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– Library and Archives Canada, 2025

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine
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Abstract : Motivated by a real-world application at a large international pharmaceutical company,
we tackle an integrated location-inventory-transportation problem under demand uncertainty. The
supply chain network of this problem comprises multiple plants, distribution centers (DCs), and cus-
tomers. The decision-making process involves simultaneously determining the facility locations, in-
ventory planning, and transportation volumes. Apart from the computational complexity resulting
from this integration, other practical challenges arise from the fact that the planner must determine
inventory policies that account for safety stock consolidation, whereas transportation is charged based
on volume-based piecewise linear costs. To this end, we propose an exact and an approximate solution
framework to solve this problem. The exact approach is based on a logic-based Benders decomposition
(LBBD) framework enhanced by a piecewise-linear lower-bound function and efficient logic cuts. We
then improve the scalability by leveraging an approximate model with a piecewise linear approximation
for safety stock computation. Finally, using the instances derived from real-world data, we empirically
demonstrate the benefit of the integrated model, which yields up to 9% of potential cost savings.

Keywords : Logistics, Integrated optimization, location, inventory policies, safety stock, transporta-
tion, piecewise linearization, Benders decomposition, network design, piecewise transportation costs
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1 Introduction

Real-world logistics network planning comprises several decisions, mainly related to location, produc-

tion, inventory, and transportation management. Due to their complexity, these decisions are often

made in isolation or in a sequential fashion (Jalal et al. 2022b). Nevertheless, such approaches can

result in a suboptimal performance of the network (Üster et al. 2008, Bouchard et al. 2017, Darvish and

Coelho 2018). The integration of decisions in logistics network planning facilitates the coordination

of decisions and allows the firm to substantially decrease logistics network costs (Brahimi and Khan

2014, Forouzanfar et al. 2018, Ghomi-Avili et al. 2020, Biuki et al. 2020, Jalal et al. 2022a).

Motivated by the operations of a pharmaceutical company, we present an effective solution frame-

work for the integrated logistical network planning problem. In this context, in order to establish

contracts with a third-party logistics (3PL) provider, the firm’s decision-makers determine the net-

work design (selections of suppliers and rental storage facilities), inventory management (inventory

policy targets), and transportation planning (planned shipment volumes) in advance at the start of

each year. More specifically, the company employs the periodic review (T, S) inventory policy in their

Enterprise Resource Planning system, where the parameter T represents the review interval and the

parameter S represents the target inventory level within the review interval. The period review inter-

val T is an input parameter, but the target inventory level S is a decision, which can be different for

each of the DCs and which can also vary over time since the average demand at the retailers can vary

over time. As retailer demand is uncertain, safety stocks need to be maintained at DCs to provide

an appropriate service level and to protect against short-term variations in retailer demand. As the

demand is time-varying in this context, we also consider anticipation inventory to address the seasonal

demands.

The main challenge of the integration of network design and inventory management in the supply

chain is its complexity and scalability (Farahani et al. 2014). The overall supply chain performance and

costs are tied to inventory management, which synchronizes manufacturing/supply and transportation

planning. Nevertheless, most studies in the literature consider inventory management in isolation from

the supply chain design. At the same time, most studies in network design overlook inventory decisions

altogether or merely incorporate a basic and simplified approach to inventory management rather than

an explicit inventory policy due to its non-linearity and computational complexity, which leads to

suboptimal solutions (Chen et al. 2011, Sadjady and Davoudpour 2012, Shavandi and Bozorgi 2012).

There are some studies, e.g., Üster et al. (2008), Ahmadi-Javid and Hoseinpour (2015), Wheatley

et al. (2015), Jeet and Kutanoglu (2018), Candas and Kutanoglu (2020), that consider an integrated

approach to supply chain network design and inventory management. Most studies, however, focus

on a single-echelon network (You and Grossmann 2010) and assume linear unit transportation costs

(Engebrethsen and Dauzère-Pérès 2019, Engebrethsen and Dauzère-Pérès 2023, Tamssaouet et al.

2023). As real-world transportation costs typically comprise different cost components and quantity

discounts, there is a practical need to incorporate a piecewise linear cost function, which can be used

to capture more complex cost structures and quantity discounts in transportation planning (Croxton

et al. 2003, Engebrethsen and Dauzère-Pérès 2019, Brunaud et al. 2018). To the best of our knowledge,

no paper has examined all these aspects which are simultaneously taken into account in this paper.

Our contribution is fourfold. First, we integrate important decisions in logistics network planning

regarding network design, inventory management, and transportation planning. Second, we integrate

features and characteristics of the real-world application in our problem, including location-based lead

times, storage capacity constraints in DCs, multiple plants, multiple periods, and multiple products.

Safety stock is a function of demand at each DC and the lead time from plants to DCs. Hence, safety

stock calculations must be carried out simultaneously with the assignment and the location decisions.

The inventory control decisions are made with a period review inventory policy, defining the amount

of cycle inventory, safety stock, and anticipation inventory at open DCs. This work also addresses

piecewise linear costs, which are a real feature not often considered in the literature. Third, since

this integrated location-inventory-transportation model is highly complex and non-linear, we propose
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two distinct solution approaches. The first employs an exact method based on logic-based Benders

decomposition, while the second involves a linear model with a safety stock approximation. Our com-

putational experiments assess various logic cuts for the logic-based Benders decomposition technique.

Fourth, we generate instances based on real data from the case of an international pharmaceutical

company with operations in South America and carry out extensive computational experiments to

analyze the performance of the decomposition framework.

The paper is organized as follows. Section 2 presents the literature review. Section 3 details the

problem description, model formulation, and linearization procedure. Section 4 presents the solution

methods. Section 5 presents computational results and discussion. Finally, section 6 concludes with

main insights and some directions for future research.

2 Literature review

Location and inventory decisions are related since inventory decisions depend on the location of the

facilities (e.g., plants, DCs, and retailers) and the assignments of retailers to DCs and DCs to plants.

However, location and inventory management decisions have been commonly dealt with separately. We

review studies that put forward this integration. Table 1 presents some characteristics of the relevant

studies, i.e., the number of plants, type of lead time, demand sourcing, number of products, number

of periods, capacity constraints, and inventory policy type. Similarly, in Table 2 we present the review

of the main decisions that are related to the context of our study, i.e., location-allocation, capacity

selection, safety stock, anticipation inventory, and transportation decisions, as well as the data source

of instances, model type, and solution method.

