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Abstract : This work presents a new strategy to virtual bidding based on distributionally robust op-
timization (DRO) using a Wasserstein distance. Virtual bidding, a mechanism used in two-settlement
electricity markets, allows participants to arbitrage price differences between day-ahead and real-time
markets. Traditional optimization methods for virtual bidding often rely on precise probabilistic mod-
els of market behaviour, which are unavailable in practice due to the inherent complexity and volatility
of electricity markets. To tackle these challenges, this work formulates the virtual bidding problem as a
DRO problem, incorporating conditional value at risk (CVaR) into the objective to manage downside
risk under volatile conditions. Tractable reformulations which can be efficiently solved to optimality
are provided. The proposed strategy is developed and tuned using a 12-month training set to identify
optimal parameters. The strategy is evaluated on historical pricing data from the New York Indepen-
dent System Operator (NYISO) on an 8-month testing set. The results show improved performance
over benchmarks, achieving higher Sharpe and Calmar ratios, as well as increased profit per MWh.
Through this DRO framework, a more reliable virtual bidding strategy that enhances profitability
while effectively managing risk in uncertain market environments is presented.

Keywords: Virtual Bidding, distributionally robust optimization, stochastic optimization, wholesale
electricity market, two-settlement electricity market
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1 Introduction

Virtual bidding is a financial mechanism used in two-settlement electricity markets that allows partic-
ipants to arbitrage price differences between the day-ahead and real-time markets. This practice aims
to enhance market efficiency by inducing price convergence between day-ahead and real-time market
prices. This convergence encourages better resource allocation, as prices align closer to real-time gen-
eration and demand costs [16]. This can in turn enhance grid efficiency by ensuring that generators
are dispatched according to actual needs, thus supporting the overall reliability of the electric power
system [13].

The effectiveness of virtual bidding strategies heavily depends on the availability of accurate models
of market behaviour. These are often challenging to obtain due to the complex nature, the inherent
uncertainty, and the volatility of electricity markets.

Despite its potential benefits, virtual bidding remains a challenging practice due to the high level
of uncertainty in electricity markets and the volatility of the prices. Price discrepancies between the
day-ahead and real-time markets are influenced by numerous factors, including load forecasting er-
rors, generator outages, fuel price fluctuations, and strategic bidding by market participants. These
can lead to significant financial risks, making it crucial to develop robust strategies to improve bid-
ding performance while mitigating the adverse effect of volatility. This paper addresses this gap by
proposing a new approach that integrates distributionally robust optimization for virtual bidding under
uncertainty.

This work focuses on electricity markets that support virtual bidding, primarily concentrating on
independent system operators (ISOs) in the United States, such as the New York Independent System
Operator (NYISO). These markets allow for arbitrage opportunities between the day-ahead and real-
time markets. In contrast, most European markets, including the OMI Group, responsible for the
Iberian Peninsula [27], and the National Energy System Operator (NESO) in the United Kingdom [10],
mainly operate through the day-ahead and intra-day markets, with no equivalent real-time market like
in the United States. While intra-day markets in Europe allow some arbitrage opportunities, they do
not directly allow for virtual bidding strategies like the DART spread does due to the absence of a
real-time market for price adjustments. As such, virtual bidding, as formulated in this work, is most
applicable to markets with both day-ahead and real-time market structures, such as those found in
the United States ISOs.

