
Les Cahiers du GERAD ISSN: 0711–2440

Learning-to-optimize for consolidation and transshipment
in multi-store order delivery

X. Wang, O. Arslan, J.-F. Cordeau, E. Delage

G–2025–40

June 2025

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : X. Wang, O. Arslan, J.-F. Cordeau, E. De-
lage (Juin 2025). Learning-to-optimize for consolidation and
transshipment in multi-store order delivery, Rapport technique, Les
Cahiers du GERAD G– 2025–40, GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2025-40) afin de mettre
à jour vos données de référence, s’il a été publié dans une revue
scientifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: X. Wang, O. Arslan, J.-F. Cordeau,
E. Delage (June 2025). Learning-to-optimize for consolidation
and transshipment in multi-store order delivery, Technical report,
Les Cahiers du GERAD G–2025–40, GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2025-40) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec à Montréal, ainsi que du Fonds de
recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2025
– Bibliothèque et Archives Canada, 2025

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds de
recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2025
– Library and Archives Canada, 2025

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2025-40
https://www.gerad.ca/en/papers/G-2025-40
https://www.gerad.ca/en/papers/G-2025-40

Learning-to-optimize for consolidation and transshipment
in multi-store order delivery

Xin Wang

Okan Arslan

Jean-François Cordeau

Erick Delage

Department of Decision Sciences & GERAD,
HEC Montréal, Montréal (Qc), Canada, H3T 2A7

xin.wang@hec.ca

okan.arslan@hec.ca

jean-francois.cordeau@hec.ca

erick.delage@hec.ca

June 2025
Les Cahiers du GERAD
G–2025–40
Copyright © 2025 Wang, Arslan, Cordeau, Delage

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:

• Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

Les Cahiers du GERAD G–2025–40 ii

Abstract : This study investigates multi-store order delivery services where customers can order from
multiple stores for home delivery. We first consider separated-order delivery, where orders from different
stores are processed and delivered individually. To improve customer convenience and operational
efficiency, we introduce consolidated-order delivery, enabling customers to place a single order across
stores and receive all items in one combined delivery. While this enhances convenience, it can increase
delivery times due to additional routing for visiting multiple stores. To mitigate this shortcoming, we
propose a consolidated-order delivery system with transshipment, allowing drivers to transfer orders
at transshipment nodes for higher efficiency. We develop a mixed-integer linear program for the
multi-store order problem that models different delivery systems, including separated-order delivery
and consolidated-order delivery with or without transshipment. Due to computational challenges
arising from routing decisions and time variables, we adopt a learning-to-optimize approach that
integrates machine learning and optimization. Four methods are implemented for learning driver
allocation decisions: Nearest Driver Allocation, Driver Assignment Neural Network (DANN), Driver
Classification Neural Network (DCNN), and Graph-based Neural Network (GNN). Our experimental
study reveals that GNN consistently performs the best in terms of accuracy, optimality gap, efficiency,
and scalability to larger problem instances beyond the training set. The DCNN and DANN are effective
with sufficiently large training sets and perform well when the instance scale in the testing set aligns
with the training set. We conduct experiments across four U.S. regions using the learning-to-optimize
method in a realistic setting with dynamic customer arrivals. We find that consolidated-order delivery
with transshipment, coupled with a short-duration waiting strategy, consistently delivers superior
performance, yielding shorter order completion times and reduced driver travel times through effective
spatial and temporal consolidation. Waiting longer to batch more customers is advantageous under
conditions of frequent customer arrivals and limited driver availability.

Keywords : Last-mile delivery, consolidation and transshipment, pickup and delivery, learning-to-
optimize, neural network

Les Cahiers du GERAD G–2025–40 1

1 Introduction

Online meal and grocery delivery services emerged in the early 2000s and experienced substantial

growth soon thereafter. This expansion accelerated between 2010 and 2020, with a dramatic surge in

2020 due to the global pandemic. By 2024, the online delivery market has reached a volume of USD

1.22 trillion, with projections indicating further growth to USD 1.79 trillion by 2028 (Statista 2024).

To access a wider variety of products or enjoy the convenience of home delivery, customers in-

creasingly rely on online delivery services for items from multiple types of stores, such as meals from

restaurants, fresh produce from grocery stores, or emergency medicine from pharmacies. Companies

such as UberEats and DoorDash provide a multi-store order service that caters to customers who

prefer the convenience of home delivery over visiting multiple stores in person, especially when they

are pressed for time. These platforms conventionally adopt separated-order delivery (SOD), a system

where orders from different stores are treated as distinct transactions and delivered individually. Cus-

tomers place separate orders from each store, incurring separate delivery fees for each, while drivers

handle pickups and deliveries for each order independently. Although this model provides convenient

access to products from multiple stores, it can be inefficient and costly due to multiple delivery fees and

minimum order requirements for each store. Recently, companies such as DoubleDash (DoorDash),

Instacart, and Epipresto have started offering what we term consolidated-order delivery (COD) ser-

vices. These services allow customers to order from multiple stores in a single transaction, receiving

all items as a combined delivery, typically without an added delivery fee. For instance, DoubleDash

(2023) and Instacart (2022) allow customers to add items from nearby retailers to their original or-

der without an additional delivery charge, ensuring that all items are delivered together by the same

driver. Similarly, Epipresto (2023) enables customers to shop from multiple stores at in-store prices

with a fixed delivery fee, regardless of distance. This consolidated-order model offers multiple benefits:

customers save on delivery fees, enjoy the convenience of placing one order for all needed products,

and have a single delivery experience. Meanwhile, companies may benefit from a decreased need for

drivers, reduced delivery costs, and increased sales. Despite these benefits, consolidated-order delivery

can introduce new challenges to delivery efficiency. A single driver responsible for picking up and

delivering items from multiple stores may face extended delivery times, particularly when fulfilling or-

ders from far apart store locations to multiple customers. To overcome these limitations and optimize

the delivery process, we propose a model that divides multi-store orders among several drivers, who

can then transfer orders through transshipment. In the consolidated-order delivery with transshipment

(CODT) system, a customer’s multi-store order is distributed among multiple drivers, each responsible

for pickups from different stores. These orders are then transferred at selected transshipment nodes,

potentially assigned to a different driver, and delivered as one package to the customer’s doorstep. This

collaborative approach offers the combined benefits of consolidation with enhanced efficiency, reducing

overall delivery time and improving route management for drivers handling multi-store, multi-customer

orders.

To quantify the value of enabling order consolidation and transshipment for fulfilling multi-store

orders in a combined delivery, we develop a mixed integer linear program (MILP) that models three

delivery systems: separated-order delivery, consolidated-order delivery without transshipment, and

consolidated-order delivery with transshipment. The MILP for multi-store order services presents sub-

stantial computational challenges. From the drivers’ perspective, this problem resembles a complex

vehicle routing problem involving multiple store and customer locations. Conversely, the journey of

each item can be viewed as a shortest path problem within a network defined by the drivers’ delivery

routes, starting at the store and ending at the customer. This requires precise tracking of each item and

driver’s arrival and departure times to meet time windows and ensure timely deliveries. To mitigate

the significant solution times for solving the MILP directly, we adopt a learning-to-optimize approach.

This method replaces the traditional optimization process with a machine learning-based approxima-

tion (i.e., an optimization proxy). The learning model estimates allocation decisions, identifying which

drivers should pick up items from stores and which should deliver them to customers. These estimated

Les Cahiers du GERAD G–2025–40 2

allocations are subsequently refined through an MILP with a reduced search space, significantly en-

hancing computational efficiency and enabling practical implementation. We evaluate three delivery

systems in a simulated dynamic setting, where both customer arrivals and the optimization process

occur in real-time, making time and space consolidation crucial. The system can optimize deliveries

immediately as each customer arrives or wait to batch multiple customers for joint optimization. This

analysis helps identify the most efficient delivery system under various waiting strategies.

The four main contributions of this paper are as follows:

• We investigate three delivery systems for multi-store order services, where customers place orders

across multiple stores for home delivery. Beyond separated-order delivery, in which each order

from each store is handled separately, we propose consolidated-order delivery, with or without

transshipment. Consolidated-order delivery enables customers to order from multiple stores in

a single transaction and receive all items as a combined delivery, while transshipment further

allows for driver coordination and order transshipment to enhance delivery efficiency.

• We formulate a mixed-integer linear program to model the multi-store order problem (MSOP)

across all three delivery systems. To address the computational demanding problem of optimizing

both routing and transfer decisions, we adopt a learning-to-optimize approach that integrates

machine learning with optimization. In this framework, the estimated allocation decisions act

as a lower bound within the optimization process. This process not only refines the allocation

decisions but also optimizes additional decisions that are not directly learned. By offloading

a portion of the computational workload to the offline phase, this approach enables the near

real-time generation of high-quality solutions.

• We implement four methods to obtain the estimated allocation plans efficiently. Nearest Driver

Allocation (NDA) identifies the closest driver for each customer. Driver Assignment Neural

Network (DANN) uses binary predictions to assign customers to drivers, treating each driver

independently. Driver Classification Neural Network (DCNN) frames the allocation of customers

to drivers as a classification problem, with each driver representing a unique class. Finally,

Graph-based Neural Network (GNN) models each instance as a graph and treats customer-to-

driver allocation as edge labels to be learned.

• We conduct numerical experiments across various U.S. regions with varying customer arrival

rates, comparing the performance of our three delivery systems and four learning methods. The

following insights are derived:

– By applying a learning-to-optimize approach, we enhance the solution efficiency of the

multi-store order problem and obtain high-quality solutions. This approach involves learning

allocation decisions for assigning drivers to visit nodes based on historically optimal samples,

which narrows the feasible solution space and facilitates effective decision-making within this

refined search area.

– The GNN outperforms other methods, achieving a better balance between optimality gap

and solution time while also scaling well to larger instances beyond the training set, due to

its ability to facilitate information exchange. However, it requires significant effort to collect

sufficient historical samples, as each instance corresponds to a single graph. The NDA is

simple to implement, requiring no training or historical samples, but struggles with clustered

customer locations. Both the DCNN and DANN perform well when the test instance scale

matches the training data but face challenges adapting to larger-scale instances.

– We identify a balance between batching efficiency and individual order fulfillment. As more

orders are batched for joint optimization, delivery times rise due to longer routes, but wait

times initially drop significantly because batching makes better use of drivers. However,

beyond a certain point, extending the re-optimization interval leads to increased wait times

as customers experience longer delays before being served. Consequently, the total order

completion time, which includes both wait and delivery times, initially decreases, reaching

a minimum before increasing again. This indicates the existence of an optimal waiting

Les Cahiers du GERAD G–2025–40 3

strategy, influenced by factors such as customer arrival rates and the ratio of drivers to

customers.

– Consolidated-order delivery shows increasing efficiency over separated-order delivery as cus-

tomer scale grows, since consolidating orders from multiple stores effectively reduces both

delivery and driver travel times. The COD with transshipment and a short-duration waiting

strategy consistently achieves the best performance in delivery and travel times, regardless

of customer or driver scales.

The rest of the paper is organized as follows. We review related work in Section 2. Next, we

define the problem setting, describe our three delivery systems, and present the models for these

systems in Section 3. We develop the learning-to-optimize method in Section 4 and report the results

of numerical studies comparing the performance of our proposed models and their solution quality in

Section 5. Finally, we conclude with managerial insights in Section 6.

2 Literature review

In this section, we review the main studies relevant to our research from three points of view: last-mile

delivery, pickup and delivery problem, and learning-based optimization.

2.1 Last-mile delivery

Last-mile delivery, referring to delivery from distribution points or transshipment nodes to customer

locations, is critical in online food and grocery delivery. Savelsbergh and Van Woensel (2016) review

various current and anticipated challenges and opportunities in last-mile logistics, highlight the grow-

ing customer demands for price, quality, time, and sustainability, and emphasize the importance of

batching in city logistics for improvement in the cost-efficiency while acknowledging the risk of delayed

fulfillment.

In the field of on-time last-mile delivery for food and groceries, most research focuses on improv-

ing service quality through faster delivery or enhancing efficiency by reducing costs. This is achieved

through demonstrating the importance of on-demand delivery using empirical evidence, optimizing

the assignment of drivers to customers or driver routing for dispatching items, or proposing novel

business models and applying learning techniques to improve the overall efficiency of the delivery sys-

tem. From an empirical perspective, Mao et al. (2022) and Li and Wang (2024), demonstrate the

benefits of on-demand platforms for delivery performance and restaurant profitability. From an opti-

mization perspective, Liu et al. (2021) address order assignment problem with travel-time predictors

to investigate the impact of delivery data on the on-time performance of food delivery services. Zhang

et al. (2023) develop scalable algorithms for optimizing routing operations and vehicle-customer coor-

dination in a dynamic setting to improve profitability, service, and environmental impact. Moreover,

Carlsson et al. (2024) propose region partitioning policies to minimize delivery times in a stochastic

and dynamic setting by assigning drivers to subregions. In terms of novel business models, Cao and

Qi (2023) introduce self-driving mini grocery stores to enhance mobility, proximity, and flexibility of

grocery delivery by avoiding the last 100 meters. Additionally, Raghavan and Zhang (2024) explore

coordinated logistics by evaluating the value of using aides who can assist drivers in last-mile delivery

to reduce service time and enable parallel deliveries. From the learning perspective, Hildebrandt and

Ulmer (2022) improve delivery systems by predicting accurate arrival times, enhancing service percep-

tion and efficiency. Similarly, Auad et al. (2024) propose a deep reinforcement learning approach for

balancing courier capacity with service quality in meal delivery systems.

We aim to provide efficient on-demand, on-time delivery for food and groceries, ensuring fast

delivery for customers while minimizing driver travel times. Our proposed setting allows customers

to order from multiple stores and receive all items in one delivery for more convenience. Drivers can
coordinate at intermediate points to transfer orders, with any driver able to complete the delivery.

