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Abstract : For continuing tasks, average cost Markov decision processes have well- documented
value and can be solved using efficient algorithms. However, it explicitly assumes that the agent
is risk-neutral. In this work, we extend risk-neutral algorithms to accommodate the more general
class of dynamic risk measures. Specifically, we propose a relative value iteration (RVI) algorithm
for planning and design two model-free Q-learning algorithms, namely a generic algorithm based on
the multi-level Monte Carlo (MLMC) method, and an off-policy algorithm dedicated to utility-base
shortfall risk measures. Both the RVI and MLMC-based Q-learning algorithms are proven to converge
to optimality. Numerical experiments validate our analysis, confirm empirically the convergence of the
off-policy algorithm, and demonstrate that our approach enables the identification of policies that are
finely tuned to the intricate risk-awareness of the agent that they serve.

Acknowledgements: Erick Delage was partially supported by the Canadian Natural Sciences and
Engineering Research Council [Grant RGPIN-2022-05261] and by the Canada Research Chair program
[950-230057]. We are also thankful to Esther Derman, Marek Petrik, and Xian Chen for valuable
discussions on related topics.
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1 Introduction

For continuing tasks where there is a need to optimize a long term periodic payoff, such as network
control, supply chain designs, or maintenance problems (Puterman, 1994), average cost (or reward)
Markov decision processes (MDPs) serve as a crucial model in reinforcement learning (Sutton and
Barto, 2018; Naik et al., 2019) and can be solved using efficient algorithms. In the risk-neutral setting,
different forms of value iteration algorithms co-exist (Puterman, 1994; Bertsekas, 2007) and some
have been extended to a model-free setting using Q-learning style algorithms (Abounadi et al., 2001;
Wan et al., 2021). The question of how to formulate and solve average-cost MDPs however becomes
challenging when the agent is considered risk sensitive. It originates from the pioneering work of
Howard and Matheson (1972) and is covered in recent surveys such as Biswas and Borkar (2023) and
Béuerle and Jaskiewicz (2024).

This work focuses on average risk-aware MDP, a general formulation described in Shen et al. (2013)
that attempts to find a policy 7r that minimizes the long-term average of the risk of the cost process
generated by 7. While the theoretical foundations of this framework are well studied, finding efficient
solution techniques to these problems remains a challenging task. To solve the average risk-aware
MDP problem, one can apply the classic value iteration algorithm (Cavazos-Cadena and Montes-de
Oca, 2003; Ruszczyniski, 2010; Shen et al., 2015). This approach relies on the iteration of the risk-aware
Bellman operator and computes the average to obtain the optimal average risk. However, it is known
to suffer from overflow issues when the number of iterations is large. In the risk-neutral setting, the
relative value iteration (RVI) algorithm is widely used (Bertsekas, 2007; Gupta et al., 2015), as it
mitigates overflow issues during long iterations by subtracting a reference value for each state at every
step. However, while some studies have explored RVI algorithms based on the entropic risk measure
(Borkar, 2010; Arapostathis and Borkar, 2019; Hmedi et al., 2023), a general formulation of the RVI
algorithm for risk-aware MDPs remains missing in the literature.

Meanwhile, in practical applications, the randomness of the environment is usually unknown, high-
lighting the importance of developing model-free learning algorithms. To the best of our knowledge,
extensions of the risk-neutral Q-learning algorithms to the average risk-aware setting appear to only
exist for the case of entropic risk measure (see Borkar (2002), Borkar (2010), Moharrami et al. (2024)
and the reference therein). This is in sharp contrast to the extensive literature on algorithms for
discounted or finite-horizon risk-aware MDPs, where many studies exist: for instance, see Chow and
Ghavamzadeh (2014), Tamar et al. (2015), or Chow et al. (2018) for conditional value-at-risk, see
Huang and Haskell (2017), K6se and Ruszczyniski (2021), or Lam et al. (2023) for general coherent risk
measures, Shen et al. (2014) or Marzban et al. (2023) for utility-based shortfall risk (UBSR), and see
Hau et al. (2025) for quantiles. To conclude, the design of a model-free learning algorithm for average
risk-aware MDPs with a general risk measure remains an open research field.

The literature that might be considered closest to addressing this gap has focused on planning and
learning algorithms for distributionally robust MDPs. Studies have explored the discounted case (Liu
et al., 2022; Wang et al., 2023a, 2024) as well as the average case (Wang et al., 2023b,c), where an
ambiguity set is constructed around the transition kernel to safeguard against potential distributional
shifts. These results however do not apply to general classes of (possibly non-coherent) dynamic risk
measure.

This paper presents planning and learning algorithms for average risk-aware MDPs with a general
dynamic risk measure. We describe our contributions as follows:

Planning: We propose a RVI algorithm for average risk-aware MDPs, which produces a policy that
provably converges to the optimal policy for a general class of dynamic risk measures. While
existing studies on model-based algorithms for this problem focus either on the risk-neutral
setting or the case of entropic risk, our work appears to be the first to consider such a general
class of dynamic risk measures.
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Learning: We introduce two novel model-free Q-learning algorithms for average risk-aware MDPs.
The first algorithm generalizes the multi-level Monte Carlo (MLMC) based Q-learning algorithm
introduced in Wang et al. (2023c) for robust average MDPs to a broader class of dynamic risk
measures, which may not necessarily be coherent, while ensuring provable convergence to op-
timality. The condition we impose for convergence are weak and satisfied by many popular
risk measures such as UBSR, optimized certainty equivalent, and spectral risk measures. Addi-
tionally, we propose an asynchronous algorithm that is specialized for UBSR, and amenable to
off-policy learning. While the theoretical convergence remains open, we validate it empirically
under different loss functions.

Empirics: We confirm empirically the convergence of all algorithms under different choice of risk
measures and practically relevant sampling rates for MLMC Q-learning, and compare the sample
efficiency. We also showcase how average risk-aware MDPs identify policies that are tuned to
the agents preferences in popular environments from the literature.

The structure of the paper is as follows. Section 2 introduces average risk-aware MDPs. Section 3
derives the risk-aware RVI and relative Q-factor iteration algorithms. Section 4 presents the MLMC
Q-learning algorithm. Section 5 presents the asynchronous Q-learning algorithm for UBSR measures
and the numerical experiments. Section 6 concludes the paper and proposes further research. Pseudo-
codes, proofs, and additional experiment details and results are provided in the appendix.

2 Preliminaries

Notations: Given any finite probability space (€2, P(+)),! with  a finite set of outcomes, and P(-)
a probability mass function in the probability simplex Z2(Q)), we denote by L£(f2) the set of finite
real-valued functions (a.k.a. random variables) on © and || the cardinality of Q. For v,w € L(Q),
the notation v > w refers to v(w) > w(w) for all w € Q, and v > w almost surely (a.s.) refers to
v(w) > w(w) for all w € Q such that P(w) > 0. The infinity norm of v € L(N) is ||v]|sc 1= sup,eq |v(w)],
while its span-seminorm is: ||v||sp 1= max,eq v(w) — min,eq v(w). For A C Q, the indicator function
1{w € A} equals 1 if w € A and 0 otherwise. Finally, e and O represent the constant functions of one
and zero respectively, while e denotes the base of the natural logarithm.

2.1 Risk maps

We begin by defining the notion of a risk measure following Shapiro et al. (2021).

Definition 2.1. Given a finite probability space (92, P(-)), a risk measure p : £(2) — R that maps
a random cost to a real value capturing its risk is said to be monetary if it satisfies the following
properties:

(1) (Monotonicity) p(v) < p(w) for all v,w € L(R2) such that v < w a.s.;
(2) (Translation invariance) p(v + A) = p(v) + A for any A € R, v € L(Q);
(3) (Normalization) p(0) = 0;

further called convex if:

(4) (Convexity) For all a € [0,1], v,w € L(Q), plav + (1 — @)w) < ap(v) + (1 — a)p(w);
and coherent if

(5) (Positive homogeneity) For all A > 0, v € L(Q), p(Av) = Ap(v).

In the follows, we introduce some popular kinds of risk measures that will be of interest.

!Short for (€2, 0(82), wp), where o(£2) is the sigma algebra generated by the power set of 2, and pup(€) =3, ¢ P(w)
for all £ € 0(Q) is a probability measure.



Les Cahiers du GERAD G-2025-37 3

Definition 2.2 (Definition 4.112, Follmer and Schied (2016)). A risk measure on (2, P(-)) is called a
utility-based shortfall risk (UBSR) measure if it can be represented as:

SR(v) :=inf{m e R: E[f(v —m)] <0}, Vo e L(N),

for some continuous non-decreasing convex loss function £ : R — R such that £(0) = 0.2

Example 2.3 (Expected value). When ¢(z) = z, the UBSR measure reduces to the expected value,
which we refer as the risk-neutral measure.

Example 2.4 (Entropic risk measure). When /(z) = e — 1, with 8 > 0 representing risk sensitivity,
the resulting UBSR measure is the entropic risk measure SR(v) = %1og(E[eﬁ”]).

Example 2.5 (Expectile). Following Bellini and Bignozzi (2015), the expectile is the only coherent
UBSR, defined using the loss function £(z) = 7ot — (1 — 7)x~, where T € [0, 1] represents the degree
of risk aversion. This measure spans from the essential infimum of the random cost at 7 = 0 to its
essential supremum at 7 = 1, passing through the expected value at 7 = 0.5.

Definition 2.6 (Definition 2.1, Ben-Tal and Teboulle (2008)). A risk measure on (2, P(-)) is called an
optimized certainty equivalent (OCE) risk measure if it can be represented as

OCE(v) == Inf {& + Elf(v = {)[}, v € L(Q),

for some nondecreasing convex loss function ¢ : R — R such that £(0) = 0 and 1 € 9¢(0) where 9¢(0)
is the subgradient of ¢ at 0.

Definition 2.7 (Definition 3.1, Acerbi (2002)). A risk measure on (£, P(-)) is called a spectral risk
measure associated to a risk spectrum function ¢ : [0,1] — [0, 00) such that fol o(B)ds = 1, if it can
be represented as

M () = / S(B)F; M (B)AB, Ve L(),

where F, is the cumulative distribution function of v and F, !(3) := inf{m € R : F,(m) > S}.

Example 2.8 (Conditional Value-at-Risk). When ¢(z) = (1 —«)~tzT for a € (0, 1), the OCE risk is the
conditional Value-at-Risk (CVaR) at level o. CVaR is coherent and it is also a spectral risk measure
with risk spectrum ¢(8) = (1 — )7 11{3 > a}.

Example 2.9 (Mean-CVaR). When ¢(8) = n+ (1 — n)(1 — a)~'1{8 > a} for some 1 € (0,1), the
spectral risk measure defined as M?(v) = nE[v] + (1 — n)CVaR, (v) is referred to as the mean-CVaR
risk measure.

2.2 Average risk-aware MDP

We consider a finite MDP defined through the tuple (X, A, P, ¢, xg), where X and A are finite state
and action spaces, denoting K := X x A for short. The transition kernel P : X x A — Z(X) specifies
the probability P(y|z,a) of transitioning from state x to state y given action a. The bounded cost
function is defined as ¢ : X x A — [~C,C]. For time t = 0,1,---, the state and action are x; and
as, governed by a Markov policy w = (mg,m1,...), with each m; € Il := {m : X — F(A)}, where
m¢(-|x¢) denotes the probability of choosing a; given x;. A policy is called deterministic if it assigns
a probability of one to a specific action for each state, and is called stationary if m; = « for all ¢ for
some 7 € II.

In a risk-neutral setting, the infinite horizon average cost MDP problem takes the form:

T
_ 1
ACMDP) J*:= inf li —E (X
(AC ) JU= inf i sup 75 LEZOC( t)],

2Shen et al. (2014) employs equivalently E[£(v — m)] < mq using the replacement £(z) := £(z) — mo. We also focus
on normalized UBSR.
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where X; is the state at stage ¢t and c¢™(z) := >, 4 7(alx)c(z,a). One seeks to identify a stationary
policy that minimizes the long term average expected total cost generated by the MDP, when starting
from some initial state Xy and following policy .

Following Shen et al. (2013), we consider the risk-aware version of the average cost MDP by
replacing E[-] with a class of dynamic risk measures that is specially designed for MDPs.

Definition 2.10. A risk map R is a function that maps each state (z,a) € K to a monetary risk measure
on the space (X, P(-|z,a)). Furthermore, for any 7 € II we define R™ (v|z) := > . 4 7(alx)R(v|z, a).
To simplify notation, we sometimes write Ry o(v) := R(v|z,a) and RE(v) :== R™(v|x).