1.1 Related work

Various approaches have been proposed to model uncertainty in electricity markets. Distributionally
robust optimization (DRO) trading strategies for renewable energy producers are considered in [29)].
The author highlights the importance of robust optimization to deal with the uncertainty inherent to
renewable sources of energy. The authors of [11] focus on forecasting electricity DART spikes, providing
valuable insight into the prediction of extreme events in electricity markets. Their methodology could
be, for example, integrated into a DRO framework to enhance decision-making under uncertainty. A
two-stage stochastic bidding strategy for physical market participants with virtual bidding capacities
in day-ahead electricity markets is proposed in [21]. Their approach aims to balance the physical
generation profit and the virtual transaction profit. Virtual bidding can improve market efficiency,
but there is also a risk associated to it, as shown in [4]. The authors discuss the implications of
virtual bidding in electricity markets, highlighting both the benefits and potential pitfalls. Their
analysis provides a balanced view of virtual bidding strategies. A data-driven convergence bidding
strategy based on reverse engineering of market participants’ performance is proposed in [32]. A
case study on the California ISO demonstrating the practical applicability of the approach is also
presented. Algorithmic bidding strategies based on historical data are proposed and evaluated using
the cumulative profit and the Sharpe ratio in [2]. The authors show that their strategy outperforms
standard benchmarks and the S&P 500 index over the same period. A significant body of literature
also explores different uncertainty modelling approaches beyond traditional stochastic optimization.
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Robust optimization methods, for instance, focuses on worst-case scenarios to ensure optimal decisions
under the most adverse conditions [22]. More recently, DRO has gained traction as an alternative
that provides a middle ground between stochastic and robust optimization by considering a family of
probability distributions in a data-driven fashion instead of a single assumed or known one [17, 24]. In
electricity markets, DRO has been applied to problems such as generation scheduling [29]. However,
to the best of the authors’ knowledge, its application to virtual bidding remains unexplored. Many
virtual bidding strategies rely on optimization techniques and machine learning methods [2, 21, 32].
There is also a growing body of literature focused on DRO reformulations in various fields [5, 7, 24,
28, 29]. However, no existing strategy integrates all these elements simultaneously, leaving a gap in
the literature for a virtual bidding approach that combines DRO optimization with machine learning-
inspired parameter optimization to adequately model uncertainty and risk in electricity markets.

1.2 Contributions

This work proposes an uncertainty- and risk-aware virtual bidding methodology to account for two-
settlement electricity market uncertainty and volatility. Our approach is data-driven to further account
for the lack of generally available system model. Specifically, we formulate the virtual bidding problem
as a DRO with a Wasserstein distance [24] and provide a tractable reformulation that can be efficiently
solved. The strategy is obtained by identifying the optimal parameters of the model over a 12-month
training set. The effectiveness of our approach is shown by using historical data from NYISO on a
8-month testing set, showing that DRO-based strategies outperform traditional methods, namely, the
equally weighted selling portfolio and scenario-based stochastic optimization approaches especially in
instances with high market volatility and uncertainty. The specific contributions of our work are as
follows:

e We formulate a distributionally robust optimization model that explicitly accounts for market
uncertainty and volatility.

e We propose an online bidding strategy with an integrated pipeline for efficiently tuning model
parameters, making the strategy adaptable to changing market and network conditions.

To evaluate the effectiveness of our strategy, we conduct a numerical case study using 8 months
of historical data from the NYISO. While similar studies using NYISO data exist, our case study
provides new insights by comparing our bidding strategy against other uncertainty-aware models and
existing benchmarks, highlighting the advantages in terms of both profitability and risk mitigation.
This validation based on cumulative profits, profits per invested MWh, Sharpe ratio, and Calmar ratio,
demonstrates the practical applicability and effectiveness of our proposed approach.

1.3 Organization

The remainder of this paper is organized as follows. Section 2 introduces virtual bidding in two-
settlement wholesale electricity markets. Section 3 builds the model to solve the virtual bidding
problem. Section 4 proposes a bidding strategy based on our model and includes tuning considerations.
Section 5 provides numerical results and analyzes the performance of the strategy. Finally, Section 6
concludes the paper and outlines directions for future research.

2 Virtual bidding

Virtual bidding, also known as convergence bidding, allows market participants to submit financial
bids without physically delivering or consuming electric energy. In a two-settlement electricity market,
which consists of a day-ahead and a real-time market, virtual bids aim to capitalize on the price
differences between these two markets [15]. Participants place bids in the day-ahead market as if they
were buyers (loads) or sellers (generators) and then settle their positions in the real-time market. In
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doing so, virtual bidders help align the day-ahead prices with real-time ones, thereby improving market
efficiency and reducing price volatility.

When submitting bids, participants must specify both a price and a quantity for a particular bus
of the grid, e.g., in California Independent System Operator (CAISO) [3], Midcontinent Independent
System Operator (MISO) [23], PJM Interconnection LLC (PJM) [30], ISO New England (ISO-NE) [14],
and Southwest Power Pool (SPP) [33] markets, or a region of aggregated buses, e.g., in NYISO [26] and
Electric Reliability Council of Texas (ERCOT) [8] depending on the grid operator, at a specific hour
of the day. The bids are cleared if the buy price is greater than or equal to the price set by the grid
operator in the day-ahead market or if the sell price is less than or equal to the day-ahead market price.
To avoid the computational burden of mixed-integer programming, we adopt a price-taker approach,
where we always submit a high price for buying and a low price for selling. This approach ensures that
our bids clear every time and allows us to focus on optimizing the energy quantity rather than the
bid price itself. Because our strategy does not seek to influence market prices but rather takes them
as given, this price-taker assumption is reasonable and effective for simplifying the bidding process.
Previous studies have also adopted a similar approach to reduce computational complexity in energy
markets [32].

