
Les Cahiers du GERAD ISSN: 0711–2440

Accelerating Benders decomposition for the p-median
problem through variable aggregation

R. S. H. Willemsen, D. Aloise, R. Jans

G–2025–27

April 2025

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : R. S. H. Willemsen, D. Aloise, R. Jans (Avril
2025). Accelerating Benders decomposition for the p-median
problem through variable aggregation, Rapport technique, Les
Cahiers du GERAD G– 2025–27, GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2025-27) afin de mettre à
jour vos données de référence, s’il a été publié dans une revue sci-
entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: R. S. H. Willemsen, D. Aloise, R. Jans (April
2025). Accelerating Benders decomposition for the p-median
problem through variable aggregation, Technical report, Les Cahiers
du GERAD G–2025–27, GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2025-27) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec à Montréal, ainsi que du Fonds de
recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2025
– Bibliothèque et Archives Canada, 2025

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds de
recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2025
– Library and Archives Canada, 2025

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2025-27
https://www.gerad.ca/en/papers/G-2025-27
https://www.gerad.ca/en/papers/G-2025-27


Accelerating Benders decomposition for the p-median
problem through variable aggregation

Rick S. H. Willemsen a

Daniel Aloise b, d

Raf Jans c, d

a Econometric Institute, Erasmus University, 3062
PA Rotterdam, The Netherlands

b Department of Computer Engineering, Poly-
technique Montréal, Montréal, (Qc), Canada,
H3T 1J4

c Department of Logistics and Operations Manage-
ment, HEC Montréal, Montréal (Qc), Canada,
H3T 2A7

d GERAD, Montréal (Qc), Canada, H3T 1J4

daniel.aloise@gerad.ca

raf.jans@hec.ca

April 2025
Les Cahiers du GERAD
G–2025–27
Copyright © 2025 Willemsen, Aloise, Jans

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:

• Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



Les Cahiers du GERAD G–2025–27 ii

Abstract : The p-median problem is a classical location problem where the goal is to select p facilities
while minimizing the sum of distances from each location to its nearest facility. Recent advancements in
solving the p-median and related problems have successfully leveraged Benders decomposition methods.
The current bottleneck is the large number of variables and Benders cuts that are needed. We consider
variable aggregation to reduce the size of these models. We propose to partially aggregate the variables
in the model based on a start solution; aggregation occurs only when the corresponding locations are
assigned to the same facility in the initial solution. In addition, we propose a set of valid inequalities
tailored to these aggregated variables. Our computational experiments indicate that our model, post-
initialization, provides a stronger lower bound, thereby accelerating the resolution of the root node.
Furthermore, this approach seems to positively impact the branching procedure, leading to an overall
faster Benders decomposition method.

Acknowledgements: The authors would like to thank dr. Chandra Irawan for providing the BIRCH
instances.



Les Cahiers du GERAD G–2025–27 1

1 Introduction

The p-median problem is one of the fundamental problems in location science (Laporte et al., 2019),

where the aim is to select p facilities while minimizing the sum of distances from each location to its

nearest facility. The p-median problem was introduced by Hakimi (1964) and is known to be NP-hard

(Kariv and Hakimi, 1979). It has numerous practical applications (Rahmaniani et al., 2017; Laporte

et al., 2019). Particularly, in the data mining and machine learning literature, the problem is referred

to as the k-medoids problem (see e.g. Pinheiro et al. (2020)).

Benders decomposition is one of the most well-known solution methods to solve difficult combi-

natorial problems (Benders, 1962). Benders decomposition formulations for the p-median problem

date back to Cornuejols et al. (1980) and Magnanti and Wong (1981). Benders decomposition has

shown to be successful on a multitude of location problems (Fischetti et al., 2016b,a; Cordeau et al.,

2019; Coniglio et al., 2022; Gaar and Sinnl, 2022; Ramı́rez-Pico et al., 2023; Ljubić et al., 2024). In

particular, Duran-Mateluna et al. (2023) use a Benders decomposition method to solve the p-median

problem for instances up to 238, 000 locations.

The goal in the p-median problem is to cover N locations by opening p out of M possible facilities,

while minimizing the sum of distances from each location to its nearest facility. To simplify notation

and without loss of generality, we assume that N = M . Let dij denote the distance from location i

to a facility j and let Ni ≤ N be the number of unique distances from i to any facility; the sorted

distances are denoted by D0
i ≤ D1

i ≤ D2
i ≤ · · · ≤ DNi

i , where D0
i = −∞ is the distance to an artificial

facility. The binary variable yj is equal to 1 if facility j is selected, and 0 otherwise. The continuous

variable θi represents the distance from location i to the closest selected facility. Let [N ] be the set

{1, 2, . . . , N} and [0, N ] be the set {0, 1, . . . , N}. A compact Benders reformulation (Duran-Mateluna

et al., 2023) can be written as

min

N∑
i=1

θi, (1)

s.t.

N∑
j=1

yj = p, (2)

θi ≥ Dni+1
i −

∑
j:dij≤D

ni
i

(Dni+1
i − dij)yj , i ∈ [N ], ni ∈ [0, Ni − 1], (3)

yj ∈ {0, 1}, j ∈ [N ]. (4)

In (1) we minimize the sum of the distances from location i to the nearest facility. Exactly p facilities

are selected due to (2), while the so-called Benders cuts are given in (3). In a Benders decomposition

approach the method starts with a subset of Benders cuts. Afterwards, violated Benders cuts are

identified and added to the model until no more violations can be identified.

The current bottleneck of a Benders decomposition approach for the p-median problem is that the

mathematical model becomes too large, since the number of variables and Benders cuts is proportional

to the number of locations N . In the worst case, N Benders cuts are added in every iteration of the

Benders decomposition. Instead of solving the disaggregated model, one potential solution is to define

an aggregate variable θ̄ =
∑N

i=1 θi and aggregated Benders cuts

θ̄ ≥
N∑
i=1

[Dni+1
i −

∑
j:dij≤D

ni
i

(Dni+1
i − dij)yj ], ∀(n1, n2, . . . , nN ) : l ∈ [N ], nl ∈ [0, Nl − 1],

which leads to a so-called fully aggregated mathematical formulation.

A fully aggregated Benders formulation has been investigated in location problems. For instance,

by Fischetti et al. (2016b) and Ljubić et al. (2024), for the uncapacitated facility location problem and



Les Cahiers du GERAD G–2025–27 2

the discrete ordered median problem, respectively. They present both disaggregated (multicut) and

fully aggregated (single cut) formulations that are solved using Benders decomposition. An aggregated

model may be preferred since the reduced formulation can be solved faster. However, such a model

tends to converge more slowly, as the aggregate constraints are less restrictive. For several related

location problems, effective aggregation strategies have been developed by leveraging problem-specific

structures. For the uncapacitated hub location problem, Contreras et al. (2011) design cuts tailored

to the structure involving hubs. Ramı́rez-Pico et al. (2023) examined the so-called adaptive Benders

cuts for two-stage stochastic programming. Their approach starts with a limited set of scenarios,

where each Benders cut corresponds to one scenario. These cuts are then dynamically disaggregated,

generating additional scenarios (and more Benders cuts).

In this paper, we propose a partially aggregated Benders decomposition method for the p-median

problem, meaning that some locations may be aggregated. We propose three key steps. First, during

initialization, we partially aggregate locations based on a start solution, such that location that are

likely to be assigned to the same facility are in the same aggregate variable and aggregate cut. Second,

to accelerate the Benders decomposition, we propose a set of valid inequalities to strengthen the

formulation in initial iterations. Third, if branching is required to obtain an integer solution, we

introduce aggregated binary decision variables to branch on.

Our contribution can be summarized as follows. First, we propose a partially aggregated Ben-

ders decomposition framework for the p-median problem, which contains both disaggregate and fully

aggregated Benders decomposition as special cases. Second, we show how to adjust the state-of-the-

art Benders decomposition method in order to solve the partially aggregated Benders decomposition.

Last, we demonstrate the effectiveness of our method on both benchmark instances and newly intro-

duced instances. In particular, our model, post-initialization, has a stronger lower bound compared to

the disaggregate formulation, enabling faster resolution of the root node. Additionally, our proposed

solution approach seems to positively impact the performance during the branch-and-cut phase.

The remainder of this paper is organized as follows. Related work is discussed in Section 2. In

Section 3 we present a disaggregated Benders decomposition and a framework for the aggreggated

variant. Section 4 outlines our solution approach for the aggregated Benders decomposition. Our

computational experiments are presented in Section 5. Finally, conclusions are drawn in Section 6.

2 Related work

Several mixed-integer programming formulations have been developed to model the p-median problem

(ReVelle and Swain, 1970; Cornuejols et al., 1980; Magnanti and Wong, 1981; Elloumi, 2010) and

connections between these formulations are still being investigated (Duran-Mateluna et al., 2023; Agra

and Requejo, 2024). Numerous methods have been proposed to solve these p-median formulations to

optimality. Senne et al. (2005) introduced a branch-and-price algorithm that incorporates stabilized

column generation and Lagrangian relaxation, enabling them to solve instances up to 900 locations.

Avella et al. (2007) propose a branch-and-cut-and-price algorithm with delayed column and row gener-

ation, allowing for the resolution of instances with nearly 3800 locations. Garćıa et al. (2011) consider a

column generation approach that is embedded in a branch-and-bound framework, successfully solving

instances up to 85, 900 locations and p = 70, 000 facilities. Ren et al. (2022) implement a (parallel)

branch-and-bound method integrated with Langrangian relaxation, achieving a 0.1% optimality gap

for instances with up to 100, 000 locations on a single core and instances with up to 1 million locations

when using 6000 cores.

Due to the large number of locations and facilities, heuristics have been designed to aggregate

locations, such that optimization models remain applicable (Irawan and Salhi, 2015a). The p-median

problem can be partitioned into smaller subproblems that can be solved within a reasonable amount

of time. However, this results in a loss of information, as the model no longer utilizes the original

location data. The difference between the optimal objective value and the one obtained using an



Les Cahiers du GERAD G–2025–27 3

aggregation heuristic is known as the aggregation error. Hillsman and Rhoda (1978) formally defined

the aggregation error for the p-median (and related) problems. Current and Schilling (1987) were

the first to study the elimination of aggregation errors, while Goodchild (1979) demonstrated that

aggregation errors have a large impact on the results, potentially leading to inaccurate objective

values. For Euclidean p-median problems in the plane, smaller error bounds have been proven (Qi

and Shen, 2010). Aggregation techniques have been used to enhance heuristics for solving large scale

p-median problems, e.g., Avella et al. (2012), Irawan et al. (2014), Irawan and Salhi (2015b) and Salhi

and Irawan (2015). Although aggregation is typically done at the location level, it can also be applied

at the facility level (Avella et al., 2012). Further details can be found in Irawan and Salhi (2015a).