Les Cahiers du GERAD G–2025–40 4

However, this setup creates a complex pickup and delivery problem, which we will address using

mathematical programming formulations and efficient solution techniques.

2.2 Pickup and Delivery Problem

The Pickup and Delivery Problem (PDP) is a classical combinatorial optimization problem concerned

with optimizing vehicle routes for picking up and delivering goods or passengers at various locations.

Its primary goal is the efficient movement of vehicles to minimize transportation costs. The PDP is

an extension of the Vehicle Routing Problem (VRP), first introduced by Dantzig and Ramser (1959).

There are several variants of the PDP, including single-vehicle or multiple-vehicle PDP, dynamic PDP,

many-origin-to-many-destination PDP, PDP with time windows, PDP with split delivery, and PDP

with transshipment, among others. Berbeglia et al. (2010) provide a general framework for dynamic

PDPs, where objects or people need to be collected and delivered in real-time, with requests revealed

over time. They also explain how to design waiting strategies and assess their performance. Addition-

ally, Koç et al. (2020) conduct a detailed survey of vehicle routing problems with simultaneous pickup

and delivery, where goods must be transported from various origins to different destinations, satisfying

both delivery and pickup demands concurrently.

In the context of the many-to-many PDP with transshipment that we are interested in, the pickup

loads and delivery processes can be split among drivers, with items exchanged at transshipment points.

Specifically, one vehicle picks up the load, delivers it to a transshipment node, and another vehicle

completes the delivery. In terms of empirical studies, Mitrović-Minić and Laporte (2006) evaluate the

usefulness of transshipment points in PDP with time windows. Nowak et al. (2009) show that splitting

loads into multiple trips benefits the PDP and identify favorable real-world environments for this

approach through empirical analysis. In terms of optimization, Rieck et al. (2014) address the many-

to-many location-routing problem with inter-hub transport and multi-commodity PDP, developing

heuristics for medium- and large-scale instances. While this problem is similar to our study, it does

not account for the importance of time windows, which further complicates the setting. Rais et al.

(2014) and Lyu and Yu (2023) investigate PDP with time windows and transshipments, but they

only solve small and medium instances and overlook the consolidated-delivery of orders from multiple

pickups and the potential for any visited node to act as a transshipment point under time constraints.

Lastly, Su et al. (2023) study PDP with crowdsourced bids and transshipment in last-mile delivery,

which optimizes vehicle routes and bid selection but not crowdshipper routing and imposes restrictive

service assumptions.

We investigate a many-origin-to-many-destination pickup and delivery problem with time windows,

incorporating driver coordination and transshipment to fulfill orders from multiple stores. Our model

will account for order allocation to drivers, selection of transshipment nodes for item exchanges, routing

decisions for drivers and orders, and time variables for driver and order arrivals and departures.

2.3 Machine Learning-based optimization

Machine learning (ML) has emerged as a transformative tool in operations research (OR) and opera-

tions management, enabling innovative approaches to solve complex decision-making problems. The

integration of ML in OR can broadly be categorized into two areas: using ML to design and enhance

optimization models, and employing optimization proxies to accelerate or approximate solutions.

In the first category, ML is widely used to design optimization models, improve data quality, and

enhance solution procedures. Sadana et al. (2024) review contextual stochastic optimization and unify

decision-making methods under uncertainty, categorizing approaches into decision rule optimization,

sequential learning and optimization, and integrated learning and optimization. Maragno et al. (2023)

propose a pipeline where constraints and objectives are learned from data and embedded into op-

timization models. Similarly, Wang et al. (2024) enhance inputs to vehicle routing problems using

techniques like k-nearest neighbor and kernel density estimation. In practical applications, Liu et al.

Les Cahiers du GERAD G–2025–40 5

(2021) integrate ML-based travel-time predictors into order-assignment optimization for food deliv-

ery, improving on-time performance by refining parameter estimates. Additionally, Hong et al. (2021)

propose a robust optimization framework using ML to enhance parameter estimates and optimization

outcomes.

In the second category, optimization proxies use ML to approximate solutions, accelerate compu-

tational processes, or enable inverse optimization. Van Hentenryck (2021) distinguish between two

main approaches: end-to-end learning, which uses proxies to directly approximate optimal solutions,

and learning-to-optimize, which accelerates existing optimization algorithms for enhanced efficiency.

Kotary et al. (2021) review hybrid methods that integrate combinatorial solvers with ML for fast,

approximate solutions and logical inference. Several studies highlight how learning-to-optimize speeds

up solution generation. For example, Ojha et al. (2023) develop ML proxies to predict loads and en-

sure constraint compliance in dynamic load planning, significantly improving decision-making speed.

Similarly, Julien et al. (2024) introduce a machine-learning-based node selection strategy that accel-

erates robust optimization by identifying high-quality solutions faster. Larsen et al. (2024) use super-

vised learning to approximate computationally intensive second-stage solutions in two-stage stochastic

programming, reducing solution time without compromising accuracy. Kotary et al. (2024) propose

a learning-to-optimize-from-features framework, aligning traditional methods with the predict-then-

optimize paradigm. Additionally, Qi et al. (2023) demonstrate the impact of end-to-end learning by

developing a multi-period inventory replenishment model that directly outputs optimal replenishment

decisions from input features. Özarık et al. (2024) apply ML to estimate key parameters for last-mile

delivery route optimization in inverse optimization, illustrating how predictive modeling can inform

complex decision-making.

In this work, we apply learning-to-optimize to address our computationally challenging problem.

We first use machine learning techniques, including neural networks and graph-based networks, to

estimate allocation decisions. These estimates serve as inputs for an optimization process, which refines

the allocation decisions and makes additional decisions, such as optimal routing. Unlike conventional

methods, our approach treats estimated decisions as lower bounds, maintaining flexibility and allowing

the optimization process to explore better solutions. Our work not only aims for efficiency and high-

quality solutions but also evaluates the scalability of different learning algorithms across various cases.

3 The multi-store order delivery problem

In this section, we first introduce our three delivery systems of interest and present the problem

definition in Section 3.1. We then formulate the mathematical model for the multi-store order delivery

problem under various delivery systems in Section 3.2, followed by the dynamic problem description

incorporating waiting strategies in Section 3.3.

3.1 Delivery system description and problem definition

Due to the variety of store types, product availability, and special pricing, customers often purchase

products from multiple stores, such as meals from restaurants, fresh produce from grocery stores, or

emergency medicine from pharmacies. To avoid the inconvenience of visiting multiple stores, customers

increasingly rely on online ordering and delivery platforms, creating the necessity for multi-store order

delivery services. We consider three delivery systems for managing multi-store order deliveries:

1. Separated-order delivery (SOD): Customers place separate orders from different stores, pay a

delivery fee for each order, and receive individual deliveries. Orders from each store are handled

independently, with drivers managing both the pickup and delivery processes (Figure 1a). This

system serves as a baseline for comparison in the absence of consolidation.

2. Consolidated-order delivery (COD): Customers place a combined order from multiple stores in
a single transaction and receive a combined delivery, typically without additional delivery fees.

Les Cahiers du GERAD G–2025–40 6

A single driver collects items from several stores and delivers them to the customer (Figure 1b).

This system consolidates orders from different stores and serves as a baseline in the absence of

transshipment.

3. Consolidated-order delivery with transshipment (CODT): Similar to COD, customers place a

consolidated order from multiple stores and receive a combined delivery. However, in this sys-

tem, different drivers can pick up items from different stores and can transfer them at selected

transshipment nodes. A single driver then completes the final delivery to the customer’s doorstep

(Figure 1c). Transshipment can occur at various locations, such as stores or customer locations,

where drivers can drop off or pick up items and items can be temporarily held without the pres-

ence of drivers. In some cases, customers acting as transshipment nodes may receive multiple

deliveries, while others receive a single delivery.

(a) Separated-order delivery. (b) Consolidated-order delivery. (c) COD with transshipment.

Figure 1: Delivery systems for multi-store order services. This figure illustrates an instance with two drivers, two stores, and
four customers. The same set of customers is served by the same set of drivers across all three systems. The route of one driver
is represented by a black line, while the route of another driver is shown in blue. The solid lines are the same for each system,
while the dashed lines highlight the differences.

We define the problem that accommodates these three delivery systems as follows:

Definition 1. The Multi-Store Order Problem (MSOP) is an optimization problem addressing the

fulfillment of customer orders placed across multiple stores using a limited number of drivers. The

primary objective is to minimize the latest delivery time for serving each order, and the secondary

objective is to minimize the total driver travel time for fulfilling all requests. This is achieved by

addressing key decisions, including allocating drivers for pickup and delivery, planning driver routes

with time and capacity restrictions, and selecting transshipment nodes for transferring items among
drivers. In addition to handling orders from different stores separately, MSOP also incorporates consol-

idation, allowing orders from multiple stores to be grouped and handled together, and transshipment,

permitting partial order transfers among drivers at specified nodes.

3.2 Mathematical model

We formulate the multi-store order problem for all three delivery systems using a mixed-integer linear

programming model. This MILP is defined on an undirected network G = (N ,A), where N represents

the set of nodes and A denotes the set of arcs. Customers are denoted by i ∈ I, stores by j ∈ J ,

and drivers by k ∈ K. The origin node of driver k, representing their starting location, is denoted as

ok, and the set O comprises the origin nodes of all drivers. The node set N includes all customer,

store, and driver starting locations, i.e., N = I ∪ J ∪ O. The binary parameter eij indicates whether

customer i orders from store j, and the item ordered by customer i from store j is indexed by ij.

The size of item ij is pij , and the capacity of driver k is qk. The travel time between nodes n and

n′ is denoted by tnn′ , and it satisfies the triangle inequality: tnn′ ≤ tnn′′ + tn′′n′ ,∀n, n′, n′′. The time

window for customer i is given by [αi, βi]. The decision variables are as follows. Let zkn be 1 if and

only if driver k visits node n, xknn′ be 1 if and only if driver k travels from node n to node n′, yijnn′ be 1

if and only if item ij travels from node n to node n′ during the trip, vkij+n be 1 if and only if item ij

arrives at node n via driver k, and vkij−n be 1 if and only if item ij departs from node n via driver k.

Les Cahiers du GERAD G–2025–40 7

The continuous variables are as follows: τk+n is the time at which driver k arrives at node n, τk−n is

the time at which driver k departs from node n, and λijn is the arrival time of item ij at node n. A

summary of the notation is provided in Appendix A.

The model for the multi-store order problem is presented as follows:

M(I,J ,K) = min
x,y,z,
τ,v,λ

ρ1 max
k∈K
i∈I

{
τk+
i

}
+ ρ2

∑
k∈K

∑
n∈N

∑
n′∈N ,
n′ ̸=n

tnn′xk
nn′ (1a)

s.t.
∑
k∈K

vkij−j ≥ eij , ∀i ∈ I, j ∈ J (1b)

∑
k∈K

vkij+i ≥ eij , ∀i ∈ I, j ∈ J (1c)

∑
k∈K

vkij+n =
∑
k∈K

vkij−n , ∀i ∈ I, j ∈ J , n ∈ N : n ̸= i, j (1d)

zkok ≥ zkn ≥ max{vkij+n , vkij−n }, ∀k ∈ K, i ∈ I, j ∈ J , n ∈ N (1e)∑
n′∈N ,n′ ̸=n

xk
n′n = zkn, ∀n ∈ N , k ∈ K (1f)

∑
n′∈N ,n′ ̸=n

xk
nn′ = zkn, ∀n ∈ N , k ∈ K (1g)

τk+
n′ ≥ xk

nn′(τk−
n + tnn′), ∀n, n′ ∈ N : n ̸= n′, k ∈ K (1h)

τk−
n ≥ τk+

n , ∀n ∈ N \ O, k ∈ K (1i)∑
n′∈N ,n′ ̸=j

yij
jn′ = eij , ∀i ∈ I, j ∈ J (1j)

∑
n′∈N ,n′ ̸=j

yij
n′i = eij , ∀i ∈ I, j ∈ J (1k)

∑
n′∈N ,n′ ̸=n

yij
nn′ =

∑
n′∈N ,n′ ̸=n

yij
n′n, ∀i ∈ I, j ∈ J , n ∈ N , n ̸= i, j (1l)

yij
nn′ ≤

∑
k∈K

xk
nn′ , ∀i ∈ I, j ∈ J , n, n′ ∈ N : n′ ̸= n (1m)

yij
nok ≤ 0, ∀i ∈ I, j ∈ J , n ∈ N , k ∈ K (1n)

λij
n′ ≥ yij

nn′(λ
ij
n + tnn′), ∀k ∈ K, n ∈ N : n ̸= n′, n′ ∈ N ∪ {k′}

(1o)

vkij+n ≥ min
{
xk
nn′ , yij

nn′

}
, ∀i ∈ I, j ∈ J , n, n′ ∈ N : n ̸= n′, k ∈ K

(1p)

vkij−n′ ≥ min
{
xk
nn′ , yij

nn′

}
, ∀i ∈ I, j ∈ J , n, n′ ∈ N : n ̸= n′, k ∈ K

(1q)

λij
n ≥ vkij+n τk+

n , ∀i ∈ I, j ∈ J , n ∈ N , k ∈ K (1r)

τk−
n ≥ vkij−n λij

n , ∀i ∈ I, j ∈ J , n ∈ N , k ∈ K (1s)

αi ≤ λij
i ≤ βi, ∀i ∈ I, j ∈ J (1t)∑

i∈I

∑
j∈J

pijv
kij−
n ≤ qk, ∀n ∈ N , k ∈ K (1u)

xk
nn′ , yij

nn′ , z
k
n, v

kij+
n , vkij−n ∈ {0, 1}, ∀i ∈ I, j ∈ J , n, n′ ∈ N , k ∈ K (1v)

τk+
n , τk−

n , λij
n ≥ 0, ∀i ∈ I, j ∈ J , n ∈ N , k ∈ K. (1w)

The objective function (1a) aims to minimize the weighted average of the latest delivery time to

the last customer and the total travel time for fulfilling all orders, where ρ1 is the weight assigned to

the latest delivery time and ρ2 is the weight assigned to the total travel time. Note that to prioritize

on-time delivery, ρ1 should be set significantly larger than ρ2, while a relatively small value for ρ2 is

Les Cahiers du GERAD G–2025–40 8

sufficient to discourage unnecessary long travel times. The term maxk∈K,i∈I
{
τk+i

}
can be equivalently

replaced by a new variable l, along with the constraints l ≥ τk+i ,∀i ∈ I, k ∈ K.

