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entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: Y. Villeneuve, S. Séguin, A. Chehri, K. De-
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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2025-34
https://www.gerad.ca/en/papers/G-2025-34
https://www.gerad.ca/en/papers/G-2025-34


Short-term hourly hydropower prediction: Evaluating LSTM
and MILP-based methods

Yoan Villeneuve a, b
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b GERAD, Montréal (Qc), Canada, H3T 1J4

c Royal Military College of Canada, Kingston (On),
Canada, K7K 7B4

d Rio Tinto Complexe Jonquière, Saguenay (Qc),
Canada, G7S 4L2

yoan.villeneuve1@uqac.ca

s1seguin@uqac.ca

abdellah.chehri@rmc-cmr.ca

Kenjy.Demeester@riotinto.com

April 2025
Les Cahiers du GERAD
G–2025–34
Copyright © 2025 Villeneuve, Séguin, Chehri, Demeester
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Abstract : Hydropower generation plays a crucial role in the global energy landscape, offering a
renewable and sustainable source of electricity. Accurate forecasting of hydropower output is essential
for efficient energy management and maintaining grid stability. This paper presents an autoregres-
sive Long Short-Term Memory (LSTM) model designed to predict short-term hydropower production,
specifically targeting the hourly water output decisions of two interconnected hydropower plants lo-
cated on the Péribonka River in Québec, Canada. Given the critical role of efficient scheduling in
hydropower operations, especially within the Short-Term Hydropower Scheduling (STHS) problem,
our model aims to offer a viable machine learning-based solution to complement traditional opti-
mization approaches. We evaluated the LSTM model by comparing its predictive performance with
historical operational data and results derived from a deterministic Mixed-Integer Linear Programming
(MILP) model. Our analysis covers multiple validation instances, showcasing the capabilities of the
model and highlighting its strengths and limitations. The results demonstrate that the autoregressive
LSTM approach successfully captures the underlying patterns in water discharge decisions, providing
predictions that are generally aligned with operational realities and optimized benchmarks. However,
the study also underscores challenges such as maintaining reservoir volume constraints, particularly in
periods of high inflow variability. Despite these challenges, the LSTM model presents promising pre-
dictive performance, laying the foundation for further improvements in integrating machine learning
into short-term hydropower management. To our knowledge, this is the first study to apply an autore-
gressive supervised LSTM model to predict hourly water flow decisions in hydropower systems, thus
significantly contributing to the advancement of machine learning applications in hydropower schedul-
ing.

Keywords: Hydropower generation, long short-term memory, machine learning, optimization, Mixed-
Integer Linear Programming, operational research

Résumé : La production hydroélectrique joue un rôle crucial dans le paysage énergétique mondial en
offrant une source d’électricité renouvelable et durable. La prévision de la production hydroélectrique
est essentielle pour une gestion efficace de l’énergie et le maintien de la stabilité du réseau électrique.
Cet article présente un modèle autorégressif à mémoire court et long terme (LSTM) conçu pour
prédire la production hydroélectrique à court terme, en ciblant spécifiquement les décisions horaires
de débit d’eau de deux centrales hydroélectriques interconnectées situées sur la rivière Péribonka au
Québec, Canada. Compte tenu du rôle critique d’une planification efficace dans les opérations hy-
droélectriques, particulièrement dans le cadre du problème de planification hydroélectrique à court
terme (STHS), notre modèle propose une solution viable basée sur l’apprentissage automatique pour
compléter les approches d’optimisation traditionnelles. Nous avons évalué le modèle LSTM en com-
parant ses performances prédictives avec des données opérationnelles historiques et des résultats issus
d’un modèle déterministe de programmation linéaire mixte en nombres entiers (MILP). Notre anal-
yse couvre plusieurs instances de validation, mettant en évidence les capacités du modèle ainsi que
ses forces et limites. Les résultats démontrent que l’approche autorégressive LSTM parvient à cap-
turer efficacement les motifs sous-jacents dans les décisions de débit d’eau, offrant des prédictions
généralement alignées avec les réalités opérationnelles et les solutions optimisées. Toutefois, l’étude
souligne également des défis, tels que le respect des contraintes de volume des réservoirs, en parti-
culier lors des périodes de forte variabilité des apports en eau. Malgré ces défis, le modèle LSTM
présente des performances prédictives prometteuses, posant ainsi les bases pour des améliorations fu-
tures dans l’intégration de l’apprentissage automatique à la gestion hydroélectrique à court terme. À
notre connaissance, cette étude est la première à appliquer un modèle LSTM autorégressif supervisé
pour prédire les décisions horaires de débit d’eau dans les systèmes hydroélectriques, contribuant ainsi
significativement à l’avancement de l’apprentissage automatique dans la planification hydroélectrique.

Mots clés : Génération hydroélectrique, réseau récurrent à mémoire court et long terme, apprentissage
automatique, optimisation, programmation linéaire en nombres entiers mixtes, recherche opérationnelle



Les Cahiers du GERAD G–2025–34 1

1 Introduction

Hydropower generation plays an essential role in the global energy landscape, providing a renewable

and sustainable source of electricity. In the province of Québec, Canada, hydropower accounts for 95%

of the province’s electricity needs and represents more than half of the annual electricity generated in

the country [9, 21]. The effective scheduling of hydropower operations is crucial to ensure optimal use of

water resources while meeting energy demand, especially given the current context of climate change [9].

Due to the scale and complexity of the hydropower scheduling problem, it is divided into three main

optimization time frames, which are short-, medium-, and long-term scheduling problems. Short-

term optimization models focus on optimizing day-to-day production to use the plant’s components

and available resources in the most efficient way possible [4, 8]. Medium-term optimization usually

revolves around optimizing the reservoir volume of one or many hydropower plants for the foreseeable

future. These problems involve a great deal of uncertainty caused by the water inflows, but also the

prices when the hydropower system is in a deregulated market setting [17]. Long-term planning is

used over a horizon of several years in order to quantify the impact of a major modification to the

network. Long-term models are used to plan the expansion of a system or to measure the impact of

maintenance on a turbine generator unit, to name a few. The models in this term are not used on

a regular operational basis. The literature also discusses a fourth term, real-time scheduling, which

deals with optimizing plant production in real time [7, 17]. Various methods have been developed to

optimize hydropower operations, ranging from traditional mathematical optimization techniques [4],

to more recently machine learning algorithms, as reviewed in [60, 63]. The Short-Term Hydropower

Scheduling (STHS) problem has not seen as much advancement in the realms of machine learning as

the medium- and long-term problems [8].

Papers were published in the last few years to review the state-of-the-art of the STHS problem.

Some papers [4, 38] explain the process of formulating the hydropower scheduling problem and discuss

some of the many articles on the optimization of the STHS problem. Most of these review articles

for STHS encompass the unit commitment problem (UC) and unit load distribution problem (ULD),

collectively known as the Hydro Unit Commitment (HUC) problem [38]. It is noted that there is

potential to develop larger models merging different time horizons, given a feasible and practical

model, which could lead to an improvement in the quality of the solution. Some reviews [7, 8, 60, 63]

are related to machine learning in the field of hydropower production. Machine learning is still in an

exploratory stage in the field of hydropower, as the few papers found in the literature demonstrate.

In addition, most of the articles published focus on the medium-term inflow forecasting problems.

This could be explained by the fact that the STHS is already a mathematically difficult problem,
being nonconvex and nonlinear, coupled with the short delay for decision-making and the need of a

large dataset to represent this problem over many years. In this review [60], the authors mention how

artificial intelligence algorithms outperform classical optimization techniques in solving multi-objective

optimization problems, while the contrary is also true for single-objective problems, with the added

benefits of stability. Another issue mentioned by [7] is the few models that make use of reinforcement

learning and the lack of models developed for run-of-river plants. Run-of-river hydropower plants

are optimized by the construction design of the plant [62] and the production function is linear and

depends on the flow of the river with little or no water storage. In this sense, optimizing the hydropower

production of run-of-river plants is difficult since there is no water storage and that the water discharge

is mainly controlled by the flow of the river, but a few articles [1, 62] shows that there is an interest

in developing models for these types of hydropower plants.

