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The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



Les Cahiers du GERAD G–2025–37 ii

Abstract : For continuing tasks, average cost Markov decision processes have well- documented
value and can be solved using efficient algorithms. However, it explicitly assumes that the agent
is risk-neutral. In this work, we extend risk-neutral algorithms to accommodate the more general
class of dynamic risk measures. Specifically, we propose a relative value iteration (RVI) algorithm
for planning and design two model-free Q-learning algorithms, namely a generic algorithm based on
the multi-level Monte Carlo (MLMC) method, and an off-policy algorithm dedicated to utility-base
shortfall risk measures. Both the RVI and MLMC-based Q-learning algorithms are proven to converge
to optimality. Numerical experiments validate our analysis, confirm empirically the convergence of the
off-policy algorithm, and demonstrate that our approach enables the identification of policies that are
finely tuned to the intricate risk-awareness of the agent that they serve.

Acknowledgements: Erick Delage was partially supported by the Canadian Natural Sciences and
Engineering Research Council [Grant RGPIN–2022–05261] and by the Canada Research Chair program
[950–230057]. We are also thankful to Esther Derman, Marek Petrik, and Xian Chen for valuable
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1 Introduction

For continuing tasks where there is a need to optimize a long term periodic payoff, such as network

control, supply chain designs, or maintenance problems (Puterman, 1994), average cost (or reward)

Markov decision processes (MDPs) serve as a crucial model in reinforcement learning (Sutton and

Barto, 2018; Naik et al., 2019) and can be solved using efficient algorithms. In the risk-neutral setting,

different forms of value iteration algorithms co-exist (Puterman, 1994; Bertsekas, 2007) and some

have been extended to a model-free setting using Q-learning style algorithms (Abounadi et al., 2001;

Wan et al., 2021). The question of how to formulate and solve average-cost MDPs however becomes

challenging when the agent is considered risk sensitive. It originates from the pioneering work of

Howard and Matheson (1972) and is covered in recent surveys such as Biswas and Borkar (2023) and

Bäuerle and Jaskiewicz (2024).

This work focuses on average risk-aware MDP, a general formulation described in Shen et al. (2013)

that attempts to find a policy π that minimizes the long-term average of the risk of the cost process

generated by π. While the theoretical foundations of this framework are well studied, finding efficient

solution techniques to these problems remains a challenging task. To solve the average risk-aware

MDP problem, one can apply the classic value iteration algorithm (Cavazos-Cadena and Montes-de

Oca, 2003; Ruszczyński, 2010; Shen et al., 2015). This approach relies on the iteration of the risk-aware

Bellman operator and computes the average to obtain the optimal average risk. However, it is known

to suffer from overflow issues when the number of iterations is large. In the risk-neutral setting, the

relative value iteration (RVI) algorithm is widely used (Bertsekas, 2007; Gupta et al., 2015), as it

mitigates overflow issues during long iterations by subtracting a reference value for each state at every

step. However, while some studies have explored RVI algorithms based on the entropic risk measure

(Borkar, 2010; Arapostathis and Borkar, 2019; Hmedi et al., 2023), a general formulation of the RVI

algorithm for risk-aware MDPs remains missing in the literature.

Meanwhile, in practical applications, the randomness of the environment is usually unknown, high-

lighting the importance of developing model-free learning algorithms. To the best of our knowledge,

extensions of the risk-neutral Q-learning algorithms to the average risk-aware setting appear to only

exist for the case of entropic risk measure (see Borkar (2002), Borkar (2010), Moharrami et al. (2024)

and the reference therein). This is in sharp contrast to the extensive literature on algorithms for

discounted or finite-horizon risk-aware MDPs, where many studies exist: for instance, see Chow and

Ghavamzadeh (2014), Tamar et al. (2015), or Chow et al. (2018) for conditional value-at-risk, see

Huang and Haskell (2017), Köse and Ruszczyński (2021), or Lam et al. (2023) for general coherent risk

measures, Shen et al. (2014) or Marzban et al. (2023) for utility-based shortfall risk (UBSR), and see

Hau et al. (2025) for quantiles. To conclude, the design of a model-free learning algorithm for average

risk-aware MDPs with a general risk measure remains an open research field.

The literature that might be considered closest to addressing this gap has focused on planning and

learning algorithms for distributionally robust MDPs. Studies have explored the discounted case (Liu

et al., 2022; Wang et al., 2023a, 2024) as well as the average case (Wang et al., 2023b,c), where an

ambiguity set is constructed around the transition kernel to safeguard against potential distributional

shifts. These results however do not apply to general classes of (possibly non-coherent) dynamic risk

measure.

This paper presents planning and learning algorithms for average risk-aware MDPs with a general

dynamic risk measure. We describe our contributions as follows:

Planning: We propose a RVI algorithm for average risk-aware MDPs, which produces a policy that

provably converges to the optimal policy for a general class of dynamic risk measures. While

existing studies on model-based algorithms for this problem focus either on the risk-neutral

setting or the case of entropic risk, our work appears to be the first to consider such a general

class of dynamic risk measures.
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Learning: We introduce two novel model-free Q-learning algorithms for average risk-aware MDPs.

The first algorithm generalizes the multi-level Monte Carlo (MLMC) based Q-learning algorithm

introduced in Wang et al. (2023c) for robust average MDPs to a broader class of dynamic risk

measures, which may not necessarily be coherent, while ensuring provable convergence to op-

timality. The condition we impose for convergence are weak and satisfied by many popular

risk measures such as UBSR, optimized certainty equivalent, and spectral risk measures. Addi-

tionally, we propose an asynchronous algorithm that is specialized for UBSR and amenable to

off-policy learning. While the theoretical convergence remains open, we validate it empirically

under different loss functions.

Empirics: We confirm empirically the convergence of all algorithms under different choice of risk

measures and practically relevant sampling rates for MLMC Q-learning, and compare the sample

efficiency. We also showcase how average risk-aware MDPs identify policies that are tuned to

the agents preferences in popular environments from the literature.

The structure of the paper is as follows. Section 2 introduces average risk-aware MDPs. Section 3

derives the risk-aware RVI and relative Q-factor iteration algorithms. Section 4 presents the MLMC

Q-learning algorithm. Section 5 presents the asynchronous Q-learning algorithm for UBSR measures

and the numerical experiments. Section 6 concludes the paper and proposes further research. Pseudo-

codes, proofs, and additional experiment details and results are provided in the appendix.

2 Preliminaries

Notations: Given any finite probability space (Ω, P (·)),1 with Ω a finite set of outcomes, and P (·)
a probability mass function in the probability simplex P(Ω), we denote by L(Ω) the set of finite

real-valued functions (a.k.a. random variables) on Ω and |Ω| the cardinality of Ω. For v, w ∈ L(Ω),
the notation v ≥ w refers to v(ω) ≥ w(ω) for all ω ∈ Ω, and v ≥ w almost surely (a.s.) refers to

v(ω) ≥ w(ω) for all ω ∈ Ω such that P (ω) > 0. The infinity norm of v ∈ L(Ω) is ∥v∥∞ := supω∈Ω |v(ω)|,
while its span-seminorm is: ∥v∥sp := maxω∈Ω v(ω)−minω∈Ω v(ω). For A ⊆ Ω, the indicator function

1{ω ∈ A} equals 1 if ω ∈ A and 0 otherwise. Finally, e and 0 represent the constant functions of one

and zero respectively, while e denotes the base of the natural logarithm.

2.1 Risk maps

We begin by defining the notion of a risk measure following Shapiro et al. (2021).

Definition 2.1. Given a finite probability space (Ω, P (·)), a risk measure ρ : L(Ω) → R that maps

a random cost to a real value capturing its risk is said to be monetary if it satisfies the following

properties:

(1) (Monotonicity) ρ(v) ≤ ρ(w) for all v, w ∈ L(Ω) such that v ≤ w a.s.;

(2) (Translation invariance) ρ(v + λ) = ρ(v) + λ for any λ ∈ R, v ∈ L(Ω);
(3) (Normalization) ρ(0) = 0;

further called convex if:

(4) (Convexity) For all α ∈ [0, 1], v, w ∈ L(Ω), ρ(αv + (1− α)w) ≤ αρ(v) + (1− α)ρ(w);

and coherent if

(5) (Positive homogeneity) For all λ ≥ 0, v ∈ L(Ω), ρ(λv) = λρ(v).

In the follows, we introduce some popular kinds of risk measures that will be of interest.

1Short for (Ω, σ(Ω), µP ), where σ(Ω) is the sigma algebra generated by the power set of Ω, and µP (E) :=
∑

ω∈E P (ω)
for all E ∈ σ(Ω) is a probability measure.
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Definition 2.2 (Definition 4.112, Föllmer and Schied (2016)). A risk measure on (Ω, P (·)) is called a

utility-based shortfall risk (UBSR) measure if it can be represented as:

SR(v) := inf {m ∈ R : E[ℓ(v −m)] ≤ 0} , ∀v ∈ L(Ω),

for some continuous non-decreasing convex loss function ℓ : R → R such that ℓ(0) = 0.2

Example 2.3 (Expected value). When ℓ(x) = x, the UBSR measure reduces to the expected value,

which we refer as the risk-neutral measure.

Example 2.4 (Entropic risk measure). When ℓ(x) = eβx − 1, with β > 0 representing risk sensitivity,

the resulting UBSR measure is the entropic risk measure SR(v) = 1
β log(E[eβv]).

Example 2.5 (Expectile). Following Bellini and Bignozzi (2015), the expectile is the only coherent

UBSR, defined using the loss function ℓ(x) = τx+ − (1− τ)x−, where τ ∈ [0, 1] represents the degree

of risk aversion. This measure spans from the essential infimum of the random cost at τ = 0 to its

essential supremum at τ = 1, passing through the expected value at τ = 0.5.

Definition 2.6 (Definition 2.1, Ben-Tal and Teboulle (2008)). A risk measure on (Ω, P (·)) is called an

optimized certainty equivalent (OCE) risk measure if it can be represented as

OCE(v) := inf
ξ∈R

{ξ + E[ℓ(v − ξ)]} , ∀v ∈ L(Ω),

for some nondecreasing convex loss function ℓ : R → R such that ℓ(0) = 0 and 1 ∈ ∂ℓ(0) where ∂ℓ(0)

is the subgradient of ℓ at 0.

Definition 2.7 (Definition 3.1, Acerbi (2002)). A risk measure on (Ω, P (·)) is called a spectral risk

measure associated to a risk spectrum function ϕ : [0, 1] → [0,∞) such that
∫ 1

0
ϕ(β)dβ = 1, if it can

be represented as

Mϕ(v) :=

∫ 1

0

ϕ(β)F−1
v (β)dβ, ∀v ∈ L(Ω),

where Fv is the cumulative distribution function of v and F−1
v (β) := inf{m ∈ R : Fv(m) ≥ β}.

Example 2.8 (Conditional Value-at-Risk). When ℓ(x) = (1−α)−1x+ for α ∈ (0, 1), the OCE risk is the

conditional Value-at-Risk (CVaR) at level α. CVaR is coherent and it is also a spectral risk measure

with risk spectrum ϕ(β) = (1− α)−11{β ≥ α}.
Example 2.9 (Mean-CVaR). When ϕ(β) = η + (1 − η)(1 − α)−11{β ≥ α} for some η ∈ (0, 1), the

spectral risk measure defined as Mϕ(v) = ηE[v] + (1 − η)CVaRα(v) is referred to as the mean-CVaR

risk measure.

2.2 Average risk-aware MDP

We consider a finite MDP defined through the tuple (X ,A, P, c, x0), where X and A are finite state

and action spaces, denoting K := X ×A for short. The transition kernel P : X ×A → P(X ) specifies

the probability P (y|x, a) of transitioning from state x to state y given action a. The bounded cost

function is defined as c : X × A → [−C̄, C̄]. For time t = 0, 1, · · · , the state and action are xt and

at, governed by a Markov policy π = (π0, π1, . . . ), with each πt ∈ Π := {π : X → P(A)}, where
πt(·|xt) denotes the probability of choosing at given xt. A policy is called deterministic if it assigns

a probability of one to a specific action for each state, and is called stationary if πt ≡ π for all t for

some π ∈ Π.

In a risk-neutral setting, the infinite horizon average cost MDP problem takes the form:

(ACMDP) J̄∗ := inf
π∈Π∞

lim sup
T→∞

1

T
E

[
T∑
t=0

cπ(Xt)

]
,

2Shen et al. (2014) employs equivalently E[ℓ̄(v −m)] ≤ m0 using the replacement ℓ(z) := ℓ̄(z) −m0. We also focus
on normalized UBSR.
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where Xt is the state at stage t and cπ(x) :=
∑
a∈A π(a|x)c(x, a). One seeks to identify a stationary

policy that minimizes the long term average expected total cost generated by the MDP, when starting

from some initial state X0 and following policy π.

Following Shen et al. (2013), we consider the risk-aware version of the average cost MDP by

replacing E[·] with a class of dynamic risk measures that is specially designed for MDPs.

Definition 2.10. A risk mapR is a function that maps each state (x, a) ∈ K to a monetary risk measure

on the space (X , P (·|x, a)). Furthermore, for any π ∈ Π we define Rπ(v|x) :=
∑
a∈A π(a|x)R(v|x, a).

To simplify notation, we sometimes write Rx,a(v) := R(v|x, a) and Rπ
x(v) := Rπ(v|x).

We first consider a risk-aware T -stage total cost problem and define our risk-aware objective as

follows:

JT (π) := cπ0(X0) +Rπ0

X0

(
cπ1(X1) + · · ·+RπT−1

XT−1
(cπT (XT )) · · ·

)
.

The infinite horizon average risk-aware MDP problem therefore seeks to find a policy π that minimizes:

(ARMDP) J∗ := inf
π∈Π∞

J∞(π),

where J∞(π) := lim supT→∞
1
T JT (π). It is easy to see that ARMDP reduces to ACMDP when

Rx,a(v) = Ex,a[v] := E[v(y)] with y ∼ P (·|x, a).
Remark 2.11. As argued in Shen et al. (2013), preserving the Markov property is essential to guarantee

stationary optimal policies for infinite horizon objectives (Ruszczyński and Shapiro, 2006; Shen et al.,

2013). Therefore, we restrict our attention to Markovian risk measures that depend only on the current

state. Readers can refer to Ruszczyński (2010) for a broader framework.

2.3 Average risk optimality equation

Shen et al. (2013) establishes several assumptions on the risk maps of an MDP to guarantee the

existence and uniqueness of the optimal average risk for ARMDP. Here, we modify and adapt these

assumptions to suit our setting of a finite MDP.

Assumption 2.12 (Doeblin type condition, Assumption 5.4 Shen et al. (2013)). There exists a coherent

risk measure ν : L(X ) → R, and some constant ᾱ ∈ (0, 1) such that for all v ≥ v′ ∈ L(X ), we have

min
(x,a)∈K

{R(v|x, a)− ᾱν(v)−R(v′|x, a) + ᾱν(v′)} ≥ 0.

