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Abstract : Solving optimization problems in which functions are blackboxes and variables involve
different types poses significant theoretical and algorithmic challenges. Nevertheless, such settings
frequently occur in simulation-based engineering design and machine learning. This paper extends the
Mesh Adaptive Direct Search (MADS) algorithm to address mixed-variable problems with categorical,
integer and continuous variables. MADS is a robust derivative-free optimization framework with a
well-established convergence analysis for constrained quantitative problems. CatMADS generalizes
MADS by incorporating categorical variables through distance-induced neighborhoods. A detailed
convergence analysis of CatMADS is provided, with flexible choices balancing computational cost and
local optimality strength. Four types of mixed-variable local minima are introduced, corresponding
to progressively stronger notions of local optimality. CatMADS integrates the progressive barrier
strategy for handling constraints, and ensures Clarke stationarity. An instance of CatMADS employs
cross-validation to construct problem-specific categorical distances. This instance is compared to state-
of-the-art solvers on 32 mixed-variable problems, half of which are constrained. Data profiles show
that CatMADS achieves the best results, demonstrating that the framework is empirically efficient in
addition to having strong theoretical foundations.

Keywords : Blackbox optimization, derivative-free optimization, mixed-variable, categorical vari-
ables, mesh adaptive direct search
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1 Introduction

Many engineering and machine learning problems involve functions without explicit expressions, known
as blackbor functions. These functions often include categorical variables that take qualitative values.
In this context, traditional gradient-based or relaxation-based methods can not be directly employed.
This work proposes CatMADS, an extension of the Mesh Adaptive Direct Search (MADS) algorithm [6],
that addresses constrained blackbox problems with quantitative and categorical variables. CatMADS
manages categorical variables with problem-specific distances.

This work covers many real-life applications. Machine learning (ML) models are characterized
by hyperparameters that can be optimized to improve performance. Hyperparameter tuning, in-
volves optimizing a time-consuming mixed-variable blackbox that trains the model and returns a test
score [8, 24]. In [4], a simulation estimates the energy produced by a solar powerplant for given design
variables, such as dimensions of pieces or turbine types. An active research field in engineering is
the simulation-based design of aircraft [16, 41]. These simulation input geometry and materials, and
output energy-based scores via numerical methods [33].

Notation

Vectors are in bold font. The letters  and y are reserved for points. Scalars are in normal font. Sub-
scripts without parenthesis denote variables, e.g., z$*' is the first categorical variable. Subscripts with
parentheses are reserved for indexing iterations, e.g., T (), or for listing points, e.g., (1), T(2), - - -, T(s)-
For functions, subscripts represent the parameters on which they depend. Superscripts are reserved for
types, with small exceptions in the convergence analysis. R, Z and N denote the set of real numbers,
integers and nonnegative integers, respectively. Other sets denoted using capital letters with either
normal or calligraphic font, e.g., A or A, except for the set of known points noted X. For a neighbor-
hood, the semicolon distinguishes its center from the parameter controlling its size, e.g, an open ball

of radius € centered at y is noted B(u;e).

1.1 Scope

This work considers inequality constrained mixed-variable blackbox optimization problems of the form

i 1
min f(z), (1)
where f : X — R (with R = RU {+0oc}) is the objective function, X is the domain of the objective
and constraint functions, Q == {x € X : g;(z) <0, j € J} is the feasible set, g; : X — R is the j-th
constraint function of the problem, with j € J, and |.J| denotes the number of constraints.

The objective and the constraint functions are assumed to be provided by blackboxes, defined as
in [9]: “any process that when provided an input, returns an output, but the inner working of the process
18 not analytically available”. In this context, derivatives are unavailable and the function evaluations
are performed by executing a potentially time-consuming process. For example, the estimation of an
aircraft drag could be done using a finite element simulation that outputs a drag value, provided a
geometry and materials used.

The execution of a blackbox can crash or fail to return a valid value because of hidden con-
straints [17], e.g., an unexpected division by zero. In that case, the point € X is assigned f(x) = +oo.
A point & € X can also be assigned f(x) = 400 to outline that an unrelazable constraint, which must
be satisfied to have a proper blackbox execution, is not satisfied. In contrast, the constraint functions
characterizing the feasible set {2 are said to be relazable and quantifiable, since they can be evaluated
and return a proper value without being satisfied [31].

The target optimization problems are mixed-variable, meaning that a variable can be of any type
among continuous (cont), integer (int) and categorical (cat). Variables of the same type are regrouped
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into a column vector called a component and expressed as
xl = (2, 2h, . 2t ) e X =X x A x .o x AL, (2)

where t € {cat, int, cont} refers to the type, n® € N is the number of variables of type t, X* is the set of
type t, 2t € X} denotes the i-th variable of type ¢, and X} contains the bounds of z}. For convenience,
the indices of the variables of type t are regrouped in the set I* := {1,2,...,nt}.

The continuous z°°* € x<nt C R"*“™ and integer zi™ € XM C Z"™ components are composed of
quantitative variables that belong to ordered sets with well-defined metrics. For readability, the integer
and continuous components can be grouped into the quantitative component xd" := (wint,wcont) €
xant .— yint o yeont  The integer 2™ and categorical 2°** components both contain discrete variables.
However, categorical variables are not quantitative and take qualitative values, known as categories.
For i € I°®, the i-th categorical variable z¢** € X := {¢y,ca, ..., ¢y, }, where £; € N is the number of
categories and ¢; is a category for j € {1,2,...,¢;}, i € I°®. For example, the blood type of a person
takes a category in the set {O-,0+,...,AB+}. The usual distance functions are not suitable for
categorical variables, which makes them difficult to treat [8, 26]. The categorical set X" is assumed

cat

to be finite and its cardinality is | X = T]'"_, ¢;.
Finally, a point @ € X' is partitioned into component by types, such that

T = (mcat7mint’mcont) c Xcat X Xint X Xcont (3)

where X = X x Xt x ycont ig the domain that consists of Cartesian products of the categorical
set X° the integer set X"t and the continuous set Aot

Note that this work does not cover problems with meta variables that influence the inclusion or
bounds of other variables [8, 24]. The dimensions and bounds of the problems are fixed.

1.2 Objectives, contributions and organization

MADS is a direct search algorithm that provides an exhaustive convergence theory for constrained
quantitative problems [6, 13]. Nevertheless, the direct search approach remains relatively underde-
veloped for mixed-variable problems with categorical variables, especially in comparison to Bayesian
optimization (BO) [23, 36, 40] and metaheuristics [22] approaches. The mixed-variable MADS (MV-
MADS), an extension of MADS for discrete variables, has several convergence guarantees [1]. However,
MV-MADS requires the implementation of explicit user-defined neighborhoods that define discrete vari-
able neighborhoods. Such neighborhoods can be tricky or arbitrary to define in a blackbox optimiza-
tion context with limited information, yet they greatly impact performance. In practice, user-defined
neighborhoods are not user-friendly and may discourage practitioners from using this method.

CatMADS is introduced as a framework that generalizes MADS and improves the management
of categorical variables of MV-MADS. The research gap addressed is the absence of a robust and
rigorous optimization method for mixed-variables problems with constraints. The main advantage of
CatMADS over alternative methods is its convergence guarantees and theoretical results, which BO or
metaheuristic methods lack. For instance, CatMADS provides necessary optimality conditions for local
minima of varying strengths. This work introduces and adapts different notions of local optimality to
develop the theoretical results of CatMADS. In doing so, several characterizations of local minima are
proposed and multiple key definitions, such as hypertangent cones, are adapted to the mixed-variable
setting.