Constraints (1b) and (1c) stipulate that if customer i orders items from store j (i.e., eij = 1), item

ij should be picked up from store j by a driver and delivered to customer i by a driver. Constraints (1d)

ensure that if item ij arrives at node n (except for destination i and origin j), it must leave this node

after being picked up by a driver. Constraints (1e) indicate that if driver k serves item ij by passing

through node n, then driver k must leave its origin location ok and also visit node n. Constraints (1f)

and (1g) impose degree constraints on the nodes visited by driver k. Constraints (1h) specify the

arrival and departure times of driver k at node n. If driver k travels from node n to node n′ (i.e.,

xknn′ = 1), the arrival time of driver k at node n′ must be no earlier than the departure time from

the previous node n, accounting for the travel time from node n to node n′. These constraints can be

linearized into τk−n + tnn′ − τk+n′ ≤M1(1− xknn′), where M1 should be sufficiently large to ensure that

M1 ≥ τk−n + tnn′ . Additionally, constraints (1i) ensure that the departure time at any node of a driver

should be no earlier than their arrival time, except for their origin nodes. Constraints (1j) to (1l) denote

that item ij should leave store j and arrive at customer i, and that if item ij arrives at any other node,

it must also leave this node (i.e., flow balance constraints). Constraints (1m) and (1n) state that item

ij can traverse the arc (n, n′) only if this arc is visited by a driver, and that arcs for drivers returning

to origin nodes cannot be part of the path for items. Constraints (1o) specify the arrival time of item

ij at node n. If item ij travels from node n to node n′ (i.e., yijnn′ = 1), the arrival time of item ij at

node n′ must be no earlier than its arrival time at the previous node n, while accounting for the travel

time from node n to node n′. These constraints can be linearized into λijn + tnn′ −λijn′ ≤M2(1− yijnn′),

where M2 must be large enough to ensure that M2 ≥ λijn + tnn′ . Constraints (1p) and (1q) indicate

that if item ij passes the arc (n, n′) visited by driver k, then item ij must be picked up by driver k to

leave node n and dropped off by driver k at node n′. Since x, y, and v are binary, these constraints can

be linearized into vkij−n ≥ xknn′ + yijnn′ − 1 and vkij+n′ ≥ xknn′ + yijnn′ − 1, respectively. Constraints (1r)

and (1s) state that the arrival time of item ij at node n should be no earlier than the arrival time of

driver k at node n if this item is served by driver k to arrive at node n. Furthermore, the departure

time of driver k should be no earlier than the arrival time of item ij at node n if this item is about

to leave node n via driver k. These constraints can be linearized into τk+n − λijn ≤ M3(1 − vkij+n)

and λijn − τk−n ≤ M4(1 − vkij−n), with M3 ≥ τk+n and M4 ≥ λijn . Constraints (1t) ensure that the

time windows are respected. Constraints (1u) represent capacity constraints for drivers at every node.

Constraints (1v) and (1w) impose domain restrictions.

This model is capable of accommodating both single and multiple deliveries for multi-store orders
placed by customers, while also allowing drivers to coordinate and transfer orders through transship-

ment, resulting in consolidated-order delivery with transshipment (CODT). To evaluate the value

of consolidation and transshipment in multi-store order delivery, we demonstrate ways to customize

M(I,J ,K) to model the separated-order delivery (SOD) and the consolidated-order delivery (COD)

without transshipment.

The model for SOD requires that orders from each store are handled and delivered separately,

which can be structured as a series of programs. For all j′ ∈ J ,

MSOD(Ij′ ,Jj′ ,Kj′) = min
x, y, z,

τ,v,λ

ρ1 max
k∈K

j′
i∈I

j′

{
τk+i

}
+ ρ2

∑
k∈Kj′

∑
n∈Nj′

∑
n′∈N

j′ ,

n′ ̸=n

tnn′xknn′ (2a)

s.t. (1b)− (1w),

vkij−j = vkij+i , ∀i ∈ Ij′ , j ∈ Jj′ , k ∈ Kj′ . (2b)

The objective function (2a) specifies that each store optimizes their delivery operations separately to

serve its respective customers. Here, Jj′ denotes the set containing only store j′ (i.e., Jj′ = {j′}).
The set Ij′ denotes customers who place orders from store j′ (i.e., Ij′ = {i ∈ I|eij′ = 1}). There may

be overlaps between different Ij′ since customers can place orders from multiple stores. Similarly, Kj′

Les Cahiers du GERAD G–2025–40 9

denotes the drivers who serve orders from store j′, and they jointly form a partition of K. Furthermore,

Nj′ = Ij′ ∪ Jj′ ∪ Oj′ , where Oj′ is the set of origin nodes for drivers k ∈ Kj′ . To ensure at least

one driver is available for each store, we assume that the number of drivers exceeds the number of

stores. Note that the pre-assignment of drivers to stores (i.e., the set Kj′) affects the MSOD. To

focus solely on the difference between separation and consolidation business models, we evaluate all

possible partitions of the driver set K for the SOD. For each partition, we determine the worst-case

performance across all stores by finding the maximum optimal objective value among them. The

partition that yields the minimum worst-case performance (i.e., min {maxj′∈J MSOD(Ij′ ,Jj′ ,Kj′)})
is selected. This method works because our primary objective is to ensure on-time delivery for all

customers, with the main target being to minimize the latest delivery time. By using this method,

we can compare separation and consolidation models fairly without the results being influenced by

the initial pre-assignment of drivers. Constraints (1b)–(1w) are applied, with I,J ,K,N replaced by

Ij′ ,Jj′ ,Kj′ ,Nj′ . Constraints (2b) state that item ij is served by the same driver k encompassing both

the pickup from store j and the delivery to customer i, implying no transshipment is allowed.

The model for COD without transshipment is:

MCOD(I,J ,K) = min
x, y, z,
τ,w,v,λ

ρ1 max
k∈K
i∈I

{
τk+i

}
+ ρ2

∑
k∈K

∑
n∈N

∑
n′∈N ,
n′ ̸=n

tnn′xknn′ (3a)

s.t. (1b)− (1w),

vkij−j = vkij+i , ∀i ∈ I, j ∈ J , k ∈ K, (3b)∑
k∈K

zki = 1, ∀i ∈ I. (3c)

Constraints (3b) imply that item ij is assigned to the same driver for both pickup and delivery,

and Constraints (3c) enforce a single delivery, ensuring that each customer is served exactly once for

delivery, resulting in a consolidated-order delivery system without transshipment.

3.3 Dynamic problem and waiting strategy

The MSOP addresses the problem of serving customers who place orders in a specified time period,

with transshipment facilitating spatial consolidation at both the store and customer levels. Since

customer orders arrive dynamically over time in realistic settings, temporal consolidation can further

improve operations by implementing an effective waiting strategy.

Assuming that customer arrivals follow a stochastic process, such as a Poisson process, the delivery

system can be optimized by determining an appropriate re-optimization interval, defined as the time

period between two consecutive optimizations. For each optimization, the system collects information

on new customer orders that arrive within the interval, updates driver availability, allocates orders to

available drivers, and plans the routing accordingly.

A longer waiting strategy can reduce the total travel time but may increase delivery delays. Con-

versely, an event-triggered strategy, which re-optimizes the system upon each order arrival without

waiting, accelerates the delivery speed but may increase the total travel time. The objective of the

dynamic problem is to identify the waiting strategy that balances delivery time and waiting delays by

determining the re-optimization interval, which also corresponds to the customer batching size during

that interval.

4 Solution procedure

Solving the model for MSOP to optimality is computationally demanding due to the large number of

constraints and variables arising from routing and time considerations. To address this, we adopt a

Les Cahiers du GERAD G–2025–40 10

learning-to-optimize approach that combines an offline learning phase with an online estimation and

optimization phase. We next present the details of this framework in Section 4.1, introduce three

learning methods in Section 4.2, and explain the optimization process in Section 4.3.

4.1 Learning-to-optimize method

The learning-to-optimize method is illustrated in Figure 2 and consists of two key steps. The first is the

offline learning phase, as shown in Figure 2a, where a mapping is trained using machine learning models

on historical instances. This step is conducted only once. Specifically, historical instances, which are

solved to optimality using exact optimization techniques, are used to train a neural network model

that learns the mapping from instance data to optimal allocation plans. The instance data includes

order details, store and customer locations, initial driver positions, travel times between locations,

and driver availability. The allocation plan determines the nodes visited by drivers, ensuring that each

order is picked up from stores and delivered to customers. The second step is the online estimation and

optimization phase, as shown in Figure 2b. For each new instance, the estimated allocation plans are

obtained from the learning model and then serve as a lower bound for the corresponding variables in the

optimization problem. This optimization problem is a mixed-integer linear program, where restoration

and refinement work together to ensure feasibility and improve the solution: restoration addresses

potential infeasibility caused by the estimated allocation (i.e., the optimization input) underestimating

time constraints and capacity limitations, while refinement further improves the estimated allocation

decisions, refining the initial solutions to optimal ones through optimization. This process narrows the

feasible solution space, provides flexibility to improve the estimated allocation plans, and completes

the optimal driver routes and efficient paths for the MSOP. This approach can offload a portion of the

computational workload to the offline phase, facilitating the near real-time generation of high-quality

solutions.

Historical instances
with order information
and driver availability

Optimization
problem

Optimal
solutions

Machine learning (ML)
model that maps input to
the optimal allocation plan

Input Exact Solution Procedure Output

(a) The offline learning phase.

New instances with
order information

and driver availability

Estimation of the
allocation plan

using the ML model

Restoration
and refinement
optimization

Allocation
plan and other

decisions

Input Optimization Proxies Output

(b) The online estimation and optimization phase.

Figure 2: Learning-to-optimize Method.

4.2 Learning methods

Three neural network models are implemented to train the mapping from instance information to

allocation plans. Let N denote the set of nodes, including driver origins, stores, and customers that

drivers may visit, K denote the set of drivers, and L denote the feature space. We use bold symbols

to represent vectors. We define the neural network model g, parameterized by θ, that maps the set

of input features fk
n ∈ R|L|, for each node n ∈ N and driver k ∈ K to a binary allocation plan

z̃ ∈ {0, 1}|N |×|K|, which represents the decision of assigning driver k to visit node n. The function is

presented by

gθ : R|N |×|K|×|L| → {0, 1}|N |×|K|. (4)

All information related to orders, customers, stores, and drivers constitutes the feature set. These

include store locations for order pickup, customer locations for delivery, driver initial locations, travel

Les Cahiers du GERAD G–2025–40 11

times between nodes, and nearest driver allocation to each node. Specifically, the features fk
n for node

n that can be served by driver k include: (1) node latitude; (2) node longitude; (3) distance between

the driver and the node; (4) nearest driver allocation indicator; and (5) the ratio of the number of

customers to the number of available drivers. Additionally, we generate additional features based on

a connected node (CN) set for each node and driver. For store nodes, this set comprises the customers

ordering from that store; for customer nodes, it includes the stores from which they have ordered; and

for drivers, it consists of nodes that would be assigned to each driver based on the nearest allocation

method. The additional features related to the CN set are: (6) the number of nodes in the CN union

sets of both the node and the driver; (7) the Traveling Salesman Problem (TSP) cost for visiting nodes

in this union CN set; and (8) the convex hull area enclosing the nodes in this union CN set.

4.2.1 Driver Assignment Neural Network (DANN).

This method uses a neural network for binary prediction to determine whether driver k is assigned

to node n. A training sample consists of a node-driver pair, where the input features are fk
n and the

label is zkn
∗
for node n and driver k. Each driver is considered independently of all other drivers.

We implement a multi-layer neural network to learn the function gθ, capturing the relationships

between the input features and the binary decision outputs. The model predicts the probability of

assigning node n to driver k:

Pr
(
z̃kn = 1 | fk

n

)
= σ

(
Θ(fk

n)
)
, ∀n ∈ N , k ∈ K,

where Θ(fk
n) : R

|L| → R represents the neural network’s output after multiple layers of computation

on the input features fk
n ∈ R|L|. Since z̃kn is binary, the final layer of the neural network σ(·) applies

the sigmoid activation function, σ(x) = 1
1+e−x , ensuring that the output is a probability between 0

and 1. If Pr(z̃kn = 1 | fk
n) > 0.5, then z̃kn = 1, indicating that driver k is assigned to visit node n.

4.2.2 Driver Classification Neural Network (DCNN).

This method treats driver assignment as a classification problem, where each driver is considered

a distinct class. The neural network classifies each node into one of the available “driver classes”,

ensuring that at least one driver is assigned to visit each node. A training sample consists of a node

with multiple drivers as potential choices, where the input features are
{
fk
n

}
k∈K and the labels are{

zkn
∗
}
k∈K

for node n.

We again implement a multi-layer neural network to learn the function gθ. For node n, the model

outputs a probability distribution over classes k as follows:

Pr
(
z̃kn = 1 | fn

)
= [softmax (Θ (fn))]k , ∀n ∈ N , k ∈ K,

where Θ(fn) : R|K|×|L| → R|K| represents the neural network’s computation through multiple layers

on the features fn ∈ R|L|×|K| for node n and all drivers. The softmax function outputs a probability

distribution over the |K| classes, ensuring that
∑|K|

k=1 Pr(z̃
k
n = 1 | fn) = 1. The driver k with the

highest probability Pr(z̃kn = 1 | fn) is selected. Thus, z̃kn = 1 for the driver with the highest score,

and z̃kn = 0 for all other drivers.