Dynamic Programming (DP) is widely employed due to its ability to handle complex decision-

making processes. This approach involves breaking down the scheduling problem into smaller and

easier sub-problems and then iteratively solving each sub-problem to find the overall optimal solu-

tion [6]. Dynamic programming [2] is used for medium- and long-term hydropower problems, but

progress in this field is slow, mainly due to the lack of scaleability when faced with complex problems,

where it usually falls short compared to metaheuristic models. In [14], a stochastic sampling DP
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algorithm is presented for medium-term water management in multiple reservoirs. Using production

function approximations and a linear objective function, the model efficiently predicts midterm wa-

ter inflows, optimizing energy production for a system with four reservoirs. Stochastic Dual Dynamic

Programming (SDDP) is implemented in [28] for medium-term hydropower scheduling problems to op-

timize hydropower production by effectively addressing the nonconvexity of the power and discharge

function with the stochastic elements of market value and water inflows. Integer cuts are used to

help with convergence, which resulted in an enhanced decision-making process, especially when omit-

ting the energy’s market price. The SDDP algorithm is also presented in [26] to achieve the highest

possible economic outcome while considering environmental and operational constraints. Constraint

relaxation and time-dependent auxiliaries on lower reservoir volume bounds are combined to address

state-dependent maximum discharge constraints. Although the proposed approach increases expected

annual profits, it also leads to overly conservative reservoir management strategies. A DP model that

uses successive approximation and relaxation strategies is proposed by [25] to address the long-term

joint power generation scheduling problem for large systems, achieving better results in terms of total

power generation and calculation time compared to other methods. In [49], an innovative model is

developed for the estimation of water with a precise representation of inflows and volume-dependent

environmental constraints, leading to the integration of nonconvexity in the problem formulation. De-

velopment with DP for the STHS problem is often overlooked because of the high computation time

constraint and computational difficulty for large hydropower systems. Recent advances in STHS with

DP include the ULD model [33] for the hydropower plants with multiple units and serving multiple

power grids. With a multicore parallel DP method, it is shown that it is possible to optimize a large

ULD problem, such as the 18 units of Xiluodu stations in China, in a reasonable amount of time. While

DP can yield accurate results, a major drawback is that computational complexity grows exponen-

tially with the size of the problem, which is referred to as the infamous “curse of dimensionality”. This

limiting factor poses a significant challenge in scaling up large-scale hydropower solutions with DP.

Mixed-Integer Linear Programming (MILP) models are widely used for hydropower scheduling

[42, 51, 63]. MILP formulations permit the inclusion of various constraints, allowing for a better repre-

sentation of the STHS problem, such as reservoir storage, water release policies, and energy generation

targets, to name a few [4, 18, 39]. In [57], a two-phase STHS optimization model is developed to first

obtain the water discharge, the volume of the reservoir and the number of units working in each period,

then determine which combination of turbines to use. Splitting the optimization in a two-stage model

makes the computation time much shorter than with a larger model. A study from [15] has demon-

strated the effectiveness of MILP models to optimize the short-term hydropower unit commitment

problem. The problem is solved using efficiency points to represent the water discharge and the power

produced at the maximum reservoir capacity for every combination of turbines. The solution is then

adjusted to the current state of the reservoir, achieving improvements in operational efficiency and

energy production. The paper by [52] introduces an MILP model for daily operations that convert the

nonconvex and nonlinear Hydropower Production Function (HPF) to a convex and linear approxima-

tion by using three heuristics in the model. Each heuristic offers either dynamically adjusts the unit

input-output curve or to have a stable unit input-output curve. A comparison between a nonlinear

stochastic MILP model and a nonlinear heuristic model in a deregulated market is developed in [30].

These models take into consideration the European Nordic electricity markets, with efficient bidding in

the day-ahead market for price-taking hydropower producers. Although the nonlinear MILP approach

yields better results, the heuristic method can provide a viable solution within a shorter time frame.

Similarly to dynamic programming, MILP models for the STHS problem suffer from a scaleability

problem related to the computational load, which does not fit well with the time frame available to

make a decision in a sort-term setting.

In addition to traditional MILP techniques, machine learning algorithms have emerged as promis-

ing tools for hydropower scheduling, with a lot of recent papers published on their uses in hy-

dropower [8, 63]. Problems related to the hydropower scheduling problem with machine learning in
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medium-term [16, 36, 46], and long-term horizons [19, 41], have been studied in the recent literature,

but very few advancements have been made in regards to machine learning in the STHS problem.

Machine learning is used to address the limitations of optimization models, mainly to decrease the

complexity of the hydropower scheduling problem when scaling the model [60]. In [32], the Approx-

imate Dynamic Programming (ADP) method introduced in the study improves the optimization of

hydropower reservoir by leveraging a Long Short-Term Memory (LSTM) model as a response surface

model. The method addresses the challenges of traditional DP methods, offering a more efficient and

accurate approach to reservoir operation optimization by reducing computation time and improving

performance through accurate power output estimations. The research from [31] also proposes an ADP

algorithm for the HUC problem. This approach preserves the nonconvex and nonlinear nature of the

STHS problem, opting to map the original model’s value function with machine learning. This adap-

tation enables hourly predictions and achieves a favourable balance between efficiency and solution

optimality. In [66], a short-term model is developed, using various machine learning and optimiza-

tion techniques, to predict the daily energy production of Mahabad Dam, located in the province of

West Azerbaijan in Iran. The inputs of this model are transformed into frequency, then, an LSTM

is used to capture the temporal dependencies and patterns in the data, followed by a random forest

to make the prediction on the final output. This model marks a notable progress by applying various

algorithms and techniques effectively, which results in improved predictive accuracy. Using 38 years

of daily hydropower generation data, the study presented in [48] evaluated the performance of three

distinct machine learning algorithms : Autoregressive Integrated Moving Average (ARIMA), Artificial

Neural Network (ANN), and Support Vector Machine (SVM). The algorithms were then tested with

three scenarios: daily, monthly and seasonal power generation patterns. Each model uses a window

of the plant’s previous power output as input, adjusting the window size and time frame according to

the observed scenario. The case study consists of forecasting power generation at the Three Gorges

Dam in Hubei Province. In general, SVM and ANN exhibit strong predictive performance in fore-

casting hydropower when using wider windows as input. For the daily scenario, both ANN and SVM

demonstrate strong predictive capabilities, which highlights the effectiveness of machine learning algo-

rithms in optimizing hydropower generation predictions for daily operations. Similarly, [47] forecasted

changes in reservoir water level in Malaysia with two different time frames (daily and weekly) with

various machine learning algorithms : Boosted Decision Tree Regression (BDTR), Decision Forest

Regression (DFR), Bayesian Linear Regression (BLR) and Neural Network Regression (NNR). Using

input data on water levels, rainfall, and water sent out of the Kenyir Dam, an analysis of the results

shows that BDTR gives the best prediction for both daily and weekly forecasts.

This paper aims to contribute to the field of STHS by developing and evaluating an LSTM model

to predict future hourly water output decisions of a system composed of two hydropower plants. The

performance of the LSTM model is compared with the results of a deterministic MILP model [15]

and real-life decisions, all of which are made on Rio Tinto’s Chute-du-Diable and Chute-à-la-Savane

hydropower plants in the province of Québec, Canada. The key criterion to evaluate the performance of

the LSTM model is the total water flow to be processed by the plant, the volume of water of the plant’s

reservoirs and the energy produced for each hour of the planning horizon. This paper illustrates the

potential of machine learning algorithms as a viable type of algorithm for hydropower scheduling in the

future. By demonstrating the ability of an LSTM model to predict hydropower scheduling decisions,

this research contributes to the advancement of efficient and sustainable hydropower operations. To

our knowledge, this is the first paper that develops a supervised autoregressive LSTM model using the

previous plant states to predict the future water flow of a hydropower system. Moreover, this paper

offers a clear benchmarking between MILP optimization and recursive neural network prediction, which

is not seen in the current hydropower literature. Overall, this paper addresses a significant gap in the

literature and lays the foundation for further research in the application of machine learning algorithms

for the STHS problem.
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2 Case study

The hydropower system presented in this paper is privately owned and operated by the Rio Tinto

company, an aluminum producer in the Saguenay-Lac-Saint-Jean region. Their system, shown in

Figure 1, produces around 90% of their energy needs. The energy market value is not considered

because the price is fixed by their contracts with Hydro Quebec, a government-owned corporation that

is in charge of the production, distribution and transmission of the energy in the Province. Therefore,

the electricity price is not considered in this paper. The system consists of six hydropower plants, each

with a reservoir.

Figure 1: Rio Tinto’s power plants designated by “R” pins in the Saguenay Lac-Saint-Jean region [61].

This hydropower system is part of a watershed that covers a surface area of about 73,800 km2. Since

the Saguenay Lac-Saint-Jean region is subject to a lot of snowfall during the winter, this watershed

is subject to floods between April and June. These conditions require intricate reservoir management

within the region to ensure both year-round water management and the safety of its residents. High

inflows in spring cause a lot of erosion, hence the importance. In summer, there are also many boaters

on the lake and public beaches, so managing the level in the summer is important to allow activities

on the lac, which led the region to develop a strong tourism-based economy.

This research studies two interconnected hydropower plant located on the Péribonka River. As

shown in Figure 2, the Chute-du-Diable (CdD) plant is the first of Rio Tinto’s system to receive

upstream water flow.

Figure 2: Location of CdD and CalS hydropower plants, located on the Péribonka River [20].
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2.1 Chute-du-Diable and Chute-Savane hydropower plants

The CdD plant and the CalS plant are separated by around 20 km of river length. The water flow out-

put of CalS is then sent down the river and into the lake Saint-Jean. Table 1 presents the characteristics

of the power plants used in the case study for the paper.

Table 1: Characteristics of the CdD and CalS powerplant [61][35].

