
Les Cahiers du GERAD ISSN: 0711–2440

Benchmarking constrained, multi-objective and surrogate-
assisted derivative-free optimization methods

C. Audet, W. Hare, C. Tribes

G–2025–36

May 2025

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : C. Audet, W. Hare, C. Tribes (Mai 2025).
Benchmarking constrained, multi-objective and surrogate-assisted
derivative-free optimization methods, Rapport technique, Les
Cahiers du GERAD G– 2025–36, GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2025-36) afin de mettre à
jour vos données de référence, s’il a été publié dans une revue sci-
entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: C. Audet, W. Hare, C. Tribes (May 2025).
Benchmarking constrained, multi-objective and surrogate-assisted
derivative-free optimization methods, Technical report, Les Cahiers
du GERAD G–2025–36, GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2025-36) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec à Montréal, ainsi que du Fonds de
recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2025
– Bibliothèque et Archives Canada, 2025

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds de
recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2025
– Library and Archives Canada, 2025

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2025-36
https://www.gerad.ca/en/papers/G-2025-36
https://www.gerad.ca/en/papers/G-2025-36

Benchmarking constrained, multi-objective and surrogate-
assisted derivative-free optimization methods

Charles Audet a

Warren Hare b

Christophe Tribes a

a GERAD & Département de mathématiques
et génie industriel, Polytechnique Montréal,
Montréal (Qc), Canada, H3C 3A7

b Department of Mathematics, University of British
Columbia, Okanagan campus, Kelowna (BC),
Canada, V1V 1V7

charles.audet@polymtl.ca

warren.hare@ubc.ca

christophe.tribes@polymtl.ca

May 2025
Les Cahiers du GERAD
G–2025–36
Copyright © 2025 Audet, Hare, Tribes

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:

• Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

Les Cahiers du GERAD G–2025–36 ii

Abstract : Benchmarking is essential for assessing the effectiveness of optimization algorithms. This
is especially true in derivative-free optimization, where target problems are often complex simulations
that require extensive time to evaluate. This limits the number of evaluations that can be performed,
making it critical to have a good understanding of the potential quality of various algorithms. This
paper reviews standard benchmarking methods, including convergence plots, performance profiles,
data profiles, and accuracy profiles, widely used to evaluate optimization algorithms. The primary
contribution of this work is a formal extension of these benchmarking techniques to three specific
contexts: constrained optimization, multi-objective optimization, and surrogate-based optimization.

Acknowledgements: This work was partially funded by the NSERC Discover Grants #2020–04448
and #2023–03555, and NSERC/Mitacs Alliance grant #571311–21 in collaboration with Hydro-
Québec.

Les Cahiers du GERAD G–2025–36 1

1 Introduction

Benchmarking optimization algorithms is a crucial process in evaluating their performance across

various types of problems. Key metrics used for benchmarking combine the quality of the solutions

and the effort deployed to produce them. In derivative-free optimization (DFO), the target problems

are often the result of a time-consuming simulation known as a blackbox [4]. In consequence, the

number of times that the simulation can be evaluated is limited, and the effort deployed by the

algorithm is often measured in terms of the number of calls to the simulation.

Existing benchmarking techniques have been developed to provide insights into how algorithms

perform relative to these metrics [5, 10, 14, 15, 19]. The present work recalls convergence plots, per-

formance profiles, data profiles, and accuracy profiles for benchmarking optimization algorithms. The

main contribution of this work is to formally extend these techniques to three situations: (i) constrained

optimization; (ii) multi-objective optimization; (iii) surrogate-assisted optimization.

This document is divided into three main parts. Section 2 discusses how the data necessary for

benchmarking needs to be collected and set up. Section 3 reviews existing benchmarking methods in

the context of unconstrained or bound-constrained optimization. Section 4 proposes ways to extend

these techniques to the three above-mentioned situations. In addition, some concluding remarks appear

in Section 5. The data to construct each figure is anonymized, and the open-source code available at

https://github.com/bbopt/RunnerPost. Data is designed to highlight key attributes that can arise in

practice.

2 Benchmarking setup

Consider the case where one wishes to benchmark a finite number of optimization algorithms on

problems of the form

min
x∈X

{ f(x) : c(x) ≤ 0 } (1)

where f : X → R ∪ {∞} is the objective function, c : X → Rm ∪ {∞} is the quantitative constraint

function and X ⊆ Rn is the domain of these functions. The feasible region is denoted by Ω = {x ∈
X : c(x) ≤ 0}.

In the present work, an evaluation refers to the process that takes a trial point x ∈ Rn, then

computes f(x), c(x), and determines whether x belongs to Ω or not. The present work focuses on the

case where the algorithms are DFO algorithms, so this is the only information passed to the algorithm.

In real-world applications for such algorithms, it is typically assumed that an evaluation is the most

computational expensive portion of the algorithm. As such, a good algorithm is one that achieves a

solution (of the desired accuracy) using as few evaluations as possible.

2.1 Test set and algorithms

A test problem of the form (1), is defined by its objective function and by its feasible region. A test

problem instance is defined by pairing a test problem with appropriate conditions, such as initial points

or fixing the random seeds used during simulations. A test set is a finite collection of test problem

instances. For the remainder of this document, P denotes a test set.

