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3000, chemin de la Côte-Sainte-Catherine
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Abstract : Ultra-fast delivery revolutionizes food and grocery services, with several companies ad-
vertising delivery times under 15 to 30 minutes. Motivated by the multi-billion-dollar industry that
has emerged in recent years within the delivery business, we investigate the network design prob-
lem for ultra-fast delivery services. This involves decisions on micro-depot locations and customer
allocations, considering various service guarantee levels. We develop robust probabilistic envelope-
constrained (PEC) programs to handle uncertainties in travel times and customer order arrivals, and
jointly optimize the protection level to avoid both excessive risk and conservatism. To enhance the
tractability of PEC models, we derive their equivalent semi-infinite linear programs and propose inner
and outer approximations with a finite number of linear constraints. We validate the accuracy of these
approximations through extensive experiments using real-world data from Amazon and the Google
API, along with a comparative study of different formulations. Varying service levels in ultra-fast
delivery affect profitability and reliability, contingent on service level definitions and compliance prob-
abilities of these guaranteed service levels. We find that a daily service level with multi-layer partial
protection outperforms other policies studied, offering higher profitability and only mild service level
violations. This strategy enables profitable and reliable ultra-fast delivery without over-committing
or under-delivering, regardless of ordering times or traffic conditions. Additionally, offering ultra-fast
services in rural areas is more challenging due to dispersed customers, longer travel distances, and
greater delay risks.

Keywords : Ultra-fast delivery, network design, service level, probabilistic envelope constraint, robust
optimization



Les Cahiers du GERAD G–2025–38 1

1 Introduction

Ultra-fast delivery is an emerging model for food and grocery distribution that aims to provide rapid

and reliable service from micro-depots to customers. For instance, the ultra-fast delivery company

Getir promises to deliver groceries to customers’ doorsteps within 15 minutes (Kavuk et al. 2022).

Investors and entrepreneurs (e.g., Getir, Gopuff, Gorillas) invest heavily in such services and the

projected market volume reaches up to $251.50 billions by 2028 (Statista 2023). They expect to

attract a large market share by offering urgently needed items without customers having to leave the

comfort of their homes, and aim to reduce waste by taking the role of the traditional fridge and storage

(Repko 2021). Ultra-fast delivery is rooted in the 15-minute city concept proposed by Moreno et al.

(2021), which envisions cities where most amenities and services are accessible within a 15-minute

walk or drive, promoting a decentralized neighborhood approach. Gaining popularity in response to

the climate crisis and potential pandemics, it emphasizes local services, short commutes, and easy

access to essential amenities within close proximity. In this context, ultra-fast delivery not only offers

the convenience of proximity but also supports sustainability by reducing car dependency and cutting

fuel consumption, while ultimately improving customer satisfaction.

However, in reality, many startups offering ultra-fast delivery services are facing severe capital

shortages or even going bankrupt (Chandler 2022), primarily due to four factors: costly infrastructure,

high labor costs, limited service coverage, and unsafe driver behaviors (Zhang et al. 2022). These

companies typically compete for customers by prioritizing speed, establishing numerous micro-depots

close to customers and maintaining large driver fleets to enable rapid delivery (McKinsey 2022). How-

ever, many areas remain underserved due to the lack of suitable or affordable micro-depot locations.

Because these companies rely heavily on large upfront investments and operate on thin profit margins,

they often struggle to stay afloat once venture capital funding diminishes.

The placement of micro-depots plays a critical role in shaping the financial viability, operational

efficiency, and environmental impact of ultra-fast delivery services. Strategically positioned depots help

shorten delivery distances by storing inventory closer to customers, enabling faster fulfillment and more

efficient last-mile logistics. However, setting up and maintaining these facilities can be prohibitively

expensive due to high rental rates and property costs. This financial burden has contributed to

persistent cash flow issues and even shutdowns among startups in this space. For instance, Getir

reportedly owed nearly $4 million in unpaid rent and lease obligations for nine New York City locations

as early as 2022, abandoning some storefronts despite having years left on their leases (Senzamici

2024). The company later scaled back operations by exiting several U.S. states, illustrating how high

real estate costs and poor site selection can jeopardize a company’s financial health. Beyond financial

viability, depot location decisions also have substantial environmental implications, since well-situated

depots can support the use of low-emission delivery methods. By minimizing the distance between

micro-depots and customers, companies can reduce vehicle mileage, lower greenhouse gas emissions,

and alleviate urban congestion. In contrast, poorly placed depots often lead to longer delivery routes,

increased fuel consumption, and a higher environmental footprint (Rai 2024). Thus, choosing where

to locate micro-depots is important not only for financial stability but also for enabling more energy-

efficient and less polluting delivery systems.

Timely delivery is another cornerstone of customer satisfaction. Customers tend to have low toler-

ance for delays, especially when an estimated time of arrival (ETA) is promised at the time of ordering.

These ETAs are typically derived from historical average travel times, which often fail to capture real-

time disruptions such as traffic congestion or weather conditions, resulting in missed deadlines and

customer dissatisfaction. To manage expectations and avoid reputational damage, many companies

have started revising their original ultra-fast delivery commitments. For example, Getir in Turkey

extended its promised delivery time from 15 to up to 45 minutes with customer consent (Kavuk et al.

2022), while Gorillas in Europe shifted from 10-minute to roughly 60-minute delivery windows (Fick-

enscher and Wayt 2022). In Canada, Marché Goodfood discontinued its 30-minute grocery delivery
service altogether due to financial challenges (Dufour 2022). These examples highlight the operational
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and financial risks of rigid delivery commitments and suboptimal depot placement amid real-world

uncertainty.

To help bridge the gap between the theory and practice, we aim to investigate how ultra-fast

delivery can be a profitable and reliable business while maintaining high customer service levels that

are neither overly optimistic nor pessimistic. In particular, we investigate how different measures of

service can lead to distinct levels of cost and customer satisfaction. To maintain a high service level,

the hope is to serve customers within a target delivery time (defined as the duration taken for goods

to be delivered) with high reliability. Our purpose is to introduce models for the network design of

ultra-fast delivery services in the presence of uncertain travel time distributions and unknown time

periods when customers place orders. These models aim to maximize the profit while ensuring a certain

service level by making the optimal decisions of micro-depot location and customer order allocation.

To reach this goal, our paper makes the following contributions.

• To reflect customer behavior in ultra-fast delivery systems, where promised delivery times sig-

nificantly affect ordering decisions, we model demand as endogenous and dependent on both the

expected delivery time from selected depots to customers and the worst-case expected delivery

time guaranteed by service levels. Additionally, to better reflect operational realities, we incor-

porate delivery penalties for delays beyond the promised delivery times. These penalties act as

both cost adjustments and compensations to ensure on-time delivery services and high customer

satisfaction.

• We develop probabilistic envelope constrained (PEC) programs for the ultra-fast delivery problem

under two key sources of uncertainty: spatial uncertainty in delivery times between micro-depots

and customer locations, and temporal uncertainty in customer arrivals. To capture time-varying

order frequencies across periods, we compare two service measures, including period and daily

service levels. These focus on equal performance across periods and weighted-average daily per-

formance, respectively. We evaluate the performance of these measures under different guarantees

and identify those that yield the highest profit with mild violations of target delivery times.

• To address the practical challenge that available data may not fully reflect reality, we develop

distributionally robust programs for cases in which both the distribution of travel time and the

probability of customers placing orders in different time periods are not explicitly known. We

then derive equivalent semi-infinite linear programs and more tractable linear approximations

with a finite number of constraints, ensuring both computational efficiency and high accuracy.

• We carry out extensive experiments on a real-world dataset obtained from Amazon and the

Google API and derive the following insights:

– There is a trade-off between the profitability and reliability of ultra-fast delivery. A shorter

delivery time attracts higher demand but results in more frequent violations of on-time

delivery. In contrast, tighter guarantees on promised delivery times attract more demand

per location but may lead to unserved areas. This results in a profit curve that first increases

and then decreases, revealing the optimal strategy with the highest profit.

– The optimal strategy for setting service guarantees can vary depending on customer density,

delay penalties, and customer sensitivity to service guarantees. It is advantageous to impose

stricter delivery time guarantees when customers are densely located, highly sensitive to

worst-case delivery times, and when delay penalties are significant.

– The daily service level with multi-layer partial protection on promised delivery times outper-

forms other strategies overall due to its higher profitability and reliability. This approach

prioritizes time periods with higher order frequencies, ensuring that delivery targets are

more effectively met during peak demand periods. Furthermore, setting hierarchical deliv-

ery targets, each with an associated probability, provides a flexible and reliable approach

to managing deliveries. This helps ultra-fast delivery companies maintain both profitability

and high service levels.
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– The robust formulation enhances out-of-sample performance by lowering both the probabil-

ity and magnitude of delivery time violations, enabling safer decision-making under limited

data. Although it may lead to a profit reduction, adjusting the uncertainty level allows for

a balanced trade-off, making the improved delivery reliability a worthwhile outcome.

– Compared to urban areas, delivering ultra-fast services in rural regions is more challenging

due to dispersed customer locations. Longer travel distances require more micro-depots and

increase the risk of delay penalties.

The rest of the paper is organized as follows. We review the related work in Section 2, and then

introduce the ultra-fast delivery design problem in Section 3. Next, we present stochastic programming

models and their equivalent reformulations in Section 4. In Section 5, we report the results of numerical

studies using real-world datasets to evaluate the effectiveness of our proposed models. Finally, we

conclude with managerial insights in Section 6.

2 Literature review

In this section, we review the main studies relevant to our research from three points of view: facility

location, ultra-fast delivery, and robust chance constraint programming.

2.1 Facility Location Problem

The network design of ultra-fast delivery services is a variant of the classical Facility Location Problem

(FLP), a foundational problem in operations research that has been widely studied (e.g., Aikens 1985,

Verter 2011). The FLP aims to determine the optimal placement of facilities such as stores, ware-

houses, factories, hospitals, and schools while satisfying the customer demand, in order to minimize

the cost or maximize the profit. Numerous studies have extended the FLP to account for various types

of uncertainty, leading to the development of stochastic and robust facility location models. These

models consider factors such as uncertain customer demand (e.g., Laporte et al. 1994), facility disrup-

tions (e.g., Shen et al. 2011, Cheng et al. 2021), and variability in service or travel times (e.g., Snyder

2006). These formulations aim to design resilient and cost-effective facility networks in uncertain envi-

ronments. Recent research has further advanced this line of work through methodological innovations.

For example, Li et al. (2022) study a reliable uncapacitated facility location problem where disruptions

are uncertain and correlated. They propose a cutting-plane algorithm that significantly outperforms

existing approaches, such as the search-and-cut algorithm by Aboolian et al. (2013). Similarly, Liu

et al. (2022) develop a nested Benders decomposition algorithm for a broad class of adaptive robust

stochastic facility location problems under state-dependent demand uncertainty. Shehadeh (2023)

address a mobile facility fleet-sizing, routing, and scheduling problem with time-dependent and ran-

dom demand by formulating two distributionally robust optimization models and solving them via a

decomposition-based algorithm.

Our study differs from previous research by modeling demand as endogenous, where customer

behavior depends on both the individual delivery service and the overall reliability of the delivery

system. We also incorporate delivery penalties for delays beyond the promised window, ensuring timely

service and customer satisfaction. Our approach is novel in combining both spatial and temporal

uncertainties, capturing the time-varying and time-sensitive nature of ultra-fast delivery demand.

Additionally, our model includes service level constraints and layered protection strategies, enabling

more customer-focused network design. This work advances network design by linking it to customer

behavior and service reliability, which are crucial for delivery services.

2.2 Ultra-fast delivery

Ultra-fast delivery is a form of last-mile delivery that has expanded rapidly in the food and grocery

industry due to the growth of online ordering platforms, leading to several research directions. Some,
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such as Chen et al. (2022a) and Feldman et al. (2023), explore revenue allocation between restaurants

and delivery platforms, proposing contracts to improve profitability, while others, such as Cao and Qi

(2023), suggest innovative delivery methods like self-driving mini grocery stores to enhance mobility.

While we share the goal of improving food delivery quality and profitability, our focus is on providing

ultra-fast services with high reliability, where travel time serves as a key metric. Mak (2022) highlights

the importance of efficiency in city operations and managing tight delivery time windows. A stream

of research aims to improve travel-time estimation, such as Perakis and Roels (2006), who develop

a travel-time function incorporating traffic dynamics, and Hildebrandt and Ulmer (2022), who pro-

pose supervised learning methods for ETA prediction. Other works focus on reducing delivery times

through optimization and operational strategies, with Deshpande and Pendem (2023) showing that

faster deliveries increase sales by linking logistics performance with consumer behavior, and Fatehi

and Wagner (2022) leveraging independent drivers to ensure fast, low-cost deliveries. Autonomous

delivery solutions are explored by Reed et al. (2022), while Liu et al. (2021) and Liu and Luo (2023)

integrate travel-time predictors into order optimization and real-time dispatching. Due to the inherent

uncertainty in last-mile delivery, many studies use stochastic or robust optimization frameworks (e.g.,

Fatehi and Wagner 2022, Chen et al. 2022b, Mousavi et al. 2022, Liu et al. 2021, Liu and Luo 2023).