Characteristics CdD CalS

Number of units 5 5
Dam height 37.8 m 39.62 m
Gross water head 33.1 m 34.5 m
Reservoir surface area 47 km2 18.5 km2

Holding capacity 1200 hm3 625 hm3

Installed capacity 224 MWh 245 MW
Maximum Water output 850 m3/s 810 m3/s

Both plants have 5 turbine units available for power production and have similar values in relation

to their size and capacity. One key difference is the size of the reservoir, with CdD having almost twice

the holding capacity of CalS. Together with CalS downstream of CdD, this means that the outflow of

CdD has a significant influence on the water management of CalS. As the formulation of the STHS

problem implies, the main objective for the scheduling of both power plants involves determining the

quantity of water to discharge and spill every hour.

2.2 Data

Rio Tinto collects data at intervals of 2 minutes from their power plants. For this project, a dataset of

hourly data is provided starting from December 2010 to December 2022. The content of the dataset

relates to historical data from different aspects of each power plant. The characteristics registered for

each period are detailed in the table 2.

Table 2: Characteristics contained in the 12 years dataset of the CdD-plant production.

Feature Unit

Time hour
Natural Inflow m3/s
Elevation m
Volume hm3

Water Discharged m3/s
Water Spilled m3/s
Energy MW
unit State (x5) [0,1]

For the sake of confidentiality in regards to Rio Tinto, the real data is classified. Instead, a

conversion to the percentage is used in this paper by using Eq.(1). This equation is taken from [15]

and shown here:

percentage(%) =
current value× 100

max(historical values)
. (1)

2.2.1 Input selection

This project is based on two datasets that comprise 12 years of hourly data describing the state of

the CdD and CalS hydropower plants from December 2010 to December 2022. The raw data was

used from the original dataset, except for the natural inflows and water discharge. The equipment

used to register the natural inflows in a reservoir is prone to errors caused by natural phenomena
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that agitate the water and generate waves, which can disturb the sensors in the area. These errors

cause either an abnormal spike in the series or an inflow value so low that it becomes negative. These

values are normalized to the average of the previous and next values of the affected periods. Another

modification of the feature is the water discharge. Hydro-Québec, a crown corporation, negotiates

fixed price contracts with Rio Tinto that require the company to feed them with the energy needs

for a short period of time, usually 1 to 3 hours. This generated spikes in energy production has been

normalized in order to stay consistent with the energy needs of Rio Tinto.

For the dataset, volume and elevation are related by an analytical equation, where the volume is

inferred using the net water head value. Because both features are redundant, the volume is chosen to

represent the amount of water available in the reservoir. This is also consistent with the optimization

model used to compare the results from this paper’s model.

The raw natural inflow cannot be used in its current state as an input for prediction, since the

observed inflow at any given period is not computed immediately. To be usable, this series is shifted

forward so that the inflow value represents the inflows from the previous period. The state of each

unit is simplified into a single feature compared to a binary feature for each, representing the number

of active units for each period.

As the machine learning model is compared to an MILP model that uses deterministic natural

inflows known in advance, a similar feature must represent these values in some way during training.

It is achieved by using a moving average to represent the average inflow of each future interval of 24

hours. The Moving Average (MA) equation is given by :

MAd,t =
1

24

24∑
i=1

natural inflowst+i,d ∀t ∈ T, ∀d ∈ D, (2)

where t represents the hours in each day d added to the MA for the whole dataset of T hours and D

days. Figure 3 shows the moving average when d = 1 for CdD.

Figure 3: Moving average of the first day ahead of the natural inflows at CdD from late 2010 to late 2017.

The use of this method helps to better represent the historical inflows by toning down the high

fluctuations, which is also useful in the context of machine learning by keeping the natural inflow more

consistent between instances.

2.2.2 Water outflow and power production

To make a decision on the scheduling of the power plant, more precisely the quantity of water to

discharge, a new feature is to be created in the dataset, as shown in Eq. (3) that represents the total
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water value output of the hydro plant at each period. The outflow of a hydropower plant is broken

down into the discharge flow and water spilled. The discharge flow relates to the body of water used

to produce energy, and the spilled water relates to the unused water that is released directly from the

reservoir to the downstream. Figure 4 shows these features in the dataset.

water outflowt(m
3/s) = discharge flowt + water spilledt (3)

Figure 4: Percentage of the water outflow, including both discharged and spilled, at CdD from late 2010 to late 2017.

The water inflows from CalS are different from those of CdD because of the influence of the outflow

from CdD that is added to CalS. Since the two plants are close together, the delay in water travel is

ignored. Therefore, the total inflow from Eq. (4) replaces the feature “natural inflow” for the CalS

dataset.

CalS(total inflow) = CalS(natural inflow) + CdD(water spilled+ water discharged) (4)

The two plants are now linked in the CalS dataset through this new feature, which helps to correlate

their operations for future modelling.

2.2.3 STL decomposition of the inflows

Spillage does not often occur in the dataset. As shown in Figure 3, snowmelt occurs between April

and July, where spikes in the inflows can be spotted at yearly intervals. Inflow values fluctuate a lot

in this set, mainly due to the sensors used to register the inflow in a reservoir. These sensors are

sensitive to disturbance when values are recorded, such as a gust of wind that causes the water level

to rise or fall. Therefore, a pattern can be seen in the data caused by the recurring seasons. To

help analyze the data, a decomposition method called Seasonal-Trend Decomposition using Locally

Estimated Scatterplot Smoothing (LOESS) or STL Decomposition [10] is applied to the inflow time

series to separate and smooth the series. STL Decomposition allows to decompose a time series into

three subseries referred as the trend, seasonal and residual component. Using LOESS [11] to transform

the series into multiple regressions in a local area of the data, the method separates the data into three

configurable components. As shown in Eq. (5), this decomposition method does not lose its original

information, because each component is additive and can be summed back to its original values:

natural inflow = trend+ seasonal+ residual (5)

This manipulation helps to visualize the data by eliminating the noise without a loss of information.

Figure 5 is the decomposition of the natural inflows of CdD, with the parameter of the decomposition

algorithm set to monthly for the seasonal component and yearly for the trend component.
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Figure 5: STL decomposition of the inflows features at CdD from late 2010 to late 2017.

The season component now clearly highlights the flood period while also highlighting an ascending

trend in the yearly number of inflows. The mean value of the residual component represents about

2.03% of the data range, which is acceptable considering the ideal mean value of zero for this component.

This means that there might still be patterns not captured by the method or that the series might be

multi-seasonal.

3 Methodology

In this Section, the methods used to achieve a predictive model for the STHS problem on a two-

hydropower plant system are described. In this paper, a modified version of recurring neural networks

(RNN) is utilized, which allows for the prediction of water discharges for each hydropower plant in the

system. The dependency between plants and the prediction method for the system is also addressed.

Lastly, a MILP model developed for this system prior to this project is briefly explained, as it is used

in the next Section of this paper for results analysis. A short comparison between RNN and MILP is

also provided to address potential biases when comparing both methods. This Section highlights the

key component of this paper that defines the effectiveness and applicability of the proposed approach.

3.1 Recurrent neural network

Machine learning is a term used to describe a type of algorithm that uses data to build a model capable

of predicting an output based on given input data. In contrast to optimization models that search for

an optimal solution, machine learning is used to predict the solution to a problem given as input data.

These types of algorithms are increasingly used in various fields as the various methods evolve and data

availability becomes more accessible than ever before. There exists a wide variety of machine learning

methods and models, each of which can be used based on the problem’s context. For this paper, a

supervised learning method is used to predict the water discharge for each hydropower plant available

in the hydropower system. Supervised learning means that, as the model is trained on historical data,

the model is informed of the quality of its predictions based on the real values present in the dataset.

A neural network is a type of machine learning algorithm. Similarly to the human brain, neural

networks consist of interconnected neurons that process data in layers, allowing the model to learn
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complex patterns [24]. Among the various types of neural networks, RNNs stand out for their ability

to handle sequential datasets. Unlike traditional neural networks, RNNs have connections that form

directed cycles. This class of neural network generally has an added mechanism that allows one to

retain information about the previous output of the model, allowing one to maintain a hidden state

that captures information from previous time steps. Figure 6 shows a simple architecture of an RNN

with a single recurrent layer.

Figure 6: Depiction of a neural network with a recurrent layer receiving information on the previous output of the model.

The general architecture of an RNN is typical of any neural network model, including an input

layer, one or more hidden layers, and an output layer. The specificity of the RNN is that the hidden

layers are augmented with recurrent connections, which ties the previous output of the model to the

hidden layer. This added step makes this type of network well suited for problems with temporal

dependencies, where understanding the sequence and order of data points is crucial [27]. Because of

this feature, the RNN architecture fits the STHS problem, where the context of the previous hours

significantly influences the current predicted output.

3.1.1 Autoregressive LSTM model

The added connections of the RNNs mean that they are susceptible to the vanishing and exploding

gradient problem because the gradients either decrease to near zero or grow exponentially during

backpropagation [67]. This problem often hinders the training process and prevents the network from

training effectively [50]. In this paper, a variant of the RNN is used, namely the LSTM model.

These types of models use a gating mechanism that makes them more effective in capturing long-term

dependencies and mitigate the problem of vanishing / exploding gradients [29, 50]. The LSTM is

implemented as a hidden layer that contains LSTM cells as in Figure 7.