CatMADS addresses the research gap through five objectives. The first objective is to automatize
and generalize the user-defined neighborhood of MV-MADS with distances. The second objective is to
integrate the version of MADS that uses a granular mesh [13], referred to as G-MADS, to handle si-
multaneously integer and continuous variables efficiently and with convergence guarantees. MV-MADS
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treats integers as categorical variables, thus it does not capitalize on the properties of these variables.
The third objective is to handle the constraints with the progressive barrier [7], a state-of-the-art tech-
nique with convergence guarantees. MV-MADS uses the simpler extreme barrier strategy that simply
rejects infeasible points [6]. The use of the progressive barrier also motivates adapting the extended
poll [5], a mechanism exploring promising categorical variables and influencing guarantees. The fourth
objective is to develop a comprehensive convergence analysis that improves upon that of MV-MADS
and integrates the contributions of the previous objectives. In the convergence analysis, different
types of local minima are developed to provide compromises between strength of local optimality and
evaluation costs of CatMADS. The final objective is to propose a collection of 32 mixed-variable test
problems, half unconstrained and the other half constrained.

The rest of the document is organized as follows. Essential elements of MADS are discussed in
Section 1.3 and related work is covered in Section 1.4. The general framework CatMADS is presented
in Section 2. Section 3 presents the theoretical results of CatMADS, along with adapted definitions from
nonsmooth optimization and new types of local minima tailored for our setting. Finally, computational
experiments with state-of-the-art solvers are described in Section 4.

1.3 Essential concepts of MADS

MADS is a direct search method that iteratively seeks candidate points with a strict decrease of the
objective function and/or constraint functions [6]. The candidate points lie on a mesh that discretizes
the space with step sizes. The MADS algorithm has two main steps. The search, an optional step,
evaluates points on the mesh using flexible strategies. Although optional, the search allows to in-
corporate efficient optimization strategies that can significantly improve the global solution quality.
Notable empirical improvements are often achieved with search steps based on quadratic model opti-
mization [19]. The key step, called the poll, evaluates candidates points around the incumbent solution,
which is the best solution found since the algorithm was launched. This is the step that provides con-
vergence guarantees. If a better solution is found during the search or the poll, then it becomes the
incumbent solution and the iteration is said to be successful. Otherwise, the iteration is unsuccessful,
the incumbent solution is unchanged and the mesh is refined to discretize the space more finely.

For the continuous case, the mesh has a single step size and the poll is constructed with a set of
directions positively spanning the space. The poll converges with a succession of unsuccessful iterations,
such that candidate points are evaluated in an increasingly denser region around a minimum: this is
schematized for R? in Figure 1.

)16)
. Y(6)

o
N

Y1) Ty . Y Xy

Y2

(a) (b) (e)

Figure 1: Three consecutive polls of MADS converging to a local minimum x. € R2.

In Figure 1, the poll generates candidates points with positive basis that are represented by dotted
arrows starting from .. These candidate points y(1),Y(2), .- -, Y(10) must lie on the mesh (grey grid)
and within the frame (black square). The frame represents the delimitation in which the poll is
performed and it is greater or equal to the mesh size. As MADS converges, the mesh and frame sizes
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shrink toward zero, and the step size shrinks more aggressively to force polls in denser regions: in
Figure 1a there are 8 potential candidate points, and it increases to 24 in Figure 1b. The convergence
proof is based on the last remark. For more details on the MADS algorithm, see Chapter 8 of [9]. The
state-of-the art strategy to handle constraints is the progressive barrier, which is detailed in Section 2.3.

1.4 Related work

The recent literature on mixed-variable blackbox problems mostly comes from BO with GPs, focusing
on similarity measures, referred to as kernels, that characterize GPs. For continuous and integer vari-
ables, squared-exponential kernels can be used straightforwardly [23]. However, categorical variables
require additional work. In [23], categorical variables are one-hot encoded into binary vectors with
one binary variable per category. These binary variables are then continuously relaxed, allowing the
squared-exponential kernels to be used. Relaxed categorical variables are transformed into their origi-
nal form with a transformation that, for each categorical variable, sets the highest-valued category to
one, and all its other categories to zero.

In [48], each categorical variable is provided with a 2D continuous space for encoding its categories.
The categories are mapped with a maximum likelihood procedure that positions correlated categories
closely and uncorrelated categories farther apart. The authors of [21] propose a pre-image problem
that reconstructs the encoded categorical variables. This is useful in BO, since the GPs are used to
form a subproblem that determines the next point to evaluate. If categorical variables are encoded,
then the solution is also encoded.

An alternative approach to binary vectors employs matrices [36, 38, 40]. Each categorical variable
is assigned a matrix whose elements are hyperparameters representing correlations or anti-correlations
between its categories. The hyperparameters are constructed with hypersphere decompositions that
parametrize the matrices [38]. A parametrization with more hyperparameters offers greater modeling
flexibility, but adjusting its hyperparameters becomes more costly. See [42] for in-depth presentation
of different parametrizations. This matrix approach implies that the BO subproblem is also mixed-
variable. In [36], the subproblem is optimized with a genetic algorithm inspired from [44].

Genetic algorithms are also commonly employed in blackbox optimization, such as the Non-
dominated Sorting Genetic Algorithm [22] (NSGA-2). These algorithms encode points into chro-
mosomes that are subject to different operations inspired from the theory of evolution. For instance,
the crossover operation exchange parts of promising chromosomes to heuristically propose new solu-
tions. Many other metaheuristic methods exist for the problems of interest, such as the mixed-variable
Particle Swarm Optimization [47]. For a comprehensive survey, see [45].

2 The CatMADS general framework

CatMADS follows the paradigm of direct search methods: an initialization step is done at the beginning,
then search and poll steps are iteratively performed until a stopping or convergence criteria is met.
At each iteration, the algorithm seeks to improves an incumbent solution x(;) € &. The framework
is presented in its general form in Algorithm 1. Initially, CatMADS is discussed without constraints;
they are addressed in Section 2.3, after the poll step is detailed.

All the parameters of CatMADS are described below. A Dok is done at the initialization, allocating
an initial budget of evaluations to explore the domain X before any optimization. The DoE must
contain at least one initial point ) € X', but possibly outside 2.

As with MADS, an iteration of CatMADS is said to be successful if, at any step, a new incumbent
solution @41y € A is found. In that case, CatMADS proceeds directly to the update step. This
early stopping strategy is said opportunistic, and it reduces the number of evaluations required in
practice [9]. An iteration is said to be unsuccessful if no better solution is found.



Les Cahiers du GERAD G-2025-42 5

Algorithm 1 The CatMADS framework.

0. Initialization. Initialize poll parameters, perform an initial Design of Experiment (DoE) and set k = 0

. Opportunistic search (finitely many mesh points, possibly none).

1
2. Opportunistic poll. Perform polling over candidates points in P = P(C]j)t U P&n)t
3

3. Opportunistic extended poll (optional). If Steps 1. and 2. are unsuccessful, perform quantitative polls
centered at points in Pc3' with objective values sufficiently close to f (w(k))

(k)
4. Update. Update poll parameters, check stopping criterion and set k <— k + 1
If the iteration is successful, increase mesh and frame parameters and GO TO Step 1.
Else, decrease mesh and frame parameters, and if the mesh parameters are at their minimum sizes, then STOP

In CatMADS, the search has the same purpose than MADS described in Section 1.3. The poll P,
is the union of the categorical poll P(‘}j)t and quantitative poll P(;St. The categorical poll P(Clj‘)t replaces
the discrete poll of MV-MADS, and it uses more flexible neighborhoods based on a distance defined
in Section 2.1. Furthermore, in comparison to MV-MADS, the integer variables are not grouped with
the categorical variables, but rather with the continuous variables to form quantitative variables. This
modification allows to use the granular mesh of G-MADS [13] and efficiently treat integer variables.
The quantitative poll P((}St, detailed in Section 2.2, is an adaptation of the G-MADS algorithm for this
work.

If both search and poll steps are unsuccessful, then the extended poll, adapted from [5], is deployed.
This step performs quantitative polls around points in the categorical poll Pclj)t whose objective value is
worse than the incumbent value f(z(y)) (unsuccessful), but still considered sufficiently close to f(x ).
This assessment of whether a point is sufficiently close to f(x()) is described in Section 2.4. The test
is flexible, allowing the user to control its selectivity, including the option to reject all points. The

extended poll is optional, but is labeled as a poll, since it affects the convergence guarantees.