Assumption 2.12 defines a form of ergodicity property of each state under the risk map. In Shen

et al. (2013), ν is not necessarily required to be coherent, whereas we impose this condition here for

simplicity in the subsequent derivations.

From Shen et al. (2013), if the risk maps satisfy Assumption 2.12, then there exists an optimal

stationary deterministic Markov policy π∗ such that J∗ = J∞(π∗). We restate the result as follows.

Theorem 2.13 (Theorem 5.9, 5.10, Shen et al. (2013)). Under Assumption 2.12, there exists a unique

g∗ ∈ R and an h∗ ∈ L(X ) satisfying the average risk optimality equation (AROE):

g + h(x) = min
a∈A

{c(x, a) +R(h|x, a)}. (2.1)

Moreover, g∗ = J∗ = J∞(π∗), for the stationary deterministic policy π∗
t (a|x) = 1{a = a∗(x)}, where

a∗(x) minimizes c(x, a) +R(h∗|x, a), and g∗ is independent of x0.

Remark 2.14. In Assumption 5.4 of Shen et al. (2013), an additional Lyapunov-type condition is

introduced, which imposes a growth constraint using a nonnegative weight function W . We refer the

reader to Appendix B.1 to see why this can be dropped in a finite MDP.
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Remark 2.15. Assumption 2.12 is a sufficient condition for the existence of an optimal average risk

independent of the initial state and is stronger than the unichain assumption commonly used in risk-

neutral average MDPs. It is well-known that for risk-aware MDPs, the unichain assumption alone

does not guarantee this independence. For specific risk measures, such as the entropic risk measure,

this condition can be relaxed to require only that the Markov chain is irreducible and aperiodic under

all stationary policies (see Cavazos-Cadena and Fernández-Gaucherand (1999)).

3 Model-based algorithms

In this section, we propose a risk-aware version of the RVI algorithm to solve the ARMDP problem.

Additionally, to lay the foundation for the Q-learning algorithm in the next section, we introduce a

risk-aware relative Q-factor iteration algorithm as a generalization of the risk-aware RVI algorithm.

3.1 Risk-aware relative value iteration

Following Abounadi et al. (2001), the risk-neutral RVI algorithm is defined as

Vn+1(x) := min
a∈A

E [c(x, a) + Vn]− f(Vn), ∀x ∈ X , (3.1)

where Vn ∈ L(X ) and V0 is arbitrarily initialized, and f : L(X ) → R is a function that satisfies

conditions discussed below, e.g. f(v) := v(x0).
3 Using a general function f(Vn) instead of V (x0)

allows the RVI algorithm to eliminate the need for a reference state, making it more flexible and

efficient for computation (also see the discussion in Wan et al. (2021) for the risk-neutral case). It is

known that under the unichain assumption, the risk-neutral RVI algorithm converges to a unique V ∗,

which solves the risk-neutral version of the AROE using h := V ∗ and g∗ = f(V ∗).

We propose extending the RVI algorithm to the risk-aware setting by replacing the expected value

operator with an appropriate risk map. This gives rise to the following risk-aware RVI algorithm:

Vn+1(x) = G(Vn)(x)− f(Vn), ∀x ∈ X , (3.2)

where G : L(X ) → L(X ) is the risk-aware Bellman optimality operator, defined as G(v)(x) :=

mina∈A Rx,a(c(x, a) + v) for all x ∈ X and v ∈ L(X ).

To guarantee convergence of Algorithm (3.2), we impose the following conditions on f .

Assumption 3.1. The function f : L(X ) → R satisfies:

(1) For any λ ∈ R and v ∈ L(X ), f(0) = 0, f(v + λ) = f(v) + λ.

(2) f is Lipschitz, i.e., ∃L̃ ≥ 0, such that ∥f(v)− f(w)∥∞ ≤ L̃∥v − w∥∞, ∀v, w ∈ L(X ).

Assumption 3.1 is equivalent to imposing that f is translation invariant and is naturally satisfied

by f(v) := v(x0). Such extension for the RVI seems to be first proposed in Abounadi et al. (2001) for

the risk-neutral case, although the authors did not include proofs of their validity.

The following theorem confirms that convergence of RVI remains valid in the risk-aware setting.

Theorem 3.2. Under Assumptions 2.12 and 3.1, the risk-aware RVI algorithm (3.2) converges to a

unique fixed point V ∗, which identifies, using h∗(x) := V ∗(x) and g∗ := f(V ∗), a solution to the

AROE (2.1).

Clearly, the risk-aware RVI algorithm (3.2) reduces to RVI algorithm (3.1) in the risk-neutral

setting.

3The RVI algorithm in Bertsekas (2007), for example, replaces f(Vn) with f(Vn+1) := Vn+1(x0). We adopt the
formulation from Abounadi et al. (2001) as it is better suited for designing a Q-learning algorithm.
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3.2 Risk-aware relative Q-factor iteration

The risk-aware RVI algorithm (3.2) suggests that, when letting Qn+1(x, a) := Rx,a(c(x, a) + Vn)

−f(Vn), (3.2) can be reformulated as the following risk-aware relative Q-factor iteration (RQI):

Qn+1(x, a) := Rx,a

(
c(x, a) + min

a′∈A
Qn(·, a′)

)
− f

(
min
a′∈A

Qn(·, a′)
)
, ∀(x, a) ∈ K,

where Qn ∈ L(K) and Q0 is arbitrarily initialized. As suggested in Abounadi et al. (2001) for the

risk-neutral case, this can be more generally defined as:

Qn+1(x, a) = H(Qn)(x, a)− f(Qn), ∀(x, a) ∈ K, (3.3)

where H : L(K) → L(K) is the risk-aware Bellman optimality operator for Q-factors, defined as

H(q)(x, a) := Rx,a(c(x, a) + mina′∈A q(·, a′)), for all (x, a) ∈ K and q ∈ L(K). With a slight abuse of

notation, here we define f : L(K) → R and impose the following assumptions.

Assumption 3.3. The function f : L(K) → R satisfies:

(1) For any λ ∈ R and q ∈ L(K), f(0) = 0, f(q + λ) = f(q) + λ.

(2) f is Lipschitz, i.e., ∃L̃ ≥ 0 such that ∥f(p)− f(q)∥∞ ≤ L̃∥p− q∥∞, ∀p, q ∈ L(K).

Common choices for f can be f(q) = q(x0, a0), f(q) = mina q(x0, a), f(q) = 1
|X ||A|

∑
x,a q(x, a).

Similar to Theorem 3.2, we have the following convergence and optimality result for the risk-aware

RQI algorithm.

Theorem 3.4. Under Assumptions 2.12 and 3.3, the risk-aware RQI algorithm (3.3) converges to a

unique fixed point Q∗, which identifies, using h∗(x) := mina∈AQ
∗(x, a) and g∗ := f(Q∗), a solution

to the AROE (2.1).

Theorem 3.4 also suggests that a solution to the AROE (2.1) can be identified by solving the

following average risk optimality equation based on the Q-factor:

q(x, a) = Rx,a

(
c(x, a) + min

a′∈A
q(·, a′)

)
− f(q), ∀(x, a) ∈ K, q ∈ L(K). (3.4)

4 Model-free algorithm

In this section, we introduce a model-free Q-learning algorithm that is based on MLMC for solving

the ARMDP. We also outline conditions ensuring the almost sure convergence of the algorithm when

the risk map employs UBSR, OCE, or spectral risk measures.

4.1 Risk-aware RVI Q-learning

Motivated by the risk-aware RQI algorithm (3.3), we can propose the following model-free risk-aware

RVI Q-learning algorithm:

Qn+1(x, a) = Qn(x, a) + γ(n)
(
Ĥ(Qn)(x, a)− f(Qn)−Qn(x, a)

)
, (x, a) ∈ K, (4.1)

where Ĥ is an estimator for the risk-aware Bellman optimality operator H and γ(n) is some step size.

We construct Ĥ(q) as an estimator of H(q) satisfying the following assumption.

Assumption 4.1. The estimator Ĥ is unbiased and has controllable variance: i.e. E[Ĥ(q)] = H(q) and

there exists a C > 0 such that Var[Ĥ(q)(x, a)] ≤ C(1 + ∥q∥2∞), ∀(x, a) ∈ K, q ∈ L(K).

To guarantee the convergence for the risk-aware RVI Q-learning algorithm (4.1), we require that

the risk map satisfies an assumption called “asymptotic coherence” and the function f is homogeneous.

We also impose the Robbins-Monro condition on the step size γ(n).
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Assumption 4.2 (Asymptotic coherence). The risk map R is asymptotically coherent, i.e. there exists

a risk map R∞ such that for all (x, a) ∈ K, we have that lims→∞
1
sRx,a(sv) = R∞

x,a(v) for all v ∈ L(X )

and uniformly on all compact subsets of L(X ).

Assumption 4.3. The function f is homogeneous, i.e., f(λv) = λf(v), ∀λ ∈ R, v ∈ L(K).

Assumption 4.4. The step size {γ(n)}∞n=0 satisfies
∑∞
n=0 γ(n) = ∞ and

∑∞
n=0 γ(n)

2 <∞.

We then have the following convergence result.

Theorem 4.5. Under Assumptions 2.12, 3.3, 4.1, 4.2, 4.3, 4.4, then almost surely, Qn converges to a

Q∗, and h∗(x) := mina∈AQ
∗(x, a), g∗ := f(Q∗) identify a solution to the AROE (2.1). The greedy

policy, πn(a|x) := 1{a = a∗n(x)} with a∗n ∈ argmina∈AQn(x, a), also converges almost surely to an

optimal stationary deterministic policy of ARMDP.

If the risk map R is coherent, Assumption 4.2 is automatically satisfied. This assumption is made

for technical reasons, as the convergence proof of the Q-learning algorithm for the average MDP relies

on ODE-based stochastic approximation (see Abounadi et al. (2001) and Wan et al. (2024) for a recent

review). This approach requires the limit in Assumption 4.2 to exist for analyzing the almost sure

boundedness of the iteration sequence. In the next subsection, we demonstrate that this assumption

can be achieved for many risk maps that are not necessarily coherent.

4.2 Construction of an unbiased estimator Ĥ

In this subsection, we present an estimator Ĥ that satisfies Assumption 4.1 for specific risk maps using

the multi-level Monte Carlo (MLMC) method, an approach for unbiased statistical estimation using

stochastic simulation (Blanchet and Glynn, 2015; Blanchet et al., 2019; Liu et al., 2022; Wang et al.,

2023a,c). We first impose the following assumption on R, which enables the possibility of estimating

a random variable using its empirical distribution.

Assumption 4.6 (Hölder continuity). There exists an L > 0 such that for all v, w ∈ L(X ), we have

|Rx,a(v) −Rx,a(w)| ≤ LdW (µv, µw), ∀(x, a) ∈ K, where µv, µw are the probability distributions of v

and w on X and dW (·, ·) is the 1-Wasserstein distance between two distributions.

We first generate N according to a geometric distribution with parameter r ∈ (0, 1). Then, for

each (x, a) ∈ K, we take action a at state x for 2N+1 times and observe the i.i.d. transitions {x′i}2
N+1

i=1 .

These 2N+1 samples are then divided into two groups: samples with odd indices and samples with

even indices. We calculate the empirical distribution of x′ using the even-index samples, odd-index

samples, all the samples, and the first sample: P̂EN+1(y|x, a) := 1
2N

∑2N

i=1 1{x′2i = y}, P̂ON+1(y|x, a) :=
1
2N

∑2N

i=1 1{x′2i−1 = y}, P̂N+1(y|x, a) := 1
2N+1

∑2N+1

i=1 1{x′i = y}, P̂ 1
N+1(y|x, a) := 1{x′1 = y}. For

notation simplicity, we denote the resulting empirical transition kernels as P̂EN+1, P̂
O
N+1, P̂N+1 and

P̂ 1
N+1, respectively. Then, we use these estimated transition kernels as nominal kernels to calculate

H. Namely, HP̂N
is the Bellman optimality operator under the empirical transition kernel P̂N . The

multi-level estimator of H is then defined as

Ĥ(q) := HP̂ 1
N+1

(q) +
1

pN

{
HP̂N+1

(q)− 1

2

(
HP̂E

N+1
(q) +HP̂O

N+1
(q)
)}

, ∀q ∈ L(K), (4.2)

where pN := r(1− r)N .

We present the following result on the unbiasedness and controllable variance for risk maps satis-

fying Assumption 4.6.

Theorem 4.7. Assumption 4.1 holds if the risk map satisfies Assumption 4.6 and r ∈ (0, 1/2).

As shown in Section 3 of Prashanth and Bhat (2022), several popular risk measures, including

UBSR, OCE and spectral risk measures, satisfy Assumption 4.6 with proper parametrization. Below,
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we demonstrate that under suitable conditions, the risk-aware average MDP that incorporates UBSR,

OCE, or spectral risk measure satisfies all the assumptions required for Theorem 4.5 to apply.

Assumption 4.8 (Strong Ergodicity). Under any stationary policy, the resulting Markov chain is irre-

ducible and there exists a state x̄ ∈ X such that P (x̄|x, a) > 0 , ∀(x, a) ∈ K.

Assumption 4.9 (Bounded slope). The loss function ℓ(x) is strictly increasing on R and there exist

L1, ϵ1 > 0 such that 0 < ϵ1 ≤ ℓ(x)−ℓ(y)
x−y ≤ L1, ∀x ̸= y ∈ R.

Theorem 4.10. Under Assumption 4.8, if the risk map employs a UBSR or OCE satisfying Assump-

tion 4.9, or a spectral risk measure with 0 < ϵ2 ≤ ϕ(·) ≤ L2 <∞, then Assumptions 2.12, 4.2, and 4.6

holds. Consequently, Theorem 4.5 applies.

We note that CVaR does not satisfy the condition in Theorem 4.10. However, the mean-CVaR risk

measure, which mixes expectation and CVaR, does and hence Theorem 4.5 applies for mean-CVaR.

Also, although our definitions of UBSR and OCE assume a convex loss function, Theorem 4.10 holds

more generally for loss functions that are convex (concave) for x > 0 and concave (convex) for x < 0,

reflecting different risk attitudes toward gains and losses (see Appendix B.4). Finally, the entropic risk

measure does not satisfy Assumption 4.9, but it still meets Assumption 2.12 (Proposition 5.7, Shen

et al. (2013)). Borkar (2002) proposed a Q-learning algorithm for risk-aware average MDPs with an

entropic risk measure, which is derived from the multiplicative Poisson equation and does not rely on

MLMC. For further details, readers may refer to Borkar (2002).

5 Experiments

In this section, we provide numerical experiments confirming the convergence of our MLMC-based Q-

learning algorithm (MLMC Q-learning), derive an off-policy Q-learning algorithm for UBSR measures

(UBSR Q-learning), and apply our algorithm (see pseudo-codes in Appendix A) to real-life prob-

lems to showcase its potential. Further details and experimental investigations are also presented in

Appendix C, namely regarding the sensitivity of MLMC Q-learning to r, the convergence of UBSR

Q-learning, and the effect of risk-awareness in long term performance of policies.