In this paper, we show how to apply aggregation in the current state-of-the-art Benders decompo-

sition method from Duran-Mateluna et al. (2023), without any aggregation error.

3 Benders decomposition framework

In this section, we present a disaggregated Benders decomposition formulation, which is used by the

current state-of-the art Benders decomposition method to solve the p-median problem. Afterwards,

we introduce an aggregated Benders decomposition framework, which contains as special cases the

disaggregated and fully aggregated Benders decomposition.

3.1 Disaggregated Benders decomposition

Due to the large number of Benders cuts of the form (3), Duran-Mateluna et al. (2023) propose to

solve (1)–(4) using Benders decomposition. The main idea of Benders decomposition is to iteratively

solve a restricted master problem (RMP) on a subset of Benders cuts of the form (3), denoted by Bi

for each location i. A solution to the RMP may violate a Benders cut not yet in Bi. In this case, we

apply a separation algorithm to identify violated Benders cuts, which are subsequently added to the

RMP. This iterative process continues until a feasible, possibly fractional, solution is obtained. We

apply branch-and-Benders cut (Rahmaniani et al., 2017) to obtain an optimal solution, so we keep

track of one set of cuts throughout the branching tree. The RMP can be formulated as

min

N∑
i=1

θi, (5)

s.t.

N∑
j=1

yj = p, (6)

θi satisfies Bi, i ∈ [N ], (7)

yj ≥ 0, j ∈ [N ], (8)

Note that (5) and (6) are equal to (1) and (2), respectively. The integrality constraints on yi are

relaxed in (8).

Let (y,θ) be a feasible, possibly fractional, solution to the RMP. We must verify whether there

exists Benders cuts that are not yet in the RMP and violate the given solution. For a fixed solution, we

can consider a separation problem for each location in [N ]. For an efficient implementation to identify

violated Benders cuts we refer to Algorithm 1 in Duran-Mateluna et al. (2023), which runs in O(N)

for each location in [N ].

3.2 Aggregated Benders decomposition

In this section we present a (partially) aggregated Benders decomposition framework. A priori we

define which distance variables θi are aggregated. Let P = {Q1, . . . , QR} be a partition of the set of



Les Cahiers du GERAD G–2025–27 4

locations into R disjoint subsets, satisfying Q = ∪r=1,...,RQr = [N ] and Qr∩Qs = ∅,∀r ̸= s. We denote

the aggregated variables by θ̄Qr , such that θ̄Qr =
∑

i∈Qr
θi. When R = N we obtain the disaggregated

Benders decomposition, whereas setting R = 1 leads to a fully aggregated Benders decomposition. For

each set Qr we define aggregated Benders cuts

θ̄Qr
≥

∑
i∈Qr

[Dni+1
i −

∑
j:dij≤D

ni
i

(Dni+1
i − dij)yj ], ∀(n1, n2, . . . , nN ) : l ∈ Qr, nl ∈ [0, Nl − 1]. (9)

This leads to the following Aggregated Restricted Master Problem (ARMP)

min

R∑
r=1

θ̄Qr , (10)

s.t.

N∑
i=1

yi = p, (11)

θ̄Qr satisfies B̄r, r ∈ [R], (12)

yi ≥ 0, i ∈ [N ]. (13)

In (10) we minimize the aggregated distance variables. As before, (11) ensures that we select exactly

p facilities, while (12) enforces the feasibility of the current set of aggregated Benders cuts (B̄r) for

each set Qr.

4 Aggregated Benders decomposition for Euclidean distances

In the remainder of this paper we assume that the locations lie in a k-dimensional Euclidean space. To

solve the aggregated Benders decomposition we propose to add three additional steps to the existing

disaggregated Benders decomposition from Duran-Mateluna et al. (2023). First, based on a start

solution we partially aggregate the distance variables. Second, we introduce a set of valid inequalities

for the aggregate distance variables in order to strengthen the lower bound in the initial iterations of

the Benders decomposition. Third, we add aggregate binary variables before starting the branching

procedure.

4.1 Constructing a partition

Suppose we have a feasible start solution, represented by a partition P = {Q1, . . . , Qp}. Each set Qr

contains one selected facility mr ∈ Qr. We define the set of locations outside Qr as Qo
r = Q\Qr, which

we refer to as outside locations. The distance between a location i and a set of locations Q is defined

as d(i, Q) = minj∈Q dij . The shortest distance from Qo
r to the selected facility mr is ρr = d(mr, Q

o
r),

which we call the radius of set Qr. Based on the radius, we split each Qr into a group of central

locations Qc
r and remaining locations Qe

r, which are defined below.

Definition 4.1 (Central locations). Given a set Qr and a radius ρr the central locations are in the

set Qc
r = {i ∈ Qr : dimr

< 1
3ρr}.

Definition 4.2 (Remaining locations). The remaining locations are given by the set Qe
r = Qr \Qc

r.

The concepts of central and remaining locations are visualized in Figure 1. In this figure, the

yellow locations represent set Qr, where we assume that mr = 1 is the selected facility. The locations

in Qr are partitioned into a set of central locations Qc
r and a set of remaining locations Qe

r, based on

radius ρr. The radius ρr is calculated as the shortest distance from the selected facility mr = 1 to the

nearest location outside the cluster, which is in this case a location in Qr′ (represented by blue dots).



Les Cahiers du GERAD G–2025–27 5

5

2
8

31

7

4

6

Figure 1: An example of a set Qr = {1, 2, 3, 4, 5} (corresponding to yellow dots) which is divided into two groups
Qc

r = {1, 2} and Qe
r = {3, 4, 5} based on a radius ρr, determined by the distance from mr = 1 to the closest location

from another cluster Qr′ = {6, 7, 8} (corresponding to blue dots).

For each set Qr we have one aggregated variable θ̄Qc
r
corresponding to set Qc

r and several non-

aggregated variables θi for each location i ∈ Qe
r. Thus, when constructing the ARMP in (10)–(13),

the model contains both aggregated and disaggregated Benders cuts.

The motivation behind the division into two groups Qc
r and Qe

r is as follows. Consider a good initial

solution with mr as the selected facility and suppose that in an optimal solution, mr is not selected

as facility. If another location from the set Qc
r is selected as a facility, we can construct (strong) lower

bounds for the partial objective θ̄Qc
r
. Similarly, when a location from the set Qe

r or Qo
r is selected

as facility we derive (weaker) lower bounds on θ̄Qc
r
. These bounds can be added to the formulation

through valid inequalities.

4.2 Valid inequalities

The main idea of the valid inequalities is to impose, for each r ∈ [R], a lower bound on the (partial)

objectives θ̄Qc
r
and θs,∀s ∈ Qe

r. We propose three types of valid inequalities, which are added for each

set Qr.

4.2.1 Valid inequalities 1

We introduce three types of constants. First, for each central location q ∈ Qc
r let us define

δcrq =
∑
i∈Qc

r

diq,

i.e., δcrq is the 1-median objective for the central locations i ∈ Qc
r when q ∈ Qc

r is selected as the unique

facility in Qr. Second, for each remaining location q ∈ Qe
r, we define

δerq =
∑
i∈Qc

r

min{diq, d(i, Qo
r)}

The term δerq is a lower bound on the partial objective for the central locations i ∈ Qc
r when q ∈ Qe

r is

selected as the unique facility in Qr. Since outside locations in set Qo
r may also be selected as a facility

we take the minimum between distance diq and the distance from i to its nearest outside location,



Les Cahiers du GERAD G–2025–27 6

represented by d(i, Qo
r). Third, let D

c
r be the sum of distances from each location i ∈ Qc

r to its closest

outside location, i.e.

Dc
r =

∑
i∈Qc

r

d(i, Qo
r).

Consider the following valid inequality

θ̄Qc
r
≥ Dc

r −
∑
q∈Qc

r

(Dc
r − δcrq)yq −

∑
q∈Qe

r

(Dc
r − δerq)yq. (14)

The valid inequality has a similar interpretation to a disaggregated Benders cut (3). When exactly

one facility q is selected, the terms Dc
r cancel out and the remaining terms δcrq and δerq represent a

lower bound on the partial objective θ̄Qc
r
. When no facility is selected in Qr, a lower bound of Dc

r

remains. By construction it holds that Dc
r ≥ δcrq and Dc

r ≥ δerq. For some locations q ∈ Qe
r it holds

that Dc
r = δerq, meaning that selecting these locations as facility does not change the lower bound in

the valid inequality.

In Lemma 4.3 we prove that when exactly one location q ∈ Qr is selected as facility and this

location belongs to the central locations Qc
r, then the bound is tight: θ̄Qc

r
= δcrq.

Lemma 4.3. Assume without loss of generality that yq = 1 for some q ∈ Qc
r. If

∑
i∈Qc

r
yi =

∑
i∈Qr

yi =

yq = 1, then θ̄Qc
r
is equal to δcrq.

Proof. The distance dij between any two central locations i, j ∈ Qc
r is at most 2

3ρr. Similarly, the

distance dij from a central location i ∈ Qc
r to an outside location j ∈ Qo

r is at least 2
3ρr. Since

yq = 1 and no other location is selected, it must hold that all locations in Qc
r are assigned to the same

facility q. Thus, given that q is selected as facility in an optimal solution the partial objective θ̄Qc
r
is

equal to δcrq, which is the 1-median objective of set Qc
r with q as facility.

In the next theorem, we prove the validity of (14).

Theorem 4.4. Given a feasible solution (θ,y), where the elements of vector y are integral, the valid

inequalities (14) are correct.

Proof.

We convert the solution vector y to a matrix X, where xiq takes the value 1 when location i is

assigned to q and 0 otherwise. Note that yq ≥ xiq. If q is selected as facility, yq = 1, this does not

always imply that i is assigned to q. Conversely, yq = 0 implies that xiq = 0 for all locations i.