We first consider a risk-aware T-stage total cost problem and define our risk-aware objective as
follows:

Jr(m) = 0 (Xo) + R, (7 (X1) 4+ + RY,Z, (7 (X)) -+ ).
The infinite horizon average risk-aware MDP problem therefore seeks to find a policy 7 that minimizes:

(ARMDP) J*:= 7Tielthfoo Joo (),
where Joo(7) := limsupy_, %JT(ﬂ'). It is easy to see that ARMDP reduces to ACMDP when
Ra,a(v) = Eg o[v] := E[v(y)] with y ~ P(-|z, a).
Remark 2.11. As argued in Shen et al. (2013), preserving the Markov property is essential to guarantee
stationary optimal policies for infinite horizon objectives (Ruszczytiski and Shapiro, 2006; Shen et al.,
2013). Therefore, we restrict our attention to Markovian risk measures that depend only on the current
state. Readers can refer to Ruszczynski (2010) for a broader framework.

2.3 Average risk optimality equation

Shen et al. (2013) establishes several assumptions on the risk maps of an MDP to guarantee the
existence and uniqueness of the optimal average risk for ARMDP. Here, we modify and adapt these
assumptions to suit our setting of a finite MDP.

Assumption 2.12 (Doeblin type condition, Assumption 5.4 Shen et al. (2013)). There exists a coherent
risk measure v : £L(X) — R, and some constant @ € (0, 1) such that for all v > v' € L(X), we have

( m%nK{R(ﬂw,a) —av(v) — R |z,a) + av(v')} > 0.
xT,a)e

Assumption 2.12 defines a form of ergodicity property of each state under the risk map. In Shen
et al. (2013), v is not necessarily required to be coherent, whereas we impose this condition here for
simplicity in the subsequent derivations.

From Shen et al. (2013), if the risk maps satisfy Assumption 2.12; then there exists an optimal
stationary deterministic Markov policy 7* such that J* = J(7*). We restate the result as follows.

Theorem 2.13 (Theorem 5.9, 5.10, Shen et al. (2013)). Under Assumption 2.12, there exists a unique
g* € R and an h* € L(X) satisfying the average risk optimality equation (AROE):

g+ h(zx) = {lrgql{c(x, a) + R(h|z,a)}. (2.1)

Moreover, g* = J* = Jo(7*), for the stationary deterministic policy 7} (a|x) = 1{a = a*(z)}, where
a*(x) minimizes c(x, a) + R(h*|x,a), and g* is independent of .

Remark 2.14. In Assumption 5.4 of Shen et al. (2013), an additional Lyapunov-type condition is
introduced, which imposes a growth constraint using a nonnegative weight function W. We refer the
reader to Appendix B.1 to see why this can be dropped in a finite MDP.
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Remark 2.15. Assumption 2.12 is a sufficient condition for the existence of an optimal average risk
independent of the initial state and is stronger than the unichain assumption commonly used in risk-
neutral average MDPs. It is well-known that for risk-aware MDPs, the unichain assumption alone
does not guarantee this independence. For specific risk measures, such as the entropic risk measure,
this condition can be relaxed to require only that the Markov chain is irreducible and aperiodic under
all stationary policies (see Cavazos-Cadena and Ferndndez-Gaucherand (1999)).

3 Model-based algorithms

In this section, we propose a risk-aware version of the RVI algorithm to solve the ARMDP problem.
Additionally, to lay the foundation for the Q-learning algorithm in the next section, we introduce a
risk-aware relative Q-factor iteration algorithm as a generalization of the risk-aware RVI algorithm.

3.1 Risk-aware relative value iteration
Following Abounadi et al. (2001), the risk-neutral RVI algorithm is defined as

Vot1(z) ;= minE [c¢(z,a) + Vo] — f(V), Yz e X, (3.1)

acA

where V,, € L£(X) and Vp is arbitrarily initialized, and f : £(X) — R is a function that satisfies
conditions discussed below, e.g. f(v) := v(xg).> Using a general function f(V;,) instead of V(o)
allows the RVI algorithm to eliminate the need for a reference state, making it more flexible and
efficient for computation (also see the discussion in Wan et al. (2021) for the risk-neutral case). It is
known that under the unichain assumption, the risk-neutral RVI algorithm converges to a unique V*,
which solves the risk-neutral version of the AROE using h := V* and g* = f(V*).

We propose extending the RVI algorithm to the risk-aware setting by replacing the expected value
operator with an appropriate risk map. This gives rise to the following risk-aware RVI algorithm:

Var1(@) = G(Va)(2) = f(Va), Ve e X, (3.2)

where G : L(X) — L(X) is the risk-aware Bellman optimality operator, defined as G(v)(x) :=
minge g Ry o(c(x,a) +v) for all x € X and v € L(X).

To guarantee convergence of Algorithm (3.2), we impose the following conditions on f.
Assumption 3.1. The function f: £(X) — R satisfies:

(1) For any A € Rand v € L(X), f(0) =0, f(v+A) = f(v)+ A
(2) f is Lipschitz, i.e., 3L > 0, such that || f(v) — f(w)]lec < L||v — w]|os, Vv, w € L(X).

Assumption 3.1 is equivalent to imposing that f is translation invariant and is naturally satisfied
by f(v) := v(zo). Such extension for the RVI seems to be first proposed in Abounadi et al. (2001) for
the risk-neutral case, although the authors did not include proofs of their validity.

The following theorem confirms that convergence of RVI remains valid in the risk-aware setting.

Theorem 3.2. Under Assumptions 2.12 and 3.1, the risk-aware RVI algorithm (3.2) converges to a
unique fixed point V*, which identifies, using h*(z) := V*(z) and ¢* := f(V*), a solution to the
AROE (2.1).

Clearly, the risk-aware RVI algorithm (3.2) reduces to RVI algorithm (3.1) in the risk-neutral
setting.

3The RVI algorithm in Bertsekas (2007), for example, replaces f(Vy) with f(Vi4+1) := Vpt1(zo). We adopt the
formulation from Abounadi et al. (2001) as it is better suited for designing a Q-learning algorithm.
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3.2 Risk-aware relative Q-factor iteration

The risk-aware RVI algorithm (3.2) suggests that, when letting Qn41(x,a) := Ryo(c(z,a) + V,,)
—f(Va), (3.2) can be reformulated as the following risk-aware relative Q-factor iteration (RQI):

Qnt1(z,a) :=Ryq (c(x,a) + 5161514 Qn(-,a’)> —f (min Qn(-,a’)> , VY(z,a) €K,

a’€eA

where Q,, € L(K) and Qg is arbitrarily initialized. As suggested in Abounadi et al. (2001) for the
risk-neutral case, this can be more generally defined as:

Qn+1(z,a) = H(Qn)(z,a) — f(Qn), Y(z,a) €K, (3.3)
where H : L(K) — L(K) is the risk-aware Bellman optimality operator for Q-factors, defined as

H(g)(z,a) := Ryo(c(z,a) + ming e 4 q(-,a')), for all (z,a) € K and ¢ € L(K). With a slight abuse of
notation, here we define f : L(K) — R and impose the following assumptions.

Assumption 3.3. The function f : £L(K) — R satisfies:

(1) For any A € R and q € L(K), f(0) =0, f(g+ ) = f(q) + .
(2) f is Lipschitz, i.e., 3L > 0 such that If(P) = F(@)|loo < Llp - q||oos VD, q € L(K).

Common choices for f can be f(q) = g(xg,a0), f(q) = min, ¢(xo,a), f(q) = WZLG q(z,a).
Similar to Theorem 3.2, we have the following convergence and optimality result for the risk-aware
RQI algorithm.

Theorem 3.4. Under Assumptions 2.12 and 3.3, the risk-aware RQI algorithm (3.3) converges to a
unique fixed point Q*, which identifies, using h*(x) := minge 4 @*(x,a) and g* := f(Q*), a solution
to the AROE (2.1).

Theorem 3.4 also suggests that a solution to the AROE (2.1) can be identified by solving the
following average risk optimality equation based on the Q-factor:

0(0.0) = R (e0) + min o)) = Fl@). (o) € K. € L), (3.0

4 Model-free algorithm

In this section, we introduce a model-free Q-learning algorithm that is based on MLMC for solving
the ARMDP. We also outline conditions ensuring the almost sure convergence of the algorithm when
the risk map employs UBSR, OCE, or spectral risk measures.

4.1 Risk-aware RVI Q-learning

Motivated by the risk-aware RQI algorithm (3.3), we can propose the following model-free risk-aware
RVI Q-learning algorithm:

Quii(2.a) = Qu(w.0) +7(n) (H(Qu)(@.0) = (@) = Qulw.a)) . (@) ek, (41)

where # is an estimator for the risk-aware Bellman optimality operator H and v(n) is some step size.
We construct H(q) as an estimator of H(q) satisfying the following assumption.

Assumption 4.1. The estimator # is unbiased and has controllable variance: i.e. E[H(q)] = H(q) and
there exists a C' > 0 such that Var[H(q)(x,a)] < C(1 + ||q]|%), ¥(z,a) € K,q € L(K).

To guarantee the convergence for the risk-aware RVI Q-learning algorithm (4.1), we require that
the risk map satisfies an assumption called “asymptotic coherence” and the function f is homogeneous.
We also impose the Robbins-Monro condition on the step size vy(n).
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Assumption 4.2 (Asymptotic coherence). The risk map R is asymptotically coherent, i.e. there exists
a risk map R such that for all (z,a) € K, we have that lim,_, 1R 4(sv) = R (v) for all v € L(X)
and uniformly on all compact subsets of L(X).

Assumption 4.3. The function f is homogeneous, i.e., f(Av) = Af(v), VA € R, v € L(K).
Assumption 4.4. The step size {v(n)}32, satisfies Y -, v(n) = 0o and Y .-, v(n)? < cc.

We then have the following convergence result.

Theorem 4.5. Under Assumptions 2.12, 3.3, 4.1, 4.2, 4.3, 4.4, then almost surely, @),, converges to a
Q*, and h*(z) := mingeq Q*(z,a), ¢g* := f(Q*) identify a solution to the AROE (2.1). The greedy
policy, m,(alz) = 1{a = a}(x)} with @ € argmin,e4 Qn(x,a), also converges almost surely to an
optimal stationary deterministic policy of ARMDP.

If the risk map R is coherent, Assumption 4.2 is automatically satisfied. This assumption is made
for technical reasons, as the convergence proof of the Q-learning algorithm for the average MDP relies
on ODE-based stochastic approximation (see Abounadi et al. (2001) and Wan et al. (2024) for a recent
review). This approach requires the limit in Assumption 4.2 to exist for analyzing the almost sure
boundedness of the iteration sequence. In the next subsection, we demonstrate that this assumption
can be achieved for many risk maps that are not necessarily coherent.

~

4.2 Construction of an unbiased estimator H

In this subsection, we present an estimator # that satisfies Assumption 4.1 for specific risk maps using
the multi-level Monte Carlo (MLMC) method, an approach for unbiased statistical estimation using
stochastic simulation (Blanchet and Glynn, 2015; Blanchet et al., 2019; Liu et al., 2022; Wang et al.,
2023a,c). We first impose the following assumption on R, which enables the possibility of estimating
a random variable using its empirical distribution.

Assumption 4.6 (Holder continuity). There exists an £ > 0 such that for all v,w € L£(X), we have
[Rua(v) = Rya(w)| < Ldw (fw, ), V(x,a) € K, where iy, 1y are the probability distributions of v
and w on X and dw (-, ) is the 1-Wasserstein distance between two distributions.

We first generate N according to a geometric distribution with parameter r € (0,1). Then, for
each (7,a) € K, we take action a at state = for 2V+! times and observe the i.i.d. transitions {x;}fi’fl
These 2V*! samples are then divided into two groups: samples with odd indices and samples with
even indices. We calculate the empirical distribution of z’ using the even-index samples, odd-index

~ N ~
samples, all the samples, and the first sample: P§ ., (y|z,a) := 35 Z?Zl 1{z}; =y}, PY.1(ylw,a) =
2N ~ 2N+1 ~
QLNEizl 1{1‘/21'71 = y}7 PN+1(y|JJ,CL) = 21\7%2@‘:1 1{$; = y}v P]{[+1(y|$,fl,) = :!'{xll :A y} For
notation simplicity, we denote the resulting empirical transition kernels as P%, |, P{.,, Py41 and
If’]{, 11, respectively. Then, we use these estimated transition kernels as nominal kernels to calculate

H. Namely, Hp  is the Bellman optimality operator under the empirical transition kernel Px. The
multi-level estimator of H is then defined as

A0 = Ay @)+ o - 5 (Mo @+ Hpg (@), WaeLl). @2

N+1

where py = r(1 —r)V.

We present the following result on the unbiasedness and controllable variance for risk maps satis-
fying Assumption 4.6.
Theorem 4.7. Assumption 4.1 holds if the risk map satisfies Assumption 4.6 and r € (0,1/2).

As shown in Section 3 of Prashanth and Bhat (2022), several popular risk measures, including
UBSR, OCE and spectral risk measures, satisfy Assumption 4.6 with proper parametrization. Below,
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we demonstrate that under suitable conditions, the risk-aware average MDP that incorporates UBSR,
OCE, or spectral risk measure satisfies all the assumptions required for Theorem 4.5 to apply.

