we relegate detailed proof and a discretization procedure in Appendix C.1.

To determine the bounds for the CA gap, we are motivated by a pivotal alternative influence area

function zs(x), constrained as a step function, such that zs(x) = |Xj |, ∀x ∈ Xj . We refer to this

alternative as the step CA. The definition of step CA allows us to decompose the CA gap for each

influence area j into two parts: 1) the gap from the optimal CA z∗(x) to the step CA, denoted by

Gapj,o2s; 2) the gap from the step CA to the actual design obtained from the discretization procedure,

denoted by Gapj,s2d. Thus, the CA gap can be bounded as GapCA :=
∑
j Gapj,o2s + Gapj,s2d.

The approach to quantify Gapj,o2s is to apply Taylor expansion at z∗, where the linear term vanishes

due to the first-order condition. Referring to Cases 1–3, we assume that the profit density function

ψ(z) is twice differentiable and quasi-concave in z (which generally holds for mobile store location

problems). Afterward,

Gapj,o2s :=

∫
x∈Xj

(
ψ(z∗(x))− ψ(zs(x))

)
dx = −

∫
x∈Xj

ψ′′(z̄(x))

2ρ(x)
(zs(x)− z∗(x))2ρ(x)dx,

where z̄(x) is a convex combination of zs(x) and z∗(x). In the above integral, ψ
′′(z)
ρ(x) is the curvature of

per-customer profit density function with a constant upper bound given by |ψ′′(z)|
ρ(x) ≤ ηψ. Since zs(x)

can be regarded as the mean of z∗(x) over Xj ,
∫
x∈Xj (z

s(x) − z∗(x))2ρ(x)dx measures the variability

of z∗(x) over Xj . Combining the two terms together yields the following upper bound for Gapj,o2s:

Lemma 4. Define the variance of z∗(x) over area Xj as V ar(z∗;Xj) :=
∫
x∈Xj (z

∗(x) − E[z∗])2ρ(x)dx.
The profit gap between the optimal CA and the step CA for each influence area j is bounded as follows:

0 ≤ Gapj,o2s ≤
ηψ

2
V ar(z∗;Xj).

In general, if the underlying customer distribution profile ρ(·) is a slow-varying function (which is

often the case in practice), so is the influence area function z∗(·). Then the variance of z∗(·) should be

close to zero. We thus expect that Gapj,o2s should be reasonably small.

We next quantify Gapj,s2d. Upon examining Cases 1–3, we summarize key profit function structures

of mobile store location problems in Assumption 1.
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Assumption 1 (Operations of Mobile Retail Stores).

(I) Store locations x = {x1, x2, ..., xN} are centroids of the influence areas.

(II) Both the revenue and the facility cost φf are affine functions of the daily sales at the store.

(III) The inventory replenishment cost φi is a concave function of both the truck routing distance

and the daily sales at the store.

We adopt these assumptions given their relevance to the context of the problem, not solely for

the sake of analytical convenience. Notably, Assumption 1(I) reflects real-world practices: stores are

commonly located at influence area centroids because customers tend to prefer the nearest stores.

Assumption 1(II) is widely used in facility location models. Assumption 1(III) is valid for Cases 2

and 3, although it is not entirely realistic for Case 1. In fact, the proof of Lemma 5 will show that

our derived upper bound is always valid without Assumption 1(III) if we do not need to preserve the

direction of the gap.

The magnitude of Gapj,s2d depends on the variability in the profit function. Consider X as a

random location in Xj , and X ′ as a random location in X . V ar(d(X ′, X);Xj) denotes the variance of

the random replenishment trip distance d(X ′, X); V ar(ρ(X);Xj) denotes the variance of the random

demand density ρ(X). With the additional value caps imposed in Assumption 2, Lemma 5 provides

quantification of this gap.

Assumption 2 (Functional Boundedness). The second derivative of the inventory replenishment cost φi

with respect to inbound truck routing distance exists, and its absolute value is bounded from above

by ηi. The second derivative of φi with respect to daily sales exists, and its absolute value is bounded

from above by ηρ.

Lemma 5. (I) Suppose Assumptions 1 and 2 hold, the profit gap between the step CA and the discrete

design for each influence area j is bounded as follows:

0 ≤ Gapj,s2d ≤
ηi

2
V ar(d(X ′, X);Xj) +

ηρ

2
V ar(ρ(X);Xj).

(II) Alternatively, relaxing Assumption 1(III) yields

|Gapj,s2d| ≤
ηi

2
V ar(d(X ′, X);Xj)) +

ηρ

2
V ar(ρ(X);Xj).

Referring to the results of Lemma 5, one can expect that the gap between the step CA and the

discrete design is likely to be mild, too. If the customer distribution ρ(·) is a slow-varying function,

V ar(ρ(X);Xj) should be close to zero, and the values of ηi and ηρ will be small. In addition, if the

influence areas are small (i.e., stores are densely deployed), V ar(d(X ′, X);Xj) also tends to diminish.

These conditions are commonly observed in practice.

Combining Lemma 4 and 5 immediately yields the following Theorem 1 of the CA gap. GapCA
is moderate since both Gapj,o2s and Gapj,s2d should be small. For ease of notation, we define the

universal CA gap as

βCA := sup
{X}

∑
j

(
ηψ

2
V ar(z∗;Xj) +

ηi

2
V ar(d(X ′, X);Xj) +

ηρ

2
V ar(ρ(X);Xj)

)
,

where {X} is the set of feasible partitions of influence areas divided by stores. βCA represents the

supremum obtained by considering all possible store locations and summing the CA gap for each

influence area.

Theorem 1 (CA Gap). Suppose Assumptions 1 and 2 hold. The CA gap incurred in each period is

bounded as 0 ≤ GapCA ≤ βCA. Furthermore, if relaxing Assumption 1(III), the CA gap is bounded as

follows: |GapCA| ≤ βCA.
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Theorem 1 provides two bounds for the CA gap. The first bound guarantees that GapCA is always

non-negative, but holds under more restrictive assumptions. In what follows, we use the second bound

in the regret analysis to account for a more general setting in mobile retail problem.

5.2 Regret analysis of learning algorithms

In this subsection, we prove the regret bounds for Algorithm CA-O Learning. and CA-O Faster Learning.
Recall that the regret is decomposed into the CA gap and the learning gap in Lemma 3 where the

learning gap is defined as rθt(A(z
∗
t (·; θt));Wt) − rθ∗(A(z

∗
t (·; θt));Wt). In this way, the gap between

profits under different actions is transformed into the gap between the profit functions with parameters

θ∗ and θt under the same action A(z∗t (·; θt)). Intuitively, when the difference between θ∗ and θt is small,

so is the regret incurred at time step t. Therefore, to derive the theoretical regret guarantees, we first

aim to bound the uncertainty radius, which should be in the form of a norm of θ̂t − θ∗. With the

assistance of the following two assumptions that are commonly acknowledged in the bandits literature,

we are able to derive the bound for the radius of the uncertainty set.

Assumption 3 (Conditional Sub-Gaussianity). There exists σ > 0 such that for every t = 1, . . . , T and

for all 0 ≤ j ≤ Nt and u ∈ R, it holds that E[exp(uϵtj) | Ht] ≤ exp(u2σ2/2).

Assumption 4 (Boundedness). The following conditions hold:

(I) rmax := supA∈A,W∈W rθ∗(A;W ) <∞ and rmax ≥ 1.

(II) ℏf := supθ∈Θ,W∈W ∥∇2
θr
ψ
θ (z

∗(·; θ);W )∥2 <∞.

(III) The maximal number of stores is Nmax <∞.

(IV) βΘ := supθ∈Θ ∥θ∥2 <∞.

(V) βκ := supx∈X ,W∈W,A∈A max{∥κ(A, x;W (x))∥2} <∞.

(VI) φi is Lipschitz continuous on store daily sales (ρz) with modulus αi.

(VII) αf := sup
∣∣∣ ∂φf∂(ρz)

∣∣∣ <∞.

Essentially, the σ-subgaussianity in Assumption 3 regulates that the tails of the response noise ϵt
decay at reasonably fast rate. Assumption 4 offers bounding constants that are instrumental in the

derivation of regret guarantees. We now proceed to give a high-level idea of constructing the uncer-

tainty set for parameter θ∗. Recall that gsj denotes the gradient ∇fθ(As;Ws,Xsj) and λ is used in the

squared-loss function ℓ. Define ξt =
∑t−1
s=1

∑Ns
j=1 ϵsjgsj . We obtain the following lemma by reformulat-

ing (Oracle) into ∥θ̂t − θ∗∥Vt = ∥ξt − λθ∗∥V −1
t

and applying Cauchy-Schwarz inequality, with detailed

proof in Appendix C.2.

Lemma 6. It is established that ∥θ̂t − θ∗∥Vt = ∥ξt − λθ∗∥V −1
t

≤ ∥ξt∥V −1
t

+
√
λβΘ.

In light of Lemma 6, ∥ξt∥V −1
t

+
√
λβΘ provides an upper bound for a proper choice of the radius of

the uncertainty set, i.e., ∥θ̂t − θ∗∥Vt . This inequality motivates us to provide a high-probability upper

bound for the stochastic term ∥ξt∥2V −1
t

using the definition of σ-subgaussian noise in Assumption 3, as

demonstrated in the following lemma. The high-level idea is to construct a non-negative supermartin-

gale Mt(x) = exp(⟨x, ξt⟩ − σ2

2 ∥x∥2Vt−λI) and then apply method of mixtures, the proof of which is in

Appendix C.2.

Lemma 7. For any δ ∈ (0, 1], we have

P
(
∃t ≥ 1, ∥ξt∥2V −1

t
≥ σ2

(
2 log

(
1

δ

)
+ log

(
det(Vt)

λd

)))
≤ δ.

Lemma 7 shows that ∥ξt∥2V −1
t

is in order O(log(t)) with probability at least 1 − δ. Combining

Lemma 6 and 7 provides an upper bound for ∥θ̂t − θ∗∥Vt . Further, by establishing an upper bound
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for det(Vt)/λ
d with Assumption 4(V), we immediately obtain the following result on the radius of the

parameter uncertainty set:

Lemma 8 (Radius of uncertainty set). Assuming that Assumptions 3 and 4 are in force, it holds with

probability at least 1− δ that, for all t ∈ [T ],

∥θ̂t − θ∗∥Vt ≤ γt,

where γt =
√
λβΘ + σ

√
2 log

(
1
δ

)
+ d log

(
1 +

(t−1)|X |2β2
κ

λd

)
.

Lemma 8 shows that the radius of the uncertainty set ∥θ̂t − θ∗∥2Vt is in order O(log(t)). At each

time step t, Algorithm CA-O Learning. and CA-O Faster Learning solve the optimization problem over

the confidence set ∥θ̂t − θ∥Vt ≤ γt. According to Lemma 8, θ∗ falls into this confidence set with high

probability, which also implies that the algorithm finds an optimistic solution.

According to the CA gap result in Theorem 1, for all 1 ≤ t ≤ T , we obtain

|rθ∗(A(z∗t (·; θ∗));Wt)− rψθ∗(z
∗
t (·; θ∗);Wt)| ≤ βCA, |rθt(A(z∗t (·; θt));Wt)− rψθt(z

∗
t (·; θt);Wt)| ≤ βCA.

Define event Et = {∥θ̂t − θ∗∥Vt ≤ γt}. When Et holds, based on the regret decomposition (14), the

regret accumulated at time step t can be bounded as follows:

(rθ∗(A(z
∗
t (·; θ∗));Wt)− rθ∗(A(z

∗
t (·; θt));Wt))1(Et)

≤(rθt(A(z
∗
t (·; θt));Wt)− rθ∗(A(z

∗
t (·; θt));Wt))1(Et) + 2βCA.

It remains to bound the learning gap, represented by the first term on the right-hand side of the

inequality. While our observation is on the demand, the learning gap is measured in terms of profit.

To address this discrepancy, the following lemma shows that a profit gap can be bounded by a demand

gap.

