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l’accès au travail et enquêterons sur votre demande.
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Abstract : Algorithm NCL was devised to solve a class of large nonlinearly constrained optimization
problems whose constraints do not satisfy LICQ at a solution. It is mathematically equivalent to the
augmented Lagrangian algorithm LANCELOT, which solves a short sequence of bound-constrained
subproblems BCk and has no LICQ difficulties. NCL’s equivalent subproblems NCk are much bigger
and must be solved by a nonlinear interior method (needing first and second derivatives). We study
the KKT-type systems arising within nonlinear interior methods when they are applied to the NCk

subproblems. We find that the KKT systems can sometimes be reduced to smaller SQD systems
(symmetric quasi-definite) and sometimes to even smaller SPD systems (symmetric positive definite).
The smaller systems have proved suitable for GPU implementation within the interior solver MadNLP
when it used by MadNCL to implement Algorithm NCL.

Keywords : Constrained optimization, interior methods, sparse matrix algebra
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1 Introduction

For large-scale linear and nonlinear optimization, today’s implementations of interior methods [7, 8,

10, 18] have arisen from the pioneering work of Fiacco and McCormick [5, 6] on barrier methods, in

the sense that inequality constraints have been handled then and now by log barrier functions. Our

contribution here is a tribute to the research of Tamás Terlaky and colleagues on the mathematical

properties of interior methods, primarily for linear optimization but with much relevance for nonlinear

extensions.

We consider large smooth constrained optimization problems in the form

NC minimize
x∈Rn

ϕ(x)

subject to c(x) = 0, ℓ ≤ x ≤ u,

where ϕ(x) is a smooth scalar function and c(x) ∈ Rm is a vector of smooth linear or nonlinear

functions. We assume that first and second derivatives are available.

If the constraints represent any linear or nonlinear inequalities, we assume that slack variables have

already been included as part of x, and appropriate bounds are included in ℓ and u. Problem NC is

general in this sense.

1.1 Notation

Dual variables for the constraints c(x) = 0 are denoted by y, and duals for the simplified bounds

x ≥ 0 in section 3 are denoted by z. The Jacobian for c(x) is the m× n matrix J(x). If the Hessians

of ϕ(x) and ci(x) are H0(x) and Hi(x), the Hessian of the Lagrangian L(x, y, ρ) = ϕ(x) − yT c(x) is

H(x, y) = H0(x)−
∑

i yiHi(x).

2 LANCELOT and Algorithm NCL

LANCELOT [2, 3, 11] is designed to solve large, smooth constrained optimization problems. For prob-

lem NC, LANCELOT solves a sequence of about 10 BCL (Bound-Constrained augmented Lagrangian)

subproblems of the form

BCk minimize
x∈Rn

ϕ(x)− yTk c(x) +
1
2ρkc(x)

Tc(x)

subject to ℓ ≤ x ≤ u,

where yk is an estimate of the dual variables for the nonlinear constraints c(x) = 0, and ρk > 0 is a

penalty parameter. After BCk is solved (perhaps approximately) to give a subproblem solution x∗
k,

the size of ∥c(x∗
k)∥ is used to define BCk+1:

• If ∥c(x∗
k)∥ is sufficiently small, stop with “Optimal solution found”.

• If ∥c(x∗
k)∥ < ∥c(x∗

k−1)∥ sufficiently, update yk+1 = yk − ρkc(x
∗
k) and keep ρk+1 = ρk.

• Otherwise, keep yk+1 = yk and increase the penalty (say ρk+1 = 10ρk).

• If the penalty is too large (say ρk+1 > 1010), stop with “The problem is infeasible”.

2.1 Algorithm NCL

Algorithm NCL mimics LANCELOT with only one change: subproblem BCk is replaced by the equiv-

alent larger subproblem

NCk minimize
x∈Rn, r∈Rm

ϕ(x) + yTkr +
1
2ρkr

Tr

subject to c(x) + r = 0, ℓ ≤ x ≤ u.
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Given a subproblem solution (x∗
k, r

∗
k), the choice between updating yk or increasing ρk is based on

∥r∗k∥. We expect ∥r∗k∥ → 0, so that x∗
k is increasingly close to solving NC.

The active-set solvers CONOPT [4], MINOS [14], and SNOPT [21] are nominally applicable to NCk.

Their reduced-gradient algorithms would naturally choose r as basic variables, and the x variables

would be either superbasic (free to move) or nonbasic (fixed at one of the bounds). However, this is

inefficient on large problems unless most variables are on a bound at the subproblem solution x∗
k.