The only study specifically addressing ultra-fast delivery is Kavuk et al. (2022), which uses deep rein-

forcement learning for order dispatching at Getir to target 15-minute deliveries. Their model predicts

whether to accept or reject orders based on estimated delivery times.

Compared to these papers, our work shares the same goal of facilitating fast deliveries. The main

difference is that we explicitly account for the impact of delivery times on demand realization, treating

demand as endogenous and sensitive to both delivery time and service guarantees. In addition, we

incorporate two sources of uncertainty and optimize a multi-level protection strategy that balances

reliability and profitability, ultimately supporting a more robust and service-oriented ultra-fast delivery

system.

2.3 Robust chance constraints and probabilistic envelope constraints

A robust chance constraint ensures that a condition is met with a specified probability, even when the

probability distribution of uncertain parameters is not fully known or varies within certain bounds.

Its aim is to create reliable solutions under uncertainty. Calafiore and Ghaoui (2006) introduced

a distributionally robust formulation for chance-constrained linear programs, focusing on the worst-

case distribution of uncertain parameters. Hanasusanto et al. (2015) studied joint chance constraints,

where uncertain parameter distributions belong to an ambiguity set defined by the mean and disper-

sion bounds, giving rise to pessimistic or optimistic ambiguous chance constraints. Postek et al. (2018)

examined robust optimization with ambiguous stochastic constraints based on mean and dispersion

information, while Ghosal and Wiesemann (2020) applied distributionally robust chance constraints to

vehicle routing problems with partially known customer demand distributions. A robust probabilistic

envelope constraint (PEC), also known as a robust first-order stochastic dominance (FSD) constraint,

generalizes the robust chance constraint by requiring a solution to stochastically dominate a reference

outcome in the first order. PEC manages risk by bounding both violation magnitude and probability,

addressing the shortcoming of chance constraints, which only control the probability of success with-

out managing failure severity. This approach has been explored in Dentcheva and Ruszczyński (2004),

Luedtke (2008), Armbruster and Delage (2015), and Dai et al. (2023). Xu et al. (2012) consider the

robust optimization problem under probabilistic envelope constraints, show that the problem of re-

quiring different probabilistic guarantees at each level of constraint violation can be reformulated as a

semi-infinite optimization problem, and provide conditions that guarantee polynomial-time solvability

of the resulting semi-infinite formulation. Peng et al. (2020) provide a two-stage stochastic program-

ming model for locating emergency medical service (EMS) stations, consider probabilistic envelope

constraints to account for the scenario-based uncertainty in the requests of EMS services, and apply

the model to a real-world EMS system to demonstrate its effectiveness in improving the EMS response
times.
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In contrast to these studies, our approach applies robust PEC to enable both fast and reliable

delivery services under uncertainty in both order arrival times and delivery times. We focus on the

joint optimization of micro-depot locations, customer allocation, and service level guarantees, ensuring

on-time deliveries while avoiding excessive risk or over conservatism. To the best of our knowledge,

our paper presents the first application of PEC in a logistics context that simultaneously incorporates

spatial and temporal uncertainties within a distribution-free framework. Additionally, we develop tight

approximations of the underlying model, enabling the efficient generation of high-quality solutions.

3 Network design problem for ultra-fast delivery

In this section, we define the network design problem for ultra-fast delivery services, derive a demand

response function that accounts for both customer-specific delivery performance and overall service

reliability, and introduce a deterministic model that captures expected system performance in the

absence of service guarantees, implicitly accepting the possibility of worst-case delivery scenarios. In

Section 4, we then present its stochastic counterpart, incorporating various levels of uncertainty and

service guarantees.

Definition 1. The network design problem for ultra-fast delivery (NDP-UD) is a multi-period problem

that involves locating micro-depots and assigning customers to depots. Its objective is to maximize

the profit and ensure reliable delivery services, while accounting for the impact of delivery time and

service guarantees on demand volume, as well as uncertainties in the distribution of travel times and

the probability of customers placing orders across different time periods.

3.1 Notation

Let (N ,A) represent a directed bipartite network, where the node set N includes the set of customer

locations I and the set of potential micro-depot locations J , and where the edge set A contains edges

(j, i) from micro-depot j to customer i with travel distance lij and edges (0, j) from the central depot to

micro-depot j with travel distance l0j . We consider a planning horizon of |T | time periods and assume

that the length of each period t ∈ T is long enough to travel between nodes. We use boldface letters to

denote column vectors. Row vectors are represented using the transpose (superscript T ) of the column

vectors. To distinguish between the uncertain and deterministic values, we use a superscript ∼ for

the random variable and a superscript ∧ for the expected value. The notation τ̃ ∼ F indicates that

τ̃ follows the distribution F , and F ∈ D states that distribution F resides in an ambiguity set D. To

simplify notation, we use ∀i, ∀j, and ∀t in place of ∀i ∈ I, ∀j ∈ J , and ∀t ∈ T , respectively.

The nominal demand (i.e., the number of potential customers) at location i in period t is d̄it, and

the revenue obtained by fulfilling per unit demand at customer location i is ri. The inventory capacity

at store j is Ij , representing the maximum number of demand units that can be fulfilled from that

location. The setup cost to open micro-depot j is oj , and the delivery cost per unit distance for driving

is c. The cost of hiring a driver for one period is h, and each driver serves an average of m customers

in each period. The delivery time is defined as the duration of delivering the goods.

Let s̃ijt represent the travel time from micro-depot j to customer i in period t, which is the primary

source of uncertainty in practice due to real-time traffic and unpredictable weather conditions. Let aijt
denote the average order preparation time, including the time required for picking and packing items

in each order. The total delivery time for serving customer i from micro-depot j in period t is given by

τ̃ijt = s̃ijt + aijt. We define the expected delivery time as τ̂ijt = Eτ̃ [τ̃ijt]. The target delivery time is τ̄

and the delivery delay beyond the target is max(τ̃ijt− τ̄ , 0). Let p denote the penalty cost incurred per

unit of delivery delay. This penalty compensates customers for late deliveries. Additionally, let τmax

denote the maximum possible delivery time across all customers and periods. This value serves as an

overall worst-case expected performance bound, reflecting the most conservative assumption that, in

the absence of delivery guarantees, delivery times may approach τmax for each customer and period

due to uncertainty in travel times. Thus, τ̃ijt ≤ τmax holds almost surely.
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We use variable yj = 1 to denote that micro-depot j is open, and yj = 0 otherwise. The variable

xijt takes value 1 if the demand at location i is served by micro-depot j in period t, and 0 otherwise.

The variable zt is the number of drivers needed in period t. A summary of notation is provided in

Appendix A.

3.2 Demand response without service level guarantees

Customers generally have several options when ordering groceries, and they make their choices by

maximizing their utility. We use the Multinomial Logit (MNL) customer choice model to represent

the customer behavior and choice probability. The MNL choice model is defined as follows: (1) The

decision maker is a customer who chooses a mode of ordering groceries. (2) The choice set contains

three options, including the ultra-fast delivery service, the best competitor, and opting out. (3) The

decision process follows a random utility model that incorporates the customer’s sensitivity to both

the customer-specific delivery service and the overall reliability of the delivery service. Options with

higher utility are associated with a greater probability of being selected.

Specifically, we assume that the utility of a customer choosing the ultra-fast delivery service at

location i during period t, denoted by Uit, depends on two key factors. The first is the location-

and time-specific estimated delivery performance, captured by the historical expected delivery time

τ̂it at location i during period t. The second is the overall worst-case expected delivery performance

of the system. In the absence of a service guarantee, this worst-case performance is represented by

τmax, which denotes the maximum possible delivery time across all locations and periods. As will be

discussed in Section 4.3, the introduction of service level guarantees can improve this general worst-case

performance. In the current setting, which lacks such guarantees, customer utility is modeled as Uit =

Vit + εit, where the deterministic component is defined as: Vit := ω0 +ω1 · 1
τ̂it

+ω2 · 1
τmax . Note that ω0

represents a baseline level of utility, ω1 captures customer sensitivity to the location- and time-specific

expected delivery time τ̂it, and ω2 reflects sensitivity to the overall system reliability, as measured by

τmax. This utility formulation accounts for both localized delivery expectations and broader concerns

about service reliability: shorter expected delivery times and improved worst-case performance result

in higher utility and an increased likelihood of the service being chosen. Similarly, the utility associated

with a competing delivery service is given by U cit = V cit + εcit, where the deterministic part is: V cit :=

ω0 + ω1 · 1
τcit

+ ω2 · 1
τmax , with τ cit denoting the expected delivery time of the competitor. The same

worst-case performance assumption τmax applies in the absence of a service guarantee. Finally, the

utility of opting out is normalized to zero in expectation: Uoit := εoit. The random terms εit, ε
c
it,

and εoit represent unobserved utility components and are assumed to be independently and identically

distributed (i.i.d.) following a zero-mean Gumbel distribution (Talluri et al. 2004).

Given this setup, the probability of choosing the ultra-fast delivery option is derived from the MNL

model: Pit(ultra-fast) = eµVit

eµVit+eµV
c
it+1

,∀i, t, where µ > 0 is a scale parameter common to all customers

and alternatives (Ben-Akiva and Bierlaire 1999). This formulation satisfies the independence from

irrelevant alternatives (IIA) property. While more flexible models such as the nested logit can relax

IIA (Wang 2021), we use the MNL model as a showcase to examine the effect of delivery time on the

demand volume.

Given that the delivery time is contingent on the decision of which micro-depot will serve a cus-

tomer, and that customers base their ordering decisions on the estimated delivery time specific to their

location and the time of the request, we further decompose Pit(ultra-fast) into Pijt(ultra-fast), i.e.,

the probability of customers at location i choosing ultra-fast delivery in period t if they are served by

micro-depot j. Namely,

Pijt(ultra-fast) =
eµg(τ̂ijt)

eµg(τ̂ijt) + eµg(τ
c
it) + 1

,∀i, j, t,

where g(τ̂ijt) = ω0 + ω1
1
τ̂ijt

+ ω2
1

τmax represents the expected utility of a customer at location i in

period t choosing ultra-fast delivery, conditional on being served by micro-depot j. Similarly, g(τ cit) =
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ω0 + ω1
1
τcit

+ ω2
1

τmax captures the expected utility from choosing a competing service. Therefore,

the expected demand volume for ultra-fast delivery services at location i, served by micro-depot j in

period t, denoted by dijt, is:

dijt =Pijtd̄itxijt =
eµg(τ̂ijt)

eµg(τ̂ijt) + eµg(τ
c
it) + 1

d̄itxijt, ∀i, j, t. (1)

3.3 Expected performance model without service level guarantees

In practice, due to the real-time traffic congestion and variable weather conditions, the travel time

from a micro-depot to a customer location is uncertain. One way of handling this uncertainty is to

measure the average performance, leading to the following deterministic program (DP) for NDP-UD:

(DP) max
x,y,d,z

∑
i

∑
j

∑
t

(
ri − c lij − ĉpijt

)
dijt −

∑
j

(oj + c l0j) yj −
∑
t

hzt (2a)

s.t.
∑
j

xijt ≤ 1, ∀i, t (2b)

xijt ≤ yj , ∀i, j, t (2c)

x ∈ XAVG (2d)

dijt =
eµg(τ̂ijt)

eµg(τ̂ijt) + eµg(τ
c
it) + 1

d̄itxijt, ∀i, j, t (2e)∑
i

∑
t

dijt ≤ Ij , ∀j (2f)

zt ≥
1

m

∑
i

∑
j

dijt, ∀t (2g)

x ∈ {0, 1}|I|×|J |×|T |,y ∈ {0, 1}|J |, z ∈ Z|J |+ . (2h)

The objective in (2a) is to maximize expected profit, considering the revenue ri generated from demand,

the outbound delivery cost c lij from micro-depot j to customer i, the expected penalty cost ĉpijt
associated with delays exceeding the target delivery time, the micro-depot opening cost oj , the inbound

delivery cost c l0j from a central depot to micro-depot j, and the driver hiring costs across all periods.

To reflect the service level commitment offered by the company, we incorporate ĉpijt as the expected

delay penalty per unit of demand, compensating customers if the delivery time to serve customer i

from micro-depot j in period t exceeds the target delivery time τ̄ . Specifically, ĉpijt := pEτ̃ [max(τ̃ijt −
τ̄ , 0)], where the expectation is computed based on historical delivery performance and works as a

deterministic input. We assume that one driver can on average serve m customers in each time

period, and that if the order is accepted, the duration between the order arrival and the successful

assignment to a driver is included in the preparation time. The constraints (2b) and (2c) ensure that

each customer is served by at most one micro-depot in each period, and that only open micro-depots

serve customers.

Definition 2. Average Service Level is a service policy that ensures on-time delivery for every customer

in each period by considering the average delivery time performance:

XAVG =

x ∈ R|I|×|J |×|T |
∣∣∣∣∣∣
∑
j

τ̂ijtxijt ≤ τ̄ , ∀i, t

 ,

where XAVG contains all the allocation solutions that satisfy the target delivery time on average.