Let the power system be modelled as the graph (N, L) where N' C N denotes the set of buses
and £ C N x N represents the set of transmission lines connecting these buses. The quantity vector
q: € RWI collects the bid energy quantities (in MWh) submitted at all buses at a specific hour
teT ={0,1,...,23} of the considered day. To ensure operational feasibility, we impose a limit L > 0
on the total energy that can be bid across all buses in each hour, expressed as:

We suppose that the limit L ensures that our bids do not affect prices in the considered market. The
impact of virtual bids on prices (price-makers) is a topic for future work. It is explored, for example,
n [18].

Let S ¢ RWI be the uncertainty set of the random variable s, € S representing the DART spreads,
for all buses at time t. We model the spread s; as a random variable with distribution P € P, where
P is the set of probability distribution on S. The virtual bidding problem takes the following form:

min EF —s] la
QRN teZT t Qt] (12)
st |lall < L, vteT, (1b)

where the expectation is taken with respect to s;.

Given the complexity of the market, i.e., its dependency on many factors such as the weather, the
availability of energy, and consumer behaviours, the distribution P is unknown. In this work, we are
interested in a data-driven approach. Using a set D of historical DART spreads s¢, the distribution P
can be approximated with the discrete empirical probability distribution:

Ogd
Po = |D|d€ZD

where dg a is the Dirac measure giving a probability mass D to each observed data point s¢ € D. This
expressmn reflects our estimation of the distribution based on the observed data. This enables us, for
example, to approximate (1) as:

mi?N‘ — Z stht] = — Z [Z S qt] (2a)
a:€R teT deD teT
st la <L, VteT, (2b)

which we later use as a benchmark in our numerical study. We refer to the scenario-based, single-stage
optimization problem (2) as the stochastic optimization (SO) model.
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3 Volatility- and uncertainty-aware bidding model

Volatility in electricity markets refers to the significant fluctuations in prices over time, which introduce
risks for market participants [25]. Concurrently, variability in market conditions encompasses broader
uncertainties, such as changes in generation, demand, or external factors affecting the distribution of
prices [19]. In our approach, we address both challenges using a combination of the conditional value at
risk (CVaR) and DRO, respectively. CVaR focuses on tail risks, providing a safeguard against extreme
price movements which is a direct consequence of volatility. By minimizing potential losses in the
worst-case scenarios, CVaR helps manage the impact of sharp price drops. In parallel, DRO considers
a range of possible market conditions by defining an ambiguity set, which captures variability in the
market’s underlying distribution. This ensures that our virtual bidding strategy remains robust not
only to known price risks but also to shifts and uncertainties in future market conditions.

3.1 Volatility mitigation

The conditional value at risk (CVaR), or expected shortfall, is a risk measure commonly used to
evaluate investment strategies [34] that captures the tail risk beyond a given confidence level o. The
CVaR is defined as the average of the worst-case outcomes beyond a specified confidence level [31],
e.g., the average return of the worst 10%. To account for the volatility in our model, we integrate the
CVaR in the objective function of the single-stage stochastic program (1). The resulting formulation
minimizes a combination of the expected loss and the CVaR of the loss. Let o € (0, 1] be the confidence
level used for the CVaR, and representing the portion of tail risk considered. Let p € [0,1] be the
risk-aversion factor which we use to balance between minimizing the expected loss and the CVaR. The
problem formulation becomes:

min  pEF |- Z Stht — p)P-CVaR,, |— Z StTQt ) (3a)
q:€RIVI o1 teT
s.t. lacl < L, vteT, (3b)

where P-CVaR,, denotes the CVaR-operator for a probability distribution P and a risk level a. Fol-
lowing [31], CVaR can be defined as a minimization problem:

max{ Zstqt T, O}] 4)

teT

min T + EF
TER

where 7 € R represents the CVaR threshold, which acts as a quantile of the loss distribution. It marks
the loss level beyond which the tail risk is considered. Substituting in the CVaR definition (4), we
obtain:

qrélﬂér‘lm pEE |- Z s] qu —p) rTnel]gIE T + max { Z S; Qi — T, O} (5a)
t teT teT
laell < L, Ve T.  (5b)

