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Abstract : Solving optimization problems in which functions are blackboxes and variables involve
different types poses significant theoretical and algorithmic challenges. Nevertheless, such settings
frequently occur in simulation-based engineering design and machine learning. This paper extends the
Mesh Adaptive Direct Search (MADS) algorithm to address mixed-variable problems with categorical,
integer and continuous variables. MADS is a robust derivative-free optimization framework with a
well-established convergence analysis for constrained quantitative problems. CatMADS generalizes
MADS by incorporating categorical variables through distance-induced neighborhoods. A detailed
convergence analysis of CatMADS is provided, with flexible choices balancing computational cost and
local optimality strength. Four types of mixed-variable local minima are introduced, corresponding
to progressively stronger notions of local optimality. CatMADS integrates the progressive barrier
strategy for handling constraints, and ensures Clarke stationarity. An instance of CatMADS employs
cross-validation to construct problem-specific categorical distances. This instance is compared to state-
of-the-art solvers on 32 mixed-variable problems, half of which are constrained. Data profiles show
that CatMADS achieves the best results, demonstrating that the framework is empirically efficient in
addition to having strong theoretical foundations.

Keywords : Blackbox optimization, derivative-free optimization, mixed-variable, categorical vari-
ables, mesh adaptive direct search
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1 Introduction

Many engineering and machine learning problems involve functions without explicit expressions, known

as blackbox functions. These functions often include categorical variables that take qualitative values.

In this context, traditional gradient-based or relaxation-based methods can not be directly employed.

This work proposes CatMADS, an extension of the Mesh Adaptive Direct Search (MADS) algorithm [6],

that addresses constrained blackbox problems with quantitative and categorical variables. CatMADS
manages categorical variables with problem-specific distances.

This work covers many real-life applications. Machine learning (ML) models are characterized

by hyperparameters that can be optimized to improve performance. Hyperparameter tuning, in-

volves optimizing a time-consuming mixed-variable blackbox that trains the model and returns a test

score [8, 24]. In [4], a simulation estimates the energy produced by a solar powerplant for given design

variables, such as dimensions of pieces or turbine types. An active research field in engineering is

the simulation-based design of aircraft [16, 41]. These simulation input geometry and materials, and

output energy-based scores via numerical methods [33].

Notation

Vectors are in bold font. The letters x and y are reserved for points. Scalars are in normal font. Sub-

scripts without parenthesis denote variables, e.g., xcat
1 is the first categorical variable. Subscripts with

parentheses are reserved for indexing iterations, e.g., x(k), or for listing points, e.g., x(1),x(2), . . . ,x(s).

For functions, subscripts represent the parameters on which they depend. Superscripts are reserved for

types, with small exceptions in the convergence analysis. R, Z and N denote the set of real numbers,

integers and nonnegative integers, respectively. Other sets denoted using capital letters with either

normal or calligraphic font, e.g., A or A, except for the set of known points noted X. For a neighbor-

hood, the semicolon distinguishes its center from the parameter controlling its size, e.g, an open ball

of radius ϵ centered at µ is noted B(u; ϵ).

1.1 Scope

This work considers inequality constrained mixed-variable blackbox optimization problems of the form

min
x∈Ω

f(x), (1)

where f : X → R (with R = R ∪ {+∞}) is the objective function, X is the domain of the objective

and constraint functions, Ω := {x ∈ X : gj(x) ≤ 0, j ∈ J} is the feasible set, gj : X → R is the j-th

constraint function of the problem, with j ∈ J , and |J | denotes the number of constraints.

The objective and the constraint functions are assumed to be provided by blackboxes, defined as

in [9]: “any process that when provided an input, returns an output, but the inner working of the process

is not analytically available”. In this context, derivatives are unavailable and the function evaluations

are performed by executing a potentially time-consuming process. For example, the estimation of an

aircraft drag could be done using a finite element simulation that outputs a drag value, provided a

geometry and materials used.

The execution of a blackbox can crash or fail to return a valid value because of hidden con-

straints [17], e.g., an unexpected division by zero. In that case, the point x ∈ X is assigned f(x) = +∞.

A point x ̸∈ X can also be assigned f(x) = +∞ to outline that an unrelaxable constraint, which must

be satisfied to have a proper blackbox execution, is not satisfied. In contrast, the constraint functions

characterizing the feasible set Ω are said to be relaxable and quantifiable, since they can be evaluated

and return a proper value without being satisfied [31].

The target optimization problems are mixed-variable, meaning that a variable can be of any type

among continuous (cont), integer (int) and categorical (cat). Variables of the same type are regrouped
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into a column vector called a component and expressed as

xt := (xt
1, x

t
2, . . . , x

t
nt) ∈ X t := X t

1 ×X t
2 × . . .×X t

nt , (2)

where t ∈ {cat, int, cont} refers to the type, nt ∈ N is the number of variables of type t, X t is the set of

type t, xt
i ∈ X t

i denotes the i-th variable of type t, and X t
i contains the bounds of xt

i. For convenience,

the indices of the variables of type t are regrouped in the set It := {1, 2, . . . , nt}.

The continuous xcont ∈ X cont ⊆ Rncont

and integer xint ∈ X int ⊆ Znint

components are composed of

quantitative variables that belong to ordered sets with well-defined metrics. For readability, the integer

and continuous components can be grouped into the quantitative component xqnt :=
(
xint,xcont

)
∈

X qnt := X int×X cont. The integer xint and categorical xcat components both contain discrete variables.

However, categorical variables are not quantitative and take qualitative values, known as categories.

For i ∈ Icat, the i-th categorical variable xcat
i ∈ X cat

i := {c1, c2, . . . , cℓi}, where ℓi ∈ N is the number of

categories and cj is a category for j ∈ {1, 2, . . . , ℓi}, i ∈ Icat. For example, the blood type of a person

takes a category in the set {O-,O+, . . . ,AB+}. The usual distance functions are not suitable for

categorical variables, which makes them difficult to treat [8, 26]. The categorical set X cat is assumed

to be finite and its cardinality is |X cat| = ∏ncat

i=1 ℓi.

Finally, a point x ∈ X is partitioned into component by types, such that

x :=
(
xcat,xint,xcont

)
∈ X cat ×X int ×X cont (3)

where X := X cat × X int × X cont is the domain that consists of Cartesian products of the categorical

set X cat, the integer set X int and the continuous set X cont.

Note that this work does not cover problems with meta variables that influence the inclusion or

bounds of other variables [8, 24]. The dimensions and bounds of the problems are fixed.

1.2 Objectives, contributions and organization

MADS is a direct search algorithm that provides an exhaustive convergence theory for constrained

quantitative problems [6, 13]. Nevertheless, the direct search approach remains relatively underde-

veloped for mixed-variable problems with categorical variables, especially in comparison to Bayesian

optimization (BO) [23, 36, 40] and metaheuristics [22] approaches. The mixed-variable MADS (MV-
MADS), an extension of MADS for discrete variables, has several convergence guarantees [1]. However,

MV-MADS requires the implementation of explicit user-defined neighborhoods that define discrete vari-

able neighborhoods. Such neighborhoods can be tricky or arbitrary to define in a blackbox optimiza-

tion context with limited information, yet they greatly impact performance. In practice, user-defined

neighborhoods are not user-friendly and may discourage practitioners from using this method.

CatMADS is introduced as a framework that generalizes MADS and improves the management

of categorical variables of MV-MADS. The research gap addressed is the absence of a robust and

rigorous optimization method for mixed-variables problems with constraints. The main advantage of

CatMADS over alternative methods is its convergence guarantees and theoretical results, which BO or

metaheuristic methods lack. For instance, CatMADS provides necessary optimality conditions for local

minima of varying strengths. This work introduces and adapts different notions of local optimality to

develop the theoretical results of CatMADS. In doing so, several characterizations of local minima are

proposed and multiple key definitions, such as hypertangent cones, are adapted to the mixed-variable

setting.

CatMADS addresses the research gap through five objectives. The first objective is to automatize

and generalize the user-defined neighborhood of MV-MADS with distances. The second objective is to

integrate the version of MADS that uses a granular mesh [13], referred to as G-MADS, to handle si-

multaneously integer and continuous variables efficiently and with convergence guarantees. MV-MADS
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treats integers as categorical variables, thus it does not capitalize on the properties of these variables.

The third objective is to handle the constraints with the progressive barrier [7], a state-of-the-art tech-

nique with convergence guarantees. MV-MADS uses the simpler extreme barrier strategy that simply

rejects infeasible points [6]. The use of the progressive barrier also motivates adapting the extended

poll [5], a mechanism exploring promising categorical variables and influencing guarantees. The fourth

objective is to develop a comprehensive convergence analysis that improves upon that of MV-MADS
and integrates the contributions of the previous objectives. In the convergence analysis, different

types of local minima are developed to provide compromises between strength of local optimality and

evaluation costs of CatMADS. The final objective is to propose a collection of 32 mixed-variable test

problems, half unconstrained and the other half constrained.