According to Definition 2, constraint (2d) conveys that the average delivery time of serving each

customer in any period does not exceed the target delivery time τ̄ . Using the findings from Section 3.2,

constraints (2e) indicate that demand is a function of customer utilities for different delivery choices and
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depends on the individual expected delivery time and general worst-case expected delivery performance.

Constraints (2f) enforce capacity limits at each micro-depot, thereby restricting the demand volume

that can be fulfilled due to limited inventory. Constraints (2g) ensure that the number of hired drivers

in each period is sufficient to fulfill all orders, assuming that the supply of drivers is adequate. Finally,

constraints (2h) define the domain restrictions. The DP is a mixed-integer linear program.

4 Probabilistic envelope constrained programs

Bounding only the expected performance of on-time delivery may be too lenient. Therefore, we in-

troduce a probabilistic envelope constraint (PEC) approach, an extension of the chance constraint,

to achieve various on-time delivery service levels with specified probabilities. We derive tractable for-

mulations for cases where the travel time distribution is either known or unknown. Additionally, we

generalize the demand function by incorporating an improved worst-case expected delivery time under

service level guarantees imposed by PEC. Furthermore, we define and model the period service level

with an equal level in each period, and the daily service level by considering the average service level

throughout the entire day with uncertain time period of customer order arrivals. Finally, we present a

stochastic program for the NDP-UD, capable of accommodating different service levels and addressing

various sources of uncertainty. We also extend this program to jointly optimize the NDP-UD and

service level guarantees to avoid excessive conservatism.

4.1 Chance constraints

The delivery time τ̃ijt is a key performance measure of the service level and it is uncertain due to

the uncertain travel time. The chance constraint (CC) helps us model the condition that, for every

customer served in every period, the uncertain delivery time should be below the target delivery time

τ̄ with probability at least β ∈ [0, 1]. This restriction is represented by the following constraints:

Pτ̃ (τ̃ijt ≤ τ̄) ≥ β, ∀i, j, t ∈
{
i ∈ I, j ∈ J , t ∈ T

∣∣∣xijt = 1
}
.

Since we have x ∈ {0, 1} and τ̄ ≥ 0, the chance constraint is equivalent to Pτ̃ (τ̃ijtxijt ≤ τ̄) ≥ β,∀i, j, t.
Since

∑
j xijt ≤ 1, the chance constraint is also equivalent to Pτ̃

(∑
j τ̃ijtxijt ≤ τ̄

)
≥ β,∀i, t.

4.2 Probabilistic envelope constraints

A major downside of chance constraints is that they cannot avoid the long tail phenomenon. That is,

for the violated cases which might occur with probability 1− β, the magnitude of the violation could

be very large. To deal with this issue, we use the probabilistic envelope constraint (PEC) to bound

the uncertain delivery time by restricting both the probability and the degree of violation.

Compared to the chance constraint that guarantees a good delivery service at one specific level, the

PEC ensures that the customer satisfaction is protected at several levels under the uncertain delivery

time. For instance, to guarantee ultra-fast delivery, the retailer may require that any order should

be delivered within 10 minutes with probability at least 70%, within 30 minutes with probability at

least 80%, and within one hour with probability at least 99%. Some violations are allowed on the

initial target (i.e., 10 minutes), but for different magnitude (i.e., 20 minutes and 50 minutes), the

probability of the violation (i.e., 20% and 1%) is bounded. Define the magnitude of the violation as

v, and the probability of satisfying the new target τ̄ + v as β(v). For each customer i served by any

micro-depot in each period t, for any non-negative v, the uncertain delivery time should be below τ̄+v

with probability at least β(v). The probabilistic envelope constraint is

PEC: Pτ̃

∑
j

τ̃ijtxijt ≤ τ̄ + v

 ≥ β(v), ∀i, t,∀v ≥ 0, (3)

where β : R+ → [0, 1], and β(v) is a non-decreasing continuous function in v.
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Definition 3. Period Service Level is a service policy that ensures on-time delivery for every customer

in each period and guarantees a certain level of reliability for every possible delivery time:

XPEC :=

x ∈ R|I|×|J |×|T |
∣∣∣∣∣∣Pτ̃

∑
j

τ̃ijtxijt ≤ τ̄ + v

 ≥ β(v),∀i, t,∀v ≥ 0

 . (4)

In other words, the set XPEC contains all the allocation solutions that satisfy PEC (3).

Example 1. Suppose that β(v) := 1/( γ
v+α + 1), v ≥ 0 with nonnegative γ and strictly positive α. The

inverse function of β(·) is β−1(u) = γ/( 1
u − 1) − α, for α

γ+α < u < 1. See Figure 1 for an illustration

of the β(·) function for selected sample α and γ values.

Figure 1: β(v) envelope for selected sample α and γ values.

Given a specific value of v̄, the delivery time of any order should not exceed τ̄ + v̄ with probability

at least β(v̄). In this case, the constraint implies a single chance constraint. Therefore, PEC represents

a stronger constraint than CC.

Definition 4. Period Service Level with One-Layer Guarantee is a service policy that guarantees on-

time delivery for a specific delivery time:

XCC(v̄) :=

x ∈ R|I|×|J |×|T |
∣∣∣∣∣∣Pτ̃

∑
j

τ̃ijtxijt ≤ τ̄ + v̄

 ≥ β(v̄),∀i, t

 ,

where v̄ is a given value. The set XCC contains all the allocation solutions that provide on-time delivery

service within τ̄ + v̄ minutes with probability at least β(v̄).

4.2.1 PEC reformulation with known distribution.

One can assume that the randomness of the travel time follows a known distribution F and obtain a

tractable reformulation of XPEC .

Proposition 1. If uncertainty τ̃ follows a known distribution F , XPEC can be reformulated as

XPEC =
{
x ∈ R|I|×|J |×|T |

∣∣∣xijt ≤ Θijt,∀i, j, t
}
, (5)

where Θijt := I
{

supv≥0

(
Ψ−1
τ̃ijt

(β(v))− τ̄ − v
)
≤ 0
}

, I{·} is the indicator function, Ψτ̃ijt is the cumu-

lative probability function of τ̃ijt, and Ψ−1
τ̃ijt

(β) is its quantile at probability β.

The proof is presented in Appendix B.2.



Les Cahiers du GERAD G–2025–38 10

Remark 1. While XPEC only imposes an upper bound on x, calculating this bound requires evaluations

of a supremum over v ∈ R+. Fortunately, one can exploit a piecewise constant approximation of β(·).

For any β(v), we can derive an outer and inner approximation of β(v):

βouter(v) =

|K|∑
k=1

β(vk+1)I
{
v ∈ [vk, vk+1[

}
(6a)

βinner(v) =

|K|∑
k=1

β(vk)I
{
v ∈ [vk, vk+1[

}
, (6b)

where {vk}k∈K is a discretization of [0, τmax−τ̄ ] and K = {1, 2, ..., |K|}, and β(v|K|+1) := limv→∞ β(v).

As shown in Figure 2, βouter(v) and βinner(v) are step functions under a finite number of steps

k ∈ K. A smaller step size represents a larger number of steps |K|, and leads to tighter approximations.

Compared to β(v), βouter(v) yields a smaller feasible set for x by requiring a higher probability of

meeting the target, while βinner(v) yields a larger feasible set by requiring a lower probability of

meeting the target (i.e., βouter(v) ≥ β(v) ≥ βinner(v),∀v ≥ 0).

(a) |K| = 20 with the step size β = 0.05. (b) |K| = 100 with the step size β = 0.01.

Figure 2: Inner and outer approximations of β(v).

Corollary 1. When β(v) is approximated by its outer step function (6a) and inner step function(6b),

the value of the indicator function on the right hand side is known, leading to the approximated refor-

mulation of XPEC with a finite number of linear constraints, as follows:

X outerPEC ⊆ XPEC ⊆ X innerPEC

with

X innerPEC :=
{
x ∈ R|I|×|J |×|T |

∣∣∣xijt ≤ Θinner
ijt ,∀i, j, t

}
, (7)

X outerPEC :=
{
x ∈ R|I|×|J |×|T |

∣∣∣xijt ≤ Θouter
ijt ,∀i, j, t

}
, (8)

where

Θinner
ijt := min

k
I
{

Ψ−1
τ̃ijt

(β(vk))− τ̄ − vk ≤ 0
}
,

Θouter
ijt := min

k
I
{

Ψ−1
τ̃ijt

(β(vk+1))− τ̄ − vk+1 ≤ 0
}
.
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4.2.2 PEC reformulation with unknown distribution.

Under the case where the exact distribution of travel time may not be explicitly known, we introduce

the robust PEC:

Robust PEC: inf
F∈D

Pτ̃∼F

∑
j

τ̃ijtxijt ≤ τ̄ + v

 ≥ β(v), ∀i, t,∀v ≥ 0, (9)

where D is the ambiguity set containing the true distribution.

Assumption 1. We consider that the distribution of travel times is unknown, but partial information

such as moments can be obtained from the dataset. In this case, the ambiguity set D represents a

family of distributions whose mean and covariance information are given:

D :=
{
F | τ̃ = τ̂ + δ̃, EF

[
δ̃t

]
= 0, EF

[
δ̃δ̃

T
]

= Σ
}
.

Let x ∈ XR−PEC be the solutions that satisfy the robust PEC (9). With the ambiguity set D,

XR−PEC :=

{
x ∈ R|I|×|J |×|T |

∣∣∣∣∣ inf
δ̃it∼(0,Σit)

Pδ̃it

{(
τ̂ it + δ̃it

)T
xit ≤ τ̄ + v

}
≥ β(v),∀i, t,∀v ≥ 0

}
, (10)

where δ̃it ∼ (0,Σit) considers all the random vectors δ̃it ∈ R|J | with mean 0 and covariance Σit such

that [Σit]j1,j2 = [Σ](i,j1,t)(i,j2,t).

Remark 2. The NDP-UD with x ∈ XR−PEC is a semi-infinite program with an infinite number of

constraints, since the constraint has to be satisfied under any distribution in ambiguity set D and for

any v.

Similar to Calafiore and Ghaoui (2006) and Xu et al. (2012), who derived an equivalent and tractable

reformulation for the robust CC and PEC, respectively, we present the following result.

Lemma 1. XR−PEC can be equivalently reformulated as follows:

XR−PEC =

{
x ∈ R|I|×|J |×|T |

∣∣∣∣∣τ̂Titxit +

√
β(v)

1− β(v)

√
xTitΣitxit ≤ τ̄ + v,∀i, t,∀v ≥ 0

}
. (11)

Proposition 2. XR−PEC has an equivalent linear reformulation

XR−PEC =
{
x ∈ R|I|×|J |×|T |

∣∣∣xijt ≤ Θijt,∀i, j, t
}
, (12)

where Θijt = I
{

supv≥0 τ̂ijt +
√

β(v)
1−β(v)σijt − τ̄ − v ≤ 0

}
. Specifically, in the case defined in Example 1

that β(v) = 1
γ

v+α+1 , we have Θijt = I
{
τ̂ijt + α+

σ2
ijt

4γ − τ̄ ≤ 0
}

.

The proof is presented in Appendix B.3. The outer and inner approximations of XR−PEC with

discretized v are provided in Appendix C.1.

4.3 Service level guarantees of PEC and their effects on demand

Probabilistic envelope constraints provide strong guarantees on service-level metrics by controlling the

likelihood of delivery delays beyond a given threshold. Beyond ensuring a controlled probability of

exceeding a given delay tolerance, PECs also implicitly bound a broad class of risk measures known

as law-invariant monetary risk measures.

A law-invariant monetary risk measure ρ is a function of a random variable X satisfying the follow-

ing properties (Bäuerle and Müller 2006): Monotonicity : If X ≥ Y , then ρ(X) ≥ ρ(Y ). Translation
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invariance: For any constant t, ρ(X + t) = ρ(X) + t. Law invariance: If two random variables X and

Y have the same probability distribution, then ρ(X) = ρ(Y ). This class of risk measures includes ex-

pectation, quantiles (e.g., Value at Risk, VaR), and expected shortfall (i.e., Conditional Value at Risk,

CVaR). The following result shows that PEC-feasible solutions inherently control risk as measured by

any law-invariant risk measure.

Lemma 2. For any law-invariant monetary risk measure ρ and any x ∈ XPEC , the delivery time τ̃ijt
satisfies the bound:

ρ(τ̃ijt) ≤ τ̄ + ρ
(
β−1(ũ)

)
, ∀i, j, t such that xijt = 1,

where ũ is a uniform random variable on (0, 1), and β−1(ũ) := min(τmax− τ̄ , inf{y ∈ R+ | β(y) ≥ ũ}).

The detailed proof is provided in Appendix B. It establishes that PEC provides a bound on the

risk of delivery delay using any law-invariant monetary risk measure. For example, if we take ρ(X) :=

E[X], then the PEC guarantees that the worst-case expected delivery time is bounded above by

τ̄ +Eũ[β−1(ũ)]. Alternatively, if risk is assessed using CVaR (Artzner et al. 1999), which is sensitive to

the right tail of the delivery time distribution, the service level guarantee becomes τ̄+CVaRũ(β−1(ũ)).