Problem (5) can be re-written as the following linear program using the auxiliary variable y¢, which
represents the excess loss above threshold 7 in each scenario d € D:

qteRlNIIr,lTiIelk,ydeR ( Z Z Sy qt) + (1 - < |D| I Z Y ) (63)

dED teT deD
s.t. lacll < L, vteT, (6b)
v+ sl a >0, vieD,  (6c)
teT
y' >0, vdeD.  (6d)

The resulting is a model that incorporates risk into the optimization process. We refer to (6) as the
S0-CVaR model and we use it later to benchmark our approach.
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3.2 Distributional uncertainty modelling

DRO provides a framework for decision-making under uncertainty by considering a set of possible
probability distributions rather than relying on the empirical distribution like in [2]. This approach
aims to ensure that solutions remain robust against variability in the underlying data. To define our
ambiguity set, we use the Wasserstein distance dy (W, V), which quantifies the dissimilarity between
probability distributions W € P and V € V. Specifically, let s; and so be the marginals of W and V,
respectively, and P(S x §) denote the set of all probability measures on S x S. The order-z Wasserstein
distance [28] with respect to some norm || - || is :

1/z
dyw(W,V) = i —s9]|*d .
w0 = (_in [l = sl an(on, )

By constructing a Wasserstein ball of radius € > 0 centred around the empirical distribution:

B.(Pp) = {W € P | dw (W, Pp) < e} ,

we can delineate a set of plausible distributions that captures the uncertainty inherent to the data. In
this context, we formulate a DRO model to maximize the virtual bidding benefits. The distributionally
robust reformulation of (1) is given by:

min  max EY |- Z s; q (7a)
ARV wepB, (Pp) teT

s.t. laells < L, VieT. (7b)

Before we proceed to the reformulation of the inner maximization of (7), we define, for some vector
x € RWI the dual norm || - ||, of the norm | - || as:

x|l = sup xTy.
Iyli<1

In our context, we choose the Euclidean norm in the Wasserstein distance. For the Euclidean norm,
the dual norm is equal to the norm itself, i.e., ||q:¢||« = ||q¢]]2. This is done because it promotes a
strategy that distributes bids across the different buses on the grid. We also choose the order z = 1

that corresponds to the Wasserstein-1 distance, also known as the earth mover distance (EMD). It is
computationally simpler compared to higher-order Wasserstein distances.

Because the objective function of (7) is linear, we can re-express the inner maximization as [24,
Remark 6.6]:

min ! Z Z s‘tﬂqt + €A, (8a)

ASK |D| deDteT
st flall« < A vteT. (8b)
Substituting (8b) in (7) leads to:
. 1 T
qzeé}lf‘}r‘heﬂa a @ deZDteZng e+ €, (8¢)
st ez <A VteT, (8d)
laell < L, VieT. (8e)

Problem (8e) provides a distributionally robust virtual bidding model that is readily solvable with off-
the-shelf solvers. For a linear problem like ours, the DRO reformulation is equivalent to the original
problem with an added regulizer [5]. We refer to (8¢) as the DRO model and we use it as well to
benchmark our approach.
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3.3 Integrated volatility-and uncertainty-aware virtual bidding

We now present our integrated bidding model. We combine the CVaR to account for price volatility
and DRO to handle uncertainty in the market’s underlying distribution in a data-driven way. CVaR
protects against extreme price changes, while DRO ensures robustness to shifts in market conditions.
This combined model addresses both difficulties in a single problem. Following the approach shown
in [24], we can write the risk-averse problem (5) as:

min EF {Iglea’éc ak (Z —s;rqt> + ka} , (9a)

RN rer teT
st lalh <L, vteT, (9b)
where K = {1,2}, a1 = —p, aa = —p — 1_7”, by = 1—p, bo = (1 —p)(1 —1). Although the

exact distribution P remains unknown, we propose using box constraints following [7] to define the
uncertainty set S as the range within which the uncertain DART spread vector s; is allowed to vary.
We set:

S={s, e RVl |s; | <A, VieN,teT} (10)

where each component of s, s;+, is bounded by the maximum value A > 0, ensuring that all elements
of s; remain within this fixed range. The distributionally robust counterpart of (9) with respect to the
Wasserstein ambiguity set B.(Pp) is given by:

min max Ew[maxak (Z —s;rqt> + bm’} (11a)

a7 WeB, (Pp) kex byt

st. gl < L, VteT. (11b)

Using [24, (27)] and setting the vector v € RV and the scalar pd € R as variables associated to the
uncertainty set (10) as in [7] allows for the readily implementable form:

