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M. Jafari Aminabadi, S. Séguin, S.-E. Fleten, E. K. Aasg̊ard

G–2025–29

April 2025

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
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– Library and Archives Canada, 2025

GERAD HEC Montréal
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auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
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Abstract : This paper proposes a two-phase optimization framework for short-term hydropower
scheduling in the day-ahead electricity market using profile block bids grouped in exclusive sets. The
first phase solves a nonlinear deterministic model that generates a diverse and operationally feasible set
of production blocks by accounting for startup costs, opportunity costs, and hydrological constraints.
In the second phase, a two-stage stochastic program is used to select a subset of blocks for market
submission under price uncertainty. The proposed approach captures a wide range of production
scenarios while ensuring compliance with market design rules. By decomposing the problem and
relaxing binary variables, the framework significantly reduces computational complexity and achieves
fast solution times. Numerical experiments based on a real hydropower system demonstrate the model’s
ability to produce effective bidding strategies, comparable to the hourly bidding methods.

Keywords: Short-term hydropower optimization, day-ahead electricity market, profile block bids,
exclusive groups, stochastic programming.
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Notation

t ∈ {1, 2, . . . , T} Index of periods
c ∈ {1, 2, 3, . . . , C} Index of hydropower plants
b ∈ {1, 2, 3, . . . , Bc} Index of block for plant c

s ∈ {1, 2, . . . , S} Index of scenarios
r ∈ {1, 2, . . . , Rc} Index of plants upstream of plant c
j ∈ {1, 2, . . . , Jc

t } Index of power production surface j for plant c at period t
Parameters

ζ Conversion factor from (m3/s) to (Mm3/h)
qcmin Minimum water discharge at plant c (m3/s)
qcmax Maximum water discharge at plant c(m3/s)
vcmin Minimal volume of plant c reservoir (Mm3)
vcmax Maximum volume of plant c reservoir (Mm3)

vcInitial Initial volume of reservoir c (Mm3)
Pt,b Price of profile b at hour t (Phase 1)
ϵc Penalty for the start-up of the turbines for plant c
δct Inflow in period t (Mm3)

ρs,t Market price for scenario s at hours t
γ Penalty for each additional selected profile beyond the first one

πs Probability of scenario s
τr→c Time delay (h) for water transfer from upstream reservoir r
Rbs Revenue from using profile b in scenario s
Cs Cost of not selecting any profile in scenario s

Variables

qct Water discharge at period t (m3/s)
vct Reservoir volume at period t (Mm3/h)
gct Water spillage at plant c and period t(m3/s)

αc
t (v

c
t ) Opportunity cost associated with water usage at plant c during period t.

χc
j,t Power production for surface j (MW)

occ Lost opportunity costs associated with using water from the plant c at period t

zj

{
1, if surface j is chosen,

0, otherwise.

xbs

{
1, profile b is in the exclusive group in scenario s,

0, otherwise.

wb

{
1, 1 if profile b is selected,

0, otherwise.

us

{
1, 1 if no profile is selected in scenario s,

0, otherwise.

1 Introduction

Bids can be structured in various formats in the electricity market, such as hourly bids, flexible
hourly bids, and block bids that group multiple hours together. Block bids are used in systems with
intertemporal dependencies between reservoirs, where water flow delays can cause mismatches between
production and market prices. Block bids contribute to stable production over longer time periods
and are particularly suitable in situations where there are conflicts between upstream and downstream
hydropower plants [1]. Block bidding provides producers in electricity markets with an organized
method to manage operational restrictions and cost considerations effectively. Block bidding offers a
structured approach to managing the complexities of power markets by taking into account operational
limitations and cost considerations. These bids facilitate conditional and time-linked power delivery,
ensuring better alignment between production schedules and market demand. Block bids increase
stability and reduce inefficiencies, especially under complex conditions [2].

Block bids, characterized by an all-or-nothing acceptance condition, enable conditional and in-
tertemporal power delivery. These bids address market and operational needs through various types.
Regular block bids deliver constant power over a specific period, profile block bids enable vari-
able energy profiles, and linked block bids establish parent-child relationships for conditional accep-
tance [2, 3, 4]. Profile block orders, unlike regular block orders, allow producers to offer variable energy
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quantities across multiple periods, aligning delivery with market price fluctuations. Their clearing re-
lies on comparing the offered price with the weighted average market clearing price over the selected
intervals [5].