5.1 Convergence of MLMC Q-learning

We begin by validating the convergence of the risk-aware RVI Q-learning algorithm (4.1) using a ran-

domly generated MDP with 10 states and 5 actions per state. The nominal transition kernel P is gener-

ated from a uniform distribution over [0, 1] and subsequently normalized. The cost function is sampled

from a normal distribution N (1, 1). We choose γ(n) := (1/(n+ 1))2/3 and f(q) := 1
|X ||A|

∑
x,a q(x, a).

Due to space limit, we only show the convergence results for two special cases of UBSR and OCE: the

expectile with τ = 0.75 and OCE with loss function ℓ(x) := γ1x
+ − γ2x

− where γ1 = 2 and γ2 = 0.5.

We run the MLMC Q-learning algorithm 100 times independently with r = 0.49 and plot the

mean value of f(Qn) in Figure 5.1, with the 95th and 5th percentiles as the confidence interval (CI).

For comparison, trajectories from value iteration and the risk-aware RVI algorithm (3.2) are shown

together with the true optimal risk (via value iteration). It is evident that the MLMC Q-learning

algorithm converges to the true optimal average risk almost surely. As a model-based approach, the

risk-aware RVI achieves convergence to the optimum at a significantly faster rate.

It is worth noting that selecting r ∈ (0, 1/2) does not ensure finite sample guarantees based on

Theorem 4.7, as each iteration requires an average of infinitely many samples when r ≤ 1/2. However,

for some r ∈ (1/2, 3/4), both asymptotic and finite sample guarantees may still be achieved as observed

empirically in additional experiments presented in Appendix C.1. These empirical findings are coherent

with the guarantees identified in Wang et al. (2023a) for a special class of distributionally robust

discounted MDPs.
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Figure 5.1: Convergence experiments for risk-aware RVI (3.2) and MLMC Q-learning(4.1).

5.2 A new off-policy Q-learning algorithm for UBSR measures

An important practical concern of our MLMC Q-learning algorithm is the necessity for a resampling

procedure for each (x, a) pair, which prevents the algorithm from being adapted for off-policy learning.

This can be addressed when the risk map employs a UBSR measure using an approach proposed

in Shen et al. (2014) for risk-aware discounted MDPs. Namely, Proposition 4.113 in Föllmer and

Schied (2016) establishes that for any v ∈ L(X ), the risk map SRx,a(v) is the unique solution of

Ex,a[ℓ(v − SRx,a(v))] = 0. This implies that the AROE (3.4) can be equivalently rewritten as:

E
[
ℓ

(
c(x, a) + min

a′∈A
q(·, a′)− f(q)− q(x, a)

)]
= 0, ∀(x, a) ∈ K.

This motivates the following off-policy algorithm that seeks to identify the root of this AROE using

stochastic approximation (see Borkar (2008)). Specifically, given any sequence {(xn, an, x′n)}, with
x′n ∼ P (·|x, a), the asynchronous UBSR-based Q-learning consists in applying the updates:

Qn+1(xn, an) = Qn(xn, an) + γ(n)ℓ
(
c(xn, an) + min

a′∈A
Qn(x

′
n, a

′)− f(Qn)−Qn(xn, an)
)
. (5.1)

where each subsequence {γ(n)}n:(xn,an)=(x,a), indexed by (x, a) ∈ K, satisfies Assumption 4.4. The

synchronous algorithm can also be derived if all (x, a) pairs are updated within one iteration.

Figure 5.2 presents the convergence of the two UBSR Q-learning algorithms for the expectile in

the same setting outlined in Section 5.1. For comparison, we also include the results of the MLMC

Q-learning algorithm (4.1) with r = 0.6, which uses an expected 6,000 samples per state-action pair

over 1,000 iterations, corresponding to 300,000 iterations of the asynchronous UBSR Q-learning algo-

rithm (5.1) and 6,000 iterations for the synchronous version.

Further experiments with different loss functions along with a detailed discussion and comparison

to the MLMC Q-learning algorithm (4.1) are provided in Appendix C.2. Overall, the two UBSR

Q-learning algorithms (5.1) exhibits both a faster convergence and lower variance than the MLMC

Q-learning algorithm (4.1). Investigating the almost sure convergence and optimality of this algorithm

remains an interesting direction for future research.

5.3 Applications

To illustrate the practicality of our risk-aware algorithms, we tested them on three popular average-

cost MDP problems: machine replacement (MR), water reservoir management (WR), and inventory
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Figure 5.2: Comparison of MLMC and UBSR Q-learning with equivalent number of samples.

management (IM) (e.g. Puterman (1994), Hernández-Lerma (1989)). Each problem is evaluated under

four risk measures: expectile (EX, τ = 0.9), OCE (γ1 = 2, γ2 = 0.5), mean-CVaR (η = 0.1, α = 0.2)

and risk-neutral (RN). Experiment details are provided in Appendix C.3.

Table 1 presents the optimal average risk for the three applications under the four risk measures,

along with the average risk obtained from the four risk-aware policies evaluated under the expectile

τ = 0.9. Appendix C.4 explores risk differences across τ values, showcasing UBSR’s flexibility in risk

preference design. These results confirm our theory, proving the effectiveness of our algorithms in

computing optimal risk-aware policies tailored to an agent’s risk preferences.

Table 1: Average risk for different experimental setups under different risk measures.

Risk Measures

Optimal Risk Expectile Risk

MR WR IM MR WR IM

EX 68.7499 20.2541 24.8694 68.7499 20.2541 24.8694
OCE 63.9291 14.1389 23.733 68.9323 20.3239 25.2908

Mean-CVaR 59.5244 9.9319 22.8955 69.3343 20.6413 26.5721
RN 54.4233 7.6174 20.1345 69.9359 20.6413 28.1901

6 Conclusion and future research

In this paper, we introduced the first risk-aware RVI algorithm and two novel model-free risk-aware

RVI Q-learning algorithms for average-cost MDPs. Several research directions are worth exploring.

First, we conjecture that the strong ergodicity Assumption 4.8 could be weakened. Second, the finite

sample guarantee of MLMC Q-learning remains an open question. Indeed, it would be worthwhile to

investigate whether the derivation of guarantees Wang et al. (2023a) for a special class of distribution-

ally robust discounted MDPs and variance reduction technique in Wang et al. (2024) can be adapted

to our setting. Finally, the almost sure convergence and sample complexity of UBSR Q-learning should

be addressed.
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A Algorithm pseudo-codes

Algorithm 1 Risk-aware Relative Value Iteration

1: Input: V0, f , T , n← 0;
2: while n < T do
3: for all x ∈ X do
4: Vn+1(x)← G(Vn)(x)− f(Vn), where G defined in (3.2);
5: end for
6: n← n+ 1;
7: end while

Algorithm 2 Risk-aware Relative Q-factor Iteration

1: Input: Q0, f , T , n← 0;
2: while n < T do
3: for all x ∈ X , a ∈ A do
4: Qn+1(x, a)←H(Qn)(x, a)− f(Qn), where H defined in (3.3);
5: end for
6: n← n+ 1;
7: end while

Algorithm 3 Risk-aware RVI Q-learning with MLMC (MLMC Q-learning)

1: Input: Q0, f , γ(n), r ∈ (0, 1), T , n← 0;
2: while n < T do
3: for all x ∈ X , a ∈ A do
4: Sample N ∼ Geo(r);
5: Independently draw 2N+1 samples x′

i ∼ P (·|x, a);
6: Qn+1(x, a)← Qn(x, a) + γ(n)

(
Ĥ(Qn)(x, a)− f(Qn)−Qn(x, a)

)
, where Ĥ is defined in (4.2);

7: end for
8: n← n+ 1;
9: end while

Algorithm 4 Off-policy (asynchronous) RVI Q-learning for UBSR (A-UBSR Q-learning)

1: Input: Q0, ℓ, f , γ(n), T , n← 0;
2: while n < T do
3: Observe one transistion (x, a, x′);
4: Qn+1(x, a)← Qn(x, a) + γ(n)ℓ (c(x, a) + mina′∈A Qn(x′, a′)− f(Qn)−Qn(x, a));
5: n← n+ 1;
6: end while

Algorithm 5 Synchronous RVI Q-learning for UBSR (S-UBSR Q-learning)

1: Input: Q0, ℓ, f , γ(n), T , n← 0;
2: while n < T do
3: for all x ∈ X , a ∈ A do
4: Observe one sample x′;
5: Qn+1(x, a)← Qn(x, a) + γ(n)ℓ (c(x, a) + mina′∈A Qn(x′, a′)− f(Qn)−Qn(x, a));
6: end for
7: n← n+ 1;
8: end while

B Proofs

B.1 Proof of Theorem 3.2 and 3.4

From the definition of the risk-aware RQI algorithm (3.3), it is evident that the risk-aware RVI algo-

rithm (3.2) can be considered a special case of RQI by defining V (x) := mina∈AQ(x, a). Consequently,

if the risk-aware RQI algorithm converges, then it follows that the risk-aware RVI algorithm also con-

verges.
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In order to study the Q-factor iteration, we make use of an augmented risk map R̃, on the K
outcome space, using

R̃x,a(q) := R
(
min
a′∈A

q(·, a′)
∣∣∣x, a) , ∀q ∈ L(K). (B.1)

The risk map R̃ implicitly reduces the average risk-aware control problem to an average risk evaluation

on a cost generating Markov chain. We thus invoke a general Doeblin type condition for average risk

evaluation on a Markov chain as follows, where we see K as the set of states of the Markov chain.

Assumption B.1 (Assumption 3.1, Shen et al. (2013)). There exists a function w̃ : K → [0,+∞), a

monetary risk measure ν̃ : L(K) → R, and some constants K̃ > 0, γ̃ ∈ (0, 1), and α̃ ∈ (0, 1) such that:

(1) Let R̃#
x,a(q) := supp∈L(X ){R̃x,a(q + p) − R̃x,a(p)} and R̃#

x,a(q) := supλ̸=0
R̃#

x,a(λq)

λ . We have

that
R̃#

x,a(w̃) ≤ γ̃w̃(x, a) + K̃, ∀(x, a) ∈ K.

(2) For all q ≥ p ∈ L(K), we have that:

inf
(x,a)∈K:w̃(x,a)≤R̃

{R̃(q|x, a)− α̃ν̃(q)− R̃(p|x, a) + α̃ν̃(p)} ≥ 0,

for some R̃ > 2K̃/(1− γ̃).

Lemma B.2. If R satisfies Assumption 2.12, then R̃ satisfies Assumption B.1.

Proof. For the ᾱ and ν satisfying Assumption 2.12, define w̃ := 0, K̃ := 1, γ̃ := 0.5, α̃ := 0.5,

R̃ := 5 > 2K̃/(1− γ̃), and monetary risk measure ν̃(q) := ν(mina∈A q(·, a)). We have

R̃#
x,a(0) = sup

λ ̸=0

R̃#
x,a(λ0)

λ
= sup

λ ̸=0

R̃#
x,a(0)

λ
= sup

λ ̸=0

0

λ
= 0 ≤ 0.5 · 0 + 1 = γ̃w̃(x, a) + K̃,

where we exploited the fact that:

R̃#
x,a(0) = sup

q∈L(K)

{R̃x,a(q)− R̃x,a(q)} = 0, ∀(x, a) ∈ K.

Moreover, for all q ≥ p ∈ L(K), we have

min
(x,a)∈K,w̃(x,a)≤R̃

{R̃(q|x, a)− ᾱν̃(q)− R̃(p|x, a) + ᾱν̃(p)}

= min
(x,a)∈K

{R̃(q|x, a)− ᾱν̃(q)− R̃(p|x, a) + ᾱν̃(p)}

= min
(x,a)∈K

{Rx,a(min
a′

q(·, a′))− ᾱν(min
a′

q(·, a′))−Rx,a(min
a′

p(·, a′)) + ᾱν(min
a′

p(·, a′))}

≥ 0,

where the last inequality follows from Assumption 2.12 using v(·) := mina′∈A q(·, a′) and v′(·) :=

mina′∈A p(·, a′). The result follows.

We now list the properties of span-seminorm contractive operators that we will use later on.

Lemma B.3 (Theorem 6.6.2, Puterman (1994)). Let T : L(Ω) → L(Ω), for some finite space Ω, be an

operator that is span-seminorm contractive, i.e., there exists an ᾱ ∈ [0, 1) such that ∥T (v)−T (w)∥sp ≤
ᾱ∥v − w∥sp, for all v, w ∈ L(Ω). Then the followings are true:

(1) There exists a v∗ ∈ L(Ω) such that ∥T (v∗) − v∗∥sp = 0. Such v∗ is called the span-seminorm

fixed point of the operator T .

(2) For all n ≥ 0, ∥T n(v)− v∗∥sp ≤ ᾱn∥v − v∗∥sp.
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(3) For any v ∈ L(Ω), we have limn→∞ ∥T n(v)− v∗∥sp = 0.

(4) Any two span-fixed points of T must differ by a constant.

In our proofs we will exploit the fact that R̃ is non-expansive and span-seminorm contractive.

Lemma B.4. If the risk map R satisfies Assumption 2.12, then both R̃ and H (from Equation (3.3))

are non-expansive under the infinity norm and span-seminorm contractive.

Proof. From Proposition 3.6 in Shen et al. (2013), for any risk map R̃, which satisfies Assumption B.1

based on Lemma B.2, we have |R̃x,a(q+p)−R̃x,a(p)| ≤ R̃#
x,a(|q|), where |q|(x) := |q(x)|. Since R#

x,a

is a coherent risk measure (see Proposition 3.5 in Shen et al. (2013) ), we have for all q, p ∈ L(K):

|R̃x,a(q)− R̃x,a(p)| ≤ R̃#
x,a(|q − p|) ≤ R̃#

x,a(∥q − p∥∞e) = ∥q − p∥∞,

where the second inequality follows from monotonicity of R̃#
x,a, while the last equality comes from

translation invariance and normalization of R̃#
x,a.

The span-seminorm contraction straightforwardly follows from Theorem 3.11 in Shen et al. (2013)

given the fact that R̃ satisfies Assumption B.1 as established in Lemma B.2.

These properties carry directly to H since

∥H(q)−H(p)∥∞ = ∥R̃(q|·)− R̃(p|·)∥∞ ≤ ∥q − p∥∞,

and

∥H(q)−H(p)∥sp = ∥R̃(q|·)− R̃(p|·)∥sp ≤ ᾱ∥q − p∥sp
for some ᾱ ∈ [0, 1). This completes the proof.

We are now ready prove the convergence of the risk-aware RQI algorithm (3.3).