1
min A€+ — x4, (12a)
ae,m Az vl g D] (;
a’ dT  d d d
s.t. b7 + ay (Z Eh qt) + v sy 4+ Apg, < 2% vde D,k ek, (12b)
teT

Vg — araulls < A, VdeDkek,teT, (12c)

g > v, deD,keK, (12d)

laellr < L, VieT. (12e)

The detailed derivation to obtain (12) given the uncertainty set (10) is provided in the Appendix. This
formulation provides a distributionally robust optimization framework that balances profit maximiza-
tion and risk mitigation in addition to accounting for the uncertainty. The choice of the Euclidean
norm in (12) aligns with the approach used to obtain (8e). We refer to (12) as the DRO-CVaR model.

4  Online virtual bidding strategy

We devise a rolling virtual bidding strategy centred on our model (12). Our strategy is based on a data
set D updated daily to determine bids for the next day. To implement our model within a bidding
strategy, we begin by selecting the most relevant data for each day that will define the dataset D.
Next, we optimize the hyperparameters over a training period to ensure the best model performance.
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4.1 Selection of similar days

A key challenge in data-driven optimization is determining which historical data will represent the
future best. In our study, we carefully select relevant historical data by identifying dates with load
and generation profiles similar to the target bidding day. For each target date, we consider a two-year
rolling window of past data and calculate the similarity between the target bidding date and each day
within the historical window.

Let the similarity metric I' : (R?* x R) x (R?* x R) — R measure the similarity between two days.
The load profile p € R?* collects the total network load (across all buses) for each timestep over the
day in a vector, while the offline generation capacity € R reflects the total megawatts (MW) of
generating capacity forecasted to be offline for the ISO throughout the day. The similarity metric
combines the Euclidean distance between load profiles and the absolute difference in offline capacities
in addition to a penalty ¢ > 0 for splitting weekdays with weekends. The I metric is defined as:

r ((ptargcta gtargct)v (pv 0)) = 2Hptargct - P||2 + ‘etargct - 0| + Cv

where ¢ = 0 if both days are either weekdays or weekends, and ( = 1000 otherwise. The fixed values
of ¢ ensure the penalty significantly influences I' without excluding the possibility that a weekend day
is more similar to a target day than any weekday, and vice versa. The I' metric ranks past days by
similarity, with smaller values indicating more similar days. Finally, we remark that other comparison
methods could be used in our approach.

4.2 Strategy execution

We use I to build the relevant historical data set D; to be used by our model at day j. We discuss the
number of data to include in D; in Section 4.3. We then solve (12) using D; and commit the resulting
bids for day j. For example, consider bids to be placed for j = May 13** on May 12", Let us assume
|D| = 3, evaluating T" on the month of data preceding j, we determine that the most similar days to
May 13" are April 30'", May 3'¢, and May 7" and we form D; accordingly. The process is visualized
in Figure 1.

Data from May 7" May 13"

Data from May 34

Data from April 30"

~

i I I I I I I I I O
f T T T T T T T T

April 30" May 374 May 70 May 12th

v

Figure 1: Strategy execution example for bids to be placed on May 12t" for the next day

Finally, we repeat this process for all bidding days j € {1,2,...,J}, adding each day one more
data point in the pipeline and removing one. The proposed strategy is deployed as an online process,
updating daily both the dataset D and the broader dataset from which D is constructed. This broader
dataset consists of a rolling two-year window that is updated each day to incorporate the most recent
data while discarding the oldest observations. Within this window, D is dynamically selected based on
the similarity of past days to the current one. This ensures that the model continuously adapts to the
most relevant information while accounting for real-world changes such as evolving demand, climate
variability, and grid modifications.

4.3 Strategy tuning

In this section, we describe our bidding strategy and tuning method, which we also apply to the
benchmark models for a fair comparison. The hyperparameters of each model are optimized on a
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training set comprising 12 months of historical DART spreads from NYISO from February 1%, 2023,
to January 31%%, 2024 with the rolling window going back as far as February 1%, 2021 when tuning
starts. The online bidding strategy is then evaluated on a separate 8-month testing set illustrated in
Figure 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Training Set (12 months) Testing Set (8 months)

Figure 2: Training and testing sets

Problem (12) includes hyperparameters €, p, |D|, and A. Tuning is carried out using Optuna [1]
over the training set. Its objective is to maximize the annualized Calmar ratio C. The Calmar
ratio measures the trade-off between risk and return by comparing the annualized return of a bidding
strategy to its maximum drawdown and provides an indication of the risk-adjusted performance of the
strategy [20]. We first initialize a portfolio that has a value of $1M, denoted as vy = 10°.