4.2.3 Graph-based Neural Network (GNN).

This method employs a graph neural network to learn driver allocation plans by predicting edge labels

that indicate whether a driver should visit a node within the graph structure, as illustrated in Figure 3,

depicting an instance or area to be served.

Unlike traditional neural networks, the graph structure connects all nodes and includes edge fea-

tures, global features, and labels. The node features fn ∈ R|L| include: (1) driver type: 1 if the

Les Cahiers du GERAD G–2025–40 12

Figure 3: Graph-based Neural Network structure for the case with 2 drivers, 2 stores, and 4 customers.

node represents a driver, 0 otherwise; (2) store type: 1 if the node represents a store, 0 otherwise; (3)

customer type: 1 if the node represents a customer, 0 otherwise; (4) node latitude; (5) node longitude;

(6) the number of nodes in the CN set; (7) the TSP cost of visiting the nodes in the CN set; and

(8) the convex hull area enclosing the nodes in the CN set. The edge features enn′ ∈ R|M| of all

edges from nodes to drivers consist of (1) distance between the driver and the nodes; and (2) nearest

driver allocation to the node. The global feature g ∈ R is the ratio of the number of customers to the

number of available drivers. These features are similar to those used in DANN and DCNN, but are

now represented in a graph structure. The edge label to be learned represents the optimal allocation of

drivers to nodes. The GNN model leverages node features, edge features, and global features through

multiple layers to capture complex relationships within the graph. A training sample consists of all

node with all drivers as potential choices, where the input features are
(
{fn}n∈N , {enn′}n,n′∈N , g

)
and the labels are

{
zkn

∗
}
k∈K,n∈N

for the whole graph.

At each layer t, the embedding of node n, denoted h(t)
n , is updated based on information from its

neighboring nodes. The update is computed as:

h(t+1)
n = ϕ

h(t)
n ,

∑
n′∈Neight(n)

ψ
(
h(t)
n ,h

(t)
n′ , enn′

)
, g

 ,

where h(t)
n is the embedding of node n at layer t with h(0)

n = fn and fn ∈ R|L|, Neight(n) denotes

the set of neighbors of node n, enn′ ∈ R|M| is the feature vector for the edge between node n and its

neighbor n′, g is the global feature, and ϕ and ψ are neural network layers.

After T layers, the GNN produces final embeddings h(T)
n for each node n. For all edges connecting

node n, the final layer applies a softmax function to output a probability distribution over all possible

drivers. The probability of assigning driver k to node n is given by:

Pr
(
z̃kn = 1 | fn, enn′ , g

)
=
[
softmax

(
φ
(
h(T)
n ,h

(T)
n′ , enn′ , g

))]
k
, ∀n ∈ N , k ∈ K,

where φ : R|N |×|L| × R|K|×|N|×|M| × R → R|K|×|N| is a neural network layer that combines the

final node embeddings, edge features, and global features. The softmax function normalizes the edge

outputs from each node n to all driver nodes, providing a probability distribution over drivers for

node n, ensuring that
∑|K|

k=1 Pr
(
z̃kn = 1 | fn, enn′ , g

)
= 1. The driver k with the highest probability

Pr
(
z̃kn = 1 | fn, enn′ , g

)
is selected to serve node n. This GNN framework effectively captures node

interactions, edge features, and global features to predict the optimal driver-to-node allocations within

the graph.

Les Cahiers du GERAD G–2025–40 13

4.2.4 Summary.

Overall, DANN, DCNN, and GNN use the same features but adopt different graphical structures

for generating data samples to learn the allocation decisions. DANN treats each driver-node pair

independently (see Figure 4a). DCNN processes each node independently while incorporating driver

information (see Figure 4b). In contrast, GNN considers each instance as an interconnected network,

allowing both driver and node information to be transferable during the learning process (see Figure 4c).

In addition to these three learning methods, we also include Nearest Driver Allocation (NDA) as a

benchmark, which assigns the closest driver to visit each store and customer node.

(a) DANN. (b) CDCNN. (c) GNN.

Figure 4: Learning models for allocation decisions with different ways of generating data samples. The lines represent
allocation decisions for a driver visiting a node. Lines of the same color indicate a single sample, while different colors correspond
to different samples. In DANN, each driver-node pair is represented by a unique color; in DCNN, each node is assigned a color;
and in GNN, the entire instance uses the same color.

4.3 MILP-based restoration and refinement problem

In the optimization phase, we formulate the restoration and refinement problem (RRP) as an MILP

to restore feasibility, refine allocation decisions, and derive optimal solutions for other decisions. For

decision refinement, the estimated allocation z̃kn serves as a lower bound for the allocation decision

zkn, allowing flexibility in assigning drivers to additional nodes and enabling the optimization of other

decisions. However, given the lower bounds of allocation plans, the constraints in Equations (1t)

and (1u) may be violated. It is essential to ensure that all items ordered by customer i from store j

are delivered within the specified time window while respecting capacity limitations. In other words,

the machine learning output may underestimate the time constraints and capacity limitations, which

could render Problem 1 infeasible given the estimated z̃kn. To address this, we apply soft time windows

and capacity constraints while also minimizing the slackness to restore feasibility. The model for the

RRP is formulated as follows:

MRRP(I,J ,K) = min
x, y, z,
τ,w,v,λ,s

ρ1 max
k∈K
i∈I

{
τk+
i

}
+ ρ2

∑
k∈K
n∈N

∑
n′∈N ,
n′ ̸=n

tnn′xk
nn′ + ρ3

∑
n∈N
k∈K

∑
i∈I
j∈J

(s1ijn + s2ijn + s3kn) (5a)

s.t. (1b)− (1s), (1v)− (1w),

zkn ≥ z̃kn, ∀k ∈ K, n ∈ N , (5b)

αi − s1iji ≤ λij
i ≤ βn + s2iji , ∀i ∈ I, j ∈ J , (5c)∑

i∈I

∑
j∈J

pijv
kij−
n ≤ qk + s3kn , ∀n ∈ N , k ∈ K, (5d)

s1iji , s2iji , s3kn ≥ 0, ∀i ∈ I, j ∈ J , n ∈ N , k ∈ K. (5e)

Les Cahiers du GERAD G–2025–40 14

The objective function (5a) states that, in addition to minimizing the weighted average of the latest

delivery time and the total travel time, we also minimize the penalty for violating time window and

capacity constraints, which cannot be avoided due to the input allocation. Note that ρ3 represents the

penalty weight, and it should be set to a large value relative to ρ1 and ρ2 to avoid violations as much as

possible. Constraints (5b) ensure that the estimated z̃ serves as a lower bound, while Constraints (5c)

and (5d) represent soft time windows and capacity constraints with slack variables s1iji , s2iji , and s3kn
to maintain feasibility. Finally, Constraints (5d) impose domain restrictions on the slack variables.

5 Numerical study

In this section, we first introduce a real-world dataset, performance metrics, and implementation

details. We then compare the performance of three systems to evaluate the benefits of offering con-

solidation and transshipment for the multi-store order delivery. Due to the computational challenges

involved in solving the problem, we employ learning-to-optimize techniques to accelerate the solution

process through various learning methods and compare the effectiveness of different learning-based

optimization proxies. Finally, we conduct dynamic experimentations in a practical setting to serve

customers in areas with varying customer locations and arrival rates, aiming to identify the most

efficient delivery system and waiting strategy.

5.1 Dataset and implementation details

We use a customer location dataset from four regions in the U.S. (Los Angeles, Seattle, Tacoma,

and Orange) provided by Amazon (Merchan et al. 2021), which contains the perturbed locations of

customers. We obtain the expected travel times using the Google API. Instances with varying scales

are created from the dataset, with customer numbers ranging from 2 to 20 and driver numbers ranging

from two to five. To assess the benefits of consolidating orders from multiple stores, we assume

customers place orders from at least two stores and up to four stores, and whether each customer

places orders from each store is randomly generated. Driver initial locations and store locations are

fixed in each region. Customer locations are sampled uniformly from the dataset, with each location

having an equal probability of selection, referred to as uniformly sampled customers. We also consider

clustered customers, where a central point is pre-selected, and locations closer to this center have

a higher probability of being chosen as customer locations. The start time windows are uniformly

generated within a range of 0 to 20, and the end time windows are within a range of 20 to 70. Driver

capacity is set to 100, with item sizes randomly generated between 0 and 10 as integers. Our primary

objective is to ensure on-time delivery for all customers by minimizing the latest delivery time, so the

weight ρ1 is set to 1. A smaller weight ρ2 = 0.01 is used to discourage unnecessary long total travel

times. To minimize constraint violations, a penalty weight ρ3 = 100 is applied.

To compare the performance of three delivery systems and four learning methods, we define the

following metrics. (1) Delivery time is the duration between each order pickup and delivery, with the

latest delivery time being the time to serve the last order arriving within the re-optimization interval.

A lower value indicates faster overall delivery. (2) Total travel time is the total time drivers spend

traveling, including the time from their starting location to pick up orders and deliver them. The

travel time for serving one more customer is calculated as the ratio of total travel time to the number

of customers. A lower value indicates reduced overall costs. (3) Wait time is the duration between

order placement and pickup. A lower value means quicker driver assignment and faster availability for

pickup. (4) Order completion time is the duration from order placement to delivery, including both

wait time and delivery time. (5) Runtime is the time required to find final solutions, whether or not

learning is used. A lower runtime indicates a more efficient solution method. (6) Learning accuracy

is the percentage of correct driver-to-customer allocations. Higher accuracy indicates better learning

performance. (7) Allocation percentage (pct.) is the percentage of estimated allocation decisions

estimated as 1, indicating that the driver will visit that location. A lower value offers more flexibility

Les Cahiers du GERAD G–2025–40 15

in optimizing the solution. (8) Allocation standard deviation (std.) is the standard deviation of

allocation decisions, which indicates the balance of driver workloads. A lower value signifies a more

balanced distribution of work. (9) Gap is the difference between the estimated and exact optimal

values for key metrics such as objective value, latest delivery time, and total travel time. A lower gap

means the learning-based solution is closer to the true optimal solution.

We implement our algorithms using Python 3.10 and Gurobi 10.0.2 on a local computer equipped

with a 2 GHz Quad-Core Intel Core i5 processor and 16 GB of RAM, supplemented by resources from

Compute Canada’s Graham cluster, which includes Multi-Core Intel Xeon processors (20 to 36 cores

per node) and standard compute nodes with 64 GB of RAM. The optimization time limit for the exact

solution procedure is set to 3600 seconds, while the time limit for learning-to-optimize during the

comparison of learning methods is set to 600 seconds. For implementations in dynamic environments,

this limit is further reduced to 300 seconds when applying learning-to-optimize with GNN, ensuring

efficient real-time decision-making.

5.2 Comparison of delivery systems

(a) Latest delivery time (Customer). (b) Latest delivery time (Driver). (c) Total travel time (Customer).

(d) Total travel time (Driver). (e) Runtime (Customer). (f) Runtime (Driver).

Figure 5: Comparison of delivery systems with various number of customers and drivers.

To compare the three systems, including separated order delivery (SOD), consolidated order deliv-

ery (COD), and consolidated order delivery with transshipment (CODT), we solve the models MSOD,

MCOD, and M using Gurobi within the specified time limit across various instances.

Figures 5a and 5b plot the latest delivery time, defined as the maximum duration between order

pickup and delivery across customers. The SOD is more efficient than the COD when there are few

customers to serve, as the benefits of consolidating requests are minimal. However, as more customers

join the system and place orders, the COD begins to dominate the SOD, and this dominance increases

with the number of customers. Additionally, the COD consistently yields a shorter total travel time,

which represents the total time drivers take to complete deliveries for all requests (see Figures 5c and

5d). It also converges to optimality faster (see Figures 5e and 5f).

In contrast, the CODT is always the most efficient among all three systems in terms of delivery

time for serving each customer and the total travel time for fulfilling all requests, regardless of the

Les Cahiers du GERAD G–2025–40 16

instance scale (see Figures 5a–5d). However, due to the complexity of coordination and the flexibility

of transshipment at any location, solving the CODT using exact methods requires substantially more

computational time (see Figures 5e and 5f). Instances with more than 12 customers are unlikely to

converge to optimality within the 3600-second time limit, and a lower bound may not be found to

produce a feasible solution within 600 seconds. To address this challenge, we implement learning-

to-optimize techniques to explore whether high-quality solutions can be achieved more efficiently,

mitigating this computational drawback.

Insight 1. Consolidated-order delivery with transshipment is the most efficient of the three delivery

systems considered, achieving the shortest delivery time for serving each customer and the lowest total

travel time for fulfilling all requests, though it requires more time to solve using exact methods.

Insight 2. Without transshipment, consolidated-order delivery outperforms separated-order delivery in

delivery time, total travel time, and exact solution time, except when the customer number is very

small.

5.3 Comparison of learning algorithms

We compare four methods, including NDA, DANN, DCNN, and GNN, that map instance information

to allocation decisions. We implement the training process under three different instance scales: small-

scale instances, where the number of customers (|I|) ranges from two to seven and the number of drivers

(|K|) ranges from two to five; medium-scale instances, where |I| ranges from eight to ten and |K| ranges
from two to five; and large-scale instances that fail to converge to optimality, where |I| ranges from

12 to 20 and |K| ranges from two to five. First, we train using both small and medium-scale instances

and test on small, medium, and large-scale instances. In the second set of experiments, we train solely

on small-scale instances but test on all three scales. This approach allows us to assess the model’s

ability to generalize and predict decisions for larger-scale instances that may not have been included

in the training set.

Table 1: Best Learning Method for Uniformly Sampled Customers in the Learning Process.