Proof of Theorem 3.4. Define V̄n(x) := mina∈AQn(x, a), ∀x ∈ X . Take minimum over a on both

sides of (3.3), we obtain

V̄n+1(x) = min
a∈A

{c(x, a) +Rx,a(V̄n)} − f(Qn) = G(V̄n)(x)− f(Qn), ∀x ∈ X ,

where G is the risk-aware Bellman optimality operator. If Qn converges to some fixed point Q∞ of (3.3)

under the infinity norm, we have

min
a∈A

Q∞(x, a) = min
a∈A

{
c(x, a) +Rx,a

(
min
a′∈A

Q∞(·, a′)
)}

− f(Q∞), ∀x ∈ X . (B.2)

Notice that mina∈AQ∞(·, a) ∈ L(X ), f(Q∞) ∈ R and Q∞ satisfies B.2, we conclude that

(mina∈AQ∞(·, a), f(Q∞)) is a pair of solution to the AROE (2.1). By Theorem 2.13, f(Q∞) = g∗.

Therefore, We are left with the task to show that Qn converges to some unique fixed point Q∞ of (3.3).

To analyze the convergence, consider the augmented risk map defined in (B.1). Then Algo-

rithm (3.3) can be equivalently written as:

Qn+1(x, a) = c(x, a) + R̃x,a (Qn)− f(Qn), ∀(x, a) ∈ K.

given the translation invariance of Rx,a. Its convergence can be associated to the convergence of an

average risk estimator on a Markov chain, with K as the state space, under the risk map R̃ on the

K outcome space, which is studied in Section 3 of Shen et al. (2013). Indeed, given that R̃ satisfies

Assumption B.1, Theorem 3.14 (i) in Shen et al. (2013) already establishes that the Poisson equation,

c(x, a) + R̃x,a(q) = g + q(x, a), ∀(x, a) ∈ K, (B.3)
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has a solution (q∗, g̃∗), where g̃∗ is unique.

By Lemma B.4, the risk-aware Bellman optimality operator H (see (3.3)), is span-seminorm con-

tractive. This implies, based on Lemma B.3, that H has a span-seminorm fixed point, i.e, there exists

q∗ ∈ L(K) and g̃∗ ∈ R such that ∥H(q∗) − q∗∥sp = 0 and q∗ + g̃∗ = H(q∗). The latter implies that

(q∗, g̃∗) satisfies the Poisson equation (B.3) and that limn→∞ ∥Hn(q) − q∗∥sp = 0, for any q ∈ L(K),

due to the span-seminorm contraction property of H (Lemma B.3).

One can further show that Hn+1(q)−Hn(q) → g̃∗, for any q ∈ L(K), using

∥Hn+1(q)−Hn(q)− g̃∗∥∞
= inf

g
∥H(q∗ + g +Hn(q)− g − q∗)− (q∗ + g +Hn(q)− g − q∗)− g̃∗∥∞

= inf
g
∥H(q∗ +Hn(q)− g − q∗) + g − q∗ − g −Hn(q) + g + q∗ − g̃∗∥∞

≤ inf
g
{∥H(q∗ +Hn(q)− g − q∗)−H(q∗)∥∞ + ∥H(q∗)− q∗ − g̃∗∥∞ + ∥Hn(q)− g − q∗∥∞}

≤ inf
g
{∥Hn(q)− g − q∗∥∞ + ∥q∗ + g̃∗ − q∗ − g̃∗∥∞ + ∥Hn(q)− g − q∗∥∞}

= 2 inf
g
∥Hn(q)− g − q∗∥∞ = ∥Hn(q)− q∗∥sp.

where the second equality comes from translation invariance, the first inequality comes from the

triangular inequality, the second inequality follows from H being non-expansive (see Lemma B.4), and

finally the last equality is proved as Lemma 3.9 in Shen et al. (2013). Hence, we must have that

limn→0 ∥Hn+1(q)−Hn(q)− g̃∗∥∞ ≤ limn→∞ ∥Hn(q)− q∗∥sp = 0.

We now wish to analyze the convergence of the process {Qn}∞n=0 produced by our algorithm. To

do so, consider the process Un+1 := H(Un) with U0 := Q0, for which we know that ∥g̃n − g̃∗∥∞ → 0

as n → ∞, where g̃n := Un+1 − Un, for n ≥ 0. One can actually establish by induction that

Qn = Un − f(Un−1) for all n ≥ 1. Namely, start at n = 1 where

Q1 = H(Q0)− f(Q0) = H(U0)− f(U0) = U1 − f(U0).

Then iteratively assuming that Qn = Un − f(Un−1), one can confirm that:

Qn+1 = H(Qn)− f(Qn) = H(Un − f(Un−1))− f(Un − f(Un−1))

= H(Un)− f(Un−1)− f(Un) + f(Un−1) = H(Un)− f(Un) = Un+1 − f(Un).

This relation can be used to establish that

∥Qn+1 −Qn∥∞ = ∥Un+1 − f(Un)− Un + f(Un−1)∥∞
= ∥g̃n − f(Un) + f(Un−1 + g̃∗)− f(Un−1 + g̃∗) + f(Un−1)∥∞
= ∥g̃n − g̃∗ − f(Un) + f(Un−1 + g̃∗)∥∞
≤ ∥g̃n − g̃∗∥∞ + ∥f(Un)− f(Un−1 + g̃∗)∥∞
≤ ∥g̃n − g̃∗∥∞ + L̃∥Un − Un−1 − g̃∗∥∞
= ∥g̃n − g̃∗∥∞ + L̃∥g̃n−1 − g̃∗∥∞.

where the third equality follows from the translation invariance property of f imposed in Assump-

tion 3.3 (i), while the final inequality arises from the Lipschitz property of f in in Assumption 3.3

(ii), with L̃ ≥ 0 as the Lipschitz constant. When n → ∞, we have shown that ∥g̃n − g̃∗∥∞ =

∥Hn+1(Q0) − Hn(Q0) − g̃∗∥∞ → 0. Therefore we can conclude that Qn converges to some Q∞ and

f(Qn) converges to g̃
∗ as n→ ∞, i.e., (Q∞, f(Q∞)) satisfies the Poisson equation (B.3).

Finally, we show that such Q∞ is independent of Q0 for a fixed f . Since Qn → Q∞ as n → ∞,

from (3.3), we obtain that

Q∞(x, a) = H(Q∞)(x, a)− f(Q∞), ∀(x, a) ∈ K. (B.4)
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Notice that f(Q∞) = g̃∗ is a constant, this implies that Q∞ is a span-seminorm fixed point of H.

Suppose Q̃∞ is another solution to (B.4). Then by Lemma B.3(iv), Q∞ and Q̃∞ only differs by a

constant. Yet, we know that g̃∗ = f(Q̃∞) = f(Q∞ + r) = f(Q∞) + r = g̃∗ + r, which implies that

r = 0 and that Q∞ = Q̃∞. We therefore conclude that Q∞ is unique.

From the analysis in the first part, we conclude that h̃∗ := mina∈AQ∞(·, a) and g̃∗ := f(Q∞)

identify a solution pair to the AROE (2.1) and thus f(Q∞) = g∗.

We now turn to establishing Theorem 3.2.

Proof of Theorem 3.2. Let f̃ : L(X ) → R be a function satisfying Assumption 3.1. Define a function

f̂ : L(K) → R as f̂(Qn) := f̃(mina∈AQn(·, a)). It is easy to verify that f̂ satisfies Assumption 3.3.

Consider the risk-aware RQI (3.3) with function f̂ starting withQ0. Define V̄n(x) := mina∈AQn(x, a),

for all x ∈ X . Take minimum over a on both sides of (3.3), we obtain

V̄n+1(x) = min
a∈A

{c(x, a) +Rx,a(V̄n)} − f̂(Qn) = G(V̄n)(x)− f̂(Qn)

= G(V̄n)(x)− f̃(V̄n), ∀x ∈ X ,

where G is the risk-aware Bellman optimality operator defined in (3.2). This is exactly the risk-aware

RVI algorithm with initial value function V0(x) = mina∈AQ0(x, a), for all x ∈ X .

By Theorem 3.4, the RQI algorithm converges, i.e., Qn converges to some unique fixed point of (3.3)

called Q∗. Hence, V̄n converges to some V̄ ∗ := mina∈AQ
∗(·, a). Since we can always design a Q0 such

that mina∈AQ0(x, a) = V̄0(x) for any V̄0 ∈ L(X ). We conclude that for any initial value V0, the

risk-aware RVI algorithm (3.2) converges to some V ∗.

Using the same reasoning as in Lemma B.4, we can conclude that the risk-aware Bellman optimality

operator G is non-expansive under the infinity norm and contractive with respect to the span-seminorm.

Based on Assumption 3.1 and the preceding derivation, taking the limit on both sides of (3.2) yields

the equation V ∗(x) = G(V ∗)(x)− f̃(V ∗) for all x ∈ X . This implies that (V ∗, f̃(V ∗)) identifies a pair

of solution to the AROE (2.1), leading to f̃(V ∗) = g∗ and V ∗ serves as a fixed point of (3.2). The

uniqueness of V ∗ follows from the same argument used to establish the uniqueness of Q∗ in the proof

of Theorem 3.4. This completes the proof.

B.2 Proof of Theorem 4.5

In this section, we use the ODE analysis of stochastic approximation to prove the convergence of the

risk-aware RVI Q-learning algorithm.

Define an operator H : L(K) → L(K) as

H(q)(x, a) := Rx,a

(
c(x, a) + min

a′∈A
q(·, a′)

)
− f(q)− q(x, a), ∀q ∈ L(K).

Then the update of the risk-aware RVI Q-learning can be written as

Qn+1 = Qn + γ(n)(Ĥ(Qn)− f(Qn)−Qn)

= Qn + γ(n)(H(Qn) + Ĥ(Qn)−H(Qn)− f(Qn)−Qn).

Hence we have the stochastic approximation iteration:

Qn+1 = Qn + γ(n)(H(Qn) +Mn+1), (B.5)

where Mn+1 := Ĥ(Qn)−H(Qn) is the noise term.
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The classical approach to analyzing stochastic approximation using ODEs involves examining the

stability of the equilibrium of a corresponding ODE related to (B.5):

ṗt = H(pt). (B.6)

If the ODE (B.6) has a unique globally asymptotically stable equilibrium point p∗, then under certain

conditions, the stochastic approximation (B.5) converges, with Qn → Q∗ = p∗ almost surely (see

Theorem 2.2 of Borkar and Meyn (2000)). Notice that if such p∗ exists, then Q∗ is a solution to the

AROE (3.4), which implies that (mina′∈A p
∗(·, a′), f(p∗)) is a pair of solution to the AROE (2.1). Then

the result of Theorem 4.5 follows easily.

Analyzing the stability of the equilibrium point of ODE (B.6) can sometimes be challenging. A

common approach is to employ a time-averaging technique to smooth out perturbations and examine

the stability of the origin in the limiting ODE. Namely, we define an operator Hs : L(K) → L(K) as

Hs(Q) := 1
sH(sQ), with s ≥ 1 and consider the ODE:

ϕ̇t = Hs(ϕt). (B.7)

Following Borkar and Meyn (2000), to establish the convergence of the stochastic approxima-

tion (B.5), we outline the sufficient conditions that are needed to be verified:

(i) The function H is Lipschitz.

(ii) The sequence {Mn,Fn : n ≥ 1} with Fn := σ(Qi,Mi, i ≤ n) is a martingale difference sequence.

Moreover, there exists some C0 < ∞ and for any initial condition Q0 ∈ L(K) we have almost

surely,

E[∥Mn+1∥2∞|Fn] ≤ C0(1 + ∥Qn∥2∞), n ≥ 0.

(iii) The step size satisfies the Robbins-Monro condition (see Assumption 4.4).

(iv) For any initial condition Q0 ∈ L(K), the iteration is bounded almost surely, i.e., supn ∥Qn∥∞ <

∞, almost surely.

(v) The ODE (B.6) has a unique globally asymptotically stable equilibrium point.

(vi) The limit H∞(Q) := lims→∞Hs(Q) exists and the convergence is uniform on compact sets, and

the ODE

ϕ̇t = H∞(ϕt), (B.8)

has the origin as an asymptotically stable equilibrium.

Following Theorem 2.2 of Borkar and Meyn (2000), if conditions (i), (ii), (iii), (iv) and (v) hold, then

the stochastic approximation (B.5) converges almost surely to the unique globally stable equilibrium

point of the ODE (B.6), which is a solution to the AROE (3.4), thus confirming our theorem.

The Lipschitz property (i) is straightforward to verify, as the risk measure Rx,a and the function f

are both Lipschitz (see Lemma B.4 and Assumption 3.3). As stated in Theorem 2.1 of Borkar and

Meyn (2000), the almost sure boundedness condition (iv) follows from conditions (i), (vi), (ii) and (iii),

where condition (iii) is automatically satisfied by Assumption 4.4. Thus, the remainder of this section

focuses on verifying conditions (i), (ii), (v) and (vi).

B.2.1 Condition (i)

Lemma B.5. H, Hs and H∞, if it exists, are Lipschitz and have the same Lipschitz constant.

Proof. Following Lemma B.4, R̃ is non-expansive. Hence, for any Q1, Q2 ∈ L(K), with Assump-

tion 3.3, we have

H(Q1)(x, a)−H(Q2)(x, a) = R̃x,a(Q1)− R̃x,a(Q2)− f(Q1) + f(Q2)−Q1(x, a)−Q2(x, a)
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≤ ∥Q1 −Q2∥∞ + L̃∥Q1 −Q2∥∞ + ∥Q1 −Q2∥∞
= (2 + L̃)∥Q1 −Q2∥∞,

where L̃ is the Lipschitz constant for f . Similarly, we obtain H(Q2)(x, a)−H(Q1)(x, a) ≤ (2+L̃)∥Q2−
Q1∥∞. Hence H is Lipschitz with Lipschitz constant 2 + L̃.

Meanwhile,

Hs(Q1)(x, a)−Hs(Q2)(x, a) =
1

s

(
Rx,a

(
c(x, a) + min

a′∈A
sQ1(x, a)

)
−Rx,a

(
c(x, a) + min

a′∈A
sQ2(x, a)

)
− f(sQ1) + f(sQ2)− sQ1(x, a) + sQ2(x, a)

)
≤1

s
(s∥Q1 −Q2∥∞ + s∥Q1 −Q2∥∞ + s∥Q1 −Q2∥∞)

=(2 + L̃)∥Q1 −Q2∥∞.

Similarly, we obtain Hs(Q2)(x, a) −Hs(Q1)(x, a) ≤ (2 + L̃)∥Q2 −Q1∥∞. Hence Hs is Lipschitz with

Lipschitz constant 2 + L̃. Similarly, if H∞(Q) := lims→∞Hs(Q) exists, H∞ is also Lipschitz with

Lipschitz constant 2 + L̃.

B.2.2 Condition (ii)

We check that Mn is a martingale difference sequence that satisfies (ii).

Lemma B.6. Under Assumption 4.1, for all n = 0, 1, ..., we have E[Mn+1|Fn] = 0 almost surely and

there exists some C0 <∞ such that for any initial condition Q0 ∈ L(K) we have

E[∥Mn+1∥2∞|Fn] ≤ C0(1 + ∥Qn∥2∞), n ≥ 0, a.s.

