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Abstract : This study investigates multi-store order delivery services where customers can order from
multiple stores for home delivery. We first consider separated-order delivery, where orders from different
stores are processed and delivered individually. To improve customer convenience and operational
efficiency, we introduce consolidated-order delivery, enabling customers to place a single order across
stores and receive all items in one combined delivery. While this enhances convenience, it can increase
delivery times due to additional routing for visiting multiple stores. To mitigate this shortcoming, we
propose a consolidated-order delivery system with transshipment, allowing drivers to transfer orders
at transshipment nodes for higher efficiency. We develop a mixed-integer linear program for the
multi-store order problem that models different delivery systems, including separated-order delivery
and consolidated-order delivery with or without transshipment. Due to computational challenges
arising from routing decisions and time variables, we adopt a learning-to-optimize approach that
integrates machine learning and optimization. Four methods are implemented for learning driver
allocation decisions: Nearest Driver Allocation, Driver Assignment Neural Network (DANN), Driver
Classification Neural Network (DCNN), and Graph-based Neural Network (GNN). Our experimental
study reveals that GNN consistently performs the best in terms of accuracy, optimality gap, efficiency,
and scalability to larger problem instances beyond the training set. The DCNN and DANN are effective
with sufficiently large training sets and perform well when the instance scale in the testing set aligns
with the training set. We conduct experiments across four U.S. regions using the learning-to-optimize
method in a realistic setting with dynamic customer arrivals. We find that consolidated-order delivery
with transshipment, coupled with a short-duration waiting strategy, consistently delivers superior
performance, yielding shorter order completion times and reduced driver travel times through effective
spatial and temporal consolidation. Waiting longer to batch more customers is advantageous under
conditions of frequent customer arrivals and limited driver availability.

Keywords : Last-mile delivery, consolidation and transshipment, pickup and delivery, learning-to-
optimize, neural network
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1 Introduction

Online meal and grocery delivery services emerged in the early 2000s and experienced substantial
growth soon thereafter. This expansion accelerated between 2010 and 2020, with a dramatic surge in
2020 due to the global pandemic. By 2024, the online delivery market has reached a volume of USD
1.22 trillion, with projections indicating further growth to USD 1.79 trillion by 2028 (Statista 2024).

To access a wider variety of products or enjoy the convenience of home delivery, customers in-
creasingly rely on online delivery services for items from multiple types of stores, such as meals from
restaurants, fresh produce from grocery stores, or emergency medicine from pharmacies. Companies
such as UberEats and DoorDash provide a multi-store order service that caters to customers who
prefer the convenience of home delivery over visiting multiple stores in person, especially when they
are pressed for time. These platforms conventionally adopt separated-order delivery (SOD), a system
where orders from different stores are treated as distinct transactions and delivered individually. Cus-
tomers place separate orders from each store, incurring separate delivery fees for each, while drivers
handle pickups and deliveries for each order independently. Although this model provides convenient
access to products from multiple stores, it can be inefficient and costly due to multiple delivery fees and
minimum order requirements for each store. Recently, companies such as DoubleDash (DoorDash),
Instacart, and Epipresto have started offering what we term consolidated-order delivery (COD) ser-
vices. These services allow customers to order from multiple stores in a single transaction, receiving
all items as a combined delivery, typically without an added delivery fee. For instance, DoubleDash
(2023) and Instacart (2022) allow customers to add items from nearby retailers to their original or-
der without an additional delivery charge, ensuring that all items are delivered together by the same
driver. Similarly, Epipresto (2023) enables customers to shop from multiple stores at in-store prices
with a fixed delivery fee, regardless of distance. This consolidated-order model offers multiple benefits:
customers save on delivery fees, enjoy the convenience of placing one order for all needed products,
and have a single delivery experience. Meanwhile, companies may benefit from a decreased need for
drivers, reduced delivery costs, and increased sales. Despite these benefits, consolidated-order delivery
can introduce new challenges to delivery efficiency. A single driver responsible for picking up and
delivering items from multiple stores may face extended delivery times, particularly when fulfilling or-
ders from far apart store locations to multiple customers. To overcome these limitations and optimize
the delivery process, we propose a model that divides multi-store orders among several drivers, who
can then transfer orders through transshipment. In the consolidated-order delivery with transshipment
(CODT) system, a customer’s multi-store order is distributed among multiple drivers, each responsible
for pickups from different stores. These orders are then transferred at selected transshipment nodes,
potentially assigned to a different driver, and delivered as one package to the customer’s doorstep. This
collaborative approach offers the combined benefits of consolidation with enhanced efficiency, reducing
overall delivery time and improving route management for drivers handling multi-store, multi-customer
orders.

To quantify the value of enabling order consolidation and transshipment for fulfilling multi-store
orders in a combined delivery, we develop a mixed integer linear program (MILP) that models three
delivery systems: separated-order delivery, consolidated-order delivery without transshipment, and
consolidated-order delivery with transshipment. The MILP for multi-store order services presents sub-
stantial computational challenges. From the drivers’ perspective, this problem resembles a complex
vehicle routing problem involving multiple store and customer locations. Conversely, the journey of
each item can be viewed as a shortest path problem within a network defined by the drivers’ delivery
routes, starting at the store and ending at the customer. This requires precise tracking of each item and
driver’s arrival and departure times to meet time windows and ensure timely deliveries. To mitigate
the significant solution times for solving the MILP directly, we adopt a learning-to-optimize approach.
This method replaces the traditional optimization process with a machine learning-based approxima-
tion (i.e., an optimization proxy). The learning model estimates allocation decisions, identifying which
drivers should pick up items from stores and which should deliver them to customers. These estimated
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allocations are subsequently refined through an MILP with a reduced search space, significantly en-
hancing computational efficiency and enabling practical implementation. We evaluate three delivery
systems in a simulated dynamic setting, where both customer arrivals and the optimization process
occur in real-time, making time and space consolidation crucial. The system can optimize deliveries
immediately as each customer arrives or wait to batch multiple customers for joint optimization. This
analysis helps identify the most efficient delivery system under various waiting strategies.

The four main contributions of this paper are as follows:

o We investigate three delivery systems for multi-store order services, where customers place orders
across multiple stores for home delivery. Beyond separated-order delivery, in which each order
from each store is handled separately, we propose consolidated-order delivery, with or without
transshipment. Consolidated-order delivery enables customers to order from multiple stores in
a single transaction and receive all items as a combined delivery, while transshipment further
allows for driver coordination and order transshipment to enhance delivery efficiency.

e We formulate a mixed-integer linear program to model the multi-store order problem (MSOP)
across all three delivery systems. To address the computational demanding problem of optimizing
both routing and transfer decisions, we adopt a learning-to-optimize approach that integrates
machine learning with optimization. In this framework, the estimated allocation decisions act
as a lower bound within the optimization process. This process not only refines the allocation
decisions but also optimizes additional decisions that are not directly learned. By offloading
a portion of the computational workload to the offline phase, this approach enables the near
real-time generation of high-quality solutions.

e We implement four methods to obtain the estimated allocation plans efficiently. Nearest Driver
Allocation (NDA) identifies the closest driver for each customer. Driver Assignment Neural
Network (DANN) uses binary predictions to assign customers to drivers, treating each driver
independently. Driver Classification Neural Network (DCNN) frames the allocation of customers
to drivers as a classification problem, with each driver representing a unique class. Finally,
Graph-based Neural Network (GNN) models each instance as a graph and treats customer-to-
driver allocation as edge labels to be learned.

e We conduct numerical experiments across various U.S. regions with varying customer arrival
rates, comparing the performance of our three delivery systems and four learning methods. The
following insights are derived:

— By applying a learning-to-optimize approach, we enhance the solution efficiency of the
multi-store order problem and obtain high-quality solutions. This approach involves learning
allocation decisions for assigning drivers to visit nodes based on historically optimal samples,
which narrows the feasible solution space and facilitates effective decision-making within this
refined search area.

— The GNN outperforms other methods, achieving a better balance between optimality gap
and solution time while also scaling well to larger instances beyond the training set, due to
its ability to facilitate information exchange. However, it requires significant effort to collect
sufficient historical samples, as each instance corresponds to a single graph. The NDA is
simple to implement, requiring no training or historical samples, but struggles with clustered
customer locations. Both the DCNN and DANN perform well when the test instance scale
matches the training data but face challenges adapting to larger-scale instances.

— We identify a balance between batching efficiency and individual order fulfillment. As more
orders are batched for joint optimization, delivery times rise due to longer routes, but wait
times initially drop significantly because batching makes better use of drivers. However,
beyond a certain point, extending the re-optimization interval leads to increased wait times
as customers experience longer delays before being served. Consequently, the total order
completion time, which includes both wait and delivery times, initially decreases, reaching
a minimum before increasing again. This indicates the existence of an optimal waiting
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strategy, influenced by factors such as customer arrival rates and the ratio of drivers to
customers.

— Consolidated-order delivery shows increasing efficiency over separated-order delivery as cus-
tomer scale grows, since consolidating orders from multiple stores effectively reduces both
delivery and driver travel times. The COD with transshipment and a short-duration waiting
strategy consistently achieves the best performance in delivery and travel times, regardless
of customer or driver scales.

The rest of the paper is organized as follows. We review related work in Section 2. Next, we
define the problem setting, describe our three delivery systems, and present the models for these
systems in Section 3. We develop the learning-to-optimize method in Section 4 and report the results
of numerical studies comparing the performance of our proposed models and their solution quality in
Section 5. Finally, we conclude with managerial insights in Section 6.

2 Literature review

In this section, we review the main studies relevant to our research from three points of view: last-mile
delivery, pickup and delivery problem, and learning-based optimization.

2.1 Last-mile delivery

Last-mile delivery, referring to delivery from distribution points or transshipment nodes to customer
locations, is critical in online food and grocery delivery. Savelsbergh and Van Woensel (2016) review
various current and anticipated challenges and opportunities in last-mile logistics, highlight the grow-
ing customer demands for price, quality, time, and sustainability, and emphasize the importance of
batching in city logistics for improvement in the cost-efficiency while acknowledging the risk of delayed
fulfillment.

In the field of on-time last-mile delivery for food and groceries, most research focuses on improv-
ing service quality through faster delivery or enhancing efficiency by reducing costs. This is achieved
through demonstrating the importance of on-demand delivery using empirical evidence, optimizing
the assignment of drivers to customers or driver routing for dispatching items, or proposing novel
business models and applying learning techniques to improve the overall efficiency of the delivery sys-
tem. From an empirical perspective, Mao et al. (2022) and Li and Wang (2024), demonstrate the
benefits of on-demand platforms for delivery performance and restaurant profitability. From an opti-
mization perspective, Liu et al. (2021) address order assignment problem with travel-time predictors
to investigate the impact of delivery data on the on-time performance of food delivery services. Zhang
et al. (2023) develop scalable algorithms for optimizing routing operations and vehicle-customer coor-
dination in a dynamic setting to improve profitability, service, and environmental impact. Moreover,
Carlsson et al. (2024) propose region partitioning policies to minimize delivery times in a stochastic
and dynamic setting by assigning drivers to subregions. In terms of novel business models, Cao and
Qi (2023) introduce self-driving mini grocery stores to enhance mobility, proximity, and flexibility of
grocery delivery by avoiding the last 100 meters. Additionally, Raghavan and Zhang (2024) explore
coordinated logistics by evaluating the value of using aides who can assist drivers in last-mile delivery
to reduce service time and enable parallel deliveries. From the learning perspective, Hildebrandt and
Ulmer (2022) improve delivery systems by predicting accurate arrival times, enhancing service percep-
tion and efficiency. Similarly, Auad et al. (2024) propose a deep reinforcement learning approach for
balancing courier capacity with service quality in meal delivery systems.