Table 1: Literature review: problem characteristics

Demand Capacity Inventory
Article #Plants Lead times Sourcing #Products #Periods Constraints Policy

Vidyarthi et al. (2007) Multiple Average Single Multiple Single Cap Min inventory
cost

Park et al. (2010) Multiple Location-based Single Single Single Cap (r,Q)
Yao et al. (2010) Multiple Location-based R/C Multiple Single Uncap (T,S)
You and Grossmann (2010) Multiple Average Single Single Single Uncap (T,S)
Berman et al. (2012) Single Location-based Single Single Single Uncap (T,S)
Gzara et al. (2014) Single Location-based Single Multiple Single Uncap (S-1,S)
Wheatley et al. (2015) None Average R/C Multiple Single Uncap (S-1,S)
Zhang and Unnikrishnan (2016) Single Location-based Single Single Single Cap (T,S)
Amiri-Aref et al. (2018) Single Location-based Multiple Single Multiple Cap (r,S)
Escalona et al. (2018) Single Location-based Single Single Single Uncap (r,Q)
Schuster Puga et al. (2019) Single Location-based Single Single Single Uncap Min inventory

cost
Zheng et al. (2019) Single Location-based Single Single Single Uncap (T,S)
Tapia-Ubeda et al. (2020) Single Location-based Single Single Single Uncap (r,Q)(T,r,S)

(S-1,S)
Our article Multiple Location-based R/C Multiple Multiple Cap (T,S)

R/C: Retailer per commodity

Since the company must ensure sufficient inventory and safety stocks to deal with demand un-
certainty, it is necessary to define the location with minimum costs, and also to define the inventory
management decisions at the DCs and inventory control policies based on a predefined service level.
Under uncertain retailer demands, risk-pooling is a strategy to manage such demand uncertainty by
consolidating inventory at DCs to achieve an appropriate service level. The transportation time from
the plants to the DCs (lead time) is a relevant factor in the determination of the safety stock level
under random retailer demands. Lead times depend on several factors, such as the physical distance
and transportation mode, as well as the product type, the production technologies, etc. Nevertheless,
papers in the literature incorporating the risk-pooling strategy have not considered DC-to-plant de-
pendent lead times in the network design problems. Most papers consider a single plant or supplier
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Table 2: Literature review: decisions, data source, model type, and solution method

Article Decisions1 Data Model2 Method

Loc-alloc Cap sel SS Ant inv Transp

Vidyarthi et al. (2007) ✓ ✓ ✓ Random data MINLP Heuristics
Park et al. (2010) ✓ ✓ Random data MINLP Heuristics
Yao et al. (2010) ✓ ✓ Random data MINLP Heuristics
You and Grossmann (2010) ✓ ✓ Real data based MINLP Heuristics
Berman et al. (2012) ✓ ✓ Random data MINLP Heuristics
Gzara et al. (2014) ✓ ✓ Random data MINLP Solver
Wheatley et al. (2015) ✓ ✓ Real data based MINLP Exact
Zhang and Unnikrishnan (2016) ✓ ✓ Literature CQMIP Heuristics
Amiri-Aref et al. (2018) ✓ ✓ ✓ Generated data MINLP Heuristics
Escalona et al. (2018) ✓ ✓ Random data CQMIP Solver
Schuster Puga et al. (2019) ✓ ✓ Literature CQMIP Solver
Zheng et al. (2019) ✓ ✓ ✓ Real data based CQMIP Exact
Tapia-Ubeda et al. (2020) ✓ ✓ Real data based MINLP Heuristics
Our article ✓ ✓ ✓ ✓ ✓ Real data based MINLP Exact

1 Decisions: Location-allocation (Loc-alloc), Capacity selection (Cap sel), Safety Stock level (SS), Anticipa-
tion inventory level (Ant inv), Transportation (Transp).

2 Model: Mixed Integer Nonlinear Programming (MINLP), Convex Quadratically Mixed-Integer Program-
ming (CQMIP)

or source from which the DCs are supplied (Berman et al. 2012, Gzara et al. 2014, Zhang and Un-
nikrishnan 2016, Amiri-Aref et al. 2018, Escalona et al. 2018, Schuster Puga et al. 2019, Zheng et al.
2019, Tapia-Ubeda et al. 2020). In such a case, the lead time depends only on the DC location. Other
works consider multiple plants but consider that the lead time is an average for all plant-DC pairs
(Vidyarthi et al. 2007, You and Grossmann 2008). In contrast, Park et al. (2010) and Yao et al. (2010)
are the only studies that consider lead times from multiple plants to DCs. This consideration results
in a problem that is more difficult to solve but can still be handled using tailored heuristics. Yao et al.
(2010) propose a two-phase heuristic solution algorithm based on the Lagrangian relaxation approach,
and Yao et al. (2010) develop an iterative heuristic method. Both heuristics methods provide good
solutions for the addressed problems.

Multiproduct problems cannot adequately be represented by single-product or single-commodity
models. However, considering multiple types of products can make the problem more complex. Multi-
products models enable the possibility of using multiple sources of products from plants and DCs, as
demonstrated by Yao et al. (2010). Therefore, it is crucial to account for differences in lead times
for production or transportation across different products, and these characteristics should be jointly
considered when making decisions regarding product assignments and inventory policies at various
locations. Lead times for production and transportation can vary depending on the product, and
such characteristics should be considered alongside decisions about product assignment and inventory
policies.

Most papers in Table 1 consider an infinite planning horizon or single-period planning that does
not represent the context when the demand varies over different periods in the planning horizon.
Additionally, they often overlook the diverse characteristics of products, e.g., size, weight, price, de-
mand patterns; and requirements, e.g., environmental conditions such as temperature ranges. These
considerations of a single product and period can result in suboptimal solutions (Jalal et al. 2022a,
2023).

Note that in Table 1, most papers overlook capacity constraints. However, it is an important set of
constraints in practice for both DCs and plants and disregarding them can result in infeasible solutions.
When capacity is fixed and demand varies, anticipatory inventory is a tactical decision to deal with
capacity constraints. Thus, capacity selection becomes a crucial issue in implementing solutions, as
it determines the sizes of different DCs. DC capacity can vary depending on demand assignment,
allowing flexibility in accommodating different demand amounts.
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The consideration of safety stocks makes the problem non-linear and much more difficult to solve.
To solve this complex problem, most articles present heuristics methods, such as heuristics based on
Lagrangian relaxation (Vidyarthi et al. 2007, Park et al. 2010, You and Grossmann 2010, Berman
et al. 2012), Benders decomposition based on heuristics (Tapia-Ubeda et al. 2020), and approximation
algorithms (Yao et al. 2010, Zhang and Unnikrishnan 2016, Amiri-Aref et al. 2018). Few papers propose
exact methods. Wheatley et al. (2015) present an exact solution method using logic-based Benders
decomposition and Zheng et al. (2019) propose an exact algorithm based on the Generalized Benders
Decomposition method. However, such methods are applied to tackle simpler problems compared to
the application considered in our case, which includes a multi-plant network and capacity constraints
in a multi-period planning horizon.