Proof. By Assumption 4.1, it is easy to see that

E[Ĥ(Qn)|Fn] = H(Qn), a.s, Var[Ĥ(Qn)(x, a)|Fn] ≤ C(1 + ∥Qn∥2∞), ∀(x, a) ∈ K, a.s.,

for some constant C > 0. Then by definition,

E[Mn+1|Fn] = E[Ĥ(Qn)−H(Qn)|Fn] = E[Ĥ(Qn)|Fn]−H(Qn) = 0, a.s.

Meanwhile, for any (x, a) ∈ K, from the definition of variance, we have for all (x, a) ∈ K that almost

surely

E[(Mn+1(x, a))
2|Fn] = E[(Ĥ(Qn)(x, a)−H(Qn)(x, a))

2|Fn]
= E[(Ĥ(Qn)(x, a)− E[Ĥ(Qn)(x, a)|Fn])2|Fn]
= Var[Ĥ(Qn)(x, a)|Fn]
≤ C(1 + ∥Qn∥2∞).

This implies that

E[∥Mn+1∥22|Fn] ≤ |K|C(1 + ∥Qn∥2∞), a.s.

From the Lp-norm inequality, we have

E[∥Mn+1∥2∞|Fn] ≤ E[∥Mn+1∥22|Fn] ≤ |K|C(1 + ∥Qn∥2∞) =: C0(1 + ∥Qn∥2∞), a.s.,

for some constant C0 <∞. This completes the proof.
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B.2.3 Condition (v)

In this subsection, we always assume Assumption 3.3 holds for all the lemmas. To prove (v), we need to

analyze the stability of the equilibrium of ODE (B.6), which is quite difficult as there exists nonlinear

terms Rx,a and f . Following Abounadi et al. (2001), we also analyze the behavior of an ODE where

we replace f(Q) with a constant g∗:

q̇t = H̃(qt), (B.9)

where H̃(q) := H(q) − g∗ − q, ∀q ∈ L(K). Clearly, the fixed point q∗ of ODE (B.9), together with

g∗, is a solution to the AROE (3.4). Hence, under Assumption 2.12, the set of fixed point of (B.9)

is not empty and by lemmas B.3 and B.4, the fixed points differ by a constant. We conclude on the

characteristic of the set of the equilibrium points of ODE (B.9) using the following lemma.

Lemma B.7. The set G of equilibrium of ODE (B.9) satisfies G = {q : q = q̄∗ + r, r ∈ R}, where q̄∗ is

the only solution to the AROE (3.4) that satisfies f(q̄∗) = g∗.

Proof. It is evident that any solution q∗ to the AROE (3.4) satisfies 0 = H̃(q∗), indicating that q∗

is an equilibrium point for the ODE (B.9). According to Theorem 2.13, under Assumption 2.12, the

set of equilibrium points is non-empty. Similarly, for any equilibrium point q̃ ∈ G, we have 0 = H̃(q̃),

which satisfies the AROE (3.4), implying that q̃ is a solution to the AROE (3.4), i.e., a span-seminorm

fixed point of H. By Lemma B.3, each fixed point differs only by a constant. Therefore, we conclude

that G = {q : q = q̃ + r, r ∈ R} for some equilibrium point q̃.

Now suppose f(q̃) = m for some constant m. Then by Assumption 3.3, f(q̃+g∗−m) = f(q̃)+g∗−
m = g∗. Hence, we can always find a q̄∗ := q̃ + g∗ −m satisfying f(q̄∗) = g∗. By definition, q̄∗ ∈ G,

therefore is a solution to the AROE (3.4).

For notation simplicity, define

H̄(q) := H(q)− f(q), H̃(q) := H(q)− g∗, q ∈ L(K).

Then for the two ODEs (B.6) and (B.9), we have

ṗt = H(pt) = H̄(pt)− pt, q̇t = H̃(qt) = H̃(qt)− qt.

Since H is non-expansive (see Lemma B.4), H̃ is also non-expansive. From Theorem 3.1 of Borkar

and Soumyanatha (1997) (also see Lemma 3.1 of Abounadi et al. (2001)), the ODE (B.9) has a unique

trajectory that may depend on the initial point q0 and converges to some equilibrium point q∗. We

conclude as the following lemma.

Lemma B.8. Let qt be a solution of ODE (B.9). Then qt → q∗ as t → ∞ for some equilibrium point

q∗ of (B.9) that may depend on Q0. Moreover, q∗ = q̄∗ + r̄ for some r̄ ∈ R, where q̄∗ is defined in

Lemma B.7.

Proof. The convergence result follows from Abounadi et al. (2001) Lemma 3.1. Then the result follows

by applying Lemma B.7.

Following the property of f , we can show that the equilibrium point of ODE (B.6) is unique and

is also included in the set of equilibrium points of ODE (B.9).

Lemma B.9. The point q̄∗ is the unique equilibrium point of ODE (B.6).

Proof. Based on Lemma B.7, since f(q̄∗) = g∗, we have H̄(q̄∗) = H̃(q̄∗) = q̄∗, which means that q̄∗ is

an equilibrium point for (B.6). Conversely, if there exists some p̃ such that H̄p̃ = p̃, by definition, the

solution of the above equation satisfies the AROE (3.4). By Theorem 3.4, f(p̃) = g∗. Therefore, we
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have p̃ = H̄(p̃) = H̃(p̃), which means p̃ is also an equilibrium for (B.9). By Lemma B.7, p̃ = q̄∗ + r̄ for

some r̄ ∈ R. Then we have g∗ = f(p̃) = f(q̄∗ + r) = g∗ + r. This implies that r = 0. Therefore, q̄∗ is

a unique equilibrium point for ODE (B.6).

The next result shows that the trajectory of ODE (B.6) and ODE (B.9) differs only by a constant

function.

Lemma B.10. Let pt and qt be the solutions to the ODEs (B.6) and (B.9), with the same initial value

p0(x, a) = q0(x, a) = Q0(x, a). Then we have

pt(x, a) = qt(x, a) + rt, ∀(x, a) ∈ K,

where rt is a scalar function satisfying

ṙt = −rt + g∗ − f(qt).

Proof. Notice that H̄(Q) = H̃(Q) + (g∗ − f(Q)). Then from the variation of constants formula, we

have that

pt(x, a) = q0(x, a)e
−t +

∫ t

0

e−(t−s)H̃(ps(x, a))ds+

∫ t

0

e−(t−s)(g∗ − f(ps)ds,

qt(x, a) = q0(x, a)e
−t +

∫ t

0

e−(t−s)H̃(qs(x, a))ds.

The maximal and minimal components of pt − qt can be bounded by

max
(x,a)∈K

{pt(x, a)− qt(x, a)} ≤
∫ t

0

e−(t−s) max
(x,a)∈K

{H̃(ps)(x, a)− H̃(qs)(x, a)}ds

+

∫ t

0

e−(t−s)(g∗ − f(ps))ds,

min
(x,a)∈K

{pt(x, a)− qt(x, a)} ≥
∫ t

0

e−(t−s) min
(x,a)∈K

{H̃(ps)(x, a)− H̃(qs)(x, a)}ds

+

∫ t

0

e−(t−s)(g∗ − f(ps))ds.

Hence, we have

∥pt − qt∥sp ≤
∫ t

0

e−(t−s)∥H̃(ps)− H̃(qs)∥spds

≤
∫ t

0

e−(t−s)∥ps − qs∥spds.

The inequality is from the fact that H is span-seminorm contractive (see Lemma B.4). By the Gronwall

inequality, we have ∥pt − qt∥sp = 0. This implies that there exists some scalar function rt such that

pt(x, a) = qt(x, a) + r(t) for all (x, a) ∈ K, with r(0) = 0.

Since H̃(pt) = H̃(qt + rt) = H̃(qt) + rt and f(pt) = f(qt + rt) = f(qt) + rt. Then the differential

of rt is

ṙte = ṗt − q̇t = H̃(pt) + g∗ − f(pt)− pt − H̃(qt) + qt = (−rt + g∗ − f(qt))e.

This completes the proof.

The following lemma shows that q̄∗ is the unique globally asymptotically stable equilibrium point

of ODE (B.6).
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Lemma B.11. q̄∗ is the unique globally asymptotically stable equilibrium point of ODE (B.6).

Proof. From Lemma B.10, by the variation of constant formula, we have rt =
∫ t
0
e−(t−s)(g∗−f(qt))ds.

By Lemma B.8, we have qt → q∗ ∈ G. Then we have rt → g∗ − f(q∗) so that pt → q∗ + (g∗ − f(q∗)),

which must coincide with q̄∗ since by Lemma B.9, it is the only equilibrium point of ODE (B.6). Next

we show the Lyapunov stability of q̄∗. Notice that

∥pt − q̄∗∥∞ ≤ ∥qt − q̄∗∥∞ + |rt|

≤ ∥q0 − q̄∗∥∞ +

∫ t

0

e−(t−s)|g∗ − f(qs)|ds

≤ ∥p0 − q̄∗∥∞ +

∫ t

0

e−(t−s)|f(q̄∗)− f(qs)|ds

≤ (1 + L̃(1− e−t))∥p0 − q̄∗∥∞.

Hence for any fixed t > 0 and any ϵ > 0, we can always make ∥p0 − q̄∗∥∞ < δ where δ < ϵ
1+L̃(1−e−t)

to guarantee that ∥pt − q̄∗∥∞ < ϵ. The Lyapunov stability holds, completing the proof.

B.2.4 Condition (vi)

We now look at condition (vi).

Lemma B.12. Under Assumptions 2.12 and 4.2 on R, the risk map R∞ also satisfies Assumption 2.12.

Proof. Following Assumption 2.12, there exists a coherent risk measure ν and ᾱ ∈ (0, 1) such that for

any v ≥ v′ ∈ L(X ), we have

min
(x,a)∈K

{R(v|x, a)− ᾱν(v)−R(v′|x, a) + ᾱν(v′)} ≥ 0.

Substituting v and v′ with sv and sv′ respectively, where s > 0, and then dividing both sides by s, we

obtain

1

s
min

(x,a)∈K
{R(sv|x, a)− ᾱν(sv)−R(sv′|x, a) + ᾱν(sv′)} ≥ 0.

Since ν is coherent and by Assumption 4.2, lims→∞
1
sRx,a(sv) = R∞

s,a(v), taking the limit, we obtain

0 ≤ lim
s→∞

min
(x,a)∈K

{
1

s
R(sv|x, a)− ᾱν(v)− 1

s
R(sv′|x, a) + ᾱν(v′)

}
= min

(x,a)∈K
{R∞

x,a(v)− ᾱν(v)−R∞
x,a(v

′) + ᾱν(v′)}.

This implies that R∞ satisfies Assumption 2.12 with coherent risk measure ν and ᾱ ∈ (0, 1).

Lemma B.13. Under Assumptions 2.12, 3.3, 4.2 and 4.3, the limit H∞(q) := lims→∞Hs(q) exists for

all Q ∈ L(K), and convergence is uniform on any compact sets. Furthermore, the ODE (B.8) has the

origin as a unique globally asymptotically stable equilibrium.

Proof. Under Assumption 4.3, we have

Hs(q)(x, a) =
1

s

{
Rx,a

(
c(x, a) + min

a′∈A
sq(·, a′)

)
− f(sq)− sq(x, a)

}
=
c(x, a)

s
+

1

s
Rx,a

(
s min
a′∈A

q(·, a′)
)
− f(q)− q(x, a).
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Hence, by Assumption 4.2:

H∞(q)(x, a) := lim
s→∞

Hs(q)(x, a) = R∞
x,a

(
min
a′∈A

q(·, a′)
)
− f(q)− q(x, a).

Since R∞
x,a exists and the convergence is uniform on all compact subsets of L(X ), the first part follows.

Clearly, the origin is an equilibrium point of the ODE (B.8). Following Lemma B.12, R∞
x,a satisfies

Assumption 2.12, then by Lemma B.11, the origin is also the globally asymptotically stable equilibrium

for ODE (B.8). Hence condition (vi) holds.

B.2.5 Convergence of RVI Q-learning

We are now ready to prove Theorem 4.5.

Proof of Theorem 4.5. The almost sure boundedness condition (iv) is derived from Theorem 2.1 of

Borkar and Meyn (2000), which necessitates verifying conditions (i), (vi), (ii) and (iii). These conditions

are confirmed using Lemmas B.5, B.6, B.13, and Assumption 4.4. The convergence and optimality

of the stochastic approximation then follow from Theorem 2.2 of Borkar and Meyn (2000), where

conditions (i), (ii), (iii), and (v) are validated through Lemmas B.5, B.6, B.11, and Assumption 4.4.

Regarding the almost sure convergence of πn → π∗, one can first observe that Q∗ : K → C ⊂ R, for
some discrete set C with |C| ≤ |K|. Letting

ϵ = min
(x,a),(x′,a′)∈K:Q∗(x,a)̸=Q∗(x′,a′)

|Q∗(x, a)−Q∗(x′, a′)| > 0,

the almost sure convergence of Qn → Q∗ implies that there is a probability one set of trajectories Q,

with each trajectory {Q̄n} ∈ Q having the property that there exists anN ≥ 0 such that ∥Q̄n−Q∗∥∞ ≤
ϵ/2 for all n ≥ N . This implies that for any n ≥ N ,

Q∗(x, a) > Q∗(x′, a′) =⇒ Q̄n(x, a) > Q̄n(x
′, a′), ∀(x, a), (x′, a′) ∈ K.

We can therefore conclude that for all x ∈ X and for all n ≥ N , we have

argmin
a∈A

Q̄n(x, a) ⊆ argmin
a∈A

Q∗(x, a), ∀x ∈ X .

Thus the policy πn converges to some π∗ for all {Q̄n} ∈ Q almost surely.

B.3 Proof of Theorem 4.7

For notation simplicity, we write (4.2) as

Ĥ(q) = HP̂ 1
N+1

(q) +
∆N (q)

pN
,

where

∆N (q) := HP̂N+1
(q)− 1

2

(
HP̂E

N+1
(q) +HP̂O

N+1
(q)
)
, ∀q ∈ L(K).

To prove Theorem 4.7, we invoke the concentration results under the 1-Wasserstein distance from

Fournier and Guillin (2015). The 1-Wasserstein distance between two probability measures µ and ν

on R is defined as

dW (µ, ν) := inf
ψ∈Ψ(µ,ν)

∫
|x− y|ψ(dx, dy),

where Ψ(µ, ν) is the set of all joint probability distributions ψ(x, y) with marginals µ and ν.
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Lemma B.14 (Concentration inequalities). Given any v ∈ L(X ) and a p̄ ∈ P(X ), let p̂k be the empirical

distribution from k realizations {x′1, x′2, . . . , x′k} drawn i.i.d. from p̄. Then,

E

[
dW

(∑
x′∈X

p̂k(x′)δv(x′),
∑
x′∈X

p̄(x′)δv(x′)

)]
≤ C1∥v∥∞k−1/2

and

E

dW (∑
x′∈X

p̂k(x′)δv(x′),
∑
x′∈X

p̄(x′)δv(x′)

)2
 ≤ C2∥v∥2∞k−1,

for some constant C1,C2 > 0 independent of v, p̄, k and δv(x) is the Dirac measure of v(x).