An LSTM cell is composed of a forget gate, an input gate and an output gate. The forget gate

receives information xt from the previous layer, long-term memory ct−1 and short-term memory ht−1.

This gate determines what percentage of the long-term value should be remembered. Similarly, the

input gate determines what new information should be kept in long-term memory ct. The output gate

regulates what information to output based on both short-term and long-term values. The output of

this gate, which is the output of the cell, also becomes the new short-term memory ht. The activation

functions of tanh and sigmoid (depicted as σ) transform the values into specific ranges: [0,1] for

sigmoid and [-1,1] for tanh. In an LSTM, the sigmoid function specifically acts as ’gates’ that control

the information flow., while tanh functions create and regulate the actual content being processed.

The output of an RNN model usually only gives information on the next predicted value based on

the given input. In order to turn a single output prediction of the model into a forecast, the model
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Figure 7: An LSTM cell depicting the forget, input and output gate.

uses its own prediction for the next period as input to predict the subsequent periods. This method is

known as an autoregression. By iteratively feeding the previous prediction back into the model, called

the feedback loop, the RNN can generate a sequence of predicted values over several hours. With the

help of TensorFlow’s documentation [59], the LSTM model is turned into an autoregressive LSTM

model by adding a feedback loop to the base model. In Figure 8, the input of the model is shown to

be a window of the last 48 hours available in the dataset before the desired prediction.

Figure 8: Representation of the process of the autoregressive model from the input data to the prediction sequence output.

In this figure, 24 periods are used as input to predict the next 24 periods. Each period in the input

undergoes a warm-up phase to set up the internal state of the LSTM units using the inputs. This

step is crucial to prepare the internal states of the model, as it ensures the ability to make accurate

predictions in subsequent steps by leveraging relevant information from the input. After the warm-

up, the model outputs a prediction along with the state, which is then used as input to predict the

following time step. This process establishes a feedback loop in which each output becomes an input

to the model until the specified prediction sequence length is reached. A key aspect of making the

model autoregressive is that each prediction is the same size as a single instance. Although the model

outputs a complete prediction for each feature, only the total water discharge values are compared

with the corresponding label values to train the model. This methodology for the prediction of a single

hydropower plant is illustrated in Figure 9.
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Figure 9: Architecture of the autoregressive LSTM model for the prediction of the total water discharge for a single
hydropower plant.

The input is a sequence of the last 48 periods before the current prediction times m, the number

of features at each period. Based on the different configurations tested, 48 periods as input gave the

best results. Adding more increased computational load and time to train, with little to no significant

increase in performance. The input is sent to the input layer to be processed in the feedback loop until

all future periods are predicted. The number of periods to predict is set to 96 periods, which means

that the water discharge for 96-hour periods will be predicted in the end. This number is chosen in

order to have an even quantity of output as the MILP model, presented in Section 3.3. The size of

the LSTM hidden layer was tested incrementally until it reached 256 cells, a further increase did not

yield better results.

Many combination of hyperparameters was tested to configure the training step. A batch size of 32

gave good results while keeping the training time lower. The optimizer used is NADAM, as it is a slight

upgrade to the more commonly used ADAM. The loss function is applied on the Mean Squared Error

(MSE), which favour overall stability in the model. The learning rate is halved from default to 0.0005,

because a slower learning rate resulted in a better end-score performance, at the cost of an increase

in training time. The dataset is split 80% for model training and 20% for the test, the split occurring

during the month of July 2020 in the dataset. The performance of the model is evaluated with the

Mean Absolute Error (MAE), MSE and the Root Mean Squared Error (RMSE). These performance

metrics are not the only deciding factor of the model, because a result could give better results than

the label. For this reason, the quality of a model is also judged by evaluating the feasibility of the

predictions and the amount of energy produced. The feasibility of the forecast is mainly based on

the bounds of the water level in the reservoir, which is subject to constraints related to the accepted

maximum and minimum level.

3.2 Training and system prediction

The objective of this project is to predict a forecast of the total water discharge for every power plant

in the system. Before training both models, since there is a model trained for each power plant, the
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dataset is scaled, which standardizes every feature by removing the mean and scaling to unit variance.

For each feature, Eq. (6) is applied to standardize the data in the following manner :

z =
(x−m)

std
, (6)

where z is the result, x the original value, m the mean of the feature and std represents the standard

deviation. As mentioned above, the autoregressive LSTM model takes as input the last 48 periods in

the historical data. The with the same base features in the dataset, detailed in Table 2, to describe each

period in the dataset. Table 3 displays the features present for each period in the 48-hour sequence

used as input in this paper model for CdD and CalS.

Table 3: Input features used in the autoregressive LSTM model for the Chute-du-Diable and Chute-à-la-Savane hydropower
plant.

Chute-du-Diable Chute-à-la-Savane

Reservoir Volume Reservoir Volume Future Avg. Tot. Inflow (73-96)

Number of Active Units Number of Active Units Avg. Upstream Prediction (1-24)
Previous Natural Inflow Previous Natural Inflow Avg. Upstream Prediction (25-48)
Total Water Discharge Previous Total Inflow Avg. Upstream Prediction (49-72)

Future Avg. Inflow (1-24) Total Water Discharge Avg. Upstream Prediction (73-96)
Future Avg. Inflow (25-48) Future Avg. Tot. Inflow (1-24)
Future Avg. Inflow (49-72) Future Avg. Tot. Inflow (25-48)
Future Avg. Inflow (73-96) Future Avg. Tot. Inflow (49-72)

For each hourly period, the inputs used are the volume of the reservoir (hm3) in the reservoir, the

number of active units, the water inflows (m3/s) from the previous period, as well as the total water

discharge (m3/s) and the average inflows (m3/s) for the next four days. Concerning the latter, these

averages are computed using the Eq. (3) at first and then replaced by the deterministic inflow scenario.

The CalS prediction model has five more features in the inputs, added to consider the dependency

of the upstream hydropower plant operation. One of the features is the total inflow (m3/s), which

is the sum of the natural flow with the total CdD inflow for a given period. No time delay between

the power plants is considered given their geographical proximity. The four other features are the

average predicted upstream discharge (m3/s) for the next four days, including the CdD outflow with

the natural inflow. After training the model, this feature is computed with the predicted CdD water

discharge. The trained CdD model is applied to the historical dataset of the plant to obtain this

feature. Hypothetically, the same operation could also be performed on an additional hydropower

plant in the system, allowing the model to be scaled to the desired size.

Once the models are trained, a pipeline is utilized to go from the input data to making a prediction

for each plant. To better visualize, Figure 10 demonstrates the principal steps to achieve a prediction.

There are two arrows that represent the path for each plant. At first, both input are improved

by computing the average future inflow. For CdD, this is the only modification made on the initial

input values taken from the dataset. This input is sent to the LSTM model and the result is stored

in memory. In regards to CalS, the stored result of CdD is needed to compute the average upstream

prediction. The input is then ready to be sent to the trained model. From the validation instances

used in this paper, the true inflow values are taken at each plant to calculate the hourly reservoir

values over the predicted 96 hours.

3.3 MILP model

MILP models are widely used to formulate the STSH problem [4, 12, 42]. It consists of an objective

function that is maximized or minimized, based on the problem formulation. In hydropower production

the profits are usually maximized or the costs are minimized. A classical MILP model is composed of
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CdD Input Data CalS Input Data

Compute the Avg. Future Inflow

CdD Model Prediction

Store CdD Prediction

Add the Avg. Upstream Prediction

CalS Model Prediction

Store CalS Prediction

Compute Water Volume

Legend:
Chute-du-diable

Chute-à-la-Savane

Figure 10: Steps leading to a full prediction of the system’s next 96 periods of water release.

parameters, known values that define the problem, variables, values to optimize the objective function,

and constraints, which are restrictions on the problem, and bounds, which must be respected by the

variables values in order to obtain a feasible solution [39]. The following formulation represents a

generic form of a MILP minimization :

min cTx (7)

subject to Ax ≤ b, (8)

x ∈ Ω, (9)

xi ∈ Z ∀i ∈ I. (10)

where Eq. (7) is the objective function, Eq. (8) represents a set of linear constraints, Eq. (9) defines

the feasible domain Ω, which includes both continuous and integer variables, and Eq. (10) explicitly

states that the decision variables in the set I must be integers.

3.3.1 Maximize power generation in STHS

To compare the results of this project’s RNN, a MILP model developed prior to this project is used.

The paper from [15] presents a MILP model for the STHS unit commitment problem for the CdD and

CalS hydropower plants. The objective of the model is to maximize energy generation by optimizing

the quantity of water committed to units of a plant during the next hourly periods. The MILP model

introduces predetermined values, called efficiency points, to select the unit combination that maximizes

the energy output. Efficiency points are optimal combinations of power produced and water discharges

in a reservoir at full capacity. These are values at which a power plant usually operates, as deviating

from these points will generate less efficient production performances. Figures 11 show the water

discharge values corresponding to the efficiency points for each combination of three or more active

units, because a lower number of units used is fairly uncommon.
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Figure 11: Percentage of Water discharge for each efficiency points at CdD, grouped by unit combination.