2.1 Distanced-based categorical poll

The categorical poll P(‘f)t is characterized by two elements: (i) a categorical distance d°** : Xt x x<at —
R establishing the notion of proximity between categorical components, and (ii) a parameter mj €
{0,1,...,]X — 1}, called the number of neighbors, determining how many categorical components
are polled.

The quality of a categorical poll depends greatly on the distance employed. Basic categorical
distances, such as Hamming distances, only compute mismatches between categories. CatMADS does
not prevent using these distances, but they may fail to provide meaningful comparisons. For example,
if 2** € {Red (R), Blue (B), Green (G)}, then d°®*(R,B) = 0 = d°**(R, G). With such distances, it
is not always possible to determine which category is the closest to R. In CatMADS, effort needs to
be spent on constructing problem-specific categorical distances that allow useful comparisons. In the
computational experiments in Section 4, the categorical distance is built by fitting a mixed-variable
interpolation of the objective function f. When some knowledge of the problem is available, a user-
defined distance assigning smaller values to similar categories may be appropriate.

A value of m;y = 0 means the categorical poll is empty, whereas m) = [X cat] — 1 signifies all
categorical components, except the current solution x (), belong to the categorical poll. Higher values
allow more categorical component to be evaluated in the categorical poll, but at greater computational
costs. The number of neighbors can be based by default on the number of categorical components in the
problem, e.g., m) = [|X*| /2], to scale with the problem. This is ultimately a user choice that should
take into account the categorical distance. For instance, if mismatching-based distances are employed,
higher values of m () may be preferable, as each neighbor is selected with limited information. In
contrast, when more sophisticated problem-specific distances are used, then each neighbor is chosen
in more informed manner, which may justify using lower values of m,.
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The following definition introduces the structure establishing neighborhoods for categorical vari-
ables.
Definition 1 (Distance-induced neighborhood). For a given number m € {0,1,...,|X%| — 1}, the
distance-induced neighborhood N (2*;m) C X2 s the set of m + 1 closest categorical components
to the categorical component £ € X with respect to a categorical distance d® : X x X2t 5 R, .

Formally, |N (%, m)| = m + 1, and for any pair u,v € X such that u € N (®;m) and v ¢
N (2, m), the distance d°* satisfies d°®* (x®*,u) < d° (°*, v).

By definition, a categorical component £ € X% belongs to its own distance-induced neigh-

borhood: " € N(x®';m) for any m € {0,1,...,|X°"|}. The definition generalizes user-defined
neighborhoods from [1], since it suffices to construct an appropriate categorical distance inducing the
user-defined neighborhoods. The categorical poll is defined from distance-induced neighborhoods.

Definition 2 (Categorical poll). For a given incumbent solution x ) = ($?a§ ?;‘)t) € X, the categorical
poll P(‘f)t C X contains points whose categorical components belong to the distance-induced neighborhood

N( (k),m(k)), such that
Py = (W (@fiimen ) \{=5)) < (=) X

where )P(Ck"‘)

In Definition 2, the categorical poll contains points of the domain, however the incumbent quantita-
tive component a:‘(m)t € X9t is fixed so that categorical polls effectively modify categorical components
of incumbent solutions.

2.2 Quantitative poll and mesh

In G-MADS, the mesh discretizes the quantitative space, determines the potential points that can be
generated by the quantitative poll. The mesh also controls the spacing between the incumbent solution
and the points in these polls. A step size is assigned to each variable in order to control its granularity.
For this work, the granular mesh allows to tackle simultaneously continuous and integer variables,
referred to as the quantitative ones. The following redefines the granular mesh in [13].

Definition 3 (Quantitative mesh [13]). For a given iteration k > 0, the quantitative mesh, centered at
the quantitative component zc( ) € Xt discretizes the quantitative set X9, as follows

pant

qu = {:1: + diag (6)) 2z : z € Z } C xant (4)
where () = (5 1 0(k),2 -+ 5 Ok, nqm) € anm is the mesh size vector and d(y; € Ry is the mesh
size parameter of the i-th quantitative variable 3:( ) € ant

In Definition 3, the step size of an integer variable belongs more precisely to set of integers Z and
its minimal value is one. For clarity, Equation (4) from Definition 3 may be expanded as follows to
distinguish integer and continuous variables

M= {y = (ol + diag (803) 2™, @l + diag (53t) z) « 2™ e 2™, 2ot e 27}

where 52% e N"™ and 6?,‘3“ € Rfom are respectively the integer and continuous mesh size vectors.

In Definition 3, the quantitative mesh M qknt is a subset of the quantitative set X"t as it represents
a discretization of the quantitative variables. Similarly to the categorical poll, the quantitative poll
contains point in the domain. Hence, to formulate the quantitative poll on points, this next definition
extends Definition 3 to discretize the domain X.
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Definition 4 (Mesh [1]). For a given iteration k > 0, the mesh discretizes the domain X is formed as

Cartesian product of the categorical set and the quantitative mesh, such that M) == Aeat x ]\J(qkn)t c X.

Next, the quantitative poll is defined from the mesh. This poll uses the standard mechanisms of
MADS. Mathematically, candidate points, which lie on the mesh, are constructed by translating a

quantitative incumbent solution m?,?)t with directions from a positive basis.

Definition 5 (Quantitative poll [1]). For a given incumbent solution x(, = (mf%,m?,?f) € X, the
quantitative poll Pc}cnt C X contains points whose quantitative components are generated from a positive
spanning set of directions D(yy, such that

P((}St = {(.’Bcat,a}?;l)t + diag (é(k)) d) S M(k) :de D(k)} Cc X.

FEach direction d € Dy, scaled by the mesh size vector &y, must be within the geometry of the frame,
characterized by frame size vector Ay > (), such that

—Ay) < diag (6)) d < Ay, (5)

where Ay = (A(k)717A(k)72, .. .7A(k)7nqnt) € Rfﬂt and Ay is the frame size parameter of the
qnt

i-th quantitative variable x(yy ; € X for i € 190,

For the quantitative variables, the management of parameters is done variable-wise in order to
consider the variable type and the scale of the variables. The frame sizes of an integer and continuous
variables are respectively restricted to the following discrete sets A‘(I,;t) ; €f{ax 10° : a€ {1,2,5}, b e

N}, with A‘(Ilf)z > 1, for i € '™, and Afg% €{ax10® : a€{1,2,5}, b€ Z} for j € . A step
size is always lower than or equal to its corresponding frame size, i.e., 66@)71‘ < Afk)7i. The frame and
step sizes parameters with specific rules detailed in [13]. The frame and step sizes are decreased on
unsuccessful iterations, and increased on successful ones. A step size must decrease toward zero more
rapidly than its frame size to ensure convergence: typically, it decreases toward zero with an order of
the square of its frame size [9, 13]. The initialization of the frame and step sizes considers the bounds

and the initial values of () or a DoE: see [12, 13] for more details.

By default, G-MADS uses Householder transformations to construct positive spanning set of di-
rections D). At each iteration k, a random and normalized vector v € R™™ is generated. From
V(k), the Householder transformation I — 2v(k)v(—;€) is done. Afterwards, each column of the matrix is
used to create two opposing directions. These directions are rescaled with the frame and step sizes
parameters to ensure that the inequality in (5) is respected. This ensures that the poll points belong
to the mesh and reside within the frame, as in Figure 1.

2.3 Domination and constraint handling with the progressive barrier

The strategy to handle the constraints, called the progressive barrier (PB) [7], is now described. The
PB works with two incumbent solutions, instead of a single one x ;) € & as previously: the feasible
incumbent solution @z, € 2 and the infeasible incumbent solution ;s € X\ Q. For readability, the
subscript k is discarded when superscripts FEA and INF are used. The key idea of the PB is to perform
two polls. The feasible poll is centered at xyz, and is done as described in previous sections. The
infeasible poll is centered at @y, and this solution is updated to progressively approach feasibility
throughout the iterations.