With this result, we can now refine the demand model from Section 3.2 to incorporate the improved

overall delivery service reliability under service level guarantees. Specifically, when a PEC is in place,

the customer’s expected utility becomes: g(τ̂ijt, β) = ω0 +ω1 · 1
τ̂ijt

+ω2 · 1
τ̄+Eũ[β−1(ũ)] , where the overall

reliability of the delivery service is now represented by the PEC-bound worst-case expected delivery

time. This expression naturally reduces to the no-guarantee case in Equation (1) when there is no

service guarantee for delivery services (i.e., β(y) := 0), since then: τ̄ +Eũ[β−1(ũ)] = τ̄ +E[τmax− τ̄ ] =

τmax.

Finally, in the case of a service level guarantee that takes the form of a chance constraint (i.e.,

XCC(v̄) in Definition 4), Lemma 2 implies a similar risk bound: ρ(τ̃ijt) ≤ τ̄ + ρ
(
β̄−1(ũ)

)
,∀i, j, t

such that xijt = 1, where β̄−1(u) := (τmax − τ̄) · I{u > β(v̄)} + v̄ · I{u ≤ β(v̄)}. This result holds

because XCC under β(·) is equivalent to XPEC under β̄(y) := β(v̄) · I{y ≥ v̄}. Accordingly, the worst-

case reliability term in the utility model becomes Eũ[β̄−1(ũ)] = (τmax − τ̄)(1 − β(v̄)) + v̄β(v̄), which

reflects the worse-case expected delivery delay under the chance-constrained guarantee.

4.4 Probabilistic envelope constraints with two forms of uncertainty

In practical scenarios, customers may order more frequently during lunchtime and dinnertime, and less

frequently in the early morning or late at night. Instead of providing an equal service level in each

period, we can evaluate the overall daily service level and prioritize those time periods with higher

order frequencies. Consequently, it becomes essential to consider the probability distribution of time

periods during which orders are placed and to ensure a certain service level across all periods within

the entire day.

For each customer i served by any micro-depot j, the uncertain delivery time under uncertain

period t̃ should be no more than τ̄ + v with probability at least β(v). The probabilistic envelope

constraint with period uncertainty (PECP) is

PECP: Pτ̃ ,t̃

∑
j

τ̃ijt̃ xijt̃ ≤ τ̄ + v

∣∣∣∣∣∣
∑
j

xijt̃ = 1

 ≥ β(v), ∀i,∀v ≥ 0. (13)

Definition 5. Daily Service Level is a service policy that ensures on-time delivery service for each

customer throughout the entire day and guarantees a certain reliability for every possible delivery

time:

XPECP :=

x ∈ R|I|×|J |×|T |
∣∣∣∣∣∣ Pτ̃ ,t̃

(∑
j τ̃ijt̃ xijt̃ ≤ τ̄ + v

∣∣∣∑j xijt̃ = 1
)
≥ β(v),

∀i : Pt̃
(∑

j xijt̃ = 1
)
> 0,∀v ≥ 0

 . (14)

The set XPECP contains all the allocation solutions that satisfy PECP (13).
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4.4.1 PECP reformulation with known distribution.

Similar to Section 4.2.1, we assume full knowledge of distribution of travel time from micro-depots to

customers. Additionally, we consider a finite number of periods in which each customer places orders

with certain probabilities. We now reformulate XPECP into a tractable formulation.

Proposition 3. Consider a finite number of periods t ∈ T . In each period t, customer i places an

order with known probability qit. If the uncertainty τ̃ijt follows a known distribution F , we reformulate

XPECP into

XPECP =

x ∈ R|I|×|J |×|T |
∣∣∣∣∣∣
∑
t

qit

∑
j

[
Ψτ̃ijt(τ̄ + v)− β(v)

]
xijt

 ≥ 0,∀i,∀v ≥ 0

 , (15)

where Ψτ̃ijt is the cumulative probability function of τ̃ijt.

The proof is presented in Appendix B.4. This formulation states that for each customer i, the

weighted-average difference between the realized frequency and promised frequency is non-negative.

The outer and inner approximations of XPECP are provided in Appendix C.2.

4.4.2 PECP reformulation with unknown distribution.

A second interesting case is when both the travel time distribution and the probability of customers

placing orders in each period are unknown. In this case, we deal with the robust PECP.

Robust PECP: inf
qi∈Qi

inf
{δ̃it∼(0,Σit)}|T |

t=1

Pt̃∼q
{(
τ̂ it̃ + δ̃it̃

)T
xit̃ ≤ τ̄ + v

}
≥ β(v), ∀i,∀v ≥ 0, (16)

where Qi ⊆ ∆|T |, the probability simplex in R|T |.

Let XR−PECP be the set of solutions that satisfy the robust PECP, we have

XR−PECP :=

x ∈ R|I|×|J |×|T |
∣∣∣∣∣∣ inf
qi∈Qi

∑
t

qit

∑
j

[Υijt(v)− β(v)]xijt

 ≥ 0,∀i,∀v ≥ 0

 ,

where Υijt(v) = inf δ̃ijt∼(0,σ2
ijt)

Pδ̃ijt
{
τ̂ijt + δ̃ijt ≤ τ̄ + v

}
. Now, the computational challenge comes

from two parts: the uncertainty set Qi and Υijt(v). To handle Qi, we make the following assumption.

Assumption 2. The uncertainty about qi is captured by

Qi :=
{
qi ∈ R|T | | qTi e = 1, 0 ≤ qi ≤ 1,

∥∥∥Σ
− 1

2
qi (qi − q̂i)

∥∥∥
1
≤ Γ

}
,

where q̂i is the center of the uncertainty set, Σqi defines the shape of the set, and Γ is the radius.

Proposition 4. If Assumption 1 and Assumption 2 are satisfied, XR−PECP has an equivalent semi-

infinite linear reformulation

XR−PECP =


x ∈ R|I|×|J |×|T |

∣∣∣∣∣∣∣∣∣∣∣

∀v ≥ 0, ∃u1 ∈ R|I|×|T |,θ1 ∈ R|I|,θ2 ∈ R|I|
q̂Ti u1i + Γθ1i + θ2i ≤ 0,∀i
u1it + θ2i ≥ β(v)xTitI − xTitΥit(v),∀i, t
θ1i ≥ uT1i[Σ

1
2
qi ]t,∀i, t

θ1i ≥ −uT1i[Σ
1
2
qi ]t,∀i, t


, (17)

where θ1,θ2,u1 are dependent on v, [Σ
1
2
qi ]t is the tth column of the matrix Σ

1
2
qi , and [Υit(v)]j =

(τ̄+v−τ̂ijt)2+
(τ̄+v−τ̂ijt)2++σ2

ijt
with (y)+ = max(0, y).
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Note that Υit(v) can be preprocessed and taken as a fixed value. The proof is presented in

Appendix B.5 The outer and inner approximations of XR−PECP are provided in Appendix C.3.

Remark 3. When Γ = 0 and Σqi > 0, the last constraint in the uncertainty set Qi states that qi is

explicitly known and equal to q̂i (i.e., Qi := {q̂i}). In this case, XR−PECP is reduced to XR−PECP
only with uncertain travel time distribution:

XR−PECPT :=

x ∈ R|I|×|J |×|T |
∣∣∣∣∣∣
∑
t

q̂it

∑
j

[Υijt(v)− β(v)]xijt

 ≥ 0,∀i,∀v ≥ 0

 , (18)

where Υijt(v) =
(τ̄+v−τ̂ijt)2+

(τ̄+v−τ̂ijt)2++σ2
ijt

.

Remark 4. When Γ is a large value that makes the uncertainty set large enough to cover any possible

distribution of qi, the last constraint in uncertainty set Qi becomes redundant. For example, if Σqi is

diagonal, the lowest upper bound of Γ is maxi
∑
t max

{
[Σ
− 1

2
qi ]

tt
(1− q̂it), [Σ

− 1
2

qi ]
tt
q̂it

}
. Intuitively, if Γ

is large enough to cover the furthest node from the average value in terms of standard deviations, the

robust PECP is reduced to robust PEC.

Remark 5. If the delivery time follows a known distribution, but the probability of placing orders in

each period is uncertain, XR−PECP is reduced to XR−PECPP only with uncertain period probability,

which has the following equivalent linear reformulation:

XR−PECPP :=


x ∈ R|I|×|J |×|T |

∣∣∣∣∣∣∣∣∣∣∣

∀v ≥ 0, u1 ∈ R|I|×|T |,θ1 ∈ R|I|,θ2 ∈ R|I|
q̂Ti u1i + Γθ1i + θ2i ≤ 0,∀i
u1it + θ2i ≥ β(v)xTitI − xTit Ψit(v),∀i, t
θ1i ≥ uT1i[Σ

1
2
qi ]t,∀i, t

θ1i ≥ −uT1i[Σ
1
2
qi ]t,∀i, t


,

where θ1,θ2,u1 are dependent on v, and [Ψit(v)]j is the cumulative probability function of δ̃ijt.

4.5 Stochastic program and linear reformulation

If the daily service level is applied, the stochastic program under the uncertainty of the travel time
distribution and period probability is

(SP1) max
x,y,d,z

∑
i

∑
j

∑
t

(ri − clij − pEτ̃ [max(τ̃ijt − τ̄ , 0)]) dijt −
∑
j

(oj + cl0j) yj −
∑
t

hzt (19a)

s.t. (2b)− (2c), (2f)− (2h)

dijt =
eµg(τ̂ijt,β)

eµg(τ̂ijt,β) + eµg(τ
c
it) + 1

d̄itxijt, ∀i, j, t (19b)

g(τ̂ijt, β) = ω0 + ω1
1

τ̂ijt
+ ω2

1

τ̄ + Eũ[β−1(ũ)]
, ∀i, j, t (19c)

x ∈ X . (19d)

The objective is to maximize expected profit under uncertain travel times and customer arrival times.

To incorporate the PEC guarantees outlined in Section 4.3 and reflect improvements in the worst-

case expected delivery performance ensured by the PEC, customer demand and utility are adjusted

in constraints (19b) and (19c). In the absence of these guarantees, the worst-case expected delivery

time defaults to τmax, implying that delivery delays may reach their maximum possible value. When

the PEC is imposed, Eũ[β−1(ũ)] quantifies the worst-case expected delay under guarantees. Conse-

quently, the term τ̄ + Eũ[β−1(ũ)] represents the guaranteed worst-case expected delivery time across

all customers and periods and reflects the overall service reliability achieved through probabilistic

guarantees.

The location and allocation decisions are made to reach a certain service level that depends on X ,

which can be any one of the following sets: XCC , XPEC , XR−PEC , XPECP , or XR−PECP . The com-

putational challenge arises from the constraint (19d), which can be reformulated as an equivalent
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semi-infinite linear program based on the linear reformulations presented in Propositions 1 to 4. Fur-

thermore, it can be approximated by a mixed-integer linear program (MILP) with a finite number of

constraints using the outer and inner approximations provided in Corollary 1 and Appendix C. To

rephrase, X outer ⊆ X ⊆ X inner. Take XR−PECP as an example, we have the following formulation

SPR1 , which is an approximation of SP1:

(SPR1 ) max
x,y,d,z,u,θ

∑
i

∑
j

∑
t

(ri − clij−pEτ̃ [max(τ̃ijt − τ̄ , 0)]) dijt −
∑
j

(oj + cl0j) yj −
∑
t

hzt (20a)

s.t. (2b)− (2c), (2f)− (2h), (19b)− (19c)∑
t

q̂itu
k
1it + Γθk1i + θk2i ≤ 0, ∀i, k (20b)

uk1it + θk2i ≥
∑
j

[
β(vk+ε)−Υijt(v

k)
]
xijt, ∀i, t, k (20c)

θk1i ≥
∑
t′

(uk1it′ )(Σqi )
1
2
tt′ , ∀i, t, k (20d)

θk1i ≥ −
∑
t′

(uk1it′ )(Σqi )
1
2
tt′ , ∀i, t, k (20e)

Υijt(v
k) =

(τ̄ + vk − τ̂ijt)2
+

(τ̄ + vk − τ̂ijt)2
+ + σ2

ijt

, ∀i, j, t, k. (20f)

SPR1 provides a relaxation or restriction of SP1 depending on whether ε = 0 or 1, respectively.

4.6 Stochastic program with optimized PEC and linear reformulation

In the chance constraint Pτ̃

(∑
j

τ̃ijtxijt ≤ τ̄ + v̄

)
≥ β(v̄), target τ̄ + v̄ being reached with probability

at least β(v̄) may lead to a high degree of violation on target or lead to a low profit, depending on the

value of v̄ and the shape of the β(·) function. To obtain a better service level with a lower violation

on target, we proposed model SP1, where the service level has been fully protected on any possible

violations. However, such restrictive requirements could be too conservative in practice, inspiring us to

jointly optimize the service level along with the decisions. This optimization aims to ensure not only a

good service level but also a decent profit. To be specific, any set X containing v (i.e., XPEC , XR−PEC ,

XPECP , or XR−PECP ) can be considered as a variant X (v) that depends on v. In particular, for any

v ≥ 0, XR−PECP (v) :=
{
x ∈ R|I|×|J |×|T |

∣∣∣infqi∈Qi
∑
t qit

(∑
j [Υijt(v)− β(v)]xijt

)
≥ 0,∀i,∀v ≥ v

}
.