In Figure 11, the relationship between the quantity of water released and the combination of units

used shows the optimal values with a full capacity reservoir. Each combination has between 20 and

10 efficiency points, for a total of 195 points for CdD and 200 points for CalS. A novelty of this MILP

model is that the variables are chosen to be efficiency points over a period of 96 hours. The following

MILP model presented in this Section is the same model as presented in [15] without any modification

added. The Eq. (11) represents the objective function in three terms, where the first computes the

power output P b
k,t at each period for each combination at the maximum volume of the reservoir Vmax,

the second corrects for the difference of power produced at the current volume to account for energy

losses θc when not at Vmax. The last term penalizes unit start-ups. The sum of the three terms is

multiplied by ∆t to convert power to energy.

max
y,v,z

∆t ×

∑
c∈C

∑
t∈T

∑
b∈B

∑
k∈Kc

b

P c
k,t × yck,t −

∑
c∈C

∑
t∈T

θc × (V c
max − vct )−

∑
c∈C

∑
t∈T

∑
j∈Jt

ϵc × zcj,t

 (11)

The MILP model is subject to constraints such as limited unit start-ups, water balance, and

reservoir initial and final volumes. It incorporates energy losses from unit start-ups and uses next-

period inflow data to provide optimal solutions for water commitment of each turbine unit. The

model determines optimal values for water discharges, energy generation, reservoir volume, and unit

commitment over the next 96 periods.

vct+1 =vct −∆t

×
[ ∑

b∈B

∑
k∈Kc

b

(qct,k × yck,t × β) + (δct × β)− (dct × β)

+
∑
l∈Uc

∑
b∈B

∑
k∈Kl

b

(qlt,k × ylk,t × β) + (dlt × β)

]
, ∀c ∈ C,∀t ∈ T

(12)

∑
b∈B

∑
k∈Kc

b

yck,t =1, ∀c ∈ C,∀t ∈ T (13)

∑
b∈B

∑
k∈Kc

b

yck,t+1 ×Ac
t+1,k,j −

∑
b∈B

∑
k∈Kc

b

yck,t ×Ac
t,k,j ≤zcj,t, ∀c ∈ C,∀t ∈ T, ∀j ∈ Jt (14)

∑
t∈T

∑
j∈Jt

zcj,t ≤Nc
max, ∀c ∈ C (15)

vcmin ≤vct ≤ V c
max, ∀c ∈ C,∀t ∈ T (16)

vc1 =vcini, ∀c ∈ C (17)

vcT =vcfinal, ∀c ∈ C (18)
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yck,t, v
c
t , z

c
j,t ∈B, ∀c ∈ C,∀t ∈ T, ∀b ∈ Bc, ∀k ∈ Kc

b ,∀l ∈ Uc (19)

dct , d
l
t, v

c
t ∈R+, ∀c ∈ C,∀t ∈ T, ∀l ∈ Uc (20)

Constraints (12) ensure water balance in powerhouses, (13) enforce a single operating point per

period per powerhouse, (14) link start-up variables to selected combinations, (15) impose a maximum

number of unit start-ups, (19) defines binary variables and (20) the real variables. A constraint of

interest is (16) that bounds the level of the reservoir water to prevent the model from over flowing,

and the constraints (17) and (18) specify the initial and final volumes, which are set to the initial and

final true value of the observed data. These last constraints are not present in the LSTM developed in

this paper, and historical data shows that the volume bounds are often not respected in the historical

dataset at any time of year.

3.3.2 MILP and machine learning comparison

In hydropower, the modelling of an MILP for the STHS problem is based on transforming the problem

into mathematical functions, parameters and variables, using proper algorithms to find the optimal

value, given the scope of the problem [39]. Compared to the MILP formulation, a machine learning

model is built with historical values related to the problem. This method relies on the patterns and

correlations in the data to make predictions [24]. Unlike MILP, which provides explicit constraints and

objective functions for optimization, machine learning models learn from past data to generalize and

predict future outcomes by trying to capture complex nonlinear relationships. Handling non-convex

Mixed Integer Non-Linear Problems (MINLP) is significantly more difficult than MILP due to the

existence of multiple local minima, which make them less desirable than their linear counterpart [37].

As these two fields of research evolve over time, researchers often question which technique should

be used for a given project [53]. If the purpose of a program is to give the optimal solution on a

given problem, an optimization model can be built by transforming the problem into objectives and

constraints. This type of model requires the intervention of experts to improve performance and

ensure that the model is always parameterized in a way that represents the context of the problem.

The problem itself must also be scaled in a way that is computationally feasible, which can significantly

restrict the problem formulation. Machine learning requires less interaction from experts, as it uses

data on the problem to find a solution and can be kept up-to-date with the latest input. Although ML

models may not guarantee optimality, they offer significant advantages in terms of computational speed

and lower maintenance, appealing to problems with large datasets, real-time processing requirements,

or the need for adaptive learning. In the context of the STHS problem, optimization models are

needed for a theoretically optimal solution and the resulting strategy to be compliant with operational

constraints. For machine learning models, they excel in scenarios where the system must adapt to

changing conditions quickly and provide solutions rapidly, making them a good fit in the short-term

and real-time decision-making related to STHS [63].

Due to their shared objective of finding solutions to given problems, machine learning and optimiza-

tion methods are often compared, with results varying based on factors such as problem formulation

and the techniques used. For example, [5] tested two new optimization models on a binary classifi-

cation task against classic, well-established machine learning methods, finding that the optimization

models favour both optimization models for their accuracy with precision and recall. It is important

to remember that optimization is a key component in the training of a machine learning model, where

the objective function typically measures the error or loss between the predicted and actual outputs,

helping to find the best parameters to achieve this goal [55]. Hyperparameter tuning also relies on

optimization techniques, such as grid search, random search, and Bayesian optimization, to improve

model performance. As highlighted in [3], numerous papers explore hybrid models that leverage the

strengths of both optimization and machine learning, with the aim of combining these methodologies

for greater efficiency. Although this paper compares the two techniques, it is essential to recognize
that each has its own strengths and weaknesses.
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4 Results and discussion

In this Section, the performances of the autoregressive LSTM model are analyzed. First, the results of

the training and testing step are presented. The validation instances provided in this project are then

used to predict the sequences of water discharges for each hydropower plant. These predictions are

shown in contrast to the results from an MILP model, taken from [15], and the real operational decision

at each plant. The analysis of the water discharges is coupled with the evolution of power and volume

resulting from the predictions for each plant. This is followed by an analysis of individual instances

to better understand the LSTM results. This Section highlights the difficulties of representing the

STHS problem as a data-driven model, the effect of making prediction under high uncertainty and the

consequence of prediction inaccuracies on the evolution of external values.

4.1 Training set results

As mentioned in Section 3.1.1, the LSTM model is trained with the Nadam optimizer on the loss value,

which is the MSE. A lower MSE value helps to monitor and minimize the chances of outliers in the

predictions, where the average of the difference between the original and predicted values are squared,

which results in higher values when the difference is significant. The MSE is given by Eq. (21) :

MSE =
1

N

N∑
i=1

(yi − ŷ)2, (21)

where yi and ŷ represent the historical discharge value and the prediction of the models, respectively,

and N represent the amount of data points. The MSE is used to ensure that the model’s predictions

remain within a realistic range. In this project, it is crucial to prioritize consistency and prevent highly

infeasible results. This concern is due to a lack of the ability to constrain the model when making

predictions of water discharge values. Ideally, predicted water discharge values would be based not

only on pattern recognition in the dataset, but also on the constraints of the hydropower plant in an

uncertain environment. This could be fixed through a post-prediction step, but would not be fit for

a fair comparison with the MILP model. A post-prediction step for the predicted results could be

explored in future work.

Because some input features, such as expected inflows, are modified to fit the context of each

validation instance, it is not necessary to have a perfect accuracy score. Again, consistency in the

results is much more preferable. To help analyze the results, the MAE and RMSE are also computed,

see Eq. (22) and Eq. (23). Respectively, these two performance metrics provide insight into the model’s

average accuracy and sensitivity to strong errors.

MAE =
1

N

N∑
i=1

|yi − ŷ|, (22)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷ)2. (23)

As presented in Table 4, the dataset is divided 80% into the training set and the remaining 20%

into the test set for each hydropower plant to build a model and analyze the performance on unseen

data. For each hydropower plant, the training set is made up of 84,000 instances from December

2010 to July 2020, while the test set is made up of 20,968 instances from July 2020 to November

2022. Details of the features are shown in Table 3. The validation is performed on 10 instances from

5 months chosen within the test set covered period. For both hydropower plants, the training was

carried out on dedicated servers from Calcul Québec [45], a regional partner of the Digital Research

Alliance of Canada [40]. The cluster used consists of 125 central processing units and 111 V100-16G
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graphics processing units. Each model took about 10 hours to train on 4 graphics processing units

and 47000M memory made available.

Table 4: Summary of the dataset partitioning into training, test and validation sets.

