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nécessaire et un lien vers l’article publié est ajouté.
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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2025
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Abstract : The growing reliance on power electronics introduces new challenges requiring detailed
time-domain analyses with fast and accurate circuit simulation tools. Currently, commercial time-
domain simulation software are mainly relying on physics-based methods to simulate power electronics.
Recent work showed that data-driven and physics-informed learning methods can increase simulation
speed with limited compromise on accuracy, but many challenges remain before deployment in commer-
cial tools can be possible. In this paper, we propose a physics-informed bidirectional long-short term
memory neural network (BiLSTM-PINN) model to simulate the time-domain response of a closed-loop
dc-dc boost converter for various operating points, parameters, and perturbations. A physics-informed
fully-connected neural network (FCNN) and a BiLSTM are also trained to establish a comparison. The
three methods are then compared using step-response tests to assess their performance and limitations
in terms of accuracy. The results show that the BiLSTM-PINN and BiLSTM models outperform the
FCNN model by more than 9 and 4.5 times, respectively, in terms of median RMSE. Their standard
deviation values are more than 2.6 and 1.7 smaller than the FCNN’s, making them also more con-
sistent. Those results illustrate that the proposed BiLSTM-PINN is a potential alternative to other
physics-based or data-driven methods for power electronics simulations.

Keywords : Boost converter, machine learning, modelling, neural network, power converters, time-
domain simulation
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1 Introduction

The shift toward renewable sources of energy has accelerated, bringing a growing reliance on power

electronics converters in power systems [17]. Their presence increases power system complexity and

introduces new challenges related to stability, reliability, and safety. This requires the use of de-

tailed time-domain analyses utilizing offline and real-time simulation tools to predict their impacts on

power systems [18]. Fast and accurate simulation of power electronics remains challenging due to their

time-varying structure, nonlinear response, and switching dynamics [12]. Moreover, recent applica-

tions require the use of real-time models and simulations, such as model predictive control and digital

twins, further increasing the demand for faster circuit simulation [25, 28, 29]. Commercially available

electromagnetic transient (EMT) simulation software predominantly relies on physics-based methods

to translate power electronics converters into equations that can be solved with classical numerical

techniques [1]. Computation time reduction is generally done by substituting a time-varying with

an equivalent fixed topology using switching functions [23] or by using averaging techniques [13, 24].

Recent works have shown that data-driven methods, physics-informed learning-based methods, and

optimization techniques, can significantly increase the simulation speed while providing high-accuracy

predictions, thus complementing traditional computational techniques [6, 20]. Data-driven and physics-

informed learning-based methods are also valued for their ability to model commercial power electron-

ics converters in a blackbox manner, removing the need for prior knowledge of the system [19, 21].

These emerging approaches are still in their early stage, such that their performance requires deeper

evaluation to make them suitable for reliable integration into commercial simulation tools.

Among the different machine learning-based modelling approaches used to model power electronics

converters, neural network dominates, with primarily two architectures: feedforward neural networks

(FNNs) [8, 9, 30] and recurrent neural networks (RNNs) [6, 19, 29]. In [9], a model with multiple

fully-connected neural networks (FCNNs) is developed to model an IGBT’s switching transients on

a field-programmable gate array (FPGA) for real-time simulation. The authors achieved real-time

simulation with a timestep of 5 ns. However, the proposed model requires 150 and 500 neural networks

for simulating the turn-on and turn-off transient waveforms, respectively. In [8], the authors combine

an FCNN with Bayesian regularization backpropagation to model the transient response and random

forests for the steady-state response. Using random forests alongside neural networks increases the

model stability and reduces its variance, as the results obtained by decision trees are easier to interpret.

An FCNN is used in [30] to predict intermediate latent states between two observable states. Then,

a physical model is used to predict the observable states using predictions from the intermediate

latent states enabling them to integrate physics into their model. This approach requires solving
multiple equations for each prediction using an implicit Runge-Kutta method, which can increase the

computation time for complex models. In [19], a long-short term memory (LSTM) neural network is

used to model a dc-dc buck converter. Although the LSTM appears to perform better than other FNN-

based architectures for modelling the converter response, limited quantitative assements are provided to

compare performance. Which is required for reliable deployment in simulation tools. In [6], the output

signal is decomposed into a transient and a periodic component modelled, respectively, by an FNN and

an LSTM combined with a convolutional neural network. This approach reduces the complexity of

the problem into two sub-problems. Reference [29] uses a nonlinear autoregressive exogenous network,

which yields good prediction accuracy. However, this type of architecture is limited in its ability to

capture long-term dependencies without using internal memories like LSTMs. To consider a longer

sequence of values, a large input size is required, which reduces computational efficiency.