Table 1 also presents the inventory policies used by the studies. A commonly used policy in practice
is the periodic review and order-up-to-level (T, S) inventory policy, where the product is replenished
up to S whereas a new ordering decision is made periodically after a review interval of T periods. In
the (r, Q) policy, when the inventory position falls below a reorder level r, a replenishment order for
Q units is placed. In the minimum/maximum (r, S) inventory policy, when the inventory on hand
falls below a certain minimum r, a request is made for a replenishment order that will restore the
on-hand inventory to a maximum number, S. The one-for-one (S-1,S) inventory policy, which calls
for a replenishment order after each demand, is often advocated for controlling the stock levels of
expensive, slow-moving items. In the (T, r, S) policy, the stock level is reviewed at the end of a fixed
period of T time units. If the inventory level is at or below the reorder point r, a replenishment order
is placed. The order quantity is determined to restore the stock level to the maximum target level S.
The consideration of these policies implies the consideration of safety stock to deal with the uncertain
demand.

While incorporating transportation decisions into the network design model can lead to lower supply
chain costs, very few papers have considered realistic transportation cost functions. Across all papers
listed in Tables 1 and 2, and in a majority of studies focusing on inventory planning, transporta-
tion costs are often oversimplified by assuming linear unit transportation costs. However, real-world
transportation costs commonly involve diverse structures and discount schedules (Engebrethsen and
Dauzère-Pérès 2019). Particularly, piecewise linear costs, which are frequently encountered in trans-
portation planning (Croxton et al. 2003, Brunaud et al. 2018), are neglected in most of the related
literature.

3 Problem description and modeling

3.1 Problem definition

This study addresses the integrated logistics network planning problem at the tactical level. We study
a network composed of multiple plants, DCs, and retailers. The DCs are intermediate facilities between
the plants and the retailers and facilitate the shipment of products in the two echelons, as shown in
Figure 1. We consider the problem of defining which DCs of a 3PL provider should be selected to
distribute multiple products to a set of retailers. Moreover, the problem includes selecting the capacity
level for the opened DCs. The capacity levels are defined in terms of volume. The DC location costs
comprise contractual fixed costs (e.g., rental space or volume in DCs). The selected DCs must remain
in operation until the end of the planning horizon. Plants also have limited capacity, but this is not a
decision variable within the model.

The retailers’ demands are assumed to be independent and uncertain, where the uncertainty of
demand (which can be estimated from forecasting errors) follows a normal distribution (Zheng et al.
2019). In addition, the expected demand at each retailer is dynamic and thus it can vary over time
(as demand in this case is highly seasonal). The inventory management at the DCs is executed using
a periodic review policy (T, S) presented in Figure 2. In the periodic review policy or reorder cycle
policy, the stock level is only periodically observed. The parameter T represents the review interval
and the parameter S is the target inventory level within the review interval, referred to as the order-
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Figure 1: Logistics network

up-to-level. At each time period when the inventory is reviewed, the quantity ordered by DC from a
plant q̃ is determined based on this order up to level S and the available inventory I ′ where q̃ = S− I ′.
The parameter S is determined as S = µ(T + ℓ) + Φασ

√
(T + ℓ), where µ is the demand mean, σ is

the standard deviation, and ℓ is the lead time from plant to DC, and Φα is the number of standard
deviations related to the service level α such that P (Z ≤ Φα) = α. With this definition of S, the
probability that there is a stock out is up to (1 − α). The difference between S and the average
demand in T + ℓ makes up the safety stock SS = Φασ

√
(T + ℓ).

Q 

T 

t  

l 

T 

Time 
l 

Inventory 

SSt 
SSt+1 

St 

Q 

T 

t+1  

T 

Q 

Q 

St+1 

l 

Figure 2: Periodic review policy (T, S)

The consolidation of the cycle, safety stock, and anticipation inventory at DCs are considered in
this work. The review interval at the DC j for the product p, Tjp, is predetermined by the firm based
on their inventory review schedule and assumed to be Tjp ≤ t as multiple replenishments can be carried
out in each period (e.g., if t is a month, Tjp can be weekly or biweekly periods). The inventory decisions
consist in determining the target inventory level or the order-up-to level S in each period, depending on
which retailers are assigned to a DC. The target level consists of both cycle inventory and safety stock.
The cycle inventory is the stock expected to be used to meet normal demand during a review interval,
while safety stock is the extra stock to meet excess demand, to protect against uncertainty. We also
consider the anticipation inventory that is built up to anticipate increased future retailer demands in
later periods due to the limited capacity in plants (Olhager et al. 2001). The anticipation inventory
for every period is determined based on the total quantity ordered by the DC from plants, the total
demand allocated to the DC in the period, and the balance of safety stock. The total anticipation
inventory is computed across several periods, and the average level of anticipation inventory within a
period is computed as the average of the anticipation inventory at the beginning and the end of each
period, as shown in Figure 3. Lastly, the total inventory cost is the sum of the costs of the target level,
composed of the cycle, the safety stock, and the anticipation inventory.
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𝐼0 + 𝐼1
2  𝐼1 + 𝐼2

2  𝐼2 + 𝐼3
2  

Figure 3: Anticipation inventory by period

Finally, as in Croxton et al. (2003), the transportation costs comprise different rates based on
shipment volumes where each segment s has an associated fixed cost gs and a variable cost cs. The
rate of the segment s is applied when the volume is in the range [bs−1, bs). Figure 4 illustrates
the transportation cost for different quantities of products: the x-axis is the load weight, thus the
breakpoints are based on the weights, and the y-axis is the total transportation cost.

Load 

Total cost 

bs-1 bs 

cs 

gs 

Slope 

Figure 4: Transportation costs with different rates for different loads

Figure 4 also shows the impact of discounts among the segments. This transportation cost structure
is applied for the transportation from the plants to DCs and from DCs to the retailers.

The carrier is responsible for the preservation of the goods from pick up to delivery. Thus, any
damage that impairs the integrity of the cargo must be covered by the carrier. Ad Valorem is used to
offset part of these costs. It is a component of the freight cost, charged to cover cargo security costs. It
is a rate calculated on the value of the goods and in its composition can be considered all the measures
that are taken to preserve the transported cargo, such as various insurances, investments for vehicle
safety (including tracking and monitoring systems), operational costs, and security services. The Ad
Valorem cost is explicitly modeled as part of the transportation cost in our model.

The objective of this problem is to minimize the total cost composed of DC location costs, trans-
portation costs, and inventory holding costs.

3.2 Mathematical formulation

The notation used in the formulation is presented below.