The rest of the document is organized as follows. Essential elements of MADS are discussed in

Section 1.3 and related work is covered in Section 1.4. The general framework CatMADS is presented

in Section 2. Section 3 presents the theoretical results of CatMADS, along with adapted definitions from

nonsmooth optimization and new types of local minima tailored for our setting. Finally, computational

experiments with state-of-the-art solvers are described in Section 4.

1.3 Essential concepts of MADS

MADS is a direct search method that iteratively seeks candidate points with a strict decrease of the

objective function and/or constraint functions [6]. The candidate points lie on a mesh that discretizes

the space with step sizes. The MADS algorithm has two main steps. The search, an optional step,

evaluates points on the mesh using flexible strategies. Although optional, the search allows to in-

corporate efficient optimization strategies that can significantly improve the global solution quality.

Notable empirical improvements are often achieved with search steps based on quadratic model opti-

mization [19]. The key step, called the poll, evaluates candidates points around the incumbent solution,

which is the best solution found since the algorithm was launched. This is the step that provides con-

vergence guarantees. If a better solution is found during the search or the poll, then it becomes the

incumbent solution and the iteration is said to be successful. Otherwise, the iteration is unsuccessful,

the incumbent solution is unchanged and the mesh is refined to discretize the space more finely.

For the continuous case, the mesh has a single step size and the poll is constructed with a set of

directions positively spanning the space. The poll converges with a succession of unsuccessful iterations,

such that candidate points are evaluated in an increasingly denser region around a minimum: this is

schematized for R2 in Figure 1.

x∗y(1)

y(2)

y(3)

(a)

x∗y(4)

y(5)

y(6)

(b)

x∗y(7)

y(8)

y(9)

y(10)

(c)

Figure 1: Three consecutive polls of MADS converging to a local minimum x∗ ∈ R2.

In Figure 1, the poll generates candidates points with positive basis that are represented by dotted

arrows starting from x⋆. These candidate points y(1),y(2), . . . ,y(10) must lie on the mesh (grey grid)

and within the frame (black square). The frame represents the delimitation in which the poll is

performed and it is greater or equal to the mesh size. As MADS converges, the mesh and frame sizes
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shrink toward zero, and the step size shrinks more aggressively to force polls in denser regions: in

Figure 1a there are 8 potential candidate points, and it increases to 24 in Figure 1b. The convergence

proof is based on the last remark. For more details on the MADS algorithm, see Chapter 8 of [9]. The

state-of-the art strategy to handle constraints is the progressive barrier, which is detailed in Section 2.3.

1.4 Related work

The recent literature on mixed-variable blackbox problems mostly comes from BO with GPs, focusing

on similarity measures, referred to as kernels, that characterize GPs. For continuous and integer vari-

ables, squared-exponential kernels can be used straightforwardly [23]. However, categorical variables

require additional work. In [23], categorical variables are one-hot encoded into binary vectors with

one binary variable per category. These binary variables are then continuously relaxed, allowing the

squared-exponential kernels to be used. Relaxed categorical variables are transformed into their origi-

nal form with a transformation that, for each categorical variable, sets the highest-valued category to

one, and all its other categories to zero.

In [48], each categorical variable is provided with a 2D continuous space for encoding its categories.

The categories are mapped with a maximum likelihood procedure that positions correlated categories

closely and uncorrelated categories farther apart. The authors of [21] propose a pre-image problem

that reconstructs the encoded categorical variables. This is useful in BO, since the GPs are used to

form a subproblem that determines the next point to evaluate. If categorical variables are encoded,

then the solution is also encoded.

An alternative approach to binary vectors employs matrices [36, 38, 40]. Each categorical variable

is assigned a matrix whose elements are hyperparameters representing correlations or anti-correlations

between its categories. The hyperparameters are constructed with hypersphere decompositions that

parametrize the matrices [38]. A parametrization with more hyperparameters offers greater modeling

flexibility, but adjusting its hyperparameters becomes more costly. See [42] for in-depth presentation

of different parametrizations. This matrix approach implies that the BO subproblem is also mixed-

variable. In [36], the subproblem is optimized with a genetic algorithm inspired from [44].

Genetic algorithms are also commonly employed in blackbox optimization, such as the Non-

dominated Sorting Genetic Algorithm [22] (NSGA-2). These algorithms encode points into chro-

mosomes that are subject to different operations inspired from the theory of evolution. For instance,

the crossover operation exchange parts of promising chromosomes to heuristically propose new solu-

tions. Many other metaheuristic methods exist for the problems of interest, such as the mixed-variable

Particle Swarm Optimization [47]. For a comprehensive survey, see [45].

2 The CatMADS general framework

CatMADS follows the paradigm of direct search methods: an initialization step is done at the beginning,

then search and poll steps are iteratively performed until a stopping or convergence criteria is met.

At each iteration, the algorithm seeks to improves an incumbent solution x(k) ∈ X . The framework

is presented in its general form in Algorithm 1. Initially, CatMADS is discussed without constraints;

they are addressed in Section 2.3, after the poll step is detailed.

All the parameters of CatMADS are described below. A DoE is done at the initialization, allocating

an initial budget of evaluations to explore the domain X before any optimization. The DoE must

contain at least one initial point x(0) ∈ X , but possibly outside Ω.

As with MADS, an iteration of CatMADS is said to be successful if, at any step, a new incumbent

solution x(k+1) ∈ X is found. In that case, CatMADS proceeds directly to the update step. This

early stopping strategy is said opportunistic, and it reduces the number of evaluations required in

practice [9]. An iteration is said to be unsuccessful if no better solution is found.
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Algorithm 1 The CatMADS framework.

0. Initialization. Initialize poll parameters, perform an initial Design of Experiment (DoE) and set k = 0

1. Opportunistic search (finitely many mesh points, possibly none).

2. Opportunistic poll. Perform polling over candidates points in P(k) = P cat
(k)
∪ P qnt

(k)

3. Opportunistic extended poll (optional). If Steps 1. and 2. are unsuccessful, perform quantitative polls

centered at points in P cat
(k)

with objective values sufficiently close to f
Ä
x(k)

ä
4. Update. Update poll parameters, check stopping criterion and set k ← k + 1

If the iteration is successful, increase mesh and frame parameters and GO TO Step 1.
Else, decrease mesh and frame parameters, and if the mesh parameters are at their minimum sizes, then STOP

In CatMADS, the search has the same purpose than MADS described in Section 1.3. The poll P(k)

is the union of the categorical poll P cat
(k) and quantitative poll P qnt

(k) . The categorical poll P cat
(k) replaces

the discrete poll of MV-MADS, and it uses more flexible neighborhoods based on a distance defined

in Section 2.1. Furthermore, in comparison to MV-MADS, the integer variables are not grouped with

the categorical variables, but rather with the continuous variables to form quantitative variables. This

modification allows to use the granular mesh of G-MADS [13] and efficiently treat integer variables.

The quantitative poll P qnt
(k) , detailed in Section 2.2, is an adaptation of the G-MADS algorithm for this

work.

If both search and poll steps are unsuccessful, then the extended poll, adapted from [5], is deployed.

This step performs quantitative polls around points in the categorical poll P cat
(k) whose objective value is

worse than the incumbent value f(x(k)) (unsuccessful), but still considered sufficiently close to f(x(k)).

This assessment of whether a point is sufficiently close to f(x(k)) is described in Section 2.4. The test

is flexible, allowing the user to control its selectivity, including the option to reject all points. The

extended poll is optional, but is labeled as a poll, since it affects the convergence guarantees.

2.1 Distanced-based categorical poll

The categorical poll P cat
(k) is characterized by two elements: (i) a categorical distance dcat : X cat×X cat →

R+ establishing the notion of proximity between categorical components, and (ii) a parameter m(k) ∈
{0, 1, . . . , |X cat| − 1}, called the number of neighbors, determining how many categorical components

are polled.

The quality of a categorical poll depends greatly on the distance employed. Basic categorical

distances, such as Hamming distances, only compute mismatches between categories. CatMADS does

not prevent using these distances, but they may fail to provide meaningful comparisons. For example,

if xcat ∈ {Red (R), Blue (B), Green (G)}, then dcat(R,B) = 0 = dcat(R,G). With such distances, it

is not always possible to determine which category is the closest to R. In CatMADS, effort needs to

be spent on constructing problem-specific categorical distances that allow useful comparisons. In the

computational experiments in Section 4, the categorical distance is built by fitting a mixed-variable

interpolation of the objective function f . When some knowledge of the problem is available, a user-

defined distance assigning smaller values to similar categories may be appropriate.

A value of m(k) = 0 means the categorical poll is empty, whereas m(k) = |X cat| − 1 signifies all

categorical components, except the current solution x(k), belong to the categorical poll. Higher values

allow more categorical component to be evaluated in the categorical poll, but at greater computational

costs. The number of neighbors can be based by default on the number of categorical components in the

problem, e.g., m(k) = ⌊|X cat| /2⌋, to scale with the problem. This is ultimately a user choice that should

take into account the categorical distance. For instance, if mismatching-based distances are employed,

higher values of m(k) may be preferable, as each neighbor is selected with limited information. In

contrast, when more sophisticated problem-specific distances are used, then each neighbor is chosen

in more informed manner, which may justify using lower values of m(k).
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The following definition introduces the structure establishing neighborhoods for categorical vari-

ables.