Lemma 9. Suppose Assumption 4 holds. There exist constants Lr > 0 such that for every θ ∈ Θ, and

for every subzone Xj ⊆ X , A ∈ A, W ∈ W, and 1 ≤ t ≤ T ,

|rθ(A;W,Xj)− rθ∗(A;W,Xj)| ≤ Lr|fθ(A;W,Xj)− fθ∗(A;W,Xj)|,

where Lr = r̄ + |X |αi + |X |αf .

Lemma 9 implies that the learning gap is bounded by Lr
∑Nt
j=1 |(θt − θ∗)⊤gtj |. Combining Lem-

mas 6–9, the following theorem establishes the regret bound for Algorithm CA-O Learning.. In the

regret analysis, we first show that the algorithm finds an optimistic solution at each step, and then

quantify the profit gap incurred by both the learning gap and the CA gap. The detailed proof is

provided in Appendix C.2.

Theorem 2 (Regret of Algorithm CA-O Learning.). Assume Assumptions 1–4 are in force. Let δ ∈ (0, 1).

With probability at least 1− δ, we can bound Regretπ(T ) as follows:

Regretπ(T ) ≤ rmaxt0 + 2rmaxLrγT

√
2NmaxdT log

(
dλ+ T |X |2β2

κ

dλ

)
+ 2βCAT.

Next we characterize the regret bound for Algorithm CA-O Faster Learning. To expedite the learning
process, we utilize the first-order approximation, which incurs additional error of O(∥θ∗ − θ̂t∥22 + ∥θ̂t−
θt∥22). This approximation performs better when the estimated parameter gets closer to the true

parameter. Thus, we first explore tF0 time periods to guarantee that the estimated parameter is close

to the true parameter, then we simultaneously explore and exploit using the faster learning algorithm.

We impose the following assumption on the context divergence, which makes it possible to gather

information from the exploration periods.
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Assumption 5 (Context Diversity). During the exploration periods, the retailer adopts a randomized

policy π to generate the number of stores N(A) and location decisions A from uniform distributions.

There exists a constant 0 < λ <∞ such that the eigenvalues can be bounded by

λ

EA∼π(A),W

N(A)∑
j=1

∫
Xj
κ(A, x;W (x))dx

∫
Xj
κ(A, x;W (x))⊤dx

 ≥ λ.

The two algorithms require different numbers of exploration periods. Algorithm CA-O Learning.
needs only O(1) initial explorations, while Algorithm CA-O Faster Learning requires more to ensure

a good approximation. We define tF0 = max
{ √

T
(1−δ)λ ,

(log(d)−log(δ))|X |2β2
κ

(δ+(1−δ) log(1−δ))λ

}
. Under Assumption 5,

Lemma 12 in Appendix C.2 demonstrates that, after tF0 exploration periods, the distance between θ̂

and θ∗ is at most O( 1√
T
) with high probability. With this order of approximation, we quantify the

regret of Algorithm CA-O Faster Learning in Theorem 3.

Theorem 3 (Regret of Algorithm CA-O Faster Learning). Assume Assumptions 1–5 are in force. Let

δ ∈ (0, 1). With probability at least 1− 2δ, we can bound Regretπ(T ) as follows:

Regretπ(T ) ≤ rmaxt
F
0 + 2rmaxLrγT

√
2NmaxdT log

(
dλ+ T |X |2β2

κ

dλ

)
+ 2ℏfγ2T

√
T + 2βCAT.

Theorems 2 and 3 suggest that the regret decomposes primarily into O(d
√
T ) and O(βCAT ). The

former arises from inherent parameter uncertainty in the learning algorithm, while the latter results

from using the CA approach to address computational and analytical challenges. However, our numer-

ical experiments reveal that the regret remains sublinear. Furthermore, when our estimator is close to

the true parameters, the two CA gaps in (14) largely cancel each other out, making the impact of the

CA gap minimal.

We conclude this section on regret analysis by highlighting the contributions of our proposed algo-

rithms. First, our algorithms resolve the complexity raised by the task of demand learning in location

models. We adopt the CA approach to convert combinatorial action and objective functions into con-

tinuous models and thus simplify the action space. Second, we address the computational challenges

in optimistic algorithms due to the potential nonconvexity. The continuous functions provided by

CA enable the application of first-order approximation, which, coupled with the closed-form gradient

expression, jointly enhances the efficiency of Algorithm CA-O Faster Learning, even if the optimization

is non-convex or lacks a closed-form expression of z∗(·). Meanwhile, this algorithm maintains the same

order of regret with respect to T , indicating minimal precision loss. Moreover, beyond the realm of

mobile retail store locations, the efficiency of CA-O Faster Learning holds potential for other bandits

problems with intricate structures, such as online vehicle routing.

6 Computational studies and managerial insights

To evaluate the empirical efficacy of the algorithms proposed in this paper, we conduct two main

numerical experiments. Section 6.1 presents a comparison using synthetic data in a mobile store

location problem to highlight the benefits of approximation. In Section 6.2, we conduct a case study

based on real-world data from Toronto. Section 6.3 then builds on these findings, contrasting our

algorithms’ performance against established benchmarks to underscore the value of mobility and online

learning in urban retail contexts.

6.1 Efficacy of the Faster Learning algorithm

As discussed in Case 1, both CA-O Learning. and CA-O Faster Learning can be applied to a mobile

store location problem when a closed-form solution exists. In this subsection, we specifically compare
these two algorithms from two aspects - the regret performance and the computational time.
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We set up numerical experiments as follows. We set r̄ = 6, af = 2, bf = 100, c̄t = 0.03, S = 50.

The contextual covariatesW (x) ∈ R50 are generated by Gaussian kernel functions. Customer demands

are distributed in a square region Xt := [0, 1]× [0, 1]. The observational noise is drawn from a Normal

distribution with mean zero and standard deviation being 50% of the actual demand of each influence

area. Both algorithms run for 4000 times using an AMD EPYC 7532 processor at 2.4GHz.
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Figure 3: The comparison of CA-O Learning. and CA-O Faster Learning: (a) optimality gap; (b) regret; (c) run time per
round. (a) and (b) are evaluated at three different rounds. (c) is evaluated by the average value of the planning horizon T .

We compare the two algorithms using three metrics as the bar-charts in Figure 3 illustrate. Specif-

ically, the first metric is the optimality gap, defined as

optimality gap :=
rθ∗(A(z

∗
t (·; θ∗));Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

rθ∗(A(z∗t (·; θ∗));Wt)
× 100%.

In other words, the optimality gap is the relative gap between the optimal reward obtained when know-

ing the true parameter θ∗ and the reward obtained based on the optimistic estimator θt. Figure 3(a)

shows that both algorithms learn very fast: The optimality gaps are under 5% after 10 rounds and

under 1% after 100 rounds. Furthermore, Figures 3(b) and (c) show that CA-O Faster Learning is able

to achieve similar regrets as CA-O Learning. at a 95% confidence level, but boasts about 200 times

higher computational efficiency.

6.2 Algorithmic advantages in real-world applications

To illustrate how Algorithm CA-O Faster Learning can be applied to solve a real-world problem without

a closed-form ψθ(z
∗
t (x; θ);Wt(x)), we examine the mobile retail problem specified in Case 3. Following

the CA model in (13), note that we are not able to obtain a closed-form maximizer. The optimization

involved in CA-O Learning. would be intractable. However, Algorithm CA-O Faster Learning can be

used to overcome this computational hurdle.

The experiment setting is as follows:. We set r̄ = 6, af = 2, bf = 400, ct = 3, S = 50, c0 = 0.5.

The context information of 23-dimensional data is obtained from real-world data in an urban area of

Toronto, Canada. In this context, 10 spatial attributes are selected from 2021 Census of Population (st

atcan.gc.ca). The other 13 attributes are time series data for the year 2022, including temperature,

precipitation, speed of gust, Fisher commodity price index for grocery and energy, historical retail trade

sales, and 7 indicators for weekdays. Figure 4(a) visualizes the demand density. The observational

noise is drawn from a normal distribution with a mean of zero and a standard deviation of 50% of the

actual demand in each influence area.

The decision-maker improves the store layout in the process of online learning. The update fre-

quency of store locations is set daily. We set tF0 = 1 for an initial exploration. After day t = 2, when

the online learning algorithm just starts, the store layout provided by our algorithm in Figure 4(c)

statcan.gc.ca
statcan.gc.ca
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(a) Demand Density (b) Optimal Store Density

(c) Store Locations on Day t = 2 (d) Store Locations on Day t = 30

Figure 4: Spatial visualization of ground truth information and stores locations in Toronto case study. The deeper green
color in (a) indicates higher demand density. The deeper blue color in (b)(c)(d) indicates smaller store influence area (i.e.,
higher stores density). The length of the vertical orange bar next to mobile store indicates the daily sales of the store.

deviates significantly from the ground truth optimal store density shown in Figure 4(b). Nevertheless,

by day t = 30 when we have a better estimation of the demand, the store layout decided by our

algorithm is already near-optimal, as shown in Figure 4(d). At this point, the profit is quite close to

the maximal profit. The figures show that a significant profit increment is achieved within only a few

rounds. This result demonstrates that CA-O Faster Learning quickly learns and converges.

To show the regret performance, we run Algorithm CA-O Faster Learning 200 times. Figure 5(a)

shows a clear sublinear trend of the regret. This numerical performance is better than our expectation

from Theorem 3, in which a linear term 2βCAT shows up to bound the CA gap. This favorable

numerical result is consistent with our preceding reasoning in Section 5.2 that the actual effect of

CA gaps is minimal. Indeed, Figure 5(b) provides visualization of how the value of the two CA gaps

incurred by the optimistic solution and by the optimal solution are of similar magnitude, and of how

these two gaps largely offset each other because they arise in the opposite direction on the basis of (14).

Such offset is why the linear term in the theoretical analysis vanishes in our experiment, and the error

resulting from the CA gap is much smaller than the conservative bound given in Theorem 3.

We also are interested in the performance comparison between CA-O Faster Learning and the baseline

algorithms. In particular, we use as baselines a class of online learning algorithm named explore-
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Figure 5: Regret performance of Algorithm CA-O Faster Learning. (a) Mean value and 95% confidence interval of regret;
(b) Two CA gaps: during online learning and under the ground truth; (c) Regret of algorithms at day t = 90; (d) Regret
of algorithms at day t = 365. “Faster”: CA-O Faster Learning; “ETC(t′0)”: Explore-then-commit algorithm, with different
exploration periods t′0.

then-commit (ETC) (Lattimore and Szepesvári 2020, Chapter 6). An ETC algorithm first explores

by randomly designing a facility layout within a fixed number of rounds t0 and then exploits by

committing to the θ estimated during exploration. We test the ETC algorithms with various t0 values

(t0 = 1, 2, 4, 6, 8) and compare the regrets of the ETC algorithms with the regret of the CA-O Faster
Learning Algorithm. The superiority of CA-O Faster Learning is clearly shown in Figure 5(c)(d), where
the regrets are accumulated both over the first quarter (including the first t0 time periods) and over

the whole year. In the latter case, the optimal exploration period for ETC is t0 = 20 with a regret of

1.726× 105. In contrast, CA-O Faster Learning results in a regret that is smaller than the regret from

the best ETC algorithm by 67.5% on the day t = 365.

6.3 The value of learning & mobility

The mobile retail store business model offers advantages in two main aspects: demand learning and

store mobility. To quantify these benefits, we extend experiments in Section 6.2. Additionally, we

assess the impact of varying observation noise.

Value of Learning. The value of learning arises from resolving demand uncertainty. To distinguish this

from the benefits of store mobility, we maintain fixed locations when assessing the value of learning.

We consider two benchmark retail models:

i. “Stationary Retail”, where store locations, determined at the beginning of the planning period

based on the yearly average of ground truth demand density data, remain unchanged.
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ii. “Learn and Fix”, which involves a one-day demand exploration followed by fixed store location

decisions for the remainder. Given only one exploration step, the estimation is inevitably impre-

cise.