Other sets are similarly defined. In this case, protections are imposed on any v ≥ v instead of v ≥ 0,

and v is considered as a decision variable to find the optimal service level guarantees.

(SP2) max
x,y,d,z,v

∑
i

∑
j

∑
t

(ri − clij−p Eτ̃ [max(τ̃ijt − τ̄ , 0)]) dijt −
∑
j

(oj + cl0j) yj −
∑
t

hzt (21a)

s.t. (2b)− (2c), (2f)− (2h), (19b)− (19c)

x ∈ X (v), ∀v ≥ 0, (21b)

where X (v) can be XPEC(v), XR−PEC(v), XPECP (v), or XR−PECP (v). We then discretize v into finite

steps and find the optimal steps that yield the maximum profit while maintaining a certain service

level. Take XR−PECP (v) as an example, the stochastic program can be reformulated into

(SPR2 ) max
x,y,d,z,u,θ

∑
i

∑
j

∑
t

(ri − clij−pEτ̃ [max(τ̃ijt − τ̄ , 0)]) dijt −
∑
j

(oj + cl0j) yj −
∑
t

hzt (22a)

s.t. (2b)− (2c), (2f)− (2h), (19b)− (19c), (20c)− (20f)∑
t

q̂itu
k
1it + Γθk1i + θk2i ≤ 0, ∀i,∀k ∈ [|K|+ 1− n, |K|], (22b)
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where n ∈ [0, |K|] is the number of the to-be-guaranteed service levels, and |K| is the total number

of steps in the step function of β(v). The constraints in (22b) enforce the service level requirements

over the top n layers, beginning with a low service level defined by a longer delivery duration τ̄ + v|K|,

and ending with a high service level defined by a shorter duration τ̄ + v|K|+1−n. Achieving a higher

service level (e.g., k = |K|− 1) implies that all lower service levels (e.g., k = |K|) must also be met. As

more service levels are guaranteed, the corresponding target delivery durations become increasingly

stringent. When n = |K|, the constraints in (22b) are imposed for all service levels, reducing the

model to SPR1 . If n = 0, the constraints can be interpreted in the way that our objective is to

serve all the customers without restricting the delivery time. The guaranteed worst-case expected

delay Eũ[β−1(ũ)] can be discretized over the top n layers. For the restricted version: Eũ[β−1(ũ)] =

(τmax − τ̄)(1− β(v|K|)) + v|K|+1−nβ(v|K|+1−n) +
∑|K|
k=|K|+2−n

(
β(vk)− β(vk−1)

)
vk, where β(v0) := 0.

For the relaxed version: Eũ[β−1(ũ)] = v|K|+1−nβ(v|K|+1−n)+
∑|K|
k=|K|+1−n

(
β(vk+1)− β(vk)

)
vk, where

β(v|K|+1) := 1. Particularly, when there is no guarantee (i.e., n = 0), then Eũ[β−1(ũ)] = τmax − τ̄ .
For single-layer chance constraint XCC(v̄), i.e., Pτ̃

(∑
j τ̃ijtxijt ≤ τ̄ + v̄

)
≥ β(v̄), then Eũ[β−1(ũ)] =

(τmax − τ̄) (1− β(v̄)) + v̄β(v̄). Other formulations for SP1 and SP2 under different scenarios for

uncertainty are presented in Appendix D.

5 Numerical study

In this section, we first introduce the real-world dataset, the performance metrics, and the implementa-

tion details. We then evaluate the performance of β approximation functions and compare formulations

under different service levels and uncertainties, including the period and daily service levels, the full,

partial and one-layer protection, and the robust and non-robust models. We also investigate the im-

pact of different factors and finally analyze the trade-off between the profitability and reliability for

urban and rural areas.

5.1 Dataset and implementation details

We use the customer location dataset from four regions in the US (Los Angeles, Seattle, Tacoma,

and Orange) provided by Amazon (Merchan et al. 2021), which indicates the locations and density of

residents inclined to purchase online. For example, the customer location and density in Los Angeles

are shown in Figure 3a. The darker the point, the higher the demand volume. We obtain the distance

and real-time travel time from the Google API. Specifically, for each arc between customer and micro-

depot locations, we collected 500 travel time samples at different time points from Jan 05, 2023, to

Jan 19, 2023. For example, Figure 3b shows the travel time distribution from micro-depot #1 (MD1)

to customer location #1 (C1). To test the out-of-sample performance, for each arc in each period, we

generate 300 travel time samples using the gamma distribution, which best fits the real-world dataset,

with the same moment information (i.e., mean, variance, skewness) obtained from the real-world

dataset. We use 100 samples as training and 200 samples as testing datasets.

We simulate the demand distribution, the probability of customers placing orders in each period,

and other cost parameters as follows. We generate the nominal demand distribution for 100 customer

locations over 100 days using a normal distribution with a mean of (5, 16, 14, 22, 6) for five periods

(morning, lunchtime, afternoon, dinner time, and night) and a variance of 10. The demand distribution

for each period is presented in Figure 3c. Each store has an inventory capacity Ij of 300 units of demand.

The probability distribution of customers placing orders in each period is generated based on the

demand distribution. In other words, for each location and each day, the probability of placing orders

in each period is proportional to the demand for that period relative to the total demand. Figure 3d

illustrates the probability of placing orders in each period for C1. The revenue of each order r is set at

$3, the delivery cost per kilometer c is $1, and the hiring cost h of each driver serving per unit demand

in each period is $1. Each driver serves an average of 10 units of demand in each period. The penalty
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per unit of delivery delay is set to 0 and varies from 0 to 3 in our sensitivity analysis. The setup cost

oj for opening the micro-depot j in all periods of one day is $100, and changes between 0 and $500

in our sensitivity analysis. The initial target delivery time τ̄ is set to 6 minutes, and varies from 5

to 8 minutes in our sensitivity analysis. Since the allowed violation fluctuates from 0 to 38 minutes,

the potential target delivery time changes from 5 to 46 minutes. The competitor delivery time τ c is

set to 15 minutes, and varies from 2 to 20 minutes in our sensitivity analysis. The customer’s fixed

utility ω0, sensitivity to expected delivery time ω1, and sensitivity to worst-case expected delivery time

ω2 are initially set to 1. To model varying attitudes toward risk, ω2 is later varied between 0 and 2,

with higher values representing more risk-averse customers who place greater emphasis on worst-case

delivery times.

(a) Customer locations and their density (Los Angeles). (b) Travel time distribution from MD1 to C1.

(c) Demand distribution. (d) Probability distribution of C1 placing orders.

Figure 3: Statistic description of simulation environment.

To evaluate the performance of different formulations under various service levels and protec-

tion, we compare the profit (i.e., the optimal objective value), the customer coverage proportion (i.e.,∑
i,j,t xijt

|I||T | × 100%), the demand fulfillment proportion (i.e.,
∑
i,j,t d̂ijt∑
i,t d̄it

× 100%), the number of open

micro-depots (i.e.,
∑
j yj), the violation probability, and the violation degree. The violation prob-

ability VP is defined as the average probability of violating the service level across all customers,

all periods, and all protection layers, i.e., VP = 1
|I||T ||K|

∑
i,t,k VPitk. Specifically, for each cus-

tomer i in each period t, if the chance constraint at level k is violated, the violation probability is

the gap between the target probability and the true probability of serving customers on time (i.e.,

VPitk = β(vk) − PFo
(∑

j τijtxijt ≤ τ̄ + vk
)

, where Fo is the out-of-sample distribution); otherwise,

the violation probability is zero (i.e., VPitk = 0). The violation degree is defined as the maximum

amount of time that is beyond the target delivery time among all customers in all periods for all

protection layers, i.e., VD = maxi,t,k VDitk. Specifically, for each customer i in each period t, if chance

constraint k is violated, the delayed time VDitk is the gap between the highest possible delivery time
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and the target delivery time (i.e., VDitk = maxτ̃∼Fo
∑
j τ̃ijtxijt− τ̄ −vk, where Fo is the out-of-sample

distribution). The profitability is the proportion of the profit that can be achieved compared to the

best case that all customers can be served by ultra-fast delivery.

We implement our algorithms using Python 3.7 on a computer with one 2 GHz Quad-Core Intel

Core i5 processor and 16GB of RAM. We use Gurobi 9.0.2 as the solver.

5.2 Benchmark

We compare the different formulations from three aspects: (1) Service measures: period and daily

service levels. (2) Service level guarantees: one-layer on the service level (i.e., n = 1), full protection

with the all-layer guarantee (i.e., n = |K|), and partial protection with the multi-layer guarantee (i.e.,

n = [2, |K| − 1]). Specifically, we employ the inner and outer approximations of β(v) as illustrated in

Figure 2a, with |K| = 20 and a step size of β set to 0.05. In this case, we implement a 20-layer guarantee

as the all-layer guarantee and a 15-layer guarantee (determined to strike an optimal balance between

profitability and reliability) as the multi-layer guarantee. (3) Source of uncertainty: formulations

with or without the uncertainty in travel time distribution and period probability (see Table 1).

Table 1: Reformulations of different service level under different level of uncertainty

Service level Formulation Uncertainty Set Linear reformulation

Period
PEC None XPEC See Proposition 1
Robust PECT Travel time distribution XR−PEC See Proposition 2

Daily

PECP None XPECP See Proposition 3
Robust PECPT Travel time XR−PECPT See Remark 3
Robust PECPP Period probability XR−PECPP See Remark 5
Robust PECPTP Travel time distribution;

Period probability
XR−PECP See Proposition 4

Notes. The subscript is the uncertainty of the robust formulation. For example, Robust PECPTP can be read
as Robust Probabilistic Envelope Constraint when considering Period probability under uncertain Travel time
distribution and Period probability.

5.3 Performance of step function-based approximations

To derive a linear reformulation with a finite number of constraints, we use the β step function to

approximate the β function. The larger the number of steps, the higher the accuracy, but the lower

the efficiency of the solution procedure. Figure 4 illustrates the performance of the approximation

(a) Optimal objective value. (b) Runtime.

Figure 4: Performance of approximation for different numbers of steps.

for different numbers of steps. In the PEC formulation, βouter(v) (i.e., lower bound) and βinner(v)
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(i.e., upper bound) converge rapidly, resulting in a gap ratio of 6.63% and an average runtime of 6

seconds when the number of steps is set to 20. In contrast, for the PECP formulation, convergence is

slightly slower, with a gap ratio of 8.24% and an average runtime of 23 seconds at 20 steps. Moreover,

the upper bound tends to stabilize when the number of steps exceeds 20. In other words, using the

approximation βinner(v) to approximate the original formulation yields limited improvement when

increasing the number of steps from 20 to larger values. The gap ratio eventually converges to zero

at 200 steps, but at the cost of a lengthy preprocessing time, averaging 20 minutes, and 1-3 minutes

runtime for optimization.

Insight 1. The inner and outer approximations are tight when the number of steps exceeds the number

of samples in the travel time distribution. The approximations with 20 steps and a step size of β set

to 0.05 perform well, yielding good results in terms of both efficiency and accuracy.

5.4 Comparison under different service levels and uncertainties

We compare the daily and period service levels with various layers of protection under different un-

certainties, as described in Section 5.2. Figure 5 displays the profit, customer coverage proportion,

and the average performance in terms of out-of-sample violation probability and degree. As shown in

each sub-figure, the robust formulation always yields a lower violation but at the cost of some loss in

profit. For example, the robust formulation with daily service level under partial protection yields a

lower out-of-sample violation probability (i.e., 7.0%), a lower out-of-sample violation degree (i.e., 1.21

minutes), but also a lower profit (i.e., $6794) than the non-robust formulation (i.e., 7.9%, 1.54 minutes,

and $6901, respectively). That is, the violation probability and violation degree decrease by 13% and

21%, respectively, in a positive manner. However, the profit decreases by approximately 1.5%.

(a) Profit. (b) Out-of-sample average violation probability.

(c) Out-of-sample average violation probability. (d) Out-of-sample average violation probability.

Figure 5: Performance on profit, coverage proportion, and violation.
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Figure 6 shows how the optimal objective value and out-of-sample violation probability change as

the uncertainty set radius Γ for period probability q increases. A larger Γ implies greater risk aversion

by covering a wider range of uncertain order probabilities, which demands more protection and results

in lower objective values, reduced customer coverage, and fewer violations. The best performance is

observed under PECP when the order probabilities are known (Γ = 0), while the worst occurs when

uncertainty is high (Γ ≥ 60), reducing to PEC with period-based service levels. This trend is consistent

whether the travel time distribution is known or not (see Remark 4). Table E2 in Appendix E further

confirms that higher uncertainty decreases profits and customer coverage, even as more micro-depots

are opened to mitigate risk. This highlights how variability in order frequency and travel time drives

up costs and reduces revenue.