Definition 1 (Distance-induced neighborhood). For a given number m ∈ {0, 1, . . . , |X cat| − 1}, the

distance-induced neighborhood N (xcat;m) ⊆ X cat is the set of m+ 1 closest categorical components

to the categorical component xcat ∈ X cat with respect to a categorical distance dcat : X cat×X cat → R+.

Formally, |N (xcat;m)| = m + 1, and for any pair u,v ∈ X cat such that u ∈ N (xcat;m) and v ̸∈
N (xcat;m), the distance dcat satisfies dcat (xcat,u) ≤ dcat (xcat,v).

By definition, a categorical component xcat ∈ X cat belongs to its own distance-induced neigh-

borhood: xcat ∈ N (xcat;m) for any m ∈ {0, 1, . . . , |X cat|}. The definition generalizes user-defined

neighborhoods from [1], since it suffices to construct an appropriate categorical distance inducing the

user-defined neighborhoods. The categorical poll is defined from distance-induced neighborhoods.

Definition 2 (Categorical poll). For a given incumbent solution x(k) =
Ä
xcat
(k),x

qnt
(k)

ä
∈ X , the categorical

poll P cat
(k) ⊂ X contains points whose categorical components belong to the distance-induced neighborhood

N
Ä
xcat
(k);m(k)

ä
, such that

P cat
(k) :=

Ä
N
Ä
xcat
(k);m(k)

ä
\ {xcat

(k)}
ä
× {xqnt

(k)} ⊂ X

where
∣∣∣P cat

(k)

∣∣∣ = m(k).

In Definition 2, the categorical poll contains points of the domain, however the incumbent quantita-

tive component xqnt
(k) ∈ X qnt is fixed so that categorical polls effectively modify categorical components

of incumbent solutions.

2.2 Quantitative poll and mesh

In G-MADS, the mesh discretizes the quantitative space, determines the potential points that can be

generated by the quantitative poll. The mesh also controls the spacing between the incumbent solution

and the points in these polls. A step size is assigned to each variable in order to control its granularity.

For this work, the granular mesh allows to tackle simultaneously continuous and integer variables,

referred to as the quantitative ones. The following redefines the granular mesh in [13].

Definition 3 (Quantitative mesh [13]). For a given iteration k ≥ 0, the quantitative mesh, centered at

the quantitative component xqnt
(k) ∈ X qnt, discretizes the quantitative set X qnt, as follows

Mqnt
(k)

:=
¶
xqnt
(k) + diag

(
δ(k)

)
z : z ∈ Znqnt

©
⊂ X qnt (4)

where δ(k) :=
(
δ(k),1, δ(k),2, . . . , δ(k),nqnt

)
∈ Rnqnt

+ is the mesh size vector and δ(k),i ∈ R+ is the mesh

size parameter of the i-th quantitative variable xqnt
(k),i ∈ X

qnt
i .

In Definition 3, the step size of an integer variable belongs more precisely to set of integers Z and

its minimal value is one. For clarity, Equation (4) from Definition 3 may be expanded as follows to

distinguish integer and continuous variables

Mqnt
(k)

:=
¶
yqnt =

Ä
xint
(k) + diag

Ä
δint(k)

ä
zint, xcont

(k) + diag
Ä
δcont(k)

ä
zcont

ä
: zint ∈ Znint

, zcont ∈ Zncont
©

where δint(k) ∈ Nnint

and δcont(k) ∈ Rncont

+ are respectively the integer and continuous mesh size vectors.

In Definition 3, the quantitative mesh Mqnt
(k) is a subset of the quantitative set X qnt, as it represents

a discretization of the quantitative variables. Similarly to the categorical poll, the quantitative poll

contains point in the domain. Hence, to formulate the quantitative poll on points, this next definition

extends Definition 3 to discretize the domain X .
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Definition 4 (Mesh [1]). For a given iteration k ≥ 0, the mesh discretizes the domain X is formed as

Cartesian product of the categorical set and the quantitative mesh, such that M(k) := X cat×Mqnt
(k) ⊂ X .

Next, the quantitative poll is defined from the mesh. This poll uses the standard mechanisms of

MADS. Mathematically, candidate points, which lie on the mesh, are constructed by translating a

quantitative incumbent solution xqnt
(k) with directions from a positive basis.

Definition 5 (Quantitative poll [1]). For a given incumbent solution x(k) =
Ä
xcat
(k),x

qnt
(k)

ä
∈ X , the

quantitative poll P qnt
(k) ⊂ X contains points whose quantitative components are generated from a positive

spanning set of directions D(k), such that

P qnt
(k)

:=
¶Ä

xcat,xqnt
(k) + diag

(
δ(k)

)
d
ä
∈M(k) : d ∈ D(k)

©
⊂ X .

Each direction d ∈ D(k), scaled by the mesh size vector δ(k), must be within the geometry of the frame,

characterized by frame size vector ∆(k) ≥ δ(k), such that

−∆(k) ≤ diag
(
δ(k)

)
d ≤∆(k), (5)

where ∆(k) :=
(
∆(k),1,∆(k),2, . . . ,∆(k),nqnt

)
∈ Rnqnt

+ and ∆(k),i is the frame size parameter of the

i-th quantitative variable xqnt
(k),i ∈ X

qnt
i for i ∈ Iqnt.

For the quantitative variables, the management of parameters is done variable-wise in order to

consider the variable type and the scale of the variables. The frame sizes of an integer and continuous

variables are respectively restricted to the following discrete sets ∆int
(k),i ∈ {a× 10b : a ∈ {1, 2, 5}, b ∈

N}, with ∆int
(k),i ≥ 1, for i ∈ I int, and ∆cont

(k),j ∈ {a × 10b : a ∈ {1, 2, 5}, b ∈ Z} for j ∈ Icont. A step

size is always lower than or equal to its corresponding frame size, i.e., δt(k),i ≤ ∆t
(k),i. The frame and

step sizes parameters with specific rules detailed in [13]. The frame and step sizes are decreased on

unsuccessful iterations, and increased on successful ones. A step size must decrease toward zero more

rapidly than its frame size to ensure convergence: typically, it decreases toward zero with an order of

the square of its frame size [9, 13]. The initialization of the frame and step sizes considers the bounds

and the initial values of x(0) or a DoE: see [12, 13] for more details.

By default, G-MADS uses Householder transformations to construct positive spanning set of di-

rections D(k). At each iteration k, a random and normalized vector v(k) ∈ Rnqnt

is generated. From

v(k), the Householder transformation I − 2v(k)v
⊤
(k) is done. Afterwards, each column of the matrix is

used to create two opposing directions. These directions are rescaled with the frame and step sizes

parameters to ensure that the inequality in (5) is respected. This ensures that the poll points belong

to the mesh and reside within the frame, as in Figure 1.

2.3 Domination and constraint handling with the progressive barrier

The strategy to handle the constraints, called the progressive barrier (PB) [7], is now described. The

PB works with two incumbent solutions, instead of a single one x(k) ∈ X as previously: the feasible

incumbent solution xfea ∈ Ω and the infeasible incumbent solution xinf ∈ X \ Ω. For readability, the

subscript k is discarded when superscripts fea and inf are used. The key idea of the PB is to perform

two polls. The feasible poll is centered at xfea and is done as described in previous sections. The

infeasible poll is centered at xinf, and this solution is updated to progressively approach feasibility

throughout the iterations.

In Problem (1), recall that a point x ∈ X is feasible if and only if all the constraints are respected.

Hence, a point y ∈ X is infeasible if at least one constraint is not respected, i.e., there exists j ∈ J

with gj(x) > 0. The infeasibility of a point does not necessarily imply that it is not promising. In fact,
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optimal solutions often lie on the boundary of the feasible set. In order to quantify the infeasibility of

a point, the constraint violation function h : X → R is introduced as follows

h(x) :=


∑
j∈J

(max{0, gj(x)})2 if x ∈ X ,

∞ otherwise
(6)

with h(x) = 0⇔ x ∈ Ω (feasible) and h(x) > 0⇔ x ∈ X \ Ω (infeasible). A point x ̸∈ X is valued as

h(x) =∞, which conveniently outlines that it is not a solution considered.

The PB introduces a threshold parameter hmax
(k) , called the barrier. This parameter controls the

acceptable infeasibility of xinf. More precisely, the feasible and infeasible solutions are determined

with the following expressions:

xfea ∈ argmin {f(x) : x ∈ Ω ∩ X} and xinf ∈ argmin
¶
f(x) : 0 < h(x) ≤ hmax

(k) , x ∈ X
©

(7)

where X ⊂ X , called the set of known points, is the set of points whose objective and constraint

functions were evaluated since the algorithm was launched. The barrier is initialized at hmax
(0) =∞ and

it is reduced iteratively toward zero.

The update of the barrier and the mesh parameters is done with notions of dominance [9].