We employ the average daily profit from the start to day t as our evaluation metric for retail

models. With minimal demand uncertainty, Figure 6(a) reveals a profit gap between the “Stationary

Retail” and “Learn and Fix” of 3.29% by the end of the year, highlighting the benefits of demand

learning. Conversely, under high demand uncertainty as in Figure 6(b), the gap expands to 13.03%.

This gap expansion is expected, because resolving larger uncertainties yields greater profit. Although

our learning algorithms are not directly applied here, these gaps illustrates the importance of demand

learning in the mobile store location problem. Notably, mobile retail stores offer superior demand

learning capabilities compared to traditional ones where assuming ground truth information may be

unrealistic.
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Figure 6: The value of demand learning and store mobility. “Smaller” and “larger” noise indicate the noise with a standard
deviation of 20% and 80% of the actual demand, respectively.

Additional Value of Mobility. While “Stationary Retail” provides optimal parameter estimation, it

lacks adaptability to changing contexts. In contrast, the Algorithm CA-O Faster Learning leverages

mobility to adapt to dynamic contexts and successively refines parameter estimation. As shown in
Figure 6(a), the additional profit generated by Algorithm CA-O Faster Learning compared to “Sta-

tionary Retail” converges to 2.07%, representing the added value of mobility. This surplus is almost

consistent at 1.96% in Figure 6(b). It’s important to note that in real-world scenarios, this value

could be much greater. The “Stationary retail” model, which assumes perfect demand knowledge, is

idealistic, while Algorithm CA-O Faster Learning offers a practical approach.

Impact of Noise in Observation. Each of the three business models is tested under observational

noise affecting demand, with a standard deviation of 20% of the actual demand in Figure 6(a) and

80% in Figure 6(b). In the scenario with the higher noise level, which is typical in practice, there is

a significant rise in the value of learning. In Figure 6(a), the curves of mobile stores and “Stationary

Retail” intersect by day 84. Conversely, Figure 6(b) shows an intersection by day 95. Although it takes

more days for Algorithm CA-O Faster Learning to surpass “Stationary Retail” in cumulative profits

compared to the scenario with the smaller noise level (Figure 6(a)), the overall profits decrease by a

mere 0.11%. These results highlight the advantages of mobile retail stores and the robustness of our

algorithms against noise.
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7 Conclusion

This paper is motivated by the growing trend of mobility in urban retail. The emergence of mobile

retail stores suggests that the store location design can be made at the operational level with short-

time adjustments, inspiring us to expand the scope of facility location problems into an online setting.

We develop an online learning framework for OFL problems with contextual information. The retailer

designs mobile store locations while learning from past observations. To overcome the challenge stem-

ming from the infinite-dimensional action space and the dependence between actions and observations,

we propose CA-O Learning. Algorithm by combining the CA technique with an optimistic optimization

problem. Moreover, we propose CA-O Faster Learning to handle a more general class of model structures

and significantly improve the computational efficiency. The theoretical regret characterization reveals

that both algorithms guarantee low regret. Through our experiments, we verify this low regret for both

algorithms and also highlight the high computational efficiency of CA-O Faster Learning. Moreover,

our case study underscores the significant benefits of demand learning and the inherent mobility of

mobile retail stores when using CA-O Faster Learning.

While our research centers on mobile retail store locations, the algorithms developed have applica-

bility extending beyond this. The transition from stationary locations to enhanced mobility in urban

dynamics, as evidenced by the examples below, further motivates and justifies this paper:

• Mobile chargers. The electric vehicle (EV) industry faces challenges meeting the increasing charg-

ing demand. Traditional stationary infrastructure, burdened by long construction times and high

capital investment, struggles to adapt to the evolving landscape of EV technologies and spatial dis-

tribution of new EV owners. These concerns have motivated the adoption of mobile charging in the

form of battery-equipped robots or vans. Such innovations, advocated by industry leaders such as

Volkswagen (IDTechEx 2020), offer rapid deployment and adaptability at reduced costs.

• Micro-depots. DPD Germany launched a new form of city logistics in Dresden by placing containers

in parking areas as local micro-depots (DPD 2023). These micro-depots serve as a storage and

transshipment point, facilitating the outbound last-mile deliveries by cargo bikes or crowdsourced

mobility. Their ease of deployment, combined with lower emissions and better access to narrow city

streets compared to conventional vans, highlights the potential of micro-depots.

Our work represents an early attempt to deploy mobile stores in an online fashion and we consider

this paper a prompt for an open thread. Several potential extensions to our work are worth inves-

tigating. First, due to the limited capacity of mobile stores, it becomes important to decide what

products to display and how many to stock based on consumer behavior. As consumers may become

loyal to these stores over time, understanding and incorporating their preferences in location design

becomes increasingly important. Integrating consumer choice behavior into the location design prob-

lem, especially when considering the long-term effects of store deployment, is a substantial challenge.

Furthermore, when consumer preferences towards different products are unknown, how to dynamically

adjust the assortment while simultaneously learning about these preferences is an intriguing area for

exploration. Second, many other important and practical business constraints also need to be consid-

ered. For example, moving the location of mobile facilities may incur a moving or routing cost, which is

not considered in our mobile store location problem. Future work on these extensions will broaden and

deepen our understanding about mobile facility deployment toward a vibrant urban future energized

by data-driven and agile services.
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A Notation

Table 1: Notation.

Symbol Description

t round (or time) in the online learning process
T number of rounds in total
X ,Xt entire region at time t
Xtj influence area of store j at time t
x a location in the region
xt a set of store locations at time t
xtj store location of influence area j at time t
Nt number of stores for time t
Wt contextual information set for time t
Wt(x) local contextual covariates at location x at time t
At action set for time t
At, At(xt,X t) discrete store location decisions at time t
Yt observed demand served by the store at location xtj at time t, i.e., response vector
Rt profit received at time t
θt estimation of parameter vector at time t
θ∗ ground truth parameter vector
Θt uncertainty set for parameter θ at time t
rθ(At;Wt) expected profit at round t given action At
rθ∗ (At;Wt) expected true profit at round t given action At
ρ(x), ρθ(At, x;Wt(x)) demand density for x given action At
κ(At,Wt(x)) kernel vector of the features at location x given action At and context Wt(x)
φθ(At, x;Wt) expected profit density around location x given action At at time t
r̄ average revenue per customer
φi, φf inventory replenishment cost and facility cost density function, respectively
d(·, ·) distance function
fθ(At;Wt,Xtj), fsj(θ) fitted demand given parameter θ and action At at time t
ϵtj observational noise of demand served by the store located at xtj at time t
Zt a set of non-negative and continuous functions for influence area function
zt(x), zt(x; θ) influence area function for location x at time t, the decision of CA model
z∗, z∗t (·; θ) CA recipe, the optimal solution of CA under parameter θ
ψθ(zt(x);Wt(x)) continuous profit density provided by CA approach at location x at time t given

action zt
S the volume of each refill for inventory replenishment
ct the routing cost of trucks in inventory replenishment per kilometer of travel
βTSP traveling salesman problem (TSP) constant
af goods-handling cost per item of mobile retail stores
bf fixed opening cost per store
A(z∗(·; θ)) discrete store location decisions tranlated from CA recipe z∗(·, θ)
A∗
t , At(z

∗
t (·; θ∗)) discrete store location decisions from CA recipe based on true parameter θ∗

rψθ (z;W ) approximate profit function from the CA model given action z
ℓ squared-loss function
λ l2-norm regularization parameter for the loss function
gsj gradient of fitted demand fsj(θ) with respect to θ
Vt the design matrix at time t to construct ellipsoid uncertainty set
γt radius of ellipsoid uncertainty set
t0, tF0 number of rounds to randomly explore actions in Algorithm CA-O Learning. and CA-

O Faster Learning, respectively
βCA a universal upper bound for CA gap
Et the event that θ∗ is contained in the uncertainty set Θt
Lr a Lipschitz constant for profit function rθ with respect to demand

B Proofs in Section 4

Proof of Lemma 1. Let ν = ∇rψ
θ̂t
(z∗t (·; θ̂t);Wt) and u = θ − θ̂t, the optimization problem is

max
u:∥u∥2

Vt
≤γ2

t

ν⊤u.
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The Lagrangian function is L(u, η) = ν⊤u− η(∥u∥2Vt − γ2t ) where η ≥ 0. Then the gradient of L(u, η)
equals

∇L(u, η) = ν − 2ηVtu = 0,

which gives u = 1
2ηV

−1
t ν. Complementary slackness gives ∥u∥2Vt = γ2t , which implies that η =

∥ν∥
V

−1
t

2γt
.

Therefore, we have u = 1
2ηV

−1
t ν =

γtV
−1
t ν

∥ν∥
V

−1
t

. The optimal θt has a closed-form solution that

θt = θ̂t + γt
V −1
t ∇rψ

θ̂t
(z∗t (·; θ̂t);Wt)

∥∇rψ
θ̂t
(z∗t (·; θ̂t);Wt)∥V −1

t

.

Proof of Lemma 2. Consider the general expression of the continuous profit density function (6):

ψθ(z(x);W (x)) =r̄ρ(x)− φi
(
ρ(x)z(x), z(x);W (x)

)
− φf

(
ρ(x)z(x), z(x);W (x)

)
,

where ρ(x) is an abbreviation of ρθ(z(x), x;W (x)), depending on z(x), W (x) and θ. Note that

ψθ(z(x);W (x)) is a function of ρ(x), z(x), W (x) and θ. Since ψθ(z(x);W (x)) is differentiable on

z(x), one can easily obtain optimal solution z∗(x; θ) by solving the first order condition

∂ψθ
∂z

=
∂ψθ

∂(ρ(x))

∂ρ(x)

∂(z∗(x; θ))
+

∂ψθ
∂(z∗(x; θ))

= 0, (15)

where ∂ψθ
∂(ρ(x)) means the partial derivative of ψθ(z(x);W (x)) with respect to the argument ρ(x), and

the solution z∗(x; θ) is a function of θ at each point x. So far the maximal profit ψ∗
θ is obtained by

ψ∗
θ = ψθ (z

∗(x; θ);W (x)) .

By the chain rule, the gradient of ψ∗
θ with respect to θ is represented as

∇θψ
∗
θ =

∂ψθ
∂(ρ(x))

(
∇θρ(x) +

∂ρ(x)

∂(z∗(x; θ))
∇θz

∗(x; θ)

)
+

∂ψθ
∂(z∗(x; θ))

∇θz
∗(x; θ)

=
∂ψθ

∂(ρ(x))
∇θρ(x) +

(
∂ψθ

∂(ρ(x))

∂ρ(x)

∂(z∗(x; θ))
+

∂ψθ
∂(z∗(x; θ))

)
∇θz

∗(x; θ). (16)

At the right-hand side of (16), the second term vanishes because z∗(x; θ) satisfies (15). Thus, we have

∇θψ
∗
θ =

∂ψθ
∂(ρ(x))

∇θρ(x).

Note that ρθ(z
∗(x; θ), x;W (x)) = θ⊤κ(z∗(x; θ),W (x)) implies ∇θρ(x) = κ(z∗(x; θ),W (x)), and the

partial derivative of the profit density function ψθ(z(x);W (x)) with respect to ρ(x) is as follows:

∂ψθ
∂(ρ(x))

= r̄ − z(x)

(
∂φi

∂(ρ(x)z(x))
+

∂φf

∂(ρ(x)z(x))

)
.

Therefore, the gradient of the maximal profit ψ∗
θ is provided by

∇θψ
∗
θ =

[
r̄ − z∗(x; θ)

(
∂φi

∂(ρ(x)z∗(x; θ))
+

∂φf

∂(ρ(x)z∗(x; θ))

)]
κ(z∗(x; θ),W (x)).