In Problem (1), recall that a point « € X is feasible if and only if all the constraints are respected.
Hence, a point y € X is infeasible if at least one constraint is not respected, i.e., there exists j € J
with g;(x) > 0. The infeasibility of a point does not necessarily imply that it is not promising. In fact,
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optimal solutions often lie on the boundary of the feasible set. In order to quantify the infeasibility of
a point, the constraint violation function h : X — R is introduced as follows

Y (max{0,g;(x)})* ifwe X,
h(x) = i€J . (6)
00 otherwise

with h(xz) = 0 < x € Q (feasible) and h(x) > 0 < x € X'\ Q (infeasible). A point = ¢ X is valued as
h(x) = oo, which conveniently outlines that it is not a solution considered.

The PB introduces a threshold parameter h?,;a", called the barrier. This parameter controls the
acceptable infeasibility of x;z. More precisely, the feasible and infeasible solutions are determined
with the following expressions:

Trpa € argmin{f(x) : £ € QNX} and xnp € argmin {f(a:) 10 < h(m) < RS, @€ X} (7)

where X C X, called the set of known points, is the set of points whose objective and constraint
functions were evaluated since the algorithm was launched. The barrier is initialized at h?[lf)‘x = 0o and
it is reduced iteratively toward zero.

The update of the barrier and the mesh parameters is done with notions of dominance [9].
Definition 6 (Feasible and infeasible dominance). The point « € Q is said to dominate y € €, denoted
x <y y, if f(®) < f(y). The point x € X\ Q is said to dominate y € X \ Q, denoted x <, y, if
f(x) < f(y) and h(x) < h(y) with a least one strict inequality.

In the previous sections without constraints, an iteration is either successful or unsuccessful. In
the constrained case, a successful iteration is divided in two cases based on Definition 6:

1. an iteration is dominating if either a candidate point y € {2 with y < Tsu, or a candidate point
y € X\ Q with y <j @nr is found at any step. The barrier is updated as hfﬁﬁ‘l) = h(xnr), and
the mesh and frame sizes parameters are increased.

2. an iteration is émproving if it is not dominating and if a candidate point y € X'\ Q that improves
the constraint violation function, such that 0 < h(y) < h(xnr) is found at the end of an iteration.
In this case, the mesh and frame parameters are unchanged, and the barrier is updated after
going through all the steps with A1) = max{h(v) : h(v) < h(®wnr), v € X}.

The opportunistic strategy is reused with the PB, however it can only be applied to dominating
iterations. An iteration is unsuccessful if it is not dominating or improving. In that case, the parameters
of G-MADS are decreased and the barrier is unchanged.

With the PB, the poll set Py from Algorithm 1 becomes Pps U Pivp, Where the feasible poll set
P, and infeasible poll set Py are respectively centered at the feasible and infeasible solutions. The
infeasible and feasible polls both have their own quantitative and categorical polls. The feasible and
infeasible categorical polls have their own number of neighbors. Similarly, the feasible and infeasible
quantitative polls have their own set of directions.

The integration of the PB within CatMADS is achieved by 1) considering improving iterations,
2) performing two polls instead of one and 3) generalizing the extended poll from [5] to use the PB
instead of the extreme barrier, as detailed in the next section.

2.4 Extended poll

The extended poll is optionally performed following unsuccessful search and poll steps. Figure 2a
illustrates the extended poll on the RG example in which the red and green planes represent two
quantitative variables in R? corresponding to the two colors (categories).
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/ VARG @S /

cat

(a) Extended poll initiated at y € P(k) , successfully terminat- (b) The sequence of extended poll points initiated at y = y o),
ing at z where 4 = f(z) < f(x)) = 5. and terminating at z = y(s)-
Figure 2: The RG example for the extended poll with the mesh in gray.

In the figure, the incumbent solution ) is in the red plane. Both the quantitative poll and
categorical poll at y € P(‘jj)t in the green plane fail to improve x (). The extended poll initiated at
Yy € Péclj)t generates a series of quantitative polls in the green plane, successfully terminating at z with

An important drawback of the extended poll is its potential high costs, especially when dealing with
many variables. To mitigate these costs, points from the categorical poll that undergo quantitative
polls are selected based on a test. The test accepts points whose objective value is worse, but sufficiently
close to an incumbent value.

Definition 7 (¢-extended poll trigger). For a given parameter £ € R, the &-extended poll trigger function
te : X x X = {0,1} at the unsuccessful poll point y € P(C,jt = P&t U P s defined as

o) = {1 T DS T0)=F (@) <¢1f (m0)] N

0 otherwise.

The parameter ¢ € R has the following impact:

e if £ <0, then no point passes the test, since the two inequalities are mutually exclusive;
e if £ = oo, then all points trivially pass the test;

o if £ € R, the test checks if the relative deterioration is within a ratio of &.

In CatMADS, the extended poll can be deactivated by setting £ < 0. In MV-MADS, it is always
activated and the default implementation proposed is £ = 0.05, meaning that a deterioration of 5% on
the best feasible value is accepted.

In this work, the extended poll is generalized with the PB containing two incumbent solutions.
To take into account the PB, the £-extended poll triggers are performed by considering wether the
unsuccessful points are feasible or not. If an unsuccessful point y € P(C,f)t is feasible, then the &-
extended poll trigger is performed with the feasible incumbent xpz,. Otherwise, it is performed with
the infeasible solution @y, and in that case, the point must also respect the barrier to be selected.
Mathematically, the set of selected points undergoing extended polls is expressed as

Ey = {y € PGy ¢ (te (xrpa,y) = 1and h(y) = 0) or (fe (®we,y) =1 and 0 < h(y) < h(k))} . (9)
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where h(y) = 0 signifies that y is feasible.

Once selected for the extended poll, a point y € &) undergoes a finite sequence of quantitative polls
initiated around it. A quantitative poll is performed until a new incumbent solution is opportunistically
found, or until it does not produce a dominating point. This is formalized in the next definition.
Definition 8 (Extended poll initiated at y [5]). For a given iteration k > 0, the extended poll initiated
at y = y) € Eu) produces a finite sequence of iterates Yoy, Y1) Y(2)s - - - Y(s), Such that ygy <
Y- forallj e S:={1,2,...,s} and x4y < y. The operator < and the incumbent solution x are
either:

o the feasible dominance <y and the feasible incumbent solution Twws € Q, if y € §1;

e or the infeasible dominance <y, and the infeasible incumbent solution xny € X\ Q, if y € X'\ Q.

The point z = y(5) € X, called an endpoint, is either a new incumbent solution or the quantitative
poll at z fails to produce a dominating point, such that

w £ z, for all w € {(y*™*, 2™ + diag (84)) d) : d € D(2)}
where D (z) is the set of directions used for z.

From Definition 8, it follows that, for a given iteration k£ > 0, an extended poll initiated at y €
&) generates an union of quantitative polls performed at y(y, Y1), ---,Y(s), denoted Eyy(y) and
expressed as

Eoy () = | { (= yy + diag (8(x)) d) € My - d € D (ygy)) ,

JjeES qnt

Y = y?;'jil) + diag (8(x)) d for some d € D (y(;_1)),

Yo = ?/<j—1)} ca.

In Figure 2b, the RG example is reused to illustrate Definition 8. The sequence of polls is initiated at
RS P(C,j)t and yields improvements until the quantitative polls produces a new incumbent solution z.
The quantitative polls have their own sets of two directions. In comparison to quantitative polls
in Definition 5, extended polls do not require a positively spanning set of directions. This allows
using fewer directions, thereby reducing their cost. In the example, the mesh is not increased with
improvements of the extended poll. In theory, it could be increased, as long as the extended poll ends
with the initial mesh and frame sizes.

From Definition 8 and the sets of selected points in (9), the extended poll P(k) at iteration k is
defined as the union of extended polls initiated at the selected points, such that

Poy= | € () (10)
YEE (k)

where £ (y) in definition 8 adjusts its operator < to either <; or <j, depending on whether y is
feasible or not.

The extended poll can be viewed as a mixed-variable poll since it proposes points that modify
both the categorical and quantitative variables of incumbent solutions. In CatMADS, these polls offer
additional optimization mechanisms that balance evaluation costs and local solution quality. This
becomes apparent in the next section, as they improve convergence guarantees at some additional
cost.