Definition 6 (Feasible and infeasible dominance). The point x ∈ Ω is said to dominate y ∈ Ω, denoted

x ≺f y, if f(x) < f(y). The point x ∈ X \ Ω is said to dominate y ∈ X \ Ω, denoted x ≺h y, if

f(x) ≤ f(y) and h(x) ≤ h(y) with a least one strict inequality.

In the previous sections without constraints, an iteration is either successful or unsuccessful. In

the constrained case, a successful iteration is divided in two cases based on Definition 6:

1. an iteration is dominating if either a candidate point y ∈ Ω with y ≺f xfea or a candidate point

y ∈ X \Ω with y ≺h xinf is found at any step. The barrier is updated as hmax
(k+1)

:= h(xinf), and

the mesh and frame sizes parameters are increased.

2. an iteration is improving if it is not dominating and if a candidate point y ∈ X \Ω that improves

the constraint violation function, such that 0 < h(y) < h(xinf) is found at the end of an iteration.

In this case, the mesh and frame parameters are unchanged, and the barrier is updated after

going through all the steps with h(k+1) := max{h(v) : h(v) < h(xinf), v ∈ X}.

The opportunistic strategy is reused with the PB, however it can only be applied to dominating
iterations. An iteration is unsuccessful if it is not dominating or improving. In that case, the parameters

of G-MADS are decreased and the barrier is unchanged.

With the PB, the poll set P(k) from Algorithm 1 becomes Pfea ∪ Pinf, where the feasible poll set

Pfea and infeasible poll set Pinf are respectively centered at the feasible and infeasible solutions. The

infeasible and feasible polls both have their own quantitative and categorical polls. The feasible and

infeasible categorical polls have their own number of neighbors. Similarly, the feasible and infeasible

quantitative polls have their own set of directions.

The integration of the PB within CatMADS is achieved by 1) considering improving iterations,

2) performing two polls instead of one and 3) generalizing the extended poll from [5] to use the PB

instead of the extreme barrier, as detailed in the next section.

2.4 Extended poll

The extended poll is optionally performed following unsuccessful search and poll steps. Figure 2a

illustrates the extended poll on the RG example in which the red and green planes represent two

quantitative variables in R2 corresponding to the two colors (categories).
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6

12

24

6.3
6.2

6.1 5

x(k)

y

z

(a) Extended poll initiated at y ∈ P cat
(k) , successfully terminat-

ing at z where 4 = f(z) < f(x(k)) = 5.

x

y(0) . . .
y(s)

(b) The sequence of extended poll points initiated at y = y(0),
and terminating at z = y(s).

Figure 2: The RG example for the extended poll with the mesh in gray.

In the figure, the incumbent solution x(k) is in the red plane. Both the quantitative poll and

categorical poll at y ∈ P cat
(k) in the green plane fail to improve x(k). The extended poll initiated at

y ∈ P cat
(k) generates a series of quantitative polls in the green plane, successfully terminating at z with

4 = f(z) < f(x(k)) = 5.

An important drawback of the extended poll is its potential high costs, especially when dealing with

many variables. To mitigate these costs, points from the categorical poll that undergo quantitative

polls are selected based on a test. The test accepts points whose objective value is worse, but sufficiently

close to an incumbent value.

Definition 7 (ξ-extended poll trigger). For a given parameter ξ ∈ R, the ξ-extended poll trigger function

tξ : X × X → {0, 1} at the unsuccessful poll point y ∈ P cat
(k) = P cat

fea ∪ P cat
inf is defined as

tξ
(
x(k),y

)
:=

ß
1 if 0 ≤ f (y)− f

(
x(k)

)
≤ ξ

∣∣f (
x(k)

)∣∣ ,
0 otherwise.

(8)

The parameter ξ ∈ R has the following impact:

• if ξ < 0, then no point passes the test, since the two inequalities are mutually exclusive;

• if ξ =∞, then all points trivially pass the test;

• if ξ ∈ R+, the test checks if the relative deterioration is within a ratio of ξ.

In CatMADS, the extended poll can be deactivated by setting ξ < 0. In MV-MADS, it is always

activated and the default implementation proposed is ξ = 0.05, meaning that a deterioration of 5% on

the best feasible value is accepted.

In this work, the extended poll is generalized with the PB containing two incumbent solutions.

To take into account the PB, the ξ-extended poll triggers are performed by considering wether the

unsuccessful points are feasible or not. If an unsuccessful point y ∈ P cat
(k) is feasible, then the ξ-

extended poll trigger is performed with the feasible incumbent xfea. Otherwise, it is performed with

the infeasible solution xinf, and in that case, the point must also respect the barrier to be selected.

Mathematically, the set of selected points undergoing extended polls is expressed as

E(k) :=
¶
y ∈ P cat

(k) : (tξ (xfea,y) = 1 and h (y) = 0) or
(
tξ (xinf,y) = 1 and 0 < h (y) ≤ h(k)

)©
. (9)
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where h(y) = 0 signifies that y is feasible.

Once selected for the extended poll, a point y ∈ E(k) undergoes a finite sequence of quantitative polls
initiated around it. A quantitative poll is performed until a new incumbent solution is opportunistically

found, or until it does not produce a dominating point. This is formalized in the next definition.

Definition 8 (Extended poll initiated at y [5]). For a given iteration k > 0, the extended poll initiated

at y := y(0) ∈ E(k) produces a finite sequence of iterates y(0),y(1),y(2), . . . ,y(s), such that y(j) ≺
y(j−1) for all j ∈ S := {1, 2, . . . , s} and x(k) ≺ y. The operator ≺ and the incumbent solution x(k) are

either:

• the feasible dominance ≺f and the feasible incumbent solution xfea ∈ Ω, if y ∈ Ω;

• or the infeasible dominance ≺h and the infeasible incumbent solution xinf ∈ X \Ω, if y ∈ X \Ω.

The point z := y(s) ∈ X , called an endpoint, is either a new incumbent solution or the quantitative

poll at z fails to produce a dominating point, such that

w ̸≺ z, for all w ∈
{(

ycat, zqnt + diag
(
δ(k)

)
d
)
: d ∈ D (z)

}
where D (z) is the set of directions used for z.

From Definition 8, it follows that, for a given iteration k > 0, an extended poll initiated at y ∈
E(k) generates an union of quantitative polls performed at y(0),y(1), . . . ,y(s), denoted E(k)(y) and
expressed as

E(k) (y) :=
⋃
j∈S

{ Ä
ycat,yqnt

(j) + diag
(
δ(k)

)
d
ä
∈ M(k) : d ∈ D

(
y(j)

)
,

yqnt
(j) = yqnt

(j−1) + diag
(
δ(k)

)
d̄ for some d̄ ∈ D

(
y(j−1)

)
,

y(j) ≺ y(j−1)

}
⊂ X .

In Figure 2b, the RG example is reused to illustrate Definition 8. The sequence of polls is initiated at

y ∈ P cat
(k) and yields improvements until the quantitative polls produces a new incumbent solution z.

The quantitative polls have their own sets of two directions. In comparison to quantitative polls

in Definition 5, extended polls do not require a positively spanning set of directions. This allows

using fewer directions, thereby reducing their cost. In the example, the mesh is not increased with

improvements of the extended poll. In theory, it could be increased, as long as the extended poll ends

with the initial mesh and frame sizes.

From Definition 8 and the sets of selected points in (9), the extended poll P̄(k) at iteration k is

defined as the union of extended polls initiated at the selected points, such that

P̄(k) :=
⋃

y∈E(k)

E(k) (y) (10)

where E(k) (y) in definition 8 adjusts its operator ≺ to either ≺f or ≺h, depending on whether y is

feasible or not.

The extended poll can be viewed as a mixed-variable poll since it proposes points that modify

both the categorical and quantitative variables of incumbent solutions. In CatMADS, these polls offer

additional optimization mechanisms that balance evaluation costs and local solution quality. This

becomes apparent in the next section, as they improve convergence guarantees at some additional

cost.

3 Convergence analysis

The convergence analysis of CatMADS follows the structure used in [1, 6]. It relies on standard

assumptions: an initial point x(0) ∈ X with f
(
x(0)

)
∈ R is available, and all iterates {x(k)} lie in
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a compact set. The convergence analysis is divided into four parts. First, different types of local

minima of varying strengths are presented. Second, Section 3.2 redefines and shows the existence of a

refining subsequence. Third, convergence results with respect to the continuous variables are derived

in Section 3.3, using notions of nonsmooth calculus. Finally, Section 3.4 strengthens the convergence

results by studying the extended poll.

3.1 Types of mixed-variable local minima

In the following, an open ball for the continuous variables is denoted B (u; ϵ) := {v ∈ Rncont

: ∥u−v∥2 <

ϵ}, and a neighborhood for integer variables is defined as I (u; η) := {v ∈ Znint

: ∥u − v∥1 ≤ η}. In

the mixed-variable setting, a local minimum is defined as follows.

Definition 9 (Local minimum). A point x =
(
xcat,xint,xcont

)
∈ Ω is a mixed-variable local minimum

if there exists a triplet m ∈ N∗, η ∈ N∗, ϵ ∈ R∗
+, such that

f(x) ≤ f(y), for all y ∈
(
N (xcat;m)× I

(
xint; η

)
× B (xcont; ϵ)

)
∩ Ω.