The daily returns r; for each day j € {1,2,...,J} are calculated as the total daily profit or loss
from all bids, given by:
r; = Z —stT qs-

teT

The returns are then scaled relative to the value of the portfolio from the previous day v;_; to obtain
the scaled return 7;, capturing the proportionate growth or decline in the portfolio:

= —1. (13)

Vj—1
The portfolio value is updated iteratively by adding the daily return:
V; = V-1 +Tj.

The annualized return Rannualized 1S then calculated as the cumulative return for the year, scaled to a
full 365-day period:

365
J J
Rannualized = H(l + 77]) - 17 (14)

j=1

where J is the total number of trading days. The maximum drawdown (MDD) is defined as the largest
peak-to-trough decline during the trading period:

MDD = max <”P°ak - ”“O“gh) : (15)

Upeak

where vpeak is the highest portfolio value before a drawdown, and viougn is the lowest value reached
during the drawdown. Finally, combining (14) and (15), the Calmar ratio C' is computed as:

Rannualized
= —. 1
¢ MDD (16)

In our numerical example, these calculations are performed using the empyri- cal library [9]. The
use of the Calmar ratio in our analysis allows for a robust evaluation of the portfolio’s performance in
high-risk environments, such as those observed in electricity markets.

The Calmar ratio is chosen to tune our model because it is a recognized tool for measuring risk-
adjusted performance of investment strategies, particularly by focusing on downside risk [6]. This
makes it a good objective to select hyperparameters during tuning. Each model is tuned on the same
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Table 1: Hyperparameter range for Optuna on the 12-month training set

Hyperparameter min max

|D| 2 100
€ 5 50
P 0.2 0.8
A 2000 5000

training set for 1000 trials with the quantity limit constraint set to L = 400 MWh. The tuning is
parallelized and performed on 128 Intel(R) Xeon(R) Platinum 8375C CPUs @ 2.90GHz with 4.2 TB
of RAM. We let Optuna try values for the hyperparameters in the ranges provided in Table 1 with the
objective of maximizing the Calmar ratio over the 12-month testing set.

For S0-CVaR and DRO-CVaR, the hyperparameter « is fixed to 10% to represent a predefined level
of risk aversion, commonly used to focus on the worst 10% of outcomes. This approach ensures inter-
pretability and stability, as optimizing « could lead to overly conservative or risk-seeking behaviours.
Additionally, fixing « simplifies the hyperparameter optimization process, reducing its dimensionality
and leveraging contextual information on acceptable risk levels in the electricity trading sector.

5 Numerical example

This section presents and analyzes the results of our strategy based on DRO-CVaR. The strategy is tested
on a 8-month period with hyperparameters obtained from the tuning process introduced in Section 4.3.
We remark that the 8 months of data utilized for testing was not used for hyperparameter tuning and,
as such, is considered as out-of-sample.

The case study is based on data from NYISO, which operates an electricity market with 11 geo-
graphic zones. These zones are aggregated from a larger number of buses, each representing a point
of generation or consumption. Virtual bids are submitted for each hour before the virtual bidding
market closing time (5 AM), and the system clears the DAM a day prior to the RTM. The case study
considers placing bids for every hour of every day over an 8-month testing period, from February 15¢,
2024, to October 15¢, 2024.

We benchmark our approach against similar online virtual bidding strategies that substitute the
DRO-CVaR model for the SO, SO-CVaR, and DRO models. Section 4.3 tuning procedure is used indepen-
dently on all resulting strategies. We also include the equally-weighted (EW) strategy, which sells the
same energy quantity across all buses ¢ and hours of the day, subject to the same quantity constraints
as the other models. An hourly quantity limit L = 400 MWh is used throughout this section. The
intuition behind the strategy relies on the conservative approach typically adopted by ISOs. ISOs
often purchase more electricity than required in the DAM to avoid any shortfalls in the RTM. The EW
strategy takes advantage of this by assuming that the DAM price will generally be higher than the
RTM price without focusing on specific buses. This commonly used benchmark [12] serves as a base-
line and evaluates the performance of our strategy against a static one. Figure 3a presents the daily
profits of every strategy on the 8-month testing period. The cumulative profits then are illustrated in
Figure 3b.