While not directly applied to model power electronics converters, other data-driven approaches

are also considered in the power systems literature, e.g., physics-informed neural ordinary differential

equations for modelling power transformer’s dynamic thermal behaviour [3] or for predicting the non-

linear transient dynamics of a inverter under fault [15] and graph-based learning for high-frequency

filter design or microgrids voltage prediction [10]. These approaches are promising alternatives for

future studies on power electronics modelling.
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Among the aforementioned articles on power electronics simulations, the following limitations have

been observed:

• Some proposed solutions are difficult to generalize to multiple types of converters and different

topologies;

• The assessment of data-driven models is limited, i.e., with little to no quantitative metrics, thus,

preventing their reliable deployment in simulation tools for power system analysis;

• Some proposed solutions require significant computational time, making them difficult to apply

in real-time simulations or without specialized hardware.

The main contributions of this paper are (i) designing a physics-informed bidirectional LSTM

(BiLSTM-PINN) network architecture and to model the time-domain response of a closed-loop dc-dc

boost converter and (ii) thoroughly benchmarking our model using step-response tests. The BiLSTM

architecture stands out as one well studied and documented, and easy to implement. It can also

run on graphics processing units (GPUs) or FPGAs for computation acceleration [4, 14], making it

readily accessible and practical for deployment in simulation software [16, 22]. This architecture also

takes into account both past and future values to make predictions, in contrast to RNNs or standard

LSTMs, which only consider past values or FCNNs that are limited to present values. This property

improves performance by utilizing the initial and final operating point values derived from the dc

steady-state model to better reproduce the converter response. The inclusion of a physics-informed

loss also helps mitigate prediction errors by penalizing results that do not adhere to physical principles

during training. Computational time evaluation is left for future work as many sources of interference

such as the programming language (compiled MATLAB® vs. interpreted Python), the solver(s) used

for the physical model or the hardware used, can make the results unreliable. This further underscores

the importance of first defining the model architecture and assessing the model’s accuracy, as it is done

in this work. However, we consider that function evaluation with neural networks should be faster

than solving a complex system of time-varying equations as hinted in [6].

In this paper, we train an FCNN, a BiLSTM, and a BiLSTM-PINN to model the input and output

currents of a closed-loop dc-dc boost converter’s large-signal averaged model. The validation of the

FCNN and BiLSTM models with a detailed switching model is beyond the scope of this paper. By

using an averaged model, we aim to reduce the complexity of the neural network, enabling a more

generalizable methodology and reduced computation time. Additionally, this model helps us quantify

the transient waveforms using common performance metrics. This model is utilized to generate a

dataset using MATLAB® Simulink for various operating points, parameters, and perturbations. The

dataset is then used to train an FCNN, a BiLSTM and, a BiLSTM-PINN, with hyperparameter tuning

performed via HyperOpt [2]. Finally, the two architectures are compared using step-response tests to

assess model performance.

The paper is organized as follows. Section II presents the dc-dc boost converter topology and the

large-signal averaged model used to generate the training and testing datasets. Section 3 presents

the physics-informed learning-based boost converter models. Section 4 discusses dataset generation

and hyperparameter tuning, and validates the accuracy of our method via time-domain simulations in

MATLAB® Simulink.

2 Boost converter model

The closed-loop boost converter topology used in this paper is shown in Figure 1. The switch S is

controlled by a pulse-width modulation (PWM) signal, introducing two distinct circuit states: switch S

open and closed. The duty cycle d(t) represents the proportion of time with the switch S closed during

a complete period Ts, while the complementary duty cycle is given by d′(t) = 1 − d(t). The input

current i is the regulated variable. The transfer function Gf models the presence of a filter on the

current measurement.
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A

+
-

Modulator

Switching stage

Figure 1: Circuit topology of the current regulated boost converter.