We aim to provide efficient on-demand, on-time delivery for food and groceries, ensuring fast
delivery for customers while minimizing driver travel times. Our proposed setting allows customers
to order from multiple stores and receive all items in one delivery for more convenience. Drivers can
coordinate at intermediate points to transfer orders, with any driver able to complete the delivery.
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However, this setup creates a complex pickup and delivery problem, which we will address using
mathematical programming formulations and efficient solution techniques.

2.2 Pickup and Delivery Problem

The Pickup and Delivery Problem (PDP) is a classical combinatorial optimization problem concerned
with optimizing vehicle routes for picking up and delivering goods or passengers at various locations.
Its primary goal is the efficient movement of vehicles to minimize transportation costs. The PDP is
an extension of the Vehicle Routing Problem (VRP), first introduced by Dantzig and Ramser (1959).
There are several variants of the PDP, including single-vehicle or multiple-vehicle PDP, dynamic PDP,
many-origin-to-many-destination PDP, PDP with time windows, PDP with split delivery, and PDP
with transshipment, among others. Berbeglia et al. (2010) provide a general framework for dynamic
PDPs, where objects or people need to be collected and delivered in real-time, with requests revealed
over time. They also explain how to design waiting strategies and assess their performance. Addition-
ally, Kog et al. (2020) conduct a detailed survey of vehicle routing problems with simultaneous pickup
and delivery, where goods must be transported from various origins to different destinations, satisfying
both delivery and pickup demands concurrently.

In the context of the many-to-many PDP with transshipment that we are interested in, the pickup
loads and delivery processes can be split among drivers, with items exchanged at transshipment points.
Specifically, one vehicle picks up the load, delivers it to a transshipment node, and another vehicle
completes the delivery. In terms of empirical studies, Mitrovi¢-Minié¢ and Laporte (2006) evaluate the
usefulness of transshipment points in PDP with time windows. Nowak et al. (2009) show that splitting
loads into multiple trips benefits the PDP and identify favorable real-world environments for this
approach through empirical analysis. In terms of optimization, Rieck et al. (2014) address the many-
to-many location-routing problem with inter-hub transport and multi-commodity PDP, developing
heuristics for medium- and large-scale instances. While this problem is similar to our study, it does
not account for the importance of time windows, which further complicates the setting. Rais et al.
(2014) and Lyu and Yu (2023) investigate PDP with time windows and transshipments, but they
only solve small and medium instances and overlook the consolidated-delivery of orders from multiple
pickups and the potential for any visited node to act as a transshipment point under time constraints.
Lastly, Su et al. (2023) study PDP with crowdsourced bids and transshipment in last-mile delivery,
which optimizes vehicle routes and bid selection but not crowdshipper routing and imposes restrictive
service assumptions.

We investigate a many-origin-to-many-destination pickup and delivery problem with time windows,
incorporating driver coordination and transshipment to fulfill orders from multiple stores. Our model
will account for order allocation to drivers, selection of transshipment nodes for item exchanges, routing
decisions for drivers and orders, and time variables for driver and order arrivals and departures.

2.3 Machine Learning-based optimization

Machine learning (ML) has emerged as a transformative tool in operations research (OR) and opera-
tions management, enabling innovative approaches to solve complex decision-making problems. The
integration of ML in OR can broadly be categorized into two areas: using ML to design and enhance
optimization models, and employing optimization proxies to accelerate or approximate solutions.

In the first category, ML is widely used to design optimization models, improve data quality, and
enhance solution procedures. Sadana et al. (2024) review contextual stochastic optimization and unify
decision-making methods under uncertainty, categorizing approaches into decision rule optimization,
sequential learning and optimization, and integrated learning and optimization. Maragno et al. (2023)
propose a pipeline where constraints and objectives are learned from data and embedded into op-
timization models. Similarly, Wang et al. (2024) enhance inputs to vehicle routing problems using
techniques like k-nearest neighbor and kernel density estimation. In practical applications, Liu et al.
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(2021) integrate ML-based travel-time predictors into order-assignment optimization for food deliv-
ery, improving on-time performance by refining parameter estimates. Additionally, Hong et al. (2021)
propose a robust optimization framework using ML to enhance parameter estimates and optimization
outcomes.

In the second category, optimization proxies use ML to approximate solutions, accelerate compu-
tational processes, or enable inverse optimization. Van Hentenryck (2021) distinguish between two
main approaches: end-to-end learning, which uses proxies to directly approximate optimal solutions,
and learning-to-optimize, which accelerates existing optimization algorithms for enhanced efficiency.
Kotary et al. (2021) review hybrid methods that integrate combinatorial solvers with ML for fast,
approximate solutions and logical inference. Several studies highlight how learning-to-optimize speeds
up solution generation. For example, Ojha et al. (2023) develop ML proxies to predict loads and en-
sure constraint compliance in dynamic load planning, significantly improving decision-making speed.
Similarly, Julien et al. (2024) introduce a machine-learning-based node selection strategy that accel-
erates robust optimization by identifying high-quality solutions faster. Larsen et al. (2024) use super-
vised learning to approximate computationally intensive second-stage solutions in two-stage stochastic
programming, reducing solution time without compromising accuracy. Kotary et al. (2024) propose
a learning-to-optimize-from-features framework, aligning traditional methods with the predict-then-
optimize paradigm. Additionally, Qi et al. (2023) demonstrate the impact of end-to-end learning by
developing a multi-period inventory replenishment model that directly outputs optimal replenishment
decisions from input features. Ozarik et al. (2024) apply ML to estimate key parameters for last-mile
delivery route optimization in inverse optimization, illustrating how predictive modeling can inform
complex decision-making.

In this work, we apply learning-to-optimize to address our computationally challenging problem.
We first use machine learning techniques, including neural networks and graph-based networks, to
estimate allocation decisions. These estimates serve as inputs for an optimization process, which refines
the allocation decisions and makes additional decisions, such as optimal routing. Unlike conventional
methods, our approach treats estimated decisions as lower bounds, maintaining flexibility and allowing
the optimization process to explore better solutions. Our work not only aims for efficiency and high-
quality solutions but also evaluates the scalability of different learning algorithms across various cases.

3 The multi-store order delivery problem

In this section, we first introduce our three delivery systems of interest and present the problem
definition in Section 3.1. We then formulate the mathematical model for the multi-store order delivery
problem under various delivery systems in Section 3.2, followed by the dynamic problem description
incorporating waiting strategies in Section 3.3.

3.1 Delivery system description and problem definition

Due to the variety of store types, product availability, and special pricing, customers often purchase
products from multiple stores, such as meals from restaurants, fresh produce from grocery stores, or
emergency medicine from pharmacies. To avoid the inconvenience of visiting multiple stores, customers
increasingly rely on online ordering and delivery platforms, creating the necessity for multi-store order
delivery services. We consider three delivery systems for managing multi-store order deliveries:

1. Separated-order delivery (SOD): Customers place separate orders from different stores, pay a
delivery fee for each order, and receive individual deliveries. Orders from each store are handled
independently, with drivers managing both the pickup and delivery processes (Figure 1a). This
system serves as a baseline for comparison in the absence of consolidation.

2. Consolidated-order delivery (COD): Customers place a combined order from multiple stores in
a single transaction and receive a combined delivery, typically without additional delivery fees.
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A single driver collects items from several stores and delivers them to the customer (Figure 1b).
This system consolidates orders from different stores and serves as a baseline in the absence of
transshipment.

3. Consolidated-order delivery with transshipment (CODT): Similar to COD, customers place a
consolidated order from multiple stores and receive a combined delivery. However, in this sys-
tem, different drivers can pick up items from different stores and can transfer them at selected
transshipment nodes. A single driver then completes the final delivery to the customer’s doorstep
(Figure 1c). Transshipment can occur at various locations, such as stores or customer locations,
where drivers can drop off or pick up items and items can be temporarily held without the pres-
ence of drivers. In some cases, customers acting as transshipment nodes may receive multiple
deliveries, while others receive a single delivery.

%\ “ %\‘ﬁ/“ %\i/“

,,,,,,,,,, T D
=g, P A
(a) Separated-order delivery. (b) Consolidated-order delivery. (c) COD with transshipment.

Figure 1: Delivery systems for multi-store order services. This figure illustrates an instance with two drivers, two stores, and
four customers. The same set of customers is served by the same set of drivers across all three systems. The route of one driver
is represented by a black line, while the route of another driver is shown in blue. The solid lines are the same for each system,
while the dashed lines highlight the differences.

We define the problem that accommodates these three delivery systems as follows:

Definition 1. The Multi-Store Order Problem (MSOP) is an optimization problem addressing the
fulfillment of customer orders placed across multiple stores using a limited number of drivers. The
primary objective is to minimize the latest delivery time for serving each order, and the secondary
objective is to minimize the total driver travel time for fulfilling all requests. This is achieved by
addressing key decisions, including allocating drivers for pickup and delivery, planning driver routes
with time and capacity restrictions, and selecting transshipment nodes for transferring items among
drivers. In addition to handling orders from different stores separately, MSOP also incorporates consol-
idation, allowing orders from multiple stores to be grouped and handled together, and transshipment,
permitting partial order transfers among drivers at specified nodes.

3.2 Mathematical model

We formulate the multi-store order problem for all three delivery systems using a mixed-integer linear
programming model. This MILP is defined on an undirected network G = (N, A), where N represents
the set of nodes and A denotes the set of arcs. Customers are denoted by i € Z, stores by j € J,
and drivers by k € K. The origin node of driver k, representing their starting location, is denoted as
or, and the set O comprises the origin nodes of all drivers. The node set N includes all customer,
store, and driver starting locations, i.e., N'=Z U J U O. The binary parameter e;; indicates whether
customer ¢ orders from store j, and the item ordered by customer i from store j is indexed by ij.
The size of item 4j is p;;, and the capacity of driver £ is ¢*. The travel time between nodes n and
n' is denoted by t,,, and it satisfies the triangle inequality: t,,/ < tpnr + tnrns, Vn,n’,n’”’. The time
window for customer i is given by [, 3;]. The decision variables are as follows. Let z¥ be 1 if and
only if driver k visits node n, 2%, be 1 if and only if driver k travels from node n to node n’, y;jn, be 1
if and only if item 4j travels from node n to node n’ during the trip, v¥¥* be 1 if and only if item ij
arrives at node n via driver k, and v¥¥~ be 1 if and only if item ij departs from node n via driver k.
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The continuous variables are as follows: 75F is the time at which driver k arrives at node n, 75~ is

the time at which driver k departs from node n, and A% is the arrival time of item ij at node n. A
summary of the notation is provided in Appendix A.

The model for the multi-store order problem is presented as follows:

. k k
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N > kit ket VieZ,jeJ,neNkek (1r)
TRT > R\ VieZ,jeJ,neN,kek (1s)
o <X < B, VieIjeJ (1t)
ZZpijvﬁij_ < ¢, YneN, ke K (1u)
€T jeT
xﬁn/,y;jn,,zﬁ,vﬁiﬂ,vfﬁ* € {0,1}, VieI jeT,nn eN,kek (1v)
R R NG >0, VieI,jeJ,neN,kek. (1w)

The objective function (1a) aims to minimize the weighted average of the latest delivery time to
the last customer and the total travel time for fulfilling all orders, where p; is the weight assigned to
the latest delivery time and py is the weight assigned to the total travel time. Note that to prioritize
on-time delivery, p; should be set significantly larger than ps, while a relatively small value for ps is
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sufficient to discourage unnecessary long travel times. The term maxyex icz {7/} can be equivalently
replaced by a new variable [, along with the constraints { > TZ”,W el kek.