Let A denote the finite set of algorithms that need to be benchmarked over the test set P. Although

each algorithm needs to be applicable to every problem instance, their nature can be either different

or similar. One may decide to benchmark widely different algorithms, or can compare methods that

differ by varying some specific algorithmic parameters.

Of course, having a large test set is preferable to a smaller one, but having a test set that is

representative of the ultimate goal is crucial. For example, if the goal is to determine the best algorithm

https://github.com/bbopt/RunnerPost

Les Cahiers du GERAD G–2025–36 2

to apply to minimize road construction costs, then a small test set consisting of road construction cost

problems is preferable to a large test set that is unrelated to road design.

The collection of algorithms to be compared is denoted by A. When selecting which algorithms

to compare, it is important to keep both the ultimate goal and test set in mind. For example, if

the goal is to determine the best algorithm to apply to minimize a simulation where derivatives are

unavailable, then even if the test set allows derivatives, only DFO algorithms should be considered.

Moreover, comparing DFO algorithms to algorithms that explicitly use derivatives should be avoided.

Finally, the benchmarking process can be sensitive to the number of algorithms. It is recommended

to keep the number of algorithms very low.

2.2 Benchmarking data

In order to benchmark the algorithms of A on the test set P, we assume that all algorithms were run

on all test problem instances with a comparable stopping criteria, and that the logs were recorded.

For comparison purposes, the logs need to contain information relative to each evaluation. Each entry

of the log is associated to a trial point in Rn, and needs to contain at least three elements:

i. the evaluation number;

ii. the objective function value;

iii. an indication of if the trial point belongs to Ω or not.

If all function evaluations are recorded, then the evaluation number can be stored via the data line

number. If only function evaluations that improve either the objective function value or feasibility are

recorded, then the evaluation number must be stored directly.

The objective function value is usually a real number, but can sometimes be flagged as ∞ or NaN.

These occur, for example, when a hidden constraint [8, 17] is triggered and the evaluation failed.

A binary flag can be used to indicate if x ∈ X or not. If there are no quantitative constraint func-

tions, the feasible region Ω is X and obviously, no data regarding c(x) needs to be stored. Otherwise,

whether or not x ∈ Ω can be stored by a simple boolean value. Alternately, if g is nontrivial, then the

log entry associated to the trial point x would also contain the m values of the vector c(x), or possibly

NaN if x /∈ Ω.

The log entries may also contain additional elements, such as the numerical values of the trial point

x ∈ Rn, and/or the elapsed time since the start of the algorithm.

Most benchmarking tools presented in the sequel rely on the concept of the accuracy value.

Definition 2.1 (Accuracy value). Let xN be the best feasible point found by an optimization algo-

rithm on a problem instance after N function evaluations. The accuracy value of the algorithm at

evaluation N is

fN
acc =

f(xN)− f0

f∗ − f0
,

where f0 is the baseline objective function value, and f∗ is the best known objective function value.

Both parameters, f0 and f∗, depend on the specific problem instance but are constant across all

algorithms being compared. For algorithms that require a feasible initial point x0, the baseline value

is typically set as f0 = f(x0). In cases where algorithms do not require a starting point (such as Latin

Hypercube Sampling [24]), the baseline f0 could be defined as f0 = max{f(xηa) : a ∈ A}, where A
is the set of algorithms under comparison, and xηa is the first trial point visited by algorithm a ∈ A
that belongs to X. The value of f∗ can be chosen in different ways. For example,

a) Instance-based choice: The simplest method is to set f∗ as the best final value achieved by

any algorithm in A on the instance in question.

Les Cahiers du GERAD G–2025–36 3

b) Cross-instance choice: Alternatively, f∗ can be defined as the best value obtained across all

instances of the same problem (e.g., different starting points or random seeds).

c) Literature-based choice: If available, f∗ might be selected as the best value known in the

literature, even if it was not achieved by any algorithm in A.

By construction, the function value for f∗ when applying a) is no smaller than the function value

for f∗ when applying b), which is no smaller than the function value for f∗ when applying c).

The value fN
acc belongs to the interval [0, 1] and represents the relative improvement in quality

of the best solution found compared to the starting point after N function evaluations. A value of

fN
acc = 0 indicates no improvement beyond f0, while fN

acc = 1 means the algorithm found the best

known solution. If all algorithms fail to improve f0, and f∗ is chosen as in case i. above, this results

in division by zero errors. In such cases, the problem instance should likely be removed from the test

set and flagged as a difficult instance for these algorithms.

3 Existing benchmarking techniques

This section summarizes some existing benchmarking tools, where it is implicitly assumed that all trial

points belong to X with c(x) ≤ 0.

3.1 Convergence plots

Convergence plots are a well-established tool used to assess the performance of the optimization algo-

rithms on a single test problem instance by visualizing the progression of the objective function f(xN)

over the number of evaluations or time. Two example convergence plots are given in Figure 1.

50 100 150 200

40

50

60

70

Number of evaluations

O
b
je
ct
iv
e
fu
n
ct
io
n
(f
ea
si
b
le
)

Convergence plots

Algo 1

Algo 2

Algo 3

0 500 1,000 1,500 2,000

40

50

60

70

Time

O
b
je
ct
iv
e
fu
n
ct
io
n
(f
ea
si
b
le
)

Convergence plots

Algo 1

Algo 2

Algo 3

Figure 1: An example of convergence plots

Convergence plots are useful for evaluating both the speed and stability of convergence. They

help identify how quickly an algorithm approaches an optimal solution, providing insights into early

convergence behavior as well as performance near the optimum. Plotting convergence against elapsed

time is particularly useful when an algorithm’s computational overhead is significant compared to the

time required for function evaluations. For example, Figure 1 suggests that Algo 1 is not competitive

when plotting in terms of number of evaluations, but performs very well with respect to time.