Dataset % of Total # Instances Time Period Covered

Training 80% 84,000 December 2010 – July 2020
Test 20% 20,938 July 2020 – November 2022
Validation – 10 2020-09, 2020-12, ,2021-07, 2021-09, 2021-10

Total 100% 104,938 December 2010 – November 2022

Performance scores are relevant to assert the performance of the model in the training phase. The

analyze performed on the set of validation instances uses modified inputs to swap the knowledge of

true historical inflows in the dataset to the expected values included in the validation instances. The

performance scores for the training of both hydropower plant are shown in Table 5. The values are

standardized as per Eq. (6), meaning that the predicted water discharge is scaled where the mean is

zero and the standard deviation at one. Therefore, the closer the scores are to zero, the better.

Table 5: Performance values of each model based on the test set from training.

Chute-du-Diable Chute-à-la-Savane

MSE 0.3332 0.1576
MAE 0.5772 0.397

RMSE 0.3843 0.2412

These values represent the overall difference between the real and predicted values. Considering

both hydropower plants, CalS has much better performance values than CdD. This is expected, be-

cause CalS have added features related to the water output of CdD. The performance results are not

representative of the model performance, because the water inflows for future days have not yet been

modified to fit with expected inflows. The following Figures 12 display three water discharge sequences

prediction from random periods in the test set for each hydropower plant, with the label representing

the true discharge values in the dataset.

(a) (b)

Figure 12: Six set of the water discharges prediction chosen at random in the test data for Chute-du-Diable (a) and
Chute-à-la-Savane (b), with the input discharge values and the historical discharge has the label.
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The first 48 values in these figures represent the previous value of the discharge of water from the

inputs. After the 48-hour mark, the input plot split into two, where the full line represents the label,

which is the actual historical water discharge decisions, and the predicted discharge is represented

by circle dots. Water discharge values are kept scaled with the StandardScaler function from scikit-

learn [43], to keep the data anonymized. Based on the given input data, the model is able to find

patterns in the data and can predict a plausible sequence. The general trend of historical water flows

is followed by the predictions with relative accuracy. Most of the error occurs when there is a sudden

change in the quantity of water discharges. At some point in many predictions, historical values show a

clear change in the quantity of water discharge from one hour to another. The prediction values change

gradually for three to four hours before reaching a new stable level. This is problematic, because it

means that without post-processing to correct the gradual change in discharge values, the prediction

sequence cannot be accurately utilized, although adding an extra step after prediction would be trivial.

4.2 Validation instances analysis

Several validation instances were provided to experiment with the model in this paper on true historical

instances. These validation instances contain the necessary information to compute the results with

the MILP model from [15]. In order to have a meaningful comparison between the MILP model and

the LSTM model in this paper, the input for machine learning is expected to mimic those of the MILP

model’s parameters detailed in Section 3.3.1. From the given instances, 10 validation instances were

chosen based on the duration of each instance and the feasibility with respect to the MILP model.

These instances cover the months of September, October, November and December, for both the year

2020 and 2021, which is outside the training set. For each hydropower plant, the validation instances

contain the following data over a period of 14 days:

• The available turbine units;

• The natural inflows observed;

• The observed volume of the reservoir;

• The power produced by the plant;

• The simulated scenarios of natural inflows

Each of these features is tailored to the MILP model, as the validation instances were built for the

purpose of the MILP in [15]. Because the data in the instances are daily values, a linear interpolation

is performed to transform each day into hours. The volume of the reservoir is used to obtain the

initial and final reservoir values. The simulated inflow contains plausible scenarios of daily inflow for

an instance. According to the original article, only the median scenario is based on the total sum of

water inflows. Further reading on the specifics of scenario trees modelling can be found at [56]. As

the scenarios used in this paper are deterministic, the inflow used as input might differ from historical

inflows. Future work on this project will consider stochastic inflows.

When preparing the input of the LSTM model, the future average inflow features are adjusted to

fit the instance scenario. After the prediction, the reservoir volumes and the energy produced are com-

puted for both hydropower plant. Because the power production of a hydropower plant is dependent

on both the water discharge (q) and the water volume (v), the theoretical power (p) generated in kW

by a turbine unit can be calculated with Eq. (24) :

p(q, hn) = G× η × hn(Q, v)× q × ρ, (24)

where G is the gravitational acceleration constant of the Earth 9.8m/s2, η the efficiency of the units, ρ

the density in kg/m3 and p the power output in W . The net water head function hn in m is dependent

on the quantity of water discharged plus spilled Q in m3/s and the volume of stored water in hm3 :

hn(Q, v) = hf (v)− ht(Q)− hp(Q, q), (25)
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where hf , ht and hp represent the elevation forebay, tailrace and friction loss in the penstock, respec-

tively [57].

4.2.1 Comparison of all validation instances

This Section presents the analysis of the predictions of water discharges on the validation instances

and a comparison with the results from a MILP model and historical values. Ten validation instances

based on a real case of hydropower production are used. The instances range between the months of

July and December 2020 and 2021. The year 2020 had significantly more natural inflows than the year

2021, which can also be inferred in the plots of this Section. The MILP model was developed in [15]

to solve the STHS problem specifically for this time of year. The LSTM model is trained on every

period of the year. Although not in the scoop of this paper, the LSTM model could make predictions

at other periods of the year.

Using the same process shown in Figure 10, each validation instance data is used to calculate the

results presented in this section. This is also true for the MILP model presented in Section 3.3. The 48

previous hours are gathered from the dataset for each instance and the deterministic inflow calculated

from the instances data is applied on both the LSTM and the MILP models. For confidentiality

reasons, the results were transformed using Eq. (1). For both models, the same deterministic scenario

is used. The results of the MILP model and historical decisions are used for comparison to illustrate

and understand the performance of the LSTM. For example, results that perform similarly to reality or

tend towards the optimized decision can be regarded as promising. Figure 13 shows a box plot where

each instance includes three sequences of water discharges from the real decision values, the predicted

values of the LSTM model and the MILP results from the model presented in Section 3.3.

(a) validation instances results of water discharge values (%) for the Chute-du-Diable
hydropower plant.

(b) validation instances results of water discharge values (%) for the Chute-à-la-Savane
hydropower plant.

Figure 13: A box plot comparison of each 96-hour instance showing real operational values (dark), predicted values (grey),
and optimized values (light grey) in regard to to water discharge variation. Instances are labelled by their month and year,
with a number in parentheses to distinguish multiple instances within the same period.



Les Cahiers du GERAD G–2025–34 20

In this figure, each component consists of five statistics: the minimum, first quartile, median, third

quartile, and maximum. Some outlier values may appear in the form of dots under or above the

component. For the purpose of this analysis, a box plot provides a comprehensive view of variation

across all instances. Some component that represents the results of the MILP shows no variation.

This appends simply because the chosen efficiency point stays consistent with no variation over the

sequence. Compared to LSTM, the discharge results for 2020 are mostly lower than the MILP and the

real decision values. For the year 2021, the median of the LSTM follow in most cases the historical

data, with the MILP presenting often lower quantity of discharge. The fact that the LSTM fall mostly

in between of the MILP and real discharge in 2021 may imply a sort of compromise between the

two during low inflows. These results show that the prediction result stays mostly within reasonable

values. It is a good thing when prediction results also show signs of stability. It is also expected that

real decision is prone to a lot of variation, because reality is influenced by unforeseen factors, like

sudden change in the electricity demand, and natural interferences, both not accounted in the MILP

and LSTM model. The comparison of results between the CdD Figure 13a and CalS Figure 13b shows

generally similar results, which is to be expected, since the two hydropower plant has similar features

and are separated by only 20 km of river distance. With CalS being downstream and with less than

half the reservoir area of CdD, this implies a strong influence on its production. One difference that

can be seen is the number of outliers for CalS compared to that for CdD. This might indicate that

CalS acts more as a “run-of-river” type of hydropower plant.

The energy generated for each instance plays an important role in the viability of the solutions.

Even if the quantity of water discharged differs from one method to another, the resulting amount of

energy produced over the horizon is most important for the operational profitability of a hydropower

plant. Figure 14 represents the level of energy produced based on the discharge results and volume of

each period.

(a) validation instances results of amount of energy (%) for the Chute-du-Diable
hydropower plant.

(b) validation instances results of amount of energy (%) for the Chute-à-la-
Savane hydropower plant.

Figure 14: A box plot comparison of each 96-hour instance showing real operational values (dark), predicted values (grey),
and optimized values (light grey) in regard to the energy variation. Instances are labelled by their month and year, with
a number in parentheses to distinguish multiple instances within the same period.
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Again, there seems to be a discrepancy between the strategy used for the years 2020 and 2021.

Looking at the MILP for 2021, the results are often similar to the real decision, but the MILP has

a conservative approach to water release. This translates into lower amounts of energy produced

when compared. Because optimization results must comply with a set of constraints, it lacks decision-

making freedom and foresight in regard to the evolving context of production, where operators have

more freedom to adjust production values in real time. For the year 2021, the situation is reversed,

where the MILP results have higher energy levels than the real decisions, which were more conservative.

For the prediction model, the same conclusions can be extracted as for Figure 13. The results stay

mostly in between optimization and reality, reinforcing the idea of a compromise between the two

methods.

The balance of reservoirs and the conservation of water is a key aspect of hydropower production.