Assumption 4.8 (Strong Ergodicity). Under any stationary policy, the resulting Markov chain is irre-
ducible and there exists a state & € X such that P(Z|z,a) >0, V(z,a) € K.

Assumption 4.9 (Bounded slope). The loss function £(z) is strictly increasing on R and there exist
Lq,€e1 > 0 such that 0 < ¢ S% <L, Vx £y eR.

Theorem 4.10. Under Assumption 4.8, if the risk map employs a UBSR or OCE satisfying Assump-
tion 4.9, or a spectral risk measure with 0 < e5 < ¢(-) < Ly < 0o, then Assumptions 2.12, 4.2, and 4.6
holds. Consequently, Theorem 4.5 applies.

We note that CVaR does not satisfy the condition in Theorem 4.10. However, the mean-CVaR risk
measure, which mixes expectation and CVaR, does and hence Theorem 4.5 applies for mean-CVaR.
Also, although our definitions of UBSR and OCE assume a convex loss function, Theorem 4.10 holds
more generally for loss functions that are convex (concave) for > 0 and concave (convex) for z < 0,
reflecting different risk attitudes toward gains and losses (see Appendix B.4). Finally, the entropic risk
measure does not satisfy Assumption 4.9, but it still meets Assumption 2.12 (Proposition 5.7, Shen
et al. (2013)). Borkar (2002) proposed a Q-learning algorithm for risk-aware average MDPs with an
entropic risk measure, which is derived from the multiplicative Poisson equation and does not rely on
MLMC. For further details, readers may refer to Borkar (2002).

5 Experiments

In this section, we provide numerical experiments confirming the convergence of our MLMC-based Q-
learning algorithm (MLMC Q-learning), derive an off-policy Q-learning algorithm for UBSR measures
(UBSR Q-learning), and apply our algorithm (see pseudo-codes in Appendix A) to real-life prob-
lems to showcase its potential. Further details and experimental investigations are also presented in
Appendix C, namely regarding the sensitivity of MLMC Q-learning to r, the convergence of UBSR
Q-learning, and the effect of risk-awareness in long term performance of policies.

5.1 Convergence of MLMC Q-learning

We begin by validating the convergence of the risk-aware RVI Q-learning algorithm (4.1) using a ran-
domly generated MDP with 10 states and 5 actions per state. The nominal transition kernel P is gener-
ated from a uniform distribution over [0, 1] and subsequently normalized. The cost function is sampled
from a normal distribution A'(1,1). We choose v(n) := (1/(n+1))%/% and f(q) := I/'\fllw >rad(z,a)
Due to space limit, we only show the convergence results for two special cases of UBSR and OCE: the
expectile with 7 = 0.75 and OCE with loss function £(z) := y127 — y2~ where 7; = 2 and 2 = 0.5.

We run the MLMC Q-learning algorithm 100 times independently with » = 0.49 and plot the
mean value of f(Q,) in Figure 5.1, with the 95th and 5th percentiles as the confidence interval (CI).
For comparison, trajectories from value iteration and the risk-aware RVI algorithm (3.2) are shown
together with the true optimal risk (via value iteration). It is evident that the MLMC Q-learning
algorithm converges to the true optimal average risk almost surely. As a model-based approach, the
risk-aware RVI achieves convergence to the optimum at a significantly faster rate.

It is worth noting that selecting r € (0,1/2) does not ensure finite sample guarantees based on
Theorem 4.7, as each iteration requires an average of infinitely many samples when r < 1/2. However,
for some r € (1/2,3/4), both asymptotic and finite sample guarantees may still be achieved as observed
empirically in additional experiments presented in Appendix C.1. These empirical findings are coherent
with the guarantees identified in Wang et al. (2023a) for a special class of distributionally robust
discounted MDPs.
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Figure 5.1: Convergence experiments for risk-aware RVI (3.2) and MLMC Q-learning(4.1).

5.2 A new off-policy Q-learning algorithm for UBSR measures

An important practical concern of our MLMC Q-learning algorithm is the necessity for a resampling
procedure for each (x, a) pair, which prevents the algorithm from being adapted for off-policy learning.
This can be addressed when the risk map employs a UBSR measure using an approach proposed
in Shen et al. (2014) for risk-aware discounted MDPs. Namely, Proposition 4.113 in Foéllmer and
Schied (2016) establishes that for any v € L£(X), the risk map SR, 4(v) is the unique solution of
E, o[¢(v — SRy 4(v))] = 0. This implies that the AROE (3.4) can be equivalently rewritten as:

£ |1 (clea) + mingld) — F0)—a(00))| =0, Vo ek
This motivates the following off-policy algorithm that seeks to identify the root of this AROE using
stochastic approximation (see Borkar (2008)). Specifically, given any sequence {(zn,an,},)}, with
x) ~ P(:|z,a), the asynchronous UBSR-based Q-learning consists in applying the updates:

Qn+1(xn>an> = Qn(xna an) + 'y(n)€<c($n, an) + ;pelr}‘ Qn(xiw a/) - f(Qn) - Qn(xm an))' (5-1)

where each subsequence {7(n)},:(z,,a,)=(z,a), indexed by (z,a) € K, satisfies Assumption 4.4. The
synchronous algorithm can also be derived if all (z,a) pairs are updated within one iteration.

Figure 5.2 presents the convergence of the two UBSR Q-learning algorithms for the expectile in
the same setting outlined in Section 5.1. For comparison, we also include the results of the MLMC
Q-learning algorithm (4.1) with » = 0.6, which uses an expected 6,000 samples per state-action pair
over 1,000 iterations, corresponding to 300,000 iterations of the asynchronous UBSR Q-learning algo-
rithm (5.1) and 6,000 iterations for the synchronous version.

Further experiments with different loss functions along with a detailed discussion and comparison
to the MLMC Q-learning algorithm (4.1) are provided in Appendix C.2. Overall, the two UBSR
Q-learning algorithms (5.1) exhibits both a faster convergence and lower variance than the MLMC
Q-learning algorithm (4.1). Investigating the almost sure convergence and optimality of this algorithm
remains an interesting direction for future research.

5.3 Applications

To illustrate the practicality of our risk-aware algorithms, we tested them on three popular average-
cost MDP problems: machine replacement (MR), water reservoir management (WR), and inventory
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Figure 5.2: Comparison of MLMC and UBSR Q-learning with equivalent number of samples.

management (IM) (e.g. Puterman (1994), Herndndez-Lerma (1989)). Each problem is evaluated under
four risk measures: expectile (EX, 7 = 0.9), OCE (y; = 2, 72 = 0.5), mean-CVaR (n = 0.1, = 0.2)
and risk-neutral (RN). Experiment details are provided in Appendix C.3.

Table 1 presents the optimal average risk for the three applications under the four risk measures,
along with the average risk obtained from the four risk-aware policies evaluated under the expectile
7 =0.9. Appendix C.4 explores risk differences across 7 values, showcasing UBSR’s flexibility in risk
preference design. These results confirm our theory, proving the effectiveness of our algorithms in
computing optimal risk-aware policies tailored to an agent’s risk preferences.

Table 1: Average risk for different experimental setups under different risk measures.

Optimal Risk Expectile Risk
Risk Measures MR, WR. IM MR, WR. IM
EX 68.7499  20.2541 24.8694 68.7499 20.2541 24.8694
OCE 63.9291 14.1389 23.733 68.9323 20.3239 25.2908
Mean-CVaR 59.5244  9.9319  22.8955  69.3343 20.6413 26.5721
RN 54.4233 7.6174  20.1345  69.9359 20.6413 28.1901

6 Conclusion and future research

In this paper, we introduced the first risk-aware RVI algorithm and two novel model-free risk-aware
RVI Q-learning algorithms for average-cost MDPs. Several research directions are worth exploring.
First, we conjecture that the strong ergodicity Assumption 4.8 could be weakened. Second, the finite
sample guarantee of MLMC Q-learning remains an open question. Indeed, it would be worthwhile to
investigate whether the derivation of guarantees Wang et al. (2023a) for a special class of distribution-
ally robust discounted MDPs and variance reduction technique in Wang et al. (2024) can be adapted
to our setting. Finally, the almost sure convergence and sample complexity of UBSR Q-learning should
be addressed.
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A Algorithm pseudo-codes

Algorithm 1 Risk-aware Relative Value lteration

1: Input: Vo, f, T, n <+ 0;
2: while n < T do
3: for all z € X do

4 Vi1 (z) < G(Vn)(x) — f(Vn), where G defined in (3.2);
5 end for

6: n <+ n+1;

7: end while

Algorithm 2 Risk-aware Relative Q-factor Iteration

1: Input: Qo, f, T, n < 0;
2: while n < T do
3: forallz € X, a € Ado

4 Qn+1(z,a) + H(Qn)(z,a) — f(Qn), where H defined in (3.3);
5 end for

6: n <+ n+1;

7: end while

Algorithm 3 Risk-aware RVI Q-learning with MLMC (MLMC Q-learning)

1: Input: Qo, f, v(n), v € (0,1), T, n ¢ 0;

2: while n < T do

3: forallz € X, a € Ado

4: Sample N ~ Geo(r);

5 Independently draw 2V+! samples 2/, ~ P(-|z, a);

6: Qni1(z,a) < Qn(z,a) +v(n) (Q(Qn)(x,a) — f(Qn) — Qn(x,a)>, where A is defined in (4.2);
7 end for

8

9:

n<<n+1;
end while

Algorithm 4 Off-policy (asynchronous) RVI Q-learning for UBSR (A-UBSR Q-learning)

1: Input: Qo, ¢, f, v(n), T, n < 0;

2: while n < T do

3: Observe one transistion (z,a,z’);

L Quir(2,0)  Qu(w,0) + Y(N) (c(z,a) + mingre 4 Qn (', a') — F(@n) — Qulw,a));
5: n <+ n+1;

6: end while

Algorithm 5 Synchronous RVI Q-learning for UBSR (S-UBSR Q-learning)

1: Input: Qo, 4, f, y(n), T, n < 0;
2: while n < T do
forallz € X, a € Ado
Observe one sample z’;
Qnt1(z,a) « Qn(z,a) +v(n)l(c(z,a) + ming e g Qn(2',a') — f(Qn) — Qn(z,a));
end for
n <+ n+1;
end while

PP W

B Proofs

B.1 Proof of Theorem 3.2 and 3.4

From the definition of the risk-aware RQI algorithm (3.3), it is evident that the risk-aware RV algo-
rithm (3.2) can be considered a special case of RQI by defining V(x) := min,c 4 Q(z, a). Consequently,
if the risk-aware RQI algorithm converges, then it follows that the risk-aware RVI algorithm also con-
verges.
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In order to study the Q-factor iteration, we make use of an augmented risk map ’ﬁ, on the K
outcome space, using

Rua(q) :i=R | minq(-,d
a(9) (glelgq( ,a)

x,a) , Yge L£(K). (B.1)

The risk map R implicitly reduces the average risk-aware control problem to an average risk evaluation
on a cost generating Markov chain. We thus invoke a general Doeblin type condition for average risk
evaluation on a Markov chain as follows, where we see K as the set of states of the Markov chain.

Assumption B.1 (Assumption 3.1, Shen et al. (2013)). There exists a function w : K — [0, +00), a
monetary risk measure & : £L(K) — R, and some constants K > 0, ¥ € (0,1), and & € (0,1) such that:

~ ~ ~ —_ ﬁ# A
(1) Let R¥,(q) := SUP,er(x) 1 Rea(q + ) — Real(p)} and R#, 4(q) := sup, 4o Tf\( 9 We have
that

R# 4 o(0) < Fid(z,0) + K, V(z,a) € K.
(2) For all ¢ > p € L(K), we have that:

inf  {R(q|z,a) — av(q) — R(plz,a) + a(p)} > 0,
(z,a)eK:w0(x,a)<R

for some R > 2K /(1 — 7).
Lemma B.2. If R satisfies Assumption 2.12, then R satisfies Assumption B.1.

Fjroof. For ~the a and v satisfying Assumption 2.12; define w := 0, K = 1, ¥ := 0.5, a := 0.5,
R:=5>2K/(1—4), and monetary risk measure v(q) := v(minge 4 q(-,a)). We have
— R%,(\0 R¥,(0 0 N
R#,.4(0) :supM :supL() =sup~=0<05-0+1=5w(z,a)+ K,
A£0 A A£0 A A#£0 A

where we exploited the fact that:

R¥,(0)= sup {Rua(q) = Raual)} =0, V(z,a) € K.
qeL(K)

Moreover, for all ¢ > p € L(K), we have

min  {R(q|z,a) — air(q) — R(plz,a) + air(p)}
(z,a)eK,0(z,a)<R

= min {ﬁ(q\x, a) —av(q) — ﬁ(p|$, a) +av(p)}

(z,a)EK
— it {Roq(min g, ') — av(ming(,)) ~ Re(uinple. o) + av(uminp(. )
z,a)€ a’ a’ a’ a’
2 0;
where the last inequality follows from Assumption 2.12 using v(-) := mingeaq(-,a’) and v'(:) :=
ming e 4 p(-,a’). The result follows. O

We now list the properties of span-seminorm contractive operators that we will use later on.