Several studies have explored the integration of block bids into the offering strategies of hydropower
producers. For instance, [6] investigates the use of regular block orders in hourly offering problems,
focusing on their role in addressing operational constraints like startup and shutdown costs. Simi-
larly, [7] examine day-ahead bidding strategies, incorporating both hourly and block bids to optimize
production while managing price uncertainties and balancing market dynamics. Alnæs et al. [8] further
provide an empirical analysis of Norwegian hydropower producers, highlighting the interplay between
block and hourly bids and their effectiveness in addressing marginal water values and operational effi-
ciencies. In [9], a day-ahead planning model integrates stochastic programming and recurrent neural
networks, addressing hourly and block bids with price uncertainties for hydropower producers in the
Nordic market. In [10], block bids are optimized for combined heat and power units using stochas-
tic programming, highlighting their role in managing price uncertainties and operational constraints.
Karasavvidis et al. [2] extend previous research by developing an optimization framework for hydrother-
mal systems that incorporates advanced bidding structures, such as profile-based and linked block bids.
These approaches address operational challenges, improve production flexibility, and optimize profits
under varying price and regulatory conditions. Recent developments in electricity market design have
highlighted the role of exclusive groups of block bids, also known as mutually exclusive block bids,
in addressing intertemporal constraints and enabling more realistic representations of production ca-
pabilities. These bid formats allow participants to submit multiple alternative power profiles while
ensuring that at most one of them is accepted, thus preventing overcommitment and supporting better
operational alignment. In this context, [11] present an in-depth analysis of package bidding mecha-
nisms used in European electricity auctions. Their work is particularly relevant to our study, as the
two-phase modeling approach we adopt, especially the second-phase optimization problem character-
ized by total unimodularity, is inspired by their formulation. They show how the limitation on the
number of allowable block bids can lead to welfare losses and propose algorithmic solutions to optimize
bid selection under these constraints. Their insights form a theoretical foundation for our stochastic
profile selection model.

As highlighted in the literature, most existing studies on block bidding focus on regular block bids,
while fewer works address the profiled block bids. In this paper, we present a two-phase model for
profiled block bidding for participating in the Norwegian day-ahead market. In the first phase, a
short-term hydropower optimization problem is solved, incorporating operational constraints, water
usage costs, and startup costs. Since the model can handle various price conditions and sequences
of consecutive hours, it is capable of generating diverse and realistic bidding blocks—an important
feature for dealing with complex systems. The second phase is a two-stage linear stochastic program
that selects the most suitable blocks to offer to the market from the block set generated in the first
phase, based on the price scenarios. The two-phase structure of the approach causes a reduction in
computational time, and the model converges to the solution within a short period.

This paper is organized as follows: Section 2 presents the methodology and mathematical formu-
lation of the two-phase model, including the profile generation model developed in Phase 1 and the
two-stage stochastic profile selection model of Phase 2. Section 3 introduces a case study and the hy-
dropower system. The results are reported in Section 4, and the performance of the model is compared
to the hourly bidding strategies to evaluate its effectiveness in Section 5. Finally, Section 6 presents
the conclusion and directions for future research.

2 Methodology

Short-term hydropower scheduling involves determining the optimal hourly production plan for one
or more hydro units over a short planning horizon, typically ranging from one to several days. This
planning must consider operational constraints such as reservoir storage bounds, turbine operating
limits, and startup costs. Power production depends on technical factors including reservoir volume,