Based on Eq.(24) to generate power in a hydropower plant, a good model should maintain a high

volume of water when inflows are expected to be low and low volume when inflows are expected to

be high. In reality, the volume of the reservoir is subject to many stochastic factors such as expected

inflows [13, 22, 23]. It is also important to comply with the bounds of the reservoir water level for

the safety of the infrastructure and to avoid environmental hazards. Although the LSTM model lacks

many of these contextual features, having the real inflows gives enough insight to compute the reservoir

volume and infer some information when compared with real production data.

The volume of the reservoir gives information on the viability of the autoregressive LSTM model.

For the LSTM model, respecting the reservoir water bounds is a complex task. Supervised machine

learning models make prediction based on the historical pattern. To control the results of the predicted

values, the training data must be engineered in a way that promotes a desired output. The model can

also be parameterized to better fit the desired prediction behaviour. However, beyond these approaches,

there is no mechanism in our LSTM model to constrain the prediction to respect the reservoir bounds.

In comparison, MILP has bounds on water discharges and reservoir volumes (Eq. (16)) and a constraint

in regard to the final volumes (Eq. (18)) on the last periods. Figure 15 illustrates a box plot of the

results for reservoir volumes, calculated based on the initial historical volume, the results of water

discharges and the observed inflows for each validation instance.

These two box plots present many results where the volume exceeds the maximum bound (Eq. (16))

of the reservoir for the LSTM, as represented by the horizontal dotted line at the 100% mark. This

is especially true for CalS predictions (Figure 15b), where some instances go well above the bounds

compared to CdD (Figure 15a). Looking at the real value for CalS, it is clear that whatever the

instance date, the level barely changes around 96-97%, which is noticeably different from the values

of CdD. This is caused by the difference in reservoirs size between the two hydropower plants, where

CdD has a holding capacity of 1, 200hm3, while CalS has almost half the reservoir capacity of 625hm3.

Therefore, CalS production is heavily dependent on the upstream plant, making the margin of error

much smaller in this reservoir. As a result, any significant alteration in the CdD water discharge

strongly impacts the reservoir balance, requiring special attention and careful consideration at CalS.

The added features related to the upstream reservoir here does not suffice to maintain water balance.

For the CdD plant, there are only three instances where the upper quartile of the components

goes over the reservoir maximum bound constraint, all in instances of 2020. As stated in this Section,

year 2020 had significantly more inflows than 2021. Compared to the CalS instances, those three

are the same instances with the highest maximum value for this plant prediction. Therefore, these

three instances can be considered to be more difficult to predict. Looking at the quantity of water

discharged in Figure 13, the LSTM model predicts lower quantities of water discharges compared to

the real and optimized decision. This implies that, in comparison, the prediction model did not have

enough meaningful information to produce a feasible solution. For the rest of the CdD instances, the

volume bounds are respected and are comparable to those of the real and MILP decisions. Instances

12-2020 (1) and 10-2021 (1) are a bit different from the rest. Instance 12-2020 (1) shows the values of

volumes which are under the compared sequences. Looking at Figure 13a, the volume seems stable,
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(a) validation instances volumes (%) variation base on water discharges for the Chute-
du-Diable hydropower plant.

(b) validation instances volumes (%) variation base on water discharges for the Chute-
à-la-Savane hydropower plant.

Figure 15: A box plot comparison of the reservoir water volume(%) for real operational values (dark), predicted values
(grey), and optimized values (light grey). Instances are labelled by their month and year, with a number in parentheses
to distinguish multiple instances within the same period.

compared to a higher discharge for real decisions and only the upper quartile component of the MILP

model results going above the prediction box. With only a quartile higher, the volume results for the

MILP model are still well above those of the LSTM model. In contrast, the predictions in instances

10-2021 (1) are above the maximum reservoir capacity for both hydropower plants.

The results demonstrate that the LSTM model can provide water discharge predictions that are

often within a reasonable range of both the real operational data and the optimized MILP model. For

2020, the model tends to predict lower discharge values compared to reality and optimization, while

for 2021, it finds a balance between the two. This suggests a capability to adjust to different inflow

conditions, but also highlights the model difficulties to extract meaningful patterns in the given input

when inflows are high. The LSTM model also maintains reservoir volumes of CdD close to the MILP

in most cases, although there are some instances where it exceeds reservoir limits. In particular for

the CalS plant, the prediction model has a lot more difficulties with regard to the water balance of

the CalS hydropower plant. This discrepancy highlights the challenges posed by smaller reservoirs

coupled to the influence of upstream operations for this type of model. More experiments are needed

to better model the latter. The predicted power production aligns well with real and optimized values,

strengthening the ability of the model to produce acceptable results in terms of energy generation. A

major drawback of this method is the lack of explicit constraints in the LSTM model, which can lead

to deviations, particularly in complex instances with high inflows. The LSTM model shows potential

to approximate real operational decisions and offers a compromise between optimization and real-time

flexibility. Improvements could be made to better respect reservoir limits and improve prediction

accuracy in challenging conditions. In the next Section, a closer look into individual instances results

is done to better comprehend the observation in this Section.
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4.2.2 Comparison of individual instances

This Section focuses on specific validation instances that were highlighted in the previous Section. The

goal is to observe the behaviour of the LSTM model prediction. Performance, stability and viability

are the main appeal for the comparison between optimize and true decision. At first, this Section

presents the predicted results of validation instances that were highlighted as feasible in the previous

Section. Second, validation instances that resulted in unfeasible predictions are observed to understand

and improve future models. In this Section, instances analysis is split again into CdD (a) and CalS

(b), with two figures of the sequence of water discharges and volumes. Each figure shows three plots,

the sequence of the real (filled), predicted (lines and dots) or MILP (dotted) decisions. All plots start

47 hours before the results of the model to present the prior decisions, which is also the production

period used as input for the LSTM model.

Figure 16 shows the results sequence for the instance 12-2020 (1).

(a) Chute-du-Diable hydropower plant results.

(b) Chute-à-la-Savane hydropower plant results.

Figure 16: Close-up on the sequences of 96 hours of water discharge (left plot) and volume (right plot) of the 12-2020
(1) instance for real (dark), predicted (grey) and optimized (light grey) decisions.

The quantity of water discharged by the LSTM model is different. The CdD values are on a fix

discharge and the CalS results values are on an upward trend. Compared to both real and MILP

decisions, real decisions increase the quantity of water release for the third day ahead. MILP did the

opposite by discharging less. In the end, both end their prediction with less water volume than the

true decision by about 4% and 3% less water in the reservoir for CdD and CalS.

Another feasible solution is presented in Figure 17, with instance 09-2021.

For this instance, the predicted results follow the trend of both the real and predicted solution.

Here, the result exposes a weakness in the way the LSTM model makes prediction sequences, because

changes append progressively for water discharge values. Changes in the MILP model and reality

always append suddenly, where the MILP follows the efficient points. However, the LSTM model

could predict the upward trend with relative precision and with a similar final volume for CdD. Based

on the observation made in the last Section in regard to volume stability, it is understandable that

the final volume of CalS differs from both real and optimization, but up until the 80-hour mark, the

prediction for this hydropower plant were still plausible. With a small adjustment to the quantity of

water discharges, this could be fixed.
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(a) Chute-du-Diable hydropower plant results.

(b) Chute-à-la-Savane hydropower plant results.

Figure 17: Close-up on the sequences of 96 hours of water discharge (left plot) and volume (right plot) of the 09-2021
(1) instance for real (dark), predicted (grey) and optimized (light grey) decisions.

Let us take a look at instances where the volume exceeded a reservoir capacity. One thing to note

is that the three instances in which both hydropower plant results cause excess water in the reservoir

are in the year 2020. It is known that 2020 received a lot more natural inflow than 2021, which gives

a hint to understand the model behaviour. Table 6 presents the difference between the deterministic

scenarios used in the input compared to the historical value that was replaced, for instances 09-2020

(1), 09-2020 (2) and 2020-10 (1).

Table 6: Comparison of the percentage between the mean deterministic scenario of natural inflows for each instance of
CdD and CalS compared to the real historical inflow value received.

09-2020 (1) 09-2020 (2) 10-2021 (1)
Plant Scenario Historical Scenario Historical Scenario Historical

CdD 91.6 94.41 130.86 120.88 72.41 48.33
CalS 8.76 13.86 15.97 21.64 5 7.05

This Table shows that in regard to the CalS hydropower plant, the deterministic inflow scenarios

are lower than the true historical quantity. For instance 10-2021 (1) of CdD, the difference is sizeable,

with 24.08% more water expected than has been received. It should be noted that this data represent

the natural inflow, but the CalS hydropower plant also receives additional inflows provided by the water

output from the CdD hydropower plant. Figures 18 illustrate the results of instance 09-2020 (1).

In this instance, the MILP model decreased the quantity of water discharges for the first day and

a half, which is the same result observed by the LSTM model. Up until the 40th hour, the LSTM acts

similarly to the MILP and the reservoir volume stays within the expected amount for this first period.

After that, the LSTM seems to have expected a lower quantity of inflows than in reality. Table 6

shows that the quantity of water expected in the deterministic scenario is always lower than the true

values, with a wider gap for days 2 and 3. This resulted in a lower quantity of water discharges at

this moment, causing the volume to rise above the 100% mark. Even if both hydropower plants have

similar results, a smaller reservoir capacity for CalS shows that this irregularity has a much greater

impact on the volume overtime.