It concludes that one only needs the value of z∗(x; θ) rather than any derivative of z∗(x; θ). Recall

that z∗(x; θ) can be evaluated pointwise through the first-order condition, facilitated by the convenience

of CA. Therefore, the gradient is easy to compute even in the absence of a closed-form solution z∗(x; θ),

meaning that z∗(x; θ) is an implicit function but always numerically computable.
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C Proofs in Section 5

Proof of Lemma 3. When θ∗ is contained in the uncertainty set Θt, we have

rθ∗(A(z
∗
t (·; θ∗));Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

=rθ∗(A(z
∗
t (·; θ∗));Wt)− rψθ∗(z

∗
t (·; θ∗);Wt) + rψθ∗(z

∗
t (·; θ∗);Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

≤rθ∗(A(z∗t (·; θ∗));Wt)− rψθ∗(z
∗
t (·; θ∗);Wt) + rψθt(z

∗
t (·; θt);Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

=rθ∗(A(z
∗
t (·; θ∗));Wt)− rψθ∗(z

∗
t (·; θ∗);Wt) + rψθt(z

∗
t (·; θt);Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

+ rθt(A(z
∗
t (·; θt));Wt)− rθt(A(z

∗
t (·; θt));Wt)

=
(
rθt(A(z

∗
t (·; θt));Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

)︸ ︷︷ ︸
learning gap

−
(
rψθ∗(z

∗
t (·; θ∗);Wt)− rθ∗(A(z

∗
t (·; θ∗));Wt)

)︸ ︷︷ ︸
CA gap

+
(
rψθt(z

∗
t (·; θt);Wt)− rθt(A(z

∗
t (·; θt));Wt)

)︸ ︷︷ ︸
CA gap

,

where the inequality holds due to θt being an optimistic CA solution, ensuring that rψθ∗(z
∗
t (·; θ∗);Wt) ≤

rψθt(z
∗
t (·; θt);Wt) when θ

∗ ∈ Θt.

C.1 Proofs in Section 5.1

To prove Theorem 1, we first introduce the necessary preliminaries to analyze the gap. Next, we

analyze the gap between the optimal CA and the step CA, the gap between the step CA and the

discrete design. Finally, we conclude by the proof of Theorem 1.

Preliminaries of the CA Gap.

The continuous influence area design z∗t (x) can be discretized for implementation of single-period

store locations (See Ouyang and Daganzo (2006) for a discretization procedure, which is beyond

the scope of our paper). We also summarize the procedure in the following paragraph for readers’

convenience.

The objective of discretization is to determine discrete store locations such that the influence areas

of stores closely align with the values provided by the continuous function z(x) across the entire space

X . The discretization procedure, as outlined in the referenced paper, can be summarized as three

key steps: To translate a CA recipe z(x) into N discrete influence areas, where N ≈
∫
X [z(x)]−1dx,

we represent these influence areas as circular disks centered at N arbitrary locations in the initial

step. The size of each disk is determined by the value of z(x) at its center. The second step is to

iteratively slide and shrink the N disks to eliminate overlap. In each iteration, disks are slid due to

repulsive forces from other overlapping disks to prevent overlap, and from boundary forces if a disk

is outside of the region X . At the same time, disk sizes are adjusted according to the value of z(x)

at each disk’s center. The shrinking is done by simultaneously shortening the radii for disks each

centering at a location x. Iterations end once the non-overlapping disks collectively cover most of X
without extending beyond it, with each disk k centered at location xk. In the third step, we partition

X into N influence areas using a weighted-Voronoi tessellation. Specifically, each small patch of space

is allocated to an influence area Xj with the rule j = argmink{∥x − xk∥/
√
z(xk)}, where x is the

center of the patch. Consequently, we achieve a discrete design where the influence areas fully span

the service space X , with each area containing one disk and a store located at its center. This design is

notably near-optimal, as discovering the globally optimal design of locations in the continuous domain

is generally infeasible.

Our examination of the bounds for the CA gap draws inspiration from the proof of the CA gap

direction provided by Ouyang and Daganzo (2006). In particular, a pivotal concept in their proof

involves introducing the alternative influence area function zs(x), which we refer to as the step CA. As
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aforementioned, the CA gap can be decomposed as GapCA :=
∑
j Gapj,o2s + Gapj,s2d. The subsequent

two parts present bounds for these two gaps, respectively.

From the Optimal CA to the Step CA.

We first quantify the gap between the two profits implied by the optimal CA (z∗) and the step CA

(zs) for each influence area j, defined as follows:

Gapj,o2s :=

∫
x∈Xj

ψ(z∗(x))dx−
∫
x∈Xj

ψ(zs(x))dx =

∫
x∈Xj

(
ψ(z∗(x))− ψ(zs(x))

)
dx.

Here we omit W (x) and θ in function ψ(·) for brevity since the result holds for any W (x) and θ.

Proof. Proof of Lemma 4. Recall we assume that ψ(z) is twice differentiable and quasi-concave in z.

Then, applying the Taylor expansion with the mean-value form of the remainder, there exists a z̄ as a

convex combination of zs and z∗ such that

ψ(zs) = ψ(z∗) + ψ′(z∗)(zs − z∗) +
ψ′′(z̄)

2
(zs − z∗)2,

in which ψ′(z∗) = 0 due to the optimality of z∗. Subsequently,

Gapj,o2s = −
∫
x∈Xj

ψ′′(z̄(x))

2
(zs(x)− z∗(x))2dx = −

∫
x∈Xj

ψ′′(z̄(x))

2ρ(x)
(zs(x)− z∗(x))2ρ(x)dx. (17)

In the above integral, recall that ρ(x) is the function of the spatial density distribution of customer

demands, and that zs(x) is defined as a constant number for x ∈ Xj such that zs(x) = |Xj |. Therefore,
zs(x) can be regarded as the mean of z∗(x) over Xj , i.e., zs(x) = E[z∗(Xj)] =

∫
x′∈Xj z

∗(x′)ρ(x′)dx′

for all x ∈ Xj . We introduce the notation of variance of z∗(x) over area Xj as V ar(z∗;Xj) :=∫
x∈Xj (z

∗(x)− E[z∗(Xj)])2ρ(x)dx. It follows that

V ar(z∗;Xj) =
∫
x∈Xj

(z∗(x)− zs(x))2ρ(x)dx. (18)

Moreover, ψ
′′(z̄(x))
ρ(x) represents the curvature (with respect to z̄(x)) of the per-customer profit density

function. In (19), we extend this point-wise curvature definition to be influence area-wise and assume

that an upper bound of such a curvature exists as follows:

|ψ′′(z̄(x))|
ρ(x′)

≤ ηψ, ∀x, x′ ∈ Xj , z̄(x) ∈ Conv ({zs(x), z∗(x)}) (19)

where ηψ > 0 is a constant value, and Conv(·) is a convex hull. Then substituting (18) and (19)

into (17) completes the proof.

From the Step CA to the Discrete Design.

We next quantify the gap between the two profits implied by the step CA and the discrete design

for each influence area j, i.e.,

Gapj,s2d =

∫
x∈Xj

ψ(zs(x))dx−
∫
x∈Xj

φ(A(z∗))dx =

∫
x∈Xj

(
ψ(zs(x))− φ(A(z∗))

)
dx.

In the operations of mobile retail stores, this gap stems from the disparities between continuous

profit and discrete design profit. The CA recipe zs(x) = |Xj | is derived from discretized decisions

about store locations, compelling a detailed examination of both the discretization procedure and the
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profit function. Assumption 1 offers analytical convenience that captures the essence implied by the

gap between the step CA and the discrete design. Ouyang and Daganzo (2006) use Assumptions 1(I)–

(III) and another strict assumption that ρ(x) is a constant within Xj to prove that the cost implied by

the CA recipe is a lower bound for that of the discrete implementation for problems without facility

costs. In our analysis of the CA gap, our objective is to determine both its direction and magnitude,

building upon the findings from Ouyang and Daganzo (2006). To achieve, we further impose the value

caps in Assumption 2. Our quantification of this gap can be considered as a sharpening and extension

of the result in Ouyang and Daganzo (2006), as stated in Lemma 5.

Proof of Lemma 5. The proof is based on the proof of the theorem in Ouyang and Daganzo (2006),

with additional sharpening results. Before presenting the proof, we provide the following sharpened

Jensen’s inequality due to Liao and Berg (2019):

Lemma 10. Suppose that φ(d) is a twice differentiable function of d ∈ D and that D is a one-

dimensional random variable with variance V ar(D). Then

V ar(D) inf
d∈D

φ′′(d)

2
≤ E[φ(D)]− φ(E[D]) ≤ V ar(D) sup

d∈D

φ′′(d)

2
.

Back to Lemma 5, recall that the profit density function φ consists of the revenue term, the

inventory replenishment cost, and the facility cost, as expressed in (3) and (6) for the discrete and the

CA models, respectively. We compare these two models component by component.

First notice that the total facility cost over the entire influence area Xj ,
∫
Xj φ

f (x)dx, depends

only on the total daily sales in that area. The mean of daily sales in the step CA model is∫
Xj ρ(x)z

s(x)dx/|Xj | =
∫
Xj ρ(x)dx (since zs(x) = |Xj |), which is equal to the daily sales in the discrete

model. Therefore, by Assumption 1(II) that φf is an affine function, there is no gap in the facility

cost between the step CA model and the discrete design. In other words,∫
Xj
φf

(∫
Xj
ρ(x)dx

)
dx−

∫
Xj
φf (ρ(x)zs(x)) dx = 0. (20)

Following the same argument, the gap due to the revenue term is zero, too.

We next examine the inventory replenishment cost, which depends on both truck routing distance

and the total daily sales. The gap in the inventory replenishment cost between these two models is
decomposed into ∫

Xj
φi

(∫
Xj
ρ(x)dx,Xj

)
dx−

∫
Xj
φi(ρ(x)zs(x), zs(x))dx

=

[∫
Xj
φi

(∫
Xj
ρ(x)dx,Xj

)
dx−

∫
Xj
φi

(∫
Xj
ρ(x)dx, zs(x)

)
dx

]

+

[∫
Xj
φi

(∫
Xj
ρ(x)dx, zs(x)

)
dx−

∫
Xj
φi(ρ(x)zs(x), zs(x))dx

]
, (21)

where the first term represents the difference in truck routing distances, and the second term represents

the difference in daily sales in the area Xj . As previously discussed, the CA approach in this cost

segment involves replacing the restocking truck routing trip distance d(x′, xj) with d(x′, x) for any

x′ ∈ X and x ∈ Xj , thereby yielding the optimal routing distance βTSP
∫
x∈Xj 1/

√
z(x)dx. Since

d(x′, xj) is the average of d(x′, x) by Assumption 1(I), we obtain

0 ≤
∫
Xj
φi

(∫
Xj
ρ(x)dx,Xj

)
dx−

∫
Xj
φi

(∫
Xj
ρ(x)dx, zs(x)

)
dx ≤ ηi

2
V ar(d(X ′, X);Xj). (22)
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Here the first inequality is due to Jensen’s inequality and the concavity of φi in distance (Assump-

tion 1(III)). The second inequality is due to the sharpened Jensen’s inequality (i.e., Lemma 10) and

Assumptions 2.

Note that zs(x) = |Xj | implies that
∫
Xj ρ(x)z

s(x)dx/|Xj | =
∫
Xj ρ(x)dx, which means the second

term of (21) is the gap of taking average over daily sales. Similar to (22), we have the following

inequalities:

0 ≤
∫
Xj
φi

(∫
Xj
ρ(x)dx, zs(x)

)
dx−

∫
Xj
φi (ρ(x)zs(x), zs(x)) dx ≤ ηρ

2
V ar(ρ(X);Xj). (23)

Combining (20)–(23) completes the proof of Lemma 5(I). Lemma 5(II) can be similarly proved by

applying the sharpened Jensen’s inequality instead of Assumption 1(III) for the first inequality in (22)

and (23).

Closing the CA Gap.

Proof of Theorem 1. Suppose Assumptions 1 and 2 hold. Combining Lemmas 4 and 5(I) immediately

yields the following bound for each influences zone j:

0 ≤ Gapj,o2s + Gapj,s2d ≤

(
ηψ

2
V ar(z∗;Xj) +

ηi

2
V ar(d(X ′, X);Xj) +

ηρ

2
V ar(ρ(X);Xj)

)
.