Constraints (1b) and (1c) stipulate that if customer 7 orders items from store j (i.e., e;; = 1), item
ij should be picked up from store j by a driver and delivered to customer ¢ by a driver. Constraints (1d)
ensure that if item ij arrives at node n (except for destination ¢ and origin j), it must leave this node
after being picked up by a driver. Constraints (1le) indicate that if driver k serves item ij by passing
through node n, then driver k must leave its origin location oy, and also visit node n. Constraints (1f)
and (1g) impose degree constraints on the nodes visited by driver k. Constraints (1h) specify the
arrival and departure times of driver k at node n. If driver k travels from node n to node n’ (i.e.,
zk = 1), the arrival time of driver k at node n’ must be no earlier than the departure time from
the previous node n, accounting for the travel time from node n to node n’. These constraints can be
linearized into T,’f_ + ton — Trlff < Mi(1-— xfm,), where M, should be sufficiently large to ensure that
M, > 7%= +t,,,. Additionally, constraints (1i) ensure that the departure time at any node of a driver
should be no earlier than their arrival time, except for their origin nodes. Constraints (1j) to (11) denote
that item ij should leave store j and arrive at customer ¢, and that if item ¢j arrives at any other node,
it must also leave this node (i.e., flow balance constraints). Constraints (1m) and (1n) state that item
ij can traverse the arc (n,n’) only if this arc is visited by a driver, and that arcs for drivers returning
to origin nodes cannot be part of the path for items. Constraints (1o) specify the arrival time of item
ij at node n. If item ij travels from node n to node n’ (i.e., y;jn/ = 1), the arrival time of item ij at
node n’ must be no earlier than its arrival time at the previous node n, while accounting for the travel
time from node n to node n’. These constraints can be linearized into )\ﬁlj + o — )\;j, < Ms(1-— y;jn,),
where M, must be large enough to ensure that My > A + t,,,,,. Constraints (1p) and (1q) indicate
that if item ij passes the arc (n,n’) visited by driver k, then item ij must be picked up by driver k to
leave node n and dropped off by driver k at node n’. Since z, y, and v are binary, these constraints can
be linearized into v¥¥= > a2k , + y;jn, — 1 and vffj+ >k + y:fn, — 1, respectively. Constraints (1r)
and (1s) state that the arrival time of item ij at node n should be no earlier than the arrival time of
driver k at node n if this item is served by driver k to arrive at node n. Furthermore, the departure
time of driver k should be no earlier than the arrival time of item ij at node n if this item is about
to leave node n via driver k. These constraints can be linearized into 78T — A\ < M3(1 — vF4t)
and N\ — 78— < My (1 — vF9~), with M3 > 78 and My > \J. Constraints (1t) ensure that the
time windows are respected. Constraints (1u) represent capacity constraints for drivers at every node.
Constraints (1v) and (1w) impose domain restrictions.

This model is capable of accommodating both single and multiple deliveries for multi-store orders
placed by customers, while also allowing drivers to coordinate and transfer orders through transship-
ment, resulting in consolidated-order delivery with transshipment (CODT). To evaluate the value
of consolidation and transshipment in multi-store order delivery, we demonstrate ways to customize
M(Z, J,K) to model the separated-order delivery (SOD) and the consolidated-order delivery (COD)
without transshipment.

The model for SOD requires that orders from each store are handled and delivered separately,
which can be structured as a series of programs. For all j' € 7,

Mson(Zir, Ty Kyr) = min,  prmax {rf 0 30 D Y tawny (2a)
AN igzjj, kel neN; n €N,
n’#n
s.t. (1b) — (1w),
VT =t Yie T, j € Tk € Ky (2b)

The objective function (2a) specifies that each store optimizes their delivery operations separately to
serve its respective customers. Here, J;» denotes the set containing only store j' (i.e., J; = {j'}).
The set Z;, denotes customers who place orders from store j' (i.e., Zj; = {i € Z|e;j7 = 1}). There may
be overlaps between different Z;/ since customers can place orders from multiple stores. Similarly, K/
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denotes the drivers who serve orders from store j’, and they jointly form a partition of . Furthermore,
Nj =TI, U Jy UOj, where Oy is the set of origin nodes for drivers k € ;s . To ensure at least
one driver is available for each store, we assume that the number of drivers exceeds the number of
stores. Note that the pre-assignment of drivers to stores (i.e., the set ;) affects the Mgop. To
focus solely on the difference between separation and consolidation business models, we evaluate all
possible partitions of the driver set I for the SOD. For each partition, we determine the worst-case
performance across all stores by finding the maximum optimal objective value among them. The
partition that yields the minimum worst-case performance (i.e., min {max; e 7 Msop(Z;/, Jj/,K;/)})
is selected. This method works because our primary objective is to ensure on-time delivery for all
customers, with the main target being to minimize the latest delivery time. By using this method,
we can compare separation and consolidation models fairly without the results being influenced by
the initial pre-assignment of drivers. Constraints (1b)—(1w) are applied, with Z, 7, KC, N replaced by
Zj1,Jj, K, Nj. Constraints (2b) state that item ij is served by the same driver k encompassing both
the pickup from store j and the delivery to customer 4, implying no transshipment is allowed.

The model for COD without transshipment is:

o . k+ k
Meon(Z,7.K) = jmin, - prax {ri*} £ 30 30 3 tawate (39)
T, w,v,\ i€l ke neN Wr'/iNx
s.t. (1b) = (1w),
VT =t YieT je T keK, (3b)
> b=, Viel. (3¢)
kel

Constraints (3b) imply that item 4j is assigned to the same driver for both pickup and delivery,
and Constraints (3c) enforce a single delivery, ensuring that each customer is served exactly once for
delivery, resulting in a consolidated-order delivery system without transshipment.

3.3 Dynamic problem and waiting strategy

The MSOP addresses the problem of serving customers who place orders in a specified time period,
with transshipment facilitating spatial consolidation at both the store and customer levels. Since
customer orders arrive dynamically over time in realistic settings, temporal consolidation can further
improve operations by implementing an effective waiting strategy.

Assuming that customer arrivals follow a stochastic process, such as a Poisson process, the delivery
system can be optimized by determining an appropriate re-optimization interval, defined as the time
period between two consecutive optimizations. For each optimization, the system collects information
on new customer orders that arrive within the interval, updates driver availability, allocates orders to
available drivers, and plans the routing accordingly.

A longer waiting strategy can reduce the total travel time but may increase delivery delays. Con-
versely, an event-triggered strategy, which re-optimizes the system upon each order arrival without
waiting, accelerates the delivery speed but may increase the total travel time. The objective of the
dynamic problem is to identify the waiting strategy that balances delivery time and waiting delays by
determining the re-optimization interval, which also corresponds to the customer batching size during
that interval.

4 Solution procedure

Solving the model for MSOP to optimality is computationally demanding due to the large number of
constraints and variables arising from routing and time considerations. To address this, we adopt a
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learning-to-optimize approach that combines an offline learning phase with an online estimation and
optimization phase. We next present the details of this framework in Section 4.1, introduce three
learning methods in Section 4.2, and explain the optimization process in Section 4.3.

4.1 Learning-to-optimize method

The learning-to-optimize method is illustrated in Figure 2 and consists of two key steps. The first is the
offline learning phase, as shown in Figure 2a, where a mapping is trained using machine learning models
on historical instances. This step is conducted only once. Specifically, historical instances, which are
solved to optimality using exact optimization techniques, are used to train a neural network model
that learns the mapping from instance data to optimal allocation plans. The instance data includes
order details, store and customer locations, initial driver positions, travel times between locations,
and driver availability. The allocation plan determines the nodes visited by drivers, ensuring that each
order is picked up from stores and delivered to customers. The second step is the online estimation and
optimization phase, as shown in Figure 2b. For each new instance, the estimated allocation plans are
obtained from the learning model and then serve as a lower bound for the corresponding variables in the
optimization problem. This optimization problem is a mixed-integer linear program, where restoration
and refinement work together to ensure feasibility and improve the solution: restoration addresses
potential infeasibility caused by the estimated allocation (i.e., the optimization input) underestimating
time constraints and capacity limitations, while refinement further improves the estimated allocation
decisions, refining the initial solutions to optimal ones through optimization. This process narrows the
feasible solution space, provides flexibility to improve the estimated allocation plans, and completes
the optimal driver routes and efficient paths for the MSOP. This approach can offload a portion of the
computational workload to the offline phase, facilitating the near real-time generation of high-quality
solutions.

Input Exact Solution Procedure Output

S\
|
|

Historical instances ’ Machine learning (ML)

. . . | OptlIHlZ(lthIl Optlmal X
with order information ; roblem l i ; model that maps input to
and driver availability N P solutions ‘ the optimal allocation plan

(a) The offline learning phase.
Input Optimization Proxies Output

New instances with ! Estimation of the Restoration | Allocation
order information : allocation plan and refinement l plan and other
and driver availability ' using the ML model optimization i decisions

(b) The online estimation and optimization phase.

Figure 2: Learning-to-optimize Method.

4.2 Learning methods

Three neural network models are implemented to train the mapping from instance information to
allocation plans. Let A denote the set of nodes, including driver origins, stores, and customers that
drivers may visit, KC denote the set of drivers, and £ denote the feature space. We use bold symbols
to represent vectors. We define the neural network model g, parameterized by 6, that maps the set
of input features fﬁ e RIZl for each node n € N and driver k € K to a binary allocation plan
z € {0, 1}|N I%I€1 which represents the decision of assigning driver k to visit node n. The function is
presented by

go : RVIXIKIXIZL g 1} INVIXIKT, (4)

All information related to orders, customers, stores, and drivers constitutes the feature set. These
include store locations for order pickup, customer locations for delivery, driver initial locations, travel
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times between nodes, and nearest driver allocation to each node. Specifically, the features fﬁ for node
n that can be served by driver k include: (1) node latitude; (2) node longitude; (3) distance between
the driver and the node; (4) nearest driver allocation indicator; and (5) the ratio of the number of
customers to the number of available drivers. Additionally, we generate additional features based on
a connected node (CN) set for each node and driver. For store nodes, this set comprises the customers
ordering from that store; for customer nodes, it includes the stores from which they have ordered; and
for drivers, it consists of nodes that would be assigned to each driver based on the nearest allocation
method. The additional features related to the CN set are: (6) the number of nodes in the CN union
sets of both the node and the driver; (7) the Traveling Salesman Problem (TSP) cost for visiting nodes
in this union CN set; and (8) the convex hull area enclosing the nodes in this union CN set.

4.2.1 Driver Assignment Neural Network (DANN).

This method uses a neural network for binary prediction to determine whether driver k is assigned
to node n. A training sample consists of a node-driver pair, where the input features are fﬁ and the
label is szL* for node n and driver k. Each driver is considered independently of all other drivers.

We implement a multi-layer neural network to learn the function gy, capturing the relationships
between the input features and the binary decision outputs. The model predicts the probability of
assigning node n to driver k:

Pr(zZi=1|fF) =0 (0(fF)), Vn e N,k ek,

where O( fﬁ) : RIZl — R represents the neural network’s output after multiple layers of computation
on the input features fT’j e RI£l. Since Z¥ is binary, the final layer of the neural network o(-) applies
the sigmoid activation function, o(z) = ﬁ, ensuring that the output is a probability between 0
and 1. If Pr(zk =1| f*) > 0.5, then z¥ = 1, indicating that driver k is assigned to visit node n.