We aim to prove the correctness of valid inequality (14), which is rewritten as

θ̄Qc
r
+

∑
q∈Qc

r

(Dc
r − δcrq)yq +

∑
q∈Qe

r

(Dc
r − δerq)yq −Dc

r ≥ 0. (15)

The realized partial objective can be expressed in terms of xiq variables as

θ̄Qc
r
=

∑
q∈(Qc

r∪Qe
r∪Qo

r)

∑
i∈Qc

r

diqxiq,

≥
∑
q∈Qo

r

∑
i∈Qc

r

d(i, Qo
r)xiq +

∑
q∈(Qc

r∪Qe
r)

∑
i∈Qc

r

diqxiq

Using the definitions of Dc
r and δcrq we bound the first summation in the left-hand side of (15) as∑

q∈Qc
r

(Dc
r − δcrq)yq,



Les Cahiers du GERAD G–2025–27 7

=
∑
q∈Qc

r

(
∑
i∈Qc

r

d(i, Qo
r)−

∑
i∈Qc

r

diq)yq,

=
∑
q∈Qc

r

∑
i∈Qc

r

(d(i, Qo
r)− diq)yq,

≥
∑
q∈Qc

r

∑
i∈Qc

r

(d(i, Qo
r)− diq)xiq,

where the inequality holds because yq ≥ xiq. Similarly, the second summation in the left-hand side

of (15) can be bounded as well∑
q∈Qe

r

(Dc
r − δerq)yq,

=
∑
q∈Qe

r

[
∑
i∈Qc

r

d(i, Qo
r)−

∑
i∈Qc

r

min{diq, d(i, Qo
r)}]yq,

=
∑
q∈Qe

r

∑
i∈Qc

r

[d(i, Qo
r)−min{diq, d(i, Qo

r)}]yq,

≥
∑
q∈Qe

r

∑
i∈Qc

r

[d(i, Qo
r)−min{diq, d(i, Qo

r)}]xiq,

≥
∑
q∈Qe

r

∑
i∈Qc

r

[d(i, Qo
r)− diq]xiq.

The first inequality holds because yq ≥ xiq. When leaving out the minimization we obtain the second

inequality.

Using the results above, the left hand side of (15) can be written as

θ̄Qc
r
+

∑
q∈Qc

r

(Dc
r − δcrq)yq +

∑
q∈Qe

r

(Dc
r − δerq)yq −Dc

r

≥
∑

q∈Qo
r

∑
i∈Qc

r

d(i, Qo
r)xiq +

∑
q∈(Qc

r∪Qe
r)

∑
i∈Qc

r

diqxiq +
∑

q∈Qc
r

∑
i∈Qc

r

[d(i, Qo
r)− diq ]xiq +

∑
q∈Qe

r

∑
i∈Qc

r

[d(i, Qo
r)− diq ]xiq −Dc

r

=
∑

q∈Qo
r

∑
i∈Qc

r

d(i, Qo
r)xiq +

∑
q∈Qc

r

∑
i∈Qc

r

d(i, Qo
r)xiq +

∑
q∈Qe

r

∑
i∈Qc

r

d(i, Qo
r)xiq −Dc

r

=
∑
i∈Qc

r

∑
q∈(Qc

r∪Qe
r∪Qo

r)

d(i, Qo
r)xiq −Dc

r

=
∑
i∈Qc

r

d(i, Qo
r)[

∑
q∈(Qc

r∪Qe
r∪Qo

r)

xiq ]−Dc
r

= Dc
r −Dc

r

= 0

To conclude, valid inequality (14) is correct.

4.2.2 Valid inequalities 2

We add valid inequalities for the disaggregated distance variables corresponding to each location s ∈
Qe

r. Let D0
s be equal to the distance from s to its closest central location q ∈ Qc

r, i.e., D
0
s = d(s,Qc

r).

In addition, we can calculate D1
s as follows

D1
s = min

q∈Q:dsq>D0
s

dsq.

This leads to the second valid inequality

θs ≥ D1
s −

∑
q∈Q:dsq≤D0

s

(D1
s − dsq)yq, ∀s ∈ Qe

r, (16)

which is a Benders cut up to distance D0
s .



Les Cahiers du GERAD G–2025–27 8

4.2.3 Valid inequalities 3

We add the following two types of valid inequalities

θ̄Qc
r
≥

∑
q∈Qc

r

d(q,Q \ {q})(1− yq), (17)

θs ≥ d(s,Q \ {s})(1− ys), ∀s ∈ Qe
r. (18)

Valid inequality (17) states that when yq is not selected as a facility, the partial objective θ̄Qc
r
must at

least include the distance from q to its nearest neighbor. Similarly, (18) enforces that when ys is not

selected, the distance θs must be at least equal to the distance from s to its nearest neighbor.

4.3 Solution approach

We solve the ARMP using a similar approach to Duran-Mateluna et al. (2023), where we make use of

their separation algorithm to identify violated Benders cuts. They propose to solve the root node using

Algorithm 1. A start solution, represented by the vector yh, is fixed and the separation algorithm is

executed in order to generate initial Benders cuts. The LP relaxation and the separation algorithm

are iteratively run until no more violated Benders cuts are found. Note that in each iteration the lower

bound is updated and an upper bound can be obtained by using a simple rounding heuristic.

Algorithm 1 Solving the root node.

Input: Start solution yh

Output: Best lower and upper bound LB∗ and UB∗

1: Run the separation algorithm with yh

2: while a violated cut has been identified do
3: Add the violated cuts to the ARMP
4: Solve the ARMP to obtain a solution y and a lower bound LB
5: Run the separation algorithm with y
6: Update LB∗ ← LB
7: Calculate UB using a rounding heuristic on y
8: Update UB∗ = min{UB∗, UB}
9: end while

Our proposed solution approach is summarized in Algorithm 2. Based on a start solution, rep-

resented by a partition P , we partially aggregate the distance variables θ and add a set of valid

inequalities (14), (16)–(18), to strengthen the formulation. The root node is solved as described in

Algorithm 1. When a fractional solution is obtained, we perform two improvement procedures outlined

by Duran-Mateluna et al. (2023) to decrease the size of the model, namely constraint reduction and

reduced cost fixing. Also, we add integrality constraints to the y variables. While we keep the original

yi variables, we also add aggregate integer ȳQc
r
variables, for the central locations in a set Qc

r ⊆ Qr.

When the start solution is close to an optimal solution, it is likely that exactly one yi variable is

selected in the set Qc
r. We expect that the inclusion of the aggregate variables ȳQc

r
helps the branching

process. In summary, we propose Algorithm 2, which incorporates steps 1, 2 and 7 into a disaggregated

Benders decomposition approach for the p-median problem.



Les Cahiers du GERAD G–2025–27 9

Algorithm 2 Aggregated Benders decomposition.

Inputs:

Sorted distances D0
i ≤ D1

i ≤ D2
i ≤ · · · ≤ D

Ni
i

A start solution, represented by P = {Q1, . . . , Qp}
1: Partially aggregate the distance variables θ based on P (see Section 4.1)
2: Add valid inequalities (14), (16)–(18) based on P (see Section 4.2)
3: Solve the root node using Benders decomposition (see Algorithm 1)
4: Stop if the solution is integral
5: Perform the improvement procedure of Duran-Mateluna et al. (2023)
6: Add integrality constraints to the y variables in (13)
7: Partially aggregate the decision variables ȳQc

r
:=

∑
q∈Qc

r
yq ∈ N,∀r ∈ [p]

8: Apply branch-and-cut

4.4 Solving Benders decomposition with kd-tree

The separation algorithm requires the indices corresponding to the sorted distances, D0
i ≤ D1

i ≤ D2
i ≤

· · · ≤ DNi
i . Duran-Mateluna et al. (2023) store these indices in a matrix S with a space complexity

of O(N2). In practice storing the entire S may be unnecessary, as only the first Ki indices from S

are typically utilized for each location i. To improve memory efficiency, we propose to store the N

locations in a tree-based data structure to dynamically compute the required indices. Tree-based

structures have been successfully applied to heuristic methods for Euclidean location problems (Salhi

and Irawan, 2015). We utilize a kd-tree, which is a binary search tree with a space complexity of

O(N). A kd-tree enables efficient retrieval of the nearest location in O(logN) time. Additionally, it

can be augmented with an efficient K-nearest neighbors algorithm.

In our approach, we dynamically identify the relevant indices during the separation algorithm.

Specifically, for location i, we use a kd-tree to find its Ki-nearest neighbors. The process terminates

when the separation algorithm can be solved with these Ki indices, otherwise we increase Ki (see

Appendix A.3 for implementation details) and reattempt to solve the separation algorithm.

5 Computational results

In this section we present a computation study on several types of instances. First, we outline the

instance types and parameters settings that are used. Next, we compare the disaggregated Benders

decomposition with our aggregated one on a wide range of instances. We then investigate the impact

of varying the quality of the start solution and assess the contribution of each proposed step and valid

inequality in the aggregated Benders decomposition. Last, we show that using a kd-tree data structure

can improve the performance of both the disaggregated and aggregated Benders decomposition.

5.1 Experimental setup

5.1.1 Overview of the instances

We evaluate our methods on the same Euclidean instances as Duran-Mateluna et al. (2023), namely

TSP instances (Reinelt, 1991; Beasley, 1990) and BIRCH instances. We follow the notation of Duran-

Mateluna et al. (2023) to categorize TSP instances as ‘medium’ and ‘huge’. Additionally, we introduce

three new sets of instances. First, we consider a set of huge TSP instances with low values of p, named

TSP-huge-low-p. Second, we introduce a new category of even larger TSP instances, called TSP∗.

To the best of our knowledge, it is the first time in the literature that p-median instances of such

magnitude are considered using an exact solver without massive parallelization. Third, we include a

new set of CIRCLE instances, generated following the procedure described by Irawan et al. (2014).

The instance categories that we consider are detailed in Table 1. For all instances, the locations are

given by two-dimensional coordinates in Euclidean space.



Les Cahiers du GERAD G–2025–27 10

The CIRCLE instances, introduced by Irawan et al. (2014), are constructed to ensure well-separated

clusters, enabling a geometric argument to provide a proof of optimality for these p-median instances.

These instances represent an ideal scenario for our algorithm, as the valid inequalities (14), (16)–(18)

also provide bounds. If these valid inequalities are sufficiently strong, we expect our algorithm to

identify an optimal solution within a few Benders iterations.

For the TSP instances, the distance between locations is calculated as the Euclidean distance

rounded down to the nearest integer as done in Garćıa et al. (2011) and Duran-Mateluna et al. (2023).