It follows that the CA gap is bounded as follows:

0 ≤ GapCA ≤
N∑
j=1

(
ηψ

2
V ar(z∗;Xj) +

ηi

2
V ar(d(X ′, X);Xj) +

ηρ

2
V ar(ρ(X);Xj)

)
≤ βCA.

Alternatively, if relaxing Assumption 1(III), combining Lemmas 4 and 5(II) yields:(
ηψ

2
V ar(z∗;Xj)−

ηi

2
V ar(d(X ′, X);Xj)−

ηρ

2
V ar(ρ(X);Xj)

)
≤

Gapj,o2s + Gapj,s2d ≤

(
ηψ

2
V ar(z∗;Xj) +

ηi

2
V ar(d(X ′, X);Xj) +

ηρ

2
V ar(ρ(X);Xj)

)
.

Summing over all influence areas, we can reach our conclusion that

|GapCA| ≤ βCA.

C.2 Proofs in Section 5.2

Proof of Lemma 6. Recall that gsj denotes the gradient ∇θfθ(As;Ws,Xsj) and λ is the regularization

parameter. Since Vt =
∑t−1
s=1

∑Ns
j=1 gsjgsj

⊤ + λI ⪰ λI ⪰ 0, we have V −1
t ⪯ λ−1I. Cauchy–Schwarz

inequality implies

∥ξt − λθ∗∥V −1
t

≤ ∥ξt∥V −1
t

+ ∥λθ∗∥V −1
t

≤ ∥ξt∥V −1
t

+

√
(λθ∗)

⊤
λ−1I (λθ∗)

= ∥ξt∥V −1
t

+
√
λ∥θ∗∥2

≤ ∥ξt∥V −1
t

+
√
λβΘ.
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Observe that (Oracle) gives

t−1∑
s=1

Ns∑
j=1

(fsj(θ̂t)− fsj(θ
∗)− ϵsj)gsj + λθ̂t = 0,

which yields
t−1∑
s=1

Ns∑
j=1

ϵsjgsj − λθ∗ =

t−1∑
s=1

Ns∑
j=1

(fsj(θ̂t)− fsj(θ
∗))gsj + λ(θ̂t − θ∗). (24)

Thus we have

(∥ξt∥V −1
t

+
√
λβΘ)

2 ≥ ∥ξt − λθ∗∥2
V −1
t

=

t−1∑
s=1

Ns∑
j=1

(Ysj − fsj(θ
∗))gsj − λθ∗

⊤t−1∑
s=1

Ns∑
j=1

gsjgsj
⊤ + λI

−1

t−1∑
s=1

Ns∑
j=1

(Ysj − fsj(θ
∗))gsj − λθ∗


(24)
=

t−1∑
s=1

Ns∑
j=1

(fsj(θ̂t)− fsj(θ
∗))gsj + λθ̂t − λθ∗

⊤t−1∑
s=1

Ns∑
j=1

gsjgsj
⊤ + λI

−1

t−1∑
s=1

Ns∑
j=1

(fsj(θ̂t)− fsj(θ
∗))gsj + λθ̂t − λθ∗

 .

Recall that the mean demand fsj(θ) =
∫
Xsj θ

⊤κ(At,Wt(x))dx is a linear function in θ. Therefore,

the gradient ∇θfsj(θ) is a constant that does not depend on θ, and we have ∇θfsj(θ) = gsj holds for

every θ. Applying the mean-value theorem, there exists θ̄t which is a convex combination of θ∗ and θ̂t
such that

fsj(θ̂t)− fsj(θ
∗) = ∇θ̄tfsj(θ̄t)

⊤(θ̂t − θ∗) = g⊤sj(θ̂t − θ∗),

which implies that
t−1∑
s=1

Ns∑
j=1

(fsj(θ̂t)− fsj(θ
∗))gsj + λ(θ̂t − θ∗)

=

t−1∑
s=1

Ns∑
j=1

gsjgsj
⊤ + λI

 (θ̂t − θ∗).

According to the symmetric property,

(∥ξt∥V −1
t

+
√
λβΘ)

2

≥(θ̂t − θ∗)⊤

t−1∑
s=1

Ns∑
j=1

gsjgsj
⊤ + λI

t−1∑
s=1

Ns∑
j=1

gsjgsj
⊤ + λI

−1t−1∑
s=1

Ns∑
j=1

gsjgsj
⊤ + λI

 (θ̂t − θ∗)

=∥θ̂t − θ∗∥2Vt .

Proof of Lemma 7. It follows similarly from Theorem 20.4 in Lattimore and Szepesvári (2020).

The difference is that, in our setting, multiple observations are received at the same moment. For

completeness, we provide the full proof here.
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Let Ut =
∑t−1
s=1

∑Ns
j=1 gsjg

⊤
sj and H = λI ∈ Rd×d so Vt = Ut + H. We first prove that for all

x ∈ Rd the process Mt(x) = exp(⟨x, ξt⟩− σ2

2 ∥x∥2Ut) is an H-adapted non-negative supermatingale with

M0(x) ≤ 1. We need to show that E[Mt+1(x)|Ft] ≤ Mt(x) almost surely. Since ϵtj is conditionally

σ-subgaussian, then for any 1 ≤ j ≤ Nt, we have

E
[
exp

(
x⊤ϵtjgtj −

σ2

2
∥x∥2gtjg⊤tj

)∣∣∣∣Ht

]
≤ 1.

Hence

E[Mt+1(x)|Ht] = E
[
exp

(
⟨x, ξt+1⟩ −

σ2

2
∥x∥2Ut+1

)∣∣∣∣Ht

]

=Mt(x)E

exp
 Nt∑
j=1

x⊤ϵtjgtj −
σ2

2
∥x∥2∑Nt

j=1 gtjg
⊤
tj

∣∣∣∣∣∣Ht


≤Mt(x) a.s.

Since M0(x) ≤ 1, we reach the conclusion that Mt(x) is a non-negative supermartingale.

Define h = N (0, (σ2H)−1). According to the “sections” lemma in (Kallenberg 1997, Lemma 1.28),∫
RdMt(x)dh(x) is Ht-measurable and is also a non-negative supermartingale. Let

M̄t =

∫
Rd
Mt(x)dh(x)

=
σd√

(2π)d det(H−1)

∫
Rd

exp

(
⟨x, ξt⟩ −

σ2

2
∥x∥2Ut −

σ2

2
∥x∥2H

)
dx.

Note that M̄0 ≤ 1 is immediate. By the maximal inequality for the supermartingale M̄t, we have

P
(
sup
t∈N

log(M̄t) ≥ log

(
1

δ

))
= P

(
sup
t∈N

M̄t ≥
1

δ

)
≤ δ. (25)

Now we turn to studying M̄t. In the definition of M̄t, we reformulate the polynomial within the

integrand as follows

⟨x, ξt⟩ −
σ2

2
∥x∥2Ut −

σ2

2
∥x∥2H =

1

2
∥σ−1ξt∥2(H+Ut)−1 −

1

2
∥σx− (H + Ut)

−1σ−1ξt∥2H+Ut

=
1

2
∥σ−1ξt∥2V −1

t
− 1

2
∥σx− V −1

t σ−1ξt∥2Vt .

The first term 1
2∥σ

−1ξt∥2V −1
t

does not depend on x and can be moved outside of the integral. In such

a way, the integration equals

M̄t =
σd√

(2π)d det(H−1)
· exp

(
1

2
∥σ−1ξt∥2V −1

t

)∫
Rd

exp

(
−1

2
∥σx− V −1

t σ−1ξt∥2Vt

)
dx,

in which only a quadratic Gaussian term is integrated. By multidimensional Gaussian integral, we

have ∫
Rd

exp

(
−1

2
∥σx− V −1

t σ−1ξt∥2Vt

)
dx = σ−d

√
(2π)d

det(Vt)
,

which implies that

M̄t =

(
det(H)

det(Vt)

)1/2

exp

(
1

2σ2
∥ξt∥2V −1

t

)
.

Then substituting this expression in Equation (25), we reach the conclusion.
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Proof of Lemma 8. Lemma 6 provides that ∥θ̂t − θ∗∥Vt ≤ ∥ξt∥V −1
t

+
√
λβΘ. From Lemma 7 that it

holds with probability at least 1− δ that, for all t ∈ [T ],

∥ξt∥V −1
t

≤ σ

√
2 log

(
1

δ

)
+ log

(
det(Vt)

λd

)
.

Let λ̃1, · · · , λ̃d be the eigenvalues of Vt. Note that Assumption 4(V) implies ∥gsj∥2 ≤ |Xsj |βκ. By the

inequality of arithmetic and geometric means,

det(Vt)

λd
=

1

λd

d∏
j=1

λ̃j ≤
1

λd

1

d

d∑
j=1

λ̃j

d

=

(
tr (Vt)

λd

)d

=

 tr
(
λI +

∑t−1
s=1

∑Ns
j=1 gsjgsj

⊤
)

λd

d

=

(
1 +

∑t−1
s=1

∑Ns
j=1 ∥gsj∥22
λd

)d

≤

1 +

∑t−1
s=1

(∑Ns
j=1 ∥gsj∥2

)2
λd


d

≤

1 +

∑t−1
s=1

(∑Ns
j=1 |Xsj |βκ

)2
λd


d

=

(
1 +

(t− 1)|X |2β2
κ

λd

)d
.

Therefore, we conclude that with probability at least 1− δ, we have

∥θ̂t − θ∗∥Vt ≤ γt,

where γt =
√
λβΘ + σ

√
2 log

(
1
δ

)
+ d log

(
1 +

(t−1)|X |2β2
κ

λd

)
.

Proof of Lemma 9. Suppose the action A partitions the region X into a set of N influence areas, i.e.,

X = {X1,X2, · · · ,XN}. Fix j and we prove for Xj . Let ϱj be the brevity of the daily sales handled by

a store serving Xj , which is used an argument of φi and φf in the following assumption; accordingly,

ϱj =
∫
Xj ρθ(A, x;W (x))dx = fθ(A;W,Xj) in discrete model and ϱ = ρ(x)z(x) in CA model.

For notation simplicity, we use ρθ(x) as the brevity of ρθ(A, x;W (x)) and φiθ as the brevity of

φi
(∫

Xj ρθ(x)dx,Xj ;W (x)
)
in the proof of this lemma, with φfθ being similar abbreviation.

|rθ(A;W,Xj)− rθ∗(A;W,Xj)| ≤

∣∣∣∣∣
∫
Xj
r̄ρθ(x)dx−

∫
Xj
r̄ρθ∗(x)dx

∣∣∣∣∣+
∣∣∣∣∣
(∫

Xj
φiθdx−

∫
Xj
φiθ∗dx

)∣∣∣∣∣
+

∣∣∣∣∣
(∫

Xj
φfθdx−

∫
Xj
φfθ∗dx

)∣∣∣∣∣
where the gap on gross revenue can be simply rewritten as r̄|fθ(A;W,X )− fθ∗(A;W,X )|.
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By Lipschitz continuity, the gap on inbound cost can be bounded as∣∣∣∣∣
(∫

Xj
φiθdx−

∫
Xj
φiθ∗dx

)∣∣∣∣∣ ≤
∫
Xj
αi

∣∣∣∣∣
(∫

Xj
ρθ(x)dx−

∫
Xj
ρθ∗(x)dx

)∣∣∣∣∣ dy
= αi|Xj ||fθ(A;W,Xj)− fθ∗(A;W,Xj)|.

The following inequality can be similarly obtained∣∣∣∣∣
(∫

Xj
φfθdx−

∫
Xj
φfθ∗dx

)∣∣∣∣∣ ≤ αf |Xj ||fθ(A;W,Xj)− fθ∗(A;W,Xj)|.

Thus we conclude that Lr = r̄ + |X |αi + |X |αf .

Finally, our proof of the regret bound will also depend on a technical result, which we call the

Elliptical Potential Lemma.

Lemma 11 (Elliptical potential lemma).