4.2.2 Driver Classification Neural Network (DCNN).

This method treats driver assignment as a classification problem, where each driver is considered
a distinct class. The neural network classifies each node into one of the available “driver classes”,
ensuring that at least one driver is assigned to visit each node. A training sample consists of a node
with multiple drivers as potential choices, where the input features are { fﬁ} ek and the labels are

*k
{zk } for node n.
ke

n

We again implement a multi-layer neural network to learn the function gg. For node n, the model
outputs a probability distribution over classes k as follows:

Pr(zF =1 fa) = [softmax (8 (£1))], , Vne N,k ek,

where O(fn) : RIFIXIZL 5 RIXI yepresents the neural network’s computation through multiple layers
on the features f,, € RI“IXIXl for node n and all drivers. The softmax function outputs a probability
distribution over the |K| classes, ensuring that Z‘k}i‘l Pr(zF =1 f,) = 1. The driver k with the
highest probability Pr(zk = 1| f,,) is selected. Thus, z¥ = 1 for the driver with the highest score,
and ZF = 0 for all other drivers.

4.2.3 Graph-based Neural Network (GNN).

This method employs a graph neural network to learn driver allocation plans by predicting edge labels
that indicate whether a driver should visit a node within the graph structure, as illustrated in Figure 3,
depicting an instance or area to be served.

Unlike traditional neural networks, the graph structure connects all nodes and includes edge fea-
tures, global features, and labels. The node features fn € RI¢l include: (1) driver type: 1 if the
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@ Driver nodes @
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Store node Store node
[ [ [ 4 o
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Customer nodes

Figure 3: Graph-based Neural Network structure for the case with 2 drivers, 2 stores, and 4 customers.

node represents a driver, 0 otherwise; (2) store type: 1 if the node represents a store, 0 otherwise; (3)
customer type: 1 if the node represents a customer, 0 otherwise; (4) node latitude; (5) node longitude;
(6) the number of nodes in the CN set; (7) the TSP cost of visiting the nodes in the CN set; and
(8) the convex hull area enclosing the nodes in the CN set. The edge features enn: € RIMI of all
edges from nodes to drivers consist of (1) distance between the driver and the nodes; and (2) nearest
driver allocation to the node. The global feature g € R is the ratio of the number of customers to the
number of available drivers. These features are similar to those used in DANN and DCNN, but are
now represented in a graph structure. The edge label to be learned represents the optimal allocation of
drivers to nodes. The GNN model leverages node features, edge features, and global features through
multiple layers to capture complex relationships within the graph. A training sample consists of all

node with all drivers as potential choices, where the input features are ({ Fatnen s {€nn'ty ens g)

and the labels are {zk : for the whole graph.

n

}kelc,ne/\f

At each layer ¢, the embedding of node n, denoted hgf% is updated based on information from its
neighboring nodes. The update is computed as:

M =0 (R0, 30w (A0 en) 0 |
n’€Neight(n)

where hs) is the embedding of node n at layer t with hflo) = fn and f, € RIZl Neight(n) denotes
the set of neighbors of node n, €pns € RIM! is the feature vector for the edge between node n and its
neighbor n’, g is the global feature, and ¢ and v are neural network layers.

After T layers, the GNN produces final embeddings hg) for each node n. For all edges connecting
node n, the final layer applies a softmax function to output a probability distribution over all possible
drivers. The probability of assigning driver k£ to node n is given by:

Pr (Zfb =1] fn,enn',g) = {softmax (Lp (h%T),hg;),enn/,g)ﬂk , VneN,kek,

where ¢ : RIWVIXIEL  RIKIXINIXIME 5 R — RIKIXINT s a neural network layer that combines the
final node embeddings, edge features, and global features. The softmax function normalizes the edge
outputs from each node n to all driver nodes, providing a probability distribution over drivers for
node n, ensuring that ZLlc:ll Pr (Zfl =1 fn, enn/,g) = 1. The driver k£ with the highest probability
Pr (22 =1 fn,€nn, g) is selected to serve node n. This GNN framework effectively captures node
interactions, edge features, and global features to predict the optimal driver-to-node allocations within
the graph.
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4.2.4 Summary.

Overall, DANN, DCNN, and GNN use the same features but adopt different graphical structures
for generating data samples to learn the allocation decisions. DANN treats each driver-node pair
independently (see Figure 4a). DCNN processes each node independently while incorporating driver
information (see Figure 4b). In contrast, GNN considers each instance as an interconnected network,
allowing both driver and node information to be transferable during the learning process (see Figure 4c).
In addition to these three learning methods, we also include Nearest Driver Allocation (NDA) as a
benchmark, which assigns the closest driver to visit each store and customer node.

. & . iﬁ . &

(a) DANN. (b) CDCNN. (c) GNN.

Figure 4: Learning models for allocation decisions with different ways of generating data samples. The lines represent
allocation decisions for a driver visiting a node. Lines of the same color indicate a single sample, while different colors correspond
to different samples. In DANN, each driver-node pair is represented by a unique color; in DCNN, each node is assigned a color;
and in GNN, the entire instance uses the same color.

4.3 MILP-based restoration and refinement problem

In the optimization phase, we formulate the restoration and refinement problem (RRP) as an MILP
to restore feasibility, refine allocation decisions, and derive optimal solutions for other decisions. For
decision refinement, the estimated allocation Z¥ serves as a lower bound for the allocation decision
2F allowing flexibility in assigning drivers to additional nodes and enabling the optimization of other
decisions. However, given the lower bounds of allocation plans, the constraints in Equations (1t)
and (1u) may be violated. It is essential to ensure that all items ordered by customer i from store j
are delivered within the specified time window while respecting capacity limitations. In other words,
the machine learning output may underestimate the time constraints and capacity limitations, which
could render Problem 1 infeasible given the estimated éfl To address this, we apply soft time windows
and capacity constraints while also minimizing the slackness to restore feasibility. The model for the
RRP is formulated as follows:

Mrrp(Z,7,K) = min Iggg{ﬂ“} 02 > D> twwmna s D > (527 +sn? +s00) (5a)

LR R Ned)

T,w, v\, 8 i€T keEK n’eN, neN i€l
nEN midm kek jeg
s.t. (1b) — (1s), (1v) — (1w),
Zn > VkeK,neN, (5b)
Qi =857 <ANI< B, +52, Vieljed, (5¢)
Z Z pijvﬁij_ < qk + sk, vneN,kck, (5d)
i€T jeT

Hii 20§33k >, VieIjeJ,neN,kek. (5€)

i 221

S
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The objective function (5a) states that, in addition to minimizing the weighted average of the latest
delivery time and the total travel time, we also minimize the penalty for violating time window and
capacity constraints, which cannot be avoided due to the input allocation. Note that p3 represents the
penalty weight, and it should be set to a large value relative to p; and ps to avoid violations as much as
possible. Constraints (5b) ensure that the estimated Z serves as a lower bound, while Constraints (5¢)
and (5d) represent soft time windows and capacity constraints with slack variables s}i‘j, s?ij, and s3F
to maintain feasibility. Finally, Constraints (5d) impose domain restrictions on the slack variables.

5 Numerical study

In this section, we first introduce a real-world dataset, performance metrics, and implementation
details. We then compare the performance of three systems to evaluate the benefits of offering con-
solidation and transshipment for the multi-store order delivery. Due to the computational challenges
involved in solving the problem, we employ learning-to-optimize techniques to accelerate the solution
process through various learning methods and compare the effectiveness of different learning-based
optimization proxies. Finally, we conduct dynamic experimentations in a practical setting to serve
customers in areas with varying customer locations and arrival rates, aiming to identify the most
efficient delivery system and waiting strategy.

5.1 Dataset and implementation details

We use a customer location dataset from four regions in the U.S. (Los Angeles, Seattle, Tacoma,
and Orange) provided by Amazon (Merchan et al. 2021), which contains the perturbed locations of
customers. We obtain the expected travel times using the Google API. Instances with varying scales
are created from the dataset, with customer numbers ranging from 2 to 20 and driver numbers ranging
from two to five. To assess the benefits of consolidating orders from multiple stores, we assume
customers place orders from at least two stores and up to four stores, and whether each customer
places orders from each store is randomly generated. Driver initial locations and store locations are
fixed in each region. Customer locations are sampled uniformly from the dataset, with each location
having an equal probability of selection, referred to as uniformly sampled customers. We also consider
clustered customers, where a central point is pre-selected, and locations closer to this center have
a higher probability of being chosen as customer locations. The start time windows are uniformly
generated within a range of 0 to 20, and the end time windows are within a range of 20 to 70. Driver
capacity is set to 100, with item sizes randomly generated between 0 and 10 as integers. Our primary
objective is to ensure on-time delivery for all customers by minimizing the latest delivery time, so the
weight p; is set to 1. A smaller weight po = 0.01 is used to discourage unnecessary long total travel
times. To minimize constraint violations, a penalty weight p3 = 100 is applied.

To compare the performance of three delivery systems and four learning methods, we define the
following metrics. (1) Delivery time is the duration between each order pickup and delivery, with the
latest delivery time being the time to serve the last order arriving within the re-optimization interval.
A lower value indicates faster overall delivery. (2) Total travel time is the total time drivers spend
traveling, including the time from their starting location to pick up orders and deliver them. The
travel time for serving one more customer is calculated as the ratio of total travel time to the number
of customers. A lower value indicates reduced overall costs. (3) Wait time is the duration between
order placement and pickup. A lower value means quicker driver assignment and faster availability for
pickup. (4) Order completion time is the duration from order placement to delivery, including both
wait time and delivery time. (5) Runtime is the time required to find final solutions, whether or not
learning is used. A lower runtime indicates a more efficient solution method. (6) Learning accuracy
is the percentage of correct driver-to-customer allocations. Higher accuracy indicates better learning
performance. (7) Allocation percentage (pct.) is the percentage of estimated allocation decisions
estimated as 1, indicating that the driver will visit that location. A lower value offers more flexibility
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in optimizing the solution. (8) Allocation standard deviation (std.) is the standard deviation of
allocation decisions, which indicates the balance of driver workloads. A lower value signifies a more
balanced distribution of work. (9) Gap is the difference between the estimated and exact optimal
values for key metrics such as objective value, latest delivery time, and total travel time. A lower gap
means the learning-based solution is closer to the true optimal solution.

We implement our algorithms using Python 3.10 and Gurobi 10.0.2 on a local computer equipped
with a 2 GHz Quad-Core Intel Core i5 processor and 16 GB of RAM, supplemented by resources from
Compute Canada’s Graham cluster, which includes Multi-Core Intel Xeon processors (20 to 36 cores
per node) and standard compute nodes with 64 GB of RAM. The optimization time limit for the exact
solution procedure is set to 3600 seconds, while the time limit for learning-to-optimize during the
comparison of learning methods is set to 600 seconds. For implementations in dynamic environments,
this limit is further reduced to 300 seconds when applying learning-to-optimize with GNN, ensuring
efficient real-time decision-making.

5.2 Comparison of delivery systems
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Figure 5: Comparison of delivery systems with various number of customers and drivers.

To compare the three systems, including separated order delivery (SOD), consolidated order deliv-
ery (COD), and consolidated order delivery with transshipment (CODT), we solve the models Mgop,
Mcop, and M using Gurobi within the specified time limit across various instances.

Figures Ha and 5b plot the latest delivery time, defined as the maximum duration between order
pickup and delivery across customers. The SOD is more efficient than the COD when there are few
customers to serve, as the benefits of consolidating requests are minimal. However, as more customers
join the system and place orders, the COD begins to dominate the SOD, and this dominance increases
with the number of customers. Additionally, the COD consistently yields a shorter total travel time,
which represents the total time drivers take to complete deliveries for all requests (see Figures 5¢ and
5d). Tt also converges to optimality faster (see Figures 5e and 5f).