The maximum rounding error between the actual and rounded distance is given by ϵrounding ≥ |dtrue−
drounded|. We modify Definition 4.1 such that locations q ∈ Qr satisfying d(q,mr) <

1
3ρr − ϵrounding

belong to Qc
r. Since distances are rounded down to the nearest integer, the maximum rounding error

is ϵrounding = 1. For the BIRCH and CIRCLE instances we set ϵrounding = 10−6.

Table 1: Overview of the instances, including the number of observations (N), number of facilities (p), the rounding error
(ϵrounding) and whether the instances are considered for the first time in the literature.

instance category N p ϵrounding new instances

min max min max

TSP-medium 2103 5934 10 500 1
TSP-huge 71009 238025 10000 200000 1
TSP-huge-low-p 71009 238025 5 100 1 yes
TSP∗ 498378 744710 350000 700000 1 yes
BIRCH 25000 89600 25 64 10−6

CIRCLE 20000 80000 10 40000 10−6 yes

5.1.2 Technical specifications

The experiments are carried out on an AMD Rome 7H12 processor 3.2 GHz with 1 TB RAM, although

we limit the memory to 120 or 500 GB depending on the instance size. The MIP problems are solved

using the commercial solver CPLEX 20.1. We use the same parameter settings for CPLEX as Duran-

Mateluna et al. (2023), which are summarized in Table B1. The separation algorithm is implemented

within the GenericCallback of CPLEX and gets called when a feasible integral solution is found, similar

to Duran-Mateluna et al. (2023). Additionally, we apply the callback when a fractional solution is

identified, which offers a slight improvement (see Table C1).

5.1.3 Computation times

We impose a time limit of 10 hours on the Benders decomposition method as described in Algorithm 2.

This is stricter than the limit used in Duran-Mateluna et al. (2023), where a 10 hour time limit for

the branch-and-cut phase is applied only after solving the root node.

Similar to Duran-Mateluna et al. (2023) we assume the instance data structure, e.g. matrix S, and

a start solution are given as input to the Benders decomposition method. These computation times are

not included in the time limit. However, it is important to note that in some cases the calculation of

the sorted distances needed to construct matrix S may be longer than the running time of the Benders

decomposition method. Let T init, T root and TB&C be, respectively, the time to initialize the aggregate

model, the time to solve the root node, and the entire time of the branch-and-cut procedure (including

the initialization and root node solving time). See Figure A1 for more details on the relation between

the reported computation times.

Instances provably solved to optimality within the time limit are highlighted in bold, while instances

from existing benchmark datasets that are solved to optimality for the first time in the literature are

marked with a †.



Les Cahiers du GERAD G–2025–27 11

5.1.4 Start heuristic

Start solutions are usually generated using a metaheuristic named PopStar (Resende and Werneck,

2004) or a k-means++ algorithm (see Appendix A.1 and A.2). In the k-means++(iter1, iter2) algo-

rithm, the parameters iter1 and iter2 specify the maximum number of restarts for the entire method

and the number of inner iterations, respectively. As noted by Duran-Mateluna et al. (2023), the

popStar heuristic becomes computationally expensive for large instances. To address this, we replace

the popStar heuristic with k-means++(10,10) algorithm for large instances. Furthermore, due to the

high memory requirements to store the matrix S we allocate up to 500 GB RAM to some instances.

These settings are summarized in Table 2. Setting A of the Benders decomposition is applied to TSP-

medium instances, while setting B is used for most other instances. Setting C is specifically applied

when solving a Benders decomposition with a kd-tree.

Table 2: Overview of the different settings of the Benders decomposition for the distance data structure, memory limit
and start heuristic.

setting distance data structure memory limit (in GB) start heuristic

A matrix S 120 popStar
B matrix S 500 k-means++(10, 10)
C kd-tree 120 k-means++(10, 10)

5.2 TSP instances

5.2.1 Comparison between disaggregated and aggregated Benders decomposition

Table 3 shows the results of the disaggregated and aggregated Benders decomposition with setting A

on TSP-medium instances. While initializing the aggregated Benders decomposition takes on average 3

seconds, it reduces the average time required to solve the root node from 124 to 66 seconds. In addition,

aggregation seems to reduce the time spent on the branch-and-cut, since the average computation

time decreases from around 6200 to 4000 seconds. The disaggregated Benders is not able to solve five

instances, compared to two when using the aggregated Benders.

The results with setting B for the TSP-huge instances are shown in Table 4. On average 220

seconds are spent on the initialization step of the aggregated Benders decomposition, which reduces

the root node solving time from around 6200 seconds to 2000 seconds. Aggregation seems to have less

impact on the branch-and-cut procedure compared to the TSP-medium instances.

In the literature, we were unable to find experiments that consider TSP-huge instances with low

values of p. Table 5 presents the results on TSP-huge instances with values of p ranging from 5 to

100. The disaggregated Benders fails to complete a single Benders iteration for any of these instances.

In contrast, the aggregated Benders decomposition successfully solves several Benders iterations, such

that a gap can be calculated. Additionally, one instance with p = 10 is solved to optimality using

branch-and-cut within the time limit.

5.2.2 Changing the start heuristic

We investigate the impact of the quality of the start solution on the solution time. The solutions

obtained from k-means++(1,1) serve as a baseline, representing random start solutions. The solutions

from k-means++(1,10) and k-means++(10,10) represent improved start solutions. We also evaluate

popStar, a state-of-the-art heuristic that expected to outperform the k-means++ heuristics. Finally,

we analyze an ideal scenario where the aggregated Benders decomposition is initialized with optimal

solutions.

Table 6 shows the computation times for various start solutions. Changing the start solution has

minimal impact on the time required to solve the root node, which averages between 63 and 74 seconds.



Les Cahiers du GERAD G–2025–27 12

Table 3: Time (in s) and gap (in %) using disaggregated and aggregated Benders decomposition with setting A on
TSP-medium instances. The number of iterations, number of aggregated variables and number of valid inequalities are
denoted by iter, vars and cons, respectively. TL=36000 seconds.

instance disaggregated Benders aggregated Benders

name N p gap T root TB&C iter UB gap T init T root TB&C iter vars cons

d2103 2103 10 0.00 15 33 8 687321 0.00 3 4 11 6 179 3868
d2103 2103 20 0.00 21 37 10 482926 0.00 3 12 29 9 206 3834
d2103 2103 50 0.03 36 TL 12 302190† 0.00 2 22 12726 18 335 3636
d2103 2103 100 0.00 24 3728 12 194664 0.00 1 17 3057 17 395 3616
d2103 2103 200 0.00 4 7 11 117753 0.00 1 2 6 11 494 3616
d2103 2103 300 0.00 5 8 15 90471 0.00 0 2 3 17 360 4084
d2103 2103 400 0.00 2 10 10 75324 0.00 1 1 4 7 439 4118
d2103 2103 500 0.00 2 5 13 64006 0.00 1 1 5 14 524 4144

pcb3038 3038 10 0.00 68 68 8 1211704 0.00 2 15 17 6 301 5494
pcb3038 3038 20 0.00 84 498 10 839494 0.00 3 62 373 10 304 5508
pcb3038 3038 50 0.00 60 390 10 506339 0.00 4 32 249 10 346 5484
pcb3038 3038 100 0.00 55 236 11 351500 0.00 1 32 335 8 395 5486
pcb3038 3038 200 0.00 22 117 9 237399 0.00 1 12 109 9 416 5644
pcb3038 3038 300 0.00 12 23 11 186833 0.00 2 5 18 15 450 5776
pcb3038 3038 400 0.00 6 9 8 156276 0.00 2 2 6 10 489 5898
pcb3038 3038 500 0.00 4 6 11 134798 0.00 1 2 3 10 563 5948

fl3795 3795 10 0.00 13 13 7 520940 0.00 7 5 12 7 1678 4254
fl3795 3795 20 0.00 10 10 10 319722 0.00 5 2 7 7 1295 5040
fl3795 3795 50 0.00 8 8 12 150940 0.00 5 4 8 8 988 5714
fl3795 3795 100 0.00 9 9 12 88299 0.00 5 5 9 9 858 6074
fl3795 3795 200 0.00 14 1067 14 53928 0.00 2 11 843 25 871 6238
fl3795 3795 300 0.00 8 TL 17 39586 0.00 1 11 1575 35 940 6300
fl3795 3795 400 0.00 9 496 18 31354 0.00 1 8 274 23 1095 6190
fl3795 3795 500 0.00 7 7 15 25976 0.00 1 6 7 17 1116 6348

rl5934 5934 10 0.00 1203 10901 10 9792218 0.00 10 545 2665 10 517 10854
rl5934 5934 20 0.00 906 TL 11 6716215 0.00 5 596 TL 16 602 10704
rl5934 5934 50 0.00 631 TL 13 4030771 0.00 6 341 TL 17 678 10612
rl5934 5934 100 0.03 377 TL 12 2722527 0.00 7 219 30553 16 805 10458
rl5934 5934 200 0.00 139 747 9 1805530 0.00 4 83 1516 14 1066 10136
rl5934 5934 300 0.00 94 140 10 1392419 0.00 5 29 79 11 1346 9776
rl5934 5934 400 0.00 62 332 10 1143940 0.00 3 14 191 10 1536 9596
rl5934 5934 500 0.00 53 77 13 972799 0.00 2 11 26 13 1745 9378

avg 0.00 124 6218 0.00 3 66 3960

However, the branch-and-cut procedure exhibits greater variability in computation time. Initializing

the aggregated Benders decomposition with an optimal solution results in an average computation

time of 3700 seconds. The best performing method, popStar, achieves computation times comparable

to those obtained when initializing with an optimal solution. This is because popStar produces start

solutions with objective values close to the optimal solutions.