T∑
t=t0+1

min


Nt∑
j=1

∥gtj∥2V −1
t
, 1

 ≤ 2d log

(
dλ+ T |X |2β2

κ

dλ

)
.

Proof of Lemma 11. Recall that Vt =
∑t−1
s=1

∑Ns
j=1 gsjg

⊤
sj + λI. Then we have

Vt+1 = Vt +

Nt∑
j=1

gtjg
⊤
tj = V

1/2
t

(
I +

Nt∑
j=1

V
−1/2
t gtjg

⊤
tjV

−1/2
t

)
V

1/2
t .

According to the definition of Vt, we have

det(Vt+1) = det
(
Vt +

Nt∑
j=1

gtjg
⊤
tj

)

= det(Vt) det

I + Nt∑
j=1

V
−1/2
t gtjg

⊤
tjV

−1/2
t

 .

Let λ1, · · · , λd be the eigenvalues of
∑Nt
j=1 utju

⊤
tj where utj = V

−1/2
t gtj . Note that the eigenvalues of

matrix I +
∑Nt
j=1 utju

⊤
tj are (1 + λj) for j = 1, · · · , d. Then we have

det

I + Nt∑
j=1

utju
⊤
tj

 =

d∏
j=1

(1 + λj) ≥ 1 +

d∑
j=1

λj = 1 + tr

 Nt∑
j=1

utju
⊤
tj

 = 1 +

Nt∑
j=1

∥utj∥22.

Therefore, we have the inequality

det(Vt+1) ≥ det(Vt)

1 +

Nt∑
j=1

∥gtj∥2Vt−1

 .



Les Cahiers du GERAD G–2025–45 35

Using that for any x ≥ 0, min{x, 1} ≤ 2 log(1 + x), we get

T∑
t=t0+1

min


Nt∑
j=1

∥gtj∥2Vt−1 , 1


≤2

T∑
t=t0+1

log

1 +

Nt∑
j=1

∥gtj∥2Vt−1

 ≤ 2 log

(
det(VT+1)

det(Vt0+1)

)
≤ 2 log

(
det(VT+1)

λdmin(Vt0+1)

)

≤2 log

(
det(VT+1)

λd

)
≤ 2d log

(
dλ+ T |X |2β2

κ

dλ

)
.

Proof of Theorem 2. According to Theorem 1, we have

|rθ(A(z∗t );Wt)− rψθ (z
∗
t ;Wt)| ≤ βCA for all 1 ≤ t ≤ T.

Define event Et = {∥θ̂t − θ∗∥Vt ≤ γt}. Under event Et, θ∗ is contained in the uncertainty set Θt = {θ :
∥θ − θ̂t∥Vt ≤ γt}. Since θt is the optimal optimistic solution over the set Θt, we have

rψθ∗(z
∗
t (·; θ∗);Wt) ≤ rψθt(z

∗
t (·; θt);Wt). (26)

Thus, we can bound one-step regret as

rθ∗(A(z
∗
t (·; θ∗));Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

=rθ∗(A(z
∗
t (·; θ∗));Wt)− rψθ∗(z

∗
t (·; θ∗);Wt) + rψθ∗(z

∗
t (·; θ∗);Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

(26)

≤ rθ∗(A(z
∗
t (·; θ∗));Wt)− rψθ∗(z

∗
t (·; θ∗);Wt) + rψθt(z

∗
t (·; θt);Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

=rθ∗(A(z
∗
t (·; θ∗));Wt)− rψθ∗(z

∗
t (·; θ∗);Wt) + rψθt(z

∗
t (·; θt);Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

+ rθt(A(z
∗
t (·; θt));Wt)− rθt(A(z

∗
t (·; θt));Wt)

=
(
rθt(A(z

∗
t (·; θt));Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

)
−
(
rψθ∗(z

∗
t (·; θ∗);Wt)− rθ∗(A(z

∗
t (·; θ∗));Wt

)
+
(
rψθt(z

∗
t (·; θt);Wt)− rθt(A(z

∗
t (·; θt));Wt

)
.

Theorem 1 regarding the CA gap implies that

(rθ∗(A(z
∗
t (·; θ∗));Wt)− rθ∗(A(z

∗
t (·; θt));Wt))1(Et)

≤ |rθt(A(z∗t (·; θt));Wt)− rθ∗(A(z
∗
t (·; θt));Wt)|1(Et) + 2βCA. (27)

According to Lemma 9, we have

|rθt(A(z∗t (·; θt));Wt)− rθ∗(A(z
∗
t (·; θt));Wt)|

≤
Nt∑
j=1

|rθt(A(z∗t (·; θt));Wt,Xtj)− rθ∗(A(z
∗
t (·; θt));Wt,Xtj)|

≤Lr
Nt∑
j=1

|fθt(A(z∗t (·; θt));Wt,Xtj)− fθ∗(A(z
∗
t (·; θt));Wt,Xtj)| . (28)

Applying mean-value Theorem, there exists θ̄tj which is a convex combination of θ∗ and θt such that

|fθt(A(z∗t (·; θt));Wt,Xtj)− fθ∗(A(z
∗
t (·; θt));Wt,Xtj)|

=
∣∣∣(θt − θ∗)⊤∇fθ̄tj (A(z

∗
t (·; θt));Wt,Xtj)

∣∣∣
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=

∣∣∣∣∣(θt − θ∗)⊤
∫
Xtj

κ(At,Wt(x))dx

∣∣∣∣∣
=
∣∣(θt − θ∗)⊤gtj

∣∣
≤∥θt − θ∗∥Vt ∥gtj∥V −1

t
, (29)

where the last inequality is obtained from the Cauchy-Schwarz inequality.

Note that under event Et = {∥θ̂t−θ∗∥Vt ≤ γt}, we have ∥θt−θ∗∥Vt ≤ ∥θt− θ̂t∥Vt+∥θ̂t−θ∗∥Vt ≤ 2γt.

Combining inequalities (27)–(29) immediately yields

(rθ∗(A(z
∗
t (·; θ∗));Wt)− rθ∗(A(z

∗
t (·; θt));Wt))1(Et)

≤ |rθt(A(z∗t (·; θt));Wt)− rθ∗(A(z
∗
t (·; θt));Wt)|1(Et) + 2βCA

≤Lr∥θ∗ − θt∥Vt
Nt∑
j=1

∥gtj∥V −1
t

1(Et) + 2βCA

≤2Lrγt

Nt∑
j=1

∥gtj∥V −1
t

+ 2βCA.

According to Assumption 4(I), the maximal profit is bounded by rmax. Thus, we can bound the

regret by

Regretπ(T ) · 1

(
T⋂

t=t0+1

Et

)
≤rmaxt0 +

T∑
t=t0+1

Eπ[(rθ∗(A∗
t ;Wt)− rθ∗(A(z

∗
t (·; θt));Wt))1(Et)]

≤rmaxt0 + 2LrγT

T∑
t=t0+1

rmax ∧

 Nt∑
j=1

∥gtj∥V −1
t

+ 2βCAT.

Note that the equation 1 ∧ x =
√
1 ∧ x2 holds for every x > 0, and the Cauchy-Schwarz inequality

yields
(∑Nt

j=1 ∥gtj∥V −1
t

)2
≤ Nt

∑Nt
j=1 ∥gtj∥2V −1

t

. Since we assume rmax > 1, it follows that

Regretπ(T ) · 1

(
T⋂

t=t0+1

Et

)

≤rmaxt0 + 2rmaxLrγT

T∑
t=t0+1

√√√√√1 ∧

 Nt∑
j=1

∥gtj∥V −1
t

2

+ 2βCAT

≤rmaxt0 + 2rmaxLrγT

T∑
t=t0+1

√
Nt

√√√√1 ∧
Nt∑
j=1

∥gtj∥2V −1
t

+ 2βCAT

≤rmaxt0 + 2rmaxLrγT

√√√√√( T∑
t=t0+1

Nt

) T∑
t=t0+1

1 ∧
Nt∑
j=1

∥gtj∥2V −1
t

+ 2βCAT

≤rmaxt0 + 2rmaxLrγT

√
2NmaxdT log

(
dλ+ T |X |2β2

κ

dλ

)
+ 2βCAT,

where the last inequality holds according to Lemma 11.
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Lemma 8 states that the event
⋂T
t=t0+1 Et occurs with probability at least 1 − δ. The probability

of the event
(⋂T

t=t0+1 Et
)c

is no greater than δ. Thus, we conclude that

P

(
Regretπ(T ) > rmaxt0 + 2rmaxLrγT

√
2NmaxdT log

(
dλ+ T |X |2β2

κ

dλ

)
+ 2βCAT

)

≤E

[
1

(
Regretπ(T )1

(
T⋂

t=t0+1

Et

)
> rmaxt0

+2rmaxLrγT

√
2NmaxdT log

(
dλ+ T |X |2β2

κ

dλ

)
+ 2βCAT

)]
+ P

((
T⋂

t=t0+1

Et

)c)

=E[0] + P

((
T⋂

t=t0+1

Et

)c)
≤δ.

Lemma 12. Set tF0 = max
{ √

T
(1−δ)λ ,

(log(d)−log(δ))|X |2β2
κ

(δ+(1−δ) log(1−δ))λ

}
. Suppose Assumption 5 holds. If using policy

π for tF0 time periods, then it holds that

P
(
λmin

(
VtF0 +1

)
≤

√
T
)
≤ δ.

Proof of Lemma 12. Define Zs =
∑Ns(A)
j=1

∫
Xsj κ(A, x;Ws(x))dx

∫
Xsj κ(A, x;Ws(x))

⊤dx. For any

randomized action A, an upper bound for the eigenvalues of Zs is given by

λmax(Zs) ≤
d∑
i=1

λi(Zs) = tr(Zs) = tr

 Ns∑
j=1

gsjg
⊤
sj

 =

Ns∑
j=1

tr(g⊤sjgsj) ≤ |X |2β2
κ almost surely.

Recall Vt =
∑t−1
s=1 Zs + λI. From Assumption 5, under policy π, we have

λ
(
E
[
VtF0 +1

])
= λ

 tF0∑
s=1

E [Zs] + λI

 ≥ λtF0 + λ.

Let µmin = λtF0 + λ, the minimum eigenvalue of E[VtF0 +1]. Applying Lemma 13 (Tropp (2012,

Theorem 1.1)), we can bound λmin(VtF0 +1) by

P
(
λmin

(
VtF0 +1

)
≤

√
T
)
≤ P

(
λmin

(
VtF0 +1

)
≤ (1− δ)λtF0

)
≤ P

(
λmin

(
VtF0 +1

)
≤ (1− δ)µmin

)
≤ d

(
e−δ

(1− δ)1−δ

) µmin
|X|2β2κ

≤ δ,

where the first inequality is because tF0 ≥
√
T

(1−δ)λ , and the last inequality is because

tF0 ≥ (log(d)− log(δ))|X |2β2
κ

(δ + (1− δ) log(1− δ))λ
.

Thus, we reach our conclusion.
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Proof of Theorem 3. Recall that we solve the maximization problem (12) in order to obtain θt.