In contrast, the CODT is always the most efficient among all three systems in terms of delivery
time for serving each customer and the total travel time for fulfilling all requests, regardless of the
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instance scale (see Figures 5a—5d). However, due to the complexity of coordination and the flexibility
of transshipment at any location, solving the CODT using exact methods requires substantially more
computational time (see Figures 5e and 5f). Instances with more than 12 customers are unlikely to
converge to optimality within the 3600-second time limit, and a lower bound may not be found to
produce a feasible solution within 600 seconds. To address this challenge, we implement learning-
to-optimize techniques to explore whether high-quality solutions can be achieved more efficiently,
mitigating this computational drawback.

Insight 1. Consolidated-order delivery with transshipment is the most efficient of the three delivery
systems considered, achieving the shortest delivery time for serving each customer and the lowest total
travel time for fulfilling all requests, though it requires more time to solve using exact methods.
Insight 2. Without transshipment, consolidated-order delivery outperforms separated-order delivery in
delivery time, total travel time, and exact solution time, except when the customer number is very
small.

5.3 Comparison of learning algorithms

We compare four methods, including NDA, DANN, DCNN, and GNN, that map instance information
to allocation decisions. We implement the training process under three different instance scales: small-
scale instances, where the number of customers (|Z]) ranges from two to seven and the number of drivers
(IK]) ranges from two to five; medium-scale instances, where |Z| ranges from eight to ten and |K| ranges
from two to five; and large-scale instances that fail to converge to optimality, where |Z| ranges from
12 to 20 and |K| ranges from two to five. First, we train using both small and medium-scale instances
and test on small, medium, and large-scale instances. In the second set of experiments, we train solely
on small-scale instances but test on all three scales. This approach allows us to assess the model’s
ability to generalize and predict decisions for larger-scale instances that may not have been included
in the training set.

Table 1: Best Learning Method for Uniformly Sampled Customers in the Learning Process.

Training Testing Type Testing Scale Best Accuracy Allocation Allocation
Scale 7| K| Nol Method Pct. (%) Std.
T1 2, 7] 12, 3] 1200 GNN 0.83 41.67 0.31
Izl [2, 10]; T1 2, 7] [4, 5] 1200 GNN 0.92 22.50 0.43
IK): [2’ 5}.’ T1 [8, 10] 2, 3] 600 DCNN 0.84 41.67 0.30
Nol: 3673007 T1 [8, 10] 4, 5] 600 DCNN 0.90 22.50 0.04
' T5 [12, 20] [2, 5] 400 GNN 0.74 32.08 0.55
T6 [2, 20] [2, 5] 4000 GNN 0.88 32.08 0.15
T1 2, 7] 2, 3] 1200 GNN 0.84 41.67 0.30
Izl [2, 7); T2 2, 7] [4, 5] 1200 GNN 0.92 22.50 0.70
IKC: [2’ 3}" T3 [8, 10] 2, 3] 600 GNN 0.86 41.67 0.35
Nol: 1500’ T4 [8, 10] [4, 5] 600 GNN 0.90 22.50 0.09
' T5 [12,20] [2, 5] 400 GNN 0.73 32.08 0.40
T6 [2, 20] (2, 5] 4000 GNN 0.87 32.08 0.15

Note. |Z|: range of customer numbers; |K|: range of driver numbers; Nol: number of instances. T1 corresponds to
testing and training with the same scale, while T2—T5 all involve larger scales. Specifically, T2 has a larger customer
scale, T3 a larger driver scale, and T4 both scales increased. T5 represents overall large-scale instances, and T6 includes
all testing instances.

To simplify and clarify the results, we present the best-performing learning method and its learning
performance for uniformly sampled customers in Table 1, with its re-optimization performance in
Table 2. For clustered customers, the best learning method and its performance are shown in Table 3,
and the corresponding optimization performance is provided in Table 4. To differentiate between the
training and testing scales, we consider six testing types, each comprising distinct testing instances. T1
corresponds to the scenario where the testing scale aligns with the training scale. T2 pertains to cases
with a larger customer scale, while T3 refers to instances with a larger driver scale. T4 encompasses
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Table 2: Best Learning Method for Uniformly Sampled Customers in the Optimization Process.

Testing Scale Delivery Travel Run-

TG Tosting Type et od S Time | Time e
z] K| Nol Gap(%) Gap(%) ()
T1 2, 7] 2, 3] 1200 DCNN 2.10 2.10 1.19 5
Izl [2, 10]; T1 [2, 7] [4, 5] 1200 DCNN 0.94 0.94 0.15 5
ra [2’ 5, T1 8,100 [2,3] 600 DCNN 1.66 1.65 4.92 14
Nol: 3é00’ T1 [8, 10] [4, 5] 600 DCNN 1.66 1.68 10.42 30
: T5 [12,20] [2, 5] 400 GNN 1.19 1.23 16.76 457
T6 [2, 20] [2, 5] 4000 DCNN 1.56 1.56 2.75 40
T1 12, 7] 2, 3] 1200 DCNN 2.07 2.07 1.67 6
izl 2. 7] T2 2, 7] 4, 5] 1200 NDA 1.25 1.25 0.37 6
IKJ: [2’ 3]’. T3 [8, 10] 2, 3] 600 GNN 3.19 3.17 5.30 21
Nol: 1500’ T4 [8, 10] [4, 5] 600 GNN 1.89 1.92 12.13 33
’ T5 [12, 20] [2, 5] 400 GNN 1.73 1.77 17.56 406
T6 [2, 20] [2, 5] 4000 GNN 2.78 2.78 3.80 38
Table 3: Best Learning Method for Clustered Customers in the Learning Process.
Training . Testing Scale Best Allocation  Allocation
Scale Testing Type 7| K| Nol Method Accuracy Pct. (%) Std.
T1 2, 7] [2, 3] 1200 GNN 0.80 41.67 0.57
IZ): [2, 10]; T1 12, 7] [4, 5] 1200 GNN 0.90 22.50 0.09
IKl: [2’ 5}.’ T1 [8, 10] (2, 3] 600 GNN 0.73 41.67 0.29
Nol: 3é00’ T1 [8, 10] [4, 5] 600 GNN 0.88 18.71 0.45
: T5 [12,20] |2, 5] 400 GNN 0.69 32.08 0.76
T6 [2, 20] (2, 5] 4000 GNN 0.84 32.08 0.51
T1 2, 7] 12, 3] 1200 GNN 0.81 41.67 0.19
Izl [2, 7); T2 2, 7] [4, 5] 1200 GNN 0.89 22.50 0.35
IK: [2’ 3}’, T3 [8, 10] 2, 3] 600 GNN 0.70 41.67 0.76
Nol: 1500’ T4 [8, 10] [4, 5] 600 GNN 0.86 22.50 0.30
' T5 [12, 20] [2, 5] 400 GNN 0.69 32.08 0.17
T6 [2,20]  [2,5] 4000 GNN 0.83 32.08 0.94
Table 4: Best Learning Method for Clustered Customers in the Optimization Process.
Training ) Testing Scale Best Objective D.elivery ’I‘I:avel Run—
Scale Testing Type Method Gap(%) Time Time time
z] Kl Nol Gap(%) Gap(%) ()
T1 2, 7] 2, 3] 1200 DANN 1.88 1.86 2.08 6
Z]: 2, 10]: T1 2, 7] 4, 5] 1200 DANN 0.23 0.23 4.34 5
|’C|‘: [2’ 5].’ T1 [8,10] [2, 3] 600 GNN 1.16 1.12 11.79 12
Nol: 3600, T1 [8,10] [4, 5] 600 GNN 1.01 0.97 21.48 24
’ T5 [12, 20] [2, 5] 400 GNN 1.74 1.69 16.76 450
T6 [2,20] [2, 5] 4000 DANN 1.93 1.90 1.47 111
T1 [2, 7] [2, 3] 1200 GNN 2.35 2.33 4.30 7
Izl (2, 7; T2 2, 7] [4, 5] 1200 GNN 1.79 1.73 24.09 8
IK: [2’ 3]’. T3 [8, 10] 12, 3] 600 GNN 2.90 2.89 3.57 15
Nol: 1900, T4 [8,10] [4,5] 600 GNN 1.20 1.18 7.55 31
’ T5 [12, 20] [2, 5] 400 GNN 2.36 2.30 16.76 457
T6 [2,20] [2,5] 4000 GNN 2.07 2.07 9.01 38




Les Cahiers du GERAD G-2025-40 18

situations where both customer and driver scales are increased. T5 includes instances characterized by
larger overall scales, and T6 represents all testing instances. Both the training scale and testing scale
clearly show the range of customer and driver numbers. For the learning process, we present the best
method with the highest accuracy, along with its percentage and standard deviation of allocation plans.
For the optimization process, we display the best method with the lowest objective gap, including its
delivery time gap, total travel time gap, and optimization runtime. More details on the metrics can
be found in Section 5.1. Detailed performance results for each method under both uniformly sampled
customer and clustered customer cases are provided in Appendix B.

According to Tables 1 and 3, we find that GNN demonstrates the overall best performance in the
learning process with the highest accuracy under most scenarios, regardless of whether the testing
scale is included in the training set. In instances where both small and medium-scale datasets are
included in the training set, DCNN can achieve performance comparable to GNN for those scales.
In other words, GNN excels at generalizing and predicting decisions for larger-scale instances that
may not have been part of the training data. Both GNN and DCNN perform well if the scale of
future instances matches that of historical instances. This difference in performance arises because,
in DANN, the assignment decision for each driver-customer pair is considered independently, which
means there is no guarantee that each customer will be served by exactly one driver. This is evident in
the unstable allocation percentages observed with DANN (see Tables B2 and B4 in Appendix B). In
contrast, NDA, DCNN, and GNN ensure that at least one driver is allocated to serve each customer.
However, in NDA, the allocation of drivers to customers is based solely on the distances between
them. DCNN incorporates more features, leading to higher accuracy compared to NDA. Nevertheless,
DCNN still treats customers independently, as its goal is to find the best driver for each individual
customer. GNN, on the other hand, connects all customers and drivers through edges, ensuring that
every customer is served and allowing for control over the number of customers each driver serves by
summing edge labels.

Tables 2 and 4 display the optimal outputs when the estimated allocation decisions are used as
input for optimizing the restoration and refinement problem. First, we observe that higher accuracy
does not always correspond to a lower optimality gap. This is because there may be multiple good
solutions that yield low delivery times during the optimization process. Second, no single method
consistently outperforms the others in all cases. Overall, GNN has a smaller optimality gap, along
with lower delivery time and travel time, particularly in the clustered customer cases when the testing
scale exceeds the training scale. When the training scale includes the testing scale, DCNN tends
to have a smaller gap in scenarios with uniformly sampled customers, along with a lower allocation
standard deviation. In contrast, DANN exhibits a smaller gap in cases with clustered customers,
accompanied by a lower allocation percentage. A lower allocation standard deviation indicates a more
balanced workload among drivers, while a lower allocation percentage provides greater flexibility in
finding optimal allocation decisions during the optimization process.