Les Cahiers du GERAD G–2025–29 3

discharge, and net head. The main objective is to allocate water resources in a way that ensures
feasible operation while responding effectively to market price variations [12, 13]. Electricity trading
is commonly organized into three main markets: the day-ahead market, the intraday market, and the
balancing (real-time) market. The day-ahead market main role where most electricity transactions are
conducted. In this market, producers and consumers submit their bids for the following day, typically
before noon. After collecting all offers, the market operator performs market clearing and publishes
the hourly market prices and committed quantities around 1 p.m. [1, 14]. The intraday market allows
participants to update their positions closer to delivery, offering increased flexibility in response to
new forecasts or unexpected changes. Finally, the balancing market, operated by the Transmission
System Operator (TSO), is used to resolve real-time imbalances and ensure system stability. In this
market, producers can offer flexible ramping capacity or make adjustments based on the actual system
conditions [1]. Producers can submit different types of bids to participate in these markets. In addition
to hourly bids, market designs increasingly allow for more structures such as block bids, which consist
of fixed quantities over multiple hours with an all-or-nothing acceptance rule. These include regular
block bids (constant quantity over time), profile block bids (varying quantity), and linked block bids
that define conditional relationships between bids. Some market designs allow producers to submit
several alternative block bids as part of an exclusive group, with the rule that only one of them can
be accepted. This structure prevents overcommitment and allows producers to adapt their bidding
strategy to different possible operating conditions [11].

This paper proposes a two-phase optimization framework to identify an optimal profile block bid-
ding strategy for short-term hydropower scheduling in the day-ahead electricity market under price
uncertainty. The methodology is designed to ensure operational feasibility while maximizing market-
based profitability. In the first phase, a deterministic optimization model is solved using forecasted
electricity prices and inflow data. This model incorporates key operational features such as opportu-
nity costs, startup costs, and hydrological constraints including reservoir balance and turbine limits.
The goal is to generate a diverse and feasible set of production profiles (blocks) that are compliant
with the rules of block bidding in electricity markets. Each block represents a continuous production
period with durations ranging from a minimum of 3 consecutive hours up to 24 hours. This diversity
allows the model to accommodate various operational conditions and prepares it to respond flexibly
to a wide range of market scenarios.

The feasible blocks generated in this phase, along with their associated production costs, oppor-
tunity costs, and startup costs, are passed to the second phase. In this phase, a two-stage stochastic
programming model is used to select the most profitable subset of blocks for market participation.
Price uncertainty is modeled through a set of price scenarios that become available close to the bid-
ding deadline. Based on these scenarios, the model evaluates the expected economic performance of
each block and selects a fixed number (e.g., 15 blocks) that maximize the overall expected profit. This
selection process reflects actual market design, where producers are typically allowed to submit a lim-
ited number of block bids grouped into exclusive sets. In such exclusive groups, only one block can be
accepted per scenario. The objective accounts for all relevant costs, including production, opportunity,
and startup costs. The proposed formulation ensures computational efficiency, even for large-scale in-
stances, and provides a structured and scenario-driven approach to support informed bidding decisions
under uncertainty.

2.1 Phase 1: Profile generation

Phase 1 of the proposed methodology focuses on generating a set of profile block bids that define
potential operational schedules for the hydropower plant over a given time horizon. To achieve this,
a nonlinear deterministic optimization model is formulated, in which market prices and inflows are
considered as parameters. The objective is to maximize revenue while accounting for key operational
costs, including water usage, opportunity costs, and turbine startup expenses. the model ensures
efficient water resource allocation while respecting hydrological and operational constraints.

Hydropower optimization is inherently nonlinear, as power production depends on water discharge,
reservoir volume, and turbine efficiency. The net water head, which directly influences power gener-



Les Cahiers du GERAD G–2025–29 4

ation, is determined by the forebay and tailrace elevations, as well as penstock losses. Additionally,
turbine efficiency varies across units, meaning that even under similar water discharge and head condi-
tions, different turbines may yield different power outputs. Instead of explicitly modeling each turbine
configuration, the model employs the maximum power output surface, which approximates the nonlin-
ear relationship between water discharge and reservoir volume and power production using polynomial
regression. These power output surfaces, derived from a combination of feasible turbine operations,
provide a computationally efficient way to capture the complexities of turbine efficiency and head
variations. Instead of modeling each turbine individually and considering all possible configurations,
the model utilizes the maximum power output surface, which simplifies the representation of power
generation while maintaining accuracy.