Proof. To simplify notations, we use p̂(·) to denote p̂k(·). The first bound follows from Theorem 1 of

Fournier and Guillin (2015). Namely, there exists a C̄1 > 0 such that:

E

[
dW

(∑
x′∈X

p̂(x′)δv(x′),
∑
x′∈X

p̄(x′)δv(x′)

)]
≤ 2C̄1

(∑
x′∈X

v(x′)2p̄(x′)

)1/2

/k1/2

≤ 2C̄1∥v∥∞k−1/2.

By Lemma 5 and Proposition 10 in Fournier and Guillin (2015), we have that for all w ∈ L(X )

with ∥w∥∞ < 1, there exists constants C̄2, C̄3 > 0 such that for all λ ≥ 0:

P

(
dW

(∑
x′∈X

p̂(x′)δw(x′),
∑
x′∈X

p̄(x′)δw(x′)

)
≥ λ

)
≤ C̄2 exp(−C̄3kλ

2),

given the fact that p̄ is a distribution on a finite set. We can thus derive that:

E

dW (∑
x′∈X

p̂(x′)δv(x′),
∑
x′∈X

p̄(x′)δv(x′)

)2


≤ E

4∥v∥2∞dW
(∑
x′∈X

p̂(x′)δw(x′),
∑
x′∈X

p̄(x′)δw(x′)

)2


= 4∥v∥2∞
∫ ∞

0

P

dW (∑
x′∈X

p̂(x′)δw(x′),
∑
x′∈X

p̄(x′)δw(x′)

)2

≥ λ

 dλ

≤ 4∥v∥2∞
∫ ∞

0

C̄2 exp(−C̄3kλ)dλ =
4∥v∥2∞C̄2

C̄3k
,

where w := (1/2)v/∥v∥∞ is such that ∥w∥∞ ≤ 1/2 < 1.

Proof of Theorem 4.7. Assumption 4.6 implies that Rx,a is law invariant, so that

Rx,a(v) = ϱ

(∑
x′∈X

P (x′|x, a)δv(x′)

)
,

with ϱx,a as the distribution-based risk measure associated to Rx,a. Let R̂k
x,a capture the empirical risk

map that employs the same distribution-based risk measure ϱx,a ofRx,a, but on
∑
x′∈X P̂k(x

′|x, a)δv(x′)

instead of
∑
x′∈X P (x

′|x, a)δv(x′), where P̂k stands for the empirical distribution using 2k number of

samples. We start by establishing two important properties of how HP̂k
(q) differs from H(q).
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The first property consists of a bound on the expected absolute difference between HP̂k
(q) and

H(q), where the expectation is taken with respect to the sampling process. Namely, for all q ∈ L(K),

E
[
|HP̂k

(q)(x, a)−H(q)(x, a)|
]

= E
[∣∣∣∣R̂k

x,a

(
c(x, a) + max

a′∈A
q(·, a′)

)
−Rx,a

(
c(x, a) + max

a′∈A
q(·, a′)

)∣∣∣∣]
≤ E

[
LdW

(∑
x′∈X

P̂k(x
′|x, a)δv(x′),

∑
x′∈X

P (x′|x, a)δv(x′)

)]
≤ LC1∥c(x, a) + max

a′∈A
q(·, a′)∥∞2−k/2 ≤ LC1(2C̄ + ∥q∥∞)2−k/2,

where v(x′) := c(x, a) + maxa′∈AQ(x′, a′). The first inequality follows from Assumption 4.6, and the

second one is from Lemma B.14.

Following a similar procedure, we have the second one, which bounds the expected square difference:

E
[(

HP̂k
(q)(x, a)−H(q)(x, a)

)2]
= E

[(
R̂k
x,a(c(x, a) + max

a′∈A
q(·, a′))−Rx,a(c(x, a) + max

a′∈A
q(·, a′))

)2
]

≤ E

L2dW

(∑
x′∈X

P̂k(x
′|x, a)δv(x′),

∑
x′∈X

P (x′|x, a)δv(x′)

)2


≤ L2C2∥c(x, a) + max
a′∈A

q(·, a′)∥∞2−k ≤ L2C2(2C̄ + ∥q∥∞)2−k,

where the second inequality is from Lemma B.14.

We are now ready to show that E[Ĥ(q)] = H(q), for all q ∈ L(K), which goes as

E[Ĥ(q)] = E
[
HP̂ 1

N+1
(q) +

∆N (q)

pN

]
= E[HP̂ 1

N+1
(q)] +

∞∑
k=0

P(N = k)E
[
∆k(q)

pk

∣∣N = k

]

= E[HP̂ 1
1
(q)] +

∞∑
k=0

E[∆k(q)]

= E[HP̂ 1
1
(q)] +

∞∑
k=0

E
[
HP̂k+1

(q)− 1

2

(
HP̂E

k+1
(q) +HP̂O

k+1
(q)
)]

= E[HP̂ 1
1
(q)] +

∞∑
k=0

(
E[HP̂k+1

(q)]− 1

2

(
E[HP̂E

k+1
(q)] + E[HP̂O

k+1
(q)]
))

= E[HP̂ 1
1
(q)] +

∞∑
k=0

(
E[HP̂k+1

(q)]− E[HP̂E
k
(q)]
)

= lim
k→∞

E[HP̂k
(q)] = H(q),

where the limit is known to exist and identified as H(q) since for all (x, a) ∈ K we have∣∣∣E[HP̂k
(q)(x, a)]−H(q)(x, a)

∣∣∣ ≤ E[|HP̂k
(q)(x, a)−H(q)(x, a)|]

≤ LC1(2C̄ + ∥q∥∞)2−k/2,

thus implying that ∥E[HP̂k
(q)]−H(q)∥∞ → 0 as k → ∞.
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We turn to bounding Var[Ĥ(q)(x, a)]. Since for all (x, a) ∈ K, we have

Var[Ĥ(q)(x, a)] = E[(Ĥ(q)(x, a))2]− (E[Ĥ(q)(x, a)])2 = E[(Ĥ(q)(x, a))2]− (H(q)(x, a))2,

and it is known that ∥(H(q))2∥∞ ≤ (2C̄+∥q∥∞)2 ≤ 8C̄2+2∥q∥2∞. The remaining question is to bound

E[(Ĥ(q)(x, a))2].

We first give a bound on E[(∆k(q)(x, a))
2]. Notice that

E[∆k(q)(x, a)
2] = E

[(
HP̂k+1

(q)(x, a)− 1

2

(
HP̂E

k+1
(q)(x, a) +HP̂O

k+1
(q)(x, a)

))2
]

= E

[(
(HP̂k+1

(q)(x, a)−H(q)(x, a))− 1

2

(
HP̂E

k+1
(q)(x, a) +HP̂O

k+1
(q)(x, a)− 2H(q)(x, a)

))2
]

≤ E[2(HP̂k+1
(q)(x, a)−H(q)(x, a))2 + (HP̂E

k+1
(q)(x, a)−H(Qn)(x, a))

2

+ (HP̂O
k+1

(q)(x, a)−H(q)(x, a))2]

= 2E[(HP̂k+1
(q)(x, a)−H(q)(x, a))2] + 2E[(HP̂k

(q)(x, a)−H(q)(x, a))2]

≤ 2L2C2(2C̄ + ∥q∥∞)22−k−1 + 2L2C2(2C̄ + ∥q∥∞)22−k

= 3L2C2(2C̄ + ∥q∥∞)22−k.

Now we are ready to derive the bound for E[(Ĥ(q)(x, a))2], for any fixed (x, a) ∈ K. Namely, from

definition, we have

E[(Ĥ(q)(x, a))2] ≤ 2E[(HP̂ 1
N+1

(q)(x, a))2] + 2E

[(
∆N (q)(x, a)

pN

)2
]

= 2(2C̄ + ∥q∥∞)2 + 2E

[ ∞∑
k=0

pkE

[(
∆N (q)(x, a)

pN

)2 ∣∣∣N = k

]]

= 2(2C̄ + ∥Qn∥∞)2 + 2

∞∑
k=0

1

pk
E[∆k(q)(x, a)

2]

≤ 2(2C̄ + ∥q∥∞)2 + 2

∞∑
k=0

1

pk
3L2C2(2C̄ + ∥q∥∞)22−k

= 2(2C̄ + ∥q∥∞)2 + 6L2C2(2C̄ + ∥q∥∞)2r−1
∞∑
k=0

(2(1− r))−k

= 2(2C̄ + ∥q∥∞)2 + 6L2C2(2C̄ + ∥q∥∞)2r−1(1− (2(1− r))−1)−1

= (2 + 6L2C2r
−1(1− (2(1− r))−1)−1)(2C̄ + ∥q∥∞)2

≤ (2 + 6L2C2r
−1(1− (2(1− r))−1)−1)(8C̄2 + 2∥q∥2∞),

where to ensure
∑∞
k=0 2(1 − r)−k is finite, we require r ∈ (0, 1/2). This implies that there exists a

uniform bound C > 0 such that Var[Ĥ(q)] = E[(Ĥ(q)(x, a))2] − (H(q)(x, a))2 ≤ C(1 + ∥q∥2∞). This

completes the proof.

B.4 Proof of Theorem 4.10

We impose the following general assumption on the convexity of the loss function ℓ.

Assumption B.15 (Convexity). The loss function ℓ(x) is either convex or concave on x ≥ 0 and either

convex or concave on x ≤ 0.

We prove Theorem 4.10 by proving Lemmas B.16, B.21 and B.22.
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Lemma B.16. A risk map R that employs a UBSR measure satisfies Assumptions 2.12, 4.2 and 4.6,

if the Markov chain satisfies Assumption 4.8 and the loss function satisfies Assumptions 4.9 and B.15.

The following property of UBSR is useful as it establishes a connection between the UBSR measure

and the expected utility.

Lemma B.17 (Proposition 4.113, Föllmer and Schied (2016)). Given some random variable v and some

m∗ ∈ R, the following statements are equivalent: (i) SR(v) = m∗; (ii) E[ℓ(v −m∗)] = 0.

Lemma B.18. Under Assumptions 4.8, 4.9, the UBSR satisfies Assumption 2.12.

Proof. By Assumption 4.8, there exists a state x̄ ∈ X such that P (x̄|x, a) > 0 for all (x, a) ∈ K.

Let ν(v) := v(x̄), which trivially satisfies ν(0) = 0 and is coherent. Meanwhile, choose 0 < ᾱ <
ϵ1
L1

min(x,a)∈K P (x̄|x, a) ∈ (0, 1).

Given any v ≥ v′ ∈ L(X ), Lemma B.17 implies that
∑
y∈X P (y|x, a)ℓ(v(y) − SRx,a(v)) = 0, and

similarly for v′. We therefore have

0 =
∑
y∈X

P (y|x, a) (ℓ(v(y)− SRx,a(v))− ℓ(v′(y)− SRx,a(v
′)))

=
∑
y∈X

P (y|x, a)δ(v, v′, x, a, y)((v(y)− SRx,a(v))− (v′(y)− SRx,a(v
′))),

for some δ(v, v′, x, a, y) ∈ [ϵ1, L1] due to Assumption 4.9. Hence,

(SRx,a(v)− SRx,a(v
′))
∑
y∈X

P (y|x, a)δ(v, v′, x, a, y)

=
∑
y∈X

P (y|x, a)δ(v, v′, x, a, y)(v(y)− v′(y)).

Therefore, we have

SRx,a(v)− SRx,a(v
′) ≥ inf

δ̃∈L(K×X ):δ̃(x,a,y)∈[ϵ1,L1],
(x,a,y)∈K×X

∑
y∈X P (y|x, a)δ̃(x, a, y)(v(y)− v′(y))∑

y∈X P (y|x, a)δ̃(x, a, y)

≥ ϵ1
L1

∑
y∈X

P (y|x, a)(v(y)− v′(y)),

given that v ≥ v′. Hence, we have for all (x, a) ∈ K,

SRx,a(v)− ᾱν(v)− SRx,a(v
′) + ᾱν(v′)

≥

 ϵ1
L1

∑
y∈X

P (y|x, a)(v(y)− v′(y))

− ᾱ (ν(v)− ν(v′))

=

 ϵ1
L1

∑
y∈X

P (y|x, a)(v(y)− v′(y))

− ᾱ (v(x̄)− v′(x̄))

≥
(
ϵ1
L1

min
(x,a)∈K

P (x̄|x, a)(v(x̄)− v′(x̄))

)
− ᾱ (v(x̄)− v′(x̄))

=

(
ϵ1
L1

min
(x,a)∈K

P (x̄|x, a)− ᾱ

)
(v(x̄)− v′(x̄)) ≥ 0.

This proves Assumption 2.12.

Lemma B.19. For any loss function ℓ : R → R with ℓ(0) = 0 satisfying Assumptions 4.9 and B.15,

define ℓs(x) :=
1
s ℓ(sx). We have ℓs(x) → ℓ∞(x) uniformly on compact sets as s→ ∞, for some ℓ∞(x)

that satisfies Assumptions 4.9 and B.15.
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Proof. By Assumption 4.9, ℓ(x) is strictly increasing. We consider the case where ℓ(x) is convex. In

this setting, the right derivative is non-decreasing and bounded above hence the monotone convergence

theorem implies that ℓ′+(x) → L ≤ L1 as x → ∞, and similarly the left derivative ℓ′−(x) → L ≥ ϵ as

x → −∞, where we slightly abuse the notation and use ℓ′+(x) and ℓ
′
−(x) to denote the left and right

derivative of ℓ at x. Without loss of generality, we assume that L = L1 and L = ϵ1. Define ℓ∞(x) :=

L1x for x ≥ 0 and ℓ∞(x) := ϵ1x for x < 0. Remember that ℓs(x) :=
1
s ℓ(sx). We start by demonstrating

that lims→∞ ℓs(x) = ℓ∞(x) pointwise and will follow with confirming uniform convergence on all

compact sets using Ascoli-Arzelà theorem.

Clearly, lims→∞ ℓs(0) = 0 = ℓ∞(0). Now consider the case of some x̄ > 0. Based on Assumption 4.9,

for all s > 0, we must have (1/s)ℓ(sx̄) ≤ (1/s)L1(sx̄−0) = L1x̄. Hence we have lims→∞ ℓs(x̄) ≤ L1x̄ =

ℓ∞(x̄). On the other hand, by convexity of ℓ(x) over x ≥ 0, for any ε > 0, one can identify some x̂ ≥ 0

such that L1 − ε/(2x̄) ∈ [ℓ′−(x̂), ℓ
′
+(x̂)] and therefore for all x ≥ 0, ℓ(x) ≥ ℓ(x̂) + (L1 − ε/(2x̄))(x− x̂).