Figure 19 displays a similar case in which the water discharge starts with good results, but does

not keep up with the uncertainty of the inflow.
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(a) Chute-du-Diable hydropower plant results.

(b) Chute-à-la-Savane hydropower plant results.

Figure 18: Close-up on the sequences of 96 hours of water discharge (left plot) and volume (right plot) of the 09-2020
(1) instance for real (dark), predicted (grey) and optimized (light grey) decisions.

(a) Chute-du-Diable hydropower plant results.

(b) Chute-à-la-Savane hydropower plant results.

Figure 19: Close-up on the sequences of 96 hours of water discharge (left plot) and volume (right plot) of the 09-2020
(2) instance for real (dark), predicted (grey) and optimized (light grey) decisions.

Here again, the first 40 hours of water discharge values seems inline with both the MILP and the

real decision values. Similarly to Figure 18, the LSTM does not appear to recognize the increase in the

quantity of natural flows received during the second half of the predicted values. This can be inferred

from the sudden upward trend in the volume at the 30-hour mark. Even if Table 6 shows higher

historical inflows than the deterministic scenario of the CalS hydropower plant and lower quantity of

inflow scenario at CdD. This implies that there is another factor that causes a deviation in the CdD

results.

The ninth instance differs from the last two instances in some aspects. Only the volume from the

CalS reservoir exceeds its holding capacity, but the volume of CdD compared to the MILP and the

real decision show that it is still higher than expected, but within the reservoir bounds. An in-depth
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look at this instance is presented in Figure 20, with the results of CdD presented in Figure 20a and

CalS presented in Figure 20b.

(a) Chute-du-Diable hydropower plant results.

(b) Chute-à-la-Savane hydropower plant results.

Figure 20: Close-up on the sequences of 96 hours of water discharge (left plot) and volume (right plot) of the 2020-10
(1) instance for real (dark), predicted (grey) and optimized (light grey) decisions.

For both hydropower plants, the evolution of the reservoir volume trend upwards at the beginning

and goes downward after half of the sequence. In regard to CalS, it goes beyond the 100% threshold

at first, but surprisingly ends at a final volume similar to the real decision values. This differs from

CdD, with a final value almost 5% above the real decision values. The water discharge predicted is at

first much lower than it should have been based on the MILP values for the first half of the decision

sequence, but the prediction does seem to adjust on the second half, be it in a very noisy way. The

inflows in Table 6 provide an explanation, where the inflows for CdD for days 3 and 4 differ greatly

from the historical quantities. The difference between the first and second half of the CdD results

sequence explains the difference between the LSTM and MILP results, which had a repercussion on

the volume variation of the CalS reservoir.

4.3 Discussion

In this paper, an LSTM model is built and trained to predict the water discharge of the next 96 hours

for two hydropower plants. The analyses made in this Section show that predictions are not always

viable solutions for about half of the instances tested. This is mainly due to the reservoir volume when

prediction and inflows are applied. Some instances demonstrate a higher amount than is allowed in

regards to the hydropower plants water level bounds (Eq. (16)). The unfeasible results obtained open

new challenges that must be addressed in future papers.

First, the difference in the size of the reservoir and the location of the hydropower plant makes

for a very sensitive environment. The larger holding capacity for CdD upstream compared to the

downstream CalS imply that the downstream plant must be operated together. Given that these two

hydropower plants are close to each other, a large portion of the inflow comes from the CdD water

output. In this paper, both hydropower plants share similar features, as presented in Table 1. This

means that CalS is constrained to act like a run-to-the-river hydropower plant, despite its holding

capacity. Therefore, a different approach should be applied in future research. The predictions made

should be less independent to each other, as each hydropower plant has its own neural network. A

merge of the output for each plant in a single multi-output neural network could help to obtain better
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results about their dependency. However, the autoregressive LSTM model demonstrates its ability

to capture the temporal patterns inherent in hydrological data. This is a crucial strength because

water discharge in hydropower systems is a highly time-dependent process. The model ability to

make prediction based on previous hours indicates that the underlying architecture is well suited for

short-term hydropower data.

Second, the use of the true historical inflows during training to substitute for a deterministic scenario

of the validation instances seems to have a positive effect when the expected natural inflow does not

differ much from reality. Most unfeasible solutions originate in instances where inflows are highly

uncertain. However, this is a well-documented and established challenge in STHS [22, 36, 56, 58].

Given the LSTM results, future work should implement natural inflow scenarios in the model that

represent the stochastic nature of inflows. Adding a noise factor to the inflow feature might lead to

more generalized predictions. Another prospect could be to generate new inflow scenarios based on

historical values in the dataset, which would lean more on the medium-term horizon. Furthermore,

recent studies show that current climate change should be considered, as historical data may not

accurately represent natural inflows in the years to come, [34, 54, 64, 65].

Third, reducing the prediction range of the water discharge sequence would greatly improve the

prediction accuracy. The choice of 96 hours predicted comes from the MILP model that [15] uses

to compare the results. As seen in the previous Section 4.2.2, instances that are deemed unfeasible

because of the volume evolution mostly append between the 40-hour and 50-hour points. Therefore,

reducing the prediction length so that, say, 48 hours would improve the accuracy of the model. A

lower number of periods to predict would simplify the complexity of the problem and allow faster

model training. This would also allow for better scaleability of the model with the addition of more

features or hydropower plants. Overall, the LSTM model offers a strong research opportunity. The fact

that the baseline performance is already reasonably aligned with expected water dynamics provides a

solid foundation, proving that the performance of the model could improve further.

Fourth, the subject of this paper focuses on the STHS for the months of July to December, but

the LSTM model is trained on a dataset with all-year-round production data. Due to the objective of

comparing with a MILP model built to optimize the production of this period of the year, this aspect of

the LSTM is not explored in this paper. The STHS problem in winter requires a different configuration

of constraints and objectives, as it must deal with a low water resource due to snow accumulation, [54].

Furthermore, spring is a specific case characterized by a large quantity of natural inflows as a result

of snowmelt. A random forest model was developed to forecast streamflow in snowmelt-dominated

watersheds in [44] with great success. The fact that these seasons were used to train the LSTM model

means that data that do not specifically match the validation instances that were used. Even if there

is a temporal aspect to the recurrent nature of the LSTM, this means that the data outside the range

of the validation instances periods may act as noise. The decision to keep these in the dataset came

down to diminished size of the dataset, cutting the dataset in half. However, this also means that

the LSTM model developed in this paper is trained and capable of making predictions at any time of

the year, which makes it a versatile tool compared to the MILP model. These types of test are not

conducted as this is outside the scope of this paper, but are to be explored in future works.

5 Conclusion

This paper demonstrates the efficacy of an autoregressive Long Short-Term Memory (LSTM) model

to predict short-term hydropower production. By capturing the temporal patterns and sequential

dependencies inherent in the STHS problem, the model shows promising performance in predicting

water discharge over a 96-hour horizon. The integration of machine learning techniques, particularly

LSTM and autoregression, into the prediction process marks a significant advance in the management

of hydropower resources. The integration of autoregression with LSTM represents a significant ad-

vancement in applying machine learning to energy resource management. By effectively capturing the
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temporal dependencies and patterns inherent in historical hydropower generation data, the proposed

model provides a responsive tool for operational decision-making.

Comparative analysis with traditional computation methods highlights the capacity of the LSTM

model to adapt to the complexities and nonlinearity related to the STSH problem. Although the

model exhibits limitations with high natural inflows and uncertainty, these cases reveal opportunities

for improvement. Irregular water discharge sequences in some scenarios, particularly those with high

natural inflow conditions, lead to a deviation in regard to the reservoir capacity. Addressing this

challenge in future work is expected to greatly improve the prediction capacity of the model. This

research addresses a critical gap in the literature by providing a clear benchmark between machine

learning approaches and conventional optimization techniques, such as Mixed-Integer Linear Program-

ming (MILP). This work also brings forward valuable considerations for future development. These

include shortening the prediction horizon to improve accuracy, modelling inflow uncertainty more ef-

fectively using stochastic methods or scenario generations, and adopting a multi-output neural network

architecture to better represent dependencies between closely linked hydropower plants.

Furthermore, the findings underscore the importance of incorporating advanced predictive models

in the context of increasing reliance on renewable energy sources. As the energy landscape evolves, the

use of machine learning in the STHS will be essential to accurately schedule hydropower production

to ensure grid stability and optimize energy management strategies.

Overall, this study sets the groundwork for future research in the application of machine learning

algorithms in STHS and opens avenues for further exploration of hybrid models that combine the

strengths of both machine learning and traditional optimization methods. The potential for improved

efficiency and sustainability in hydropower operations is significant, paving the way for more resilient

energy systems in the face of climate change and fluctuating energy demands.
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[41] Furkan Özkan. Prediction of long-term streamflow by using adaptive neuro-fuzzy inference system ((anfis).
Master’s thesis, Hasan Kalyoncu Üniversitesi, 2022.
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