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Abstract : Algorithm NCL was devised to solve a class of large nonlinearly constrained optimization
problems whose constraints do not satisfy LICQ at a solution. It is mathematically equivalent to the
augmented Lagrangian algorithm LANCELOT, which solves a short sequence of bound-constrained
subproblems BCj, and has no LICQ difficulties. NCL’s equivalent subproblems NCj, are much bigger
and must be solved by a nonlinear interior method (needing first and second derivatives). We study
the KKT-type systems arising within nonlinear interior methods when they are applied to the NCj
subproblems. We find that the KKT systems can sometimes be reduced to smaller SQD systems
(symmetric quasi-definite) and sometimes to even smaller SPD systems (symmetric positive definite).
The smaller systems have proved suitable for GPU implementation within the interior solver MadNLP
when it used by MadNCL to implement Algorithm NCL.

Keywords : Constrained optimization, interior methods, sparse matrix algebra
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1 Introduction

For large-scale linear and nonlinear optimization, today’s implementations of interior methods [7, 8,
10, 18] have arisen from the pioneering work of Fiacco and McCormick [5, 6] on barrier methods, in
the sense that inequality constraints have been handled then and now by log barrier functions. Our
contribution here is a tribute to the research of Tamas Terlaky and colleagues on the mathematical
properties of interior methods, primarily for linear optimization but with much relevance for nonlinear
extensions.

We consider large smooth constrained optimization problems in the form

NC minimize ¢(x)

TER™

subject to c(x) =0, ¢ <z <u,

where ¢(z) is a smooth scalar function and c¢(z) € R™ is a vector of smooth linear or nonlinear
functions. We assume that first and second derivatives are available.

If the constraints represent any linear or nonlinear inequalities, we assume that slack variables have
already been included as part of z, and appropriate bounds are included in ¢ and u. Problem NC is
general in this sense.

1.1 Notation

Dual variables for the constraints c¢(z) = 0 are denoted by y, and duals for the simplified bounds
x > 0 in section 3 are denoted by z. The Jacobian for ¢(x) is the m x n matrix J(z). If the Hessians
of ¢(z) and ¢;(x) are Ho(z) and H;(x), the Hessian of the Lagrangian L(z,y, p) = ¢(z) — yTc(x) is
H(z,y) = Ho(x) — X2, yiHi(x).

2 LANCELOT and Algorithm NCL

LANCELOT [2, 3, 11] is designed to solve large, smooth constrained optimization problems. For prob-
lem NC, LANCELOT solves a sequence of about 10 BCL (Bound-Constrained augmented Lagrangian)
subproblems of the form

BCy mini]%nize o(x) — yle(z) + Lpre(z)Te(x)
zeR™

subject to £ < x < u,

where y, is an estimate of the dual variables for the nonlinear constraints c(x) = 0, and py > 0 is a
penalty parameter. After BCy is solved (perhaps approximately) to give a subproblem solution zj,
the size of ||c(z})]| is used to define BCyy1:

o If ||c(x})]| is sufficiently small, stop with “Optimal solution found”.

o If ||c(x})]| < ||e(xy_y )| sufficiently, update yr41 = yr — prc(x},) and keep pri1 = pi.
e Otherwise, keep yi+1 = yx and increase the penalty (say pr+1 = 10p%).

e If the penalty is too large (say pri1 > 1019), stop with “The problem is infeasible”.

2.1 Algorithm NCL

Algorithm NCL mimics LANCELOT with only one change: subproblem BCj is replaced by the equiv-
alent larger subproblem

NG minimize ) +ylr a1 oIy
z€R", reR™ ¢( ) Yk Qp

subject to c(z)+r=0, {(<z<u.
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Given a subproblem solution (x},7}), the choice between updating y, or increasing py is based on
llr5ll. We expect ||75]| — 0, so that z} is increasingly close to solving NC.

The active-set solvers CONOPT [4], MINOS [14], and SNOPT [21] are nominally applicable to NCj,.
Their reduced-gradient algorithms would naturally choose r as basic variables, and the x variables
would be either superbasic (free to move) or nonbasic (fixed at one of the bounds). However, this is
inefficient on large problems unless most variables are on a bound at the subproblem solution z7.