Lemma B.3 (Theorem 6.6.2, Puterman (1994)). Let T : £L(Q) — L(f2), for some finite space €2, be an
operator that is span-seminorm contractive, i.e., there exists an & € [0, 1) such that |7 (v) =T (w)||sp <
allv — wl|sp, for all v,w € L(Q). Then the followings are true:

(1) There exists a v* € £() such that |7 (v*) — v*||sp = 0. Such v* is called the span-seminorm
fixed point of the operator 7.

(2) For allm >0, [|[T™(v) — v*||sp < &™||v — v*||sp-
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(3) For any v € L(Q), we have lim,,_, ||7"(v) — v*||sp = 0.
(4) Any two span-fixed points of 7 must differ by a constant.

In our proofs we will exploit the fact that R is non-expansive and span-seminorm contractive.

Lemma B.4. If the risk map R satisfies Assumption 2.12, then both R and # (from Equation (3.3))
are non-expansive under the infinity norm and span-seminorm contractive.

Proof. From Proposition 3.6 in Shen et al. (2013), for any risk map 75,, which satisfies Assumption B.1

based on Lemma B.2, we have |7€x,a(q+p)—7€x7a(p)| < ﬁ#x7a(|q|), where |g|(x) := |q(z)|. Since R#,,
is a coherent risk measure (see Proposition 3.5 in Shen et al. (2013) ), we have for all ¢,p € L(K):

Rz,a(0) = Raa(p)| < R#4a(lg = pl) < R#4a(llg — plloce) = llg = plloo
where the second inequality follows from monotonicity of @m’a, while the last equality comes from

translation invariance and normalization of R#, ,.

The span-seminorm contraction straightforwardly follows from Theorem 3.11 in Shen et al. (2013)
given the fact that R satisfies Assumption B.1 as established in Lemma B.2.

These properties carry directly to H since

1#(a) = H®)llso = IR (") = R(p|) o < llg = plisc,

and
[H(q) = HP)llsp = [IR(ql-) = R(p[)llsp < @llg = pllsp
for some @& € [0,1). This completes the proof. O

We are now ready prove the convergence of the risk-aware RQI algorithm (3.3).

Proof of Theorem 3.4. Define V,(z) := minge 4 Qn(z,a), Vo € X. Take minimum over a on both
sides of (3.3), we obtain

Viga(2) = min{c(z, a) + Rea(Va)} = £(@n) = G(Va)(2) — f(Qn), Yz € X,

where G is the risk-aware Bellman optimality operator. If @, converges to some fixed point Q. of (3.3)
under the infinity norm, we have

min Qoo (7, a) = mlﬁ {C(l’, a) + Ri.a (;?EH-}‘QOO(?G/)> } — f(Qx), Yz eX. (B.2)

acA a€

Notice that mingeq Quo(,a) € L(X), f(Qx) € R and @ satisfies B.2, we conclude that
(mingea Qoo (-, a), f(Qoo)) is a pair of solution to the AROE (2.1). By Theorem 2.13, f(Qx) = g*.
Therefore, We are left with the task to show that @Q,, converges to some unique fixed point @ of (3.3).

To analyze the convergence, consider the augmented risk map defined in (B.1). Then Algo-
rithm (3.3) can be equivalently written as:

Qni1(z,0) = c(z,0) + Raa (Qn) — F(Qn), Y(z,a) € K.

given the translation invariance of R, ,. Its convergence can be associated to the convergence of an
average risk estimator on a Markov chain, with K as the state space, under the risk map R on the
K outcome space, which is studied in Section 3 of Shen et al. (2013). Indeed, given that R satisfies
Assumption B.1, Theorem 3.14 (i) in Shen et al. (2013) already establishes that the Poisson equation,

c(2,0) + Realq) = g + q(z,a), V(z,a) € K, (B.3)
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has a solution (¢*, §*), where g* is unique.

By Lemma B.4, the risk-aware Bellman optimality operator H (see (3.3)), is span-seminorm con-
tractive. This implies, based on Lemma B.3, that H has a span-seminorm fixed point, i.e, there exists
g* € L(K) and §* € R such that ||[H(¢*) — ¢*|lsp = 0 and ¢* + §* = H(¢*). The latter implies that
(¢*, ") satisfies the Poisson equation (B.3) and that lim,_,« [|H"(g) — ¢*||sp = 0, for any ¢ € L(K),
due to the span-seminorm contraction property of H (Lemma B.3).

One can further show that H"*1(q) — H"(q) — §*, for any ¢ € L(K), using

11" (@) = H"(q) = " [l

=wf[H(g"+g+H" (@) —9—) — (" +9+H" (@) —9-¢) 7=

=wf[[H(g"+H (@) g - ¢ )+ -0 —g-H' () +9+¢ — 'l

< f (A" +H" () =9 = 0") = H(@)oe +1H(g7) = ¢" =G lloe +[H"(@) — 9 = ¢"loc}

< mf{IH"(9) =9 = ¢ loo + 14" +5" =" =5 oo + [H"(@) =9 = ¢"[loc}

=2inf [H"(¢) = g — ¢"lloc = [7"(2) = ¢"llsp-
where the second equality comes from translation invariance, the first inequality comes from the
triangular inequality, the second inequality follows from #H being non-expansive (see Lemma B.4), and

finally the last equality is proved as Lemma 3.9 in Shen et al. (2013). Hence, we must have that
limy, 0 [H" 1 (q) = H™(q) = §* [loe < limy, o0 [[H™(q) — q*||sp = 0.

We now wish to analyze the convergence of the process {Q,}52, produced by our algorithm. To
do so, consider the process U, 1 := H(Uy) with Uy := @, for which we know that ||g, — §*||cc — O
as n — oo, where g, = Upy1 — Uy, for n > 0. One can actually establish by induction that
Qn =U, — f(Up—1) for all n > 1. Namely, start at n = 1 where

Q1 =M(Qo) — [(Qo) = H(Uo) — f(Uo) = U1 — f(Uo).
Then iteratively assuming that @, = U, — f(U,—1), one can confirm that:
Qni1=H(Qn) = [(Qn) = H(Un — f(Un-1)) = f(Un = f(Un-1))
=H(Un) = f(Un-1) = f(Un) + f(Un-1) = H(Up) = f(Un) = Unt1 — f(Un).
This relation can be used to establish that
1@nt1 = Qnlloc = [[Unt1 = f(Un) = Un + f(Un-1)lls
= |gn = f(Un) + f(Un-1+ ") = f(Un-1 4+ 3°) + f(Un-1) |l
=lgn =" = f(Un) + f(Un-1+ 57|l
< lgn = % lloo + 1/ (Un) = f(Un—1+ 37 llso
< gn = 3" lloo + LIUn = Un-1 = 5"l
=119 = 5" lloo + Lllgn-1 = 5" lloc-

where the third equality follows from the translation invariance property of f imposed in Assump-
tion 3.3 (i), while the final inequality arises from the Lipschitz property of f in in Assumption 3.3
(ii), with L > 0 as the Lipschitz constant. When n — oo, we have shown that ||§, — §*|jec =
[H™ 1 (Qo) — H™(Qo) — §*||lsc — 0. Therefore we can conclude that @,, converges to some Q. and
f(@Q,) converges to g* as n — oo, i.e., (Qoo, f(Q)) satisfies the Poisson equation (B.3).

Finally, we show that such @) is independent of Q¢ for a fixed f. Since @, - Q as n — oo,
from (3.3), we obtain that

Qoo(2,0) = H(Qoo)(2,0) — [(Qoo), V(z,a) € K. (B.4)
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Notice that f(Qeo) = §* is a constant, this implies that Q. is a span-seminorm fixed point of H.
Suppose @DO is another solution to (B.4). Then by Lemma B.3(iv), Q~ and @oo only differs by a
constant. Yet, we know that §* = f(@oo) = f(Qoo +7) = f(Qw) +r = §* + r, which implies that
r =0 and that Q,, = @oo. We therefore conclude that @), is unique.

From the analysis in the first part, we conclude that h* := minge Qoo(rya) and §* := f(Quo)
identify a solution pair to the AROE (2.1) and thus f(Qw) = g*. O

We now turn to establishing Theorem 3.2.

I?roof of Theorem 3.2. Let~f : L(X) — R be a function satisfying Assu{nption 3.1. Define a function
f: LK) = Ras f(Qn) := f(minge 4 Qn(-,a)). It is easy to verify that f satisfies Assumption 3.3.

Consider the risk-aware RQI (3.3) with function f starting with Qg. Define V,, () := minge 4 Qn(x, a),
for all x € X. Take minimum over a on both sides of (3.3), we obtain
Vat(2) = min{e(z, @) + Ro,a(Va)} - F(Qn) = G(Va)(2) - f(@Qn)
=G(Vo) (@) — f(Va), VzeX,
where G is the risk-aware Bellman optimality operator defined in (3.2). This is exactly the risk-aware

RVI algorithm with initial value function Vp(2z) = minge 4 Qo(z, a), for all z € X.

By Theorem 3.4, the RQI algorithm converges, i.e., Q,, converges to some unique fixed point of (3.3)
called Q*. Hence, V,, converges to some V* := minge 4 Q*(-,a). Since we can always design a Qy such
that minge4 Qo(z,a) = Vy(x) for any Vo € L(X). We conclude that for any initial value Vj, the
risk-aware RVI algorithm (3.2) converges to some V*.

Using the same reasoning as in Lemma B.4, we can conclude that the risk-aware Bellman optimality
operator G is non-expansive under the infinity norm and contractive with respect to the span-seminorm.
Based on Assumption 3.1 and the preceding derivation, taking the limit on both sides of (3.2) yields

the equation V*(z) = G(V*)(x) — f(V*) for all € X. This implies that (V*, f(V*)) identifies a pair
of solution to the AROE (2.1), leading to f(V*) = ¢g* and V* serves as a fixed point of (3.2). The
uniqueness of V* follows from the same argument used to establish the uniqueness of @Q* in the proof
of Theorem 3.4. This completes the proof. O

B.2 Proof of Theorem 4.5

In this section, we use the ODE analysis of stochastic approximation to prove the convergence of the
risk-aware RVI Q-learning algorithm.

Define an operator H : L(K) — L(K) as

H(q)(x,a) := Raa (c(w,a) + gleigq(wa’)) — fla) —a(z,a), Vqe L(K).
Then the update of the risk-aware RVI Q-learning can be written as

Qni1 = Qn +v(n)(H(Qn) — £(Qn) — Qn)

Hence we have the stochastic approximation iteration:

Qn+1 = Qn + ’V(n) (H(Qn) + Mn+1)= (BB)

where M1 = H(Q,) — H(Q,) is the noise term.
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The classical approach to analyzing stochastic approximation using ODEs involves examining the
stability of the equilibrium of a corresponding ODE related to (B.5):

pr = H(py). (B.6)

If the ODE (B.6) has a unique globally asymptotically stable equilibrium point p*, then under certain
conditions, the stochastic approximation (B.5) converges, with @, — Q* = p* almost surely (see
Theorem 2.2 of Borkar and Meyn (2000)). Notice that if such p* exists, then Q* is a solution to the
AROE (3.4), which implies that (ming/c.4 p* (-, a’), f(p*)) is a pair of solution to the AROE (2.1). Then
the result of Theorem 4.5 follows easily.

Analyzing the stability of the equilibrium point of ODE (B.6) can sometimes be challenging. A
common approach is to employ a time-averaging technique to smooth out perturbations and examine
the stability of the origin in the limiting ODE. Namely, we define an operator H; : L(K) — L(K) as
Hy(Q) := 1H(sQ), with s > 1 and consider the ODE:

b = Hy(¢y). (B.7)

Following Borkar and Meyn (2000), to establish the convergence of the stochastic approxima-
tion (B.5), we outline the sufficient conditions that are needed to be verified:

(i) The function H is Lipschitz.
(ii) The sequence {M,, F,, : n > 1} with F,, := o(Q;, M;,i < n) is a martingale difference sequence.
Moreover, there exists some Cy < oo and for any initial condition Qo € L(K) we have almost

surely,

(iii) The step size satisfies the Robbins-Monro condition (see Assumption 4.4).

(iv) For any initial condition Q¢ € £L(K), the iteration is bounded almost surely, i.e., sup,, |Qn|loo <
00, almost surely.

(v) The ODE (B.6) has a unique globally asymptotically stable equilibrium point.

(vi) The limit Hoo(Q) := lims— 00 Hs(Q) exists and the convergence is uniform on compact sets, and
the ODE

S = Hoo(0), (B.8)
has the origin as an asymptotically stable equilibrium.
Following Theorem 2.2 of Borkar and Meyn (2000), if conditions (i), (ii), (iii), (iv) and (v) hold, then

the stochastic approximation (B.5) converges almost surely to the unique globally stable equilibrium
point of the ODE (B.6), which is a solution to the AROE (3.4), thus confirming our theorem.