These plots, as well as all the ones proposed in this document need to be plotted as monotone

staircase functions.

Les Cahiers du GERAD G–2025–36 4

3.2 Accuracy profiles

Accuracy profiles also focus on quality of solution, but instead of working with a single problem

instance, aim to summarize quality of solution over the entire test set [5]. These profiles evaluate the

final precision attained by the algorithm, making them particularly useful when robustness in achieving

high-precision solutions is the main criterion.

Denote the total number of function evaluations used by Algorithm a ∈ A on instance p ∈ P by

Ntot
a,p . The final solution’s accuracy value (Definition 2.1) is then f

Ntot
a,p

acc . The negative of the base 10

logarithm of 1 − f
Ntot

a,p
acc gives an indication of the number of correct decimals of the accuracy value

(where − log10(0) is interpreted as ∞). Indeed, if d ≥ 0, then

− log10

(
1− f

Ntot
a,p

acc

)
≥ d ⇔ f

Ntot
a,p

acc ≥ 1− 10−d.

The accuracy profiles are now functions of a variable d, called the relative accuracy, that will be

compared to the negative of the logarithm.

Definition 3.1 (Accuracy Profile). The accuracy profile of Algorithm a ∈ A on the test set P is defined

as the function ra : [0,∞) → [0, 1] via

ra(d) =
1

|P|

∣∣∣{p ∈ P : − log10

(
1− f

Ntot
a,p

acc

)
≥ d

}∣∣∣ ,
where − log10(0) is interpreted as ∞.

To compare the algorithms, the accuracy profiles are plotted on the same graph for all algorithms

(see Figure 2).

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Relative accuracy d

P
or
ti
on

of
in
st
an

ce
s
so
lv
ed

r a
(d
)

Accuracy profiles

Algo 1

Algo 2

Figure 2: An example of an accuracy profile plot

The x-axis of an accuracy profile plot begins at 0 and should be plotted to no further than ma-

chine/software precision (typically d = 16). The y-axis of ranges from 0 to 1. All algorithms should

begin at ra(0) = 1, as d = 0 represents no improvement over starting conditions. Like convergence

plots, accuracy profiles are all piecewise constant nonincreasing functions. Curves that are consistently

higher correspond to algorithms that consistently produce better results.

In Figure 2, Algo 1 solves 85% of problem instances with 16 digits of accuracy, while Algo 2

only solves 40% of the instances with 10 digits of accuracy.

Les Cahiers du GERAD G–2025–36 5

3.3 Performance profiles

The introduction of performance profiles by Dolan and Moré [10] represents a significant development

in the benchmarking of optimization algorithms. Shifting the focus away from accuracy, performance

profiles are cumulative graphs that quantify the efficiency (speed of convergence) and robustness (por-

tion of problems solved).

To define performance profiles, the user first selects a tolerance parameter τ ∈ [0, 1). Using this

value, for each pair a ∈ A and p ∈ P, the Boolean variable

Ta,p =

{
1 if fN

acc ≥ 1− τ for some N,
0 otherwise

is introduced. Algorithm a ∈ A is said to τ -solve problem instance p ∈ P when Ta,p = 1. Successfully

τ -solving a problem instance implies that the algorithm found a solution that improved the objective

function to a point such that f(xNa,p) ≤ f(x∗) + τ(f(x0)− f(x∗)). If τ = 0, then τ -solving a problem

instance implies that a solution was found whose objective function value equals f∗.

If Algorithm a τ -solves problem instance p, let Na,p denote the smallest integer such that f
Na,p
acc ≥

1− τ ; otherwise set Na,p = ∞. Next define

ra,p =


Na,p

min {Nã,p : ã ∈ A, Tã,p = 1}
if Ta,p = 1,

∞, if Ta,p = 0.

Notice that an Algorithm a that τ -solves problem instance p with the least number of function evalua-

tions has the value ra,p = 1. In DFO, since the number of function evaluations is integer, it is possible

for multiple algorithms to have ra,p = 1 on some problems. All other algorithms will have a value

of ra,p strictly greater than 1. For example, if ra,p = 2, then Algorithm a τ -solved problem instance

p using exactly twice as many function evaluations as the algorithm that solved it with the fewest

evaluations. Any algorithm that fails to τ -solve the problem will have ra,p = ∞.

The performance profile definition can now be stated.

Definition 3.2 (Performance Profile). For a given tolerance τ > 0, the performance profile of Algorithm

a ∈ A on the test set P is defined as the function ρa : [1,∞) → [0, 1] via

ρa(α) =
1

|P|
∣∣{p ∈ P : ra,p ≤ α}

∣∣.
In other words, ρa(α) is the portion of problem instances that Algorithm a τ -solved within a ratio

of α function evaluations of the best solver for the respective instance. To compare the algorithms, the

performance profiles are plotted on the same graph for all algorithms (see Figure 3). In DFO, typical

values for τ are 10−1, 10−3, or 10−6. Ideally, multiple values for τ should be considered.