The inclusion of power output surfaces introduces binary variables, leading to a Mixed-Integer Non-
linear Programming (MINLP) formulation. While MINLP models provide precise solutions, they can
be computationally expensive, particularly in large-scale hydropower systems. To improve tractabil-
ity, the model is formulated in a way that ensures total unimodularity in the constraint matrix. As a
result, even when binary variables are relaxed, the problem still yields integer solutions.

In this case, the matrix of the coefficients of the constraints is totally unimodular and therefore
meets these three criterias to be defined so: 1) All submatrices have elements in the set {-1, 0, 1}.
2) Each column has at most two nonzero elements. 3) There exists a partition of rows such that
every column with two nonzero elements satisfies this partition. If these conditions are met, the binary
selection problem can be solved as a continuous nonlinear problem while still yielding integer solutions.
The optimization model aims to maximize total revenue by selecting the most efficient production
profiles while accounting for key operational costs. The objective function Eq (1) maximizes the total
profit, where Pt denotes the market price at time t, and χc

j,t(q
c
t , v

c
t ) represents the power output as a

function of water discharge and reservoir volume. An essential component of the model is the inclusion
of water usage costs or opportunity costs. These costs are modeled using a linear function that depends
on both reservoir volume and water discharge. The intuition behind this is straightforward: when the
reservoir is near full capacity, the opportunity cost of using water is low, as there is little risk of
scarcity. However, as the water level drops, the opportunity cost increases, reflecting the growing
value of conserving water for future use. This dynamic encourages more strategic water allocation,
especially during periods of low storage. In addition, startup costs are included for each production
block. These costs are determined by solving a unit commitment problem, following the methodology
described in [12]. The mathematical formulation of Phase 1 is presented as follows.

max
∑
c∈C

∑
t∈T

∑
j∈J

Pt × χc
j,t(q

c
t , v

c
t )× zcj,t −

∑
c∈C

∑
t∈T

αc
t(q

c
t , v

c
t ) (1)

Subject to: vct+1 =vct − ζ × wt × (qct + gct ) + ζ × δct

+
∑
r∈R

ζ × wt−τr→c × (qrt−τr→c + grt−τr→c), ∀t ∈ T, c ∈ C, (2)∑
j∈J

zcj,t ≤1, ∀t ∈ T, c ∈ C, (3)

vc1 =vcInitial, ∀c ∈ C, (4)

qcmin ≤qct ≤ qcmax, ∀t ∈ T, c ∈ C, (5)

vcmin ≤vct ≤ vcmax, ∀t ∈ T, c ∈ C, (6)

vct ≥0, qct ≥ 0, ∀t ∈ T, c ∈ C, (7)

zcj,t ∈{0, 1}, ∀t ∈ T, j ∈ J, c ∈ C. (8)

Equation (2) defines the water balance for each reservoir in the system. It ensures that the volume
of water stored in reservoir c at time t + 1, denoted by vct+1, is equal to the volume at time t, vct ,
minus the water released for power production and spillage, wt(q

c
t + gct ), plus the natural inflow δct ,

all scaled by the conversion factor ζ, which converts discharge from m3/s to Mm3/h. Additionally,
the equation accounts for water inflow from upstream reservoirs that are hydraulically connected
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to reservoir c. These contributions are modeled with a delay τ r→c, representing the travel time of
water from an upstream reservoir r to reservoir c. This formulation provides a realistic representation
of reservoir interactions, especially in systems where water released from upstream plants does not
immediately reach downstream reservoirs. Equation (3) guarantees that, for each unit c and every time
period t, exactly one production surface is selected from the available set. Equation 4 sets the initial
reservoir volume to a predefined value vc1 = vcInitial, ensuring a known starting condition. Equations 5
and 6 impose operational constraints on water discharge and reservoir volume, restricting them within
their respective minimum and maximum limits to maintain system feasibility. Equation 7 enforces
non-negativity constraints on reservoir volume and water discharge to ensure physically meaningful
solutions. Finally, Equation 8 defines the binary nature of zcj,t.