The circuit in Figure 1 regulates the input current i to match the reference iref by calculating the

error signal ϵ = iref − i∗, where i∗ is the filtered input current. The error signal is then fed into a PI

controller, with a transfer function defined as:

Gc(s) =
sKp +Ki

s
,

where Kp ∈ R and Ki ∈ R are determined using the algebra on the graph technique [11] and further

tuned to achieve the desired dynamic performance, with specified cross-over frequency ωϕm
= 2πfϕm

and phase-margin ϕm as explicited in Appendix. The filter and controller parameters for the converter

model under validation are specified in Section 4.

In dc steady-state, the dc conversion ratio M(D), the inductor’s dc current IL, the inductor’s

current ripple ∆iL and the capacitance’s voltage ripple ∆vC are derived as

M(D) =
V

Vg
=

1

1−D
(1)

IL =
V

(1−D)R
(2)

∆iL =
DVg

2fsL
(3)

∆vC =
DV

2fsRC
, (4)

where Vg and V are the dc input and output voltages, D is the duty cycle, and fs is the switching

frequency. We use (1)−(4) to describe the boost converter in initial and final steady-states which are

used to initialize the BiLSTM models and the simulation parameters for the generation of the dataset

in Section 3 and Section 4, respectively.

We then use the classical dc-averaging technique for dc-dc converter [5] to simplify the switching

stage (in blue colour in Figure 1) leading to the following differential equations:

L
d⟨i⟩Ts

dt
= ⟨vg⟩Ts − d′⟨v⟩Ts (5)

C
d⟨v⟩Ts

dt
= d′⟨i⟩Ts −

⟨v⟩Ts

R
, (6)
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where denotes ⟨⟩Ts
the average value of a variable over Ts. The equivalent circuit derived from (5)

and (6) is illustrated in Figure 2. Our objective is to model the currents ⟨i⟩Ts and ⟨iout⟩Ts in Figure 2

with learning-based methods. The generation of the dataset to train learning-based models using this

circuit is presented in Section 4.

A

-

+
-

1

V

+

Figure 2: Closed-loop large-signal averaged model for the boost converter.

3 Physics-informed learning-based boost converter models

We now develop our learning-based model of the boost converter. Let x ∈ R18 and y ∈ R2 be,

respectively, the input (feature) and output (target) vector. We use the subscript t ∈ N to denote the

time instance inputs/outputs are registered. We define the feature vector xt as

xt = vec


t L C
R Rs Vg

V (t = 0) ∆v(t = 0) IL(t = 0)
∆iL(t = 0) Istep tstep

Kp Ki fs
fc iref,t dt

 , (7)

where vec is the vectorization operator. Various constants that characterize the converter are collected

in (7), such as the inductance L, capacitance C, load resistance R, inductance resistance Rs, input

voltage Vg, switching frequency fs, and controller parameters Ki and Kp, as derived in Section 2.

Next, additional features are used to define the initial state of the system, namely, the output voltage
V (t = 0), the capacitance’s voltage ripple ∆v(t = 0), the inductor’s current IL(t = 0), and the

inductor’s current ripple ∆iL(t = 0). Then, time-varying features, viz., the desired current iref,t and

the control signal dt are included. Finally, Istep and tstep specify the amplitude and timing of the

square disturbance on iref,t.

In our setting, the entire system is assumed to be known, enabling the learning-based models

to leverage comprehensive information about the circuit, its initial state, and its state at time t

for accurate predictions. This assumption is compatible with settings encountered in power system

simulation tools. Further explorations could be done to reduce the dimension of the feature vector xt

while minimizing the impact on accuracy. This is a topic for future work.

Next, we define the target vector at time t as

yt =
[
⟨i⟩Ts,t ⟨iout⟩Ts,t

]
.