Training
Scale

Testing Type
Testing Scale Best

Method
Accuracy

Allocation
Pct. (%)

Allocation
Std.|I| |K| NoI

|I|: [2, 10];
|K|: [2, 5];
NoI: 3600

T1 [2, 7] [2, 3] 1200 GNN 0.83 41.67 0.31
T1 [2, 7] [4, 5] 1200 GNN 0.92 22.50 0.43
T1 [8, 10] [2, 3] 600 DCNN 0.84 41.67 0.30
T1 [8, 10] [4, 5] 600 DCNN 0.90 22.50 0.04
T5 [12, 20] [2, 5] 400 GNN 0.74 32.08 0.55
T6 [2, 20] [2, 5] 4000 GNN 0.88 32.08 0.15

|I|: [2, 7];
|K|: [2, 3];
NoI: 1200

T1 [2, 7] [2, 3] 1200 GNN 0.84 41.67 0.30
T2 [2, 7] [4, 5] 1200 GNN 0.92 22.50 0.70
T3 [8, 10] [2, 3] 600 GNN 0.86 41.67 0.35
T4 [8, 10] [4, 5] 600 GNN 0.90 22.50 0.09
T5 [12, 20] [2, 5] 400 GNN 0.73 32.08 0.40
T6 [2, 20] [2, 5] 4000 GNN 0.87 32.08 0.15

Note. |I|: range of customer numbers; |K|: range of driver numbers; NoI: number of instances. T1 corresponds to
testing and training with the same scale, while T2−T5 all involve larger scales. Specifically, T2 has a larger customer
scale, T3 a larger driver scale, and T4 both scales increased. T5 represents overall large-scale instances, and T6 includes
all testing instances.

To simplify and clarify the results, we present the best-performing learning method and its learning

performance for uniformly sampled customers in Table 1, with its re-optimization performance in

Table 2. For clustered customers, the best learning method and its performance are shown in Table 3,

and the corresponding optimization performance is provided in Table 4. To differentiate between the

training and testing scales, we consider six testing types, each comprising distinct testing instances. T1

corresponds to the scenario where the testing scale aligns with the training scale. T2 pertains to cases

with a larger customer scale, while T3 refers to instances with a larger driver scale. T4 encompasses

Les Cahiers du GERAD G–2025–40 17

Table 2: Best Learning Method for Uniformly Sampled Customers in the Optimization Process.

Training
Scale

Testing Type
Testing Scale

Best
Method

Objective
Gap(%)

Delivery
Time
Gap(%)

Travel
Time
Gap(%)

Run-
time
(s)|I| |K| NoI

|I|: [2, 10];
|K|: [2, 5];
NoI: 3600

T1 [2, 7] [2, 3] 1200 DCNN 2.10 2.10 1.19 5
T1 [2, 7] [4, 5] 1200 DCNN 0.94 0.94 0.15 5
T1 [8, 10] [2, 3] 600 DCNN 1.66 1.65 4.92 14
T1 [8, 10] [4, 5] 600 DCNN 1.66 1.68 10.42 30
T5 [12, 20] [2, 5] 400 GNN 1.19 1.23 16.76 457
T6 [2, 20] [2, 5] 4000 DCNN 1.56 1.56 2.75 40

|I|: [2, 7];
|K|: [2, 3];
NoI: 1200

T1 [2, 7] [2, 3] 1200 DCNN 2.07 2.07 1.67 6
T2 [2, 7] [4, 5] 1200 NDA 1.25 1.25 0.37 6
T3 [8, 10] [2, 3] 600 GNN 3.19 3.17 5.30 21
T4 [8, 10] [4, 5] 600 GNN 1.89 1.92 12.13 33
T5 [12, 20] [2, 5] 400 GNN 1.73 1.77 17.56 406
T6 [2, 20] [2, 5] 4000 GNN 2.78 2.78 3.80 38

Table 3: Best Learning Method for Clustered Customers in the Learning Process.

Training
Scale

Testing Type
Testing Scale Best

Method
Accuracy

Allocation
Pct. (%)

Allocation
Std.|I| |K| NoI

|I|: [2, 10];
|K|: [2, 5];
NoI: 3600

T1 [2, 7] [2, 3] 1200 GNN 0.80 41.67 0.57
T1 [2, 7] [4, 5] 1200 GNN 0.90 22.50 0.09
T1 [8, 10] [2, 3] 600 GNN 0.73 41.67 0.29
T1 [8, 10] [4, 5] 600 GNN 0.88 18.71 0.45
T5 [12, 20] [2, 5] 400 GNN 0.69 32.08 0.76
T6 [2, 20] [2, 5] 4000 GNN 0.84 32.08 0.51

|I|: [2, 7];
|K|: [2, 3];
NoI: 1200

T1 [2, 7] [2, 3] 1200 GNN 0.81 41.67 0.19
T2 [2, 7] [4, 5] 1200 GNN 0.89 22.50 0.35
T3 [8, 10] [2, 3] 600 GNN 0.70 41.67 0.76
T4 [8, 10] [4, 5] 600 GNN 0.86 22.50 0.30
T5 [12, 20] [2, 5] 400 GNN 0.69 32.08 0.17
T6 [2, 20] [2, 5] 4000 GNN 0.83 32.08 0.94

Table 4: Best Learning Method for Clustered Customers in the Optimization Process.

Training
Scale

Testing Type
Testing Scale

Best
Method

Objective
Gap(%)

Delivery
Time
Gap(%)

Travel
Time
Gap(%)

Run-
time
(s)|I| |K| NoI

|I|: [2, 10];
|K|: [2, 5];
NoI: 3600

T1 [2, 7] [2, 3] 1200 DANN 1.88 1.86 2.08 6
T1 [2, 7] [4, 5] 1200 DANN 0.23 0.23 4.34 5
T1 [8, 10] [2, 3] 600 GNN 1.16 1.12 11.79 12
T1 [8, 10] [4, 5] 600 GNN 1.01 0.97 21.48 24
T5 [12, 20] [2, 5] 400 GNN 1.74 1.69 16.76 450
T6 [2, 20] [2, 5] 4000 DANN 1.93 1.90 1.47 111

|I|: [2, 7];
|K|: [2, 3];
NoI: 1200

T1 [2, 7] [2, 3] 1200 GNN 2.35 2.33 4.30 7
T2 [2, 7] [4, 5] 1200 GNN 1.79 1.73 24.09 8
T3 [8, 10] [2, 3] 600 GNN 2.90 2.89 3.57 15
T4 [8, 10] [4, 5] 600 GNN 1.20 1.18 7.55 31
T5 [12, 20] [2, 5] 400 GNN 2.36 2.30 16.76 457
T6 [2, 20] [2, 5] 4000 GNN 2.07 2.07 9.01 38

Les Cahiers du GERAD G–2025–40 18

situations where both customer and driver scales are increased. T5 includes instances characterized by

larger overall scales, and T6 represents all testing instances. Both the training scale and testing scale

clearly show the range of customer and driver numbers. For the learning process, we present the best

method with the highest accuracy, along with its percentage and standard deviation of allocation plans.

For the optimization process, we display the best method with the lowest objective gap, including its

delivery time gap, total travel time gap, and optimization runtime. More details on the metrics can

be found in Section 5.1. Detailed performance results for each method under both uniformly sampled

customer and clustered customer cases are provided in Appendix B.

According to Tables 1 and 3, we find that GNN demonstrates the overall best performance in the

learning process with the highest accuracy under most scenarios, regardless of whether the testing

scale is included in the training set. In instances where both small and medium-scale datasets are

included in the training set, DCNN can achieve performance comparable to GNN for those scales.

In other words, GNN excels at generalizing and predicting decisions for larger-scale instances that

may not have been part of the training data. Both GNN and DCNN perform well if the scale of

future instances matches that of historical instances. This difference in performance arises because,

in DANN, the assignment decision for each driver-customer pair is considered independently, which

means there is no guarantee that each customer will be served by exactly one driver. This is evident in

the unstable allocation percentages observed with DANN (see Tables B2 and B4 in Appendix B). In

contrast, NDA, DCNN, and GNN ensure that at least one driver is allocated to serve each customer.

However, in NDA, the allocation of drivers to customers is based solely on the distances between

them. DCNN incorporates more features, leading to higher accuracy compared to NDA. Nevertheless,

DCNN still treats customers independently, as its goal is to find the best driver for each individual

customer. GNN, on the other hand, connects all customers and drivers through edges, ensuring that

every customer is served and allowing for control over the number of customers each driver serves by

summing edge labels.

Tables 2 and 4 display the optimal outputs when the estimated allocation decisions are used as

input for optimizing the restoration and refinement problem. First, we observe that higher accuracy

does not always correspond to a lower optimality gap. This is because there may be multiple good

solutions that yield low delivery times during the optimization process. Second, no single method

consistently outperforms the others in all cases. Overall, GNN has a smaller optimality gap, along

with lower delivery time and travel time, particularly in the clustered customer cases when the testing

scale exceeds the training scale. When the training scale includes the testing scale, DCNN tends

to have a smaller gap in scenarios with uniformly sampled customers, along with a lower allocation

standard deviation. In contrast, DANN exhibits a smaller gap in cases with clustered customers,

accompanied by a lower allocation percentage. A lower allocation standard deviation indicates a more

balanced workload among drivers, while a lower allocation percentage provides greater flexibility in

finding optimal allocation decisions during the optimization process.

A summary of the re-optimization results across both scenarios, based on different training pro-

cesses, is provided in Figure 6. Figure 6a displays the trade-off between expected runtime and op-

timality gap for the four methods across all scenarios, with circle size indicating sample size. In

terms of runtime for the optimization process, GNN proves to be the most efficient method, while

NDA and DANN are much more time-intensive. A lower runtime for optimization reflects that the

input-estimated allocation decisions provide a stronger lower bound. By using learning-to-optimize

techniques, we achieve optimal solutions in 30 seconds for medium-scale instances, and in 450 sec-

onds for large-scale instances. In contrast, pure optimization methods may take up to 3600 seconds

for medium-scale instances and may fail to converge within 3600 seconds for large-scale cases. Fig-

ure 6b presents relative performance metrics, including accuracy, objective gap, travel time gap, and

runtime efficiency, relative to the best approach among all methods. A value of 1 indicates the best

performance: highest accuracy, lowest objective gap, lowest travel time gap, and highest efficiency.

We conclude that GNN delivers the most comprehensive performance across metrics and scenarios,

Les Cahiers du GERAD G–2025–40 19

(a) Trade-off between optimality gap and runtime. (b) Relative performances of different metrics.

Figure 6: Comparison of performances in optimization of four learning methods.

consistently achieving the lowest optimization runtime and smallest optimality gap by providing an

effective lower bound.

Insight 3. In a learning-to-optimize framework, we can use learning to obtain a lower bound for

the allocation decision, which helps reduce the search space for optimization, thereby accelerating the

solution procedure.

Insight 4. Overall, GNN performs the best with the highest accuracy, the smallest optimality gap,

efficient runtime, and superior scalability for larger instances not included in the training set.

Insight 5. In the learning-to-optimize framework, higher accuracy during the learning process does not

necessarily lead to a smaller optimality gap in the optimization process. A lower allocation percentage

allows for greater flexibility and may lead to a smaller gap, but at the cost of a longer optimization

runtime. A lower allocation standard deviation, indicating a balanced workload, may also imply a

shorter delivery time and lead to a smaller gap.

The four learning methods each have their own advantages and disadvantages. (1) NDA is simple

to implement and performs well without historical data, effectively generalizing with an increasing

number of drivers. However, it struggles with complex customer-driver interactions and performs

poorly with clustered customer distributions, as well as struggling to generalize with an increasing

number of customers. (2) DANN achieves high accuracy with sufficient training data and works well

for instances of similar scale, especially in cases with clustered customer distributions. However, it

is computationally inefficient, struggles to generalize with larger customer sets, and yields unstable

allocation percentages that can lead to longer travel times. (3) DCNN also achieves high accuracy

with sufficient data and works well for instances of similar scale, performing effectively with uniform

customer distributions. However, it requires extensive training data and careful tuning, and it strug-

gles to generalize with larger driver sets. (4) GNN excels at modeling complex interactions between

customers and drivers using structured graphs, achieving high accuracy across different scenarios while

being computationally efficient. It also generalizes well to instances with more customers and drivers.

However, it faces challenges in collecting sufficient historical samples, as each instance corresponds to

a single graph, and its highest accuracy may not always correlate with the lowest optimality gap. The

detailed evidence can be found in Tables B2 to B5 in Appendix B.

5.4 Experimentation in a dynamic environment

In the dynamic delivery problem, the waiting strategy, which groups customer orders based on arrival

time, can reduce total driver travel times for serving all customers but may increase order completion

Les Cahiers du GERAD G–2025–40 20

times (the duration from order placement to delivery). To evaluate the efficiency of different wait-

ing strategies and delivery systems, we simulate the dynamic experimentation process under various

waiting strategies with limited driver availability.

As shown in Figure 7, customers continuously arrive, and delivery can be optimized either imme-

diately upon order arrival to ensure the fastest delivery or after a fixed interval, optimizing delivery

for all batched customers. The simulation models customer arrivals as a Poisson process, with rates

varying from 4 to 10 customers every 10 minutes. Simulations are conducted over durations of one

and two hours, with the number of drivers ranging from 10 to 20. Each setup is repeated 40 times to

ensure robust results, simulating real-world conditions while keeping other parameters consistent with

the static model. For a given re-optimization interval, the system optimizes driver assignments and

routes to serve orders arriving during the interval and updates availability based on task completion

for the next interval. This process repeats with new customer arrivals at each interval. Performance

metrics such as completion time, wait time, delivery time, and travel time are recorded. The detailed

experimentation process is presented in Table C6 in Appendix C.1. Given limited drivers, two re-

optimization strategies are considered when no drivers are available within the rolling horizon. The

first strategy always fixes re-optimization time points and assigns customers to the earliest available

drivers if no driver is free, with results shown below. The second strategy delays optimization until

enough drivers are available, with details and a comparison of these strategies provided in Appendix C.

Figure 7: Customer arrival process and dynamic experimentation process.