In Figure 3, a local minimum is schematized for the RBG example containing a single categorical

variable xcat ∈ {Red,Green,Blue}, a single integer variable xint ∈ {0, 1, 2} and no relaxable constraint,

i.e., Ω = X . The planes represent the set X cont ⊂ R2 for fixed categorical and integer variables.

The gray zones depicts continuous balls (unconstrained) and dotted arrows represent the couples of

categorical and integer components involve in the minimum.

⋆

y

1 2 3

Figure 3: A local minimum ⋆ =
(
Red, 2,xcont

⋆

)
for the RBG example, where xcont ∈ X cont ⊂ R2, m = 1 and η = 1.

The local minimum, as described in Definition 9, is not covered by CatMADS. In practice, the

evaluations required for reaching optimality could be substantial. To balance computational costs and

solution quality, three weaker types of local minima are proposed.

The new types of local minima are named with a specific nomenclature in which the types of

variables are combined by a hyphen or separated by a comma. A hyphen symbolizes that the types of

variables are jointly interacting. For instance, the nomenclature of the local minimum in Definition 9

is
[
cat − int − cont

]
, since all types of variables are jointly interacting via Cartesian products. The

weaker types of local minima discard some or all of these joint interactions, meaning commas appear

in their nomenclature. Notably, the weakest type of local minima is named [cat, int, cont], which

signifies that all types of variables are separated. Inspired by [46], the
[
cat, int, cont

]
minimum is

defined below.
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Definition 10 (
[
cat, int, cont

]
local minimum). A point x =

(
xcat,xint,xcont

)
∈ Ω is said to be a

[
cat,

int, cont
]
local minimum if there exists a triplet m ∈ N∗, η ∈ N∗, ϵ ∈ R∗

+, such that

f(x) ≤ f(y), for all ycat ∈ N (xcat;m) with y =
(
ycat,xint,xcont

)
∈ Ω,

f(x) ≤ f(z), for all zint ∈ I
(
xint; η

)
with z =

(
xcat, zint,xcont

)
∈ Ω,

f(x) ≤ f(u), for all ucont ∈ B (xcont; ϵ) with u =
(
xcat,xint,ucont

)
∈ Ω.

In Definition 10, each inequality is associated with a specific type of variables, meaning that there

is no interaction between different types of variables. The
[
cat, int, cont

]
minimum is visualized for

the RBG example in Figure 4a. For this type of local minimum, the vertical dotted line represents the

point in the distance-induced neighborhood, whereas the horizontal dotted lines represent the integer

neighborhood.

⋆

y

u
z

1 2 3

(a)
[
cat, int, cont

]
local minimum.

⋆

y

z

1 2 3

(b)
[
cat − cont, int

]
local minimum.

⋆

y
z

1 2 3

(c)
[
cat − cont, cat − int

]
local minimum.

Figure 4: Three new types of local minima at ⋆ =
(
Red, 2,xcont

⋆

)
for the RBG example, where xcont ∈ X cont ⊂ R2,

m = 1 and η = 1.

The next type of local minimum is
[
cat− cont, int

]
with joint interactions between categorical and

continuous variables.

Definition 11 ([cat − cont, int] local minimum). A point x =
(
xcat,xint,xcont

)
∈ Ω is said to be a[

cat− cont, int
]
local minimum if there exists a triplet m ∈ N∗, η ∈ N∗, ϵ ∈ R∗

+, such that

f(x) ≤ f(y), for all (ycat,ycont) ∈ N (xcat;m)× B (xcont; ϵ)with y =
(
ycat,xint,ycont

)
∈ Ω,

f(x) ≤ f(z), for all zint ∈ I
(
xint; η

)
with z =

(
xcat, zint,xcont

)
∈ Ω.

The
[
cat − cont, int

]
local minimum type is schematized for the RBG example in Figure 4b. In

comparison to the
[
cat, int, cont

]
local minimum type, the

[
cat−cont, int

]
type strengthens optimality

with a joint interaction in the first inequality. In Figure 4b, this interaction is visualized at y, which

has a continuous ball around it.

The last type of local minimum is
[
cat− cont, cat− int

]
with interactions between the categorical

and continuous variables, and between the categorical and integer variables.

Definition 12 ([cat− cont, cat− int] local minimum). A point x =
(
xcat,xint,xcont

)
∈ Ω is said to be

a
[
cat− cont, cat− int

]
local minimum if there exists a triplet m ∈ N∗, η ∈ N∗, ϵ ∈ R∗

+, such that

f(x) ≤ f(y), for all (ycat,ycont) ∈ N (xcat;m)× B (xcont; ϵ)with y =
(
ycat,xint,ycont

)
∈ Ω,

f(x) ≤ f(z), for all
(
zcat, zint

)
∈ N (xcat;m)× I

(
xint; η

)
with z =

(
zcat, zint,xcont

)
∈ Ω.
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The
[
cat − cont, cat − int

]
minimum further strengthens the optimality of the

[
cat − cont, int

]
type by adding interactions between categorical and integer variables. In Figure 4c, this additional

interaction is represented at z, which modifies the categorical and integer variables of x⋆.

3.2 Refining subsequence

This part of the convergence analysis studies the behavior of sequences of iterates produced by Cat-
MADS. As for G-MADS [13], convergence is established via unsuccessful iteration subsequences in

which the step sizes of continuous variables get infinitely fine, and step sizes of integer variables reduce

to the value one. For CatMADS, these subsequences must also possess convergent distance-induced

neighborhoods. As a generalization of G-MADS, the convergence of the step and frame size parameters

is directly inherited from G-MADS. This leads to this key definition of the convergence analysis.

Definition 13 (Refining subsequence and refined point). Let U be the set of indices of the unsuccessful

iterations generated by an instance of CatMADS. If K is an infinite subset of U such that

lim
k∈K

x(k) = x⋆ for some x⋆ ∈ X ,

lim
k∈K
∥δ(k)∥22 = nint,

lim
k∈K

m(k) = m⋆,

lim
k∈K
N
Ä
xcat
(k);m(k)

ä
= N (xcat

⋆ ;m⋆) ,

then the subsequence {x(k)}k∈K of poll centers with x(k) ∈ M(k) is said to be a refining subsequence,

and x⋆ ∈ X is said to be a refined point.

In Definition 13, the notation limk∈K ∥δ(k)∥22 = nint is equivalent to limk∈K δint(k),i = 1 for all

i ∈ I int and limk∈K δcont(k),j = 0 for all j ∈ Icont. Moreover, it is the PB that determines if a refining

subsequence converges to a feasible refined point or not. From Definition 13, the next zeroth-order

result of Theorem 1 is proposed with only the two assumptions. Since CatMADS is built upon G-MADS,
the proof of the next theorem is partly given by construction. The rest of the proof sequentially chooses

infinite subsequence that satisfy the requirements of a refining subsequence [6].

Theorem 1 (Zeroth-order). Let {x(k)} be the sequence of points generated by CatMADS from an initial

point x(0) ∈ X with f
(
x(0)

)
∈ R. If all iterates {x(k)} belong to a compact set, then there exists a

refining subsequence {x(k)}k∈K with corresponding refined point x⋆ ∈ X .

Proof. Let U be the set of indices of unsuccessful iterations generated by CatMADS. For all k > 0,

the intersection of a mesh M(k) and the compact domain X is finite. Thus, relative to G-MADS, the
extended poll introduces only a finite sequence of quantitative polls per iteration, and the categorical

poll introduces only a finite number of categorical modifications possible per iteration. Therefore,

CatMADS inherits the following result of G-MADS: a sequence of iterates {x(k)} generated in a compact

set is such that lim infk→∞ δcont(k),i = 0 for each i ∈ Icont and lim infk→∞ δint(k),j = 0 for each j ∈ I int (see

Theorems 3.1 and 3.2 in [13]). It follows that there exists an infinite subset of indices K1 ⊆ U such

that limk∈K1
∥δ(k)∥22 = nint. Similarly, since the set is compact, there exists an infinite subset of

indices K2 ⊆ K1 such that limk∈K2
x(k)cont = xcont

⋆ . Additionally, since the categorical variables,

integer variables and number of neighbors belong to finite sets, infinite subsets of indices can be

chosen successively as K5 ⊆ K4,⊆ K3, such that limk∈K3
xint
(k) = xint

⋆ , limk∈K4
xcat
(k) = xcat

⋆ and

limk∈K5
m(k) = m⋆. Consequently, limk∈K5

N
Ä
xcat
(k);m(k)

ä
= N (xcat

⋆ ;m⋆). Finally, the infinite subset

of indices K = K5 satisfies definition 13.