The goal of the learning-based approach is to predict the input current ⟨i⟩ and the output current

⟨iout⟩, derived using the previously defined large-signal averaged model. The decision to focus on

current predictions is primarily to ensure signals operate on comparable time scales, hence simplifying

the result analysis.
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Let FCNN : R18 → R2 and BiLSTM : R18 → R2 be, respectively, the trained FCNN and BiLSTM

with their corresponding collections of weights denoted by WFCNN and WBiLSTM. We first model

the converter with an FCNN, a common architecture in the machine learning literature. The input

vector xt is processed through the network, where a sequence of activation function and linear com-

bination based weights W ∈ WFCNN compositions produces the prediction ŷFCNN,t at the output

layer. The FCNN is later used for benchmarking. We then utilize a BiLSTM to model the converter

dynamics. To generate a prediction ŷBiLSTM,t, the BiLSTM network processes features from xt−k to

xt and xt+k to xt through LSTM cells, as illustrated in Figure 3. Here, k ∈ N denotes the sequence

length, a hyperparameter that will be discussed in Section 4. The weights W ∈ WBiLSTM are the

trainable parameters within each LSTM cell fully-connected layers. Because the LSTM cell follows a

well-documented topology, we refer interested readers to, e.g., [19, 27], for additional details. Finally,

given observation xt, the resulting predictions ŷt are:

ŷFCNN,t = FCNN(xt;WFCNN) (8)

ŷBiLSTM,t = BiLSTM(xt;WBiLSTM). (9)

Figure 3: Schematic of a bidirectional LSTM neural network.

To achieve accurate predictions, the collections of weights WFCNN and WBiLSTM in (8) and (9) are

computed to minimize the discrepancy between the predictions ŷ and the targets y through a loss

function. Let the loss function be defined as

L = LRMSE + λLPBE, (10)

where L combines the root-mean-squared error LRMSE with the circuit power balance error LPBE

weighted by a constant λ > 0 which is to be tuned. The loss function is used to compute the gradient,

which drives the backpropagation algorithm that trains both networks. By iteratively adjusting the

collections of weightsWFCNN andWBiLSTM using (10), the models progressively improve their accuracy.

Specifically, the loss function LRMSE for a single curve is

LRMSE =

√√√√ 1

n

n∑
t=1

(ŷt − yt)
2 , (11)

where n ∈ N is the number of points on a curve related to the simulation duration and the step size.

The power balance loss function LPBE is then given by:

LPBE =
1

n

n∑
t=1

|⟨Pin⟩Ts,t − ⟨Pout⟩Ts,t|, (12)
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where the predicted currents ŷt are used to calculate, respectively, the predicted power entering and

exiting the converter, defined as:

⟨Pin⟩Ts,t = d′t⟨v⟩Ts,t⟨i⟩Ts,t (13)

⟨Pout⟩Ts,t = ⟨v⟩Ts,t⟨iout⟩Ts,t . (14)

In other words, we consider that the conservation of power applies while neglecting the converter inner

losses. This assumption allows us to integrate physics into the BiLSTM loss function by penalizing

predictions yielding a high-power imbalance between the converter’s input and output, then leading

to the BiLSTM-PINN (and FCNN) model.

4 Numerical results

We now present our numerical setting and then evaluate the performance of our learning-based models.

4.1 Numerical setting and training

To conduct the experiment, we first generate our dataset. This dataset is created by reproducing

the lossless switching circuit in Figure 1 and the large-signal averaged model shown in Figure 2 in

MATLAB® Simulink. The simulation parameters to create the dataset are provided in Table 1.

Table 1: Simulations Paramaters for the Dataset Generation.

Parameter Interval Step size

C (µF) [1000, 7000] 1000
d(t) ±0.9 –
fc (kHz) 5 –
fs (kHz) 70 –
fϕm (Hz) 255 –
Istep (A) ±IL(t = 0) –
L (mH) [1, 7] 1
R (Ω) [1, 500] 10
Rs (Ω) 30×10−3 –
V (V) [200, 400] 10
Vg (V) [100, 200] 10
t (s) [0, 0.03] 250×10−7

tstep (s) [0.011, 0.021] –
ϕm (°) 50 –

Key parameters of Figure 2’s circuit are defined, with their study range specified in a [lower bound,

upper bound] format along with the step size for varying parameters such as C, L, R, V , and Vg.