2.2 Phase 2: Two stage stochastic profile selection optimization

The objective of Phase 2, a two-stage stochastic mixed-integer linear programming model, is to select
the optimal blocks based on new price scenarios from among the block set generated in Phase 1. Thus,
the optimal power production values and associated block costs calculated in Phase 1 are considered as
inputs for Phase 2. Additionally, the scenarios incorporate the uncertainties of day-ahead market prices.
The objective function in Phase 2 includes revenue from each block under different price scenarios,
deducts associated costs—such as opportunity and startup costs—and incorporates a penalty term to
prevent the selection of blocks that do not contribute to improving the objective function value. The
mathematical formulation of the second phase is as follows:

max
∑
b∈B

∑
s∈S

πsRbsxbs −
∑
s∈S

πsCsus − γ

(∑
b∈B

wb − 1

)
(9)∑

b∈B

wb ≤ Nblocks, (10)∑
b∈B

xbs + us = 1, ∀s ∈ S, (11)

xbs ≤ wb, ∀b ∈ B, ∀s ∈ S, (12)

wb ∈ {0, 1}, ∀b ∈ B, (13)

xbs ∈ {0, 1}, ∀b ∈ B, ∀s ∈ S. (14)

Equation (10) ensures that the total number of selected profiles does not exceed the predefined limit
Nblocks, controlling the maximum number of bids submitted to the market. Equation (11) enforces
that for each scenario, exactly one decision is made—either one of the available profiles is selected, or
no profile is chosen, which is indicated by us. This guarantees that the sum of selections per scenario
equals one. Equation (12) ensures that a profile b can only be selected in scenario s if it has already been
included in the bidding set. This maintains logical consistency between the profile selection variable
wb and its scenario-dependent selection xbs. Equation (13) specifies that each profile is either included
in the bidding set or not, ensuring that no partial profile selections occur. Equation (14) enforces a
binary decision on whether a profile is selected in a specific scenario, maintaining the discrete nature
of the problem.

3 Case study

The two-phase model has been evaluated in a case study of a hydropower system in Norway, which
includes multiple reservoirs and power plants. This system consists of six interconnected reservoirs
(Sverjesjoen, Falningsjoen, Innerdalsvannet, Storfossdammen, Granasjoen, and Bjorsetdammen) that
supply water to five hydroelectric power plants: Ulset, Litjfossen, Brattset, Grana, and Svorkmo.
Each plant has specific generation capacities and water discharge constraints. The installed capacity
varies across plants, with Brattset (88 MW), Grana (82.5 MW), and Litjfossen (84 MW) having the
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highest output potential, while Ulset (40 MW) and Svorkmo (57.7 MW) provide additional flexibility.
The reservoirs also differ significantly in volume: Innerdalsvannet (153.4 Mm3), Falningsjoen (125.2
Mm3), and Granasjoen (138.8 Mm3) offer substantial storage capacity, whereas smaller reservoirs such
as Bjorsetdammen (0.02 Mm3) and Storfossdammen (1.69 Mm3) are primarily used for short-term
regulation and discharge routing. The system’s topology incorporates a network of bypass channels
and spillways, which regulate water flow between reservoirs, enhancing operational flexibility and
stability.

Figure 1: System topology

The two-phase model involves solving two optimization problems with different structures. Phase 1
solves a short-term hydropower scheduling problem formulated as a mixed-integer nonlinear program
(MINLP), aiming to generate feasible production profiles that account for water use, opportunity costs,
and startup costs. This problem is solved using the Ipopt solver [15].

Phase 2 uses a two-stage stochastic linear program to select the most profitable subset of blocks
based on multiple day-ahead price scenarios. This model is solved with the CLP solver [16]. To validate
the Phase 1 results, the BONMIN solver [17], which handles nonlinear problems with binary variables,
is also used. The entire implementation is done in Julia [18], and the experiments are conducted on a
system with an Intel Core i5 processor and 8 GB of RAM.

4 Results

Since Phase 1 of the problem is solved deterministically, this section investigates the impact of the
number of candidate blocks generated in Phase 1 on the performance of Phase 2. Specifically, we
analyze how increasing the number of blocks in Phase 1 affects the objective value and the quality of
the solution obtained in Phase 2.
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To evaluate this, 5 representative days were randomly selected from the dataset. For each case, the
stochastic second phase was solved using 30 day-ahead price scenarios. The corresponding results are
summarized in Table 1, which reports both the objective function values and the computation times
for different numbers of blocks.