Figure 8a illustrates the trade-off between delivery time and wait time across re-optimization in-

tervals ranging from event-triggered to 20 minutes, resulting in a function that initially decreases and

then increases for order completion time, which includes both delivery and wait times. Under the

event-triggered strategy, delivery times are shorter, but wait times are significantly longer. This oc-

curs because drivers are immediately assigned to serve individual customers, resulting in fast delivery

but inefficient use of drivers. As a result, drivers are occupied with deliveries before they can serve the

next customer, and customers must wait longer for the earliest available driver, reducing overall driver

availability and increasing wait times. In contrast, the 20-minute re-optimization interval results in

longer delivery times but more moderate wait times. This is because more customers are batched

together and served by the same driver, improving the utilization of available drivers. However, since

each driver must serve more customers once dispatched, delivery times are longer. Additionally, as cus-

tomers must wait for batching, the wait time before re-optimization (i.e., before drivers are assigned)

increases as the re-optimization interval lengthens. Overall, the five-minute re-optimization interval,

which minimizes completion time, strikes a favorable balance between wait time and delivery time.

This interval ensures that customers spend minimal time waiting for an available driver while also

allowing for prompt delivery once the orders are assigned. Figure 8b displays the completion times

for three systems under varying re-optimization intervals. For all three systems, order completion

time initially decreases before increasing as the re-optimization interval extends. Notably, all systems

achieve the lowest order completion time with the 5-minute re-optimization interval among all waiting

Les Cahiers du GERAD G–2025–40 21

strategies. COD outperforms the other systems in extremely short re-optimization intervals, such as

the event-triggered and one-minute or two-minute intervals, while CODT excels across all other re-

optimization intervals. The detailed distribution of delivery time, wait time, travel time for serving one

additional customer, and customer scale for the three systems under different re-optimization intervals

is presented in Figure C1 in Appendix C.1.

(a) Trade-off between wait time and delivery time for consolidated-order delivery with transshipment.

(b) Relative performances of different metrics.

Figure 8: Completion time including wait time and delivery time.

Insight 6. Consolidated-order delivery is the most efficient system regarding order completion time

and average travel time for serving each customer under the event-triggered strategy or a short re-

optimization interval. This suggests that when there are few customers to serve, it is advantageous

for drivers to pick up all requests from different stores without transshipment and deliver them as a

combined order, as the savings in wait time outweigh the costs of delivery time.

Insight 7. Consolidated-order delivery with transshipment with a five-minute re-optimization interval

is the optimal choice, yielding the lowest order completion time among all delivery systems across

different waiting strategies. This approach entails connecting orders that arrive within each five-minute

interval, assigning the earliest available drivers to visit different stores, meeting at a transshipment node

to exchange items, and making a single delivery to fulfill all requests for each customer.

The best waiting strategy may vary depending on whether it is a busy or leisurely time for customer

arrivals and changes in driver availability. Figure 9 illustrates the best re-optimization interval that

results in the minimum order completion time across various customer arrival rates and different ratios

of the customer number to available driver number. As the customer arrival rate increases, the best

re-optimization interval also becomes larger, leading to a longer completion time. This indicates that

when customers arrive more frequently, it is beneficial to wait longer to optimize and fulfill orders.

Despite the increased completion time, this strategy still remains more efficient than the others. This

is because the reduction in wait time for available drivers outweighs the increase in delivery times.

Les Cahiers du GERAD G–2025–40 22

(a) Minimum completion time under the best re-optimization interval. (b) Best re-optimization interval.

Figure 9: Best re-optimization interval for varying ratios of customer number to driver number.

This principle holds true regardless of the customer arrival rate, but it becomes more pronounced when

customers arrive more frequently. Moreover, as the ratio of customers to drivers increases, indicating a

more limited number of drivers available to serve the same number of customers at a consistent arrival

rate, it is advisable to wait longer. This is because once a driver is engaged in the early period, it

takes more time for them to become available to serve subsequent customers arriving later.

6 Conclusion

The multi-store consolidated-order delivery service allows customers to purchase products from mul-

tiple stores in a single transaction without additional delivery fees, ensuring all items are consolidated

and delivered in one combined delivery for greater convenience. This service provides customers with

the flexibility to shop across stores, compare prices, save on delivery fees, and receive all items in a

single delivery. For stores, it can boost sales by encouraging larger orders, while delivery platforms

benefit from reduced driver demand and lower travel times. However, challenges arise in managing

longer routes and extended delivery times when a single driver must detour to multiple stores for

pickups and then deliver items to various locations. Transshipment, which enables drivers to coordi-

nate and transfer items effectively at transshipment nodes, can mitigate this issue and further improve

efficiency.

We develop a mixed-integer linear program for the multi-store order problem with consolidation and

transshipment, which can also be adapted to variants without consolidation or transshipment. Solving

the model that incorporates complex routing and time variables using exact methods is computationally

intensive, particularly for large-scale instances. To overcome this problem, we implement a learning-

to-optimize framework that combines neural network-based learning methods with a restoration and

refinement optimization process. Using the learning-to-optimize method, the multi-store order problem

can achieve high-quality solutions efficiently. In the learning process for allocation plans, we implement

four methods, each with its own distinct advantages and disadvantages. The graph-based neural

network generally shows superior performance, achieving a better trade-off between optimality gap and

solution time while adapting well to larger scales not represented in the training set. This adaptability

is due to its ability to exchange information among nodes, edges, and globally. The nearest driver

allocation is the simplest to implement, requiring no training or historical samples. Both the driver

classification neural network and driver assignment neural network perform well when the testing scale

matches the training scale.

Through experiments conducted in various U.S. regions with varying customer locations and arrival

frequencies, we find that there is a trade-off between delivery time, which is the duration from order

pickup to delivery, and wait time, which is the duration from order placement to pickup. This indicates

Les Cahiers du GERAD G–2025–40 23

the existence of an optimal waiting strategy, influenced by factors such as customer arrival rates and

the ratio of drivers to customers. It is beneficial to wait longer to batch more customers in cases

of frequent customer arrivals and limited driver availability. Overall, the consolidated-order delivery

system with transshipment and a five-minute waiting strategy consistently outperforms the others in

terms of order completion time and driver travel time, regardless of customer arrival frequency or

driver availability relative to customer demand, due to its superior spatial and temporal consolidation.

Our work has some limitations that can be addressed in future research. In a rolling horizon

implementation, earlier-arriving orders should be prioritized over later ones when driver availability

is limited, and a piecewise linear function that increases with delivery time for each order could be

applied. Future research can also explore stochastic and dynamic programming approaches to address

uncertain and time-dependent travel conditions in consolidated delivery services. In our learning

process, classification neural networks and graph neural networks are applied independently. However,

other efficient machine learning algorithms may yield better performance. For instance, embedding

algorithms, which train models independently before combining them into a stronger overall model, or

ensemble learning algorithms, which sequentially train multiple models and aggregate their outputs,

can enhance performance beyond that of any single model.

Appendix A Summary of notation

The notation is presented in Table A1.

Table A1: Problem notation.

Index Description

I Set of customers
J Set of stores
K Set of drivers
N Set of nodes, including customers, stores, and driver initial locations

Parameters Description

eij Binary parameter indicating if customer i orders from store j
ij Index of item ordered by customer i from store j
pij Size of item ij
qk Capacity of driver k
tnn′ Travel time between nodes n and n′

[αi, βi] Time window for customer i

Decisions Description

zkn Binary variable indicating if driver k visits node n
xk
nn′ Binary variable indicating if driver k travels from node n to node n′

yij
nn′ Binary variable indicating if item ij travels from node n to node n′ during the trip

vkij+n Binary variable indicating if item ij arrives at node n via driver k

vkij−n Binary variable indicating if item ij departs from node n via driver k

τk+n Continuous variable specifying the time driver k arrives at node n

τk−n Continuous variable specifying the time driver k departs from node n

λij
n Continuous variable specifying the arrival time of item ij at node n

Appendix B Detailed metrics of learning and optimization processes

We present the detailed performances of each method under both uniformly sampled customers and

clustered customers in this section. The learning performance for the uniformly sampled customers is

shown in B2, and the re-optimization performance is presented in Table B3. The learning performance

for the clustered customers is detailed in Table B4, with the corresponding optimization performance

displayed in Table B5.

Les Cahiers du GERAD G–2025–40 24

Table B2: Comparison of learning methods for uniformly sampled customers in the learning process.

Training Scale Testing Scale Method Accuracy
Allocation
Percentage Allocation Std.

|I|: (2, 7);
|K|: (2, 3);
NoI: 1200

|I|: (2, 7);
|K|: (2, 3);
NoI: 1200

NDA 0.79 41.67% 0.26
DANN 0.82 44.02% 0.00
DCNN 0.82 41.67% 0.18
GNN 0.84 41.67% 0.30

|I|: (2, 7);
|K|: (4, 5);
NoI: 1200

NDA 0.88 22.50% 0.39
DANN 0.82 29.95% 0.59
DCNN 0.82 22.50% 0.61
GNN 0.92 22.50% 0.70

|I|: (8, 10);
|K|: (2, 3);
NoI: 600

NDA 0.78 41.67% 0.94
DANN 0.81 52.24% 0.28
DCNN 0.84 41.67% 0.56
GNN 0.86 41.67% 0.35

|I|: (8, 10);
|K|: (4, 5);
NoI: 600

NDA 0.85 22.50% 0.02
DANN 0.78 37.67% 0.42
DCNN 0.81 22.50% 0.43
GNN 0.90 22.50% 0.09

|I|: (12, 20);
|K|: (2, 5);
NoI: 400

NDA 0.71 32.08% 0.97
DANN 0.69 44.32% 0.50
DCNN 0.69 32.08% 0.84
GNN 0.73 32.08% 0.40

|I|: (2, 20);
|K|: (2, 5);
NoI: 4000

NDA 0.83 32.08% 0.07
DANN 0.81 39.09% 0.22
DCNN 0.82 32.08% 0.59
GNN 0.87 32.08% 0.15

|I|: (2, 10);
|K|: (2, 5);
NoI: 3600

|I|: (2, 7);
|K|: (2, 3);
NoI: 1200

NDA 0.79 41.67% 0.26
DANN 0.81 40.24% 0.04
DCNN 0.81 41.67% 0.09
GNN 0.83 41.67% 0.31

|I|: (2, 7);
|K|: (4, 5);
NoI: 1200

NDA 0.88 22.50% 0.39
DANN 0.89 20.55% 0.40
DCNN 0.91 22.50% 0.24
GNN 0.92 22.50% 0.43

|I|: (8, 10);
|K|: (2, 3);
NoI: 600

NDA 0.78 41.67% 0.81
DANN 0.82 49.18% 0.26
DCNN 0.84 41.67% 0.30
GNN 0.82 41.67% 0.70

|I|: (8, 10);
|K|: (4, 5);
NoI: 600

NDA 0.85 22.50% 0.02
DANN 0.85 28.75% 0.34
DCNN 0.90 22.50% 0.04
GNN 0.89 22.50% 0.05

|I|: (12, 20);
|K|: (2, 5);
NoI: 400

NDA 0.71 32.08% 0.20
DANN 0.69 37.09% 0.04
DCNN 0.70 32.08% 0.59
GNN 0.74 32.08% 0.55

|I|: (2, 20);
|K|: (2, 5);
NoI: 4000

NDA 0.83 32.08% 0.06
DANN 0.84 32.38% 0.15
DCNN 0.86 32.08% 0.05
GNN 0.88 32.08% 0.15

Les Cahiers du GERAD G–2025–40 25

Table B3: Comparison of learning methods for uniformly sampled customers in the optimization process.

Training Scale Testing Scale Method
Objective
Gap (%)

Delivery Time
Gap (%)

Travel Time
Gap (%)

Runtime
(s)

|I|: (2, 7);
|K|: (2, 3);
NoI: 1200

|I|: (2, 7);
|K|: (2, 3);
NoI: 1200

NDA 3.06 3.06 1.18 7
DANN 2.97 2.96 4.31 11
DCNN 2.07 2.07 1.67 6
GNN 3.21 3.2 1.55 6

|I|: (2, 7);
|K|: (4, 5);
NoI: 1200

NDA 1.25 1.25 0.37 6
DANN 5.53 5.48 43.79 26
DCNN 10.04 10.01 11.9 10
GNN 2.73 2.72 1.49 6

|I|: (8, 10);
|K|: (2, 3);
NoI: 600

NDA 8.26 8.24 2.77 103
DANN 6.89 6.89 11.04 200
DCNN 3.78 3.78 2.19 28
GNN 3.19 3.17 5.3 21

|I|: (8, 10);
|K|: (4, 5);
NoI: 600

NDA 2.1 2.14 11.94 133
DANN 4.2 4.24 23.79 206
DCNN 12.19 12.28 27.11 86
GNN 1.89 1.92 12.13 33

|I|: (12, 20);
|K|: (2, 5);
NoI: 400

NDA 3.49 3.47 3.74 483
DANN 5.48 5.47 1.84 607
DCNN 2.29 2.33 18.38 532
GNN 1.73 1.77 17.56 406

|I|: (2, 20);
|K|: (2, 5);
NoI: 4000

NDA 2.81 2.8 2.32 50
DANN 4.54 4.56 19.98 92
DCNN 6.01 6.03 9.9 53
GNN 2.78 2.78 3.8 38

|I|: (2, 10);
|K|: (2, 5);
NoI: 3600

|I|: (2, 7);
|K|: (2, 3);
NoI: 1200

NDA 3.06 3.06 1.18 7
DANN 2.28 2.28 0.33 9
DCNN 2.10 2.10 1.19 5
GNN 3.07 3.07 0.77 5

|I|: (2, 7);
|K|: (4, 5);
NoI: 1200

NDA 1.25 1.25 0.37 6
DANN 1.49 1.48 4.36 8
DCNN 0.94 0.94 0.15 5
GNN 2.19 2.19 3.22 5

|I|: (8, 10);
|K|: (2, 3);
NoI: 600

NDA 8.26 8.24 2.77 103
DANN 4.03 4.01 6.57 154
DCNN 1.66 1.65 4.92 14
GNN 2.82 2.81 4.46 12

|I|: (8, 10);
|K|: (4, 5);
NoI: 600

NDA 2.1 2.14 11.94 133
DANN 1.89 1.91 7.17 133
DCNN 1.66 1.68 10.42 30
GNN 2.13 2.15 7.4 25

|I|: (12, 20);
|K|: (2, 5);
NoI: 400

NDA 3.49 3.47 3.74 483
DANN 5.20 5.18 2.99 607
DCNN 1.63 1.67 17.51 528
GNN 1.19 1.23 16.76 457

|I|: (2, 20);
|K|: (2, 5);
NoI: 4000

NDA 2.81 2.8 2.32 50
DANN 2.32 2.31 2.76 67
DCNN 1.56 1.56 2.75 40
GNN 2.52 2.51 1.39 35

Les Cahiers du GERAD G–2025–40 26

Table B4: Comparison of learning methods for clustered customers in the learning process.