The Lipschitz property (i) is straightforward to verify, as the risk measure R, , and the function f
are both Lipschitz (see Lemma B.4 and Assumption 3.3). As stated in Theorem 2.1 of Borkar and
Meyn (2000), the almost sure boundedness condition (iv) follows from conditions (i), (vi), (ii) and (iii),
where condition (iii) is automatically satisfied by Assumption 4.4. Thus, the remainder of this section
focuses on verifying conditions (i), (ii), (v) and (vi).

B.2.1 Condition (i)

Lemma B.5. H, H, and H,,, if it exists, are Lipschitz and have the same Lipschitz constant.

Proof. Following Lemma B.4, R is non-expansive. Hence, for any Q1,Q2 € L(K), with Assump-
tion 3.3, we have

H(Q1)(w,a) — H(Q2)(%,a) = Ru,a(Q1) — Rua(@Q2) — f(Q1) + f(Q2) — Q1(z,a) — Qa(z, )
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< Q1 — Qallo + LIQ1 — Q2o + Q1 — Q2
=2+ 0)|Q1 — Q2| ,

where L is the Lipschitz constant for f. Similarly, we obtain H(Q2)(z,a)—H(Q1)(z,a) < (24 L))Q2—
Q1]|0o- Hence H is Lipschitz with Lipschitz constant 2 + L.

Meanwhile,

Hy(Q1)(z,a) — Hs(Q2)(z,a) zé (Rx,a (c(:z:, a) + ;I’lelr}l Q1 (z, a)) —Rza (c(a:, a) + (31611}‘ Q2 (x, a))

~ F(5Q1) + f(5Q2) — Q1 (,0) + 5Q2(w,0))

< (51Q1 ~ @alloe + 51Q1 ~ Qalloe + 51Q1 — Qallc)

=2+ L)[|Q1 — Q2o

Similarly, we obtain H,(Q2)(x,a) — Hy(Q1)(x,a) < (2+ L)||Q2 — Q1]|ec. Hence H, is Lipschitz with

Lipschitz constant 2 + L. Similarly, if Heo(Q) = limse0 Hs(Q) exists, Hoo is also Lipschitz with
Lipschitz constant 2 4+ L. O

B.2.2 Condition (ii)

We check that M, is a martingale difference sequence that satisfies (ii).

Lemma B.6. Under Assumption 4.1, for all n = 0,1, ..., we have E[M,1|F,] = 0 almost surely and
there exists some Cy < 0o such that for any initial condition Q¢ € L(K) we have

E[|Mps1l31Fn] < Co(l +11Qnl%), n>0, as.

Proof. By Assumption 4.1, it is easy to see that
E[H(Qn)|Fn] = H(Qn), as, Var[H(Qn)(z,a)|Fa] < C(1+ |Qnll%), Y(z,a) € K, as.,
for some constant C' > 0. Then by definition,
E[M,11|F,] = B[H(Qn) = H(Qn)|Fn] = E[H(Qn)|Fn] = H(Qn) =0, as.

Meanwhile, for any (z,a) € K, from the definition of variance, we have for all (z,a) € K that almost
surely

E[(Mp41(x,))*|Fo] = E[(H(Qn)(z, a) — H(Qu)(w, )| Fn)

= E[(H(Qu) (2, a) — E[H(Qn)(x,a)|Fu])*|Fu]
= Var[H(Q) (2, a)| Fo]

< CA+1Qul5)-

This implies that
E[|Mat1[31Fa] < [KICQ+ [Qnll),  as.

From the Ljy-norm inequality, we have
E[|| My 1[561Fn) < Bl Mg [31F] < IKIC(L+1Qnll%) =: Co1 + [|Qull%),  ass.,

for some constant Cy < co. This completes the proof. O
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B.2.3 Condition (v)

In this subsection, we always assume Assumption 3.3 holds for all the lemmas. To prove (v), we need to
analyze the stability of the equilibrium of ODE (B.6), which is quite difficult as there exists nonlinear
terms R, , and f. Following Abounadi et al. (2001), we also analyze the behavior of an ODE where
we replace f(Q) with a constant g*: }

¢ = H(q), (B.9)
where H(q) := H(q) — g* — q, Vq € L(K). Clearly, the fixed point ¢* of ODE (B.9), together with
g*, is a solution to the AROE (3.4). Hence, under Assumption 2.12, the set of fixed point of (B.9)
is not empty and by lemmas B.3 and B.4, the fixed points differ by a constant. We conclude on the
characteristic of the set of the equilibrium points of ODE (B.9) using the following lemma.

Lemma B.7. The set G of equilibrium of ODE (B.9) satisfies G = {q: ¢ = ¢* + r,r € R}, where ¢* is
the only solution to the AROE (3.4) that satisfies f(g*) = ¢*.

Proof. It is evident that any solution ¢* to the AROE (3.4) satisfies 0 = H(¢*), indicating that ¢*
is an equilibrium point for the ODE (B.9). According to Theorem 2.13, under Assumption 2.12, the
set of equilibrium points is non-empty. Similarly, for any equilibrium point § € G, we have 0 = H(§),
which satisfies the AROE (3.4), implying that ¢ is a solution to the AROE (3.4), i.e., a span-seminorm
fixed point of H. By Lemma B.3, each fixed point differs only by a constant. Therefore, we conclude
that G = {q:q¢= ¢+ r,r € R} for some equilibrium point q.

Now suppose f(q) = m for some constant m. Then by Assumption 3.3, f(¢+g*—m) = f(§)+g* —

m = ¢g*. Hence, we can always find a ¢* := ¢+ ¢g* — m satisfying f(g*) = g*. By definition, ¢* € G,
therefore is a solution to the AROE (3.4). O

For notation simplicity, define

Then for the two ODEs (B.6) and (B.9), we have

Dt = H(pt) = ﬁ(]?t) —Dt; Gt = ﬁ(%) = 7:[(%) — Gt

Since H is non-expansive (see Lemma B.4), # is also non-expansive. From Theorem 3.1 of Borkar
and Soumyanatha (1997) (also see Lemma 3.1 of Abounadi et al. (2001)), the ODE (B.9) has a unique
trajectory that may depend on the initial point gy and converges to some equilibrium point ¢*. We
conclude as the following lemma.

Lemma B.8. Let ¢; be a solution of ODE (B.9). Then ¢; — ¢* as t — oo for some equilibrium point
q* of (B.9) that may depend on Qo. Moreover, ¢* = ¢ + 7 for some 7 € R, where ¢* is defined in
Lemma B.7.

Proof. The convergence result follows from Abounadi et al. (2001) Lemma 3.1. Then the result follows
by applying Lemma B.7. O

Following the property of f, we can show that the equilibrium point of ODE (B.6) is unique and
is also included in the set of equilibrium points of ODE (B.9).

Lemma B.9. The point §* is the unique equilibrium point of ODE (B.6).

Proof. Based on Lemma B.7, since f(7*) = g*, we have H(7*) = H(§*) = ¢*, which means that §* is
an equilibrium point for (B.6). Conversely, if there exists some p such that Hp = p, by definition, the
solution of the above equation satisfies the AROE (3.4). By Theorem 3.4, f(p) = g*. Therefore, we
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have p = H(p) = H(p), which means p is also an equilibrium for (B.9). By Lemma B.7, p = g* + 7 for
some 7 € R. Then we have g* = f(p) = f(g* +r) = ¢g* + r. This implies that » = 0. Therefore, §* is
a unique equilibrium point for ODE (B.6). O

The next result shows that the trajectory of ODE (B.6) and ODE (B.9) differs only by a constant
function.

Lemma B.10. Let p; and ¢; be the solutions to the ODEs (B.6) and (B.9), with the same initial value
po(z,a) = qo(x,a) = Qo(x,a). Then we have

pe(z,a) = q(x,a) + 1, V(z,a) € K,
where r; is a scalar function satisfying

7o =—Te + 9" — flq).

Proof. Notice that #(Q) = H(Q) + (¢* — f(Q)). Then from the variation of constants formula, we
have that

¢ ¢
pi(r,a) = qo(w,a)e™" +/ e_(t_s)’}:[(ps(m7a))ds +/ e_(t_s)(g* — f(ps)ds,
0 0

t
@z, a) = qo(x,a)e™t + / e~ N (qs (2, a))ds.
0

The maximal and minimal components of p; — ¢; can be bounded by

t
max {p:(x,a) — q¢(z,a)} S/ e~ (=% max {ﬂ(ps)(x,a) — ’;’:L(qs)(x,a)}ds
(z,a)EK 0 (z,a)e

i /olt e~ (g" — f(ps))ds,

¢
min {p(z,a) — q(z,a)} 2/ e %) min {H(ps)(z,a) — H(gs)(x,a)}ds
(z,a)EX 0 (z,a)eX

+/0 e_(t_s)(g* — f(ps))ds.

Hence, we have
t ~ ~
Ipe — gillsp < /0 e[ H(ps) — Higs) | spds

t
S/ ™| Ips — gslspds.
0

The inequality is from the fact that H is span-seminorm contractive (see Lemma B.4). By the Gronwall
inequality, we have ||p; — q¢||sp = 0. This implies that there exists some scalar function r; such that
pi(x,a) = q(x,a) +r(t) for all (z,a) € K, with r(0) = 0.

Since H(py) = Hlqr +1¢) = H(q:) +r. and f(p;) = f(q + ) = f(q:) + 7. Then the differential
of ry is

re=p— G =Hp) + 9" — f(pe) —pe — Hiae) +qe = (=re + 9" — faq))e.

This completes the proof. O

The following lemma shows that ¢* is the unique globally asymptotically stable equilibrium point
of ODE (B.6).
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Lemma B.11. ¢* is the unique globally asymptotically stable equilibrium point of ODE (B.6).

Proof. From Lemma B.10, by the variation of constant formula, we have r, = fg e~ =9 (g* — f(qy))ds.
By Lemma B.8, we have ¢ — ¢* € G. Then we have r; — g* — f(q*) so that p; — ¢* + (¢* — f(¢%)),
which must coincide with ¢* since by Lemma B.9, it is the only equilibrium point of ODE (B.6). Next
we show the Lyapunov stability of ¢*. Notice that

1Pt = q"lloo < llgr = @ lloo + |74

t
< llao — *llos + / e~ =9|g* — f(gu)|ds
0

< llpo — @'llos + / e F(@) — flgs)lds

< (L4 L1 =e™))po = 7" loo-

€
1+L(1—e—t)
to guarantee that ||[p; — ¢*||co < €. The Lyapunov stability holds, completing the proof. O

Hence for any fixed ¢ > 0 and any € > 0, we can always make ||pg — ¢*||co < 0 where § <

B.2.4 Condition (vi)

We now look at condition (vi).

Lemma B.12. Under Assumptions 2.12 and 4.2 on R, the risk map R also satisfies Assumption 2.12.

Proof. Following Assumption 2.12, there exists a coherent risk measure v and @ € (0, 1) such that for
any v > v’ € L(X), we have

( m%n’C{R(ﬂx,a) —av(v) — RV |z, a) + av(v')} > 0.

x,a)c

Substituting v and v" with sv and sv’ respectively, where s > 0, and then dividing both sides by s, we
obtain

1
— min {R(sv|z,a) — av(sv) — R(sv'|z,a) + av(sv')} > 0.
S (xz,a)eX

Since v is coherent and by Assumption 4.2, lim,_, . %’Rw,a(sv) = R, (v), taking the limit, we obtain

1 1
0 < lim min {R(svx,a) —av(v) — E’R(sv’|x, a) + oa/(v')}

5—=00 (z,a)e (S
= min {R¥,(v) —av(v) — Ry, (V') + av(v')}.
(z,a)eK ’ ’
This implies that R satisfies Assumption 2.12 with coherent risk measure v and @ € (0,1). O

Lemma B.13. Under Assumptions 2.12, 3.3, 4.2 and 4.3, the limit Ho.(q) := lims_,o Hs(q) exists for
all Q € L(K), and convergence is uniform on any compact sets. Furthermore, the ODE (B.8) has the
origin as a unique globally asymptotically stable equilibrium.

Proof. Under Assumption 4.3, we have

H@),0) = { R () + minsale) ) = 1(50) = sa(o.0)

S

clwa) %RM (s min q(-, a’)) - f(q9) — q(z,a).

S a’eA
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Hence, by Assumption 4.2:

5— 00

Hola),) = T Hula)o,) = R, (min o)) = ) ot )

Since RS°, exists and the convergence is uniform on all compact subsets of £(X), the first part follows.

Clearly, the origin is an equilibrium point of the ODE (B.8). Following Lemma B.12, RS, satisfies

Assumption 2.12; then by Lemma B.11, the origin is also the globally asymptotically stable equilibrium
for ODE (B.8). Hence condition (vi) holds. O

B.2.5 Convergence of RVI Q-learning

We are now ready to prove Theorem 4.5.