The x-axis of a performance profile plot begins at α = 1 and should extend to the point ᾱ > 1 such

that all profiles become constant functions (i.e., ρa(α) = ρa(ᾱ) for all α ≥ ᾱ, a ∈ A). The y-axis ranges

from 0 to 1. Like accuracy profiles, curves that are consistently higher correspond to algorithms that

consistently produce better results. In contrast to accuracy profiles, performance profiles are piecewise

constant nondecreasing functions. The maximum value of a performance profile represents the portion

of problems that the algorithm τ -solved.

In Figure 3, the Algo 1 curve is always above that of Algo 2, so would likely be deemed the most

successful method. For τ = 1%, Algo 1 is the fastest to τ -solves 82% of the problem instances. Algo

2 is the fastest on 20% of the instances. It follows that both algorithms τ -solve 2% of the instances

using the same number of evaluations (since 82% + 20% exceeds one by 2%). The plot on the right

suggests that the ratio α becomes quite high before the profile for Algo 2 stabilizes.

Les Cahiers du GERAD G–2025–36 6

20 21 22 23 24 25 26 27 28
0

0.2

0.4

0.6

0.8

1

Ratio of function evaluations α

P
o
rt

io
n

of
τ
-s

ol
ve

d
in

st
a
n
ce

s
ρ
a
(α

)
Performance profiles τ = 1 %

Algo 1

Algo 2

20 21 22 23 24 25 26 27 28
0

0.2

0.4

0.6

0.8

1

Ratio of function evaluations α

P
o
rt

io
n

of
τ
-s

ol
ve

d
in

st
a
n
ce

s
ρ
a
(α

)

Performance profiles τ = 0.01%

Algo 1

Algo 2

Figure 3: An example of performance profile plots

Since performance profiles visualize algorithms’ effectiveness relative to the other algorithms, they

are subject to the switching phenomenon [13]. In particular, adding or removing an algorithm from A
can change the relative ranking of other algorithms. The switching phenomenon does not appear in

data profiles, presented next.

3.4 Data profiles

Building on the concept of performance profiles, Moré and Wild [19] introduced data profiles, which

extend the benchmarking framework by focusing on the computational effort required to achieve a given

precision. While performance profiles emphasize efficiency relative to other algorithms, data profiles

capture the trade-off between computational effort (such as the number of function evaluations) and

the accuracy of the solution.

The information used to create data profiles is similar to the information for performance profiles,

but (for DFO) also requires the dimension of problem instance p ∈ P , denoted by np.
1

Definition 3.3 (Data Profile). For a given tolerance τ > 0, the data profile of Algorithm a ∈ A on the
test set P is defined as the function da : N → [0, 1] via

da(k) =
1

|P|
∣∣ {p ∈ P : Na,p ≤ k (np + 1)Ta,p}

∣∣.
The value da(k) is the portion of problem instances that Algorithm a ∈ A τ -solved within k groups

of np + 1 function evaluations. To compare the algorithms, the data profiles are plotted on the same

graph for all algorithms, as shown in Figure 4. Similar to performance profiles, multiple values for τ

should be considered.

The x-axis of a data profile plot begins at k = 0, where da(0) = 0 for all algorithms a ∈ A.

The x-axis should be extended to the point where all profiles become constant functions. The y-axis

ranges from 0 to 1. Like performance profiles, data profiles are piecewise constant nondecreasing

functions and profiles that are consistently higher correspond to algorithms that consistently produce

better results. And, the maximum value of a data profile represents the portion of problems that the

algorithm τ -solved.

1The scaling by (np + 1) in the definition of da is based on the DFO concept of a gradient approximation requiring
(np + 1) function evaluations [9, 19, 21], making a natural link between iteration complexity and dimension.

Les Cahiers du GERAD G–2025–36 7

0 40 80 120 160

0

0.2

0.4

0.6

0.8

1

Groups of (np + 1) evaluations k

P
o
rt

io
n

o
f
τ
-s

o
lv

ed
in

st
an

ce
s
d
a
(k

)
Data profiles τ = 1 %

Algo 1

Algo 2

0 40 80 120 160

0

0.2

0.4

0.6

0.8

1

Groups of (np + 1) evaluations k

P
o
rt

io
n

o
f
τ
-s

o
lv

ed
in

st
an

ce
s
d
a
(k

)

Data profiles τ = 0.01 %

Algo 1

Algo 2

Figure 4: An example of data profile plots

In the left plot of Figure 4, the Algo 1 curve is above that of Algo 2. However, in the right

plot with a smaller value of τ , Algo 2 outperforms Algo 1 when k exceeds 50. This illustrates the

importance of visualizing multiple values for τ .

4 Extensions

As mentioned, existing benchmarking techniques implicitly assume that there is no special effort re-

quired to acquire feasible points. In addition, the existing techniques focus on single-objective optimiza-

tion and do not consider the possibility of surrogate functions that could be used in the optimization

algorithms. Section 4.1 proposes ways to compare such problems when the initial point is infeasible.

Section 4.2 proposes ways to benchmark DFO algorithms that are intended for multi-objective prob-

lems. Section 4.3 discusses ways to benchmark DFO algorithms that take advantage of a surrogate

optimization problem to generate and order trial points.

4.1 Benchmarking constrained optimization algorithms

This section shows one way to adapt the above benchmarking algorithms for constrained optimization

problems that allow for infeasible initial points.