Phase 1 was executed for various numbers of blocks: 25, 50, 100, 250, 500, 750, 1000, and 1500.
The input parameters for Phase 1 include electricity prices and initial reservoir volumes. Each block
is subject to predefined feasibility criteria, such as a minimum duration of 3 consecutive hours and a
maximum of 24 hours. Any block that does not satisfy these criteria is excluded from the candidate
set. The feasible blocks, along with their associated opportunity and startup costs, are then passed to
Phase 2. In this stage, a two-stage stochastic programming model is used to select the most profitable
combination of blocks to be offered in the day-ahead electricity market. The price scenarios reflect
real market conditions close to the bidding time.

As shown in Table 1, increasing the number of candidate blocks in Phase 1 generally leads to better
objective function values in Phase 2. This indicates that having access to a richer set of block options
improves bidding decisions under uncertainty.

Table 1: Objective function value and computation time (in seconds) for different numbers of candidate blocks.

Number of blocks
Case Measure 25 50 100 250 500 750 1000 1500

Case 1
Time (s) 0.01 0.01 0.01 0.04 0.06 0.12 0.14 0.22

Obj. Value 33479 34082 34608 36475 38521 38529 38540 38548

Case 2
Time (s) 0.01 0.00 0.01 0.02 0.03 0.05 0.14 0.15

Obj. Value 59205.1 60458.5 61632.7 63676.3 65304 65843.9 65871.3 65871.3

Case 3
Time (s) 0.00 0.01 0.01 0.02 0.06 0.11 0.14 0.22

Obj. Value 95381.2 97592 101592 103629 103629 104701 104701 104720

Case 4
Time (s) 0.01 0.01 0.01 0.02 0.04 0.09 0.10 0.11

Obj. Value 13237.7 13237.7 13991.4 14308.8 15003.7 15043.7 15049.3 15079.7

Case 5
Time (s) 0.01 0.01 0.02 0.02 0.02 0.04 0.05 0.09

Obj. Value 18178.3 18329.1 18784 19525.3 20468 20597.8 20617.7 20629

Figure 2 visualizes the normalized performance of Phase 2 based on the objective values presented
in Table 1. The x-axis represents the number of candidate blocks used in Phase 1, while the y-axis
shows the corresponding objective value expressed as a percentage of the maximum value (i.e., the
value obtained with 1500 blocks, set to 100%).

These percentages were calculated by dividing the objective function value for each block size by
the maximum value observed across all tested sizes, and then multiplying by 100. Formally, for a given
number of blocks n, the normalized value is computed as:

Percentagen =

(
Objn
Objmax

)
× 100 (15)

where Objn is the objective function value for n blocks, and Objmax is the maximum value obtained
(in this case, with 1500 blocks). As shown in the Figure 2, increasing the number of candidate blocks
leads to improvements in the objective function value. However, beyond 500 blocks, the improvements
occur at a slower rate, indicating that the marginal benefit of adding more blocks diminishes.

Although the solution time increases slightly with the number of candidate blocks, Phase 2 remains
computationally efficient. Even with up to 1500 blocks and 30 price scenarios, the problem can be
solved in less than a second, which demonstrates the scalability of the proposed method.

Figure 3 illustrates the average solution time across five representative cases for different numbers of
candidate blocks. As shown in the figure, the computational time grows gradually as more candidate
blocks are introduced, but remains consistently low—well below one second—even for the largest
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problem sizes considered. This further confirms that the relaxation of binary variables, supported by
the total unimodularity of the constraint matrices, enables fast and scalable optimization in the second
phase.

Figure 2: Normalized objective function value for different numbers of candidate blocks.

Figure 3: R2: Average solution time (S) for different numbers of candidate blocks.