Proof of Theorem 4.5. The almost sure boundedness condition (iv) is derived from Theorem 2.1 of
Borkar and Meyn (2000), which necessitates verifying conditions (i), (vi), (ii) and (iii). These conditions
are confirmed using Lemmas B.5, B.6, B.13, and Assumption 4.4. The convergence and optimality
of the stochastic approximation then follow from Theorem 2.2 of Borkar and Meyn (2000), where
conditions (i), (ii), (iii), and (v) are validated through Lemmas B.5, B.6, B.11, and Assumption 4.4.

Regarding the almost sure convergence of 7w, — 7%, one can first observe that Q* : K — C C R, for
some discrete set C with |C| < |K|. Letting

€= min *(z,a) — Q*(2',a")| > 0,
($7a)7($/7a/)€’C:Q*(JC,a)#Q*(x',a')|Q ( ) @ ( )|

the almost sure convergence of @, — Q" implies that there is a probability one set of trajectories Q,
with each trajectory {Q,} € Q having the property that there exists an N > 0 such that ||Q, —Q*||ec <
€/2 for all n > N. This implies that for any n > N,

Q*(r,a) > Q*(2',d") = Qn(x,a) > Qn(2',d’), V(x,a),(z',d') € K.
We can therefore conclude that for all x € X and for all n > N, we have

argmin Q,,(z,a) C argmin Q*(z,a), Vo€ X.
acA acA

Thus the policy 7, converges to some 7* for all {Q,} € Q almost surely. O

B.3 Proof of Theorem 4.7

For notation simplicity, we write (4.2) as

NN g An(q)
H(q) - HPII\7+1 q) + PN 9
where )
AN(@) = Hpy,, (@) = 5 (Hpe (@ +Hpg (@), VaeLK).

To prove Theorem 4.7, we invoke the concentration results under the 1-Wasserstein distance from
Fournier and Guillin (2015). The 1-Wasserstein distance between two probability measures p and v
on R is defined as

dw (p,v) == weg}i V)/Iw — yly(dz, dy),

where U(u,v) is the set of all joint probability distributions ¢ (z,y) with marginals u and v.
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Lemma B.14 (Concentration inequalities). Given any v € £L(X) and ap € Z(X), let p* be the empirical

distribution from k realizations {z}, 5, ..., 2} } drawn i.i.d. from p. Then,
E |dw (Z P @)y D ﬁ(x')%(m')ﬂ < €4Jo]|ock /2
L z’'eX z’'eX
and

z'eX z'eX

B 2
E |dw (Z P (@) D ﬁ(w')5u(m/)> < Colfo]2 kY,

for some constant €;, &, > 0 independent of v, p, k and d,(,) is the Dirac measure of v(x).

Proof. To simplify notations, we use p(-) to denote p¥(-). The first bound follows from Theorem 1 of
Fournier and Guillin (2015). Namely, there exists a €; > 0 such that:

1/2
dw (Z D)oy Y p(x’)dvuf))] < 2¢; (Z v(w’)%(x’)) [k

z'eX r'eX r'eX
< 28 |Jv]| ook /2.

E

By Lemma 5 and Proposition 10 in Fournier and Guillin (2015), we have that for all w € £(X)
with ||w||o < 1, there exists constants €3, €3 > 0 such that for all A > 0:

P (dW (Z ﬁ(x')éw(z/), Z p($l)6w(r/)> 2 )\) S 6:2 exp(—égk)\z)7

z'eX z'eX

given the fact that p is a distribution on a finite set. We can thus derive that:

2
E dW (Z ﬁ(x/)(sv(w’)a Z [7(1'/)51}(1;/)>

' eEX ' eX

2
<E 4”””2ch (Z ﬁ(zl)gw(w’)v Z Z_)(x,)aw(x’))

' eX ' eX

2

' eEX T’ eEX
4] 2.,

o0
§4H’U||C2>O/ €y exp(—C3kN\)d\ = VI
0 3

where w := (1/2)v/||v]|o i such that |Jw||e < 1/2 < 1. O

Proof of Theorem 4.7. Assumption 4.6 implies that R, , is law invariant, so that

R%a(v) =0 (Z P(x/|xva’)5v(:v’)> )

' eX

with 0. q as the distribution-based risk measure associated to R 4. Let 7%];:@ capture the empirical risk
map that employs the same distribution-based risk measure g, of Ry, buton . » B, (2'[2, a)0y(ar)

instead of »__, ., P(2'|z,a)d, (), where P, stands for the empirical distribution using 2¥ number of
samples. We start by establishing two important properties of how H s, (¢) differs from #(q).
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The first property consists of a bound on the expected absolute difference between Hp (¢) and
H(q), where the expectation is taken with respect to the sampling process. Namely, for all ¢ € L(K),

E 1%, (@)(x.a) = H(@)(x.q)
— & |[RE (el + mga) ) = R (clo.0) + mayatoa)) |

<E |Ldw <Z Pk(m’\a:,a)év(zl), Z P(x’|x,a)5v(z/)>]

r'eX z'eX
< £&yle(z,a) + I%lgﬁQ(wa')llooTk/Z < £81(20 + [lgll0)27*/2,

where v(2') := ¢(x, a) + maxg e Q(a',a"). The first inequality follows from Assumption 4.6, and the
second one is from Lemma B.14.

Following a similar procedure, we have the second one, which bounds the expected square difference:

E [(Hpk (a) (. ) ~ H(q) (z aﬂ

a’€A a’€eA

—E [(fziz,aw(x,a) £ ()~ Raa el ) + gl ) ]

2
< E SQdW (Z Pk(x'|x,a)6v(x/), Z P($/|$,CL)5U(I/)>

z'eX r'eX

< £2C|e(x, a) + maxg( )27 < €20 + [lgllo0)2 7",

where the second inequality is from Lemma B.14.

We are now ready to show that E[H(q)] = H(q), for all ¢ € L(K), which goes as

N+1

B =8 |1y, (@) + 220
= E[Hp}m(q)] + ZIP’(N =k)E [A’“@\N = k]
k=0

Pk

= E[Hpi (0)] + Y E[Ax(q)]
k=0

~ Bl () + 3 OF [%pm ()~ 5 (Hpp (0) + Hpg, <q>)]
k=0

— Bl @]+ Y (Bl @) - 5 (B, (0] + Eligy (@) )
k=0

= E[Mpy (0)] + Y (ElHp,., (@) — ElHpr ()
k=0

= lim E[Hp, ()] = H(a),

where the limit is known to exist and identified as H(q) since for all (x,a) € K we have
E[H p, (9)(x, a)] = H(q)(z,a)| <E[[Hp, (¢)(x,a) = H(g)(z,a)]]
< £¢,(2C + [lgllc)272,

thus implying that [[E[H 5 (¢)] — H(q)[cc — 0 as k — oc.
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We turn to bounding Var[#(q)(z, a)]. Since for all (z,a) € K, we have
Var[H(q)(x, a)] = E[(H(q) (2, ))*] = (E[H(q)(z, a)))* = E[(H(9)(z,a))’] = (H(q)(z, a))?,
and it is known that |(H(9)?]|oo < (2C+]1glls0)? < 8C?+2||q||%,- The remaining question is to bound
E[(H(q)(w,a))?].
We first give a bound on E[(Ax(q)(z,a))?]. Notice that

Bl = B | (Hp,, @(o0) = (Hpp, (@)o0) + legrl(Q)(%a)))Q]

2 k41

=F ((’pr (). @) ~ Hlg)(x, ) ~ 3 (Hpe (@)(,0) + Hpo_ ()) — 2H(a)r, a))) ]

<ER(Hp,,, (9)(x,a) = H(qg)(z,a))* + +(Hpe (@)(w,0) = H(Qn)(z,a))?
+(Hpo (9)(z;a) — H(q)(x,a))’]

=2E[(Hp, ., (9)(z,a) — H(q)(x,a))*] + 2E[(H p, (q)(z, a) H(q)(x,a))?]

< 28285(20 + [|qlloe)?27F 71 + 2228520 + ||q]|00)?2

=3822¢5(2C + ||q]|ls0)?27F

Now we are ready to derive the bound for E[((q)(z, a))?], for any fixed (z,a) € K. Namely, from

definition, we have
(AN<q><x,a>)2
PN

ki)pm (AN(ZL(:E,@)Y v = kH

E[Ak (Q) (ZE, a)Q]

E[(H(q)(z,))’] < 2E[(Hp,y  (q)(w,a))’] + 2E

N+1

=2(2C + ||gl|o0)? + 2E

:r"—‘

= 2(26 + ||Qn||oo)2 + 22
k:()p

_ < 1 _
2(2C + [lglloc)® + 2> ;322@22(20 + [lglloo)?27*
k
k=0

=2(2C + |lglloc)® +6£°€2(2C + [lgllc)r 1 D (2(1 = 1) 7"
k=0

=2(20 + llglloe)? + 6£7€2(2C + [lgllo)*r (1 = (2(1 = 7)) 7))~
= (2+687Cr (1 - (201 =) 7)™ )(2C + llgll)?
< (246877 (1 - (21— ) 7H)THEC* + 2]ql%),
where to ensure > po,2(1 — r)~* is finite, we require r € (0,1/2). This implies that there exists a
(

)-
uniform bound C' > 0 such that Var[H(q)] = E[(H(q)(z,a))?] — (H(q)(z,a))?> < C(1 + ||q||%). This
completes the proof. O

B.4 Proof of Theorem 4.10

We impose the following general assumption on the convexity of the loss function £.

Assumption B.15 (Convexity). The loss function ¢(x) is either convex or concave on z > 0 and either
convex or concave on z < 0.

We prove Theorem 4.10 by proving Lemmas B.16, B.21 and B.22.
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Lemma B.16. A risk map R that employs a UBSR measure satisfies Assumptions 2.12, 4.2 and 4.6,
if the Markov chain satisfies Assumption 4.8 and the loss function satisfies Assumptions 4.9 and B.15.

The following property of UBSR is useful as it establishes a connection between the UBSR measure
and the expected utility.

Lemma B.17 (Proposition 4.113, Follmer and Schied (2016)). Given some random variable v and some
m* € R, the following statements are equivalent: (i) SR(v) = m*; (ii) E[¢(v — m*)] = 0.
Lemma B.18. Under Assumptions 4.8, 4.9, the UBSR satisfies Assumption 2.12.

Proof. By Assumption 4.8, there exists a state € X such that P(Z|z,a) > 0 for all (z,a) € K.
Let v(v) := v(Z), which trivially satisfies #(0) = 0 and is coherent. Meanwhile, choose 0 < @ <
%min(z,a)é)c P(i’l(ﬁﬂl) € (07 1)

Given any v > v’ € L(&X), Lemma B.17 implies that ) 1 P(y|z,a)l(v(y) — SRy ,q(v)) = 0, and

similarly for v'. We therefore have

0=">" P(ylz,a) (£(v(y) — SRu,a(v)) = £(v/(y) = SRy a(v)))

yekX

= > Pylz,a)d(v, v, 2, a,9)((v(y) = SRa,a(v)) = (v/(y) = SRy a(v))),

yeX

for some 6(v,v’, x,a,y) € [e1, L1] due to Assumption 4.9. Hence,

(SR (v) — SRm,a(U/)) Z P(ylz,a)d(v,v',z,a,y)

yeX
= Z P(y|ac,a)(5(v,v',x,a, y)(?](y) - vl(y)>
yeX
Therefore, we have
P(y|z,a)d(z, a,y)(v(y) — v’
e 5 yex Pl )iz, 0,)(0(y) - (1)
SeL(CxX):6(x,a,y)€Eler,L1], > yex Plz,a)d(z,a,y)
(z,a,y)ELXX :

> 72 Plylwa)(vly) —v/(v),

yeX

given that v > v’. Hence, we have for all (z,a) € K,

SRy,0(v) — av(v) — SRy o (V") + av(v')

2 %11 Z P(y|x7a)(v(y) — ’U/(y))) —Q (1/(,1)) _ V(U/))
yeX
yeX

> (5 min Plea)(e@ - V(@) ) - a (o) - v @)

Ll (z,a)EX

= (61 min P(Z|r,a) — d) (v(z) — o' (7)) > 0.

Ly (z,0)ex
This proves Assumption 2.12. O
Lemma B.19. For any loss function ¢ : R — R with ¢(0) = 0 satisfying Assumptions 4.9 and B.15,

define £,(z) := 14(sx). We have {;(z) — s () uniformly on compact sets as s — oo, for some o ()
that satisfies Assumptions 4.9 and B.15.