On a given problem instance, define ηa to be the number of blackbox evaluations required by

algorithm a ∈ A to generate a feasible solution. Observe that ηa = 0 when the starting point x0 is

feasible, and ηa = ∞ when the algorithm fails to produce a feasible solution.

Convergence plots can be generalized by making use of the constraint violation function. The

constraint violation function, h : Rn → R∪{∞}, was introduced in the context of filter algorithms [11,

12], and is defined as

h(x) =


∑
j∈J

(max{gj(x), 0})2 if x ∈ Ω,

∞ otherwise,

where g and Ω are defined in Problem (1), and J = {1, 2, . . . ,m} are the indices of the quantifiable

constraints [17].

To adjust convergence plots to this style of algorithm, on the left part of the figure, plot the

constraint violation function value h in terms of the number of evaluations, from 0 to ηa, and on

the right side, plot the best feasible objective function value f in terms of the number of evaluations

Les Cahiers du GERAD G–2025–36 8

starting at ηa. An example appears in Figure 5. Algo 1 is the fastest to produce a feasible solution,

and once that it did, it rapidly finds a feasible solution with an objective function value close to 4.4.

Algo 2 uses approximately 250 evaluations to reach feasibility, and struggles to find a good solution.

0 200 400 600 800

4.4

4.6

4.8

5

5.2

Number of function evaluations

B
es
t
ob

je
ct
iv
e
fu
n
ct
io
n
va
lu
e
f

Convergence plot

Algo 1

Algo 2

0

1,000

2,000

3,000

4,000

C
on

st
ra
in
t
v
io
la
ti
on

va
lu
e
h
(d
ot
te
d
)

Figure 5: An example of a convergence plot for algorithms that allow infeasible initial points

The other profiles rely on the accuracy value, which depends on f0 and f∗. There are no issues

with selecting f∗ as methods (a), (b), and (c), on page 3, are still sound. But in the situation where

x0 is infeasible, it does not make sense to use f0 = f(x0) because that value might not be an upper

bound for f∗. Different approaches for defining f0 can be used, with the most important aspect being

that all algorithms and test problem instances are treated equally. One approach for benchmarking

constrained optimization algorithms would be define it as

f0 = min {f(xηa) : a ∈ A, ηa < ∞}.

Another approach defines it as

f0 = max {f(xηa) : a ∈ A, ηa < ∞}.

Using the max has the advantage of ensuring that all accuracy function values fN
acc are in [0, 1], but

has the drawback of systematically generating accuracy values close to 1 when the first feasible point

generated by an algorithm has a very high objective function value.

Figure 6 illustrates two accuracy profile plots, constructed using the same data, but using these two

different methods for selecting f0. Observe that both profiles suggest the same conclusion: (Algo 1

is preferable to Algo 2). The choice of f0 only causes minor changes to the profiles.

Les Cahiers du GERAD G–2025–36 9

0 2 4 6 8 10 12

0.6

0.8

1

Relative accuracy d

P
or

ti
on

of
in

st
an

ce
s

so
lv

ed
r a

(d
)

Accuracy profiles

Algo 1

Algo 2

0 2 4 6 8 10 12

0.6

0.8

1

Relative accuracy d

P
or

ti
on

of
in

st
an

ce
s

so
lv

ed
r a

(d
)

Accuracy profiles

Algo 1

Algo 2

Figure 6: Two examples of accuracy profile plots for algorithms that allow infeasible initial points:f0 = min {f(xηa) : a ∈
A, ηa < ∞} (left); f0 = max {f(xηa) : a ∈ A, ηa < ∞} (right)

4.2 Benchmarking multi-objective optimization algorithms

In certain modeling situations, it is desirable to optimize more than one objective. This creates a

multi-objective optimization problem [18] of the form

min
x∈Ω

F (x) (2)

where Ω ⊆ Rn is the feasible region and F (x) =
(
f (1)(x), . . . , f (η)(x)

)
is composed of the η ≥ 2

objective functions f (i) : Rn → R ∪ {∞} for i ∈ {1, 2, . . . , η}.

Typically, there does not exist a single vector x ∈ Ω that simultaneously optimizes all objectives.

Therefore, the solution to the multi-objective problem is composed of a set of tradeoff points, chosen

based on the Pareto dominance criterion [25], which is used to compare two decision vectors u ∈ Ω

and v ∈ Ω. A vector u ∈ Ω is said to dominate another vector v ∈ Ω (denoted u ≻ v) if the values

of all objective functions evaluated at u are less than or equal to those at v, with at least one of the

inequalities being strict.

The set of non-dominated points forms the solution set of the multi-objective problem, known as

the Pareto set denoted by ΩP . Its image in Rη under the mapping F is called the Pareto front and is

denoted by FP = F (ΩP) ⊆ Rη.

There are many indicators to quantify the quality of Pareto front approximations [3, 20]. One of the

most popular is the hypervolume indicator (called the area measure when two objectives are considered,

and volume indicator when three objectives are considered), and requires the following definitions. Let

Ω̃A be the set of non-dominated points of ∪a∈AΩ̃a, where Ω̃a is the Pareto set approximation produced

by algorithm a ∈ A. The ideal and nadir points are the vectors in Rη given by

I =
(
I(1), . . . , I(η)

)
=

(
min
x∈Ω̃A

f (1)(x), . . . , min
x∈Ω̃A

f (η)(x)

)
∈ Rη

and N =
(
N (1), . . . ,N (η)

)
=

(
max
x∈Ω̃A

f (1)(x), . . . , max
x∈Ω̃A

f (η)(x)

)
∈ Rη.