3 Convergence analysis

The convergence analysis of CatMADS follows the structure used in [1, 6]. It relies on standard
assumptions: an initial point ) € X with f (az(o)) € R is available, and all iterates {z()} lie in
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a compact set. The convergence analysis is divided into four parts. First, different types of local
minima of varying strengths are presented. Second, Section 3.2 redefines and shows the existence of a
refining subsequence. Third, convergence results with respect to the continuous variables are derived
in Section 3.3, using notions of nonsmooth calculus. Finally, Section 3.4 strengthens the convergence
results by studying the extended poll.

3.1 Types of mixed-variable local minima

cont

In the following, an open ball for the continuous variables is denoted B (u;€) :={v € R" : [[u—v|2 <

int

e}, and a neighborhood for integer variables is defined as Z (u;n) == {v € Z"  : ||lu —v|; < n}. In

the mixed-variable setting, a local minimum is defined as follows.

cont )

Definition 9 (Local minimum). A point = (:ccat, ' €  is a mixed-variable local minimum

if there ewists a triplet m € N*, n € N*, e € RY, such that

f(x) < f(y), foraly € (./\/ (z2*:m) x I(a:int;n) X B(:ccom;e)) n Q.

In Figure 3, a local minimum is schematized for the RBG example containing a single categorical
variable 7" € {Red, Green, Blue}, a single integer variable z™* € {0, 1,2} and no relaxable constraint,
i.e., Q = X. The planes represent the set X°°** C R? for fixed categorical and integer variables.
The gray zones depicts continuous balls (unconstrained) and dotted arrows represent the couples of
categorical and integer components involve in the minimum.

Figure 3: A local minimum % = (Red, 2, z$°™) for the RBG example, where z°°1t € x°nt ¢ R%, m =1 and n = 1.

The local minimum, as described in Definition 9, is not covered by CatMADS. In practice, the
evaluations required for reaching optimality could be substantial. To balance computational costs and
solution quality, three weaker types of local minima are proposed.

The new types of local minima are named with a specific nomenclature in which the types of
variables are combined by a hyphen or separated by a comma. A hyphen symbolizes that the types of
variables are jointly interacting. For instance, the nomenclature of the local minimum in Definition 9
is [cat —int — cont]7 since all types of variables are jointly interacting via Cartesian products. The
weaker types of local minima discard some or all of these joint interactions, meaning commas appear
in their nomenclature. Notably, the weakest type of local minima is named [cat, int, cont], which
signifies that all types of variables are separated. Inspired by [46], the [cat, int, cont] minimum is
defined below.
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Definition 10 ([cat, int, cont] local minimum). A point © = (mcat,xint,wcont) € Q is said to be a [cat,
int, COIlt] local minimum if there exists a triplet m € N*, n € N*, e € R%, such that

f(ﬂ?) < f(y), fOT all ycat c N( cat. ) with y = ycat, mint cont) c Q
f@) < f(z), forallz™ €I (x™; 77) with z = (", 2™, 2") € Q,
f@) < f(u), for allu®m e B(x";e)  with u = (x, :B““t ucont) e Q

In Definition 10, each inequality is associated with a specific type of variables, meaning that there
is no interaction between different types of variables. The [cat, int, cont] minimum is visualized for
the RBG example in Figure 4a. For this type of local minimum, the vertical dotted line represents the
point in the distance-induced neighborhood, whereas the horizontal dotted lines represent the integer
neighborhood.

(a) [cat, int, cont] local minimum. (b) [cat — cont, int] local minimum. (c) [cat — cont, cat — int] local minimum.

Figure 4: Three new types of local minima at x = (Red,2,z$°™") for the RBG example, where z°"" € X°ont C R?,
m=1and n=1.

The next type of local minimum is [cat — cont, int] with joint interactions between categorical and
continuous variables.
Definition 11 ([cat — cont, int] local minimum). A point @ = (x, ™, ™) € Q is said to be a
[cat — cont, int] local minimum if there exists a triplet m € N*, n € N*, e € RY, such that

f(y), fOT all (ycat cont) c N( cat ) X B( cont; 6) with y= ycat’mint ycont c Q
!

<
f(x) S (Z), fOT’ all th c I( int. 77) with z = ﬂ)cat, zint cont c Q.

The [cat — cont, int} local minimum type is schematized for the RBG example in Figure 4b. In
comparison to the [cat, int, cont] local minimum type, the [cat—cont, int] type strengthens optimality
with a joint interaction in the first inequality. In Figure 4b, this interaction is visualized at y, which
has a continuous ball around it.

The last type of local minimum is [cat — cont, cat — int} with interactions between the categorical
and continuous variables, and between the categorical and integer variables.
Definition 12 ([cat — cont, cat — int] local minimum). A point & = (2%, ™ £ € Q is said to be
a [cat — cont, cat — int] local minimum if there exists a triplet m € N*, n € N*, e € RY | such that

f(CC) < f(y) fO’f’ all ( cat Cont) GN( cat ) X B( cont. )’UJZth y= ycat’mint ycont) c Q
< f(2), for all (zcat,zmt) eN(x Cat m) x I (x™; ) with z = (2, 2 ') € Q.
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The [cat — cont, cat — int| minimum further strengthens the optimality of the [cat — cont, int]
type by adding interactions between categorical and integer variables. In Figure 4c, this additional
interaction is represented at z, which modifies the categorical and integer variables of x,.

3.2 Refining subsequence

This part of the convergence analysis studies the behavior of sequences of iterates produced by Cat-
MADS. As for G-MADS [13], convergence is established via unsuccessful iteration subsequences in
which the step sizes of continuous variables get infinitely fine, and step sizes of integer variables reduce
to the value one. For CatMADS, these subsequences must also possess convergent distance-induced
neighborhoods. As a generalization of G-MADS, the convergence of the step and frame size parameters
is directly inherited from G-MADS. This leads to this key definition of the convergence analysis.
Definition 13 (Refining subsequence and refined point). Let U be the set of indices of the unsuccessful
iterations generated by an instance of CatMADS. If K is an infinite subset of U such that

%1611}1( T (k) = x, for some x, € X,
lim |8, ||% = piot,

keK

lim m =m

k‘EK (k) * 9

hm N( m(k)) =N (28 m.),

then the subsequence {T ) }rex of poll centers with x () € M) is said to be a refining subsequence,
and x, € X is said to be a refined point.

In Definition 13, the notation limpex |6 ||3 = n'™ is equivalent to limpex 5%%1 = 1 for all
i € I'™ and limpe 66‘3;“3] = 0 for all j € I, Moreover, it is the PB that determines if a refining
subsequence converges to a feasible refined point or not. From Definition 13, the next zeroth-order
result of Theorem 1 is proposed with only the two assumptions. Since CatMADS is built upon G-MADS,
the proof of the next theorem is partly given by construction. The rest of the proof sequentially chooses
infinite subsequence that satisfy the requirements of a refining subsequence [6].
Theorem 1 (Zeroth-order). Let {z)} be the sequence of points generated by CatMADS from an initial
point Ty € X with f (:c(o)) € R. If all iterates {x()} belong to a compact set, then there exists a
refining subsequence {x (i }rex with corresponding refined point x, € X.