Insight 2 (Value of Robustness). Greater robustness improves out-of-sample performance by reducing

both the probability and magnitude of delivery time violations. In contrast, less conservative strategies

that depend on more precise information may achieve higher profits, but at the cost of increased risk.

By adjusting the level of uncertainty, a balanced trade-off can be achieved, making enhanced delivery

reliability a valuable outcome.

(a) Profit. (b) Out-of-sample average violation probability.

Figure 6: The impact of the radius Γ of the uncertainty set Q for the period probability q. The three dashed lines represent
the cases with the explicitly known travel time distribution, and the three solid lines represent the cases with the unknown
travel time distribution.

As illustrated in Figure 5a and 5b, the formulation with one-layer protection yields the highest profit
due to the highest coverage proportion. However, Figure 5c indicates that the violation probability

under the one-layer protection is much higher than that under full protection. The profit of the

formulation with full protection is significantly lower than that of the formulation with one-layer

protection. Generally, the formulation with partial protection exhibits the best performance, yielding

a decent profit slightly lower than the best case, an acceptable violation probability that is at least

half as low as the worst case, and a stable violation degree observed in Figure 5d.

5.5 Sensitivity analysis

In this section, we analyze the effects of the number of service guarantees, penalty per unit delay, and

customer sensitivity to reliability on the outcomes. We also identify the optimal strategy that achieves

the highest profitability while maintaining moderate service level violations, both at the period and

daily levels, under different scenarios. For further sensitivity analysis on performance stability with

respect to competitor delivery time, initial target delivery time, setup cost, and number of layers,

please refer to Appendix E

5.5.1 The impact of the number of protection layers.

Figure 7 illustrates how profitability, violation probability, customer coverage, and captured demand

volume change as the number of protection layers increases. A clear trade-off between profitability
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and reliability emerges. As the number of protection layers grows, offering more service guarantees,

profitability decreases while violation probability also decreases. The customer coverage proportion

consistently decreases, and the captured demand volume initially increases slightly before declining

significantly. This pattern suggests that, to ensure higher reliability, more areas are excluded from

service. Although faster delivery may attract more demand, the reduced service scope ultimately leads

to lower overall profits. The most significant change occurs between the scenarios with 10 and 15 layers.

A 15-layer protection strategy can be a good choice since it nearly halves the violation probability and

degree, while sacrificing only 1–2% of profitability. Additionally, compared to PEC with equal period

performance, PECP, which emphasizes weighted daily performance, yields higher profitability, greater

coverage, and more demand, with similar violation levels.

(a) Efficient frontier of profitability and reliability. (b) Customer coverage and captured demand.

Figure 7: Comparison of PEC and PECP under varying service guarantees.

5.5.2 The joint impact of the penalty and customer attitude to service guarantees.

Figure 8 demonstrates how profit changes with varying protection levels, considering different values

of the penalty per unit of delivery delay and customer sensitivity to worst-case delivery time. To

highlight the value of PEC over CC, four service measures are compared: period service level with

multi-layer protection (PEC), daily service level with multi-layer protection (PECP), period service

level with single-layer protection (CC), and daily service level with single-layer protection (CCP). For

PEC and PECP, the x-axis value indicates that all protection layers from the lowest level up to that

layer are simultaneously applied. In contrast, for CC and CCP, only the single protection layer at that

specific level, counted from the lowest, is applied.

PECP consistently generates the highest profit across service measures. Generally, profit increases

with the number of protection layers, reaches a peak, and then declines, indicating a concave relation-

ship and the existence of an optimal strategy. As the delay penalty increases or customers become

more sensitive to service guarantees, the concavity becomes more pronounced, resulting in a larger

performance gap between PEC (PECP) and CC (CCP), reaching up to 8.5%. This also amplifies the

superiority of the optimal number of layers over other configurations by up to 21.6%.

Insight 3 (Value of the daily service level). The daily service level consistently outperforms the period

service level in terms of higher profits, greater coverage, and mild violations, regardless of the number

of protection layers, changes in the delay penalty, customer sensitivity to service guarantees, competitor

delivery times, initial target delivery times, or setup costs.

Insight 4 (Value of multi-layer partial protection). Full protection results in the lowest profitability and

is overly conservative, with limited customer coverage and demand volume. Conversely, offering no

protection layers carries high risks due to frequent service-level violations and high penalties. A multi-

layer partial protection strategy strikes a better balance between profitability and reliability.

Additionally, multi-layer protection is easy to implement and provides guidance on selecting target
delivery times and corresponding probabilities. A stepwise delivery approach, such as guaranteeing
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(a) ω2 = 0 and p = 0. (b) ω2 = 1 and p = 0. (c) ω2 = 2 and p = 0.

(d) ω2 = 0 and p = 3. (e) ω2 = 1 and p = 3. (f) ω2 = 2 and p = 3.

Figure 8: Profit Variation under different ω2 and p values.

delivery to 99% of customers within 43 minutes, 75% within 11 minutes, and 40% within 6 minutes,

proves to be more effective. This approach works regardless of order timing or traffic conditions,

and the model optimizes service levels to maximize profitability while maintaining high service levels.

Therefore, an optimized daily service level with partial protection is a viable strategy for ultra-fast

delivery companies to balance profitability and service quality without over-committing or under-

delivering.

5.6 Optimal service strategy for different regions

In Figure 9, we display the optimal profit along with its corresponding optimal layers and violation

probability under different delay penalties and customer sensitivities, for Los Angeles (LA), Seattle,

Tacoma, and Orange, respectively. Based on customer density (customers per square kilometer), we

classify LA (33 customers/km2) and Seattle (42 customers/km2) as urban areas, while consider Tacoma

(18 customers/km2) and Orange (17 customers/km2) as rural areas.

We find that as the penalty per unit of delay increases, more service guarantees are imposed to

avoid violations and penalties. However, the overall optimal profit decreases because the risk of paying

penalties outweighs the revenue from fulfilling demand. When customers become more sensitive to

worst-case expected delivery times, profit tends to increase with higher levels of service guarantees.

This is because better service guarantees capture more demand with fewer violations, leading to lower

penalties and higher profits. In addition, the optimal profit per customer in rural areas (e.g., Tacoma

and Orange) is significantly lower than that in urban areas (e.g., LA and Seattle), even when the total

number of customers in rural areas is greater. This can result in up to a 14% decrease in profitability

per customer, despite more lenient service guarantees in rural areas.

Insight 5. The optimal strategy for setting service levels can vary depending on customer density, delay

penalties, and customer sensitivity to service guarantees. It is advantageous to impose stricter delivery

time guarantees when customers are densely located, highly sensitive to worst-case delivery times, and

when delay penalties are significant.

Insight 6. In urban areas, where customers are more concentrated, maintaining profitable and reliable

on-time delivery is easier. In contrast, rural areas face challenges due to the longer distances between

delivery locations, requiring more micro-depots or resulting in higher penalties from delivery delays.
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(a) LA (urban area, 100 customers,
33 customers/km2). (b) Optimal profit and strategy of LA.

(c) Seattle (urban area, 85 customers,
42 customers/km2). (d) Optimal profit and strategy of Seattle.

(e) Tacoma (rural area, 110 customers,
18 customers/km2). (f) Optimal profit and strategy of Tacoma.

(g) Orange (rural area, 135 customers,
17 customers/km2). (h) Optimal profit and strategy of Orange.

Figure 9: Customer distributions and corresponding optimal profit under the optimal strategy for each area. To ensure
comparability across areas, a consistent range of metrics is used. The color of each bar represents the profit per customer node,
with darker shades indicating higher marginal profit from serving each customer node.
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In practice, customized delivery strategies can be tailored to different customer groups based on

their preferences and service expectations. For instance, customers who are highly sensitive to delivery

performances can choose Premium delivery, which offers full protection, high reliability, and guarantees

compensation for delays. The lower profitability from this high-reliability service can be offset by

membership fees or higher delivery fees. Standard delivery offers a balanced trade-off with partial

protection, providing medium reliability with moderate compensation and yielding decent profitability,

catering to customers who value both speed and cost-efficiency. Finally, Economy delivery targets

customers who are less sensitive to delivery reliability, offering lower costs and a wider service area,

with fewer guarantees and longer delivery times. This option ensures affordability for customers who

prioritize savings over speed.

6 Conclusion

The ultra-fast delivery service industry has emerged suddenly and expanded rapidly, but it also scales

down quickly, often due to business failures or bankruptcies. This prompts us to consider its prof-

itability while maintaining on-time and fast deliveries. To develop an effective strategy for operating

ultra-fast delivery services, we model and solve a network design problem that incorporates delay

penalties and formulate it as a probabilistic envelope constrained program, accounting for uncertain-

ties in both travel time distributions and customer arrival periods. To capture customer response to

delivery performance, we model demand as endogenous, influenced by both the expected delivery time

from selected depots and the worst-case delivery time guaranteed by optimized service levels. We

investigate both period and daily service levels of ultra-fast delivery under various layers of protection.

While the period service level emphasizes equal service across periods, the daily service level prioritizes

high-order frequency periods and guarantees a certain service level for the entire day. The probabilistic

envelope constrained programs are computationally challenging when the distribution of travel time

and the probability of customers placing orders in different time periods are not explicitly known. To

address this, we derive equivalent linear constrained programs with an infinite number of constraints

and then propose outer and inner approximations with finite linear constraints.

We conduct a numerical study using a real-world dataset provided by Amazon and obtained through

the Google API. The results reveal that the outer and inner approximations converge rapidly as the

number of steps increases. Additionally, the approximations becomes tight when the number of steps

surpasses that of the training samples. Notably, the approximation using 20 steps demonstrates good

performance in terms of both efficiency and accuracy. By comparing the out-of-sample performance,

we observe that the robust formulation can yield a lower probability of violating the target delivery

time, and a reduced degree of exceeding the bound in case of violation. Although it may lead to a

profit reduction, adjusting the uncertainty level allows for a balanced trade-off, making the improved

delivery reliability a worthwhile outcome. When we compare the performance of period and daily

service levels under different layers of protection and investigate the impact of various factors on the

results, we obtain the following managerial insights: (1) The daily service level has an overall better

performance than the period service level with higher profitability, higher coverage, and mild violation.

(2) Full protection provides low profitability and is overly conservative with low customer coverage. On

the other hand, offering either one-layer or no-layer protection is overly risky with high violations of

promised service levels and high delay penalties. Implementing multi-layered protection by optimizing

the service level guarantee is a good strategy for an ultra-fast delivery company to run a profitable and

reliable business. (3) Maintaining high service levels in rural areas is more challenging due to dispersed

customers, as longer travel distances require more micro-depots and increase the risk of delay penalties.

Our work has some limitations that could be addressed in future research. Specifically, we assume

that an unlimited number of drivers are available and that each customer can be served instantly

upon placing an order. This assumption can be relaxed to account for routing decisions with a limited

number of available drivers. Additionally, real-world scenarios often involve batch processing, where a

single driver serves multiple customers located close to each other and who place orders within a short
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time frame. To address this, it would be necessary to determine the optimal batch size, the composi-

tion of orders within each batch, and the assignment of batches to drivers. Furthermore, heterogeneity

in orders, store types, product assortments, inventory levels, and customer preferences can be incorpo-

rated to build more sophisticated models and generate insights from a marketing perspective. Lastly,

other methods, such as queuing models, can account for order preparation and delivery times from a

more practical standpoint, while reinforcement learning can enable real-time operational planning for

ultra-fast delivery.
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Appendix A Summary of notation

The notation is presented in Table A1.

Table A1: Notation.