The hyperrectangle R = [I, N] ⊂ Rη contains the Pareto front approximation F (Ω̃A).

For a given Pareto front approximation, the hypervolume indicator computes the hypervolume of

the dominated zone within the rectangle R, and divides it by the area of R. An algorithm whose score

is the larger would be considered to have provided the better Pareto front approximation.

Les Cahiers du GERAD G–2025–36 10

Definition 4.1. For algorithm a ∈ A, ideal point I, and nadir point N , the hypervolume indicator of

the Pareto front approximation F̃ a
P is

sa =
1

V

∫∫
R

ιF (u)du

where

R = [I, N], V = vol(R) =

N∏
i=1

(
N (i) − I(i)

)
and

ιF (u) =

{
1 there exists v ∈ F̃ a

P such that u ≻ v
0 otherwise.

In Definition 4.1, V is the hypervolume of R and the multivariate integral
∫∫

R
ιF (u)du computes

the hypervolume of the dominated region within R. Thus sa is the portion of R that is dominated by

the Pareto front approximation.

In the case where exactly two objectives are considered, and the Pareto set approximation Ωa
P is

finite, let {x1
a, . . . , x

m
a } be the subset of Ωa

P whose image by F is included in R, ordered by increasing

values of f (1). The integral in Definition 4.1 can be computed via∫∫
Ω

ιF (u)du =

m∑
i=1

sia with sia =

{ (
f (1)(xi+1

a)− f (1)(xi
a)
) (

N (2)− f (2)(xi
a)
)

if i < m(
N (1)− f (1)(xm

a)
) (

N (2)− f (2)(xm
a)

)
if i = m.

If three or more objectives are considered, or the Pareto front is infinite, the hypervolume indicator

can be quite difficult to compute [22].

For benchmarking purposes, the ideal and nadir points used to construct the area measure for a

specific test instance have a fundamental impact on the computed hypervolume indicator. As such, it

is critical to determine these points in a fair and consistent manner. If a theoretical true solution exists,

then the ideal and nadir points can be extracted from that solution. Otherwise, the ideal and nadir

points can be approximated using the union of all Pareto front approximations over all algorithms,

F̃P =
⋃
a∈A

F̃ a
P .

In order to benchmark multi-objective algorithms, one can redefine the accuracy function from

Definition 2.1. First, for each problem instance, select the representative ideal and nadir points I
and N . Let s∗ be the hypervolume indicator of the Pareto front of F̃P and s0 be the hypervolume

indicator of the initial Pareto front approximation. The optimal Pareto used to compute s∗ should be

the same as that used to compute the ideal and nadir points. The Pareto front used to compute s0 could

consist of a single point, or a collection of starting points generated through some initial sampling. In

any case, all algorithms should be given the same initial point(s), so s0 should be well-defined. It is

possible that s0 = 0, in the event that the images of the initial points are outside of the rectangle R.

Let sa(x
N) be the hypervolume indicator of the Pareto Front approximation corresponding to the

N th function evaluation of algorithm a ∈ A. The accuracy function from Definition 2.1 can now be

redefined as

sNacc =
sa(x

N)− s0

s∗ − s0
.

Figure 7 presents two example performance profiles plots using this technique, with the same value

of τ . The plot on the left compares three algorithms. For α close to one, Algo 1 dominates the

two other algorithms, as it τ -solved more than 50% of the instances the fastest. The performances of

the two other algorithms is difficult to distinguish. The plot on the right only compares Algo 2 and

Les Cahiers du GERAD G–2025–36 11

Algo 3. Now that Algo 1 is absent, the figure reveals that Algo 2 clearly dominates Algo 3 for

low values of α, as it was the fastest to τ -solve two thirds of the instances. For large values of α, the

relative performance of the algorithms is not significantly different in both figures. However, notice

the range of the ratio in both figures: 40 versus 12. The difference is due to the fact that Algo 1 is

very quick to τ -solve instances.

10 20 30 40

0

0.2

0.4

0.6

0.8

1

Ratio of function evaluations α

P
or

ti
on

of
τ
-s

ol
ve

d
in

st
an

ce
s
ρ
a
(α

)

Performance profiles τ = 0.1

Algo 1

Algo 2

Algo 3

2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

Ratio of function evaluations α

P
or

ti
on

of
τ
-s

ol
ve

d
in

st
an

ce
s
ρ
a
(α

)

Performance profiles τ = 0.1

Algo 2

Algo 3

Figure 7: Two examples of performance profile plots for multi-objective optimization algorithms:(left) three algorithms ;
(right) two algorithms

4.3 Benchmarking surrogate-assisted optimization algorithms

Surrogate-based optimization assumes the existence of surrogate functions; i.e., cheaper-to-evaluate

functions that can be used as approximations for the true objective and/or constraint functions [6,

23, 16]. These surrogates can be static simplifications or dynamic models built through regression,

interpolation, Krieging or Bayesian approximations based on previously evaluated points. Some meth-

ods also incorporate feasibility prediction models and adaptive strategies to improve accuracy and

robustness in constrained optimization problems. By evaluating these surrogates, promising candidate

points for the true Problem (1) can be identified. This section shows how to adapt benchmarking tools

to account for the use of surrogates.