Other parameters, like fs and Rs, remain constant for all simulations. During a simulation, a current

step of amplitude Istep is applied to iref at time tstep based on a uniform distribution. The simulation

itself is carried out from t = 0 to t = 0.03 with a fixed time step of 250× 10−7s.

In total, 565,950 operating points are simulated. Among these, cases that do not exhibit continuous

conduction mode are excluded because they display response not accounted for by the large-signal

averaged model. We also removed cases with an unfeasible PI controller (see Appendix). In addition,

any cases where |d| = 0.9 are also rejected because the controller is programmed to saturate at this

value, and saturation introduces non-linearities outside of the scope of this study. Approximately 10%

of the dataset is removed for these reasons. Additionally, the points corresponding to the first 0.01

second of each simulation are discarded to ensure the model reaches steady-state before introducing

a perturbation. Finally, the dataset is split randomly using the holdout method with an 80%−20%

ratio.

We identify suitable hyperparameters for our learning-based models using HyperOpt [2]. The re-

sulting hyperparameters are presented in Table 2 together with the interval considered by HyperOpt.
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To define the intervals, preliminary trials were conducted to establish practical ranges, avoiding under-

fitting or overfitting. These issues were identified through an observable increase in the loss function

L. Subsequently, 30 optimization trials were performed using the tree-structured Parzen estimator

(TPE) algorithm, with the objective of minimizing L. The resulting values were rounded for sim-

plicity. We chose the ADAM optimizer for all trials as it consistently provided better results compared

to the alternatives [7]. From the hyperparameters described in Table 2, the FCNN, BiLSTM, and

BiLSTM-PINN models are trained on 80% of the dataset. Because our model is trained offline, we

train multiple models simultaneously and select the one that delivers the best testing RMSE. Although

this approach does not fully address sensitivity issues, it helps mitigate their impact by choosing the

best-performing empirical model for deployment. Robustness of the model, the stability of outputs

across different inputs, still remains to be established similarly to many of the neural network models.

This is a topic for future work.

Table 2: Hyperparameters interval and tuned values

Hyperparameter Interval FCNN BiLSTM(-PINN)

Batch size [128, 300] 294 207
Epochs – 35 35
Learning rate [1e−4, 1e−2] 6e−4 1e−3

Optimizer – ADAM ADAM

Neurons/Cells
(per hidden layer)

[100, 500] 304 165

Sequence length k [10, 25] – 25
Weights decay [1e−5, 1e−2] 9e−3 7e−4

λ [0, 1] 0.2 0 (0.2)

4.2 Test

We then use the remaining 20% of the dataset for out-of-sample testing purposes. For each predicted

response curves, we calculate the RMSE using (11). The resulting box plot is illustrated at Figure 4.

Figure 4 presents the RMSE for the FCNN, BiLSTM, and BiLSTM-PINN models. From Figure 4a,

we can observe that some operating point’s RMSE greatly diverges from the median value. This is

especially the case for the FCNN. Figure 4b further zooms on the box plot distribution. We remark

that the BiLSTM-PINN outperforms the FCNN and the BiLSTM by achieving a lower median LRMSE

and distribution dispersion.

Next, we quantified the model prediction performance using the stepinfo function from MAT-

LAB®. We refer readers to their documentation for more details on the function and the evaluated

metrics [26]. Table 3 compares all performance metrics for the FCNN and BiLSTM models.

Recall that yt (ŷt) consists of the input (predicted) current ⟨i⟩Ts,t (⟨̂i⟩Ts,t) and the (predicted)

output ⟨iout⟩Ts,t (⟨̂iout⟩Ts,t). Let the total absolute prediction error be

e = einput + eoutput,

where einput and eoutput are defined as the absolute input and output error, respectively, given by

einput =
∣∣∣⟨̂i⟩Ts,t − ⟨i⟩Ts,t

∣∣∣
eoutput =

∣∣∣⟨̂iout⟩Ts,t − ⟨iout⟩Ts,t

∣∣∣ .
For each stepinfo characteristics, we report the mean, the standard deviation σstd, and the median.