5.2.3 Contribution of each step in the aggregated Benders decomposition

Recall that our approach adds three steps to the disaggregated Benders decomposition, namely partially

aggregating the distance variables, adding valid inequalities and partially aggregating the decision

variables. Table 7 reports the time spent when incrementally adding these steps with setting A on

TSP-medium instances. We first analyze the time spent solving the root node. Activating the first step,

which aggregates the θ variables, reduces the average time from 124 to 99 seconds. Incorporating the

second step, adding valid inequalities, further reduces the time to an average of 66 seconds. A similar

trend is observed in the branch-and-cut procedure. The average computation time decreases from

around 6200 seconds to 5000 seconds with the first step, and further to 3900 seconds when activating

the second step. The third step, adding the aggregate y variables, seems to have minimal impact on



Les Cahiers du GERAD G–2025–27 13

Table 4: Time (in s) and gap (in %) using disaggregated and aggregated Benders decomposition with setting B on TSP-
huge instances. The number of iterations, number of aggregated variables and number of valid inequalities are denoted
by iter, vars and cons, respectively. TL=36000 seconds.

instance disaggregated Benders aggregated Benders

name N p gap T root TB&C iter UB gap T init T root TB&C iter vars cons

ch71009 71009 10000 0.04 11455 TL 12 4275352 0.02 46 2396 TL 11 14298 131800
ch71009 71009 20000 0.00 970 TL 17 2377850 0.00 39 551 TL 13 24164 124908
ch71009 71009 30000 0.00 524 632 19 1464151 0.00 45 414 612 14 33985 111266
ch71009 71009 40000 0.00 237 338 21 879336 0.00 32 377 526 12 43522 91274
ch71009 71009 50000 0.00 114 227 16 463553 0.00 20 115 251 12 53010 65656
ch71009 71009 60000 0.00 54 184 18 167565 0.00 13 32 177 14 62307 35330

pla85900 85900 10000 9.10 TL TL 5 178470093 0.00 66 3506 TL 16 11924 167918
pla85900 85900 20000 0.00 12950 TL 15 118414166 0.00 63 4361 TL 11 21284 167692
pla85900 85900 30000 5.16 TL TL 80 86944715† 0.00 65 210 1582 9 30640 159818
pla85900 85900 40000 0.00 46 168 27 69944715 0.00 49 204 677 9 40364 141964
pla85900 85900 50000 0.00 36 181 15 52944715 0.00 52 163 487 8 50194 117922
pla85900 85900 60000 0.00 79 239 21 35944715 0.00 41 129 406 9 60132 89418
pla85900 85900 70000 0.00 39 130 14 18977475 0.00 29 44 169 15 70086 57936
pla85900 85900 80000 0.00 12 114 26 4512752 0.00 17 14 150 24 80047 22796

usa115475 115475 10000 27.80 TL TL 3 8765753 3.48 181 12097 TL 13 18743 213244
usa115475 115475 20000 0.01 6764 TL 13 5287528 0.01 155 2314 TL 13 27387 213600
usa115475 115475 30000 0.00 2642 TL 13 3815715 0.00 131 1481 TL 16 36006 210336
usa115475 115475 40000 0.00 1706 2114 17 2876909 0.00 125 1119 2565 13 44847 201514
usa115475 115475 50000 0.00 1109 1391 17 2189144 0.00 81 999 1555 16 53749 188094
usa115475 115475 60000 0.00 781 1061 14 1651400 0.00 69 990 1439 13 62897 169688
usa115475 115475 70000 0.00 629 943 16 1214299 0.00 77 878 1364 15 72168 146742
usa115475 115475 80000 0.00 348 690 24 851481 0.00 73 385 889 12 81534 120476
usa115475 115475 90000 0.00 202 541 16 548097 0.00 53 197 703 11 91034 90436

ara238025 238025 10000 0.32 9199 TL 12 1397282 3.69 665 6007 TL 12 34524 426868
ara238025 238025 20000 0.01 10280 TL 17 857548 0.00 854 6100 TL 13 50455 414808
ara238025 238025 30000 0.00 6812 28560 15 630983 0.00 699 3320 TL 12 65516 404188
ara238025 238025 40000 0.00 4630 5529 15 494842 0.00 629 2520 4560 11 78632 396704
ara238025 238025 50000 0.00 4183 5224 13 401835 0.00 627 1915 4283 13 88883 393260
ara238025 238025 60000 0.00 4722 5859 14 334279 0.00 541 2073 4733 11 97436 391192
ara238025 238025 70000 0.00 3800 5128 22 283627 0.00 510 2142 4510 13 104098 389844
ara238025 238025 80000 0.00 3827 5423 18 244233 0.00 421 2888 5768 16 109809 388040
ara238025 238025 90000 0.00 3985 7648 12 214233 0.00 411 3004 8293 22 115810 382198
ara238025 238025 100000 0.00 3795 7081 12 184241 0.01 369 3843 TL 11 121186 375986
ara238025 238025 150000 0.00 2091 3785 283 88025 0.00 307 3609 8116 9 156729 291012
ara238025 238025 200000 0.00 750 2497 13 38025 0.00 146 738 3805 13 201882 140130

avg 1.21 6223 12734 0.21 220 2032 12961

the computation time. In Appendix C.2 we also provide a detailed comparison of the performance of

each individual type of valid inequalities.

5.2.4 Lower bound in the first iteration

Figure 2 visualizes the lower bound in the first iteration of the Benders decomposition with setting B

for different values of p on TSP-huge instances. The root node lower bound (red line) indicates the

optimal objective value when solving the LP relaxation. Ideally, we would like to be as close as

possible to this objective value. The figure shows that the objective value in the first iteration when

using aggregated Benders (blue line) is equal to or higher compared to disaggregated Benders (black

line).

This leads to the question whether the objective value in subsequent Benders iterations is also higher

for aggregated Benders compared to disaggregated Benders. Figure 3 shows the objective value per

iteration of the Benders decomposition for two selected instances (the other instances exhibit similar

behaviors). For the instances with p = 10000 we notice that the objective value of the aggregated



Les Cahiers du GERAD G–2025–27 14

Table 5: Time (in s) and gap (in %) using disaggregated and aggregated Benders decomposition with setting B on
TSP-huge-low-p instances. The number of iterations, number of aggregated variables and number of valid inequalities are
denoted by iter, vars and cons, respectively, for TL=36000 seconds.

instance disaggregated Benders aggregated Benders

name N p gap T root TB&C iter UB gap T init T root TB&C iter vars cons

ch71009 71009 5 - TL TL 0 279898768 2.49 26107 TL TL 5 7643 126742
ch71009 71009 10 - TL TL 0 184135561 0.00 13962 7255 24698 10 7184 127670
ch71009 71009 50 - TL TL 0 82188868 7.49 2692 TL TL 4 6666 128786
ch71009 71009 100 - TL TL 0 58002900 10.69 1627 TL TL 4 6785 128648

pla85900 85900 5 - TL TL 0 9852614013 - TL TL TL 0 6687 158436
pla85900 85900 10 - TL TL 0 7067159042 4.96 17240 TL TL 3 6646 158528
pla85900 85900 50 - TL TL 0 3282348405 7.05 3441 TL TL 3 7093 157714
pla85900 85900 100 - TL TL 0 2330305935 8.06 1712 TL TL 3 6984 158032

usa115475 115475 5 - TL TL 0 514450906 - TL TL TL 0 - -
usa115475 115475 10 - TL TL 0 361392225 - TL TL TL 0 - -
usa115475 115475 50 - TL TL 0 152557601 7.97 20182 TL TL 3 11410 208230
usa115475 115475 100 - TL TL 0 107188213 10.76 5158 TL TL 3 10788 209574

ara238025 238025 5 - TL TL 0 80129403 - TL TL TL 0 - -
ara238025 238025 10 - TL TL 0 56557295 - TL TL TL 0 - -
ara238025 238025 50 - TL TL 0 24926972 - TL TL TL 0 - -
ara238025 238025 100 - TL TL 0 17482258 14.01 14955 TL TL 2 19785 436680

Table 6: Average time (in s) when using different start solutions for aggregated Benders decomposition on TSP-medium
instances. Times are averaged over each instance with the same name. We also report the average gap between the start
solution and optimal (or best-known) solution. TL=36000 seconds.

instance
disaggregated

Benders
aggregated Benders

popStar
kmeans++

(1, 1)
kmeans++

(1, 10)
kmeans++
(10, 10)

popStar optimal

name N T root TB&C T root TB&C T root TB&C T root TB&C T root TB&C T root TB&C

d2103 2103 14 4979 8 3663 9 4927 9 3452 8 1978 8 1694
pcb3038 3038 39 168 24 209 20 241 20 241 20 136 19 116
fl3795 3795 10 4701 10 4667 8 774 8 515 6 339 7 694
rl5934 5934 433 15025 254 18185 243 18226 214 15405 230 13375 235 12321

avg 124 6218 74 6681 70 6042 63 4903 66 3957 67 3706

avg gap 0.1% 9.0% 5.8% 4.7% 0.1% 0.0%

Table 7: Average time (in s) while adding more steps to the aggregated Benders decomposition with setting A on TSP-
medium instances. Times are averaged over each instance with the same name. TL=36000 seconds.

instance disaggregated Benders aggregate θ add inequalities aggregate y

name N T root TB&C T root TB&C T root TB&C T root TB&C

d2103 2103 14 4979 15 4889 8 1996 8 1978
pcb3038 3038 39 168 31 170 20 135 20 136
fl3795 3795 10 4701 9 1235 6 340 6 339
rl5934 5934 433 15025 341 13936 229 13291 230 13375

avg 124 6218 99 5057 66 3940 66 3957

Benders is higher for around 5 iterations. For the other instance with p = 200000 we notice that both

lines start with an objective of 0, but the aggregated Benders jumps earlier to a non-negative objective

value compared to disaggregated Benders.



Les Cahiers du GERAD G–2025–27 15

0 1 2 3 4 5 6

·104

0

1

2

3

4

·106

p

o
b
je
ct
iv
e
va
lu
e

ch71009

(a)

0 2 4 6 8

·104

0

0.5

1

1.5

·108

p

o
b
je
ct
iv
e
va
lu
e

pla85900

root node lower bound
disaggregated Benders
aggregated Benders

(b)

0 2 4 6 8

·104

0

2

4

6

8

·106

p

ob
je
ct
iv
e
va
lu
e

usa115475

(c)

0 0.5 1 1.5 2

·105

0

0.5

1

·106

p

ob
je
ct
iv
e
va
lu
e

ara238025

(d)

Figure 2: Lower bound in the first iteration for TSP-huge instances.

0 2 4 6 8 10 12
0

0.5

1

·106

iteration

ob
je
ct
iv
e
va
lu
e

ara238025, p = 10, 000

(a)

0 2 4 6 8 10 12 14
0

1

2

3

4
·104

iteration

ob
je
ct
iv
e
va
lu
e

ara238025, p = 200, 000

(b)

Figure 3: Lower bound in each iteration for two TSP-huge instances.

5.3 BIRCH instances

In Table 8 we compare the disaggregated and aggregated Benders decomposition with setting B on

the BIRCH instances. The time to solve the branch-and-cut procedure for aggregated Benders is on

average 5100 seconds compared to 2700 seconds for disaggregated Benders. This can be explained

by the observation that for the aggregated Benders most time is spent on initializing the aggregate

model. This shows that adding all possible valid inequalities might not be a good idea. A possible

improvement would be to add a limited number of valid inequalities.