Analyzing Figures 3a and 3b, it can be observed that combining distributionally robust optimization
with CVaR tends to achieve both profitability and risk mitigation. Strategies employing the CVaR,
namely S0-CVaR and DRO-CVaR, show reduced downside risk, although only DRO-CVaR consistently
maintains positive profits. The DRO-based strategy (without CVaR) achieves the highest cumulative
profit. We observe that DRO-CVaR never suffers the largest daily loss and is regularly amongst the
most important earners. This indicates that the strategy is more robust and reliable compared to the
benchmarks.The DRO-CVaR-based strategy has the most consistent profits, as losses are limited, leading
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to large cumulative profits. It is the only strategy that never has its cumulative profits dip below zero,
which demonstrates better robustness than the other strategies. This comparison also illustrates that
all data-driven strategies outperform the static benchmark by a significant margin.

mEW oS0 ©S0-CVaR 4DRO +DRO-CVaR

I I I I I % I

(a) Daily profits over the 8-month testing set

—=—EW -e-S0 —-S0-CVaR -+ DRO -+ DRO-CVaR ‘

—_
t

—_

; Cumulative profits ($ x 106)
> &

e
S

(b) Cumulative profits over the 8-month testing set

Figure 3: Profits over the 8-month testing set

Figure 4 illustrates the distribution of the daily profits of our strategy compared to all the bench-
marks. We note that our strategy is less volatile than the other observed strategies. They are all
centred slightly right of zero, which indicates profitability, but the main difference is that the number
of negative profit occurrences is diminished, although at the cost of missing out higher positive profit
opportunities.
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Figure 4: Comparison of daily profits over the 8-month testing set

Figure 5 illustrates the distribution of profits across the different strategies, presenting the in-
terquartile ranges, medians, whiskers, and outliers. It can be observed that the CVaR-based strategies
exhibit reduced profit volatility, as evidenced by the narrower interquartile ranges and shorter whiskers.
Among them, DRO-CVaR yields the lowest volatility. In evaluating the performance of these strategies,
it is important to consider not just their total profits but also the profits relative to the quantity
of bids placed. Each strategy operates under a consistent set of bidding constraints; however, some
pursue a more aggressive bidding approach, bidding the maximum quantity at every timestep, while
others adopt a more conservative strategy, opting not to bid to the limit. Figure 6 presents the scaled
profits for each strategy, which are calculated as the cumulative profit at the end of the 8-month period
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divided by the total quantity of virtual bids. This measure provides insight into the profitability per
MWh, illustrating how effectively each strategy translates bid quantities into realized gain.
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Figure 5: Boxplot of daily profits over the 8-month testing period
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Figure 6: Scaled profit over the 8-month testing period

Figure 6 shows that the best performing strategy in terms of scaled profit is the one based on
DRO-CVaR. The DRO-based strategy also demonstrates strong scaled profit, highlighting the importance
of uncertainty considerations in increasing profits per MWh. The moderate scaled profits of SO-CVaR
suggest it could be improved with additional robustness features while the very low cumulative gain-
per-MWh of EW reflects a poor performance of the strategy.

To evaluate performance in a risk-adjusted context, two other metrics are used: the Sharpe and
Calmar ratios. The Sharpe ratio measures the return earned per unit of risk, allowing us to assess how
each strategy balances reward against volatility.

To calculate the Sharpe ratio S, we start with an initial portfolio value of vy = 106. The Sharpe
ratio is then calculated as the mean scaled returns 7 over the total number of trading days J = 244
days (8 months) and the standard deviation o, of the scaled daily returns 7; as defined in (13) :

s="7.
On
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The Sharpe ratio allows us to compare the reward versus risk consistently across strategies and peri-
ods [2]. A higher Sharpe ratio indicates a more efficient strategy as it achieves greater returns per unit
of risk. In Figure 7, we illustrate the Sharpe ratios for each strategy.

25 2.386

150 1.442 1
1961 1.343

LI 0.826

Sharpe Ratio S

0.5 |

0 \ \ \ \ \
EwW S0 S0-CVaR DRO DRO-CVaR

Figure 7: Sharpe ratios over the 8-month testing period

Figure 7 shows that the DRO-CVaR strategy significantly outperforms the other benchmarks, achiev-
ing a Sharpe ratio of 2.386. This indicates a highly efficient strategy with greater returns per unit of
risk. Figure 7 validates that strategies incorporating CVaR achieve higher risk-return outcomes with
S0-CVaR having the second best Sharpe ratio with 1.442. This analysis underscores the effectiveness
of DRO-CVaR in balancing risk and profits.