Index Description

I set of customer locations
J set of potential micro-depot locations
T set of time periods
K set of steps in β(v) step functions
X set of allocation decisions

Parameters Description

oj setup cost of micro-depot j
c delivery cost per unit of distance
r average revenue per order
p penalty incurred for each unit of delivery delay
d̄it nominal demand at location i in period t
lij distance between customer i and micro-depot j
Ij inventory capacity, the maximum number of demand units that can be fulfilled from that location.
h hiring cost of one driver per period
m average units of demand served by each driver in each period
τ̄ target delivery time
τmax maximum possible delivery time across all customers and periods
ĉpijt expected delay penalty per unit of demand, compensating customers if the delivery time to serve

customer i from micro-depot j in period t exceeds τ̄
s̃ijt uncertain travel time from micro-depot j to customer i in period t
τ̃ijt uncertain delivery time from micro-depot j to customer i in period t

δ̃ijt random part of uncertain delivery time from micro-depot j to customer i in period t, i.e., δ̃ijt =
τ̃ijt − τ̂ijt

Σ covariance matrix of δ̃
τuit delivery time from the assigned micro-depot to customer i in period t
τcit delivery time of the best competitor to serve customer i in period t
aijt order preparation time for customer i served by micro-depot j in period t
v maximum violation
β probability of meeting the target delivery time
qit probability of customer i placing an order in period t
Σq covariance matrix of the observations of the period probability q
Γ radius of the uncertainty set of the period probability q
ω0 a baseline customer utility constant
ω1 the weight associated with the expected delivery time, reflecting the impact of specific delivery time

on customer utility
ω2 the weight associated with the worst-case expected delivery time, capturing the effect of reliability

and risk on customer utility

Decisions Description

xijt binary variable taking value 1 if customer i is covered by micro-depot j in period t, and 0 otherwise
yj binary variable taking value 1 if micro-depot j is open, and 0 otherwise
dijt captured demand at location i served by micro-depot j in period t
zt number of drivers needed in period t

Appendix B Detailed proofs of propositions

B.1 Proof of Lemma 2

Proof. First, we show that if x ∈ XPEC and xijt = 1, then β−1(ũ) first-order stochastically dominates

τ̃ijt − τ̄ . To establish first-order stochastic dominance, we use Theorem 3.2 from (Bäuerle and Müller

2006), which states that X first-order stochastically dominates Y (i.e., X �st Y ) if and only if PX(X ≤
t) ≤ PY (Y ≤ t) for all t. Given that xijt = 1 and for all v ∈ R+, the PEC ensures that Pτ̃ijt(τ̃ijt− τ̄ ≤
v) ≥ β(v). We consider two cases.
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Case 1 with v ≥ τmax − τ̄ : For large threshold values, the delay threshold v is greater than or equal

to the maximum possible delay. Hence, the event τ̃ijt − τ̄ ≤ v is guaranteed to occur with probability

1, since all possible delays fall below this threshold. In this case,

Pũ(β−1(ũ) ≤ v) = Pũ(min(τmax − τ̄ , inf{y ∈ R+ | β(y) ≥ ũ}) ≤ v) = 1 = Pτ̃ijt(τ̃ijt − τ̄ ≤ v).

Case 2 with v < τmax − τ̄ : For smaller threshold values, the event probabilities vary. We decompose

the probabilities as follows:

Pũ(β−1(ũ) ≤ v) =Pũ(β−1(ũ) ≤ v|ũ < βmax)Pũ(ũ < βmax) + Pũ(β−1(ũ) ≤ v|ũ ≥ βmax)Pũ(ũ ≥ βmax)

=Pũ
(
min{y ∈ R+ | β(y) ≥ ũ} ≤ v|ũ < βmax

)
βmax

+ Pũ(τmax − τ̄ ≤ v|ũ ≥ βmax)(1− βmax)

≤Pũ(β(v) ≥ ũ|ũ < βmax)βmax = β(v) ≤ Pũ(τ̃ijt − τ̄ ≤ v),

where βmax := limv→∞ β(v). For ũ < βmax, β−1(ũ) = min{y ∈ R+ | β(y) ≥ ũ}. By the definition of

the minimum, there exists some v′ ≤ v such that β(v′) ≥ ũ for any ũ ∈ (0, 1). By monotonicity, we have

that β(v) ≥ β(v′) ≥ ũ. Therefore, Pũ(β−1(ũ) ≤ v|ũ < βmax) ≤ Pũ(β(v) ≥ ũ|ũ < βmax) = β(v)/βmax.

For ũ ≥ βmax, β−1(ũ) = τmax − τ̄ . Since v < τmax − τ̄ , we get Pũ(β−1(ũ) ≤ v|ũ ≥ βmax) = 0.

Combining the two cases, we have

Pũ(β−1(ũ) ≤ v) ≤ Pũ(τ̃ijt − τ̄ ≤ v).

That is, β−1(ũ) first-order stochastically dominates τ̃ijt− τ̄ . From Theorem 4.2 in (Bäuerle and Müller

2006), it follows that if a random variable X first-order stochastically dominates Y , then for any

law-invariant monetary risk measure ρ, we have ρ(X) ≥ ρ(Y ). Applying this to our case:

ρ(τ̃ijt − τ̄) ≤ ρ(β−1(ũ)).

Using the translation invariance of ρ, we conclude:

ρ(τ̃ijt) = ρ(τ̃ijt − τ̄) + τ̄ ≤ τ̄ + ρ(β−1(ũ)).

B.2 Proof of Proposition 1

Proof. We rewrite the PEC (3) as

inf
v≥0

Pτ̃

∑
j

τ̃ijtxijt ≤ τ̄ + v

− β(v) ≥ 0,∀i, t. (A)

Since xijt ∈ {0, 1} and
∑
j xijt ≤ 1, the above equation is equivalent to

xijt ≤ I
{

inf
v≥0

Pτ̃ {τ̃ijt ≤ τ̄ + v} − β(v) ≥ 0

}
,∀i, j, t, (B)

where I{·} is the indicator function. To show that (A)⇔ (B), we investigate two cases:

(1) When
∑
j xijt = 0, we have xijt = 0. In this case, the left-hand side of Equation (A) is equal to

1− β(v) since {0 ≤ τ̄ + v} is always satisfied with probability 1. Thus, the Equation (A) being

1− β(v) ≥ 0 is always feasible. Additionally, the Equation (B) is also feasible with the left hand

side being equal to 0.

(2) When
∑
j xijt = 1, let xij′t = 1 and xijt = 0 when j 6= j′. In this case, we have

(B) ⇔ inf
v≥0

Pτ̃ {τ̃ij′t ≤ τ̄ + v} − β(v) ≥ 0,∀i, t ⇔ (A).

Our next step is to assume that τ̃ follows a continuous distribution. We define Ψτ̃ijt as the cumu-

lative probability function of τ̃ijt, and Ψ−1
τ̃ijt

(β) as its quantile at probability β. We have

xijt ≤ I
{

sup
v≥0

Ψ−1
τ̃ijt

(β(v))− τ̄ − v ≤ 0

}
,∀i, j, t.
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B.3 Proof of Proposition 2

Proof. To simplify the robust PEC (9) even more, we can rewrite it as

I

{
inf

v≥0,δ̃it∼(0,Σit)
Pδ̃it

{(
τ̂ it + δ̃it

)T
xit ≤ τ̄ + v

}
− β(v) ≥ 0

}
≥ 1, ∀i, t,

where I{·} is the indicator function. Exploiting that xijt ∈ {0, 1} and
∑
j xijt ≤ 1, we get

∑
j

I

{
inf

v≥0,δ̃ijt∼(0,σ2
ijt)

Pδ̃ijt
{
τ̂ijt + δ̃ijt ≤ τ̄ + v

}
− β(v) ≥ 0

}
xijt ≥

∑
j

xijt, ∀i, t,

which is equivalent to

xijt ≤ I

{
inf

v≥0,δ̃ijt∼(0,σ2
ijt)

Pδ̃ijt
{
τ̂ijt + δ̃ijt ≤ τ̄ + v

}
− β(v) ≥ 0

}
, ∀i, j, t.

Exploiting the reformulation (11) presented in Lemma 1, for each i, j, t, instead of verifying

inf
δ̃ijt∼(0,σ2

ijt)
Pδ̃ijt

{
τ̂ijt + δ̃ijt ≤ τ̄ + v

}
− β(v) ≥ 0, ∀v ≥ 0,

one can simply verify whether

sup
v≥0

τ̂ijt +

√
β(v)

1− β(v)
σijt − τ̄ − v ≤ 0.

Hence, the robust PEC is equivalent to

xijt ≤ I

{
sup
v≥0

τ̂ijt +

√
β(v)

1− β(v)
σijt − τ̄ − v ≤ 0

}
, ∀i, j, t,

which is linear in xijt, leading to a linear program.

In the case that β(v) := 1
γ

v+α+1 , the robust PEC is equivalent to xijt ≤ I
{
τ̂ijt + α+

σ2
ijt

4γ − τ̄ ≤ 0
}
,

∀i, j, t. This is because we can optimize v out of the equation and derive the optimal v∗ =
σ2
ijt

4γ − α.

This optimal v∗ exists and is unique since F (v) = τ̂ijt+
√

β(v)
1−β(v)σijt− τ̄ − v is concave with its second

derivative (i.e., −1
4γ ( v+α

γ )−
3
2 ) being negative.

B.4 Proof of Proposition 3

Proof. Suppose that there is a finite number of periods t ∈ T . For any customer i in each period t

such that Pt̃
(∑

j xijt̃ = 1
)
> 0, the PECP (13) can be reformulated as

Pτ̃ ,t̃

(∑
j

τ̃ijt̃xijt̃ ≤ τ̄ + v

∣∣∣∣∣∑
j

xijt̃ = 1

)
≥ β(v), ∀i,∀v ≥ 0 (B1a)

≡
Pτ̃ ,t̃

(∑
j τ̃ijt̃xijt̃ ≤ τ̄ + v &

∑
j xijt̃ = 1

)
Pt̃
(∑

j xijt̃ = 1
) ≥ β(v), ∀i, ∀v ≥ 0 (B1b)
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≡

∑
t qitPτ̃

(∑
j τ̃ijtxijt ≤ τ̄ + v

)
P
(∑

j xijt = 1
)

∑
t qitP

(∑
j xijt = 1

) ≥ β(v), ∀i, ∀v ≥ 0 (B1c)

≡
∑
t

qit

[
Pτ̃

(∑
j

τ̃ijtxijt ≤ τ̄ + v

)
I

(∑
j

xijt = 1

)]
≥ β(v)

∑
t

qitI

(∑
j

xijt = 1

)
, ∀i,∀v ≥ 0 (B1d)

≡
∑
t

qit

[(∑
j

xijt

)
Pτ̃

(∑
j

τ̃ijtxijt ≤ τ̄ + v

)]
≥ β(v)

∑
t

qit

(∑
j

xijt

)
, ∀i,∀v ≥ 0 (B1e)

≡
∑
t

qit

[∑
j

Pτ̃ {τ̃ijt ≤ τ̄ + v}xijt

]
≥ β(v)

∑
t

∑
j

qitxijt, ∀i,∀v ≥ 0, (B1f)

≡
∑
t

qit

[∑
j

[Ψτ̃ (τ̄ + v)− β(v)]xijt

]
≥ 0, ∀i,∀v ≥ 0. (B1g)

In the case that Pt̃
(∑

j xijt̃ = 1
)

= 0, the constraint is redundant since it is always satisfied.

B.5 Proof of Proposition 4

Proof. According to the strong duality, we obtain the robust counterpart of (16) under the uncertainty

set Qi =
{
qi ∈ R|T | | qTi e = 1, 0 ≤ qi ≤ 1,

∥∥∥Σ
− 1

2
qi (qi − q̂i)

∥∥∥
1
≤ Γ

}
as follows:

infqi∈Qi
∑
t qit

(∑
j [Υijt(v)− β(v)]xijt

)
≥ 0,∀i,∀v ≥ 0

≡ supqi∈Qi
∑
t qit

(
β(v)xTitI − xTitΥit(v)

)
≤ 0,∀i,∀v ≥ 0

≡ supq δ
(∑

t etx
T
it (β(v)I −Υit(v))

∣∣∣ Qi) ≤ 0,∀i,∀v ≥ 0

≡ infu1,u2,θ1
q̂Ti u1i + Γ

∥∥∥Σ
1
2
qiu1i

∥∥∥
∞

+ θ2i ≤ 0,∀i,∀v ≥ 0

s.t. u1i + u2i =
∑
t etx

T
it (β(v)I −Υit(v)) , ∀i

θ2i ≥ u2it, ∀i, t
≡ infu1,θ1,θ2

q̂Ti u1i + Γθ1i + θ2i ≤ 0,∀i,∀v ≥ 0
s.t. u1it + θ2i ≥ β(v)xTitI − xTitΥit(v), ∀i, t

θ1i ≥ uT1i[Σ
1
2
qi ]t, ∀i, t

θ1i ≥ −uT1i[Σ
1
2
qi ]t, ∀i, t,

where et ∈ R|T | is the tth column of the identity matrix, δ(ν|Qi) = supqi∈Qi q
T
i ν is the support

function of Qi, and [Σ
1
2
qi ]t is the tth column of the matrix Σ

1
2
qi . Note that u1,θ1,θ2 are dependent

on v. Additionally, Υijt(v) = inf δ̃ijt∼(0,σ2
ijt)

Ψδ̃ijt
{τ̄ + v − τ̂ijt}, and can be reformulated as:

Υijt(v) =
(τ̄ + v − τ̂ijt)2

+

(τ̄ + v − τ̂ijt)2
+ + σ2

ijt

,

where (y)+ := max(0, y). This is because

Υijt(v) = inf
δ̃ijt∼(0,σ2

ijt)
Pδ̃ijt

{
τ̂ijt + δ̃ijt ≤ τ̄ + v

}
= sup

[
λ : inf

δ̃ijt∼(0,σ2
ijt)

Pδ̃ijt
{
τ̂ijt + δ̃ijt ≤ τ̄ + v

}
≥ λ

]

= sup[λ : τ̂ijt + σijt
√
λ/(1− λ) ≤ τ̄ + v] = sup

λ : λ ≤


(τ̄+v−τ̂ijt)2

(τ̄+v−τ̂ijt)2+σ2
ijt

if τ̄ + v − τ̂ijt ≥ 0

0 otherwise

 .
=

(τ̄ + v − τ̂ijt)2
+

(τ̄ + v − τ̂ijt)2
+ + σ2

ijt
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Appendix C Linear program representation of outer and inner ap-
proximations

The feasible sets of x, including XPEC , XR−PEC , XPECP , and XR−PECP , can be reformulated into

a finite set of linear constraints using their respective outer and inner approximations. This section

covers the presentation of these approximations, with the exception of the approximations for XPEC ,

which are discussed in the main text.