Les Cahiers du GERAD G–2025–27 16

Table 8: Time (in s) and gap (in %) using disaggregated and aggregated Benders decomposition with setting B on BIRCH
instances. The number of iterations, number of aggregated variables and number of valid inequalities are denoted by iter,
vars and cons, respectively. TL=36000 seconds.

instance disaggregated Benders aggregated Benders

name N p gap T root TB&C iter UB gap T init T root TB&C iter vars cons

BIRCH1 25000 25 0.00 143 144 5 31229.3 0.00 515 30 546 3 9251 31548
BIRCH2 36000 36 0.00 2975 2977 6 45115.6 0.00 662 50 714 5 12144 47784
BIRCH3 49000 49 0.00 380 383 5 61384.1 0.00 1540 70 1612 7 16736 64626
BIRCH4 64000 64 0.00 786 790 6 80053.9 0.00 3097 94 3195 6 21229 85670
BIRCH5 30000 25 0.00 191 193 6 37563.6 0.00 1502 61 1564 4 10974 38102
BIRCH6 43200 36 0.00 4612 4616 7 54191.4 0.00 1546 105 1654 6 13151 60170
BIRCH7 58800 49 0.00 18860 18864 6 73626.8 0.00 2361 123 2487 7 20113 77472
BIRCH8 76800 64 0.00 1301 1307 7 96039.4 0.00 4978 160 5142 7 23995 105738
BIRCH9 35000 25 0.00 511 514 6 43902.1 0.00 1377 84 1462 4 12802 44446
BIRCH10 50400 36 0.00 9741 9745 6 63169.2 0.00 1586 123 1713 5 16707 67458
BIRCH11 68600 49 0.00 752 758 6 85833.5 0.00 4727 193 4925 8 21725 93848
BIRCH12 89600 64 0.00 1612 1619 6 112059.2 0.00 15120 289 15415 6 28116 123096
BIRCH21 25000 25 0.00 272 273 6 17696.2 0.00 920 198 1119 20 10223 29604
BIRCH22 36000 36 0.00 371 373 8 27423.0 0.00 989 1047 2037 24 14343 43386
BIRCH23 49000 49 0.00 688 692 10 44149.0 0.00 1894 916 2813 33 16259 65580
BIRCH24 64000 64 0.00 834 839 11 58832.6 0.00 3002 1348 4353 29 24925 78278
BIRCH25 30000 25 0.00 402 405 8 21829.9 0.00 1042 460 1504 22 10984 38082
BIRCH26 43200 36 0.00 530 535 12 32339.4 0.00 2341 594 2938 11 15211 56050
BIRCH27 58800 49 0.00 1033 1038 9 50857.9 0.00 3549 837 4390 14 18498 80702
BIRCH28 76800 64 0.00 1842 14981 15 66562.4 0.00 3843 8397 14355 49 35007 83714
BIRCH29 35000 25 0.00 507 510 11 24810.9 0.00 1368 675 2045 26 13700 42650
BIRCH30 50400 36 0.00 687 691 13 38102.6 0.00 2826 6739 9568 36 19658 61556
BIRCH31 68600 49 0.00 1378 1385 14 61850.6 0.00 4421 2544 6969 33 24432 88434
BIRCH32 89600 64 0.00 2486 2496 20 78777.0 0.00 18731 12229 30967 53 38790 101748

avg 0.00 2204 2755 0.00 3497 1557 5145

On average the disaggregated method needs 2200 seconds for solving the root node and around

500 seconds for the branch-and-cut, leading to a total running time of 2700 seconds. In contrast, the

aggregated Benders requires on average 3500 seconds to add the valid inequalities, 1500 seconds to

solve the root node and 100 seconds for the branch-and-cut, leading to a total computation time of

5100 seconds. Although the aggregated Benders speeds up the root node and branch-and-cut phases,

the time spent adding inequalities is too high.

5.4 CIRCLE instances

The CIRCLE instances are designed to ensure that the clusters are well-separated, which facilitates

the process of obtaining high-quality initial solutions. Note that this is the first time these instances

have been addressed using an exact method in the literature. The main idea of our introduced valid

inequalities is to calculate a lower bound that holds for several solutions close to the provided start

solution. Thus, we expect our aggregation to perform well for the CIRCLE instances.

This expectation seems to be confirmed in Table 9, where we compare disaggregated and aggregated

Benders decomposition with setting B. The time to initialize the model is on average 3300 seconds,

this reduces the time to solve the root node from on average 8300 seconds for the disaggregated to 280

seconds for the aggregated Benders decomposition, representing an improvement of nearly a factor of

30. The total time spent on the branch-and-cut phase is reduced from on average 8300 seconds for the

disaggregated to 3600 seconds for the aggregated Benders decomposition, reducing the computation

time by more than half.



Les Cahiers du GERAD G–2025–27 17

Table 9: Time (in s) and gap (in %) using disaggregated and aggregated Benders decomposition with setting B on CIRCLE
instances. The number of iterations, number of aggregated variables and number of valid inequalities are denoted by iter,
vars and cons, respectively. TL=36000 seconds.

instance disaggregated Benders aggregated Benders

name N p gap T root TB&C iter UB gap T init T root TB&C iter vars cons

C20000 10 20000 10 0.00 3604 3606 4 15749249.9 0.00 921 53 973 2 11000 18020
C20000 50 20000 50 0.00 188 188 4 3298500.2 0.00 145 4 149 3 9442 21216
C20000 100 20000 100 0.00 159 159 6 1797000.1 0.00 74 3 77 4 7191 25818
C20000 500 20000 500 0.00 177 177 7 442500.2 0.00 28 2 30 4 7890 25220
C20000 1000 20000 1000 0.00 104 105 7 217499.9 0.00 18 2 20 5 7465 27070
C20000 5000 20000 5000 0.00 24 26 6 45000.0 0.00 13 12 26 6 5001 39738
C20000 10000 20000 10000 0.00 16 20 43 15000.0 0.00 17 7 24 5 10000 36534

C80000 10 80000 10 - TL TL 0 245998500.1 0.00 32801 3199 TL 3 44000 72020
C80000 50 80000 50 - TL TL 0 50396999.9 0.00 8987 232 9219 3 38874 82352
C80000 100 80000 100 - TL TL 0 26393999.9 0.00 4528 65 4593 4 34362 91476
C80000 500 80000 500 0.00 6524 6526 8 5985000.1 0.00 893 20 913 4 32715 95570
C80000 1000 80000 1000 0.00 3491 3493 8 2985000.0 0.00 501 10 512 5 32279 97442
C80000 5000 80000 5000 0.00 1409 1417 7 689999.7 0.00 231 27 258 4 30191 109618
C80000 10000 80000 10000 0.00 971 986 7 330000.0 0.00 199 234 432 5 29209 121558
C80000 40000 80000 40000 0.00 381 436 57 60000.0 0.00 166 347 513 6 40000 146200

avg 0.00 8337 8343 0.00 3302 281 3583

5.5 Solving Benders decomposition with kd-tree

5.5.1 TSP-huge instances

The computational results for solving Benders decomposition using a kd-tree on TSP-huge instances are

presented in Table 10, comparing both disaggregated and aggregated Benders decompositions. Column

T read shows the time required to read the data and constructing the distance data structure, which

is either the S matrix or a kd-tree. Column Theur reports the time taken by the k-means++(10,10)

heuristic.

Introducing a kd-tree increases the time needed for the branch-and-cut procedure, TB&C . This

is due to the additional time taken by the separation algorithm, while the time to solve the master

problem remains unchanged, as can be observed in Table C4. However, utilizing a kd-tree decreases

the total computation time, consisting of T read, Theur and TB&C . The use of a kd-tree reduces T read

from approximately 1300 to 2 seconds. A similar effect is observed on Theur, which decreases from

around 2800 to 60 seconds.

In summary, applying a kd-tree eliminates the need to compute and store the sorted matrix S,

making Benders decomposition with a kd-tree both time and memory efficient.

Table 10: Average time (in s) and gap (in %) using disaggregated and aggregated Benders decomposition with the matrix
S or a kd-tree on TSP-huge instances. Times are averaged over each instance with the same name. TL=36000 seconds.

instance disaggregated Benders aggregated Benders

matrix S (setting B) kdtree (setting C) matrix S (setting B) kdtree (setting C)

name N gap T read Theur TB&C gap T read Theur TB&C gap T read Theur TB&C gap T read Theur TB&C

ch71009 71009 0.01 318 745 12230 0.08 1 17 12387 0.01 318 744 12261 0.01 1 17 8835
pla85900 85900 0.00 405 1022 13604 0.00 2 27 13648 0.00 408 1026 9434 0.00 1 27 9459
usa115475 115475 0.00 768 1726 12749 0.01 1 40 16556 0.39 768 1719 12946 0.00 1 39 13101
ara238025 238025 0.03 2924 5806 12395 0.41 5 119 16171 0.31 2897 5921 15673 0.34 4 118 16770

avg 0.01 1347 2796 12734 0.16 2 60 15045 0.21 1338 2834 12961 0.12 2 59 12795



Les Cahiers du GERAD G–2025–27 18

5.5.2 TSP∗ instances

Table 11 presents results for both disaggregated and aggregated Benders decomposition with a kd-

tree (setting C) on TSP∗ instances. Instance lrb744710 would theoretically require 2 TB of RAM to

store matrix S when using the start-of-the-art Benders decomposition. In contrast, we solve several

instances to optimality on a node with 120 GB of RAM (in practice even less memory is used). The

disaggregated and aggregated Benders decomposition have similar computation times.

Table 11: Time (in s) and gap (in %) using disaggregated and aggregated Benders decomposition with a kd-tree (setting
C) on TSP∗ instances. The number of iterations, number of aggregated variables and number of valid inequalities are
denoted by iter, vars and cons, respectively. TL=36000 seconds.

instance disaggregated Benders aggregated Benders

name N p gap T root TB&C iter UB gap T init T root TB&C iter vars cons

lra498378 498378 350000 0.91 14195 TL 19 170044 0.18 1401 11735 TL 14 378838 467188
lra498378 498378 400000 0.00 8659 9109 44 98378 0.00 961 9201 13729 13 419166 326004
lra498378 498378 450000 0.00 3870 4004 19 48379 0.00 545 4467 6215 16 460110 166738

lrb744710 744710 600000 7.63 TL TL 7 151951 100.63 2413 TL TL 5 604540 535604
lrb744710 744710 650000 0.00 15615 15615 13 94710 0.00 1624 15871 17495 14 652888 359412
lrb744710 744710 700000 0.00 8448 8448 20 44710 0.00 877 8737 9614 20 701366 173186

avg 1.42 14465 18196 16.80 1303 14335 19842

6 Conclusion & discussion

We consider the p-median problem, where the goal is to select p facilities such that the sum of distances

between each location and its nearest facility is minimized. The bottleneck in the current state-of-the-

art Benders decomposition is the large number of variables in the formulation.