A summary of the re-optimization results across both scenarios, based on different training pro-
cesses, is provided in Figure 6. Figure 6a displays the trade-off between expected runtime and op-
timality gap for the four methods across all scenarios, with circle size indicating sample size. In
terms of runtime for the optimization process, GNN proves to be the most efficient method, while
NDA and DANN are much more time-intensive. A lower runtime for optimization reflects that the
input-estimated allocation decisions provide a stronger lower bound. By using learning-to-optimize
techniques, we achieve optimal solutions in 30 seconds for medium-scale instances, and in 450 sec-
onds for large-scale instances. In contrast, pure optimization methods may take up to 3600 seconds
for medium-scale instances and may fail to converge within 3600 seconds for large-scale cases. Fig-
ure 6b presents relative performance metrics, including accuracy, objective gap, travel time gap, and
runtime efficiency, relative to the best approach among all methods. A value of 1 indicates the best
performance: highest accuracy, lowest objective gap, lowest travel time gap, and highest efficiency.
We conclude that GNN delivers the most comprehensive performance across metrics and scenarios,



Les Cahiers du GERAD G-2025-40 19

Travel Time Gap

600 | e o ]
®
o
o P
500
®g ©
400 1 L]
ci ® npA
e @ DANN ] ®
= 300 1 . DCNN Efficiengd Objlctive Gap
El @ GNN O
200 o e
i ° °
@ o
100 4 ® @ @ S )
e o
] 1] @ — noa
0 f = = - —— DANN
0 2 4 6 8 10 12 — DCNN Accuracy
Objective Gap (%) —— GNN
(a) Trade-off between optimality gap and runtime. (b) Relative performances of different metrics.

Figure 6: Comparison of performances in optimization of four learning methods.

consistently achieving the lowest optimization runtime and smallest optimality gap by providing an
effective lower bound.

Insight 3. In a learning-to-optimize framework, we can use learning to obtain a lower bound for
the allocation decision, which helps reduce the search space for optimization, thereby accelerating the
solution procedure.

Insight 4. Owverall, GNN performs the best with the highest accuracy, the smallest optimality gap,
efficient runtime, and superior scalability for larger instances not included in the training set.

Insight 5. In the learning-to-optimize framework, higher accuracy during the learning process does not
necessarily lead to a smaller optimality gap in the optimization process. A lower allocation percentage
allows for greater flexibility and may lead to a smaller gap, but at the cost of a longer optimization
runtime. A lower allocation standard deviation, indicating a balanced workload, may also imply a
shorter delivery time and lead to a smaller gap.

The four learning methods each have their own advantages and disadvantages. (1) NDA is simple
to implement and performs well without historical data, effectively generalizing with an increasing
number of drivers. However, it struggles with complex customer-driver interactions and performs
poorly with clustered customer distributions, as well as struggling to generalize with an increasing
number of customers. (2) DANN achieves high accuracy with sufficient training data and works well
for instances of similar scale, especially in cases with clustered customer distributions. However, it
is computationally inefficient, struggles to generalize with larger customer sets, and yields unstable
allocation percentages that can lead to longer travel times. (3) DCNN also achieves high accuracy
with sufficient data and works well for instances of similar scale, performing effectively with uniform
customer distributions. However, it requires extensive training data and careful tuning, and it strug-
gles to generalize with larger driver sets. (4) GNN excels at modeling complex interactions between
customers and drivers using structured graphs, achieving high accuracy across different scenarios while
being computationally efficient. It also generalizes well to instances with more customers and drivers.
However, it faces challenges in collecting sufficient historical samples, as each instance corresponds to
a single graph, and its highest accuracy may not always correlate with the lowest optimality gap. The
detailed evidence can be found in Tables B2 to B5 in Appendix B.

5.4 Experimentation in a dynamic environment

In the dynamic delivery problem, the waiting strategy, which groups customer orders based on arrival
time, can reduce total driver travel times for serving all customers but may increase order completion
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times (the duration from order placement to delivery). To evaluate the efficiency of different wait-
ing strategies and delivery systems, we simulate the dynamic experimentation process under various
waiting strategies with limited driver availability.

As shown in Figure 7, customers continuously arrive, and delivery can be optimized either imme-
diately upon order arrival to ensure the fastest delivery or after a fixed interval, optimizing delivery
for all batched customers. The simulation models customer arrivals as a Poisson process, with rates
varying from 4 to 10 customers every 10 minutes. Simulations are conducted over durations of one
and two hours, with the number of drivers ranging from 10 to 20. Each setup is repeated 40 times to
ensure robust results, simulating real-world conditions while keeping other parameters consistent with
the static model. For a given re-optimization interval, the system optimizes driver assignments and
routes to serve orders arriving during the interval and updates availability based on task completion
for the next interval. This process repeats with new customer arrivals at each interval. Performance
metrics such as completion time, wait time, delivery time, and travel time are recorded. The detailed
experimentation process is presented in Table C6 in Appendix C.1. Given limited drivers, two re-
optimization strategies are considered when no drivers are available within the rolling horizon. The
first strategy always fixes re-optimization time points and assigns customers to the earliest available
drivers if no driver is free, with results shown below. The second strategy delays optimization until
enough drivers are available, with details and a comparison of these strategies provided in Appendix C.

. [ o [ [ e o o e o o
Customer order arrival process: 8 Ea B & Br &A Bn B Bn B
Timeline
A 3 A -
1 1 1
. . . - 1
Re-optimization upon customer arrival: 1 ; |
i : |
1 ] 1
1
Re-optimization every 5 minutes: 1 i i
L —
N |
_
Re-optimization every 10 minutes:

Figure 7: Customer arrival process and dynamic experimentation process.

Figure 8a illustrates the trade-off between delivery time and wait time across re-optimization in-
tervals ranging from event-triggered to 20 minutes, resulting in a function that initially decreases and
then increases for order completion time, which includes both delivery and wait times. Under the
event-triggered strategy, delivery times are shorter, but wait times are significantly longer. This oc-
curs because drivers are immediately assigned to serve individual customers, resulting in fast delivery
but inefficient use of drivers. As a result, drivers are occupied with deliveries before they can serve the
next customer, and customers must wait longer for the earliest available driver, reducing overall driver
availability and increasing wait times. In contrast, the 20-minute re-optimization interval results in
longer delivery times but more moderate wait times. This is because more customers are batched
together and served by the same driver, improving the utilization of available drivers. However, since
each driver must serve more customers once dispatched, delivery times are longer. Additionally, as cus-
tomers must wait for batching, the wait time before re-optimization (i.e., before drivers are assigned)
increases as the re-optimization interval lengthens. Overall, the five-minute re-optimization interval,
which minimizes completion time, strikes a favorable balance between wait time and delivery time.
This interval ensures that customers spend minimal time waiting for an available driver while also
allowing for prompt delivery once the orders are assigned. Figure 8b displays the completion times
for three systems under varying re-optimization intervals. For all three systems, order completion
time initially decreases before increasing as the re-optimization interval extends. Notably, all systems
achieve the lowest order completion time with the 5-minute re-optimization interval among all waiting
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strategies. COD outperforms the other systems in extremely short re-optimization intervals, such as
the event-triggered and one-minute or two-minute intervals, while CODT excels across all other re-
optimization intervals. The detailed distribution of delivery time, wait time, travel time for serving one
additional customer, and customer scale for the three systems under different re-optimization intervals
is presented in Figure C1 in Appendix C.1.
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Figure 8: Completion time including wait time and delivery time.

Insight 6. Consolidated-order delivery is the most efficient system regarding order completion time
and average travel time for serving each customer under the event-triggered strategy or a short re-
optimization interval. This suggests that when there are few customers to serve, it is advantageous
for drivers to pick up all requests from different stores without transshipment and deliver them as a
combined order, as the savings in wait time outweigh the costs of delivery time.

Insight 7. Consolidated-order delivery with transshipment with a five-minute re-optimization interval
s the optimal choice, yielding the lowest order completion time among all delivery systems across
different waiting strategies. This approach entails connecting orders that arrive within each five-minute
interval, assigning the earliest available drivers to visit different stores, meeting at a transshipment node
to exchange items, and making a single delivery to fulfill all requests for each customer.

The best waiting strategy may vary depending on whether it is a busy or leisurely time for customer
arrivals and changes in driver availability. Figure 9 illustrates the best re-optimization interval that
results in the minimum order completion time across various customer arrival rates and different ratios
of the customer number to available driver number. As the customer arrival rate increases, the best
re-optimization interval also becomes larger, leading to a longer completion time. This indicates that
when customers arrive more frequently, it is beneficial to wait longer to optimize and fulfill orders.
Despite the increased completion time, this strategy still remains more efficient than the others. This
is because the reduction in wait time for available drivers outweighs the increase in delivery times.
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Figure 9: Best re-optimization interval for varying ratios of customer number to driver number.

This principle holds true regardless of the customer arrival rate, but it becomes more pronounced when
customers arrive more frequently. Moreover, as the ratio of customers to drivers increases, indicating a
more limited number of drivers available to serve the same number of customers at a consistent arrival
rate, it is advisable to wait longer. This is because once a driver is engaged in the early period, it
takes more time for them to become available to serve subsequent customers arriving later.

6 Conclusion

The multi-store consolidated-order delivery service allows customers to purchase products from mul-
tiple stores in a single transaction without additional delivery fees, ensuring all items are consolidated
and delivered in one combined delivery for greater convenience. This service provides customers with
the flexibility to shop across stores, compare prices, save on delivery fees, and receive all items in a
single delivery. For stores, it can boost sales by encouraging larger orders, while delivery platforms
benefit from reduced driver demand and lower travel times. However, challenges arise in managing
longer routes and extended delivery times when a single driver must detour to multiple stores for
pickups and then deliver items to various locations. Transshipment, which enables drivers to coordi-
nate and transfer items effectively at transshipment nodes, can mitigate this issue and further improve
efficiency.

We develop a mixed-integer linear program for the multi-store order problem with consolidation and
transshipment, which can also be adapted to variants without consolidation or transshipment. Solving
the model that incorporates complex routing and time variables using exact methods is computationally
intensive, particularly for large-scale instances. To overcome this problem, we implement a learning-
to-optimize framework that combines neural network-based learning methods with a restoration and
refinement optimization process. Using the learning-to-optimize method, the multi-store order problem
can achieve high-quality solutions efficiently. In the learning process for allocation plans, we implement
four methods, each with its own distinct advantages and disadvantages. The graph-based neural
network generally shows superior performance, achieving a better trade-off between optimality gap and
solution time while adapting well to larger scales not represented in the training set. This adaptability
is due to its ability to exchange information among nodes, edges, and globally. The nearest driver
allocation is the simplest to implement, requiring no training or historical samples. Both the driver
classification neural network and driver assignment neural network perform well when the testing scale
matches the training scale.

Through experiments conducted in various U.S. regions with varying customer locations and arrival
frequencies, we find that there is a trade-off between delivery time, which is the duration from order
pickup to delivery, and wait time, which is the duration from order placement to pickup. This indicates
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the existence of an optimal waiting strategy, influenced by factors such as customer arrival rates and
the ratio of drivers to customers. It is beneficial to wait longer to batch more customers in cases
of frequent customer arrivals and limited driver availability. Overall, the consolidated-order delivery
system with transshipment and a five-minute waiting strategy consistently outperforms the others in
terms of order completion time and driver travel time, regardless of customer arrival frequency or
driver availability relative to customer demand, due to its superior spatial and temporal consolidation.

Our work has some limitations that can be addressed in future research. In a rolling horizon
implementation, earlier-arriving orders should be prioritized over later ones when driver availability
is limited, and a piecewise linear function that increases with delivery time for each order could be
applied. Future research can also explore stochastic and dynamic programming approaches to address
uncertain and time-dependent travel conditions in consolidated delivery services. In our learning
process, classification neural networks and graph neural networks are applied independently. However,
other efficient machine learning algorithms may yield better performance. For instance, embedding
algorithms, which train models independently before combining them into a stronger overall model, or
ensemble learning algorithms, which sequentially train multiple models and aggregate their outputs,
can enhance performance beyond that of any single model.

Appendix A Summary of notation

The notation is presented in Table Al.

Table Al: Problem notation.