Sets
i, j, k ∈ I = If ∪ Iw ∪ Ic Facilities: plants, potential DCs, and retailers
l ∈ L Capacity levels at DCs
p ∈ P Products
s ∈ S Cost segments for transportation
t, t′ ∈ Θ Time periods
Afw = {(i, j) : (i ∈ If ∧ j ∈ Iw)} Available arcs from plants to DCs
Awc = {(i, j) : (i ∈ Iw ∧ j ∈ Ic)} Available arcs from DCs to retailers
A = Afw ∪ Awc Available network arcs
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Parameters
bs Breakpoint at segment s for the transportation cost
capip Production capacity of product p at plant i
cijs Variable cost of the segment s to transport cargo from entity i to entity j (per unit of weight)
c′ij Variable security cost to transport cargo from entity i to entity j (per unit of value)

fjl Fixed cost for opening DC j at capacity level l
gijs Fixed cost of the segment s to transport cargo from entity i to entity j
hpj Unitary inventory cost of product p in DC j (per period)
ℓij Lead time from entity i to entity j (in days)
ql Storage capacity at level l
Tjp Prespecified review period at the DC j for the product p (in days)
ηkt Number of working days at retailer k in period t
µpkt Mean daily demand of product p at retailer k in period t
σ2
pkt Variance of daily demand of product p at retailer k in period t

ρp Price of product p
υp Volume of product p
ωp Weight of product p
Φα Number of standard deviations related to the service level α such that

P (Z ≤ Φα) = α

Continuous variables
Ijpt Anticipation inventory of product p at DC j at the end of the period t
Qijpt Total order quantity of product p from plant i to DC j in period t
Sjpt Target inventory of product p at DC j in each review period within period t
SSjpt Safety stock of product p at DC j in each review period within period t
Zijst Auxiliary variable for cargo weight transported from entity i to entity j in period t in the segment s

Integer variables
Yjl Binary variable equal to 1 if DC j is open at capacity level l; 0, otherwise
Wijst Binary variable equal to 1 if the segment s is used to transport cargo between the entities i

and j in period t; 0, otherwise.
Xjkp Binary variable equal to 1 if a demand of product p at retailer k is served from DC j; 0,

otherwise
X′

ijp Binary variable equal to 1 if the product p at DC j is sourced from plant i; 0, otherwise

Uijkp = XjkpX
′
ijp Binary auxiliary variable for the model linearization for product p from plant i to DC j

and then to retailer k

The multi-echelon supply chain design and inventory management and transportation planning
model can be formulated as a mixed-integer nonlinear program (MINLP).

The objective function (1) consists of minimizing the total cost, given by the sum of facility opening
costs, inventory holding costs, and transportation costs. The first term comprises the costs related to
the selection of DC location and capacity levels. The second to fourth terms correspond to the safety
stock, anticipation inventory, and cycle inventory costs, respectively. The total anticipation inventory
is calculated over multiple periods, with the average for each period being the mean of its initial and
final levels, as shown in Figure 3. In a periodic review system, the average order quantity is equal to
the daily average demand multiplied by the number of days in the review period. The average cycle
inventory is approximately half of this expected demand over the review period (Nahmias and Olsen
2015). The transportation costs have two components, a variable cost associated with the cargo weight
and a fixed cost associated with the segment cost corresponding to that weight, as shown in Figure 4.
The fifth and sixth terms represent the variable transportation costs, while fixed transportation costs
are represented by the seventh and eighth terms, for both echelons, i.e., from plants to DCs, and from
DCs to retailers. Finally, the last two terms of the objective function represent the transportation
security costs for both echelons.

minΨ = min

∑
j∈Iw

∑
l∈L

fjlYjl +
∑
j∈Iw

∑
p∈P

∑
t∈Θ

hpj

(
SSjpt +

Ijpt−1 + Ijpt
2

+
1

2
Tjp

∑
k∈Ic

µpktXjkp

)
+

∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

cijsZijst +
∑
k∈Ic

cjksZjkst

)
+

∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

gijsWijst +
∑
k∈Ic

gjksWjkst

)



Les Cahiers du GERAD G–2025–26 8

+
∑
j∈Iw

∑
p∈P

∑
t∈Θ

( ∑
i∈If

c′ijρpQijpt +
∑
k∈Ic

c′jkρpηktµpktXjkp

) (1)

Constraints (2) to (4) define the network structure. Constraints (2) guarantee that the demand of
product p at retailer k in period t is served by one DC. Constraints (3) set the relation among the two
echelons, plants to DCs, and DCs to retailers. For each product separately, we guarantee that the DC
sources the product from a single plant by constraints (4): if DC j is chosen, it must be served by only
one plant i, else if the DC is not selected, it is not assigned to any plant.∑

j∈Iw

Xjkp = 1, ∀k ∈ Ic, p ∈ P. (2)

∑
i∈If

X ′
ijp ≥ Xjkp, ∀j ∈ Iw, k ∈ Ic, p ∈ P. (3)

∑
i∈If

X ′
ijp ≤

∑
l∈L

Yjl, ∀j ∈ Iw, p ∈ P. (4)

We consider multiple plants in the network. As a result, it becomes more difficult to incorporate
the inventory management components because, for a given DC, the lead time for ordering a specific
product now depends on which plant is selected to source. Thus, the actual lead times for DCs needed
to determine the inventory policies depend on location decisions, rather than being parameters as
commonly assumed in the literature. Using the periodic review policy (T, S), the target inventory
level and the safety stock for product p at DC j in each review period within period t are defined by∑

i∈If

∑
k∈Ic

(Tjp+ ℓij)µpktX
′
ijpXjkp+SSjpt and SSjpt = Φα

√∑
i∈If

∑
k∈Ic

(Tjp + ℓij)σ2
pktX

′
ijpXjkp,

respectively. These equations are non-linear because of the product of two binary variables and the
square root of the safety stock equation, which represents the risk pooling effect (Snyder et al. 2007,
Park et al. 2010, Alenezi and Darwish 2014). To linearize the X ′

ijpXjkp term, let Uijkp = X ′
ijpXjkp.

Notice that Uijkp can only be non-zero if both terms in the multiplication are equal to one. Thus,X ′
ijp =

0 and/or Xjkp = 0 implies that Uijkp must equal zero. This is guaranteed by constraints (5) and (6).
Otherwise, Uijkp = 1 if X ′

ijpXjkp = 1, which only happens if both terms in the multiplication are equal
to one. This is imposed by constraints (7).∑

i∈If

Uijkp ≤ Xjkp, ∀j ∈ Iw, k ∈ Ic, p ∈ P. (5)

Uijkp ≤ X ′
ijp, ∀i ∈ If , j ∈ Iw, k ∈ Ic, p ∈ P. (6)∑

i∈If

Uijkp ≥
∑
i∈If

X ′
ijp +Xjkp − 1, ∀j ∈ Iw, k ∈ Ic, p ∈ P. (7)

The target inventory level and the safety stock for product p at DC j in each review period within
the period t are defined by constraints (8) and (9), respectively. Sjpt and SSjpt are defined according
to the review intervals Tjp within the periods t.