Table 3 compares all performance metrics for the FCNN, BiLSTM, and BiLSTM-PINN models. Table 3

illustrates the superiority of BiLSTM-PINN over FCNN and BiLSTM on most metrics in terms of

mean(e) and median(e). We remark that σstd(e) is often bigger than mean(e), demonstrating that
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(a) RMSE distribution at the FCNN scale. Circles represent the outliers of each model on the test dataset.
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(b) Quartiles comparison for both learning-based models representing quartiles and median values. The lowest

and highest delimitations of the box are the 25th and 75th percentile, respectively. The vertical line inside the
box represents the median and circles (appearing as a bold line) are the RMSE distribution outliers.

Figure 4: RMSE box plot for the FCNN, BiLSTM, and BiLSTM-PINN models.

outliers are, skewing the mean, similarly to the RMSE analysis in Figure 4. In this case, the median

might be more informative as an overall evaluation of the performance. Looking at the RMSE medians,

we observe that the BiLSTM-PINN has a median error of 0.0256 A (≈ 9 times lower than the FCNN)

in comparison to 0.0509 A (≈ 4.5 times lower than the FCNN), and 0.2311 A for the BiLSTM and the

FCNN, respectively. We similarly notice that standard deviation values are 0.2782 A, 0.4236 A, and

0.7367 A for the BiLSTM-PINN, BiLSTM, and FCNN. The BiLSTM-PINN and BiLSTM standard

deviation are approximately 2.6 and 1.7 times smaller than the FCNN, making the predictions not

only generally more accurate, but also more consistent. Those results are consistent with [19], which

showed that recurrent architecture tends to outperform non-recurrent ones. However, unlike [6], our

physics-informed FCNN cannot reproduce as accurately the waveform when using LPBE to integrate

physics to the loss. Over all metrics, the BiLSTM-PINN main limitations are the overshoot and the

undershoot. To better understand the problem, we extract four distinct cases from the test dataset,

two with average performance and two with a high overshooting or undershooting error and plot

their responses. Figures 5 and 6, respectively, represent the two cases with average performance

and with a high overshooting or undershooting error. The BiLSTM-PINN tends to follow accurately

the averaged model in both cases while the FCNN exhibits some inaccuracies, e.g., Figure 6. We

notice that overshooting or undershooting error occurs when there is a small perturbations on iref
and the final value is close to zero as observed in Figure 6. These cases tend to produce outliers in

terms of overshooting and undershooting errors given the division to a value close to zero, skewing

the distribution and making the mean and standard deviation less representative. We omitted these
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Table 3: Learning-based model performance metric comparison

Metric FCNN BiLSTM BiLSTM-PINN

mean(e)± σstd(e) mean(e)± σstd(e) mean(e)± σstd(e)
median(e) median(e) median(e)

LRMSE (A)
0.3793 ± 0.7367

0.2311
0.1161 ± 0.4236

0.0509
0.0593 ± 0.2782

0.0256

Rise time (s)
0.0004 ± 0.0009

0.0000e-5
7.7094e-5 ± 0.0004

0.0000e-5
3.5621e-5 ± 0.0003

0.0000e-5

Transient time (s)
0.0036 ± 0.0037

0.0022
0.0034 ± 0.0032

0.0024
0.0022 ± 0.0021

0.0015

Settling time (s)
0.0020 ± 0.0026

0.0010
0.0016 ± 0.0023

0.0007
0.0019 ± 0.0031

0.0003

Settling minimum (A)
0.3131 ± 0.9630

0.1892
0.1205 ± 1.5329

0.0438
0.0685 ± 0.9676

0.0281

Settling maximum (A)
0.5400 ± 1.6805

0.2034
0.0747 ± 0.3949

0.0277
0.1131 ± 0.8193

0.0299

Overshoot (%)
–

7.4707
–

1.8219
–

1.7154

Undershoot (%)
–

0.0000e-5
–

0.0000e-5
–

0.0000e-5

Peak (A)
0.5373 ± 1.6714

0.2034
0.0741 ± 0.3933

0.0277
0.1100 ± 0.7640

0.0299

Peak time (s)
0.0027 ± 0.0031

0.0008
0.0017 ± 0.0029

0.0002
0.0029 ± 0.0037

0.0005

values from Table 3 for this reason, keeping only the median values as more insightful in this case.

This phenomenon is also amplified by the minimum and maximum values on IL(t = 0) in our dataset.