Index Description

T Set of customers

J Set of stores

K Set of drivers

N Set of nodes, including customers, stores, and driver initial locations
Parameters Description

eij Binary parameter indicating if customer ¢ orders from store j

i Index of item ordered by customer i from store j

Pij Size of item ij

q* Capacity of driver k

tun’ Travel time between nodes n and n’

[, Bi) Time window for customer ¢

Decisions Description

2k Binary variable indicating if driver k visits node n

CC’:Ln, Binary variable indicating if driver k travels from node n to node n’
y;;n, Binary variable indicating if item 4j travels from node n to node n/ during the trip
vl Binary variable indicating if item ij arrives at node n via driver k
vﬁl]_ Binary variable indicating if item ij departs from node n via driver k
T7’f+ Continuous variable specifying the time driver k arrives at node n
n’f* Continuous variable specifying the time driver k departs from node n
b Continuous variable specifying the arrival time of item ij at node n

Appendix B Detailed metrics of learning and optimization processes

We present the detailed performances of each method under both uniformly sampled customers and
clustered customers in this section. The learning performance for the uniformly sampled customers is
shown in B2, and the re-optimization performance is presented in Table B3. The learning performance
for the clustered customers is detailed in Table B4, with the corresponding optimization performance
displayed in Table B5.



Les Cahiers du GERAD G-2025-40

Table B2: Comparison of learning methods for uniformly sampled customers in the learning process.

Allocation
Training Scale Testing Scale Method Accuracy Percentage Allocation Std.
Tl (@, 7): NDA 0.79 41.67% 0.26
Kl (2, 9 DANN 0.82 44.02% 0.00
Nl 1300 DCNN 0.82 41.67% 0.18
o GNN 0.84 41.67% 0.30
Tl (@, 7 NDA 0.88 22.50% 0.39
Kl (4, DANN 0.82 29.95% 0.59
IZ]: (2, 7); Nol: 1500 DCNN 0.82 22.50% 0.61
IK): (2, 3); oF GNN 0.92 22.50% 0.70
Nol: 1200 NDA 0.78 41.67% 0.94
‘i'ﬂ ((82’ g(;) DANN 0.81 52.24% 0.28
l\r‘i- N DCNN 0.84 41.67% 0.56
o GNN 0.86 41.67% 0.35
NDA 0.85 22.50% 0.02
}%ﬂ ((i’ 15‘;) DANN 0.78 37.67% 0.42
Nk 600 DCNN 0.81 22.50% 0.43
o GNN 0.90 22.50% 0.09
NDA 0.71 32.08% 0.97
}ﬁ‘ﬂ ((122’52)9% DANN 0.69 14.39% 0.50
Nk a0 DCNN 0.69 32.08% 0.84
o GNN 0.73 32.08% 0.40
NDA 0.83 32.08% 0.07
}ﬁ‘ﬂ ((22’ 25(;) DANN 0.81 39.09% 0.22
Nol: 4000 DCNN 0.82 32.08% 0.59
o GNN 0.87 32.08% 0.15
Tl (@, 7 NDA 0.79 41.67% 0.26
m‘ =, 9; DANN 0.81 40.24% 0.04
ol 1900 DCNN 0.81 41.67% 0.09
o GNN 0.83 41.67% 0.31
Tl (@, 7): NDA 0.88 22.50% 0.39
Kl (4, DANN 0.89 20.55% 0.40
IZ]: (2, 10); Nk 1500 DCNN 0.91 22.50% 0.24
IK|: (2, 5); o GNN 0.92 22.50% 0.43
Nol: 3600 Z] (8, 10); NDA 0.78 41.67% 0.81
Kl (2. 3), DANN 0.82 49.18% 0.26
Nk 600 DCNN 0.84 41.67% 0.30
o GNN 0.82 41.67% 0.70
NDA 0.85 22.50% 0.02
}ﬁ‘; ((i’ 15‘;) DANN 0.85 28.75% 0.34
Nl 600 DCNN 0.90 22.50% 0.04
' GNN 0.89 22.50% 0.05
NDA 0.71 32.08% 0.20
}?‘1 ((122’52)9)’ DANN 0.69 37.09% 0.04
ol 400 DCNN 0.70 32.08% 0.59
o GNN 0.74 32.08% 0.55
NDA 0.83 32.08% 0.06
@j ((22’ 25‘;) DANN 0.84 32.38% 0.15
Nol: 4000 DCNN 0.86 32.08% 0.05

GNN 0.88 32.08% 0.15
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Table B3: Comparison of learning methods for uniformly sampled customers in the optimization process.

Objective Delivery Time Travel Time Runtime

Training Scale Testing Scale Method Gap (%) Gap (%) Gap (%) (s)

NDA 3.06 3.06 1.18 7

I%’. ((22’ 73))’_ DANN 2.97 2.96 4.31 11

Nol: 1300 DCNN 2.07 2.07 1.67 6

oL GNN 3.21 3.2 1.55 6

Tl (@, 7), NDA 1.25 1.25 0.37 6

qu ( N 5)1 DANN 5.53 5.48 43.79 26

IZ|: (2, 7); N 1500 DCNN 10.04 10.01 11.9 10

IK|: (2, 3); ot GNN 2.73 2.72 1.49 6

Nol: 1200 1 (8, 10): NDA 8.26 8.24 2.77 103

IICI" (2’ 3)_’ DANN 6.89 6.89 11.04 200

ol 600 DCNN 3.78 3.78 2.19 28

o GNN 3.19 3.17 5.3 21

NDA 2.1 2.14 11.94 133

I%’, ((i’ 15(;) DANN 4.2 4.24 23.79 206

NoL: 660 DCNN 12.19 12.28 27.11 86

o GNN 1.89 1.92 12.13 33

NDA 3.49 3.47 3.74 483

I%’. ((122’52)_0)’ DANN 5.48 5.47 1.84 607

Nol: 100 DCNN 2.29 2.33 18.38 532

o GNN 1.73 1.77 17.56 406

NDA 2.81 2.8 2.32 50

Iﬂj ((22’ %rg) DANN 4.54 4.56 19.98 92

Nol: 4000 DCNN 6.01 6.03 9.9 53

o GNN 2.78 2.78 3.8 38

NDA 3.06 3.06 1.18 7

Iﬁl'_ ((22’ ?)1 DANN 2.28 2.28 0.33 9

ol 1300 DCNN 2.10 2.10 1.19 5

oF GNN 3.07 3.07 0.77 5

NDA 1.25 1.25 0.37 6

I%‘, ((i’ 75))1 DANN 1.49 1.48 4.36 8

IZ): (2, 10); Nok: 1500 DCNN 0.94 0.94 0.15 5

IK|: (2, 5); oF GNN 2.19 2.19 3.22 5

Nol: 3600 Z] (8, 10); NDA 8.26 8.24 2.77 103

IICI.' (2’ 3)_’ DANN 4.03 4.01 6.57 154

Nol: 600 DCNN 1.66 1.65 4.92 14

or GNN 2.82 2.81 4.46 12

NDA 2.1 2.14 11.94 133

Iﬂlj ((i’ é(;) DANN 1.89 1.91 7.17 133

Nl 600 DCNN 1.66 1.68 10.42 30

o GNN 2.13 2.15 7.4 25

NDA 3.49 3.47 3.74 483

Iﬁ{- ((122’52)9)’ DANN 5.20 5.18 2.99 607

ol 400 DCNN 1.63 1.67 17.51 528

oF GNN 1.19 1.23 16.76 457

NDA 2.81 2.8 2.32 50

I%‘, ((22’ 25())) DANN 2.32 2.31 2.76 67

Nol: 1000 DCNN 1.56 1.56 2.75 40

oL GNN 2.52 2.51 1.39 35
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Table B4: Comparison of learning methods for clustered customers in the learning process.

Allocation
Training Scale Testing Scale Method Accuracy Percentage Allocation Std.
Tl (@, 7): NDA 0.64 41.67% 0.30
Kl (2, 9 DANN 0.73 37.43% 0.01
Nl 1300 DCNN 0.77 41.67% 0.58
o GNN 0.81 41.67% 0.19
Tl (@, 7 NDA 0.78 22.50% 0.90
Kl (4, DANN 0.76 23.11% 0.51
IZ]: (2, 7); Nl 1900 DCNN 0.82 22.50% 0.26
IK): (2, 3)); oF GNN 0.89 22.50% 0.35
Nol: 1200 2] (8, 10); NDA 0.58 41.67% 0.7
UC\.' (2’ 3),’ DANN 0.63 63.14% 0.12
Nt 600 DCNN 0.63 41.67% 0.67
o GNN 0.70 41.67% 0.76
NDA 0.8 22.50% 1.36
@j ((i’ 15(;) DANN 0.70 27.04% 0.67
Nk 600 DCNN 0.80 22.50% 0.58
o GNN 0.86 22.50% 0.30
NDA 0.60 32.08% 0.91
}ﬁ‘l ((122’52)9)’ DANN 0.63 68.31% 0.566
Nk a0 DCNN 0.63 32.08% 0.76
o GNN 0.69 32.08% 0.17
NDA 0.70 32.08% 0.54
}ﬁ‘; ((22’ 25(;) DANN 0.73 33.81% 0.27
Nol: 4000 DCNN 0.78 32.08% 0.55
o GNN 0.83 32.08% 0.94
Tl (@, 7 NDA 0.64 41.67% 0.30
“q" =, 9; DANN 0.72 28.49% 0.51
ol 1900 DCNN 0.77 41.67% 0.93
o GNN 0.80 41.67% 0.57
Tl (@, 7): NDA 0.78 22.50% 0.90
Kl (4, DANN 0.86 17.48% 1.37
IZ]: (2, 10); Nk 1500 DCNN 0.90 22.50% 0.03
IK): (2, 5); o GNN 0.90 22.5% 0.09
Nol: 3600 Z] (8, 10); NDA 0.58 41.67% 0.11
Kl (2. 3), DANN 0.65 38.15% 0.19
Nk 600 DCNN 0.72 41.67% 0.21
o GNN 0.73 41.67% 0.29
NDA 0.80 18.71% 0.35
}ﬁ‘; ((i’ 15‘;) DANN 0.84 18.53% 0.92
Nl 600 DCNN 0.86 18.71% 0.07
o GNN 0.88 18.71% 0.45
NDA 0.60 32.08% 0.28
}?‘1 ((122’52)9)’ DANN 0.66 31.11% 0.59
ol 400 DCNN 0.66 32.08% 0.30
o GNN 0.69 32.08% 0.76
NDA 0.70 32.08% 0.61
@j ((22’ 25‘;) DANN 0.78 20.31% 0.88
Nol: 4000 DCNN 0.82 32.08% 0.63

GNN 0.84 32.08% 0.51
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Table B5: Comparison of learning methods for clustered customers in the optimization process.