We propose a partially aggregated Benders decomposition framework, which contains no and full

aggregation as a special case. In our solution approach, we partially aggregate the variables based on

a start solution. We aggregate variables for a group of so-called central locations, which are locations

that we expect to be assigned to the same facility. We develop valid inequalities for the central locations

and the remaining locations.

In our numerical experiments, we show that these valid inequalities strengthen the initial Benders

iterations. Specifically, after initializing the model we often obtain an improved lower bound, resulting

in a faster resolution of the root node. Across all types of instances, incorporating the valid inequalities

reduces the average time required to solve the root node, in some cases by nearly a factor 30. Addi-

tionally, for certain instances, these valid inequalities positively influence the branch-and-cut phase,

reducing the computation time by more than half.

However, for some instances, we observe that identifying a large number of valid inequalities can

slow down the overall method. The additional time required to add these valid inequalities may offset

the speedup gained from having stronger valid inequalities in the first Benders iterations. For further

research, it may be interesting to strike a balance between the number of valid inequalities and the

obtained speed up.

The approach we present may be generalized to instances with asymmetric distances. However,

it may be challenging to define a group of central locations, particularly because the distance from a

location to itself may be non-zero. Further research is required to develop a procedure for determining

such a group of central locations and corresponding valid inequalities.



Les Cahiers du GERAD G–2025–27 19

Appendix

A Details on the algorithms

A.1 The k-means++ algorithm

The k-means++ algorithm, also known as Lloyd’s algorithm, is summarized in Algorithm 3. The

method is initialized with a random selection of centroids, followed by an iterative assignment and

recalculation of centroids. The maximum number of restarts and internal iterations are iter1 and

iter2, respectively.

Algorithm 3 The k-means++ algorithm

1: Choose initial centroids
2: while objective has not converged or iteration limit, iter2, has not been reached do
3: Assignment step: assign points to closest centroid
4: Update step: recalculate the centroids based on the assignment
5: end while

A.2 Solving k-means++ with kd-tree

The assignment step usually has a complexity of O(kN), which can be reduced by using a kd-tree

data structure to O(k logN). We construct a kd-tree containing the coordinates of all the centroids

and assign each location i ∈ [N ] to its nearest centroid by performing a nearest neighbor look up.

After obtaining the centroid solution using the k-means++ algorithm, we convert it to a p-median

solution. We construct a kd-tree containing all N locations. For each centroid, we efficiently identify

the nearest location which is labeled as a facility. These facilities are inserted into a new kd-tree.

Finally, we assign each location i ∈ [N ] to the nearest facility.

A.3 Solving the separation algorithm with kd-tree

When solving the separation algorithm with a kd-tree we initially limit our search to the first Ki

indices, for each location in [N ]. We initialize Ki = 5 for all locations. If the separation algorithm

cannot be solved because the current Ki indices are insufficient, we perform the following update

on Ki:

Ki = Ki +max{10, ⌊0.1 · max
j∈[N ]

{Kj}⌋}.

This update increments Ki by 10 or by 10% of the current maximum Ki value across all locations,

whichever is larger.

B Parameters

Table B1: Values of the CPLEX parameters as suggested by Duran-Mateluna et al. (2023).

parameter name value description

RelGap 10−10 the relative tolerance to the best integer objective
AbsGap 0.9999 the absolute tolerance to the best integer objective
MIP Emphasis BestBound focus on proving optimality
BRDIR 1 branch up first



Les Cahiers du GERAD G–2025–27 20

Total computation time

Branch and cut: 

Start heuristic: 

Read in the data and create
distance data structure: 

Solve the root node: 

Initialize valid inequalities: 

Solve the branched nodes

Solve the master problem: 

Apply the separation algorithm:

Figure A1: Overview of the notation for the reported computation times and how they relate to each other.

C Computational results

C.1 Different callback settings

Table C1: Time (in s) using disaggregated Benders decomposition with setting B on TSP-medium instances. The
GeneralCallback in CPLEX gets called either when a candidate solution is found or additionally when a relaxation solution
is identified. TL=36000 seconds.

instance candidate only candidate and relaxation

name N p TB&C TB&C

d2103 2103 10 32.9 32.6
d2103 2103 20 63.8 37.1
d2103 2103 50 TL TL
d2103 2103 100 TL 3728.5
d2103 2103 200 7.3 7.2
d2103 2103 300 7.7 7.9
d2103 2103 400 5.1 10.0
d2103 2103 500 9.6 4.5

pcb3038 3038 10 67.3 68.4
pcb3038 3038 20 780.3 498.1
pcb3038 3038 50 270.7 390.5
pcb3038 3038 100 327.1 235.7
pcb3038 3038 200 140.3 116.8
pcb3038 3038 300 32.3 23.4
pcb3038 3038 400 14.1 8.7
pcb3038 3038 500 6.4 6.4

fl3795 3795 10 13.5 13.4
fl3795 3795 20 9.9 10.0
fl3795 3795 50 7.8 7.8
fl3795 3795 100 9.0 9.0
fl3795 3795 200 5648.9 1066.7
fl3795 3795 300 9060.8 TL
fl3795 3795 400 1186.1 495.9
fl3795 3795 500 7.5 7.5

rl5934 5934 10 9446.6 10901.4
rl5934 5934 20 TL TL
rl5934 5934 50 TL TL
rl5934 5934 100 TL TL
rl5934 5934 200 1927.4 746.7
rl5934 5934 300 151.6 140.1
rl5934 5934 400 485.9 331.6
rl5934 5934 500 95.6 76.6

6556.7 6218.2



Les Cahiers du GERAD G–2025–27 21

C.2 Contribution of each type of valid inequality

We evaluate the effectiveness of the three types of proposed valid inequalities, namely (14), (16)

and (17)–(18). Specifically, we examine the reduction in solving time at the root node and the branch-

and-cut procedure. Additionally, we assess the quality of the lower bound (the objective value of the

RMP) obtained in the first iteration of the Benders decomposition. The percentage improvement in the

lower bound is calculated relative to the one obtained from the disaggregated Benders decomposition.

In Table C2 we compare the effectiveness of the individual valid inequalities for TSP-medium

instances. Valid inequalities (14) are the strongest, improving the lower bound during the first iteration

of the Benders decomposition by on average 25%, compared to the disaggregated Benders, while valid

inequalities (16) result in the fastest computation times. Interestingly, these running times seem to

suggest that adding valid inequalities (16) is sufficient, even though they have a smaller impact on the

initial lower bound.

Table C2: Average time (in s) when adding one type of valid inequality to the aggregated Benders decomposition with
setting A on TSP-medium instances. Times are averaged over each instance with the same name. We also report the
number of valid inequalities added and the improvement (in %) in the lower bound achieved during the first iteration,
compared to disaggregated Benders. The last column reports the improvement (in %) when adding all valid inequalities.
TL=36000 seconds.

instance valid inequalities (14) valid inequalities (16) valid inequalities (17)–(18) all

name N T root TB&C # cuts improv T root TB&C # cuts improv T root TB&C # cuts improv improv

d2103 2103 16 7185 196 28.7 8 2393 1737 16.4 13 4329 1932 17.7 46.0
pcb3038 3038 36 253 197 19.2 17 161 2630 14.3 33 211 2827 8.9 35.5
fl3795 3795 11 860 195 31.8 7 396 2690 15.8 12 881 2885 6.6 48.7
rl5934 5934 330 13398 198 21.9 185 12363 4897 15.3 358 15754 5095 1.9 33.1

avg 98 5424 196 25.4 54 3828 2988 15.4 104 5274 3185 8.8 40.8

The performance of TSP-huge instances differs noticeably from that of TSP-medium instances, as

can be seen in Table C3. For larger instances, valid inequalities (14) and (17)–(18) improve the initial

lower bound by 92% and 111%, respectively. In contrast, valid inequalities (16) decrease the initial

lower bound, caused by the aggregation of variables.

Each individual type of valid inequality improves the solving time of the root node. Additionally,

only valid inequalities (14) improve the solving time of the branch-and-cut procedure, suggesting that

these valid inequalities are sufficient.

Table C3: Average time (in s) when adding one type of valid inequality to the aggregated Benders decomposition with
setting A on TSP-huge instances. Times are averaged over each instance with the same name. We also report the number
of valid inequalities added and the improvement (in %) in the lower bound achieved during the first iteration, compared
to disaggregated Benders. The last column reports the improvement (in %) when adding all valid inequalities. TL=36000
seconds.

instance valid inequalities (14) valid inequalities (16) valid inequalities (17)–(18) all

name N T root TB&C # cuts improv T root TB&C # cuts improv T root TB&C # cuts improv improv

ch71009 71009 1472 6475 14225 101.4 803 12221 32461 -3.3 1282 12165 46686 132.2 170.6
pla85900 85900 6688 9624 17525 153.6 1243 9364 40316 -14.7 1992 9370 57842 174.1 195.4
usa115475 115475 5313 12842 25128 72.6 4911 15960 61212 3.0 5375 12608 74494 79.4 119.2
ara238025 238025 3604 13778 47148 60.5 2828 14025 135945 0.8 5223 17235 183093 82.6 121.3

avg 4383 11336 29071 91.9 2654 13148 77130 -2.9 3848 13378 103154 111.2 146.2



Les Cahiers du GERAD G–2025–27 22

C.3 Detailed computational results when solving the root node

Table C4: Time (in s) of solving the root node using disaggregated and aggregated Benders decomposition with the
matrix S or a kd-tree on TSP-huge instances. The time to spent on the master problem and separation algorithm are
denoted by TMP and TSP , respectively. TL=36000 seconds.