Therefore, θt satisfies that for any θ ∈ Θt, it holds that

rψ
θ̂t
(z∗t (·; θ̂t);Wt)+∇rψ

θ̂t
(z∗t (·; θ̂t);Wt)

⊤(θt− θ̂t) ≥ rψ
θ̂t
(z∗t (·; θ̂t);Wt)+∇rψ

θ̂t
(z∗t (·; θ̂t);Wt)

⊤(θ− θ̂t). (30)

Applying the mean-value theorem, there exists θ̄t which is a convex combination of θ̂t and θ
∗ such that

rψθ∗(z
∗
t (·; θ∗);Wt) = rψ

θ̂t
(z∗t (·; θ̂t);Wt) +∇rψ

θ̄t
(z∗t (·; θ̄t);Wt)

⊤(θ∗ − θ̂t), (31)

and there exists θ̄′t which is a convex combination of θ̂t and θt such that

rψ
θ̂t
(z∗t (·; θ̂t);Wt) = rψθt(z

∗
t (·; θt);Wt) +∇rψ

θ̄′t
(z∗t (·; θ̄′t);Wt)

⊤(θ̂t − θt). (32)

Then when event Et holds, we have

rθ∗(A(z
∗
t (·; θ∗));Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

=rθ∗(A(z
∗
t (·; θ∗));Wt)− rψθ∗(z

∗
t (·; θ∗);Wt) + rψθ∗(z

∗
t (·; θ∗);Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

(31)
= rθ∗(A(z

∗
t (·; θ∗));Wt)− rψθ∗(z

∗
t (·; θ∗);Wt) + rψ

θ̂t
(z∗t (·; θ̂t);Wt) +∇rψ

θ̄t
(z∗t (·; θ̄t);Wt)

⊤(θ∗ − θ̂t)

− rθ∗(A(z
∗
t (·; θt));Wt)

=rθ∗(A(z
∗
t (·; θ∗));Wt)− rψθ∗(z

∗
t (·; θ∗);Wt) + rψ

θ̂t
(z∗t (·; θ̂t);Wt) +∇rψ

θ̂t
(z∗t (·; θ̂t);Wt)

⊤(θ∗ − θ̂t)

+∇rψ
θ̄t
(z∗t (·; θ̄t);Wt)

⊤(θ∗ − θ̂t)−∇rψ
θ̂t
(z∗t (·; θ̂t);Wt)

⊤(θ∗ − θ̂t)− rθ∗(A(z
∗
t (·; θt));Wt)

(30)

≤ rθ∗(A(z
∗
t (·; θ∗));Wt)− rψθ∗(z

∗
t (·; θ∗);Wt) + rψ

θ̂t
(z∗t (·; θ̂t);Wt) +∇rψ

θ̂t
(z∗t (·; θ̂t);Wt)

⊤(θt − θ̂t)

+∇rψ
θ̄t
(z∗t (·; θ̄t);Wt)

⊤(θ∗ − θ̂t)−∇rψ
θ̂t
(z∗t (·; θ̂t);Wt)

⊤(θ∗ − θ̂t)− rθ∗(A(z
∗
t (·; θt));Wt)

+ rθt(A(z
∗
t (·; θt));Wt)− rψθt(z

∗
t (·; θt);Wt)) + rψθt(z

∗
t (·; θt);Wt))− rθt(A(z

∗
t (·; θt));Wt),

where the last inequality is because θ∗ ∈ Θt under event Et. By regrouping these terms in the above

inequality, we further have

rθ∗(A(z
∗
t (·; θ∗));Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

≤
(
rθt(A(z

∗
t (·; θt));Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

)
+
(
rθ∗(A(z

∗
t (·; θ∗));Wt)− rψθ∗(z

∗
t (·; θ∗);Wt)

)
+
(
rψθt(z

∗
t (·; θt);Wt))− rθt(A(z

∗
t (·; θt));Wt)

)
+
(
rψ
θ̂t
(z∗t (·; θ̂t);Wt)− rψθt(z

∗
t (·; θt);Wt)

)
+∇rψ

θ̂t
(z∗t (·; θ̂t);Wt)

⊤(θt − θ̂t) +∇rψ
θ̄t
(z∗t (·; θ̄t);Wt)

⊤(θ∗ − θ̂t)−∇rψ
θ̂t
(z∗t (·; θ̂t);Wt)

⊤(θ∗ − θ̂t).

Theorem 1 regarding the CA gap implies that

rθ∗(A(z
∗
t (·; θ∗));Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

≤
(
rθt(A(z

∗
t (·; θt));Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

)
+ 2βCA

+
(
rψ
θ̂t
(z∗t (·; θ̂t);Wt)− rψθt(z

∗
t (·; θt);Wt)

)
+∇rψ

θ̂t
(z∗t (·; θ̂t);Wt)

⊤(θt − θ̂t)

+∇rψ
θ̄t
(z∗t (·; θ̄t);Wt)

⊤(θ∗ − θ̂t)−∇rψ
θ̂t
(z∗t (·; θ̂t);Wt)

⊤(θ∗ − θ̂t)

(32)
=
(
rθt(A(z

∗
t (·; θt));Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

)
+ 2βCA

+∇rψ
θ̄′t
(z∗t (·; θ̄′t);Wt)

⊤(θ̂t − θt)−∇rψ
θ̂t
(z∗t (·; θ̂t);Wt)

⊤(θ̂t − θt)

+∇rψ
θ̄t
(z∗t (·; θ̄t);Wt)

⊤(θ∗ − θ̂t)−∇rψ
θ̂t
(z∗t (·; θ̂t);Wt)

⊤(θ∗ − θ̂t)

=
(
rθt(A(z

∗
t (·; θt));Wt)− rθ∗(A(z

∗
t (·; θt));Wt)

)
+ 2βCA
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+ (∇rψ
θ̄′t
(z∗t (·; θ̄′t);Wt)−∇rψ

θ̂t
(z∗t (·; θ̂t);Wt))

⊤(θ̂t − θt)

+ (∇rψ
θ̄t
(z∗t (·; θ̄t);Wt)

⊤ −∇rψ
θ̂t
(z∗t (·; θ̂t);Wt))

⊤(θ∗ − θ̂t).

Applying the mean-value theorem, there exists θ̃′t which is a convex combination of θ̄′t and θ̂t such

that
(∇rψ

θ̄′t
(z∗t (·; θ̄′t);Wt)−∇rψ

θ̂t
(z∗t (·; θ̂t);Wt))

⊤(θ̂t − θt)

=(θ̄′t − θ̂t)
⊤∇2rψ

θ̃′t
(z∗t (·; θ̃′t);Wt)(θ̂t − θt)

≤ℏf∥θ̂t − θt∥22,

where the inequality is due to the Cauchy-Schwarz inequality and our Assumption 4(II) that ℏf is an

upper bound for the Euclidean norm of gradient ∇2rψ
θ̃′t
(z∗t (·; θ̃′t);Wt). Similarly, there exists θ̃t which

is a convex combination of θ̄t and θ̂t such that

(∇rψ
θ̄t
(z∗t (·; θ̄t);Wt)−∇rψ

θ̂t
(z∗t (·; θ̂t);Wt))

⊤(θ∗ − θ̂t)

=(θ̄t − θ̂t)
⊤∇2rψ

θ̃t
(z∗t (·; θ̃t);Wt)(θ

∗ − θ̂t)

≤ℏf∥θ∗ − θ̂t∥22.

Next, we need to bound the norms ∥θ̂t − θt∥22 and ∥θ∗ − θ̂t∥22. Let λmin(Vt) denote the minimum

eigenvalue of the matrix Vt. Since ∥θ̂t − θt∥Vt ≤ γt holds by our constructed uncertainty set, we have

∥θ̂t − θt∥22 =
1

λmin(Vt)
(θ̂t − θt)

⊤(λmin(Vt)I)(θ̂t − θt)

≤ 1

λmin(Vt)
(θ̂t − θt)

⊤Vt(θ̂t − θt)

=
1

λmin(Vt)
∥θ̂t − θt∥2Vt

≤ 1

λmin(Vt)
γ2t .

Similarly, under the event Et = {∥θ̂t − θ∗∥Vt ≤ γt}, we also have ∥θ∗ − θ̂t∥22 ≤ 1
λmin(Vt)

γ2t .

Therefore, we can bound the one-step regret by

(rθ∗(A(z
∗
t (·; θ∗));Wt)− rθ∗(A(z

∗
t (·; θt));Wt))1(Et)

≤(rθt(A(z
∗
t (·; θt));Wt)− rθ∗(A(z

∗
t (·; θt));Wt) + ℏf∥θ̂t − θt∥22 + ℏf∥θ∗ − θ̂t∥22 + 2βCA)1(Et)

≤
(
rθt(A(z

∗
t (·; θt));Wt)− rθ∗(A(z

∗
t (·; θt));Wt) +

2ℏfγ2t
λmin(Vt)

+ 2βCA

)
1(Et). (33)

In the proof of Theorem 2, we have already shown that

(rθt(A(z
∗
t (·; θt));Wt)− rθ∗(A(z

∗
t (·; θt));Wt))1(Et)

≤Lr
Nt∑
j=1

|fθt(A(z∗t (·; θt));Wt,Xtj)− fθ∗(A(z
∗
t (·; θt));Wt,Xtj)|1(Et)

≤Lr∥θ∗ − θt∥Vt
Nt∑
j=1

∥gtj∥V −1
t

1(Et)

≤2Lrγt

Nt∑
j=1

∥gtj∥V −1
t
.
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It follows that one-step regret in (33) is bounded by

(rθ∗(A(z
∗
t (·; θ∗));Wt)− rθ∗(A(z

∗
t (·; θt));Wt))1(Et)

≤2Lrγt

Nt∑
j=1

∥gtj∥V −1
t

+
2ℏfγ2t
λmin(Vt)

+ 2βCA.

Recall that Et = {∥θ̂t − θ∗∥Vt ≤ γt} and we define Eλ = {λ(VtF0 ) ≥
√
T}. According to Lemma 12,

it holds that P(Eλ) ≥ 1− δ. Therefore, we can bound the regret by

Regretπ(T )1

 T⋂
t=tF0 +1

Et ∩ Eλ


≤rmaxt
F
0 +

T∑
t=tF0 +1

Eπ[(rθ∗(A∗
t ;Wt)− rθ∗(A(z

∗
t (·; θt));Wt))1(Et ∩ Eλ)]

≤rmaxt
F
0 + 2LrγT

T∑
t=tF0 +1

rmax ∧

 Nt∑
j=1

∥gtj∥V −1
t

+

T∑
t=tF0 +1

2ℏf · γ2t
1

λmin(Vt)
1(Eλ) + 2βCAT

≤rmaxt
F
0 + 2LrγT

T∑
t=tF0 +1

rmax ∧

 Nt∑
j=1

∥gtj∥V −1
t

+ 2ℏfγ2T
T∑

t=tF0 +1

1√
T

+ 2βCAT

≤rmaxt
F
0 + 2rmaxLrγT

√
2NmaxdT log

(
dλ+ T |X |2β2

κ

dλ

)
+ 2ℏfγ2T

√
T + 2βCAT,

where the last inequality holds according to Lemma 11, similar to the proof of Theorem 2.

Since Lemma 8 implies P
((⋂T

t=tF0 +1 Et
)c)

≤ δ, and Lemma 12 implies P((Eλ)c) ≤ δ, we conclude

that

P

(
Regretπ(T ) ≥ rmaxt

F
0 + 2rmaxLrγT

√
2NmaxdT log

(
dλ+ T |X |2β2

κ

dλ

)
+ 2ℏfγ2T

√
T + 2βCAT

)

≤E

1
Regretπ(T )1

 T⋂
t=tF0 +1

Et ∩ Eλ
 ≥ rmaxt

F
0 + 2rmaxLrγT

√
2NmaxdT log

(
dλ+ T |X |2β2

κ

dλ

)

+2ℏfγ2T
√
T + 2βCAT

)]
+ P

 T⋂
t=tF0 +1

Et

c+ P((Eλ)c)

=E[0] + P

 T⋂
t=tF0 +1

Et

c+ P((Eλ)c)

≤2δ.

D Supplementary results

D.1 Supplementary lemmas

Lemma 13 (Theorem 1.1 in Tropp (2012)). Consider a finite sequence {Xk} of independent, random,

self-adjoint matrices with dimension d. Assume that each random matrix satisfies

Xk ≽ 0 and λmax(Xk) ≤ R almost surely.
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Define

µmin := λmin

(∑
k

E[Xk]

)
and µmax := λmax

(∑
k

E[Xk]

)
.

Then

P

(
λmin

(∑
k

Xk

)
≤ (1− δ)µmin

)
≤ d

(
e−δ

(1− δ)1−δ

)µmin/R

for δ ∈ [0, 1), and

P

(
λmax

(∑
k

Xk

)
≥ (1 + δ)µmax

)
≤ d

(
eδ

(1 + δ)1+δ

)µmax/R

for δ ≥ 0.