Note that implementation-wise, converging distance-induced neighborhoods in a refining subse-

quence can be easily ensured by fixing both the number of neighbors m(k) and the categorical distance

dcat after a given iteration k > 0.
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3.3 Nonsmooth calculus for CatMADS

The second part of the convergence analysis involves the continuous variables for refined points. For

fixed categorical and integer variables, the analysis involves the Clarke generalized derivative [18, 27]

and the hypertangent cone [39], restricted to the continuous variables. The vectors u,v and w are

used next to denote continuous vectors. The continuous feasible set at the refined point x⋆, which

contains the continuous components that are feasible given the categorical and integer components

of x⋆, is defined as

Λ⋆ :=
{
u ∈ X cont :

(
xcat
⋆ ,xint

⋆ ,u
)
∈ Ω

}
. (11)

For a given refined point x⋆, the following definition is such that the hypertangent cone contains

vectors in Rncont

and rooted at xcont
⋆ .

Definition 14 (Hypertangent cone [39]). A vector v ∈ Rncont

is said to be a hypertangent vector to the

set Λ⋆ at a point x⋆ =
(
xcat
⋆ ,xint

⋆ ,xcont
⋆

)
∈ Ω, if there exists a scalar ϵ > 0 such that(

xcat,xint,w + tu
)
∈ Ω for all w ∈ B

(
xcont
⋆ ; ϵ

)
∩ Λ⋆, u ∈ B (v; ϵ) and t ∈ (0, ϵ).

The hypertangent cone TH
Λ⋆

(x⋆) to Λ⋆ at x⋆ ∈ Ω is the set of all hypertangent vectors to Λ⋆ at x⋆.

In Figure 5a, the continuous feasible set Λ⋆ and the hypertangent cone TH
Λ⋆

at a refined point x⋆

are illustrated for the RBG example, where xint
⋆ = 2. In the figure, the feasible regions are represented

TH
Λ∗

Λ∗

x⋆

(a) Continuous feasible set and hypertangent cone at a re-
fined point x⋆, where gray areas represent feasible regions and
xint
∗ = 2.

4 2 1

2

4

5
4
3
2
3

x(k)

y(k)

. .
.

z(k)

x(k+1)

y(k+1)

z(k+1)

. .
.

x⋆

y∗

z⋆

. .
.

. . .

. . .

. . .

(b) Refining, neighbor and endpoint subsequences for two cat-
egories example.

Figure 5: Illustrative examples for the convergence analysis.

in gray. The shape depends on the RBG category. The hypertangent cone TH
Λ⋆
⊂ R2 is represented

with a dotted curve and contains the continuous directions rooted at x⋆ that point inside Λ⋆. The

next definition formalizes a subset of these continuous directions.

Definition 15 (Refined direction [6]). Let {x(k)}k∈K be a refining subsequence with corresponding refined

point x⋆. A vector v⋆ ∈ Rncont

is said to be a refining direction if there exists an infinite subsequence

L ⊆ K with poll directions d(k) =
Ä
dint
(k),d

cont
(k)

ä
∈ D(k) such that dint

(k) = 0 and limk∈L
v(k)

∥v(k)∥
= v⋆

∥v⋆∥

with v(k) = diag
Ä
δcont(k)

ä
dcont.

To employ generalized directional derivatives [18], the objective function f must be locally Lipschitz

continuous with respect to the continuous variables. For a given refined point x⋆, the restriction of

the objective function in X cont is noted f⋆ : X cont → R and formulated as

f⋆ (u) := f
(
xcat
⋆ ,xint

⋆ ,u
)
. (12)
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With this function, the generalized directional derivative can be redefined for this work.

Definition 16 (Generalized directional derivative [18, 27]). For a refined point x⋆ ∈ Ω, let f⋆ : X cont → R
be a Lipschitz continuous function near u ∈ Λ⋆. The generalized directional derivative of the restriction

f⋆ at u in the direction v ∈ Rncont

is defined by

f◦
⋆ (u;v) := lim sup

w→u, t↘0,
w∈Λ⋆,w+tv∈Λ⋆

f⋆(w + tv)− f⋆(w)

t
. (13)

Under a local Lipschitz continuity assumption, the following theorem combines the definitions of hy-

pertangent cone, refined direction and generalized directional derivative, to strengthen the convergence

results of a refined point xstar with respect to its continuous variables.

Theorem 2 (Generalized directional derivative at a refined point). Let x⋆ ∈ Ω be a refined point generated

by CatMADS such that f⋆ is Lipschitz continuous near xcont
⋆ . If v⋆ ∈ TH

Λ⋆
(x⋆) is a refining direction,

then f◦
⋆ (xcont

⋆ ;v⋆) ≥ 0.

Proof. Let {x(k)}k∈L be a refining subsequence with corresponding refined point x⋆ ∈ Ω, and let

v⋆ ∈ TH
Λ⋆

(x⋆) be a refining direction. From Definition 13, the categorical and integer components are

fixed, such that xcat
(k) = xcat

⋆ and xint
(k) = xint

⋆ , ensuring that the continuous feasible set Ω⋆ does not

change through the iterations. Definition 3 ensures the existence of bounds ∆cont
(k) ≥ 0 such that the

continuous directions satisfy −∆cont
(k) ≤ v(k) = diag

Ä
δcont(k)

ä
dcont ≤ ∆cont

(k) for all k ∈ L. Theorem 1

ensures that limk∈L ∥∆cont
(k) ∥ = 0, and therefore, limk∈L ∥v(k)∥ = 0. By Definition 15, the refining

direction v⋆ ∈ TH
Λ⋆

(x⋆) is such that limk∈L
v(k)

∥v(k)∥
= v⋆

∥v⋆∥ . Thus, it follows that xcont
(k) + v(k) ∈ Λ⋆ for

all k ∈ L sufficiently large, by the definitions of the hypertangent cone and the refining direction, and

knowing thats limk∈L ∥v(k)∥ = 0. It follows that f◦
⋆ (xcont

⋆ ;v⋆) ≥ 0 can be developed exactly as in

Theorem 6.4 of [12], since xcont
(k) + v(k) are unsuccessful iterations with dint

(k) = 0 for all k ∈ L.

The next result provides a necessary optimality condition with generalized directional derivatives

at a refined point, provided that the function f⋆ is locally Lipschitz continuous. The result depends

on whether the PB produces a feasible or infeasible refined point. If the refined point is feasible, then

the result involves the function f⋆ and the hypertangent cone TH
Λ⋆

(x⋆), as Theorem 2. Otherwise,

it involves the function h⋆ (with the same expression of f⋆ in Equation (12) but for the aggregation

function h) and the continuous set X cont ⊆ Λ⋆: in this case, the optimization problem of interest is

minx∈X h(x).

Theorem 3 (Convergence of CatMADS). Let {x(k)}k∈K be a refining subsequence with corresponding

refined point x⋆ produced by CatMADS with the PB. Suppose that the set of refining directions is dense

in the unit sphere {u ∈ Rncont

: ∥u∥ = 1}.

i) If x⋆ ∈ Ω and f⋆ is Lipschitz near xcont
⋆ , then f◦

⋆ (xcont
⋆ ;v) ≥ 0 for all v ∈ TH

Λ⋆
(x⋆).

ii) If x⋆ ∈ X \ Ω and h⋆ is Lipschitz near xcont
⋆ , then h◦

⋆ (x
cont
⋆ ;v) ≥ 0 for all v ∈ TH

X cont(x⋆).

Proof. Since the refining subsequence {x(k)}k∈K is such that xcat
(k) = xcat

⋆ and xint
(k) = xint

⋆ for all k ∈ K,

the proof is a direct consequence of Theorem 2, as well as Corollary 3.4, Theorem 3.5. and Corollary 3.6

from [7] (PB for the continuous case).

Theorem 3 is a fundamental theoretical result of CatMADS and represents a necessary condition

to achieve a separated local minimum with η = 1 and m = m⋆ ∈ N.
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3.4 Stronger local minima

Definition 13 implies that a refining subsequence {x(k)}k∈K has an associated subsequence {y(k)}k∈K ,

called the neighbor subsequence, whose points have categorical components in the distance-induced

neighborhoods of {x(k)}k∈K , i.e., y(k) =
Ä
ycat
(k) ,x

qnt
(k)

ä
∈ N

Ä
xcat
(k);m(k)

ä
×X qnt. Since the refining sub-

sequence converges to a refined point x∗, the neighbor subsequence converges to a point y⋆, referred

to as a refined neighbor point. The next theorem, adapted from MV-MADS [1], ensures that a refined

point x∗ has an objective value that is lower or equal than a neighbor refined point y∗, under continuity

hypothesis.

Theorem 4. If the restriction of the objective function in X cont is lower semi-continuous at a refined

point x⋆ produced by CatMADS, and upper semi-continuous at the refined neighbor point y⋆, then

f(x⋆) ≤ f(y⋆).

Proof. Let {x(k)}k∈K be a refining subsequence converging to the refined point x⋆ , and let {y(k)}k∈K

be a neighbor subsequence converging to the neighbor refined point y⋆. By definition of the refining

subsequence, it is ensured that f(x(k)) ≤ f
(
y(k)

)
for all k ∈ K since x(k) yields an unsuccessful

iteration and y(k) ∈ P cat
(k) . By the semi-continuity hypothesis it follows that f(x⋆) ≤ limk∈K f(x(k)) ≤

limk∈K f(y(k)) ≤ f(y⋆).