5 Model evaluation

To evaluate the proposed two-phase model, we compare it with a model introduced in [19], which
formulates the day-ahead hourly bidding problem as a two-stage stochastic mixed-integer nonlinear
programming model. In this reference framework, first-stage decisions determine the bid volumes, while
second-stage decisions reflect the actual hourly dispatch under different price scenarios. In the hourly
bidding model, the imbalance between committed and realized volumes is explicitly considered, with
corresponding rewards and penalties determined based on participation in the balancing market. For
comparison, all input parameters such as initial reservoir volumes, inflows, and operational constraints
are considered identical in both models. Given that the hourly bidding model requires separate offers
for each hour of the day, each block generated in our proposed approach is also designed to span a
full 24-hour period. Moreover, the water usage cost has been added to the objective function of the
hourly bidding model. The hourly bidding model also follows market rules, requiring offer curves to
be non-decreasing with respect to price levels. Likewise, committed volumes are determined based on
market-clearing prices using linear interpolation. Additionally, the same set of price scenarios used
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in the second phase of the block bidding model is applied to the hourly model to ensure that both
methods are evaluated under identical market uncertainty.

After the market is cleared, the profit from each submitted block and the profit from the hourly bid-
ding model are calculated for comparison purposes. In the profiled block bidding model, since at most
one block can be accepted, the selected block will be the one with the highest offered price that does
not exceed the market price. This ensures compatibility with market rules. Given that the hourly bid-
ding model is a two-stage stochastic mixed-integer nonlinear program and that the case study involves
five hydropower plants and six reservoirs, solving the model under a large number of scenarios presents
computational challenges. Therefore, to enable a meaningful and tractable comparison between the
two models, five representative price scenarios are considered. Due to the complexity of the hourly
bidding formulation, startup costs could not be incorporated in that model; hence, for consistency,
startup costs were also excluded from the block bidding model in this part of the evaluation.

The comparison results are summarized in Table 2, which includes multiple test cases evaluated
with varying inputs and price scenarios on different days.

Table 2: Comparison of hourly bidding and selected block profit.

Case Number of Blocks Number of Scenarios Hourly Bidding Profit Selected Block Profit

Case 1 750 5 70,369 69,327
Case 2 750 5 144 ,060 147,883
Case 3 750 5 89 ,783 89,594
Case 4 750 5 54 ,069 55,380
Case 5 750 5 71 ,586 71,890

As shown in Table 2, the proposed method provides better results or results that are very close
compared to the hourly bidding model. Block bids are particularly valuable for hydropower producers
because they allow for offering energy over multiple consecutive hours with operationally feasible
patterns. This is beneficial in systems with reservoir dependencies, startup costs, or limited flexibility.
Moreover, block bids contribute to more stable production schedules and better alignment with market
prices under uncertainty. The model presented in this paper benefits from relaxing the binary variables
in both phases, resulting in very short solution times. Therefore, it can be highly efficient and can be
applied to complex and large-scale problems.

6 Conclusion

This paper presented a two-phase optimization framework for hydropower producers participating
in the day-ahead electricity market using profile block bids organized in exclusive groups. The first
phase generates a diverse set of feasible production blocks through a deterministic MINLP model
that incorporates operational constraints, startup costs, and opportunity costs. The second phase
employs a two-stage stochastic program to select the most profitable combination of these blocks
based on a set of market price scenarios, while respecting market design rules such as exclusivity
within block groups. Computational results confirmed the model’s effectiveness in producing high-
quality bidding strategies with relatively low solution times. Additionally, a comparison with an
hourly bidding strategy showed that the proposed method can achieve similar or improved profits while
significantly reducing complexity. For future work, the opportunity cost formulation could be refined
by incorporating more detailed seasonal patterns and inflow variability, allowing for a more accurate
representation of water value dynamics over time. Additionally, while the current experiments were
limited to five price scenarios due to the computational burden of the MINLP, evaluating the framework
using a broader set of scenarios and a wider range of test cases would strengthen the robustness of the
results. A possible extension would be to develop a model that integrates both hourly and profiled
block bids for the day-ahead market, providing producers with a unified strategy to participate more
effectively in electricity markets. Finally, further evaluation of the model under different system
conditions—including reservoir connectivity, inflow uncertainty, and price volatility—would provide
deeper insights into the practical benefits and limitations of profile-based bidding strategies.
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