Figure 8 provides Calmar ratios defined in (16), which assess the performance relative to the MDD
for all strategies. A higher Calmar ratio indicates a strategy’s ability to deliver returns that sufficiently
compensate for its worst historical losses.

—_
o
T

9.57

2.199 2.116

1.25

0.114
T \ \ \ \
EwW S0 S0-CVaR DRO DRO-CVaR

Calmar Ratio
S = N W ks OO g 00 ©
T
|

Figure 8: Calmar ratios over the 8-month testing period

The Calmar ratio analysis highlights the superior performance of the DRO- CVaR strategy, which
achieves a remarkably high Calmar ratio of 9.570 as shown in Figure 8. In comparison, the SO-CVaR and
DRO-based strategies have Calmar ratios of 2.199 and 2.116, respectively, indicating good performance
though limited compared to DRO-CVaR. This reaffirms that our strategy is the top-performing one in
terms of risk-adjusted returns.
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The results of Figures 3b, 6, 7, and 8 are summarized in Table 2. The best values are displayed in
bold characters.

Table 2: Performance metrics per strategies on the 8-month testing period

Metric EW SO S0-CVaR DRO DRO-CVaR
Cumulative Profit(§) 79,167 982,209 1,125,487 1,356,383 1,204,584
Scaled Profit($/MWh)  0.034 0.419 0.48 0.579 0.618
Sharpe Ratio 0.826 1.261 1.442 1.343 2.386
Calmar Ratio 0.114 1.250 2.199 2.116 9.570

6 Conclusion

In this work, we introduce a DRO approach to virtual bidding in two-settlement electricity markets.
We begin by constructing a virtual bidding strategy using CVaR to mitigate risk. We then use
the DRO framework to handle price uncertainty. The resulting DRO-CVaR model is formulated as a
convex program and can be efficiently solved to optimality. The model is then integrated into an
online strategy to compute daily bid quantities based on updated datasets of similar days, which are
themselves selected from the last two years of data preceding each bidding day.

We propose a tuning approach to optimize hyperparameters, such as the dataset size and the
Wasserstein ball radius, using historical data. Our strategy is backtested by tuning hyperparameters
on 12 months of NYISO data and tested on an 8-month period. We benchmark our approach against
four other strategies (S0, SO-CVaR, DRO-based and EW), achieving second place in cumulative profits
and first in scaled cumulative profits, Sharpe ratio, and Calmar ratio.

For future work, we aim to build a linearized optimal power flow (DC-OPF) model to estimate the
cleared price in the day-ahead market. By incorporating this model into our existing framework, we
hope to make more accurate bids. Finally, we intend to extend our backtesting to include more diverse
datasets, such as other markets, to validate the generalizability, and the effectiveness of our approach.

Appendix

We show that the box uncertainty set used to obtain (12) is a special case of the more general cone
uncertainty set used in [24, (27)]. For the sequel, we only consider the variables and the parameters
involved in the constraints that differ between (12) and [24, (27)]. The cone uncertainty set presented
in [24, (27)] is defined by:

U={s, eRVI:CTs, <d, VieN,teT}. (17)
The box uncertainty set of (12) is defined by:

S={s, e RVl |s; ] <A, VieN,teT}
= {s, e RWI csip <Aand —s;; <A VieN,teT},

where each component of s, s;+, is bounded by a maximum value A > 0, ensuring that all elements
of s; remain within this fixed range. This is a special case of (17) where:

() wa()

Let v € R2WV1. From [24, (27c)], we have :

~T(d—-Cs;) >0
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I 1
- <—I) si+y A (1) > 0.

This allows us to re-express the last two terms of (12b) in terms of:

() ()

()

where a € RWV! and 8 € RVl We can rewrite v and p: asv = —a+ 3 and = 17 (a + 3).
Recalling (12d) and substituting the above definitions, we obtain:

Let

> vl
1T (a+8)> | —a1+Bi+]|—co+Ba|+...+ | — an + Bl

) (i +B) =D oy —Bil.

ieN ieN
This is always true if v > 0, which coincides with with [24, (27¢)]. Finally, we note that (12d):

[vfz <0
e —a+pBl2<0
& [CTv]z <0,

is equivalent to [24, (27d)]. Using the box uncertainty set in (12) is therefore a special case of the more
general cone uncertainty set used in [24, (27)].
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