Next, when the extended poll is deployed, a neighbor subsequence {y(k)}k∈K has an associated

subsequence {z(k)}k∈K , called the endpoint subsequence, containing endpoints with z(k) ∈ E(k)
(
y(k)

)
as in Definition 8. In Figure 5b, the different subsequences are illustrated on a similar example as the

RG one in Figure 2a, but with different level curves. The refining subsequence {x(k)}k∈K converges

in the red plane; the neighbor and endpoints subsequences reside in the green plane consisting of a

piecewise linear function in two parts.

Finally, the convergence analysis concludes with a discussion on the stronger local minima obtained

by incorporating the extended poll. Assuming ξ ≥ 0, x⋆ ∈ Ω and y⋆ ∈ Ω ∩ N (x⋆;m⋆), the results

obtained for the component-wise mixed-variable local minimum can be strengthened by considering

interactions between categorical and continuous variables:

• if f (x⋆) < f (y⋆), then by the semi-continuity hypothesis of Theorem 4, there exists ϵ > 0 such

that f (x⋆) ≤ f (y) for any (ycat,ycont) ∈ N (xcat
⋆ ,m⋆)×B(xcont

⋆ ; ϵ) with y =
(
ycat,yint,ycont

)
∈

Ω.

• otherwise, f (x⋆) = f (y⋆), and it follows that f (x⋆) = f (y⋆) = f (z⋆), since f(x(k)) ≤ f(z(k)) ≤
f(y(k)) for all k ∈ K, by definition. Therefore, the extended poll must have been performed

around y(k) for infinitely many k ∈ K sufficiently large [1], which guarantees the interaction

between the continuous and categorical variables as in the previous case.

This covers the [cat − cont, int] minimum in Definition 11. Proceeding further, suppose that ξ = ∞,

implying that the extended poll is always employed. In that case, the same conclusion is drawn for the

case f(x∗) = f(y∗) above, and the interaction between the categorical and integer variables is trivially

gained since quantitative polls are performed infinitely many times. This addresses the [cat − cont,

cat− int] minimum from Definition 12.

Note that, if the set of refining directions is dense in the unit sphere at zcont
⋆ , then Theorem 3

can be adapted to the endpoint subsequence {z(k)}k∈K . This provides a necessary condition for the

continuous variables of z⋆ with generalized directional derivatives.

4 Computational experiments

This section compares a simple instance of CatMADS on analytical problems with openly available

state-of-the-art solvers. Implementation details of the instance are provided in Section 4.1. The
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solvers used for benchmarking are discussed in Section 4.2. Finally, Section 4.3 details data profiles

that measure the relative performance of the solvers.

The problems created for benchmarking this work are summarized in Tables 1 and 2. These

problems are either modifications of existing ones from the literature, or adaptations of classic con-

tinuous optimization problems, such as the Rosenbrock and Rastrigin problems. Techniques em-

ployed to create mixed-variable problems include replacing continuous variables with functions de-

pending on both continuous and categorical variables, and transforming a function into another one

with cases, each assigned to a category. The implementation of CatMADS is publicly available at

https://github.com/bbopt/CatMADS_prototype. The complete presentation of the problems is con-

tained in Cat-Suite, a new collection of mixed-variable problems described in this technical report [25].

Table 1: Unconstrained test problems in Cat-Suite.

Name ncat ℓ nint ncont Smooth Ref. Original problem

Cat-1 2 9 2 4 No [28] Ackley

Cat-2 2 9 2 3 No [28] Beale

Cat-3 2 4 2 2 Yes [36] Augmented Branin

Cat-4 2 4 2 4 No [28] Bukin-6

Cat-5 1 6 1 3 Yes [32] EVD-52

Cat-6 2 9 0 2 Yes [36] Goldstein

Cat-7 3 16 3 2 No [28] Goldstein-Price

Cat-8 1 4 1 5 Yes [32] HS78

Cat-9 2 9 2 8 No [28] Rastrigin

Cat-10 2 6 2 4 No [28] Rosenbrock

Cat-11 1 4 1 4 Yes [32] Rosen-Suzuki

Cat-12 1 5 5 5 No [28] Styblinski-Tang

Cat-13 1 10 0 4 Yes [35] Toy

Cat-14 1 10 0 8 No [35] Toy

Cat-15 1 5 3 4 Yes [32] Wong-1

Cat-16 2 9 2 4 No [28] Zakharov

Table 2: Constrained test problems in Cat-Suite.

Name ncat ℓ nint ncont m Smooth Ref. Original problem

Cat-17 2 9 2 3 3 No [28] Beale

Cat-18 2 4 2 2 1 Yes [36] Augmented Branin

Cat-19 2 9 2 4 2 No [28] Bukin-6

Cat-20 1 4 4 4 3 Yes [32] Dembo-5

Cat-21 1 6 1 3 1 No [32] EVD-52

Cat-22 2 9 2 3 4 Yes [20] G-09

Cat-23 2 9 0 2 1 Yes [36] Goldstein

Cat-24 2 25 2 2 2 Yes [28] Himmelblau

Cat-25 2 4 3 5 4 Yes [32] HS-114

Cat-26 1 3 2 4 6 Yes [32] Pentagon

Cat-27 1 8 2 2 3 Yes [20] Pressure-Vessel

Cat-28 2 25 1 2 2 Yes [20] Reinforced-Concrete-Beam

Cat-29 2 6 2 4 1 No [28] Rosenbrock

Cat-30 1 5 2 2 2 No [28] Styblinski–Tang

Cat-31 1 10 0 4 2 Yes [35] Toy

Cat-32 1 6 4 6 3 Yes [32] Wong-2

https://github.com/bbopt/CatMADS_prototype
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4.1 Implementation details

The prototype instance of CatMADS is presented in Algorithm 2 and it is intentionally simple. The

implementation is built on top of the NOMAD software [11], a C++ implementation of the MADS
algorithm with many extensions such as G-MADS. The following steps are adapted from NOMAD: the
quantitative poll (G-MADS), the initial DoE with a Latin hypercube sampling, the PB, the update,

and the search steps.

Algorithm 2 starts by initializing the static and dynamic parameters. The dynamic parameters are

initially indexed by k = 0. The DoE must be performed during the initialization, since at least two

points are required to construct the categorical distance dcat : X cat × X cat → R+. This distance is a

weighted Euclidean distance comparing categorical components that are transformed into binary vec-

tors using one-hot encodings [42]. The weights reflect the importance of each binary variable assigned

to a specific category and allows to construct problem-specific categorical distances. These weights are

determined by minimizing the Root Mean Square Error (RMSE) of an inverse distance weighting inter-

polation. The RMSE is evaluated using 3-fold cross-validation on the DoE. Integer and continuous vari-

ables have no weights, since these variables are not considered for the categorical distance. In Section 2,

recall that a mismatching-based distance on the RBG example yields dcat(R, B) = 0 = dcat(R, G).

Now, with the proposed distance, the distances would be dcat(R,B) = θR+θB and dcat(R, G) = θR+θG,

where the real parameters θR, θB and θG are tuned by regression. This distance distinguishes cate-

gories more finely than mismatches. In other words, the neighbors in distance-induced neighborhoods

are selected in a meaningful manner.

The initial DoE is allocated 20% of the total budget of evaluations. This percentage was determined

empirically through preliminary tests. It represents a considerable number of evaluations. However,

the categorical distance is constructed only once at the initialization, the DoE must be sufficiently large

to ensure that the categorical distance adequately models the mixed-variable objective function f .

The stopping criteria includes a budget limit on the number of evaluations and a convergence

criterion triggered when the mesh size parameters reach their lower bounds. The trigger parameter ξ

of the extended poll dictates which type of local minimum is associated to the convergence condition: if

ξ < 0, then the convergence condition represents a necessary condition for a
[
cat, cont, int

]
minimum;

else if ξ ∈ R+, then it represents a
[
cat − cont, int

]
minimum, and otherwise ξ = ∞ represents a[

cat− cont, cat− int
]
minimum.

The search is performed opportunistically. If the previous iteration had a successful quantitative

poll (feasible or infeasible), then the speculative search of NOMAD is executed on the quantitative space.

The speculative (or dynamic) search generates candidate points along the last successful direction of

G-MADS [6, 30]. To capitalize on promising directions, the speculative search is repeated as long as it

remains successful.

The default quadratic search of NOMAD [19] is also used on the quantitative variables. At each

iteration, quadratic models for the objective and constraint functions are constructed around incum-

bent solutions, with categorical variables fixed. For a given incumbent solution, the proposed point

minimizes its corresponding model of f , while either satisfying or respecting the barrier of its model

constraints, for feasible and infeasible incumbents, respectively. For more details on the speculative

and quadratic searches, see [11].

The number of points m in the categorical polls is constant and common for the feasible and

infeasible categorical polls. For a given problem, m is set by the formula m = max
Ä
2,
√
|X cat|

ä
, which

scales with the total number of categories |X cat| = ∏ncat

i=1 ℓi. The square root balances the scaling

of the product. The formula ensures m ≥ 2, to avoid cycling between two categorical components.