Convergence plots and accuracy profiles should be constructed using only the evaluations of the

true problem since they do not consider the effort deployed by the algorithm. However, performance

and data profiles represent the proportion of τ -solved problem instances in terms of a measure of the

effort deployed.

Dynamic surrogates, such as Gaussian or quadratic models, are generally much quicker to evaluate

than the true blackbox problems. However, the cost of repeatedly building these dynamic surrogates

can be time-consuming. One way to adapt the profiles is to plot the proportion of τ -solved problem

instances in terms of computational time instead of in terms of groups of np + 1 evaluations. For

performance profiles, this is the relative computational time compared to the champion method, while

for data profiles, it would be in terms of elapsed time. The latter naturally depends on the instance

sizes and is more appropriate when comparing instances of the same problem (using various starting

points and/or random seeds).

Adjusting performance and data profiles to account for the use of time-consuming static surrogate

problems involves redefining how function calls are counted. This can be formalized as follows:

Les Cahiers du GERAD G–2025–36 12

Let us pause the deployment of an algorithm on a problem instance, and define

• Nt as the current number of evaluations of the true blackbox;

• Ns as the current number of evaluations of the surrogate;

• w ∈ [0, 1) as a user-defined weight factor reflecting the relative cost of surrogate evaluations

compared to true evaluations.

The effective number of evaluations, N , is then defined as a weighted sum of the true and surrogate

evaluations:

N = Nt + wNs.

In this formula, w should be selected to accurately represent the ratio of effort it takes to compute the

surrogate function(s) versus the effort it takes to compute the true function(s). By using the value N to

compute the accuracy value in Definition 2.1 (instead of Nt), profiles are created that more accurately

reflect the computational effort by considering both types of evaluations; thereby accounting for the

surrogate’s contributions to the optimization process while maintaining a consistent framework for

comparing different optimization strategies.

Figure 8 presents two examples of data profiles using this technique. The left one shows a situation

in which the surrogate is instantaneous to evaluate (w = 0), while the right shows the effect of setting

w = 1
10 (representing that the surrogate function is 10 times cheaper to evaluate than the true function).

Both plots are generated using the same evaluation budget. As a consequence, the profiles with w = 1
10

exhaust the evaluation budget and produce inferior quality solutions. The profile for Algo 1 increases

more rapidly when the cost of the surrogate is null. Careful inspection of the figure reveals that, the

curve for Algo 1 reaches its maximal value of 0.56 at approximately 800 groups of np +1 evaluations

when w = 0, and only attains 0.52 near 1100 groups of n+ 1 evaluations when w = 1
10 .

0 200 400 600 800 1,000 1,200

0

0.2

0.4

0.6

0.8

1

Groups of (np + 1) evaluations k

P
or

ti
on

of
τ
-s

ol
ve

d
in

st
an

ce
s
d
a
(k

)

Data profiles τ = 0.01

Algo 1

Algo 2

0 200 400 600 800 1,000 1,200

0

0.2

0.4

0.6

0.8

1

Groups of (np + 1) evaluations k

P
or

ti
on

of
τ
-s

ol
ve

d
in

st
an

ce
s
d
a
(k

)

Data profiles τ = 0.01

Algo 1

Algo 2

Figure 8: Two examples of data profile plots for surrogate-based optimization algorithms:(left) w = 0; (right) w = 1
10

There are situations in which the above strategy to compensate the cost of a surrogate is not

appropriate. For example, situations arise when there is not one, but there are a collection of surrogate

problems. In this case, the approach is easily extended by applying additional weight parameters. If

the surrogate involves controlling how many repetitions are used within some form of Monte Carlo

simulation (as seen in [1, 2, 7]), then N can be set as the number of repetitions.

Les Cahiers du GERAD G–2025–36 13

5 Discussion

This paper provides a comprehensive review and extension of benchmarking techniques for DFO algo-

rithms, focusing on three specific contexts: constrained optimization, multi-objective optimization, and

surrogate-assisted optimization. Established tools such as convergence plots, accuracy profiles, per-

formance profiles, and data profiles, were adapted to address the challenges present in these specific

contexts.

For constrained optimization, we introduced adaptations that handle infeasible initial points and

hidden constraints, emphasizing consistency in defining baseline and best-known solutions. For multi-

objective optimization, we use a measure to quantify the quality of Pareto front approximations. For

surrogate-assisted optimization, we highlighted the importance of accounting for all evaluation costs.

The methods presented in this paper aim to standardize and elevate the benchmarking process,

ensuring that algorithmic comparisons are fair, insightful, and aligned with practical optimization

needs. We comment that the techniques can be easily combined to deal with situations like multi-

objective surrogate-based optimization. We hope that these contributions will serve as a foundation

for continued advancements in optimization algorithm research.

Appendix: Software availability and usage

In order to facilitate the use of the techniques herein, software can be found at https://github.com/

bbopt/RunnerPost.

The RunnerPost software repository primarily consists of C++ code, supplemented by Python.

The code is designed for high-performance computational tasks, utilizing C++ for core processing and

an optional Python interface for scripting and automation. CMake is used for building the project,

and Cython facilitates the integration between C++ and Python. The code supports both Python

and command-line interfaces. The code performs post-processing and profiling of optimization results

provided as text files and returns post-processed text files that support LaTeX for producing PDF

files. All profile plots in this paper have been generated by RunnerPost.