instance disaggregated Benders aggregated Benders

matrix S (setting B) kdtree (setting C) matrix S (setting B) kdtree (setting C)

name N p TMP TSP T root TMP TSP T root TMP TSP T root TMP TSP T root

ch71009 71009 10000 11453 1 11455 12939 135 13074 2394 1 2396 1620 102 1721
ch71009 71009 20000 969 1 970 1021 140 1162 549 1 550 538 100 638
ch71009 71009 30000 523 1 524 498 124 622 413 1 414 388 77 465
ch71009 71009 40000 235 1 237 232 92 325 376 1 377 383 56 439
ch71009 71009 50000 114 1 114 140 109 250 113 1 114 114 51 165
ch71009 71009 60000 53 1 54 36 108 144 31 1 31 30 56 87

pla85900 85900 10000 TL 1 TL TL 25 TL 3503 2 3505 3285 67 3352
pla85900 85900 20000 12949 1 12950 13134 68 13202 4359 1 4360 3213 38 3251
pla85900 85900 30000 TL 3 TL 35715 305 TL 209 1 210 265 24 289
pla85900 85900 40000 45 1 46 39 73 113 203 1 204 198 21 219
pla85900 85900 50000 35 1 36 40 46 87 162 1 162 199 27 226
pla85900 85900 60000 77 1 79 46 60 107 128 1 129 82 29 111
pla85900 85900 70000 38 1 39 26 37 64 42 1 43 42 35 76
pla85900 85900 80000 10 1 12 12 77 89 11 1 12 13 51 64

usa115475 115475 10000 TL 1 TL TL 15 TL 12091 4 12095 33004 69 33073
usa115475 115475 20000 6762 2 6764 8348 51 8399 2309 3 2312 2134 47 2181
usa115475 115475 30000 2640 1 2642 2594 45 2640 1476 3 1479 1555 44 1599
usa115475 115475 40000 1704 1 1706 1654 40 1694 1115 2 1117 1370 29 1399
usa115475 115475 50000 1107 1 1109 1138 36 1175 995 2 997 1005 27 1032
usa115475 115475 60000 779 1 781 790 32 823 986 2 988 1038 22 1060
usa115475 115475 70000 627 1 629 505 37 543 874 2 876 883 27 909
usa115475 115475 80000 346 1 348 336 44 381 382 2 384 337 16 353
usa115475 115475 90000 201 1 202 206 35 242 193 2 195 203 18 221

ara238025 238025 10000 9190 8 9199 8116 1039 9157 5995 9 6004 5576 1582 7158
ara238025 238025 20000 10272 6 10280 9140 623 9765 6091 6 6097 5235 755 5990
ara238025 238025 30000 6806 5 6812 6153 453 6608 3312 4 3317 2539 538 3077
ara238025 238025 40000 4624 4 4630 4083 414 4498 2513 4 2517 1592 428 2019
ara238025 238025 50000 4178 4 4183 3837 370 4208 1907 4 1911 1852 373 2226
ara238025 238025 60000 4717 4 4722 3412 306 3719 2067 3 2071 2073 514 2586
ara238025 238025 70000 3794 5 3800 3573 544 4120 2135 4 2139 2223 188 2411
ara238025 238025 80000 3821 4 3827 3446 342 3789 2879 4 2884 2750 239 2989
ara238025 238025 90000 3980 3 3985 3676 247 3924 2993 5 2999 2777 189 2966
ara238025 238025 100000 3791 3 3795 3467 226 3694 3836 3 3840 3331 191 3522
ara238025 238025 150000 2031 31 2091 2030 4254 6307 3603 3 3606 3298 160 3458
ara238025 238025 200000 747 2 750 785 222 1007 730 4 733 712 242 954

avg 5903 3 5908 5805 308 6112 2028 2 2030 2453 184 2637

References
Agra, A. and Requejo, C. (2024). Revisiting a cornuéjols-nemhauser-wolsey formulation for the p-median

problem. EURO Journal on Computational Optimization, 12:100081.

Avella, P., Boccia, M., Salerno, S., and Vasilyev, I. (2012). An aggregation heuristic for large scale p-median
problem. Computers & Operations Research, 39(7):1625–1632.

Avella, P., Sassano, A., and Vasil’ev, I. (2007). Computational study of large-scale p-median problems. Math-
ematical Programming, 109:89–114.

Beasley, J. E. (1990). Or-library: Distributing test problems by electronic mail. The Journal of the Operational
Research Society, 41(11):1069–1072.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische
Mathematik, 4(1):238–252.



Les Cahiers du GERAD G–2025–27 23

Coniglio, S., Furini, F., and Ljubić, I. (2022). Submodular maximization of concave utility functions com-
posed with a set-union operator with applications to maximal covering location problems. Mathematical
Programming, 196(1):9–56.

Contreras, I., Cordeau, J. F., and Laporte, G. (2011). Benders decomposition for large-scale uncapacitated
hub location. Operations Research, 59(6):1477–1490.

Cordeau, J., Furini, F., and Ljubić, I. (2019). Benders decomposition for very large scale partial set covering
and maximal covering location problems. European Journal of Operational Research, 275(3):882–896.

Cornuejols, G., Nemhauser, G. L., and Wolsey, L. A. (1980). A canonical representation of simple plant location
problems and its applications. SIAM Journal on Algebraic Discrete Methods, 1(3):261–272.

Current, J. and Schilling, D. (1987). Elimination of source a and b errors in p-median location problems.
Geographical Analysis, 19(2):95–110.

Duran-Mateluna, C., Ales, Z., and Elloumi, S. (2023). An efficient benders decomposition for the p-median
problem. European Journal of Operational Research, 308(1):84–96.

Elloumi, S. (2010). A tighter formulation of the p-median problem. Journal of combinatorial optimization,
19(1):69–83.

Fischetti, M., Ljubić, I., and Sinnl, M. (2016a). Benders decomposition without separability: a computational
study for capacitated facility location problems. European Journal of Operational Research, 253(3):557–569.

Fischetti, M., Ljubić, I., and Sinnl, M. (2016b). Redesigning benders decomposition for large-scale facility
location. Management Science, 63(7):2146–2162.

Gaar, E. and Sinnl, M. (2022). A scaleable projection-based branch-and-cut algorithm for the p -center problem.
European Journal of Operational Research, 303(1):78–98.

Garćıa, S., Labbé, M., and Maŕın, A. (2011). Solving large p-median problems with a radius formulation.
INFORMS Journal on Computing, 23(4):546–556.

Goodchild, M. (1979). The aggregation problem in location-allocation. Geographical Analysis, 11(3):240–255.

Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph.
Operations Research, 12(3):450–459.

Hillsman, E. L. and Rhoda, R. (1978). Errors in measuring distances from populations to service centers. The
Annals of Regional Science, 12:74–88.

Irawan, C., Salhi, S., and Scaparra, M. (2014). An adaptive multiphase approach for large unconditional and
conditional p-median problems. European Journal of Operational Research, 237(2):590–605.

Irawan, C. A. and Salhi, S. (2015a). Aggregation and non aggregation techniques for large facility location
problems-a survey. Yugoslav Journal of Operations Research, 25(3):313–341.

Irawan, C. A. and Salhi, S. (2015b). Solving large p-median problems by a multistage hybrid approach using
demand points aggregation and variable neighbourhood search. Journal of Global Optimization, 63(3):537–
554.

Kariv, O. and Hakimi, S. L. (1979). An algorithmic approach to network location problems. ii: The p-medians.
SIAM Journal on Applied Mathematics, 37(3):539–560.

Laporte, G., Nickel, S., and da Gama, F. S. (2019). Introduction to Location Science. Springer.

Ljubić, I., Pozo, M. A., Puerto, J., and Torrejón, A. (2024). Benders decomposition for the discrete ordered
median problem. European Journal of Operational Research, 317:858–874.

Magnanti, T. L. and Wong, R. T. (1981). Accelerating benders decomposition: Algorithmic enhancement and
model selection criteria. Operations Research, 29(3):464–484.

Pinheiro, D. N., Aloise, D., and Blanchard, S. J. (2020). Convex fuzzy k-medoids clustering. Fuzzy Sets and
Systems, 389:66–92.

Qi, L. and Shen, Z. (2010). Worst-case analysis of demand point aggregation for the euclidean p-median
problem. European Journal of Operational Research, 202(2):434–443.

Rahmaniani, R., Crainic, T. G., Gendreau, M., and Rei, W. (2017). The benders decomposition algorithm: A
literature review. European Journal of Operational Research, 259(3):801–817.

Ramı́rez-Pico, C., Ljubić, I., and Moreno, E. (2023). Benders adaptive-cuts method for two-stage stochastic
programs. Transportation Science, 57(5):1252–1275.

Reinelt, G. (1991). Tsplib-a traveling salesman problem library. ORSA Journal on Computing, 3(4):376–384.

Ren, J., Hua, K., and Cao, Y. (2022). Global optimal k-medoids clustering of one million samples. Advances
in Neural Information Processing Systems, 35:982–994.



Les Cahiers du GERAD G–2025–27 24

Resende, M. G. C. and Werneck, R. F. (2004). A hybrid heuristic for the p-median problem. Journal of
Heuristics, 10:59–88.

ReVelle, C. S. and Swain, R. W. (1970). Central facilities location. Geographical analysis, 2(1):30–42.

Salhi, S. and Irawan, C. (2015). A quadtree-based allocation method for a class of large discrete euclidean
location problems. Computers & Operations Research, 55:23–35.

Senne, E. L., Lorena, L. A., and Pereira, M. A. (2005). A branch-and-price approach to p-median location
problems. Computers & Operations Research, 32(6):1655–1664.


	Introduction
	Related work
	Benders decomposition framework
	Disaggregated Benders decomposition
	Aggregated Benders decomposition

	Aggregated Benders decomposition for Euclidean distances
	Constructing a partition
	Valid inequalities
	Valid inequalities 1
	Valid inequalities 2
	Valid inequalities 3

	Solution approach
	Solving Benders decomposition with kd-tree

	Computational results
	Experimental setup
	Overview of the instances
	Technical specifications
	Computation times
	Start heuristic

	TSP instances
	Comparison between disaggregated and aggregated Benders decomposition
	Changing the start heuristic
	Contribution of each step in the aggregated Benders decomposition
	Lower bound in the first iteration

	BIRCH instances
	CIRCLE instances
	Solving Benders decomposition with kd-tree
	TSP-huge instances
	TSP* instances


	Conclusion & discussion
	Appendix
	Details on the algorithms
	The k-means++ algorithm
	Solving k-means++ with kd-tree
	Solving the separation algorithm with kd-tree

	Parameters
	Computational results
	Different callback settings
	Contribution of each type of valid inequality
	Detailed computational results when solving the root node