Training Scale Testing Scale Method Accuracy
Allocation
Percentage Allocation Std.

|I|: (2, 7);
|K|: (2, 3));
NoI: 1200

|I|: (2, 7);
|K|: (2, 3);
NoI: 1200

NDA 0.64 41.67% 0.30
DANN 0.73 37.43% 0.01
DCNN 0.77 41.67% 0.58
GNN 0.81 41.67% 0.19

|I|: (2, 7);
|K|: (4, 5);
NoI: 1200

NDA 0.78 22.50% 0.90
DANN 0.76 23.11% 0.51
DCNN 0.82 22.50% 0.26
GNN 0.89 22.50% 0.35

|I|: (8, 10);
|K|: (2, 3);
NoI: 600

NDA 0.58 41.67% 0.7
DANN 0.63 63.14% 0.12
DCNN 0.63 41.67% 0.67
GNN 0.70 41.67% 0.76

|I|: (8, 10);
|K|: (4, 5);
NoI: 600

NDA 0.8 22.50% 1.36
DANN 0.70 27.04% 0.67
DCNN 0.80 22.50% 0.58
GNN 0.86 22.50% 0.30

|I|: (12, 20);
|K|: (2, 5);
NoI: 400

NDA 0.60 32.08% 0.91
DANN 0.63 68.31% 0.566
DCNN 0.63 32.08% 0.76
GNN 0.69 32.08% 0.17

|I|: (2, 20);
|K|: (2, 5);
NoI: 4000

NDA 0.70 32.08% 0.54
DANN 0.73 33.81% 0.27
DCNN 0.78 32.08% 0.55
GNN 0.83 32.08% 0.94

|I|: (2, 10);
|K|: (2, 5);
NoI: 3600

|I|: (2, 7);
|K|: (2, 3);
NoI: 1200

NDA 0.64 41.67% 0.30
DANN 0.72 28.49% 0.51
DCNN 0.77 41.67% 0.93
GNN 0.80 41.67% 0.57

|I|: (2, 7);
|K|: (4, 5);
NoI: 1200

NDA 0.78 22.50% 0.90
DANN 0.86 17.48% 1.37
DCNN 0.90 22.50% 0.03
GNN 0.90 22.5% 0.09

|I|: (8, 10);
|K|: (2, 3);
NoI: 600

NDA 0.58 41.67% 0.11
DANN 0.65 38.15% 0.19
DCNN 0.72 41.67% 0.21
GNN 0.73 41.67% 0.29

|I|: (8, 10);
|K|: (4, 5);
NoI: 600

NDA 0.80 18.71% 0.35
DANN 0.84 18.53% 0.92
DCNN 0.86 18.71% 0.07
GNN 0.88 18.71% 0.45

|I|: (12, 20);
|K|: (2, 5);
NoI: 400

NDA 0.60 32.08% 0.28
DANN 0.66 31.11% 0.59
DCNN 0.66 32.08% 0.30
GNN 0.69 32.08% 0.76

|I|: (2, 20);
|K|: (2, 5);
NoI: 4000

NDA 0.70 32.08% 0.61
DANN 0.78 29.31% 0.88
DCNN 0.82 32.08% 0.63
GNN 0.84 32.08% 0.51

Les Cahiers du GERAD G–2025–40 27

Table B5: Comparison of learning methods for clustered customers in the optimization process.

Training Scale Testing Scale Method
Objective
Gap(%)

Delivery Time
Gap(%)

Travel Time
Gap(%)

Runtime
(s)

|I|: (2, 7);
|K|: (2, 3);
NoI: 1200

|I|: (2, 7);
|K|: (2, 3);
NoI: 1200

NDA 3.64 3.58 25.77 14
DANN 2.94 2.92 8.61 24
DCNN 3.54 3.53 9.96 10
GNN 2.35 2.33 4.3 7

|I|: (2, 7);
|K|: (4, 5);
NoI: 1200

NDA 2.74 2.62 62.36 19
DANN 3.40 3.28 58.73 43
DCNN 4.90 4.87 9.08 13
GNN 1.79 1.73 24.09 8

|I|: (8, 10);
|K|: (2, 3);
NoI: 600

NDA 10.71 10.69 12.31 152
DANN 11.72 11.69 20.47 311
DCNN 4.35 4.30 14.55 82
GNN 2.90 2.89 3.57 15

|I|: (8, 10);
|K|: (4, 5);
NoI: 600

NDA 5.72 5.63 39.31 127
DANN 4.21 4.11 41.43 264
DCNN 6.46 6.38 23.95 98
GNN 1.20 1.18 7.55 31

|I|: (12, 20);
|K|: (2, 5);
NoI: 400

NDA 11.62 11.57 3.4 574
DANN 10.62 10.59 12.5 607
DCNN 4.06 4.00 17.51 542
GNN 2.36 2.30 16.76 457

|I|: (2, 20);
|K|: (2, 5);
NoI: 4000

NDA 4.65 4.58 36.19 47
DANN 4.53 4.48 29.79 109
DCNN 4.39 4.36 12.09 55
GNN 2.07 2.07 9.01 38

|I|: (2, 10);
|K|: (2, 5);
NoI: 3600

|I|: (2, 7);
|K|: (2, 3);
NoI: 1200

NDA 3.64 3.58 25.77 14
DANN 1.88 1.86 2.08 41
DCNN 4.56 4.55 9.97 7
GNN 2.65 2.64 3.17 6

|I|: (2, 7);
|K|: (4, 5);
NoI: 1200

NDA 2.74 2.62 62.36 19
DANN 0.23 0.23 4.34 50
DCNN 2.75 2.72 4.14 6
GNN 1.68 1.64 23.44 5

|I|: (8, 10);
|K|: (2, 3);
NoI: 600

NDA 10.71 10.69 12.31 152
DANN 6.22 6.22 5.96 329
DCNN 5.18 5.15 11.74 83
GNN 1.16 1.12 11.79 12

|I|: (8, 10);
|K|: (4, 5);
NoI: 600

NDA 5.72 5.63 39.31 127
DANN 1.18 1.13 12.16 163
DCNN 2.99 2.97 11.53 35
GNN 1.01 0.97 21.48 24

|I|: (12, 20);
|K|: (2, 5);
NoI: 400

NDA 11.62 11.57 3.40 574
DANN 6.52 6.50 10.02 607
DCNN 2.08 2.03 17.51 525
GNN 1.74 1.69 16.76 450

|I|: (2, 20);
|K|: (2, 5);
NoI: 4000

NDA 4.65 4.58 36.19 47
DANN 1.93 1.90 1.47 111
DCNN 3.60 3.57 8.89 46
GNN 1.96 1.95 11.10 34

Les Cahiers du GERAD G–2025–40 28

Appendix C Dynamic experiments

C.1 Dynamic experiments with earliest-available-driver-assignment strategy

The detailed experimentation process for earliest-available-driver-assignment strategy is shown in Ta-

ble C6.

Table C6: Dynamic Experimentation Process.

Step Description

Initialization Initialize the experimentation with the following elements:

• Define the customer arrival process as a Poisson process with a specified arrival rate. Set
service duration |T | to 1 or 2 hours. Generate customer arrival times ai for each customer
i ∈ I who arrives within this duration.

• Let |K| available drivers serve customers who order from store j ∈ |J |. For driver k ∈ K,
generate their origin node and set availability time τok = 0. Additionally, determine the
locations of both customers and stores.

• Define the re-optimization intervals, which can vary from event-triggered (e.g., upon a new
customer arrival) to a fixed interval (e.g., 10 minutes). Obtain the set of optimization
time points {p0, p1, p2, . . . , pT }, and define the final time P for the experimentation.

Step 1 For the initial period t = 0, corresponding to the time interval [p0, p1], optimize the system at
the time point p1,

• Input the information, including the customers that arrive within this period (i.e., i ∈ I0
where I0 = {i ∈ I|p0 ≤ ai ≤ p1}) and place orders from stores j ∈ J , as well as the
drivers k ∈ K with their available times to serve customers being τok = 0.

• Run the optimization problem to assign drivers to customers and plan their routes. If
no drivers are currently available, customers are assigned to the earliest available drivers
who can serve the orders once they complete their assigned tasks.

• Update the drivers’ availability times based on the completion time of their last served

customer (i.e., τok ← maxi∈I0

{
τk−i

}
), and set the driver location to the last served

customer location.

• Record the number of customers served in the interval [p0, p1], as well as the completion
time, wait time, delivery time, and expected travel time for each customer.

Step 2 While t ≤ |T | − 1, repeat the following steps:
Increment t and update the time interval to [pt, pt+1]. Optimize the system at the time point
pt+1,

• Input the information, including the customers that arrive within this period (i.e., i ∈ It
where It = {i ∈ I | pt ≤ ai ≤ pt+1}) and place orders from stores j ∈ J , as well as the
drivers k ∈ K with their earliest available times to serve customers being τok .

• Run the optimization problem to assign drivers to customers and plan their routes. If
no drivers are currently available, customers are assigned to the earliest available drivers
who can serve the orders once they complete their assigned tasks.

• Update the drivers’ availability times based on the completion time of their last served
customer (i.e., τok ← maxi∈It{τ

k−
i }), and set the driver location to the last served

customer location.

• Record the number of customers served in the interval [pt, pt+1], as well as the completion
time, wait time, delivery time, and expected travel time for each customer.

Output The experimentation outputs include the total number of customers served during each time
interval, and for each customer, the order completion time, wait time, delivery time, and expected
travel time.

The dynamic experimentation results for earliest-available-driver-assignment strategy, including

delivery time, wait time, travel time per customer, and customer scale under varying re-optimization

intervals, are shown in Figure C1.

Les Cahiers du GERAD G–2025–40 29

(a) Delivery time between order pickup and arrival.

(b) Wait time between order placement and pickup.

(c) Driver travel time by serving one more customer.

(d) Number of customers in each re-optimization interval.

Figure C1: Delivery time, wait time, travel time, and customer number under varying re-optimization intervals.

Les Cahiers du GERAD G–2025–40 30

C.2 Dynamic experiments with driver-availability-triggered strategy

We present the dynamic experimentation process with driver-availability-triggered optimization in

Table C7.

Table C7: Dynamic experimentation process with driver-availability-triggered optimization.

Step Description

Initialization Initialize the experimentation with the following elements:

• Define the customer arrival process as a Poisson process with a specified arrival rate. Set
service duration |T | to 1 or 2 hours. Generate customer arrival times ai for each customer
i ∈ I who arrives within this duration.

• Let |K| available drivers serve customers who order from store j ∈ |J |. For driver k ∈ K,
generate their origin node and set availability time τok = 0. Additionally, determine the
locations of both customers and stores.

• Define the re-optimization intervals, which can vary from event-triggered (e.g., upon a new
customer arrival) to a fixed interval (e.g., 10 minutes). Obtain the set of optimization
time points {p0, p1, p2, . . . , pT }, and define the final time P for the experimentation.

Step 1 For the initial period t = 0, corresponding to the time interval [p0, p1], if there are available
drivers k ∈ {k ∈ K|ok ≤ p1}, optimize the system at the time point p1,

• Input the information, including the customers that arrive within this period (i.e., i ∈ I0
where I0 = {i ∈ I|p0 ≤ ai ≤ p1}) and place orders from stores j ∈ J , as well as the
drivers k ∈ K with their available times to serve customers being τok = 0.

• Run the optimization problem to assign available drivers to customers and plan their
routes.

• Update the drivers’ availability times based on the completion time of their last served

customer (i.e., τok ← maxi∈I0

{
τk−i

}
), and set the driver location to the last served

customer location.

• Record the number of customers served in the interval [p0, p1], as well as the completion
time, wait time, delivery time, and expected travel time for each customer.

Step 2 While t ≤ |T | − 1, repeat the following steps:
Increment t and update the time interval to [pt, pt+1]. If there are available drivers k ∈ {k ∈
K|ok ≤ pt+1}, optimize the system at the time point pt+1,

• Input the information, including the customers that arrive within this period (i.e., i ∈ It
where It = {i ∈ I | pt ≤ ai ≤ pt+1}) and place orders from stores j ∈ J , as well as the
drivers k ∈ K with their earliest available times to serve customers being τok .

• Run the optimization problem to assign available drivers to customers and plan their
routes.

• Update the drivers’ availability times based on the completion time of their last served
customer (i.e., τok ← maxi∈It{τ

k−
i }), and set the driver location to the last served

customer location.

• Record the number of customers served in the interval [pt, pt+1], as well as the completion
time, wait time, delivery time, and expected travel time for each customer.

Output The experimentation outputs include the total number of customers served during each time
interval, and for each customer, the order completion time, wait time, delivery time, and expected
travel time.