In contrast, interior methods welcome the extra variables r in NCj because

e subproblem NCj is always feasible;
o the Jacobian of ¢(x) + r always has full row rank;

e the sparse-matrix methods used for each interior iteration are affected very little by the increased
subproblem size.

These properties justify part two of our title.

2.2 About 10 subproblems

A virtue of LANCELOT inherited by NCL is the limited number of subproblems NCy, regardless of
problem size. A Julia implementation of NCL [13] confirmed the value of solving subproblems NCj,
with decreasing feasibility and optimality tolerances (1072 to 107%). The number of subproblems
remained at around 10. This contrasts with SQP methods requiring hundreds or thousands of QP
subproblems on large problems.

3 The linear system

For simplicity, we assume in this section that the bounds ¢ < x < w are simply z > 0. When a nonlinear
primal-dual interior method such as IPOPT or KNITRO is applied to NCy, each search direction is
obtained from a linear system of the form

—(H+X712) JT Az To
-l I Ar | =(rs], (K3)
J I Ay 4l

where X = diag(z), Z = diag(z), and 71, r9, r3 are residuals for the system of nonlinear equations being
solved by the interior method. Although (K3) is a large system, Ar does not damage its sparsity, and
both IPOPT and KNITRO have been efficient as solvers for NCj on some large models of taxation
policy [12].

For all NCy, pr > 1 (and ultimately pg > 1), it is stable to eliminate Ar from (K3) to obtain

—(H+X12) JT> (Am) < T2 ) 1
= s ), Ar=—(Ay—r73). K2
( J L1)\ Ay rt r= o By=rs) (K2)

If H is positive semidefinite or definite, (K2) is SQD (symmetric quasi-definite) [22] and can be solved
efficiently using sparse indefinite Cholesky-type LDL" factorization, where D is diagonal but indefinite.

We can eliminate Ay from (K2) to give the smaller system
(H+Xﬁlz+kaTJ)Ax:7T2+JT(T3+[)]€T1), Ay:T3+pk(T’17JA.T), (Kl)

as noted by Montoison et al. in connection with the solver MadNLP [17]. If H is SPD, system (K1)
can often be solved by sparse LDL" factorization, ideally using GPUs.
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If J contains one or more rather dense rows, the system defining Az in (K1) would also be rather
dense. As noted by a referee, it may help to use the Sherman-Morrison-Woodbury formula to solve
for Az. This would require H + X ~1Z to be sparse.

Alternatively, and again if H + X ~1Z is sparse, it may be more efficient to eliminate Az from (K2)
to give

(I4prJ(H+X12)7" U0 Ay = ppry + 73, (H+X12)Az = JT Ay — rs. (K1)

The system defining Ay in (K1’) is smaller than the one defining Az in (K1), but will be dense if J
contains any dense columns.

3.1 MadNLP

MadNLP [17] is a Julia-based optimizer that implements a primal-dual interior method for large linear
and nonlinear optimization problems. With system (K3) in mind, MadNLP has options for solving
the reduced systems (K2) or (K1). Such reductions would require recoding of IPOPT and KNITRO
(which is not likely to happen).

3.2 MadNCL

Algorithm NCL has been implemented as MadNCL [16] with MadNLP as the solver for subproblems
NCg. For convex problems, systems (K2) and (K1) can use a GPU implementation of sparse LDL"
factorization (indefinite and definite respectively). This allows MadNCL to solve subproblems NCj
many times faster than IPOPT or KNITRO, and thus provides a GPU solver for large examples of
problem NC. MadNCL has already proved capable of solving very large SCOPF problems (Security
Constrained Optimal Power Flow), showing that Algorithm NCL is able to solve problems involving
MPEC constraints—another challenging class of problems that fail LICQ.

4 Tribute

Tamads Terlaky, with colleagues Cornelis Roos and Jean-Philippe Vial, pioneered the analysis of interior
methods for linear optimization [19, 20]. We pay tribute to this innovative work here by studying the
linear algebra of Algorithm NCL, an approach to nonlinear optimization that would not exist if linear
and then nonlinear interior methods had not been invented.

In recent years as director of the Quantum Computing and Optimization Laboratory (QCOL) at
Lehigh University, Tamés has turned his attention to a radically new and challenging subject: Quantum
Computing Optimization (e.g., [15]). We can be sure that this research field is in the very best hands.
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