Proof. Let U be the set of indices of unsuccessful iterations generated by CatMADS. For all £ > 0,
the intersection of a mesh M) and the compact domain & is finite. Thus, relative to G-MADS, the
extended poll introduces only a finite sequence of quantitative polls per iteration, and the categorical
poll introduces only a finite number of categorical modifications possible per iteration. Therefore,
CatMADS inherits the following result of G-MADS: a sequence of iterates { ()} generated in a compact
set is such that liminfs_, o 6(%‘2 = Ofor each i € I°°" and liminfj_, o 6(1:) ,; = Ofor each j € It (see
Theorems 3.1 and 3.2 in [13]). It follows that there exists an infinite subset of indices Ky C U such
that limgex, [|[6)[|3 = n™. Similarly, since the set is compact, there exists an infinite subset of
indices Ko C Kj such that limgeg, T(gyeont = x¢°",  Additionally, since the categorical variables,
integer variables and number of neighbors belong to finite sets, infinite subsets of indices can be

chosen successively as K5 C Ky, C Kz, such that limge, wl(r];t) = 2" limgex, w‘é% = x% and

limpe g, M(ky = my. Consequently, limye gy N (a:f,j;, m(k)> = N (x$**;m,). Finally, the infinite subset
of indices K = K5 satisfies definition 13. O

Note that implementation-wise, converging distance-induced neighborhoods in a refining subse-
quence can be easily ensured by fixing both the number of neighbors m ;) and the categorical distance
d°®* after a given iteration k > 0.
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3.3 Nonsmooth calculus for CatMADS

The second part of the convergence analysis involves the continuous variables for refined points. For
fixed categorical and integer variables, the analysis involves the Clarke generalized derivative [18, 27]
and the hypertangent cone [39], restricted to the continuous variables. The vectors u,v and w are
used next to denote continuous vectors. The continuous feasible set at the refined point x,, which
contains the continuous components that are feasible given the categorical and integer components
of x,, is defined as

A= {u € xeont . (miat,a:i*“t,u) € Q} (11)

For a given refined point «,, the following definition is such that the hypertangent cone contains
vectors in R™™ and rooted at "t

Definition 14 (Hypertangent cone [39]). A vector v € R™™" is said to be a hypertangent vector to the
set A, at a point @, = (x5, @™, @) € Q, if there exists a scalar € > 0 such that

(:ccat,zcint,w +tu) €Q forall we B (x{™™;€) N Ay, u€B(vie) and t € (0,€).
The hypertangent cone T,{{ (xy) to Ay at x, € Q is the set of all hypertangent vectors to Ay at x,.

In Figure 5a, the continuous feasible set A, and the hypertangent cone Tl{{ at a refined point x,

are illustrated for the RBG example, where z!"* = 2. In the figure, the feasible regions are represented
A /
/2 P EEHD 2 /
4 . 1
/. *Y(kt1) | /
[T gy i /

(a) Continuous feasible set and hypertangent cone at a re- (b) Refining, neighbor and endpoint subsequences for two cat-
fined point x,, where gray areas represent feasible regions and egories example.
xlnt = 2.

*

Figure 5: lllustrative examples for the convergence analysis.

in gray. The shape depends on the RBG category. The hypertangent cone TI{{ C R? is represented
with a dotted curve and contains the continuous directions rooted at x, that point inside A,. The
next definition formalizes a subset of these continuous directions.

Definition 15 (Refined direction [6]). Let {x ) }rex be a refining subsequence with corresponding refined
point x,. A vector v, € R™™ is said to be a refining direction if there exists an infinite subsequence
L C K with poll directions dy = (dim Com> € Dy such that dl(?ct) = 0 and limgey H:’)Eiz;\l = 2

(k) (k) To.T
with v = diag (t) deont.

To employ generalized directional derivatives [18], the objective function f must be locally Lipschitz
continuous with respect to the continuous variables. For a given refined point x,, the restriction of
the objective function in X" is noted f, : X°°** — R and formulated as

fo(u) = f (a:iat, mi*“t,u) . (12)
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With this function, the generalized directional derivative can be redefined for this work.

Definition 16 (Generalized directional derivative [18, 27]). For a refined point ¢, € Q, let f, : X°* - R
be a Lipschitz continuous function near w € A,. The generalized directional derivative of the restriction
fx at w in the direction v € R™™ s defined by

fouiw) = lmsyp TR ZA(0)

w—u, t\0, t
WEA,, wHtveEA,

(13)

Under a local Lipschitz continuity assumption, the following theorem combines the definitions of hy-
pertangent cone, refined direction and generalized directional derivative, to strengthen the convergence
results of a refined point x4, with respect to its continuous variables.

Theorem 2 (Generalized directional derivative at a refined point). Let x, € Q be a refined point generated
cont

by CatMADS such that f, is Lipschitz continuous near ™. If v, € Tﬁ(w*) 18 a refining direction,
then f2 (xS™;v,) > 0.

Proof. Let {x)}rer be a refining subsequence with corresponding refined point x, € €2, and let
v, €T /{{ (z,) be a refining direction. From Definition 13, the categorical and integer components are

fixed, such that a:fz; = ¢ and a:l(I,‘:) = " ensuring that the continuous feasible set 2, does not

change through the iterations. Definition 3 ensures the existence of bounds AE%“ > 0 such that the

continuous directions satisfy —Afgi‘t < vy, = diag (683“) deont < AE%“ for all ¥k € L. Theorem 1

ensures that limgey, ||A?g])“t|\ = 0, and therefore, limyer [|[vgyl| = 0. By Definition 15, the refining

direction v, € T/{{ (z,) is such that limgey, szﬁ = m Thus, it follows that zfg?t + vy € Ay for
all k € L sufficiently large, by the definitions of the hypertangent cone and the refining direction, and
knowing thats limyer ||vgy |l = 0. It follows that fg (25°"*;v,) > 0 can be developed exactly as in

Theorem 6.4 of [12], since azfg?t + v are unsuccessful iterations with dl(‘}vt) =0forall ke L. O

The next result provides a necessary optimality condition with generalized directional derivatives
at a refined point, provided that the function f, is locally Lipschitz continuous. The result depends
on whether the PB produces a feasible or infeasible refined point. If the refined point is feasible, then
the result involves the function f, and the hypertangent cone T/ﬁ (z,), as Theorem 2. Otherwise,
it involves the function h, (with the same expression of f, in Equation (12) but for the aggregation
function h) and the continuous set X°"* C A,: in this case, the optimization problem of interest is
mingex h(x).

Theorem 3 (Convergence of CatMADS). Let { ) }rex be a refining subsequence with corresponding
refined point x, produced by CatMADS with the PB. Suppose that the set of refining directions is dense
in the unit sphere {u € R"™™ : |lu| = 1}.

i) If ¢, € Q and f, is Lipschitz near 5°", then f2 (z<°™;v) > 0 for all v € TH (z,).
i) If &, € X\ Q and hy is Lipschitz near xS, then hS (x°™;v) > 0 for all v € szont (x4).

Proof. Since the refining subsequence {® 1) }re is such that z) = z{* and a:l(lllﬁt) =z forall k € K,

the proof is a direct consequence of Theorem 2, as well as Corollary 3.4, Theorem 3.5. and Corollary 3.6
from [7] (PB for the continuous case). O

Theorem 3 is a fundamental theoretical result of CatMADS and represents a necessary condition
to achieve a separated local minimum with n =1 and m = m, € N.
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3.4 Stronger local minima

Definition 13 implies that a refining subsequence {@ 1) }rex has an associated subsequence {y) }rex
called the neighbor subsequence, whose points have categorical components in the distance-induced
neighborhoods of {x () }rek, @-€., Yu) = (y?,?)t, a:?,?)t) eN (mﬁzg, m(k)) x X9t Since the refining sub-
sequence converges to a refined point x,, the neighbor subsequence converges to a point vy,, referred
to as a refined neighbor point. The next theorem, adapted from MV-MADS [1], ensures that a refined
point x, has an objective value that is lower or equal than a neighbor refined point y., under continuity
hypothesis.

Theorem 4. If the restriction of the objective function in X" is lower semi-continuous at a refined

point x, produced by CatMADS, and upper semi-continuous at the refined neighbor point y,, then
f() < f(y.).

Proof. Let {x(;)}rex be a refining subsequence converging to the refined point x, , and let {y ) brex
be a neighbor subsequence converging to the neighbor refined point y,. By definition of the refining
subsequence, it is ensured that f(z)) < f (y(k)) for all k € K since x () yields an unsuccessful
iteration and y) € P(C,f)t. By the semi-continuity hypothesis it follows that f(z.) < limpex f(Z@®)) <
limger f(Yr)) < f(Ys)- [

Next, when the extended poll is deployed, a neighbor subsequence {y)}rex has an associated
subsequence {z(;)}rek, called the endpoint subsequence, containing endpoints with z(y) € &) (y(k))
as in Definition 8. In Figure 5b, the different subsequences are illustrated on a similar example as the
RG one in Figure 2a, but with different level curves. The refining subsequence {z ) }rex converges
in the red plane; the neighbor and endpoints subsequences reside in the green plane consisting of a
piecewise linear function in two parts.