Under the dynamic experimentation with the driver-availability-triggered strategy, Figure C2a

presents the order completion time, including delivery and wait times, for consolidated-order delivery

with transshipment (CODT). Although the trade-off between delivery and wait times disappears un-

der this strategy, the order completion time still follows a smooth pattern, with trends that initially

decrease and then increase. The five-minute re-optimization interval yields the lowest delivery time,

while the six-minute interval achieves the lowest wait time and overall order completion times. Fig-

ure C2b compares completion times across the three systems under varying intervals, while Figure C3

Les Cahiers du GERAD G–2025–40 31

provides detailed distributions of delivery time, wait time, travel time per customer, and customer

scale. CODT consistently outperforms the other systems in order completion time, delivery time, and

driver travel time per customer. Figure C4 highlights the best re-optimization interval that minimizes

order completion time across varying customer arrival rates and customer-to-driver ratios. As ar-

rival rates or customer-to-driver ratios increase, longer re-optimization intervals are optimal, reflecting

the benefit of waiting longer to batch and fulfill orders. These findings align with insights from the

earliest-available-driver-assignment strategy.

(a) Completion time, wait time, and delivery time for consolidated-order delivery with transshipment.

(b) Completion time including wait time and delivery time.

Figure C2: Completion time under varying re-optimization intervals for the driver-availability-triggered strategy.

C.3 Comparison between earliest-available-driver-assignment strategy and
driver-availability-triggered strategy

We compare the earliest-available-driver-assignment strategy with the driver-availability-triggered

strategy in this section. As shown in Figures 8a and C2a, the best completion time under the driver-

availability-triggered strategy, at 34.0 minutes, is higher than the best time of 33.6 minutes under

the earliest-available-driver-assignment strategy. Therefore, we conclude that fixed-interval optimiza-

tion with the earliest-available-driver-assignment strategy is slightly superior to the driver-availability-

triggered strategy.

Table C8 presents the best re-optimization intervals and corresponding minimum completion times

across different customer arrival rates and customer-to-driver ratios, highlighting how the optimal wait-

ing strategy varies. Overall, the earliest-available-driver-assignment strategy consistently outperforms

the driver-availability-triggered strategy, though the gap is small. The best re-optimization interval

for the driver-availability-triggered strategy is approximately one minute longer, as both shorter and

longer intervals can result in larger batching sizes and longer completion times in this approach. In

summary, a shorter-duration waiting strategy is optimal for the consolidated-order delivery system

with transshipment.

Les Cahiers du GERAD G–2025–40 32

(a) Delivery time between order pickup and arrival.

(b) Wait time between order placement and pickup.

(c) Driver travel time by serving one more customer.

(d) Number of customers in each re-optimization interval.

Figure C3: Delivery time, wait time, travel time, and customer number under varying re-optimization intervals for the
driver-availability-triggered strategy.

Les Cahiers du GERAD G–2025–40 33

(a) Minimum completion time under the best re-optimization interval. (b) Best re-optimization interval.

Figure C4: Best re-optimization interval for varying ratios of customer number to driver number.

Table C8: Comparison between earliest-available-driver-assignment strategy and driver-availability-triggered strategy.

Customer to
Driver Ratio

Arrival Rate
(Num. of
customers
every 10 mins)

Earliest-available-driver-
assignment Strategy

Driver-availability-triggered
Strategy

Best
Re-optimization
Interval (mins)

Minimum
Completion
Time (mins)

Best
Re-optimization
Interval (mins)

Minimum
Completion
Time (mins)

1 4 3 29.40 3 29.64
1 6 4 30.14 4 30.17
1 8 4 30.99 4 31.53
1 10 4 31.42 5 31.60

2 4 3 29.45 3 29.84
2 6 4 30.44 5 30.52
2 8 4 31.61 5 32.17
2 10 6 32.61 5 32.80

3 4 4 30.04 4 30.00
3 6 5 31.19 5 31.47
3 8 5 32.63 5 32.40
3 10 6 32.85 6 33.00

4 4 4 30.60 4 30.43
4 6 5 31.58 5 31.76
4 8 5 33.00 5 33.21
4 10 6 33.20 7 33.80

5 4 4 30.67 4 30.79
5 6 5 32.04 6 32.66
5 8 5 33.27 6 33.37
5 10 9 33.62 9 34.00

6 4 4 31.29 6 31.88
6 6 6 32.30 6 32.70
6 8 6 33.88 6 33.90
6 10 9 34.30 9 34.30

Les Cahiers du GERAD G–2025–40 34

References
Ramon Auad, Alan Erera, and Martin Savelsbergh. Dynamic courier capacity acquisition in rapid delivery

systems: A deep q-learning approach. Transportation Science, 58(1):67–93, 2024.

Gerardo Berbeglia, Jean-François Cordeau, and Gilbert Laporte. Dynamic pickup and delivery problems.
European Journal of Operational Research, 202(1):8–15, 2010.

Junyu Cao and Wei Qi. Stall economy: The value of mobility in retail on wheels. Operations Research, 71(2):
708–726, 2023.

John Gunnar Carlsson, Sheng Liu, Nooshin Salari, and Han Yu. Provably good region partitioning for on-time
last-mile delivery. Operations Research, 72(1):91–109, 2024.

George B Dantzig and John H Ramser. The truck dispatching problem. Management Science, 6(1):80–91,
1959.

DoubleDash. Introducing doubledash, a new way to shop multiple stores in one order, 2023. URL https:

//about.doordash.com/en-us/news/introducing-doubledash-a-new-way-to-shop-multiple-

stores-in-one-order. Last accessed on Nov 01, 2023.

Epipresto. The place to order from all your specialized and independent stores!, 2023. URL https://epipre

sto.ca/en. Last accessed on Nov 01, 2023.

Florentin D Hildebrandt and Marlin W Ulmer. Supervised learning for arrival time estimations in restaurant
meal delivery. Transportation Science, 56(4):1058–1084, 2022.

L Jeff Hong, Zhiyuan Huang, and Henry Lam. Learning-based robust optimization: Procedures and statistical
guarantees. Management Science, 67(6):3447–3467, 2021.

Instacart. Introducing orderup, a new way to save time and money on instacart with orders from two retailers–
with just one delivery fee, 2022. URL https://www.instacart.com/company/updates/introducing-

orderup-a-new-way-to-save-time-and-money-on-instacart-with-orders-from-two-retailers-

with-just-one-delivery-fee/. Last accessed on Nov 01, 2023.

Esther Julien, Krzysztof Postek, and Ş İlker Birbil. Machine learning for k-adaptability in two-stage robust
optimization. INFORMS Journal on Computing, Forthcoming, 2024. URL https://doi.org/10.1287/

ijoc.2022.0314.

Çağrı Koç, Gilbert Laporte, and İlknur Tükenmez. A review of vehicle routing with simultaneous pickup and
delivery. Computers & Operations Research, 122:104987, 2020.

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-end constrained opti-
mization learning: A survey. In International Joint Conference on Artificial Intelligence, pages 4475–4482.
IJCAI, 8 2021.

James Kotary, Vincenzo Di Vito, Jacob Christopher, Pascal Van Hentenryck, and Ferdinando Fioretto. Learn-
ing joint models of prediction and optimization. In ECAI 2024, pages 2476–2483. IOS Press, 2024.

Eric Larsen, Emma Frejinger, Bernard Gendron, and Andrea Lodi. Fast continuous and integer l-shaped
heuristics through supervised learning. INFORMS Journal on Computing, 36(1):203–223, 2024.

Zhuoxin Li and Gang Wang. On-demand delivery platforms and restaurant sales. Management Science,
Forthcoming, 2024. URL https://doi.org/10.1287/mnsc.2021.01010.

Sheng Liu, Long He, and Zuo-Jun Max Shen. On-time last-mile delivery: Order assignment with travel-time
predictors. Management Science, 67(7):4095–4119, 2021.

Zefeng Lyu and Andrew Junfang Yu. The pickup and delivery problem with transshipments: Critical review of
two existing models and a new formulation. European Journal of Operational Research, 305(1):260–270,
2023.

Wenzheng Mao, Liu Ming, Ying Rong, Christopher S Tang, and Huan Zheng. On-demand meal delivery
platforms: Operational level data and research opportunities. Manufacturing & Service Operations
Management, 24(5):2535–2542, 2022.

Donato Maragno, Holly Wiberg, Dimitris Bertsimas, Ş İlker Birbil, Dick den Hertog, and Adejuyigbe O
Fajemisin. Mixed-integer optimization with constraint learning. Operations Research, Forthcoming,
2023. URL https://doi.org/10.1287/opre.2021.0707.

Daniel Merchan, Julian Pachon, Jatin Arora, Karthik Konduri, Matthias Winkenbach, Steven Parks, and
Joseph Noszek. Amazon last mile routing research challenge dataset, 2021. URL https://registry.o

pendata.aws/amazon-last-mile-challenges. Accessed January 6, 2022.

Snežana Mitrović-Minić and Gilbert Laporte. The pickup and delivery problem with time windows and trans-
shipment. INFOR: Information Systems and Operational Research, 44(3):217–227, 2006.

https://about.doordash.com/en-us/news/introducing-doubledash-a-new-way-to-shop-multiple-stores-in-one-order
https://about.doordash.com/en-us/news/introducing-doubledash-a-new-way-to-shop-multiple-stores-in-one-order
https://about.doordash.com/en-us/news/introducing-doubledash-a-new-way-to-shop-multiple-stores-in-one-order
https://epipresto.ca/en
https://epipresto.ca/en
https://www.instacart.com/company/updates/introducing-orderup-a-new-way-to-save-time-and-money-on-instacart-with-orders-from-two-retailers-with-just-one-delivery-fee/
https://www.instacart.com/company/updates/introducing-orderup-a-new-way-to-save-time-and-money-on-instacart-with-orders-from-two-retailers-with-just-one-delivery-fee/
https://www.instacart.com/company/updates/introducing-orderup-a-new-way-to-save-time-and-money-on-instacart-with-orders-from-two-retailers-with-just-one-delivery-fee/
https://doi.org/10.1287/ijoc.2022.0314
https://doi.org/10.1287/ijoc.2022.0314
https://doi.org/10.1287/mnsc.2021.01010
https://doi.org/10.1287/opre.2021.0707
https://registry.opendata.aws/amazon-last-mile-challenges
https://registry.opendata.aws/amazon-last-mile-challenges

Les Cahiers du GERAD G–2025–40 35

Maciek Nowak, Ozlem Ergun, and Chelsea C White III. An empirical study on the benefit of split loads with
the pickup and delivery problem. European Journal of Operational Research, 198(3):734–740, 2009.

Ritesh Ojha, Wenbo Chen, Hanyu Zhang, Reem Khir, Alan Erera, and Pascal Van Hentenryck. Optimization-
based learning for dynamic load planning in trucking service networks. arXiv preprint arXiv:2307.04050,
2023.

Sami Serkan Özarık, Paulo da Costa, and Alexandre M Florio. Machine learning for data-driven last-mile
delivery optimization. Transportation Science, 58(1):27–44, 2024.

Meng Qi, Yuanyuan Shi, Yongzhi Qi, Chenxin Ma, Rong Yuan, Di Wu, and Zuo-Jun Shen. A practical
end-to-end inventory management model with deep learning. Management Science, 69(2):759–773, 2023.

S Raghavan and Rui Zhang. The driver-aide problem: Coordinated logistics for last-mile delivery. Manufac-
turing & Service Operations Management, 26(1):291–311, 2024.

Abdur Rais, Filipe Alvelos, and Maria Sameiro Carvalho. New mixed integer-programming model for the
pickup-and-delivery problem with transshipment. European Journal of Operational Research, 235(3):
530–539, 2014.

Julia Rieck, Carsten Ehrenberg, and Jürgen Zimmermann. Many-to-many location-routing with inter-hub
transport and multi-commodity pickup-and-delivery. European Journal of Operational Research, 236(3):
863–878, 2014.

Utsav Sadana, Abhilash Chenreddy, Erick Delage, Alexandre Forel, Emma Frejinger, and Thibaut Vidal. A
survey of contextual optimization methods for decision-making under uncertainty. European Journal of
Operational Research, 2024.

Martin Savelsbergh and Tom Van Woensel. 50th anniversary invited article—city logistics: Challenges and
opportunities. Transportation Science, 50(2):579–590, 2016.

Statista. Market insights into quick commerce of online food and grocery delivery (worldwide), 2024. URL
https://www.statista.com/outlook/dmo/online-food-delivery/worldwide. Last accessed on Oct
15, 2024.

E Su, Hu Qin, Jiliu Li, and Kai Pan. An exact algorithm for the pickup and delivery problem with crowdsourced
bids and transshipment. Transportation Research Part B: Methodological, 177:102831, 2023.

Pascal Van Hentenryck. Machine learning for optimal power flows. Tutorials in Operations Research: Emerging
Optimization Methods and Modeling Techniques with Applications, pages 62–82, 2021.

Shanshan Wang, Erick Delage, and Leandro C Coelho. Data-driven stochastic vehicle routing problems with
dead-lines. Les Cahiers du GERAD ISSN, 711:2440, 2024.

Wei Zhang, Alexandre Jacquillat, Kai Wang, and Shuaian Wang. Routing optimization with vehicle–customer
coordination. Management Science, 69(11):6876–6897, 2023.

https://www.statista.com/outlook/dmo/online-food-delivery/worldwide

	Introduction
	Literature review
	Last-mile delivery
	Pickup and Delivery Problem
	Machine Learning-based optimization

	The multi-store order delivery problem
	Delivery system description and problem definition
	Mathematical model
	Dynamic problem and waiting strategy

	Solution procedure
	Learning-to-optimize method
	Learning methods
	Driver Assignment Neural Network (DANN).
	Driver Classification Neural Network (DCNN).
	Graph-based Neural Network (GNN).
	Summary.

	MILP-based restoration and refinement problem

	Numerical study
	Dataset and implementation details
	Comparison of delivery systems
	Comparison of learning algorithms
	Experimentation in a dynamic environment

	Conclusion
	Summary of notation
	Detailed metrics of learning and optimization processes
	Dynamic experiments
	Dynamic experiments with earliest-available-driver-assignment strategy
	Dynamic experiments with driver-availability-triggered strategy
	Comparison between earliest-available-driver-assignment strategy anddriver-availability-triggered strategy