Objective  Delivery Time Travel Time Runtime

Training Scale Testing Scale Method Gap(%) Gap(%) Gap(%) (s)

iz (2, 7); NDA 3.64 3.58 25.77 14

Kl (2. 3) DANN 2.94 2.92 8.61 24

Nol: 1300 DCNN 3.54 3.53 9.96 10

o GNN 2.35 2.33 4.3 7

Tl (@, 7), NDA 2.74 2.62 62.36 19

Kl (4. 5): DANN 3.40 3.28 58.73 43

IZ): (2, 7); Nol: 1500 DCNN 4.90 4.87 9.08 13

IK|: (2, 3); or GNN 1.79 1.73 24.09 8

Nol: 1200 Z]: (8, 10); NDA 10.71 10.69 12.31 152

IICI" (2’ 3)_’ DANN 11.72 11.69 20.47 311

Nol: 600 DCNN 4.35 4.30 14.55 82

o GNN 2.90 2.89 3.57 15

NDA 5.72 5.63 39.31 127

Iﬁl" ((i’ 15(;) DANN 4.21 4.11 41.43 264

Nol: 600 DCNN 6.46 6.38 23.95 93

o GNN 1.20 1.18 7.55 31

NDA 11.62 11.57 3.4 574

I%’. ((122’52)_0)’ DANN 10.62 10.59 12.5 607

Nol: 400 DCNN 4.06 4.00 17.51 542

o GNN 2.36 2.30 16.76 457

NDA 4.65 4.58 36.19 47

Iﬂli‘ ((22’ 25(;) DANN 4.53 4.48 29.79 109

Nol: 4000 DCNN 4.39 4.36 12.09 55

o GNN 2.07 2.07 9.01 38

iz (2. 7); NDA 3.64 3.58 25.77 14

IICI.' (2’ 3)’, DANN 1.88 1.86 2.08 41

Nol: 1300 DCNN 4.56 4.55 9.97 7

ot GNN 2.65 2.64 3.17 6

] (@2, 7 NDA 2.74 2.62 62.36 19

Kl (4. 5) DANN 0.23 0.23 4.34 50

IZ): (2, 10); Nok: 1500 DCNN 2.75 2.72 4.14 6

IK|: (2, 5); o GNN 1.68 1.64 23.44 5

Nol: 3600 Z] (8, 10); NDA 10.71 10.69 12.31 152

Kl (2 3) DANN 6.22 6.22 5.96 329

Nol: 600 DCNN 5.18 5.15 11.74 83

or GNN 1.16 1.12 11.79 12

NDA 5.72 5.63 39.31 127

Iﬂli‘ ((i’ é(;) DANN 1.18 1.13 12.16 163

Nol: 600 DCNN 2.99 2.97 11.53 35

or GNN 1.01 0.97 21.48 24

NDA 11.62 11.57 3.40 574

Iﬂlj ((122’52)9)’ DANN 6.52 6.50 10.02 607

Nol: 400 DCNN 2.08 2.03 17.51 525

ot GNN 1.74 1.69 16.76 450

NDA 4.65 4.58 36.19 47

I?", ((22’ 25())) DANN 1.93 1.90 1.47 111

Nol: 4000 DCNN 3.60 3.57 8.89 46

o GNN 1.96 1.95 11.10 34
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Appendix C Dynamic experiments

C.1 Dynamic experiments with earliest-available-driver-assignment strategy

The detailed experimentation process for earliest-available-driver-assignment strategy is shown in Ta-

ble C6.

Table C6: Dynamic Experimentation Process.

Step Description

Initialization Initialize the experimentation with the following elements:

Define the customer arrival process as a Poisson process with a specified arrival rate. Set
service duration |7 to 1 or 2 hours. Generate customer arrival times a; for each customer
i € T who arrives within this duration.

Let |K| available drivers serve customers who order from store j € |J|. For driver k € K,
generate their origin node and set availability time 7,, = 0. Additionally, determine the
locations of both customers and stores.

Define the re-optimization intervals, which can vary from event-triggered (e.g., upon a new
customer arrival) to a fixed interval (e.g., 10 minutes). Obtain the set of optimization
time points {po, p1,p2,...,pr}, and define the final time P for the experimentation.

Step 1 For the initial period t = 0, corresponding to the time interval [po, p1], optimize the system at
the time point p1,

Input the information, including the customers that arrive within this period (i.e., i € Zp
where Zp = {i € Z|po < a; < p1}) and place orders from stores j € J, as well as the
drivers k € KC with their available times to serve customers being 75, = 0.

Run the optimization problem to assign drivers to customers and plan their routes. If
no drivers are currently available, customers are assigned to the earliest available drivers
who can serve the orders once they complete their assigned tasks.

Update the drivers’ availability times based on the completion time of their last served
customer (i.e., To, < MmaX;ey, {Tf_}), and set the driver location to the last served
customer location.

Record the number of customers served in the interval [po, p1], as well as the completion
time, wait time, delivery time, and expected travel time for each customer.

Step 2 While ¢t < |T| — 1, repeat the following steps:
Increment ¢ and update the time interval to [p¢, pr+1]. Optimize the system at the time point

Pt+1,

Input the information, including the customers that arrive within this period (i.e., i € Z;
where 7, = {i € T | pt < a; < pt+1}) and place orders from stores j € J, as well as the
drivers k € K with their earliest available times to serve customers being Toy, -

Run the optimization problem to assign drivers to customers and plan their routes. If
no drivers are currently available, customers are assigned to the earliest available drivers
who can serve the orders once they complete their assigned tasks.

Update the drivers’ availability times based on the completion time of their last served
customer (i.e., To, ¢ max;cr, {Tik_}), and set the driver location to the last served
customer location.

Record the number of customers served in the interval [p¢, pe11], as well as the completion
time, wait time, delivery time, and expected travel time for each customer.

Output The experimentation outputs include the total number of customers served during each time
interval, and for each customer, the order completion time, wait time, delivery time, and expected
travel time.

The dynamic experimentation results for earliest-available-driver-assignment strategy, including
delivery time, wait time, travel time per customer, and customer scale under varying re-optimization
intervals, are shown in Figure C1.
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Figure C1: Delivery time, wait time, travel time, and customer number under varying re-optimization intervals.
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C.2 Dynamic experiments with driver-availability-triggered strategy

We present the dynamic experimentation process with driver-availability-triggered optimization in
Table C7.

Table C7: Dynamic experimentation process with driver-availability-triggered optimization.

Step Description

Initialization Initialize the experimentation with the following elements:

e Define the customer arrival process as a Poisson process with a specified arrival rate. Set
service duration |7 to 1 or 2 hours. Generate customer arrival times a; for each customer
¢ € T who arrives within this duration.

o Let |K| available drivers serve customers who order from store j € |J|. For driver k € K,
generate their origin node and set availability time 7,, = 0. Additionally, determine the
locations of both customers and stores.

e Define the re-optimization intervals, which can vary from event-triggered (e.g., upon a new
customer arrival) to a fixed interval (e.g., 10 minutes). Obtain the set of optimization
time points {po,p1,p2,...,pr}, and define the final time P for the experimentation.

Step 1 For the initial period ¢ = 0, corresponding to the time interval [pg,p1], if there are available
drivers k € {k € K|og < p1}, optimize the system at the time point p1,

e Input the information, including the customers that arrive within this period (i.e., ¢ € Zg
where Zp = {i € Z|po < a; < p1}) and place orders from stores j € J, as well as the
drivers k € KC with their available times to serve customers being 75, = 0.

e Run the optimization problem to assign available drivers to customers and plan their
routes.

e Update the drivers’ availability times based on the completion time of their last served
customer (i.e., 7o, < maX;cg, {Tiki}), and set the driver location to the last served
customer location.

e Record the number of customers served in the interval [po, p1], as well as the completion
time, wait time, delivery time, and expected travel time for each customer.

Step 2 While ¢t < |T| — 1, repeat the following steps:
Increment ¢ and update the time interval to [p¢,pe+1]. If there are available drivers k € {k €
Klok < pt+1}, optimize the system at the time point p¢41,

e Input the information, including the customers that arrive within this period (i.e., ¢ € Z¢
where Zy = {i € Z | p+ < a; < pt+1}) and place orders from stores j € 7, as well as the
drivers k € KC with their earliest available times to serve customers being 7o, .

e Run the optimization problem to assign available drivers to customers and plan their
routes.

e Update the drivers’ availability times based on the completion time of their last served
customer (i.e., To, maxie[t{qk_}), and set the driver location to the last served
customer location.

e Record the number of customers served in the interval [p¢, pi+1], as well as the completion
time, wait time, delivery time, and expected travel time for each customer.

Output The experimentation outputs include the total number of customers served during each time
interval, and for each customer, the order completion time, wait time, delivery time, and expected
travel time.

Under the dynamic experimentation with the driver-availability-triggered strategy, Figure C2a
presents the order completion time, including delivery and wait times, for consolidated-order delivery
with transshipment (CODT). Although the trade-off between delivery and wait times disappears un-
der this strategy, the order completion time still follows a smooth pattern, with trends that initially
decrease and then increase. The five-minute re-optimization interval yields the lowest delivery time,
while the six-minute interval achieves the lowest wait time and overall order completion times. Fig-
ure C2b compares completion times across the three systems under varying intervals, while Figure C3
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provides detailed distributions of delivery time, wait time, travel time per customer, and customer
scale. CODT consistently outperforms the other systems in order completion time, delivery time, and
driver travel time per customer. Figure C4 highlights the best re-optimization interval that minimizes
order completion time across varying customer arrival rates and customer-to-driver ratios. As ar-
rival rates or customer-to-driver ratios increase, longer re-optimization intervals are optimal, reflecting
the benefit of waiting longer to batch and fulfill orders. These findings align with insights from the
earliest-available-driver-assignment strategy.
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Figure C2: Completion time under varying re-optimization intervals for the driver-availability-triggered strategy.

C.3 Comparison between earliest-available-driver-assignment strategy and
driver-availability-triggered strategy

We compare the earliest-available-driver-assignment strategy with the driver-availability-triggered
strategy in this section. As shown in Figures 8a and C2a, the best completion time under the driver-
availability-triggered strategy, at 34.0 minutes, is higher than the best time of 33.6 minutes under
the earliest-available-driver-assignment strategy. Therefore, we conclude that fixed-interval optimiza-
tion with the earliest-available-driver-assignment strategy is slightly superior to the driver-availability-
triggered strategy.

Table C8 presents the best re-optimization intervals and corresponding minimum completion times
across different customer arrival rates and customer-to-driver ratios, highlighting how the optimal wait-
ing strategy varies. Overall, the earliest-available-driver-assignment strategy consistently outperforms
the driver-availability-triggered strategy, though the gap is small. The best re-optimization interval
for the driver-availability-triggered strategy is approximately one minute longer, as both shorter and
longer intervals can result in larger batching sizes and longer completion times in this approach. In
summary, a shorter-duration waiting strategy is optimal for the consolidated-order delivery system
with transshipment.
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Figure C3: Delivery time, wait time, travel time, and customer number under varying re-optimization intervals for the
driver-availability-triggered strategy.
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Figure C4: Best re-optimization interval for varying ratios of customer number to driver number.

Table C8: Comparison between earliest-available-driver-assignment strategy and driver-availability-triggered strategy.

Customer to Arrival Rate Earliest-available-driver- Driver-availability-triggered
Driver Ratio (Num. of assignment Strategy Strategy
ztzt:)nizriﬁns) Best Minimum Best Minimum
Y Re-optimization Completion Re-optimization Completion
Interval (mins) Time (mins) Interval (mins) Time (mins)

1 4 3 29.40 3 29.64

1 6 4 30.14 4 30.17

1 8 4 30.99 4 31.53

1 10 4 31.42 5 31.60

2 4 3 29.45 3 29.84

2 6 4 30.44 5 30.52

2 8 4 31.61 5 32.17

2 10 6 32.61 5 32.80

3 4 4 30.04 4 30.00

3 6 5 31.19 5 31.47

3 8 5 32.63 5 32.40

3 10 6 32.85 6 33.00

4 4 4 30.60 4 30.43

4 6 5 31.58 5 31.76

4 8 5 33.00 5 33.21

4 10 6 33.20 7 33.80

5 4 4 30.67 4 30.79

5 6 5 32.04 6 32.66

5 8 5 33.27 6 33.37

5 10 9 33.62 9 34.00

6 4 4 31.29 6 31.88

6 6 6 32.30 6 32.70

6 8 6 33.88 6 33.90

6 10 9 34.30 9 34.30
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