Sjpt =
∑
i∈If

∑
k∈Ic

(Tjp + ℓij)µpktUijkp + SSjpt, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (8)

SSjpt = Φα

√∑
i∈If

∑
k∈Ic

(Tjp + ℓij)σ2
pktUijkp, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (9)

Constraints (10) represent the inventory balance for every product p, at every DC j in every period t.
The order quantity that arrives at DC j of each product p during a period t, originating from all plants,
is determined by the total demand assigned to DC j for that product p during period t. Additionally,
it includes the balance of anticipation inventory (Ijpt − Ijp,t−1) for the product p during the period t
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and t− 1, as well as, the safety stock for the same product (SSjpt −SSjp,t−1). Constraints (11) define
the plant capacity constraints for product p at plant i in period t. Constraints (12) represent the DC
capacity constraint in period t, if the DC j is chosen to be opened at level l, considering the target
inventory of the periodic review policy and the anticipation inventory. This constraint puts a limit on
the maximum volume in a DC. Constraints (13) ensure that only one level of capacity is selected for
the DC j.∑

i∈If

Qijpt =
∑
k∈Ic

ηktµpktXjkp + Ijpt − Ijpt−1 + SSjpt − SSjp,t−1, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (10)

∑
j∈Iw

Qijpt ≤ capip, ∀i ∈ If , p ∈ P, t ∈ Θ. (11)

∑
p∈P

υp(Sjpt + Ijpt) ≤
∑
l∈L

qlYjl, ∀j ∈ Iw, t ∈ Θ. (12)

∑
l∈L

Yjl ≤ 1, ∀j ∈ Iw. (13)

Constraints (14) and (15) define the total cargo weight transported in the two echelons (plant
to DC, and DC to retailer) in every period. Constraints (16) guarantee that the cargo shipped be-
tween levels corresponds to one of the segments s defined by the breakpoints bs−1 and bs in period t.
Constraints (17) guarantee that only one segment s is chosen in each period t between the echelons.∑

p∈P
ωpQijpt =

∑
s∈S

Zijst, ∀i ∈ If , j ∈ Iw, t ∈ Θ. (14)

∑
p∈P

ωpηktµpktXjkp =
∑
s∈S

Zjkst, ∀j ∈ Iw, k ∈ Ic, t ∈ Θ. (15)

bs−1Wijst ≤ Zijst ≤ bsWijst, ∀(i, j) ∈ A, s ∈ S, t ∈ Θ. (16)∑
s∈S

Wijst ≤ 1, ∀(i, j) ∈ A, t ∈ Θ. (17)

Finally, constraints (18) to (27) are integrality and nonnegativity constraints.

Yjl ∈ {0, 1}, ∀j ∈ Iw, l ∈ L. (18)

Xjkp ∈ {0, 1}, ∀j ∈ Iw, k ∈ Ic, p ∈ P. (19)

X ′
ijp ∈ {0, 1}, ∀i ∈ If , j ∈ Iw, p ∈ P. (20)

Uijkp ∈ {0, 1}, ∀i ∈ If , j ∈ Iw, k ∈ Ic, p ∈ P. (21)

Qijpt ≥ 0, ∀i ∈ If , j ∈ Iw, p ∈ P, t ∈ Θ. (22)

Zijst ≥ 0, ∀(i, j) ∈ A, s ∈ S, t ∈ Θ. (23)

Wijst ∈ {0, 1}, ∀(i, j) ∈ A, s ∈ S, t ∈ Θ. (24)

Ijpt ≥ 0, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (25)

Sjpt ≥ 0, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (26)

SSjpt ≥ 0, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (27)

Note that if the network has a single plant or there is a pre-assignment of DCs to plants for the
entire planning horizon, the mathematical formulation is reduced to:

minΨ = min (1) (28)

s.t. Constraints : (2), (10)− (19), (22)− (27). (29)

Sjpt =
∑
i∈If

∑
k∈Ic

(Tjp + ℓij)uijpµpktXjkp + SSjpt, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (30)

SSjpt = Φα

√∑
i∈If

∑
k∈Ic

(Tjp + ℓij)uijpσ2
pktXjkp, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (31)

where uijp is a parameter indicating if DC j sources product p from plant i.
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4 Benders reformulations

As the original MINLP is intractable, we apply the Benders decomposition (BD) method, a technique
for solving large-scale problems with complicating variables that link multiple constraints, to solve
this problem. In the BD method, we decompose the problem into a relaxed master problem and
smaller sub-problems that are potentially more efficient to solve (Benders 1962). The BD approach
allows us to systematically tackle some parts of the decisions (e.g., location) by solving multiple but
smaller sub-problems (e.g., transportation) while making sure that the solution and the optimality
bound converges, which can be more efficient than solving a single but very large model. The reader
is referred to Rahmaniani et al. (2017) for a survey on the BD algorithm. BD method was typically
applied to a partitioning of variables that leads to linear programming subproblems, whereas several
studies have proposed strategies to deal with integer subproblems (Laporte and Louveaux 1993, Sherali
and Fraticelli 2002, Angulo et al. 2016, Fakhri et al. 2017).

Logic-based Benders decomposition (LBBD) is an extension of the BD method, where, unlike the
traditional BD approach, the generation of the Benders cuts is not based on the solution of the dual
linear programs of the subproblems (Hooker and Ottosson 2003). LBBD is a versatile decomposition
technique that is applied successfully to a wide variety of mixed-integer problems, especially when the
Benders subproblem is not a linear program. Similar to classical BD, LBBD assigns values to the
complicating variables in the master problem and finds the best solution consistent with these values.
Instead of solving the dual of the LP subproblems that remain when the complicating variables take
fixed values, LBBD solves an inference dual, where proof of optimality within an appropriate logical
formalism is derived based on the fixed values of a subset of variables and constraints of the original
problem. In most cases, Logic-based Benders cuts are devised specifically for each problem based on
the structures of the inference dual and the Benders master problem. The subproblem in LBBD is a
Mixed-Integer Programming (MIP) problem. As a result, standard duality theory does not apply, and
we cannot derive the typical dual, feasibility, and optimality cuts based on duality. Consequently, the
cuts need to be derived based on the structure of the problem. There are two common implementations
of the LBBD: the original LBBD implementation, which can be seen as a cutting plane approach, and
the branch–and–check implementation (B&Ch), where the cuts are generated and added during the
branch–and–bound process (Roshanaei et al. 2017, Mart́ınez et al. 2019, Mart́ınez et al. 2022).