C.1 Outer and inner approximations of XR−PEC

Corollary C1. When β(v) is approximated by its outer and inner step functions (6), the approximated

reformulation of XR−PEC(v) is

X outerPEC

(
{vk}k∈K

)
⊆ XPEC(v) ⊆ X innerPEC

(
{vk}k∈K

)
with

X innerR−PEC
(
{vk}k∈K

)
:=
{
x ∈ R|I|×|J |×|T |

∣∣∣xijt ≤ Θinner
ijt ,∀i, j, t

}
, (C2)

X outerR−PEC
(
{vk}k∈K

)
:=
{
x ∈ R|I|×|J |×|T |

∣∣∣xijt ≤ Θouter
ijt ,∀i, j, t

}
, (C3)

where

Θinner
ijt := min

k
I

{
τ̂ijt +

√
β(vk)

1− β(vk)
σijt − τ̄ − vk ≤ 0

}

and

Θouter
ijt := min

k
I

{
τ̂ijt +

√
β(vk+1)

1− β(vk+1)
σijt − τ̄ − vk+1 ≤ 0

}
.

C.2 Outer and inner approximations of XPECP

Corollary C2. When β(v) is approximated by its outer and inner step functions (6), the approximated

reformulation of XPECP (v) is

X outerPECP

(
{vk}k∈K

)
⊆ XPECP (v) ⊆ X innerPECP

(
{vk}k∈K

)
with

X innerPECP

(
{vk}k∈K

)
:=

{
x ∈ R|I|×|J |×|T |

∣∣∣∣∣∑
t

qit

(∑
j

[
Ψτ̃ (τ̄ + vk)− β(vk)

]
xijt

)
≥ 0, ∀i, k

}
, (C4)

X outerPECP

(
{vk}k∈K

)
:=

{
x ∈ R|I|×|J |×|T |

∣∣∣∣∣∑
t

qit

(∑
j

[
Ψτ̃ (τ̄ + vk+1)− β(vk+1)

]
xijt

)
≥ 0, ∀i, k

}
. (C5)

C.3 Outer and inner approximations of XR−PECP

Corollary C3. When β(v) is approximated by its outer and inner step functions (6), the approximated

reformulation of XR−PECP (v) is

X outerR−PECP
(
{vk}k∈K

)
⊆ XR−PECP (v) ⊆ X innerR−PECP

(
{vk}k∈K

)
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with

X innerR−PECP

(
{vk}k∈K

)
:=


x ∈ R|I|×|J |×|T |

∣∣∣∣∣∣∣∣∣∣∣∣

∃
{
uk1 ,θ

k
1 ,θ

k
2

}|K|
k=1

q̂Ti u
k
1i + Γθk1i + θk2i ≤ 0, ∀i, k

uk1it + θk2i ≥ β(vk)xTitI − xTitΥit(v
k),∀i, t, k

θk1i ≥ (uk1i)
T [Σ

1
2
qi ]t, ∀i, t, k

θk1i ≥ −(uk1i)
T [Σ

1
2
qi ]t, ∀i, t, k


. (C6)

X outerR−PECP

(
{vk}k∈K

)
:=


x ∈ R|I|×|J |×|T |

∣∣∣∣∣∣∣∣∣∣∣∣

∃
{
uk1 ,θ

k
1 ,θ

k
2

}|K|
k=1

q̂Ti u
k
1i + Γθk1i + θk2i ≤ 0, ∀i, k

uk1it + θk2i ≥ β(vk+1)xTitI − xTitΥit(v
k+1),∀i, t, k

θk1i ≥ (uk1i)
T [Σ

1
2
qi ]t, ∀i, t, k

θk1i ≥ −(uk1i)
T [Σ

1
2
qi ]t, ∀i, t, k


. (C7)

Appendix D Linear reformulation of stochastic program

The probabilistic envelope constrained program can be reformulated into linear programs with Corol-

lary 1, C1, C2, and C3 for different scenarios. In this section, we present linear programs for each

scenario, except the one presented in main text (see Sections 4.5 and 4.6).

D.1 Linear reformulation of stochastic program with Proposition 1

When the travel time distribution is explicitly known, the probabilistic envelope constrained program

SP1 and SP2 can be reformulated as

(SPR1 ) max
x,y,d,z,u,θ

∑
i

∑
j

∑
t

(ri − clij) d̂ijt −
∑
j

(oj + cl0j) yj −
∑
t

hẑt

s.t. (2b)− (2d), (2g)− (2h),

xijt ≤ I
{

max
k

Ψ−1
τ̃ijt

(β(vk+ε))− τ̄ − vk ≤ 0

}
,∀i, j, t.

(SPR2 ) max
x,y,d,z,u,θ

∑
i

∑
j

∑
t

(ri − clij) d̂ijt −
∑
j

(oj + cl0j) yj −
∑
t

hẑt

s.t. (2b)− (2d), (2g)− (2h)

xijt ≤ I
{

Ψ−1
τ̃ijt

(β(vk+ε))− τ̄ − vk ≤ 0
}
,∀i, j, t, k ∈ [|K|+ 1− n, |K|].

Note that ε = 0 for relaxation and ε = 1 for restriction.

D.2 Linear reformulation of stochastic program with Proposition 2

When the travel time distribution is unknown, the SP1 and SP2 can be reformulated as

(SPR1 ) max
x,y,d,z,u,θ

∑
i

∑
j

∑
t

(ri − clij) d̂ijt −
∑
j

(oj + cl0j) yj −
∑
t

hẑt

s.t. (2b)− (2d), (2g)− (2h)

xijt ≤ I

{
max
k

τ̂ijt +

√
β(vk+ε)

1− β(vk)
σijt − τ̄ − vk ≤ 0

}
,∀i, j, t.

(SPR2 ) max
x,y,d,z,u,θ

∑
i

∑
j

∑
t

(ri − clij) d̂ijt −
∑
j

(oj + cl0j) yj −
∑
t

hẑt

s.t. (2b)− (2d), (2g)− (2h)

xijt ≤ I

{
τ̂ijt +

√
β(vk+ε)

1− β(vk)
σijt − τ̄ − vk ≤ 0

}
,∀i, j, t, k ∈ [|K|+ 1− n, |K|].
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Note that ε = 0 for relaxation and ε = 1 for restriction.

D.3 Linear reformulation of stochastic program with Proposition 3

When the travel time distribution is explicitly known but the period probability distribution is un-

known, the SP1 and SP2 can be reformulated as

(SPR1 ) max
x,y,d,z,u,θ

∑
i

∑
j

∑
t

(ri − clij) d̂ijt −
∑
j

(oj + cl0j) yj −
∑
t

hẑt

s.t. (2b)− (2d), (2g)− (2h)∑
t

qit

∑
j

[
Ψ(τ̄ + vk − τ̂ijt)− β(vk+ε)

]
xijt

 ≥ 0,∀i, k.

(SPR2 ) max
x,y,d,z,u,θ

∑
i

∑
j

∑
t

(ri − clij) d̂ijt −
∑
j

(oj + cl0j) yj −
∑
t

hẑt

s.t. (2b)− (2d), (2g)− (2h)∑
t

qit

∑
j

[
Ψ(τ̄ + vk − τ̂ijt)− β(vk+ε)

]
xijt

 ≥ 0,∀i, k ∈ [|K|+ 1− n, |K|].

Note that ε = 0 for relaxation and ε = 1 for restriction.

Appendix E Sensitivity analysis

E.1 The impact of robustness on profit, customer coverage, violation, and open
depots

Table E2 displays the open micro-depots under period and daily service levels corresponding to dif-

ferent Γ, ranging from the deterministic case to the most robust scenario. We observe that greater

robustness leads to lower profits, reduced customer coverage, decreased violation probabilities, and

a higher number of open micro-depots. In other words, the ultra-fast delivery company opens more

micro-depots to mitigate risk, yet the coverage of customer locations still diminishes. This suggests

that the significant perturbations in customer order frequency and travel time can result in high costs

and low revenue.

Table E2: Results of different formulations.

Formulation
Optimal
profit ($)

Number of
open

depots

Unused
micro-depot
indices

Customer
coverage

proportion
Violation

probability

Violation
degree

(minutes)

PECP 6500 10 [1,4,7,8,14] 96% 4.41% 1.38
PEC 5846 11 [1,4,7,14] 88% 1.74% 1.38
Robust PECPT 5413 11 [1,6,7,14] 80% 0.31% 1.21
Robust PECT 5086 12 [1,7,14] 76% 0.27% 0.53

Notes. The number of potential micro-depot locations is 15 to serve 100 customers.

E.2 The impact of the competitor delivery time

Figure E1 shows how the profit, number of open micro-depots, customer coverage proportion, and

demand fulfillment proportion change as the competitor delivery time changes. As the competitor

delivery time increases, the profit of ultra-fast delivery (with the initial target being 6 minutes) increases

with an increasing captured demand. The value is overall stable when the competitor delivery time
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exceeds 10 minutes. The coverage proportion and the number of open micro-depots keep consistent,

which means the allocation decisions remain unchanged no matter how the competitor service level

changes. In this case, both the violation probability and degree also remain steady.

Insight E1. The competitor delivery time does not affect the operations of allocating micro-depots to

serve customers, but only impact the demand volume captured by the ultra-fast delivery company. The

slower the competitor delivery, the higher the demand captured by the ultra-fast delivery.

(a) Profit & Number of open micro-depots. (b) Customer coverage & Demand fulfillment proportion.

Figure E1: The impact of the competitor delivery time on PEC and PECP.

E.3 The impact of the initial target delivery time

Figure E2 shows the changes in profit, number of open micro-depots, customer coverage proportion,

demand fulfillment proportion, violation probability, and violation degree as the initial target delivery

time changes. A higher initial target delivery time implies less restriction on service levels, resulting

in increased profit and greater demand fulfillment. This leads to a trade-off between service levels and

fulfillment. Compared to the period service level (PEC), the daily service level (PECP) always yields

a higher profit with higher demand fulfillment and coverage proportion (see Figures E2a and E2b).

This fact is on account of two reasons: (1) Compared to PEC, PECP considers the weighted-average

performance among all periods instead of the equivalent performance for each period, leading to a less

restricted requirement on the delivery time. (2) Since customers have a higher probability of placing
orders at the dinner time and lunch time, given the allowed daily violation, more allowance will be

put on these two periods to cover more demand and to yield a higher profit in PECP. The out-of-

sample violation probability is at most 2.6% and the violation degree is at most 1.6, which should be

acceptable in practice (see Figures E2c and E2d).

Figure E3 illustrates how the initial target delivery time influences the results in each period. Across

different time periods, the coverage proportion changes in similar trends, with captured demand being

proportional to the nominal demand in each period. Additionally, there is a small variation in the

maximal distance to travel from micro-depots to customers.

E.4 The impact of the setup cost

Figure E4 shows the changes in profit, number of open micro-depots, customer coverage proportion,

demand fulfillment proportion, violation probability, and violation degree as the setup cost varies. The

higher the setup cost, the fewer the open micro-depots. In this case, the profit decreases with decreasing

demand fulfillment and customer coverage proportions. The violation probability and degree remain

overall stable.
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(a) Profit & Number of open micro-depots. (b) Customer coverage & Demand fulfillment proportion.

(c) Average violation probability. (d) Maximum violation degree.

Figure E2: The impact of the initial target delivery time on PEC and PECP.

(a) Coverage proportion, PEC. (b) Total fulfilled demand, PEC. (c) Maximal distance, PEC.

(d) Coverage proportion, PECP. (e) Total fulfilled demand, PECP. (f) Maximal distance, PECP.

Figure E3: The impact of initial target delivery time on PEC and PECP under different periods.
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(a) Profit & Number of open micro-depots. (b) Customer coverage & Demand fulfillment proportion.

Figure E4: The impact of the setup cost on PEC and PECP.

E.5 The impact of the layers of protection

Figure E5 demonstrates the changes in profit, number of open micro-depots, customer coverage pro-

portion, demand fulfillment proportion, violation probability, and violation degree with variations in

the layers of protection. The more the layers of protection, the more reliable the ultra-fast delivery

service. When the number of layers increases, the profit first remains unchanged and then decreases,

due to a lower captured demand and a lower coverage proportion (see Figures E5a and E5b). Both

the violation probability and degree decrease (see Figures E5c and E5d).

(a) Profit & Number of open micro-depots. (b) Customer coverage & Demand fulfillment proportion.

(c) Average violation probability. (d) Maximum violation degree.

Figure E5: The impact of protection layers.

Insight E2. Regardless of changes in the competitor delivery time, initial target delivery time, setup

cost, or layers of protection, the daily service level consistently outperforms the period service level in

terms of higher profit, greater coverage, and milder violations.
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