Thus we must have that

1

s
ℓ(sx̄) ≥ 1

s
(ℓ(x̂) + (L1 − ε/(2x̄))(sx̄− x̂))

=
1

s
(ℓ(x̂) + L1sx̄− L1x̂− (ε/(2x̄))sx̄+ (ε/(2x̄))x̂)

= L1x̄− (ε/(2x̄))x̄+
1

s
(ℓ(x̂)− (L1 − (ε/(2x̄)))x̂)

≥ L1x̄− ε,

as long as s ≥ 2|ℓ(x̂) − (L1 − (ε/(2x̄)))x̂|/ε. Hence lims→∞ ℓs(x̄) ≥ ℓ∞(x̄). Combine the two results,

we conclude that lims→∞ ℓs(x) = ℓ∞(x) pointwise for x ≥ 0.

The case where x̄ < 0 is treated similarly. Namely, letting g(x) := −ℓ(−x), we wish to show

that lims→∞(1/s)g(sx̄) = ϵ1x for all x̄ > 0, with g(x) a concave function such that ϵ1 ≤ (g(y) −
g(x))/(y−x) ≤ L1 and g′+(x) = −ℓ′−(−x) → ϵ1 as x→ ∞. We can start with a lower bound argument

(1/s)g(sx̄) ≥ (1/s)ϵ1(sx̄− 0) = ϵ1x̄. The upper bound is a consequence of the concavity of g, implying

the existence of some x̂ > 0 such that ϵ1+(ε/(2x̄)) belongs to the interval [g′−(x̂), g
′
+(x̂)], where g

′
−(x)

and g′+(x) denote the left and right derivatives of g at x, respectively. This observation leads to the

subsequent argument:

1

s
g(sx̄) ≤ 1

s
(ℓ(x̂) + (ϵ1 + ε/(2x̄))(sx̄− x̂))

= ϵ1x̄+ (ε/(2x̄))x̄+
1

s
(ℓ(x̂)− (ϵ1 + (ε/(2x̄)))x̂)

≤ ϵ1x̄+ ε,

for large enough s. This let us conclude that for x < 0 it must hold that lims→∞(1/s)ℓ(sx) =

lims→∞ −(1/s)g(−sx) = ϵ1x.

Concerning the uniform convergence on compacts set, we first observe that ℓs(x) is uniformly

bounded on compact sets. Specifically, for x ∈ [xa, xb], we have |ℓs(x)| = | 1s ℓ(sx)| ≤
1
sL1(s|x|) ≤

L1 max{|xa|, |xb|} <∞. Moreover, by Assumption 4.9, both ℓ and ℓs are Lipschitz, ensuring equicon-

tinuity. Given the equicontinuity and uniform boundedness of ℓs(x) on compact sets, along with

pointwise convergence, the Ascoli-Arzelà theorem guarantees that ℓs(x) → ℓ∞(x) uniformly on com-

pact sets. To see this, the Ascoli-Arzelà theorem provides subsequential convergence ℓsi → ℓ̃ uniformly

for some function ℓ̃, where si ↑ ∞ is a subsequence index. Since we also have pointwise convergence

ℓs → ℓ∞, it follows that ℓ̃ = ℓ∞, implying uniform convergence of ℓsi to ℓ∞. Repeating this argument,

we show that every subsequence {ℓsi} of {ℓs} has a further subsequence that uniformly converges to

ℓ∞. By the subsequence principle, we conclude that ℓs converges to ℓ∞ uniformly on compact sets.

The cases where ℓ(x) is concave or combines convex (or concave) on x ≥ 0 and concave (or convex)

on x ≤ 0 are derived using a similar approach. Therefore, we conclude that under Assumptions 4.9

and B.15, ℓs converges to ℓ∞ uniformly on compact sets.
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Lemma B.20. Under Assumptions 4.9, B.15, the UBSR risk map satisfies Assumption 4.2.

Proof. We start with establishing that for all (x, a) ∈ K, all v ∈ L(X ), and for all s > 0, we have

1

s
SRℓx,a(sv) =

1

s
inf{t : Ex,a[ℓ(sv − t)] ≤ 0}

= inf{t′ : Ex,a[ℓ(sv − st′)] ≤ 0}
= inf{t′ : (1/s)Ex,a[ℓ(s(v − t′))] ≤ 0}
= inf{t′ : Ex,a[ℓs(v − t′)] ≤ 0}
= SRℓsx,a(v),

where ℓs(y) := (1/s)ℓ(sy). Showing that the UBSR risk map is asymptotically coherent therefore

reduces to showing that SRℓsx,a(v) converges uniformly to SRℓ∞x,a(v) on compact sets.

We start with pointwise convergence of SRℓsx,a(v) to SRℓ∞x,a(v) after recalling that by Lemma B.17,

Ex,a[ℓs(v − SRℓsx,a(v))] = 0, Ex,a[ℓ∞(v − SRℓ∞x,a(v))] = 0, v ∈ L(X ), (x, a) ∈ K.

Specifically, given any v̄ ∈ L(X ), we can define the compact set V := [−2∥v̄∥∞, 2∥v̄∥∞]. The uniform

convergence of ℓs to ℓ∞ on compact sets (see Lemma B.19) implies that for any arbitrarily small ε > 0,

there exists a sufficiently large s̄ such that we have |ℓ∞(y) − ℓs̄(y)| ≤ εϵ1, for all y ∈ V. Given that

|SRℓ∞x,a(v̄)| ≤ ∥v̄∥∞ for all (x, a) ∈ K, denoting ε̃(y) := ℓ∞(y)− ℓs̄(y), we have

0 = Ex,a[ℓ∞(v̄ − SRℓ∞x,a(v̄))] =
∑
x′∈X

P (x′|x, a)[ℓs̄(v̄(x′)− SRℓ∞x,a(v̄)) + ε̃(v̄(x′)− SRℓ∞x,a(v̄))]

≤
∑
x′∈X

P (x′|x, a)[ℓs̄(v̄(x′)− SRℓ∞x,a(v̄)) + εϵ1]

≤
∑
x′∈X

P (x′|x, a)[ℓs̄(v̄(x′)− SRℓ∞x,a(v̄) + ε)]

= Ex,a[ℓs̄(v̄ − SRℓ∞x,a(v̄) + ε))],

where the last inequality comes from the fact that ℓs̄(x+ε)−ℓs̄(x) = 1
s (ℓ(sx+ sε)− ℓ(sx)) ≥ 1

s ϵ1sε =

ϵ1ε due to Assumption 4.9. Similarly, we have

0 = Ex,a[ℓ∞(v̄ − SRℓ∞x,a(v̄))] ≥ Ex,a[ℓs̄(v̄ − SRℓ∞x,a(v̄)− ε)].

This implies that

Ex,a[ℓs̄(v̄ − SRℓ∞x,a(v̄)− ε)] ≤ 0 ≤ Ex,a[ℓs̄(v̄ − SRℓ∞x,a(v̄) + ε))].

By the monotonicity of ℓs̄ and Lemma B.17, we conclude that

SRℓs̄x,a(v̄) ∈ [SRℓ∞x,a(v̄)− ε,SRℓ∞x,a(v̄) + ε].

This implies that SRℓsx,a(v) → SRℓ∞x,a(v) as s → ∞. Using the same argument as in Lemma B.19, the

convergence is also uniform on compact sets.

Therefore, we conclude that the UBSR is asymptotically coherent, i.e. Assumption 4.2 holds.

Proof of Lemma B.16. The result follows by directly applying Lemma B.18, B.20 and Lemma 15 of

Prashanth and Bhat (2022).

Lemma B.21. A risk mapR that employs an OCE risk measure satisfies Assumptions 2.12 and 4.2, 4.6,

if the Markov chain satisfies Assumption 4.8 and the loss function satisfies Assumptions 4.9 and B.15.
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Proof. To prove Assumption 2.12 notice that for any v ≥ v′ ∈ L(X ), we have

OCEx,a(v)−OCEx,a(v
′) = inf

t∈R
{ξ + Ex,a[ℓ(v − t)]} − inf

t′∈R
{t′ + Ex,a[ℓ(v′ − t′)]}

≥ inf
t∈R

{Ex,a[ℓ(v − t)− ℓ(v′ − t)]}

=
∑
y∈X

P (y|x, a)δ(v, v′, t, y)(v(y)− v′(y))

≥ ϵ1
∑
y∈X

P (y|x, a)(v(y)− v′(y)),

for some δ(v, v′, t, y) ∈ [ϵ1, L1] whose existence is guaranteed by Assumption 4.9. We choose the

coherent risk measure ν(v) := v(x̄) and 0 < ᾱ < ϵ1 min(x,a)∈K P (x̄|x, a) ∈ (0, 1), since ϵ1 ≤ ℓ′−(0) ≤ 1

from the definition of OCE. By Assumption 4.9, for any (x, a) ∈ K, we have that for all (x, a) ∈ K,

OCEx,a(v)− ᾱν(v)−OCEx,a(v
′) + ᾱν(v′)

≥ ϵ1
∑
y∈X

P (y|x, a)(v(y)− v′(y))− ᾱ(v(x̄)− v′(x̄))

≥
(
ϵ1 min

(x,a)∈K
P (x̄|x, a)− ᾱ

)
(v(x̄)− v′(x̄)) ≥ 0,

This proves Assumption 2.12.

To prove Assumption 4.2, we start with establishing that for all (x, a) ∈ K, all v ∈ L(X ) and for

all s > 0 we have

1

s
OCEℓx,a(sv) =

1

s
inf
ξ∈R

{ξ + Ex,a[ℓ(sv − ξ)]}

= inf
ξ′∈R

{ξ′ + (1/s)Ex,a[ℓ(sv − sξ′)]}

= inf
ξ′∈R

{ξ′ + Ex,a[ℓs(v − ξ′)]}

= OCEℓsx,a(v),

where ℓs(y) := (1/s)ℓ(sy). Showing that the OCE risk map is asymptotically coherent therefore

reduces to showing that OCEℓsx,a(v) converges uniformly to OCEℓ∞x,a(v) on compact sets.

Notice that from Proposition 2.1 in Ben-Tal and Teboulle (2008), the infimum in the representation

of OCEx,a(v) can be attained on a member of the bounded interval supporting of the distribution∑
x′ P (x′|x, a)δv(x′). This implies that for any fixed v̄ ∈ L(X ), there exists an optimal ξ∗ ∈ V :=

[minx′∈X v(x
′),maxx′ v(x′)] such that OCEℓx,a(v̄) = ξ∗+Ex,a[ℓ(v− ξ∗)]. Hence for any fixed v̄ ∈ L(X ),

we can let ξ∗s and ξ∗∞ ∈ V be the optimal ξ for the OCE with loss function ℓs and ℓ∞ such that:

OCEℓsx,a(v̄) = ξ∗s + Ex,a[ℓs(v̄ − ξ∗s )], OCEℓ∞x,a(v̄) = ξ∗∞ + Ex,a[ℓ∞(v̄ − ξ∗∞)], (x, a) ∈ K.

Following Lemma B.19, we have ℓs(x) → ℓ∞(x) uniformly on compact sets. Hence for any arbitrar-

ily small ε > 0, there exists a sufficiently large s̄ such that |ℓ∞(y)− ℓs̄(y)| ≤ ε, for all y ∈ V. Denoting

ε̃(y) := ℓ∞(y)− ℓs̄(y), we have

OCEℓ∞x,a(v) = ξ∗∞ + Ex,a[ℓ∞(v − ξ∗∞)]

= ξ∗∞ +
∑
x′∈X

P (x′|x, a)[ℓs̄(v(x′)− ξ∗∞) + ε̃(v̄(x′)− ξ∗∞)]

≥ ξ∗∞ +
∑
x′∈X

P (x′|x, a)[ℓs̄(v(x′)− ξ∗∞)− ε]

≥ ξ∗s̄ + Ex,a[ℓs̄(v − ξ∗s̄ )]− ε = OCEℓs̄x,a(v)− ε.
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Similarly,

OCEℓs̄x,a(v) = ξ∗s + Ex,a[ℓs̄(v − ξ∗s̄ )]

= ξ∗s̄ +
∑
x′∈X

P (x′|x, a)[ℓ∞(v(x′)− ξ∗s̄ )− ε̃(v(x′)− ξ∗s̄ )]

≥ ξ∗s̄ +
∑
x′∈X

P (x′|x, a)[ℓ∞(v(x′)− ξ∗s̄ )]− ε

≥ ξ∗∞ + Ex,a[ℓ∞(v − ξ∗∞)]− ε = OCEℓ∞x,a(v)− ε.

Hence we have

OCEℓ∞x,a(v)− ε ≤ OCEℓsx,a(v) ≤ OCEℓ∞x,a(v) + ε,

which means that |OCEℓsx,a(v)−OCEℓ∞x,a(v)| < ε. This implies lims→∞ OCEℓsx,a(v) = OCEℓ∞x,a(v) point-

wise. Since OCE is Lipschitz continuous and uniformly bounded on compact sets, we can apply a

similar reasoning as in Lemma B.19 to establish Assumption 4.2.

Assumption 4.6 follows from Lemma 12 of Prashanth and Bhat (2022).

Lemma B.22. A risk map R that employs a spectral risk measure satisfies Assumptions 2.12, 4.2, 4.6,

if the Markov chain satisfies Assumption 4.8 and the risk spectrum ϕ(β) ∈ [ϵ2, L2] for some ϵ2 > 0 and

L2 <∞ for all β ∈ [0, 1].

Proof. Since spectral risk measures are coherent, Assumption 4.2 holds automatically. Assumption 4.6

follows from Lemma 13 of Prashanth and Bhat (2022). We are left with Assumption 2.12.

Notice that

Mϕ(v) =

∫ 1

0

(ϕ(β)− ϵ2)F
−1
v (β)dβ + ϵ2

∫ 1

0

F−1
v (β)dβ

= ϵ2E[v] +
∫ 1

0

ϕ̃(β)F−1
v (β)dβ = ϵ2E[v] +M ϕ̃(v),

where ϕ̃(β) := ϕ(β) − ϵ2 ∈ [0, L2 − ϵ2] for all β ∈ [0, 1]. Therefore, for any v ≥ v′ ∈ L(X ), choosing

the coherent risk measure ν(v) = v(x̄) and setting 0 < ᾱ < ϵ2 min(x,a)∈K P (x̄|x, a) ∈ (0, 1), since

ϵ2 ≤
∫ 1

0
ϕ(β)dβ = 1, we have for any (x, a) ∈ K,

Mϕ
x,a(v)− ᾱν(v)−Mϕ

x,a(v
′) + ᾱν(v′)

= ϵ2(Ex,a[v]− Ex,a[v′]) +M ϕ̃
x,a(v)−M ϕ̃

x,a(v
′)− ᾱ(ν(v)− ν(v′))

≥ ϵ2
∑
y∈X

P (y|x, a)(v(y)− v′(y))− ᾱ(v(x̄)− v′(x̄))

≥ min
(x,a)∈K

P (x̄|x, a)(ϵ2 − ϵ2)(v(x̄)− v′(x̄)) ≥ 0,

where the first inequality follows from the fact that spectral risk measures are monotone. Therefore,

Assumption 2.12 holds.