For perturbations on iref close to |IL(t = 0)|, a reduced number of operating points exist for training

in our dataset due to the use of a uniform distribution, thus increasing the error of our model in

these cases. In sum, the results illustrate that our models may achieve good performance inside the

parameter intervals defined in Table 2, but lose accuracy when operating closer to their minimum and

maximum values due to having fewer available operating training points.

5 Conclusions

This work proposes a new physics-informed BiLSTM method to model power electronics converters.

We evaluate the proposed BiLSTM-PINN by generating a dataset using the steady-state equations

of a dc-dc boost converter along with a dc-averaged closed-loop model of the converter in MAT-

LAB® Simulink. We also train a physics-informed FCNN and a data-driven BiLSTM to establish

a performance comparison with a conventional non-recurrent neural network architecture. For both

architectures, we tune the hyperparameters using HyperOpt. We then compare both methods by visu-

alizing the RMSE distribution and quantifying their accuracy for various metrics using the stepinfo

function from MATLAB®.

Our numerical study illustrates the ability of learning-based models to predict the response of power

electronics converters. The BiLSTM-PINN model offers improved performance over the FCNN’s and

the data-driven BiLSTM and may be a good alternative to classical methods in some applications as

a means of simplifying and accelerating real-time simulations. These results can improve the capabil-

ities of commercial EMT simulation software by allowing the simulation of large-scale power systems

through simplification of certain complex components, and for blackbox modelling of off-the-shelf

converters.
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(a) Input and output current signals for ≈ 83% increase in iref.

 
(b) Input and output current signals for ≈ 36% decrease in iref.

Figure 5: Predictions for two operating points achieving close to or lower median performance in all metrics evaluated in
Table 3.

 

 
(a) Input and output currents signals for ≈ 99% decrease on iref.

 
(b) Input and output currents signals for ≈ 98% decrease on iref.

Figure 6: Predictions for two operating points resulting in some of the highest overshooting error (a) or undershooting
error (b) among all operating points tested in Table 3 (outliers).

Several limitations must be addressed before deployment in practical settings. Notably, the pro-

posed model is based on an averaged large-signal representation, which overlooks high-frequency

behaviour in predicted signals and neglects non-idealities from diode D1 and switch S. Moreover,

the dataset relies on an unsaturated controller, limiting the validity of the model by excluding non-

linearities in the control. However, our observations indicate that omitting Kp and Ki from the feature

vector xt did not significantly impact the performance metrics. This suggests that other controllers

could be included into the dataset, as only the control signal remains. While we are confident that

this methodology can be applied to other simple dc-dc topologies, such as the buck converter [6, 19],

extending it to more complex topologies is a topic of future work.
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Future directions will focus on benchmarking the proposed method against physics-based ap-

proaches in terms of computational efficiency to quantify the potential gain in simulation speed.

Expanding the framework to include other converter operating modes, such as protective states and

fault-tolerant operation, is also a key direction to improve model generalization and extend its appli-

cations.

A Appendix A

We determine Kp and Ki using the algebra on the graph technique from [11]. To do so, we first set

the cross-over frequency ωϕm
= 2πfϕm

where fϕm
= 255 Hz (more than 200 times smaller than the

switching frequency fs) and the phase-margin ϕm = 50◦ as a arbitrary compromise between stability

margin, overshoot, and settling time. From those desired values, we first calculate the phase and

magnitude of Gc(s) given by ∠Gc(ωϕm
) = −(∠G(ωϕm

)+(180◦−ϕm)) and |Gc(ωϕm
)|dB = −|G(ωϕm

)|dB.
We then find the ratio α and compute K ′

p of an intermediate controller with K ′
i = 1 as

α =
Ki

Kp
=

ωϕm

tan(∠Gc(ωϕm
) + 90◦)

K ′
p =

1

α
.

We finally calculate the magnitude of G′
c(s) to find Kp and Ki, and verify if a PI-controller with those

parameters is feasible:

|G′
c(ωϕm

)|dB =20 log


√
(ωϕm

K ′
p)

2 + (K ′
i )

2

ωϕm


Ki =10−|G(ωϕm )|dB−|G′

c(ωϕm )|dB/20

Kp =
Ki

α
.
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