4.1 Basic LBBD

We decompose the problem into a master problem (MP) and a subproblem (SP). In this framework, the
location Yjl and allocation decisions, Xjkp, X

′
ijp, Uijkp, are part of the MP whereas the SP comprises the

remaining variables (SSjpt, Sjpt, Ijpt, Qijpt, Zijst,Wijst). After decomposing the problem, we obtain
an MP and an SP with integer variables and linear constraints. The MP provides a lower bound for
the problem. In this basic LBBD, the master problem (MPS) is modeled as follows:

minΨMPS =min

 ∑
j∈Iw

∑
l∈L

fjlYjl +
∑

j∈Iw

∑
p∈P

∑
t∈Θ

hpj

(1

2
Tjp

∑
k∈Ic

µpktXjkp

)

+
∑

j∈Iw

∑
p∈P

∑
t∈Θ

∑
k∈Ic

c′jkρpηktµpktXjkp +∆

 (32)

s.t. Constraints : (2)− (7), (11), (13), (18)− (22), (25). (33)∑
i∈If

Qijpt =
∑
k∈Ic

ηktµpktXjkp + Ijpt − Ijpt−1, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (34)

∑
p∈P

υp
( ∑

i∈If

∑
k∈Ic

(Tjp + ℓij)µpktUijkp + Ijpt

)
≤

∑
l∈L

qlYjl, ∀j ∈ Iw, t ∈ Θ. (35)

∆ ≥ 0. (36)
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Constraints (34) and Constraints (35) are equivalent to constraints (10) and (12) in the original
problem, but the safety stock SSjpt are not considered. Finally, Constraint (36) represents the domain
of the variable ∆, which retrieves the safety stock and transportation costs to the MPS, because we
drop the safety stock and transportation costs and variables from the objective function (1) and from
constraints (10) and (12)). Initially, the lower bound for the ∆ variable is zero in the MPS and is
updated as optimality cuts are added to the problem. Thus, the mathematical model (32) - (36) still
lacks the feasibility and optimality cuts to be defined.

Then, the variables Ȳjl, X̄jkp, Ūijkp are temporarily fixed in the SP to determine the target inven-
tory Sjpt, safety stock SSjpt, anticipation inventory Ijpt, order quantity Qijpt, and segment selection
Zijst,Wijst. Notice that standard SP (SPS) is a mixed-integer linear model because Ūijkp is fixed.

minΨSPS =min

 ∑
j∈Iw

∑
p∈P

∑
t∈Θ

hpj

(
SSjpt +

Ijpt−1 + Ijpt

2

) ∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

cijsZijst +
∑
k∈Ic

cjksZjkst

)

+
∑

j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

gijsWijst +
∑
k∈Ic

gjksWjkst

)
+

∑
j∈Iw

∑
p∈P

∑
t∈Θ

( ∑
i∈If

c′ijρpQijpt

) (37)

s.t. Constraints : (11), (14), (16), (17), (22)− (27). (38)

Sjpt =
∑
i∈If

∑
k∈Ic

(Tjp + ℓij)µpktŪijkp + SSjpt, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (39)

SSjpt = Φα

√ ∑
i∈If

∑
k∈Ic

(Tjp + ℓij)σ2
pktŪijkp, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (40)

∑
i∈If

Qijpt =
∑
k∈Ic

ηktµpktX̄jkp + Ijpt − Ijpt−1 + SSjpt − SSjp,t−1, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (41)

∑
p∈P

υp(Sjpt + Ijpt) ≤
∑
l∈L

qlȲjl, ∀j ∈ Iw, t ∈ Θ. (42)

∑
p∈P

ωpηktµpktX̄jkp ≤
∑
s∈S

Zjkst, ∀j ∈ Iw, k ∈ Ic, t ∈ Θ. (43)

The objective function (37) minimizes the costs associated with safety stock and anticipation in-
ventory costs, transportation costs, and security costs (from plants to DCs). Constraints (39), (40),
(41), (42), and (43) are equivalent to constraints (8), (9), (10), (12), and (15) in the original problem,
fixing the variables Uijkp, Xjkp, and Yj according to the MPS solution. After solving the SPS, cuts
are added to the MPS to update the cost of the location-allocation decisions in the MPS or to cut off
the infeasible location-allocation solutions.

4.1.1 Logic-based cuts

Given a location-allocation (Ȳ , X̄, Ū) that comprises vectors of the values of variables Y andX obtained
by solving the MPS, let

Π(Ȳ , X̄, Ū) =

∑
j∈Iw

∑
l∈L:
Ȳjl=1

(Yjl − 1) +
∑
j∈Iw

∑
k∈Ic

∑
p∈P:

X̄jkp=1

(Xjkp − 1) +
∑
k∈Ic

∑
p∈P:

Ūijkp=1

(Uijkp − 1)

−
∑
j∈Iw

∑
l∈L:
Ȳjl=0

Yjl −
∑
j∈Iw

∑
k∈Ic

∑
p∈P:

X̄jkp=0

Xjkp −
∑
i∈If

∑
j∈Iw

∑
k∈Ic

∑
p∈P:

Ūijkp=0

Uijkp

 (44)

Note that for a given solution (Ȳ , X̄, Ū), Π(Ȳ , X̄, Ū) = 0. Moreover, note that if the solution
(Ȳ , X̄, Ū) changes, i.e., if at least one variable with value 1 changes to 0 or one variable with value
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0 changes to 1, Π(Ȳ , X̄, Ū) < 0. Consequently, if the solution (Ȳ , X̄, Ū) is infeasible in the SPS, the
valid feasibility cut can be added in the MPS to cut off this solution is:

Π(Ȳ , X̄, Ū) ≤ −1 (45)

Similarly, a valid optimality cut to the MPS is:

∆ ≥ Ψ̄SPS∗
(Ȳ , X̄, Ū) + Ψ̄SPS∗

(Ȳ , X̄, Ū) Π(Ȳ , X̄, Ū), (46)

where ΨSPS∗
(Ȳ , X̄, Ū) is the cost of the optimal solution of the subproblem SPS. Note that in this

case, for solution (Ȳ , X̄, Ū), ∆ ≥ Ψ̄SPS∗
(Ȳ , X̄, Ū) (Π(Ȳ , X̄, Ū) = 0), thus we update the cost of the

solution (Ȳ , X̄, Ū) in the MPS according to the real cost of the solution in the subproblem SPS. If at
least one variable with value 1 changes to 0 or one variable with value 0 changes to 1, Π(Ȳ , X̄, Ū) < 0
and consequently Ψ̄SPS∗

(Ȳ , X̄, Ū) + Ψ̄SPS∗
(Ȳ , X̄, Ū) Π(Ȳ , X̄, Ū) ≤ 0.