Alternatives formulas were tested, notably linear ones, e.g., m = 0.5 |X cat|, but none performed better

than the square-root formula in preliminary tests.
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Algorithm 2 A simple instance of CatMADS based on cross-validation.Algorithm 2 A simple instance of CatMADS based on cross-validation.
Given f : X → R, a domain X and constraint functions gj : X → R with j ∈ J .
0. Initialization

k ← 0 iteration counter
hmax
(0) =∞ initial barrier parameter

m ∈ N number of points in categorical polls
∆(0) ∈ Rnqnt

+ initial frame size parameters (G-MADS)
δ(0) ∈ Rnqnt

+ with δn
qnt

(0) ≤∆nqnt

(0) initial delta size parameters (G-MADS)
X← {x(1),x(2), . . . ,x(p)} initial DoE of p ≥ 2 points
Set xfea and xinf with (7) initial solutions (only one might exist)
ξ ∈ R parameter controlling ξ-extended poll triggers in (8) and (9)
Construct dcat problem-specific categorical distance

While no stopping criteria is met do
1. Opportunistic search S(k) = SSPC

(k) ∪ SQUAD
(k)

If quantitative poll P qnt
(k−1) or speculative search SSPC

(k−1) is successful
1.1. Speculative search SSPC

(k) on X qnt

1.2. Quadratic search SQUAD
(k) on X qnt

2. Opportunistic poll P(k) = P cat
fea ∪ P qnt

fea ∪ P cat
inf ∪ P int

inf

3. Opportunistic extended poll P̄(k)

4. Update
4.1. Update incumbent solutions xfea and xinf with (7)
4.2. G-MADS and barrier update:
If y ≺f xfea or y ≺h xinf for some y ∈ S(k) ∪ P(k) (dominating iteration)

Increase ∆(k+1) and δ(k+1), and set hmax
(k+1) = h(xinf)

Else if 0 < h(y) < h(xinf) for some y ∈ S(k) ∪ P(k) (improving)
Set hmax

(k+1) = max{h(v) : h(v) < h(xinf), v ∈ X ∪ S(k) ∪ P(k)}
Otherwise (unsuccessful)

Decrease ∆(k+1) and δ(k+1), and set hmax
(k+1) = h(xinf)

5. Termination
If stopping criteria is met then stop
Else X← X ∪ S(k) ∪ P(k) and k ← k + 1

end

The search is performed opportunistically. If the previous iteration had a successful quantitative
poll (feasible or infeasible), then the speculative search of NOMAD is executed on the quantitative
space. The speculative (or dynamic) search generates candidate points along the last successful
direction of G-MADS [6, 30]. To capitalize on promising directions, the speculative search is repeated
as long as it remains successful.

The default quadratic search of NOMAD [19] is also used on the quantitative variables. At
each iteration, quadratic models for the objective and constraint functions are constructed around
incumbent solutions, with categorical variables fixed. For a given incumbent solution, the proposed
point minimizes its corresponding model of f , while either satisfying or respecting the barrier of
its model constraints, for feasible and infeasible incumbents, respectively. For more details on the

21

For the poll, the evaluation order prioritizes points generated from quantitative polls over those

from categorical polls. Moreover, points from quantitative polls are ranked using quadratic models as

in [11], while points from categorical polls follow their generation order.

4.2 Comparison solvers

For benchmarking, each optimization problem is attributed a budget of evaluation of 250n, where

n = ncat + nint + ncont is the total number of variables.

CatMADS is benchmarked with the following state-of-the-art solvers, used in various fields involving

blackboxes with categorical variables [29, 37, 43]:

Pymoo, a Python-based suite of optimization solvers. The solver used for benchmarking is the mixed-

variable and single objective implementation of a genetic algorithm [15];

Optuna, a covariance matrix adaptation evolution strategy (CMA-ES) for categorical variables [2];

https://pymoo.org/customization/mixed.html
https://hub.optuna.org/tags/cma-es/
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Botorch, a BO solver, that uses a Gower-based distance kernel for categorical variables and Gaussian

kernel for quantitative variables [14].

Pymoo and Optuna are used off the-shelf, with only evaluation budget specified and launched using

the same DoE as CatMADS.

Botorch requires several user-defined choices. The hyperparameters of the GPs are adjusted via a

maximum likelihood procedure. The acquisition function is the Log Constrained Expected Improve-

ment from [3], optimized using Botorch’s built-in solver acqf mixed with a multi-start of size 3n.

Botorch does not explicitly distinguish categorical and integer variables. The integer variables are

continuously relaxed, and rounded to their nearest integer: this is a user choice made for simplicity.

The initial DoE also comes from NOMAD.

Running Mixed Rastrigin (unconstrained) with 1,000 evaluations takes more than 24 hours with a

11th generation Intel i7-11800H (2.30 GHz) CPU and a NVIDIA GeForce RTX 3060 GPU. For Botorch,
fully evaluating the budget of 250n evaluations is not suitable for benchmarking across several instances

of the problems. To reduce computational time, Botorch’s stopping criterion, based on the relative

decrease of the acquisition function, is employed with default parameters.

4.3 Data profiles

All solvers are subject to some randomness. Hence, each problem is run with five random seeds to

ensure fairness. An instance p ∈ P refers to a problem with a specific seed, where P is the set of

instances. There is a total of 160 instances, half constrained and half unconstrained.

For a given instance, let f⋆ be the smallest feasible objective function value and f0 be an initial

feasible function value. Let S be a set of solvers considered for benchmarking. A solver s ∈ S is said

to have τ -solved an instance p ∈ P when it has produced a feasible incumbent solution xfea ∈ Ω with

a reduction f0 − f(xfea) that is sufficient relatively to the smallest reduction f0 − f⋆ obtained by any

solver on this instance [34]. The convergence test can be expressed as

f0 − f(xfea) ≥ (1− τ)(f0 − f⋆) (14)

where τ ∈ [0, 1] is a given tolerance and f0 is either

• the smallest function value in the common DoE for unconstrained problems [10],

• or the largest function value among the first feasible solution find the solvers otherwise [10].

For the unconstrained problems, this approach allows to compare solvers on problems without

feasible solutions in the DoE.

A data profile [34] represents the portion of τ -solved instances by a solver s ∈ S, such that

datas (κ) :=
1

|P|

∣∣∣∣ßp ∈ P :
kp,s

np + 1
≤ κ

™∣∣∣∣ ∈ [0, 1] (15)

where kp,s ≥ 0 is the number of evaluations required for the solver s ∈ S to τ -solve an instance p ∈ P
and np is the number of variables in the instance p ∈ P. In the following plots, the horizontal axis κ

represents groups of (np + 1) evaluations.

4.3.1 Results for the extended poll

Before comparing CatMADS with the other solvers, ξ is chosen with data profiles showcasing the

relative performance of CatMADS with different values of ξ. These data profiles are done respectively

on unconstrained and constrained instances in Figures 6a and 6b.

The value 0.05, associated to a
[
cat − cont, int

]
local minimum, yielded the best performance on

the two smallest tolerances 10−3 and 10−5 for both unconstrained and constrained instances. The

https://botorch.org/
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Figure 6: Data profiles for different values of ξ.

value ξ = ∞ under-performs for the smallest tolerance 10−5. Although ξ = ∞ is associated to the

stronger
[
cat − cont, cat − int] local minimum its costs degrades performance. Based on these data

profiles, the parameter ξ is set to 0.05.

4.3.2 Results with existing solvers

For the next data profiles, the solvers and CatMADS are contained in the set of solvers

S = {CatMADS,Pymoo,Optuna,BoTorch}. The data profiles comparing CatMADS with state-of-the-

art solvers on the unconstrained and constrained instances are presented in Figures 7a and 7b. The

data profiles showcase that CatMADS strongly dominates the other solvers. For instance, the data

profiles in Figure 7a with τ = 10−5 shows that CatMADS τ -solves approximately 70% of the problems

against 30% for Pymoo. CatMADS performs particularly well on the smallest tolerance τ = 10−5 and

the constrained problems.

5 Discussion

The present work introduces CatMADS, a generalization ofMADS for mixed-variable constrained black-

box optimization. CatMADS improves the previous work MV-MADS, in which discrete variables are

treated with user-defined neighborhoods and constraints with the extreme barrier. CatMADS treats ef-

ficiently integer variables with the granular mesh and categorical variables with defined distance-based

neighborhoods. The constraints are handled with the progressive barrier [7], a much more efficient

strategy than the extreme barrier [6]. The convergence analysis shows that CatMADS has convergence

guarantees under reasonable assumptions.
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Figure 7: Comparison results on the test problems.

A prototype implementation of CatMADS is compared to state-of-the-art solvers on 32 original

mixed-variable problems. Even if basic, the implementation is competitive and outperforms Pymoo,
Optuna and BoTorch. As such, CatMADS addresses the research gap of an efficient mixed-variable

constrained blackbox method with convergence guarantees.

The implementation in this work is intentionally simple. In future work, CatMADS will be hy-

bridized with Bayesian optimization to produce an even more efficient solver. Search steps focused on

exploration will also be developed to balance the local nature of CatMADS. Moreover, CatMADS will be

applied on practical applications such as hyperparameter optimization of deep models or metaheuristic

methods.
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