Les Cahiers du GERAD G-2025-37 26

Proof. By Assumption 4.9, ¢(x) is strictly increasing. We consider the case where £(z) is convex. In
this setting, the right derivative is non-decreasing and bounded above hence the monotone convergence
theorem implies that ¢/, (z) — L < L; as & — oo, and similarly the left derivative ¢/ (z) — L > € as
xr — —00, where we slightly abuse the notation and use ¢/ (x) and ¢’_(x) to denote the left and right
derivative of £ at . Without loss of generality, we assume that L = L; and L = €;. Define { () :=
Lz for # > 0 and £ () := €12 for # < 0. Remember that £,(z) := 1¢(sz). We start by demonstrating
that limg_, oo €5(2) = foo(x) pointwise and will follow with confirming uniform convergence on all
compact sets using Ascoli-Arzela theorem.

Clearly, lims_, o0 £5(0) = 0 = £ (0). Now consider the case of some Z > 0. Based on Assumption 4.9,
for all s > 0, we must have (1/5)¢(sZ) < (1/s)L1(sZ—0) = L1Z. Hence we have limg_, o0 £5(Z) < [1Z =
L (Z). On the other hand, by convexity of £(x) over z > 0, for any £ > 0, one can identify some & > 0
such that L, —e/(2z) € [¢'_(z), ¢, ()] and therefore for all > 0, £(x) > £(Z) + (L1 —¢/(22))(z — Z).
Thus we must have that

L0(s7) > L(0@) + (L1 — </ (20) (57 ~ 2)
= L(U&) + Lasi — L — (c/(22)53 + (/(22))2)
= L3~ (¢/(22)7 + ~ (6) — (I — (=/(22)2)
> Lli' - &

as long as s > 2|4(2) — (L1 — (¢/(2%)))&|/e. Hence lims_,o0 £5(Z) > Loo(Z). Combine the two results,
we conclude that limg_, o £5(2) = Lo (z) pointwise for x > 0.

The case where Z < 0 is treated similarly. Namely, letting g(x) := —¢(—=z), we wish to show
that lims_,00(1/8)g(sZ) = €1z for all T > 0, with g(x) a concave function such that ¢; < (g(y) —
g(x))/(y—x) < Ly and ¢, (x) = —'_(—x) — €1 as © — oo. We can start with a lower bound argument
(1/8)g(sz) > (1/s)e1(sT —0) = e1@. The upper bound is a consequence of the concavity of g, implying
the existence of some & > 0 such that €; + (¢/(2%)) belongs to the interval [¢' (), ¢/, (Z)], where ¢ (x)
and ¢/, (x) denote the left and right derivatives of g at x, respectively. This observation leads to the
subsequent argument:

Sg(s7) < (@) + (e1 + </ (22) (57 — )
= 7+ (¢/(22)7 + (@) — (@ + (e/(20)2)
§ €1If + g,

for large enough s. This let us conclude that for z < 0 it must hold that lim,_,.(1/s)¢(sx) =
limgs 00 —(1/8)g(—s2) = €12

Concerning the uniform convergence on compacts set, we first observe that fs(z) is uniformly
bounded on compact sets. Specifically, for = € [z, 2], we have |((z)| = |1l(sz)| < 1Li(s|z]) <
Ly max{|z,|, |zs|} < co. Moreover, by Assumption 4.9, both ¢ and ¢, are Lipschitz, ensuring equicon-
tinuity. Given the equicontinuity and uniform boundedness of ¢(x) on compact sets, along with
pointwise convergence, the Ascoli-Arzela theorem guarantees that £4(2) — loo(z) uniformly on com-
pact sets. To see this, the Ascoli-Arzela theorem provides subsequential convergence £, — / uniformly
for some function ¢, where s; 1 0o is a subsequence index. Since we also have pointwise convergence
Uy — U, it follows that £ = £, implying uniform convergence of ¢,, to .. Repeating this argument,
we show that every subsequence {/,,} of {¢,} has a further subsequence that uniformly converges to
{~. By the subsequence principle, we conclude that £ converges to {5, uniformly on compact sets.

The cases where £(x) is concave or combines convex (or concave) on x > 0 and concave (or convex)
on z < 0 are derived using a similar approach. Therefore, we conclude that under Assumptions 4.9
and B.15, {5 converges to £ uniformly on compact sets. O
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Lemma B.20. Under Assumptions 4.9, B.15, the UBSR risk map satisfies Assumption 4.2.
Proof. We start with establishing that for all (z,a) € K, all v € £(X), and for all s > 0, we have

§SR§,Q(S = 1nf{t Em[e(sv—t)] <0}

= 1nf{t z.all(sv — st')] <0}
—inf{t <1/s>Em (5o — )] < 0}
=inf{t' : E, o[¢s(v —t")] <0}

= SRf;,a(v),

where £5(y) := (1/s)¢(sy). Showing that the UBSR risk map is asymptotically coherent therefore
reduces to showing that SRifa(v) converges uniformly to SRif‘;‘l(v) on compact sets.

We start with pointwise convergence of SRﬁfa(v) to SRﬁ*’j‘a(v) after recalling that by Lemma B.17,
Eyolls(v— SRﬁfa(v))] =0, E;q[leo(v— SRﬁfZ(v))] =0, veLX),(za)ek.

Specifically, given any v € L(X), we can define the compact set V := [—=2||7||c0, 2||7||oc]. The uniform
convergence of ¢4 to £, on compact sets (see Lemma B.19) implies that for any arbitrarily small £ > 0,
there exists a sufficiently large § such that we have [ (y) — ¢5(y)| < eeq, for all y € V. Given that
|SR§°§1(17)| < ||9||oo for all (z,a) € K, denoting £(y) := oo (y) — £5(y), we have

0 =By alloe (v = SRE%(0)] = > P(a'|a,a)[ls(0(a’) — SRi%,(0) + £(0(2') — SRi%, ()]
x'eX
< Y P(|a,a)[ts(v(2') — SRI%,(0)) + ee1]
' eX
< Y Pz, a)[ls(v(z') — SRi% (0) + )]
z'eX

= E, q[ls(v — SRES (0) +€))),

where the last inequality comes from the fact that (5(z+¢) —l5(x) = L (((sz + se) — {(sz)) > Leyse =
e1€ due to Assumption 4.9. Similarly, we have

0 =E,q[loo(v — SRES(0))] > By alts(0 — SRES (D) — 2)].
This implies that
Eyo[ls(0 — SRES () — €)] < 0 < Eq o [6s(0 — SREX(0) + €))).
By the monotonicity of £5 and Lemma B.17, we conclude that
SRS, (0) € [SRi,(0) — &, SRE (D) + €]

This implies that SRﬁja(v) — SRfjj;(v) as s — 0o. Using the same argument as in Lemma B.19, the
convergence is also uniform on compact sets.

Therefore, we conclude that the UBSR is asymptotically coherent, i.e. Assumption 4.2 holds. [
Proof of Lemma B.16. The result follows by directly applying Lemma B.18, B.20 and Lemma 15 of
Prashanth and Bhat (2022). O

Lemma B.21. A risk map R that employs an OCE risk measure satisfies Assumptions 2.12 and 4.2, 4.6,
if the Markov chain satisfies Assumption 4.8 and the loss function satisfies Assumptions 4.9 and B.15.
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Proof. To prove Assumption 2.12 notice that for any v > v’ € L(X), we have
OCE, (v) — OCE, ,(v") = gnﬂg{g +Eyall(v—1)]}— tin%{t’ + By o[l(v" —t)]}
€ e
. _ _ !/ _
Inf{E,qo[f(v —t) — (" = 1)]}
Z P(y|1}7 a)5(v, fU/v t, y)('l}(y) - U/(y))
yex

> e ) Plyle,a)(v(y) —'(y)),

yeX

v

for some 6(v,v’,t,y) € [e1,L1] whose existence is guaranteed by Assumption 4.9. We choose the
coherent risk measure v(v) := v(z) and 0 < @ < €; min(, 4ex P(Z]z,a) € (0,1), since e; < £ (0) <1
from the definition of OCE. By Assumption 4.9, for any (z,a) € K, we have that for all (x,a) € K,

OCE, o (v) — av(v) — OCE, o (v') + av(v')
> ey Plylz,a)(v(y) — o' (y) — a(v(@) - /()

yeEX

> (61 ( min  P(Z|r,a) — a) (v(z) — ' (7)) >0,

z,a)ER
This proves Assumption 2.12.

To prove Assumption 4.2, we start with establishing that for all (z,a) € K, all v € L(X) and for
all s > 0 we have

%OCEﬁva(sv) =~ f{+ Exalt(s0 — ]}
1nf {§ + (1/8)Eq,q[l(sv — s&)]}
= 51/1%%{5 + Egolls(v — &)}

= OCE}, (v),

where l5(y) = (1/s)¢(sy). Showing that the OCE risk map is asymptotically coherent therefore
reduces to showing that OCEfcfa(v) converges uniformly to OCEfcf‘l’l(v) on compact sets.

Notice that from Proposition 2.1 in Ben-Tal and Teboulle (2008), the infimum in the representation
of OCE; ,(v) can be attained on a member of the bounded interval supporting of the distribution
> P(#'|2,a)d0,(y. This implies that for any fixed v € L(X), there exists an optimal {* € V :=
[ming e x v(z'), max, v(z')] such that OCEY, ,(7) = £* +E, 4[¢(v—&*)]. Hence for any fixed 7 € L(X),
we can let £ and 5 € V be the optimal & for the OCE with loss function ls and £, such that:

OCES, (0) = & + Eualls(v — €)], OCEL% (D) = & + Eualloc(v — €5)],  (2,0) € K.

Following Lemma B.19, we have £;(2) — £ (x) uniformly on compact sets. Hence for any arbitrar-
ily small € > 0, there exists a sufficiently large 5 such that [ (y) — ¢5(y)| < e, for all y € V. Denoting
E(y) = Looly) — Ls(y), we have

OCE%Z(U) = f;o + Em,a[goo (’U - f;o)]
=&+ Y Pa|z,a)ts(v(a’) — €5) + E(0(a") — €5,)]

z'eX

>et+ Y Plla,o)lts(v(a’) - €5) — <

' eX

> & + Eqals(v — €)] — e = OCEg, (v) —e.
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Similarly,
OCEZ,(v) = & +Eyalls(v — &)
=&+ ) Pl|e,a)leo(v(@) = &) = E(u(a’) - &)
r’eX

> &+ ) Plea)lle(v(a)) —€5)] — €

z'eXx
> &5 4 By alloc(v — €5)] — € = OCEL, (v) —e.

Hence we have

OCE%%, (v) —e < OCEf:, (v) < OCEL:, (v) + e,
which means that |OCEi‘ja(v) - OCE%Z(’U)‘ < e. This implies lim,_, o OCEf;ja(v) = OCEfC‘jfl(v) point-
wise. Since OCE is Lipschitz continuous and uniformly bounded on compact sets, we can apply a
similar reasoning as in Lemma B.19 to establish Assumption 4.2.

Assumption 4.6 follows from Lemma 12 of Prashanth and Bhat (2022). O

Lemma B.22. A risk map R that employs a spectral risk measure satisfies Assumptions 2.12, 4.2, 4.6,
if the Markov chain satisfies Assumption 4.8 and the risk spectrum ¢(83) € [e2, Lo] for some €3 > 0 and
Ly < oo for all 8 € 0,1].

Proof. Since spectral risk measures are coherent, Assumption 4.2 holds automatically. Assumption 4.6
follows from Lemma 13 of Prashanth and Bhat (2022). We are left with Assumption 2.12.

Notice that
o) = [ (@) - ) G5+ e / Fy'(8)d
= e [v] / (8 B)dp = exE[v] + M?(v),

where ¢(8) 1= ¢(B) — €2 € [0, Ly — €3] for all 5 € [0,1]. Therefore, for any v > v’ € L(X), choosing
the coherent risk measure v(v) = v(Z) and setting 0 < & < exmin(, q)ex P(Z|z,a) € (0,1), since
€ < fol ¢(B)dB = 1, we have for any (z,a) € K,

Mfa(v) —av(v) — Mfa(v’) + av(v)
= e2(Eya[v] = Epa[v]) + M2, (v) = M, (V') — a(v(v) — v(v))
>y Plylz,a)(v(y) — ' (y) — a(v(@) — /(7))

yeX
> min P(Z|z,a)(ex — e2)(v(Z) — v (Z)) >0,
(z,a)eX
where the first inequality follows from the fact that spectral risk measures are monotone. Therefore,
Assumption 2.12 holds. O

It is worth noting that for the widely used OCE measure CVaR, the corresponding loss function,
given by {(z) = (1 — a)~!(z)*, has a minimum slope of 0; its risk spectrum, defined as ¢(3) =
(1 — a)~'1{B > a}, attains a minimal value of 0. As a result, CVaR does not satisfy the condition
required in Theorem 4.10. However, when mixed with the expectation, the mean-CVaR risk measure
with 7 > 0 fulfills the necessary condition for spectral risk measure in Theorem 4.10 and hence satisfies
Assumption 2.12.