Finally, the convergence analysis concludes with a discussion on the stronger local minima obtained
by incorporating the extended poll. Assuming £ > 0, z, € Q and y, € Q N N (z4;my), the results
obtained for the component-wise mixed-variable local minimum can be strengthened by considering
interactions between categorical and continuous variables:

o if f(x,) < f(yx), then by the semi-continuity hypothesis of Theorem 4, there exists € > 0 such
that f (2.) < f (y) for any (5o, yoort) € N(@,m, ) x B(@soms ) with y = (yot, g, yeont) e
Q.

e otherwise, f (z+) = f (), and it follows that f (x.) = f (y.) = f (2.), since f(xx)) < f(z@) <
f(y@)for all k € K, by definition. Therefore, the extended poll must have been performed
around ¥y for infinitely many & € K sufficiently large [1], which guarantees the interaction
between the continuous and categorical variables as in the previous case.

This covers the [cat — cont, int] minimum in Definition 11. Proceeding further, suppose that £ = oo,
implying that the extended poll is always employed. In that case, the same conclusion is drawn for the
case f(x,) = f(y.) above, and the interaction between the categorical and integer variables is trivially
gained since quantitative polls are performed infinitely many times. This addresses the [cat — cont,
cat — int] minimum from Definition 12.

Note that, if the set of refining directions is dense in the unit sphere at z¢°"* then Theorem 3

can be adapted to the endpoint subsequence {z)}rex. This provides a necessary condition for the
continuous variables of z, with generalized directional derivatives.

4 Computational experiments

This section compares a simple instance of CatMADS on analytical problems with openly available
state-of-the-art solvers. Implementation details of the instance are provided in Section 4.1. The
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solvers used for benchmarking are discussed in Section 4.2. Finally, Section 4.3 details data profiles
that measure the relative performance of the solvers.

The problems created for benchmarking this work are summarized in Tables 1 and 2. These
problems are either modifications of existing ones from the literature, or adaptations of classic con-
tinuous optimization problems, such as the Rosenbrock and Rastrigin problems. Techniques em-
ployed to create mixed-variable problems include replacing continuous variables with functions de-
pending on both continuous and categorical variables, and transforming a function into another one
with cases, each assigned to a category. The implementation of CatMADS is publicly available at
https://github.com/bbopt/CatMADS_prototype. The complete presentation of the problems is con-
tained in Cat-Suite, a new collection of mixed-variable problems described in this technical report [25].

Table 1: Unconstrained test problems in Cat-Suite.

Name nct £ nint poont Smooth Ref. Original problem

Cat-1 2 9 2 4  No [28] Ackley

Cat-2 2 9 2 3 No  [28] Beale

Cat-3 2 4 2 2 Yes  [36] Augmented Branin
Cat-4 2 4 2 4  No [28] Bukin6

Cat5 1 6 1 3  Yes [32] EVD-52

Cat-6 2 9 0 2 Yes  [36] Goldstein
Cat-7 3 16 3 2 No  [28] Goldstein-Price
Cat-8 1 4 1 5 Yes  [32] HS78

Cat-9 2 9 2 8 No  [28] Rastrigin
Cat-10 2 6 2 4 No  [28] Rosenbrock
Cat-11 1 4 1 4 Yes  [32] Rosen-Suzuki
Cat-12 1 5 5 5 No  [28] Styblinski-Tang
Cat-13 1 10 0 4  Yes [35] Toy

Cat-14 1 10 O 8 No  [35] Toy

Cat-15 1 5 3 4 Yes  [32] Wong-1
Cat-16 2 9 2 4  No [28) Zakharov

Table 2: Constrained test problems in Cat-Suite.

Name nt ¢ nint pcont »n Smooth Ref. Original problem

Cat-17 2 9 2 3 3 No [28] Beale

Cat-18 2 4 2 2 1 Yes [36] Augmented Branin
Cat-19 2 9 2 4 2 No [28] Bukin6

Cat-20 1 4 4 4 3 Yes [32] Dembo-5

Cat-21 1 6 1 3 1 No [32] EVD-52

Cat22 2 9 2 3 4 Yes [20] G-09

Cat-23 2 9 0 2 1 Yes [36] Goldstein

Cat-24 2 25 2 2 2  Yes [28] Himmelblau
Cat-25 2 4 3 5 4 Yes [32] HS-114

Cat-26 1 3 2 4 6 Yes [32] Pentagon

Cat-27 1 8 2 2 3 Yes [20] Pressure-Vessel
Cat-28 2 25 1 2 2 Yes [20] Reinforced-Concrete-Beam
Cat-29 2 6 2 4 1 No [28] Rosenbrock
Cat-30 1 5 2 2 2 No [28] Styblinski-Tang
Cat-31 1 10 0 4 2 Yes [35 Toy

Cat-32 1 6 4 6 3 Yes [32] Wong-2
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4.1 Implementation details

The prototype instance of CatMADS is presented in Algorithm 2 and it is intentionally simple. The
implementation is built on top of the NOMAD software [11], a C++ implementation of the MADS
algorithm with many extensions such as G-MADS. The following steps are adapted from NOMAD: the
quantitative poll (G-MADS), the initial DoE with a Latin hypercube sampling, the PB, the update,
and the search steps.

Algorithm 2 starts by initializing the static and dynamic parameters. The dynamic parameters are
initially indexed by & = 0. The DoE must be performed during the initialization, since at least two
points are required to construct the categorical distance d®* : X3t x x<at — R, . This distance is a
weighted Euclidean distance comparing categorical components that are transformed into binary vec-
tors using one-hot encodings [42]. The weights reflect the importance of each binary variable assigned
to a specific category and allows to construct problem-specific categorical distances. These weights are
determined by minimizing the Root Mean Square Error (RMSE) of an inverse distance weighting inter-
polation. The RMSE is evaluated using 3-fold cross-validation on the DoE. Integer and continuous vari-
ables have no weights, since these variables are not considered for the categorical distance. In Section 2,
recall that a mismatching-based distance on the RBG example yields d®*(R, B) = 0 = d°®*(R, G).
Now, with the proposed distance, the distances would be d°®*(R,B) = g +60p and d°**(R, G) = Og+0g,
where the real parameters 0, O and 65 are tuned by regression. This distance distinguishes cate-
gories more finely than mismatches. In other words, the neighbors in distance-induced neighborhoods
are selected in a meaningful manner.

The initial DoE is allocated 20% of the total budget of evaluations. This percentage was determined
empirically through preliminary tests. It represents a considerable number of evaluations. However,
the categorical distance is constructed only once at the initialization, the DoE must be sufficiently large
to ensure that the categorical distance adequately models the mixed-variable objective function f.

The stopping criteria includes a budget limit on the number of evaluations and a convergence
criterion triggered when the mesh size parameters reach their lower bounds. The trigger parameter &
of the extended poll dictates which type of local minimum is associated to the convergence condition: if
£ < 0, then the convergence condition represents a necessary condition for a [cat, cont, int} minimum;
else if £ € Ry, then it represents a [cat — cont, int] minimum, and otherwise £ = oo represents a
[cat — cont, cat — int| minimum.

The search is performed opportunistically. If the previous iteration had a successful quantitative
poll (feasible or infeasible), then the speculative search of NOMAD is executed on the quantitative space.
The speculative (or dynamic) search generates candidate points along the last successful direction of
G-MADS [6, 30]. To capitalize on promising directions, the speculative search is repeated as long as it
remains successful.

The default quadratic search of NOMAD [19] is also used on the quantitative variables. At each
iteration, quadratic models for the objective and constraint functions are constructed around incum-
bent solutions, with categorical variables fixed. For a given incumbent solution, the proposed point
minimizes its corresponding model of f, while either satisfying or respecting the barrier of its model
constraints, for feasible and infeasible incumbents, respectively. For more details on the speculative
and quadratic searches, see [11].