In contrast, interior methods welcome the extra variables r in NCk because

• subproblem NCk is always feasible;

• the Jacobian of c(x) + r always has full row rank;

• the sparse-matrix methods used for each interior iteration are affected very little by the increased

subproblem size.

These properties justify part two of our title.

2.2 About 10 subproblems

A virtue of LANCELOT inherited by NCL is the limited number of subproblems NCk, regardless of

problem size. A Julia implementation of NCL [13] confirmed the value of solving subproblems NCk

with decreasing feasibility and optimality tolerances (10−2 to 10−6). The number of subproblems

remained at around 10. This contrasts with SQP methods requiring hundreds or thousands of QP

subproblems on large problems.

3 The linear system

For simplicity, we assume in this section that the bounds ℓ ≤ x ≤ u are simply x ≥ 0. When a nonlinear

primal-dual interior method such as IPOPT or KNITRO is applied to NCk, each search direction is

obtained from a linear system of the form−(H +X−1Z) JT

−ρkI I
J I

∆x
∆r
∆y

 =

r2
r3
r1

 , (K3)

where X = diag(x), Z = diag(z), and r1, r2, r3 are residuals for the system of nonlinear equations being

solved by the interior method. Although (K3) is a large system, ∆r does not damage its sparsity, and

both IPOPT and KNITRO have been efficient as solvers for NCk on some large models of taxation

policy [12].

For all NCk, ρk ≥ 1 (and ultimately ρk ≫ 1), it is stable to eliminate ∆r from (K3) to obtain(
−(H +X−1Z) JT

J 1
ρk
I

)(
∆x
∆y

)
=

(
r2

r1 +
r3
ρk

)
, ∆r =

1

ρk
(∆y − r3). (K2)

If H is positive semidefinite or definite, (K2) is SQD (symmetric quasi-definite) [22] and can be solved

efficiently using sparse indefinite Cholesky-type LDL
T
factorization, where D is diagonal but indefinite.

We can eliminate ∆y from (K2) to give the smaller system

(H +X−1Z + ρkJ
TJ)∆x = −r2 + JT (r3 + ρkr1), ∆y = r3 + ρk(r1 − J∆x), (K1)

as noted by Montoison et al. in connection with the solver MadNLP [17]. If H is SPD, system (K1)

can often be solved by sparse LDL
T
factorization, ideally using GPUs.
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If J contains one or more rather dense rows, the system defining ∆x in (K1) would also be rather

dense. As noted by a referee, it may help to use the Sherman-Morrison-Woodbury formula to solve

for ∆x. This would require H +X−1Z to be sparse.

Alternatively, and again if H+X−1Z is sparse, it may be more efficient to eliminate ∆x from (K2)

to give

(I + ρkJ(H +X−1Z)−1JT )∆y = ρkr1 + r3, (H +X−1Z)∆x = JT∆y − r2. (K1’)

The system defining ∆y in (K1’) is smaller than the one defining ∆x in (K1), but will be dense if J

contains any dense columns.

3.1 MadNLP

MadNLP [17] is a Julia-based optimizer that implements a primal-dual interior method for large linear

and nonlinear optimization problems. With system (K3) in mind, MadNLP has options for solving

the reduced systems (K2) or (K1). Such reductions would require recoding of IPOPT and KNITRO

(which is not likely to happen).

3.2 MadNCL

Algorithm NCL has been implemented as MadNCL [16] with MadNLP as the solver for subproblems

NCk. For convex problems, systems (K2) and (K1) can use a GPU implementation of sparse LDL
T

factorization (indefinite and definite respectively). This allows MadNCL to solve subproblems NCk

many times faster than IPOPT or KNITRO, and thus provides a GPU solver for large examples of

problem NC. MadNCL has already proved capable of solving very large SCOPF problems (Security

Constrained Optimal Power Flow), showing that Algorithm NCL is able to solve problems involving

MPEC constraints—another challenging class of problems that fail LICQ.

4 Tribute

Tamás Terlaky, with colleagues Cornelis Roos and Jean-Philippe Vial, pioneered the analysis of interior

methods for linear optimization [19, 20]. We pay tribute to this innovative work here by studying the

linear algebra of Algorithm NCL, an approach to nonlinear optimization that would not exist if linear

and then nonlinear interior methods had not been invented.

In recent years as director of the Quantum Computing and Optimization Laboratory (QCOL) at

Lehigh University, Tamás has turned his attention to a radically new and challenging subject: Quantum

Computing Optimization (e.g., [15]). We can be sure that this research field is in the very best hands.
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