Proof of Theorem 4.10. The result follows directly by applying Lemmas B.16, B.21 and B.22. O
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C Additional details and results of experiments

This section presents further experiments on the convergence of the MLMC Q-learning algorithm (4.1),
along with statistical experiments on its sample efficiency. In addition, we conduct further experiments
regarding the convergence of synchronous and asynchronous UBSR Q-learning with different loss func-
tions, along with statistical results comparing this algorithm to the MLMC Q-learning algorithm (4.1).
Furthermore, we provide details on the application setups used in the main text. We also include a
risk analysis based on the expectile parameters across different application scenarios.

C.1 Statistical experiments on MLMC

Although Theorem 4.7 ensures controllable variance for r € (0,1/2), it requires an infinite number of
samples in expectation per iteration to achieve this. However, our experiments indicate that control-
lable variance can still be attained for some r € (1/2,3/4), as demonstrated in Wang et al. (2023a) for
a special case of distributionally robust discounted MDP.

Table 2 shows the statistical results (average number of samples, average estimated optimal risk
and standard deviation of estimated optimal risk) from 100 simulations, each consisting of 1,000 iter-
ations of the MLMC Q-learning algorithm (4.1) based on MLMC, for different values of the geometric
parameter r changing from 0.49 to 0.9, under a randomly generated MDP with 3 states and 3 ac-
tions, following the generation procedure outlined in Section 5.1. We observe that for small values of
r, the number of samples required to estimate the risk measure is quite large, but it decreases as r
increases. Additionally, the final estimated optimal average risk closely approximates the true average
risk, which is 0.2968, computed via risk-aware RVI, suggesting that the MLMC Q-learning algorithm
indeed converges to the right value. The standard deviation of estimated optimal risk initially de-
creases starting at r = 0.49, but begins to rise again at » = 0.70. This supports the findings in Wang
et al. (2023a), indicating that MLMC could offer finite sample guarantee and controllable variance for
some r € (1/2,3/4).

Table 2: Statistical properties of MLMC Q-learning algorithm for different r.

T Avg. Num. Samples Avg. Est. Opt. Risk Std. Est. Opt. Risk

0.49 202615.68 0.2956 0.0159
0.50 174297.02 0.2973 0.0163
0.55 92635.72 0.2976 0.0153
0.60 52500.64 0.2974 0.0164
0.65 39152.40 0.2963 0.0157
0.70 31476.86 0.2983 0.0188
0.75 26955.32 0.3002 0.0210
0.80 23967.84 0.2966 0.0221
0.90 20257.32 0.2902 0.0326

C.2 Additional experiments for UBSR Q-learning algorithm

For completeness, we present the synchronous version of UBSR Q-learning algorithm as follows: for
all (z,a) € K,

Qus1(2.) = Qu(@,0) +7()¢(cl(z,a) + min Qu(a’,0') = F(Qu) = Qulw.@)).  (C.1)
where 2’ ~ P(:|x,a), v(n) is the step size satisfying Assumption 4.4 and f(Q,) serves as the relative
value satisfying Assumptions 3.3 and 4.3.

In addition to the expectile experiment presented in Section 5.2, we also provide the convergence
results for the special case of the synchronous UBSR Q-learning algorithms with polynomial mixed
utility (also referred to as the S-shape utility, as discussed in Shen et al. (2014)) and the soft quantile
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(as discussed in Hau et al. (2025)). The polynomial mixed utility function, derived from prospect
theory, is defined as follows:

klxb17 € Z Oa

—kg(—x)bQ, x < 0,

lpyi() = {

where ki,ko > 0, by,by > 0. The soft quantile, used as an approximation for the quantile, is defined
as follows:

(1-a)(kx+k?—-1), z<-—k,

l—«

—z -k <z
lsglz) =4 & <z <0,

S, 0<x <k,

a(kr — k? + 1), x> K,

with o € [0,1] and k > 0. We choose k1 = 1 — kg = 0.3, by = by = 0.5 for the polynomial mixed utility
and a = 0.2, k = 1 for the soft quantile. It is worth noticing that both two loss functions are neither
convex nor concave on the whole domain.

Under the same MDP and step size settings as in Section 5.1, we run our algorithm 100 times
independently and plot the trajectory obtained from the value iteration, risk-aware RVI algorithm (3.2),
mean value of f(Q) across all 100 trajectories from the synchronous UBSR Q-learning algorithm (C.1)
and 95th and 5th percentiles as the upper and lower bound of the 100 trajectories as the confidence
interval. The results are presented in Figure C.1. It appears that our synchronous UBSR Q-learning
algorithm successfully converges to the true optimal average risk with high probability under both
instances of the loss functions.

Synchronous UBSR PM k; =1 —k;=0.3, by =b,=0.5 Synchronous UBSR SQ a=0.2, k=1

o
N

—— Est. by Value Iteration
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Est. by Q-learning (Cl)

—— Est. by Value Iteration
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Figure C.1: Convergence of the synchronous UBSR Q-learning algorithm (C.1) for polynomial mixed utility and soft
quantile.

Figure C.2 presents the convergence experiments for the asynchronous UBSR Q-learning algo-
rithm (5.1) under the same settings as in Section 5.1, with polynomial mixed utility parameters
ky, = 1—ky = 0.3, by = by = 0.5 and soft quantile parameters a« = 0.2, k = 1, under 300,000
iterations. The results provide evidence that the asynchronous algorithm also converges with high
probability, confirming the applicability of the off-policy UBSR Q-learning algorithm (5.1).

Table 3 shows the statistical properties (average number of iterations, average estimated optimal
risk, standard deviation of estimated optimal risk and average risk of estimated policy) of 100 sim-
ulations comparing the MLMC Q-learning algorithm (4.1) with the synchronous UBSR (S-UBSR)
Q-learning algorithm (C.1) and asynchronous UBSR (A-UBSR) Q-learning algorithm (5.1) under the
same settings as in Section 5.1. All the algorithms are using the equivalent number of samples. The
total sample size for the MLMC-based and A-UBSR Q-learning algorithms is 300,000, equivalent to
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Asynchronous UBSR PM k; =1 -k, =0.3, by =b,=0.5 Asynchronous UBSRSQ a=0.2, k=1

—-—- Est. by Value Iteration —-—- Est. by Value Iteration
-- Est. by Relative VI b -- Est. by Relative VI
—— True value —— True value
Est. by Q-learning (mean) Est. by Q-learning (mean)
[ Est. by Q-learning (CI) 7770 Est. by Q-learning (CI)

0.0
—-0.1+

|
e
N)
|
o
N)

|
I
IS

Optimal average risk
Optimal average risk
S
w

|
I
IS

|
e
w»

be

~0.6 - (RN

|
o
o
/
/

-0.8 T T T T T T T T T T
10° 10t 10? 10° 104 10° 10° 10t 102 10° 104 10°
Number of iteration Number of iteration

|
e
~

Figure C.2: Convergence of the asynchronous UBSR Q-learning algorithm (5.1) for polynomial mixed utility and soft
quantile.

1,000 iterations for the S-UBSR Q-learning algorithm since the S-UBSR Q-learning generates one
sample per state-action pair during each iteration. For the MLMC Q-learning algorithm, we select
r > 0.5 to ensure a finite average number of samples per iteration. The optimal average risk, computed
through the risk-aware RVI (3.2), is -0.1076. Additionally, we compare the mean average risk derived
from the policies produced by the algorithms to assess whether the algorithms provide the optimal
policy.

Table 3: Statistics of solutions from risk-aware RVI Q-learning algorithms after 300,000 (x, a, =) observations in a setting
where the true optimal average risk is -0.1076.

Algorithm r Avg. Num. Itr. Avg. Est. Opt. Risk Std. Est. Opt. Risk Avg. Risk. Est. Policy

0.55 729.16 -0.1086 0.0137 -0.1052
0.60 1039.22 -0.1099 0.0103 -0.1060
0.65 1396.86 -0.1067 0.0104 -0.1060
MIMC  0.70 1731.77 -0.1096 0.0099 -0.1065
0.75 2000.43 -0.1097 0.0089 -0.1053
0.80 2250.29 -0.1113 0.0114 -0.1059
0.90 2667.43 -0.1165 0.0206 -0.1050
SUBSR  — 6000 -0.1076 0.0030 -0.1076
A-UBSR  — 300000 -0.1074 0.0029 -0.1076

From the experiments, we conclude that although constrained to the UBSR class of risk measures,
the UBSR Q-learning algorithms show significantly higher computational efficiency. It achieves notably
lower standard error, faster convergence, and greater ease of implementation.

Although the convergence experiment results are promising, analyzing the almost sure convergence
of the UBSR Q-learning algorithms (C.1) remains a greater challenge. The standard approach for
proving the almost sure convergence of the average reward Q-learning algorithm relies on the ODE
analysis of stochastic approximation (Abounadi et al., 2001; Borkar and Meyn, 2000). In this case,
the analysis leads to a high-dimensional nonlinear ODE system, which lacks the desirable property
observed in the risk-neutral setting and our MLMC-based approach, where the difference between the
reference ODE ¢ and the target ODE p, when starting from the same initial point, remains a scalar
function over time. Consequently, Lemma B.10 does not hold.

C.3 Application setups

The machine replacement problem (e.g. Section 6.10.4, Puterman (1994)) involves managing a machine
that deteriorates over time, with the goal of minimizing the long-term average cost. The machine can
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be in various states representing its condition, ranging from new to totally break down. At each time
step, the agent chooses between two actions: keep operating the machine or replace it with a new
one. Operating the machine incurs maintenance and operational costs, which increase as the machine
deteriorates, while replacing it incurs a significant one-time cost but resets the machine to its best
condition.

For the parameters, we define a scenario with 30 degradation states, where state 0 represents a
fully new machine and state 29 corresponds to a failure. The degradation probabilities are generated
randomly, with a decreasing probability of transitioning to higher degradation states as the machine’s
condition worsens. Additionally, there is always a positive probability of transitioning to the failure
state. The replacement cost is set to 30'®, the operating cost is 1 x s, and the maintenance cost is
0.5 x 815, where s denotes the current state level. Additionally, the failure cost is twice the replacement
cost, ensuring significant penalties for machine failure.

The water reservoir management problem (e.g. Section 1.3, Herndndez-Lerma (1989)) involves
managing a reservoir to balance water supply, demand, and the risk of overflow or shortage. The
reservoir has discrete states representing water levels, and at each time step, the decision-maker chooses
how much water to release. The goal is to minimize the long-term average cost, which includes penalties
for water shortages, overflows, and operational costs.

For the parameters, we define the maximum water level as 19 and the maximum release as 5. The
demand is set to 4, with a shortage cost of 15 per level shortage, an overflow cost of 20 per level
overflow, and an operational cost of 2 per unit of water released. The probability of the incoming
water level is randomly generated, with a decreasing probability of transitioning to higher water levels,
reflecting the natural variability of inflows. However, there is always a positive probability of reaching
the maximum water level, ensuring that the risk of overflow is accounted for in every state.

The inventory management problem (e.g. Section 1.3, Herndndez-Lerma (1989)) involves managing
stock levels to meet stochastic demand while minimizing long-term average costs. The system has
discrete states representing inventory levels, and at each time step, the agent chooses how much to
order to replenish stock. Costs include holding costs for inventory, ordering costs for placing orders,
and shortage costs for unmet demand.

For the parameters, we set the maximum inventory level to 9 and the maximum demand to 9. The
probability of the incoming demand is generated randomly with lower probability for higher demand.
The holding cost per unit of inventory is 1, the ordering cost per unit is 5, and the shortage cost per
unit of unmet demand is 10.

C.4 Risk analysis based on parameter of expectile

We visualize the results of the machine replacement and water reservoir management problems under
different 7 parameters of the expectile in Figure C.3. This figure illustrates the difference between
the T-optimal average risk and the average risk evaluated under the risk-neutral policy. The findings
confirm that for 7 < 0.5, the agent exhibits risk-seeking behavior, whereas for 7 > 0.5, the agent
becomes risk-averse. Notably, when 7 > 0.5, the 7-optimal policy achieves a lower average risk than
the risk-neutral policy, reaching the minimum average risk at the corresponding 7.

In Figure C.4, we present 30 simulation trajectories for both the risk-neutral policy and the risk-
averse expectile policy (with 7 = 0.9) across 1,000 iterations for the inventory management problem.
The risk-neutral policy results in an optimal policy of (5,4,3,2,1,0,0,0,0,0), while the risk-averse policy
yields an optimal policy of (2,1,0,0,0,0,0,0,0,0), with the first element of the vector representing zero
inventory. It is evident that the risk-averse policy produces trajectories with lower variance, suggesting
that it could offer greater stability when observed over a shorter time frame.



Les Cahiers du GERAD

G-2025-37

34

Risk difference of t-optimal policy to risk-neutral policy (MR)

Risk difference of T-optimal policy to risk-neutral policy (WR)
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Figure C.3: Risk difference between 7-optimal policy and risk-neutral policy under different 7-values for MR and WR.
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Figure C.4: Simulation trajectories of risk-neutral policy and risk-averse policy under the risk-neutral setting for IM.
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