4.2 Enhanced LBBD

Since a significant portion of the original model is projected to the SP, the solution can be infeasible or
the lower bound obtained by the MPS can be weak. In this section, we describe several enhancements
made to improve the solution process of our LBBD approach. The B&Ch algorithm is implemented
using the branch-and-bound callbacks of an MIP solver, solving the linear relaxation of the MPE
at each node. If the solution is infeasible or does not improve the objective, the node is pruned;
otherwise, branching is performed for non-integer solutions. For integer solutions, the SPE checks
constraint violations, adding cuts if necessary, and the process repeats until convergence (Moreno
et al. 2019). The implementation algorithm for B&Ch is detailed in Appendix A.

4.2.1 Piecewise linear lower bound function of safety stock

The safety stock (SSjpt) is a non-linear function of variance (
∑

i∈If

∑
k∈Ic

(Tjp+ ℓij)σ
2
pktUijkp), which

itself is decision-dependent since it involves the Uijkp variables. In order to estimate the safety stock
values, we use a piecewise linear approximation that provides a lower bound of safety stock. This
approximation involves dividing the curve of safety stock into multiple linear segments, each repre-
senting a specific range of variance values. The accuracy of the approximation is proportional to the
number of segments used, and the number of segments used strongly influences the complexity of the
problem. Since the segments are always under the curve to be approximated, the piecewise linear
function underestimates the real values (Hamer-Lavoie and Cordeau 2006).

We define a set M that contains all the points marking the beginning and end of a linear segment.
Every point in this set M corresponds to a variance value αm on the x-axis and its corresponding
safety stock value on the y-axis. Consequently, there is a total of |M| points and |M| − 1 segments.
Every segment has an upper bound with variance value αm and its corresponding real safety stock
values f(αm), as shown in Figure 5. We define the continuous variables λm and binary variables γm.

Aproximate 
linear function 

Nonlinear 
function 

Slope λjpm  

m 

𝛼𝑚−1 𝛼𝑚 𝛼𝑀 

𝑓(𝛼𝑚) 

  (𝑇𝑗𝑝 + ℓ𝑖𝑗)𝜎𝑝𝑘𝑡
2  𝑈𝑖𝑗𝑘𝑝

𝑘 ∈ 𝐼𝑐𝑖 ∈ 𝐼𝑓

 

SSjpt 

𝑓(𝛼𝑚−1) 

𝛾jpm  

Figure 5: Piecewise linear lower bound function of safety stock
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Variables λm associated with every point m ∈ M represent the weight that the value of the variance of
this point will have in the linear approximation of the segment m bounded by the points m and m+1.
The binary variables γm are associated to every segment m in the set {0, 1, ..., |M| − 1}, taking the
value 1 if the segment m is chosen for the linear approximation. A single γm, designating a segment,
as well as two bounds λm and λm+1, designating points, must take a strictly positive value. To include
the information concerning the DC, product, and period under consideration, the variables λjptm and
λjptm+1 are defined.

The piecewise linear lower bound function of safety stock can be expressed using the following set
of constraints:∑

i∈If

∑
k∈Ic

(Tjp + ℓij)σ
2
pktUijkp −

∑
m∈M

αmλjptm = 0, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (47)

∑
l∈L

Yjl ≥
∑

m∈M
λjptm, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (48)

Xjkp ≤
∑

m∈M
λjptm, ∀j ∈ Iw, k ∈ Ic, p ∈ P, t ∈ Θ. (49)∑

l∈L

Yjl ≥
∑

m∈M
γjptm, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (50)

Xjkp ≤
∑

m∈M
γjptm, ∀j ∈ Iw, k ∈ Ic, p ∈ P, t ∈ Θ. (51)

λjpt1 ≤ γjpt1, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (52)

λjptm ≤ γjptm−1 + γjptm, ∀j ∈ Iw, p ∈ P, t ∈ Θ,m ∈ M \ {0, |M|}. (53)

λjpt|M| ≤ γjpt(|M|−1), ∀j ∈ Iw, p ∈ P, t ∈ Θ. (54)

λjptm ∈ [0, 1], ∀j ∈ Iw, p ∈ P, t ∈ Θ,m ∈ M. (55)

γjptm ∈ {0, 1}, ∀j ∈ Iw, p ∈ P, t ∈ Θ,m ∈ M \ {|M|}. (56)

Constraints (47) to (49) determine the value of variables λjptm corresponding to the obtained
demand variance of product p in DC j. Constraints (48) and (50) state that the variables λjptm and
γjptm, respectively, are equal to zero if the warehouse j is not open. Constraints (49) and (51) force the
sum of λjptm and the sum of γjptm, respectively, to be one if at least one retailer demand of product p
is allocated to a warehouse j in period t. Constraints (52) to (54) link the variables γjptm and λjptm.
They ensure that λjptm is strictly positive only if at least one of the adjacent segments described by
variables γjptm and/or γjptm−1 is active. Finally, constraints (55) to (56) represent the domain of the
variables. Finally, the constraint to calculate the approximate safety stock can then be expressed as:

SSprox
jpt =Φα

∑
m∈M

λjptmf(αm), ∀j ∈ Iw, p ∈ P, t ∈ Θ. (57)

4.2.2 Enhanced master problem (MPE)

The enhanced master problem MPE incorporates the piecewise linear lower bound function of safety
stock, where the complicating nonlinear constraints are replaced by linear constraints (47) to (57).
The integrality condition of the γjptm variables is relaxed. Also, some variables of the subproblem are
included in the MPE: auxiliary linear variables for calculating cargo weight Zijst and segment selection
variables Wijst. The MPE is formulated as follows:

minΨMPE =min

 ∑
j∈Iw

∑
l∈L

fjlYjl +
∑

j∈Iw

∑
p∈P

∑
t∈Θ

hpj

(1

2
Tjp

∑
k∈Ic

µpktXjkp

)

+
∑

j∈Iw

∑
p∈P

∑
t∈Θ

∑
k∈Ic

c′jkρpηktµpktXjkp +∆

 (58)
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s.t. Constraints : (2)− (7), (11), (13)− (26), (47)− (57). (59)∑
j∈Iw

∑
p∈P

∑
t∈Θ

hpj

(
SSprox

jpt +
Ijpt− + Ijpt

2

)
+

∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

cijsZijst +
∑
k∈Ic

cijsZijst

)
+

∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

gijsWijst +
∑
k∈Ic

gjksWjkst

)
+

∑
i∈If

∑
j∈Iw

∑
p∈P

∑
t∈Θ

c′ijρpQijpt ≤ ∆. (60)