Documentation on installation and utilization of the code are described in the repository’s

README file. The project is licensed under the MIT License. We welcome suggestions and con-

tributions that improve the project.

References

[1] S. Alarie, C. Audet, P.-Y. Bouchet, and S. Le Digabel. Optimisation of stochastic blackboxes with adaptive
precision. SIAM Journal on Optimization, 31(4):3127–3156, 2021.

[2] N. Andrés-Thió, C. Audet, M. Diago, A.E. Gheribi, S. Le Digabel, X. Lebeuf, M. Lemyre Garneau,
and C. Tribes. solar: A solar thermal power plant simulator for blackbox optimization benchmarking.
Technical Report G-2024-37, Les cahiers du GERAD, 2025. To appear in Optimization and Engineering.

[3] C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, and L. Salomon. Performance indicators in multiobjective
optimization. European Journal of Operational Research, 292(2):397–422, 2021. Invited Review.

[4] C. Audet and W. Hare. Derivative-Free and Blackbox Optimization. Springer Series in Operations
Research and Financial Engineering. Springer, Cham, Switzerland, 2017.

[5] V. Beiranvand, W. Hare, and Y. Lucet. Best practices for comparing optimization algorithms. Optimiza-
tion and Engineering, 18(4):815–848, 2017.

[6] A.J. Booker, J.E. Dennis, Jr., P.D. Frank, D.B. Serafini, V. Torczon, and M.W. Trosset. A Rigorous
Framework for Optimization of Expensive Functions by Surrogates. Structural and Multidisciplinary
Optimization, 17(1):1–13, 1999.

[7] X. Chen and C.T. Kelley. Optimization with hidden constraints and embedded Monte Carlo computations.
Optimization and Engineering, 17(1):157–175, 2016.

https://github.com/bbopt/RunnerPost
https://github.com/bbopt/RunnerPost

Les Cahiers du GERAD G–2025–36 14

[8] T.D. Choi and C.T. Kelley. Superlinear convergence and implicit filtering. SIAM Journal on Optimization,
10(4):1149–1162, 2000.

[9] A.L. Custódio, J.E. Dennis, Jr., and L.N. Vicente. Using simplex gradients of nonsmooth functions in
direct search methods. IMA Journal of Numerical Analysis, 28(4):770–784, 2008.

[10] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles. Mathematical
Programming, 91(2):201–213, 2002.

[11] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Mathematical Program-
ming, Series A, 91:239–269, 2002.

[12] R. Fletcher, S. Leyffer, and Ph.L. Toint. A brief history of filter methods. SIAM SIAG/OPT Views-and-
News, 18(1):2–12, 2006.

[13] N. Gould and J. Scott. A note on performance profiles for benchmarking software. ACM Transactions on
Mathematical Software, 43(2):15:1–15:5, 2016.

[14] N. Hansen. The CMA Evolution Strategy: A Comparing Review. In J. Lozano, P. Larrañaga, I. Inza, and
E. Bengoetxea, editors, Towards a New Evolutionary Computation, volume 192 of Studies in Fuzziness
and Soft Computing, pages 75–102. Springer, Berlin, Heidelberg, 2006.

[15] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff. COCO: a platform for comparing
continuous optimizers in a black-box setting. Optimization Methods and Software, 36(1):114–144, 2021.

[16] J. Larson, M. Menickelly, and S.M. Wild. Derivative-free optimization methods. Acta Numerica, 28:287–
404, 2019.

[17] S. Le Digabel and S.M. Wild. A taxonomy of constraints in black-box simulation-based optimization.
Optimization and Engineering, 25(2):1125–1143, 2024.

[18] K. Miettinen. Nonlinear Multiobjective Optimization. Springer, 1999.

[19] J.J. Moré and S.M. Wild. Benchmarking Derivative-Free Optimization Algorithms. SIAM Journal on
Optimization, 20(1):172–191, 2009.

[20] T. Okabe, Y. Jin, and B. Sendhoff. A critical survey of performance indices for multi-objective optimisa-
tion. In Evolutionary Computation, volume 2, pages 878–885, Canberra, Australia, 2003.

[21] R.G. Regis. The calculus of simplex gradients. Optimization Letters, 9(5):845–865, 2015.

[22] P.K. Shukla, N. Doll, and H. Schmeck. A Theoretical Analysis of Volume Based Pareto Front Approxima-
tions. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pages
1415–1422, New York, NY, USA, 2014. ACM.

[23] A. Sóbester, A.I.J. Forrester, D.J.J. Toal, E. Tresidder, and S. Tucker. Engineering design applications
of surrogate-assisted optimization techniques. Optimization and Engineering, 15(1):243–265, 2014.

[24] B. Tang. Orthogonal array-based latin hypercubes. Journal of the American Statistical Association,
88(424):1392–1397, 1993.

[25] P.L. Yu. Cone convexity, cone extreme points and nondominated solutions in decision problems with
multi-objectives. Journal of Optimization Theory and Application, 14:319–377, 1974.

	Introduction
	Benchmarking setup
	Test set and algorithms
	Benchmarking data

	Existing benchmarking techniques
	Convergence plots
	Accuracy profiles
	Performance profiles
	Data profiles

	Extensions
	Benchmarking constrained optimization algorithms
	Benchmarking multi-objective optimization algorithms
	Benchmarking surrogate-assisted optimization algorithms

	Discussion