E Extensions

There are several extensions of the mobile retail problem that are worth further exploring. In this

section, we discuss the effect of one-to-one inventory replenishment, delivering products to customers.

In addition, we analyze the online location decision for last-mile delivery with micro-depots.

E.1 One-to-one inventory replenishment

In the three cases in our paper, we assume there is a truck visiting multiple stores to replenish the

inventory. To extend the analysis, we replace the assumption of one-to-many replenishment in Case 3

by an one-to-one setting. Namely, a truck loads products from a distribution center at xd and visits

one store at a time for restocking. There is fixed cost for replenishment and we denote it by ai. As

discussed in Section 3.3, for a store located at xtj and serving the area Xtj , the replenishment frequency

is
∫
x∈Xtj ρθ(x)dx/S. A truck incurs cost ct per kilometer of travel and travels 2d(xd, xtj) kilometer

for each replenishment. Therefore, the daily inventory replenishment cost for that store is given by

ai + 2ctd(xd, xtj)
∫
x∈Xtj ρθ(x)dx/S. The CA of cost density function for replenishment is given as

follows:

φi
(
d(xd, x), ρθ(x)zt(x), zt(x);Wt(x)

)
=
ai + 2ctd(xd, x)

ρθ(x)zt(x)
S

zt(x)
=

ai

zt(x)
+ 2

ct
S
d(xd, x)ρθ(x).

Similar to Case 3, the resulting CA of profit function is

rψθ (zt;Wt) =

∫
x∈Xt

ψθ(zt(x);Wt(x))dx

=

∫
x∈Xt

((
r̄ − af − 2

ct
S
d(xd, x)

)
θ⊤Wt(x) exp

{
−c0

2

3
√
π

√
zt(x)

}
− ai + bf

zt(x)

)
dx.

At each x ∈ Xt, we can evaluate the optimal solution z∗t (x; θ) by first-order condition

z∗t (x; θ) ∈
{
z

∣∣∣∣∂ψθ∂z (z;Wt(x)) = 0

}
=

{
z

∣∣∣∣(r̄ − af − 2
ct
S
d(xd, x)

)
θ⊤Wt(x) exp

{
−c0

2

3
√
π

√
z

}
− 3

√
π(ai + bf )

c0z
3
2

= 0

}
.

Specifically, the optimal z∗t (x; θ) has a closed-form solution

z∗t (x; θ) =
81π

4c20

(
W0

(
−2

3

(
(ai + bf )c20

9π(r̄ − af − 2 ctS d(xd, x))θ
⊤Wt(x)

) 1
3

))2

,

where W0(·) is the principal branch of Lambert W function.
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Despite the closed-form z∗(x; θ), the maximization problem (OFL-CA) is still intricate to solve.

Therefore, we can choose to apply the Algorithm CA-O Faster Learning to easily solve the online store

location problem. Lemma 2 provides the closed-form expression of gradient of CA profit function as

∇rψ
θ̂t
(z∗t (·, θ̂t);Wt) =

∫
x∈Xt

(
r̄ − af − 2

ct
S
d(xd, x)

)
exp

{
−c0

2

3
√
π

√
z∗t (x; θ̂t)

}
Wt(x)dx.

Given that Assumptions 1-4 remain valid in this one-to-one inventory replenishment setting, The-

orem 3 still provides an evaluation of the regret performance of Algorithm CA-O Faster Learning.

E.2 Delivery to customers

When the retailer has to deliver the goods in mobile stores to customers, there are additional trade-

offs to consider. The outbound delivery cost typically increases with the distance between stores and

customers. As a result, the retailer has the incentive to set smaller influence areas of stores, so that

the delivery cost becomes lower. More specifically, we assume the delivery incurs cost do per kilometer

of distance between a store at xtj and a customer at x ∈ Xtj . The outbound delivery cost for a store

serving area Xtj is
∫
x∈Xtj b

od(xtj , x)ρθ(x)dx. The outbound delivery cost density, denoted by φo, is

thus given by

φo
(
d(xtj , x), ρθ(x);Wt(x)

)
= bod(xtj , x)ρθ(x).

The related CA function can be evaluated by averaging the distance d(xtj , x) using 2
3
√
π

√
zt(x),

i.e.,

φo
( 2

3
√
π

√
zt(x), ρθ(x);Wt(x)

)
= bo

2

3
√
π

√
zt(x)ρθ(x).

Hereafter we omit the constant 2
3
√
π
for brevity since we can include it in the constant bo. By incor-

porating the outbound delivery cost density into the CA profit density function, as described in (6)

and (7), we have the following result:

rψθ (zt;Wt) =

∫
x∈Xt

ψθ(zt(x);Wt(x))dx

=

∫
x∈Xt

(
r̄ρθ(x)− βTSP

ct
S
ρθ(x)

√
zt(x)−

afρθ(x)zt(x) + bf

zt(x)
− boρθ(x)

√
zt(x)

)
dx.

The optimal solution z∗t (x; θ) and the optimal profit density can be point-wisely obtained by

z∗t (x; θ) =

(
2bfS

(βTSPct + boS)ρθ(x)

) 2
3

,

ψθ(z
∗
t (x; θ);Wt(x)) = (r̄ − af )ρθ(x)− 3

(
bf
) 1

3

(
βTSPct + boS

2S
ρθ(x)

) 2
3

.

We next analyze the effect of outbound delivery on the CA gap. In addition to Assumptions 1–2,

we conclude the following technical assumption from the scenario of delivery to customers.

Assumption 6.

(I) The delivery cost φo is a convex function of the potential trip distance d(xj , x).

(II) The second derivative of the delivery cost φo with respect to d(xj , x) exists, and its absolute

value is bounded from above by ηo.

(III) LetX be a random location in Xj . The variance of random delivery distance d(xj , X) is denoted

by V ar(d(xj , X);Xj).
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(IV) Within each influence area j, the difference between the average delivery trip distance and

(2/(3
√
π))
√

|Xj | is bounded within [0, ηd].

(V) The delivery cost φo is Lipschitz continuous on d(xj , x) with modulus Lφ.

As to the outbound delivery cost, the CA is to replace the delivery trip distance d(xj , x) with

2/(3
√
π)
√
|Xj |. The latter is the average distance from the center of a round disk with area |Xj | to

a point on this disk. However, in general, the average delivery trip distance, denoted by d̄j , is not

necessarily equal to 2/(3
√
π)
√
|Xj | since the influence area is not a circle in practice. If the CA were

instead to replace the delivery trip distance d(xj , x) with d̄j , then we would obtain

0 ≤
∫
Xj
φo (d(xj , x), ρ(x)) dx−

∫
Xj
φo(d̄j , ρ(x))dx ≤ ηo

2
V ar(d(xj , X);Xj). (34)

Here the first inequality is due to the convexity of φo in d(xj , x) and Jensen’s inequality (Assump-

tion 6(I)). The second inequality is due to the sharpened Jensen’s inequality and Assumptions 6(II)

and (III).

It remains to quantify the error induced by using d̄j instead of 2/(3
√
π)
√

|Xj | in (34). Following

Assumption 6(IV) and (V), this error is bounded as follows:

0 ≤
∫
Xj

(
φo(d̄j , ρ(x))− φo

( 2

3
√
π

√
|Xj |, ρ(x)

))
dx ≤

∫
Xj
Lφη

ddx = Lφη
d|Xj |. (35)

The first inequality is due to d̄j ≥ 2/(3
√
π)
√
|Xj | and the fact that the outbound cost is non-decreasing

in delivery trip distance. Combining Theorem 1 with (34)–(35), we obtain the modified univeral bounds

for the CA gap in the scenario of delivery to customers as follows:

βCA := sup
{x,X}

∑
j

(
ηψ

2
V ar(z∗;Xj) +

ηi

2
V ar(d(X ′, X);Xj) +

ηρ

2
V ar(ρ(X);Xj)

+
ηo

2
V ar(d(xj , X);Xj) + Lφη

d|Xj |

)
.

We now proceed to analyze the regret bound for proposed algorithms in this scenario of delivery

to customers. Note that in the mobile retail store location problem involving delivery, the outbound

delivery cost exhibits a similarity to Assumption 4(VI). If we denote the Lipschitz constant of φo by

αo, Lemma 9 will still hold by letting Lr = r̄ + |X |αi + |X |αf + |X |αo. Therefore, one can opt to

use CA-O Learning. or CA-O Faster Learning to solve this problem, and the regret performance remains

bounded by Theorem 2 or Theorem 3, respectively.

E.3 Last-mile delivery with micro-depots

Finally, we investigate a micro-depot location problem for last-mile delivery. The application of micro-

depots arises directly from the context of urban logistics. Specifically, we adopt the problem of using

crowdsourced ride-share mobility for last-mile package deliveries, as developed in Qi et al. (2018). The

decision involves delimiting the entire service region into individual zones, with a micro-depot centered

at each zone as the trans-shipment terminal. A truck loads packages from a distribution center at

xd and traverses terminals to unload packages. Within each zone, idle ride-share vehicles are paid to

pick up packages at the micro-depot and fulfill the last-mile deliveries. The objective is to minimize

costs incurred. The problem involves intricate modeling of the open-loop vehicle route lengths and

the driver compensation schemes. However, the CA model ultimately can be reduced to the following

form:
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min
zt(·)

∫
x∈Xt

ψθ(zt(x);Wt(x))dx

=

∫
x∈Xt

(
φi
(
d(xd, x), ρθ(x)zt(x);Wt(x)

)
+ φo

(√2

3

√
zt(x), ρθ(x);Wt(x)

))
dx,

in which the inbound trucking cost and the outbound delivery cost are given by

φi
(
d(xd, x), ρθ(x)zt(x);Wt(x)

)
=

U√
zt(x)

+ V d(xd, x)ρθ(x),

φo
(√2

3

√
zt(x), ρθ(x);Wt(x)

)
=
(
E
√
ρθ(x) + F

)
ρθ(x)

√
zt(x) +Gρθ(x) +H

√
ρθ(x),

respectively, where U, V,E, F,G, and H are constant numbers composed of system parameters. (See

Equations (11), (12), (9), and (10) in Qi et al. (2018) for detailed derivations.) We also adopt the

calibrated parameter values from Qi et al. (2018): U = 0.9580, V = 0.0045, E = 5.1167 × 10−4,

F = 0.0250, G = 0.1422, and H = 1.4092). Determining the value of these constants involves

approximating vehicle route lengths. We ignore this approximation error, given not just the scope of

this paper but also the practice in the literature of location-routing problems. Also note that, in this

problem, we follow the assumption in Qi et al. (2018) of using “Manhattan distance”; as a result, the

mean distance from the center of a zone (which is now a rhombus) with size zt(x) to a random point

in the zone is
√
2
√
zt(x)/3 instead of 2/(3

√
π)
√
zt(x). Similar to the previous application, applying

the first-order condition yields the optimal solution and the optimal cost density function, as follows:

z∗t (x; θ) =
U(

E
√
ρθ(x) + F

)
ρθ(x)

,

ψ∗
θ(z

∗
t (x; θ);Wt(x)) = 2

(
UE (ρθ(x))

3
2 + UFρθ(x)

) 1
2

+ V d(0, x)ρθ(x) +Gρθ(x) +H(ρθ(x))
1
2 .

We solve an online version of this problem, in which the decisions of micro-depot siting or, equiv-

alently, service zoning are adjusted over time t. We run CA-O Faster Learning 500 times. Figure 7

shows the evolution of the regret. The blue shaded area is the 95% confidence interval. The sublinear

trend of the regret is consistent with the theory given by Theorem 3 without the linear term 2βCAT .

(Here, the CA gap is irrelevant because we omit the design dicretization and directly use the objective

function of the CA model.) In addition, the optimization problem involved in the learning process can

be solved within seconds by CA-O Faster Learning at each round. To sum up, the sublinear regret and

the high computational efficiency suggest that our proposed framework potentially is widely applicable

in solving practical online facility location problems.
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Figure 7: Regret of cost in the online micro-depot location problem.
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