The number of points m in the categorical polls is constant and common for the feasible and
infeasible categorical polls. For a given problem, m is set by the formula m = max ( Var4 Cat|) which
scales with the total number of categories |X**| =[]"_, ¢;. The square root balances the scaling
of the product. The formula ensures m > 2, to avoid cycling between two categorical components.
Alternatives formulas were tested, notably linear ones, e.g., m = 0.5 |X®*|, but none performed better
than the square-root formula in preliminary tests.
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Algorithm 2 A simple instance of CatMADS based on cross-validation.

Given f: X — R, a domain X and constraint functions g X — R with j € J.
0. Initialization

k<0 iteration counter

hl(g‘)”‘ =00 initial barrier parameter

meN number of points in categorical polls

A € R’_f_qnt initial frame size parameters (G-MADS)

d) € R’}rqm with 6?0(3m < A?g)m initial delta size parameters (G-MADS)

XAz, ®o),--xp} initial DoE of p > 2 points

Set @ppa and @y with (7) initial solutions (only one might exist)

£ecR parameter controlling &-extended poll triggers in (8) and (9)
Construct d° problem-specific categorical distance

While no stopping criteria is met do

1. Opportunistic search S() = S(Slf)c U S%JAD
SPC

If quantitative poll P((}Cn_tl) or speculative search S5, is successful
1.1. Speculative search S(SXSC on xdnt

1.2. Quadratic search SQUAD () yant

(k)
2. Opportunistic poll Py = P& U P&y peat |y pint

FEA INF INF

3. Opportunistic extended poll P(k)

4. Update

4.1. Update incumbent solutions g, and @y with (7)

4.2. G-MADS and barrier update:

If y <f @ppa Or Yy <p Tivp for some y € Sy U Py, (dominating iteration)
Increase A(g41) and &(x41), and set h?,ﬁ‘l) = h(xr)

Else if 0 < h(y) < h(xxr) for some y € Sy U Py, (improving)
Set h{32) = max{h(v) : h(v) < h(@wr), v € XU Sy U Py}

Otherwise (unsuccessful)

Decrease A1) and (1), and set h?]ffl) = h(xr)

5. Termination
If stopping criteria is met then stop
EISGX%XUS(;Q)UP(]C) and k<« k+1

end

For the poll, the evaluation order prioritizes points generated from quantitative polls over those
from categorical polls. Moreover, points from quantitative polls are ranked using quadratic models as
in [11], while points from categorical polls follow their generation order.

4.2 Comparison solvers

For benchmarking, each optimization problem is attributed a budget of evaluation of 250n, where
n = nct 4 pitt 4 peont g the total number of variables.

CatMADS is benchmarked with the following state-of-the-art solvers, used in various fields involving
blackboxes with categorical variables [29, 37, 43]:

Pymoo, a Python-based suite of optimization solvers. The solver used for benchmarking is the mixed-
variable and single objective implementation of a genetic algorithm [15];

Optuna, a covariance matrix adaptation evolution strategy (CMA-ES) for categorical variables [2];
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Botorch, a BO solver, that uses a Gower-based distance kernel for categorical variables and Gaussian
kernel for quantitative variables [14].

Pymoo and Optuna are used off the-shelf, with only evaluation budget specified and launched using
the same DoE as CatMADS.

Botorch requires several user-defined choices. The hyperparameters of the GPs are adjusted via a
maximum likelihood procedure. The acquisition function is the Log Constrained Expected Improve-
ment from [3], optimized using Botorch’s built-in solver acqf mixed with a multi-start of size 3n.
Botorch does not explicitly distinguish categorical and integer variables. The integer variables are
continuously relaxed, and rounded to their nearest integer: this is a user choice made for simplicity.
The initial DoE also comes from NOMAD.

Running Mixed Rastrigin (unconstrained) with 1,000 evaluations takes more than 24 hours with a
11th generation Intel i7-11800H (2.30 GHz) CPU and a NVIDIA GeForce RTX 3060 GPU. For Botorch,
fully evaluating the budget of 250n evaluations is not suitable for benchmarking across several instances
of the problems. To reduce computational time, Botorch’s stopping criterion, based on the relative
decrease of the acquisition function, is employed with default parameters.

4.3 Data profiles

All solvers are subject to some randomness. Hence, each problem is run with five random seeds to
ensure fairness. An instance p € P refers to a problem with a specific seed, where P is the set of
instances. There is a total of 160 instances, half constrained and half unconstrained.

For a given instance, let f, be the smallest feasible objective function value and fy be an initial
feasible function value. Let S be a set of solvers considered for benchmarking. A solver s € S is said
to have 7-solved an instance p € P when it has produced a feasible incumbent solution xpg, € €2 with
a reduction fy — f(xees) that is sufficient relatively to the smallest reduction fy — fx obtained by any
solver on this instance [34]. The convergence test can be expressed as

fo— f(@ea) > (1= 7)(fo = fx) (14)
where 7 € [0,1] is a given tolerance and fy is either

e the smallest function value in the common DoE for unconstrained problems [10],

e or the largest function value among the first feasible solution find the solvers otherwise [10].
For the unconstrained problems, this approach allows to compare solvers on problems without
feasible solutions in the DoE.

A data profile [34] represents the portion of T-solved instances by a solver s € S, such that

1 k
data, m::—{epzﬁ<n}€0,1 15
(0= | e P e < e (15)
where k, s > 0 is the number of evaluations required for the solver s € S to 7-solve an instance p € P
and n,, is the number of variables in the instance p € P. In the following plots, the horizontal axis x
represents groups of (n, 4+ 1) evaluations.

4.3.1 Results for the extended poll

Before comparing CatMADS with the other solvers, £ is chosen with data profiles showcasing the
relative performance of CatMADS with different values of £&. These data profiles are done respectively
on unconstrained and constrained instances in Figures 6a and 6b.

The value 0.05, associated to a [cat — cont, int] local minimum, yielded the best performance on
the two smallest tolerances 1073 and 10~° for both unconstrained and constrained instances. The
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Figure 6: Data profiles for different values of &.

value & = oo under-performs for the smallest tolerance 1072, Although ¢ = oo is associated to the
stronger [cat — cont, cat — int] local minimum its costs degrades performance. Based on these data
profiles, the parameter & is set to 0.05.

4.3.2 Results with existing solvers

For the next data profiles, the solvers and CatMADS are contained in the set of solvers
S = {CatMADS, Pymoo, Optuna, BoTorch}. The data profiles comparing CatMADS with state-of-the-
art solvers on the unconstrained and constrained instances are presented in Figures 7a and 7b. The
data profiles showcase that CatMADS strongly dominates the other solvers. For instance, the data
profiles in Figure 7a with 7 = 10~® shows that CatMADS 7-solves approximately 70% of the problems
against 30% for Pymoo. CatMADS performs particularly well on the smallest tolerance 7 = 10~° and
the constrained problems.

5 Discussion

The present work introduces CatMADS, a generalization of MADS for mixed-variable constrained black-
box optimization. CatMADS improves the previous work MV-MADS, in which discrete variables are
treated with user-defined neighborhoods and constraints with the extreme barrier. CatMADS treats ef-
ficiently integer variables with the granular mesh and categorical variables with defined distance-based
neighborhoods. The constraints are handled with the progressive barrier [7], a much more efficient
strategy than the extreme barrier [6]. The convergence analysis shows that CatMADS has convergence
guarantees under reasonable assumptions.
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Figure 7: Comparison results on the test problems.

A prototype implementation of CatMADS is compared to state-of-the-art solvers on 32 original
mixed-variable problems. Even if basic, the implementation is competitive and outperforms Pymoo,
Optuna and BoTorch. As such, CatMADS addresses the research gap of an efficient mixed-variable
constrained blackbox method with convergence guarantees.

The implementation in this work is intentionally simple. In future work, CatMADS will be hy-
bridized with Bayesian optimization to produce an even more efficient solver. Search steps focused on
exploration will also be developed to balance the local nature of CatMADS. Moreover, CatMADS will be
applied on practical applications such as hyperparameter optimization of deep models or metaheuristic
methods.
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