It is worth noting that for the widely used OCE measure CVaR, the corresponding loss function,

given by ℓ(x) = (1 − α)−1(x)+, has a minimum slope of 0; its risk spectrum, defined as ϕ(β) =

(1 − α)−11{β ≥ α}, attains a minimal value of 0. As a result, CVaR does not satisfy the condition

required in Theorem 4.10. However, when mixed with the expectation, the mean-CVaR risk measure

with η > 0 fulfills the necessary condition for spectral risk measure in Theorem 4.10 and hence satisfies

Assumption 2.12.

Proof of Theorem 4.10. The result follows directly by applying Lemmas B.16, B.21 and B.22.
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C Additional details and results of experiments

This section presents further experiments on the convergence of the MLMC Q-learning algorithm (4.1),

along with statistical experiments on its sample efficiency. In addition, we conduct further experiments

regarding the convergence of synchronous and asynchronous UBSR Q-learning with different loss func-

tions, along with statistical results comparing this algorithm to the MLMC Q-learning algorithm (4.1).

Furthermore, we provide details on the application setups used in the main text. We also include a

risk analysis based on the expectile parameters across different application scenarios.

C.1 Statistical experiments on MLMC

Although Theorem 4.7 ensures controllable variance for r ∈ (0, 1/2), it requires an infinite number of

samples in expectation per iteration to achieve this. However, our experiments indicate that control-

lable variance can still be attained for some r ∈ (1/2, 3/4), as demonstrated in Wang et al. (2023a) for

a special case of distributionally robust discounted MDP.

Table 2 shows the statistical results (average number of samples, average estimated optimal risk

and standard deviation of estimated optimal risk) from 100 simulations, each consisting of 1,000 iter-

ations of the MLMC Q-learning algorithm (4.1) based on MLMC, for different values of the geometric

parameter r changing from 0.49 to 0.9, under a randomly generated MDP with 3 states and 3 ac-

tions, following the generation procedure outlined in Section 5.1. We observe that for small values of

r, the number of samples required to estimate the risk measure is quite large, but it decreases as r

increases. Additionally, the final estimated optimal average risk closely approximates the true average

risk, which is 0.2968, computed via risk-aware RVI, suggesting that the MLMC Q-learning algorithm

indeed converges to the right value. The standard deviation of estimated optimal risk initially de-

creases starting at r = 0.49, but begins to rise again at r = 0.70. This supports the findings in Wang

et al. (2023a), indicating that MLMC could offer finite sample guarantee and controllable variance for

some r ∈ (1/2, 3/4).

Table 2: Statistical properties of MLMC Q-learning algorithm for different r.

r Avg. Num. Samples Avg. Est. Opt. Risk Std. Est. Opt. Risk

0.49 202615.68 0.2956 0.0159
0.50 174297.02 0.2973 0.0163
0.55 92635.72 0.2976 0.0153
0.60 52500.64 0.2974 0.0164
0.65 39152.40 0.2963 0.0157
0.70 31476.86 0.2983 0.0188
0.75 26955.32 0.3002 0.0210
0.80 23967.84 0.2966 0.0221
0.90 20257.32 0.2902 0.0326

C.2 Additional experiments for UBSR Q-learning algorithm

For completeness, we present the synchronous version of UBSR Q-learning algorithm as follows: for

all (x, a) ∈ K,

Qn+1(x, a) = Qn(x, a) + γ(n)ℓ
(
c(x, a) + min

a′∈A
Qn(x

′, a′)− f(Qn)−Qn(x, a)
)
, (C.1)

where x′ ∼ P (·|x, a), γ(n) is the step size satisfying Assumption 4.4 and f(Qn) serves as the relative

value satisfying Assumptions 3.3 and 4.3.

In addition to the expectile experiment presented in Section 5.2, we also provide the convergence

results for the special case of the synchronous UBSR Q-learning algorithms with polynomial mixed

utility (also referred to as the S-shape utility, as discussed in Shen et al. (2014)) and the soft quantile
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(as discussed in Hau et al. (2025)). The polynomial mixed utility function, derived from prospect

theory, is defined as follows:

ℓPM(x) :=

{
k1x

b1 , x ≥ 0,

−k2(−x)b2 , x < 0,

where k1, k2 > 0, b1, b2 ≥ 0. The soft quantile, used as an approximation for the quantile, is defined

as follows:

ℓSQ(x) :=


(1− α)(κx+ κ2 − 1), x < −κ,
1−α
κ x, −κ ≤ x < 0,

α
κx, 0 ≤ x < κ,

α(κx− κ2 + 1), x ≥ κ,

with α ∈ [0, 1] and κ > 0. We choose k1 = 1− k2 = 0.3, b1 = b2 = 0.5 for the polynomial mixed utility

and α = 0.2, κ = 1 for the soft quantile. It is worth noticing that both two loss functions are neither

convex nor concave on the whole domain.

Under the same MDP and step size settings as in Section 5.1, we run our algorithm 100 times

independently and plot the trajectory obtained from the value iteration, risk-aware RVI algorithm (3.2),

mean value of f(Q) across all 100 trajectories from the synchronous UBSR Q-learning algorithm (C.1)

and 95th and 5th percentiles as the upper and lower bound of the 100 trajectories as the confidence

interval. The results are presented in Figure C.1. It appears that our synchronous UBSR Q-learning

algorithm successfully converges to the true optimal average risk with high probability under both

instances of the loss functions.
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Figure C.1: Convergence of the synchronous UBSR Q-learning algorithm (C.1) for polynomial mixed utility and soft
quantile.

Figure C.2 presents the convergence experiments for the asynchronous UBSR Q-learning algo-

rithm (5.1) under the same settings as in Section 5.1, with polynomial mixed utility parameters

k1 = 1 − k2 = 0.3, b1 = b2 = 0.5 and soft quantile parameters α = 0.2, κ = 1, under 300,000

iterations. The results provide evidence that the asynchronous algorithm also converges with high

probability, confirming the applicability of the off-policy UBSR Q-learning algorithm (5.1).

Table 3 shows the statistical properties (average number of iterations, average estimated optimal

risk, standard deviation of estimated optimal risk and average risk of estimated policy) of 100 sim-

ulations comparing the MLMC Q-learning algorithm (4.1) with the synchronous UBSR (S-UBSR)

Q-learning algorithm (C.1) and asynchronous UBSR (A-UBSR) Q-learning algorithm (5.1) under the

same settings as in Section 5.1. All the algorithms are using the equivalent number of samples. The

total sample size for the MLMC-based and A-UBSR Q-learning algorithms is 300,000, equivalent to



Les Cahiers du GERAD G–2025–37 32

100 101 102 103 104 105

Number of iteration

0.8

0.6

0.4

0.2

0.0

0.2
Op

tim
al

 a
ve

ra
ge

 ri
sk

Asynchronous UBSR PM k1 = 1 k2 = 0.3, b1 = b2 = 0.5
Est. by Value Iteration
Est. by Relative VI
True value
Est. by Q-learning (mean)
Est. by Q-learning (CI)

100 101 102 103 104 105

Number of iteration

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

Op
tim

al
 a

ve
ra

ge
 ri

sk

Asynchronous UBSR SQ = 0.2, = 1
Est. by Value Iteration
Est. by Relative VI
True value
Est. by Q-learning (mean)
Est. by Q-learning (CI)

Figure C.2: Convergence of the asynchronous UBSR Q-learning algorithm (5.1) for polynomial mixed utility and soft
quantile.

1,000 iterations for the S-UBSR Q-learning algorithm since the S-UBSR Q-learning generates one

sample per state-action pair during each iteration. For the MLMC Q-learning algorithm, we select

r > 0.5 to ensure a finite average number of samples per iteration. The optimal average risk, computed

through the risk-aware RVI (3.2), is -0.1076. Additionally, we compare the mean average risk derived

from the policies produced by the algorithms to assess whether the algorithms provide the optimal

policy.

Table 3: Statistics of solutions from risk-aware RVI Q-learning algorithms after 300,000 (x, a, x′) observations in a setting
where the true optimal average risk is -0.1076.

Algorithm r Avg. Num. Itr. Avg. Est. Opt. Risk Std. Est. Opt. Risk Avg. Risk. Est. Policy

MLMC

0.55 729.16 -0.1086 0.0137 -0.1052
0.60 1039.22 -0.1099 0.0103 -0.1060
0.65 1396.86 -0.1067 0.0104 -0.1060
0.70 1731.77 -0.1096 0.0099 -0.1065
0.75 2000.43 -0.1097 0.0089 -0.1053
0.80 2250.29 -0.1113 0.0114 -0.1059
0.90 2667.43 -0.1165 0.0206 -0.1050

S-UBSR − 6000 -0.1076 0.0030 -0.1076
A-UBSR − 300000 -0.1074 0.0029 -0.1076

From the experiments, we conclude that although constrained to the UBSR class of risk measures,

the UBSR Q-learning algorithms show significantly higher computational efficiency. It achieves notably

lower standard error, faster convergence, and greater ease of implementation.

Although the convergence experiment results are promising, analyzing the almost sure convergence

of the UBSR Q-learning algorithms (C.1) remains a greater challenge. The standard approach for

proving the almost sure convergence of the average reward Q-learning algorithm relies on the ODE

analysis of stochastic approximation (Abounadi et al., 2001; Borkar and Meyn, 2000). In this case,

the analysis leads to a high-dimensional nonlinear ODE system, which lacks the desirable property

observed in the risk-neutral setting and our MLMC-based approach, where the difference between the

reference ODE q and the target ODE p, when starting from the same initial point, remains a scalar

function over time. Consequently, Lemma B.10 does not hold.

C.3 Application setups

Themachine replacement problem (e.g. Section 6.10.4, Puterman (1994)) involves managing a machine

that deteriorates over time, with the goal of minimizing the long-term average cost. The machine can
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be in various states representing its condition, ranging from new to totally break down. At each time

step, the agent chooses between two actions: keep operating the machine or replace it with a new

one. Operating the machine incurs maintenance and operational costs, which increase as the machine

deteriorates, while replacing it incurs a significant one-time cost but resets the machine to its best

condition.

For the parameters, we define a scenario with 30 degradation states, where state 0 represents a

fully new machine and state 29 corresponds to a failure. The degradation probabilities are generated

randomly, with a decreasing probability of transitioning to higher degradation states as the machine’s

condition worsens. Additionally, there is always a positive probability of transitioning to the failure

state. The replacement cost is set to 301.5, the operating cost is 1 × s, and the maintenance cost is

0.5×s1.5, where s denotes the current state level. Additionally, the failure cost is twice the replacement

cost, ensuring significant penalties for machine failure.

The water reservoir management problem (e.g. Section 1.3, Hernández-Lerma (1989)) involves

managing a reservoir to balance water supply, demand, and the risk of overflow or shortage. The

reservoir has discrete states representing water levels, and at each time step, the decision-maker chooses

how much water to release. The goal is to minimize the long-term average cost, which includes penalties

for water shortages, overflows, and operational costs.

For the parameters, we define the maximum water level as 19 and the maximum release as 5. The

demand is set to 4, with a shortage cost of 15 per level shortage, an overflow cost of 20 per level

overflow, and an operational cost of 2 per unit of water released. The probability of the incoming

water level is randomly generated, with a decreasing probability of transitioning to higher water levels,

reflecting the natural variability of inflows. However, there is always a positive probability of reaching

the maximum water level, ensuring that the risk of overflow is accounted for in every state.

The inventory management problem (e.g. Section 1.3, Hernández-Lerma (1989)) involves managing

stock levels to meet stochastic demand while minimizing long-term average costs. The system has

discrete states representing inventory levels, and at each time step, the agent chooses how much to

order to replenish stock. Costs include holding costs for inventory, ordering costs for placing orders,

and shortage costs for unmet demand.

For the parameters, we set the maximum inventory level to 9 and the maximum demand to 9. The

probability of the incoming demand is generated randomly with lower probability for higher demand.

The holding cost per unit of inventory is 1, the ordering cost per unit is 5, and the shortage cost per

unit of unmet demand is 10.

C.4 Risk analysis based on parameter of expectile

We visualize the results of the machine replacement and water reservoir management problems under

different τ parameters of the expectile in Figure C.3. This figure illustrates the difference between

the τ -optimal average risk and the average risk evaluated under the risk-neutral policy. The findings

confirm that for τ < 0.5, the agent exhibits risk-seeking behavior, whereas for τ > 0.5, the agent

becomes risk-averse. Notably, when τ > 0.5, the τ -optimal policy achieves a lower average risk than

the risk-neutral policy, reaching the minimum average risk at the corresponding τ .

In Figure C.4, we present 30 simulation trajectories for both the risk-neutral policy and the risk-

averse expectile policy (with τ = 0.9) across 1,000 iterations for the inventory management problem.

The risk-neutral policy results in an optimal policy of (5,4,3,2,1,0,0,0,0,0), while the risk-averse policy

yields an optimal policy of (2,1,0,0,0,0,0,0,0,0), with the first element of the vector representing zero

inventory. It is evident that the risk-averse policy produces trajectories with lower variance, suggesting

that it could offer greater stability when observed over a shorter time frame.



Les Cahiers du GERAD G–2025–37 34

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.0

0.5

0.0

0.5

1.0
Di

ffe
re

nc
e 

of
 ri

sk
Risk difference of -optimal policy to risk-neutral policy (MR)

=0.4
=0.5
=0.6
=0.8
=0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

0.0

0.5

1.0

1.5

2.0

Di
ffe

re
nc

e 
of

 ri
sk

Risk difference of -optimal policy to risk-neutral policy (WR)
=0.3
=0.5
=0.6
=0.7
=0.8

Figure C.3: Risk difference between τ -optimal policy and risk-neutral policy under different τ -values for MR and WR.
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Figure C.4: Simulation trajectories of risk-neutral policy and risk-averse policy under the risk-neutral setting for IM.
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H. Föllmer and A. Schied. Stochastic Finance: An Introduction in Discrete Time, 4th Edition. Walter de
Gruyter & Co., Berlin, 2016.

A. Gupta, R. Jain, and P. W. Glynn. An empirical algorithm for relative value iteration for average-cost
MDPs. In 2015 54th IEEE Conference on Decision and Control (CDC), pages 5079–5084, 2015.

J. L. Hau, E. Delage, E. Derman, M. Ghavamzadeh, and M. Petrik. Q-learning for quantile MDPs: A
decomposition, performance, and convergence analysis. In International Conference on Artificial Intelligence
and Statistics, 2025.

O. Hernández-Lerma. Adaptive Markov Control Processes. Springer Science & Business Media, 1989.

H. Hmedi, A. Arapostathis, and G. Pang. On the global convergence of relative value iteration for infinite-
horizon risk-sensitive control of diffusions. Systems & Control Letters, 171:105413, 2023.

R. A. Howard and J. E. Matheson. Risk-sensitive Markov decision processes. Management Science, 18(7):
356–369, 1972.

W. Huang and W. B. Haskell. Risk-aware Q-learning for Markov decision processes. In 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), pages 4928–4933. IEEE, 2017.
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