Sjpt =
∑
i∈If

∑
k∈Ic

(Tjp + ℓij)µpktUijkp + SSprox
jpt , ∀j ∈ Iw, p ∈ P, t ∈ Θ. (61)

∑
i∈If

Qijpt =
∑
k∈Ic

ηktµpktXjkp + Ijpt − Ijpt−1

+ SSprox
jpt − SSprox

jpt−1, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (62)∑
p∈P

υp
( ∑

i∈If

∑
k∈Ic

(Tjp + ℓij)µpktUijkp + SSprox
jpt + Ijpt

)
≤

∑
l∈L

qlYjl, ∀j ∈ Iw, t ∈ Θ. (63)

SSprox
jpt ≥ 0, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (64)

∆ ≥ 0. (65)

Constraints (60) allow computing the variable ∆, which defines the real cost given the decisions con-
sidered in the subproblem. The variable ∆ is initially zero in the MPE and is updated as optimality cuts
are added to the problem. Constraints (61), (62), and (63) are equivalent to the constraints (8), (10),
and (12) in the original problem, considering the safety stock approximation. Finally, constraints (64)
and (65) represent the domain of variables.

We can provide an initial solution for the master problem, as outlined in Appendix B.

4.2.3 Enhanced subproblem (SPE)

One strategy to reduce the number of variables in the subproblem is to compute a priori
the value of some variables. After solving the MPE, we can obtain the value of some variables
before solving the SPE as follows. First, let S̄Sjpt and S̄jpt be the value of the variables SSjpt

and Sjpt, respectively, for the location-allocation defined by the MPE. We can calculate

S̄Sjpt = Φα

√∑
i∈If

∑
k∈Ic

(Tjp + ℓij)σ2
pktŪijkp and sequentially S̄jpt =

∑
i∈If

∑
k∈Ic

(Tjp + ℓij)

µpktŪijkp + S̄Sjpt, ∀j ∈ Iw, p ∈ P, t ∈ Θ. Second, we can also calculate the value of the transportation
variables Zjkst and Wjkst, related to the transportation between the DC j and the retailer k. At the
same time, the subproblem continues optimizing the transportation decisions for the first echelon. Let
Z̄jkst and W̄jkst be the value of the variables Zjkst and Wjkst, respectively, for the location-allocation
solution defined by the MPE. We compute Z̄jkst and W̄jkst as follows:

Z̄jkst =

 κjkt, s ∈ S if [bs−1 ≤ κjkt ≤ bs],
∀j ∈ Iw, k ∈ Ic, t ∈ Θ.
0, otherwise.

W̄jkst =

 1, s ∈ S if [bs−1 ≤ κjkt ≤ bs],
∀j ∈ Iw, k ∈ Ic, t ∈ Θ.
0, otherwise.

where κjkt is the total weight transported from DC j to retailer k in period t, defined as follows:

κjkt =
∑
p∈P

ωpηktµpktX̄jkp, ∀j ∈ Iw, k ∈ Ic, t ∈ Θ.
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In addition, given the single sourcing assumption (imposed separately per product) from plants to
DCs, we can express variable Xjkp in terms of variable Uijkp, i.e.,

∑
i∈If

Uijkp = Xjkp, ∀j ∈ Iw, k ∈
Ic, p ∈ P. Thus, we only need to determine the value of the variables Yjl, Uijkp, Zjkst and Wjkst in
the subproblem. The enhanced SPE is modeled as follows:

minΨSPE =min

 ∑
j∈Iw

∑
p∈P

∑
t∈Θ

hpj +
(
S̄Sjpt +

Ijpt−1 + Ijpt

2

)

+
∑

j∈Iw

∑
s∈S

∑
t∈Θ

∑
i∈If

(
cijsZijst + gijsWijst

)
+

∑
i∈If

∑
j∈Iw

∑
p∈P

∑
t∈Θ

c′ijρpQijpt

 (66)

s.t. Constraints : (11), (14), (16)− (17), (22)− (25),

fixing the variable values Z̄jkst and W̄jkst. (67)

Ijpt − Ijpt−1 =
∑
i∈If

Qijpt −

( ∑
i∈If

∑
k∈Ic

ηktµpktŪijkp + S̄Sjpt − S̄Sjp,t−1

) , ∀j ∈ Iw, p ∈ P, t ∈ Θ.

(68)∑
p∈P

υp(S̄jpt + Ijpt) ≤
∑
l∈L

qlȲjl, ∀j ∈ Iw, t ∈ Θ. (69)

Constraints (68) and (69) are equivalent to the constraints (10) and (13) in the original problem,
fixing the variables Uijkp, Sjpt, SSjpt, Yjl according to the MPE solution.

4.2.4 Logic-based cuts

Cuts (45) and (46) are enough to update the real cost of the solution and to cut off infeasible solutions.
However, we also introduce additional logic–based inequalities to strengthen the bounds in MP. Let
Z̄jkst and W̄jkst be the value of the variables Zjkst and Wjkst, respectively, for a given solution. The
additional cuts are formulated as follows:

Zjkst ≥ Z̄jkst − Z̄jkst

(∑
p∈P:

X̄jkp=1

(1−Xjkp) +
∑
p∈P:

X̄jkp=0

Xjkp

)
, ∀j ∈ Iw, k ∈ Ic, s ∈ S, t ∈ Θ. (70)

Wjkst ≥ W̄jkst − W̄jkst

(∑
p∈P

X̄jkp=1

(1−Xjkp) +
∑
p∈P:

X̄jkp=0

Xjkp

)
, ∀j ∈ Iw, k ∈ Ic, s ∈ S, t ∈ Θ. (71)

Unlike cuts (45) and (46), which are single cuts for a given solution, the multiple cuts (70) and (71)
apply to every DC, retailer, cost segment, and period. In cut (70), the second term of the right-
hand side is equal to zero for the current solution. In this case, the cut forces the Zjkst variable in
the MPE to take its real value (real weight). If at least one of the allocation decisions changes, the
right-hand side is less than or equal to zero. In that case, cuts (70) do not eliminate any feasible
solutions to the original problem. Similarly, we add cuts (71) to strengthen the estimation of Wjkst

based on the allocation decisions. These cuts are based only on the allocation variables Xjkp because
this information is enough to define the transportation variables.

4.3 Linearized model APXM

We also test a mathematical model using the piecewise linear lower bound function of safety stock
(APXM). This model can be initialized with part of an initial solution, the location and capacity
selection, provided by the relaxed model, as presented in Section B. APXM is solved directly using
CPLEX, without any tailored algorithm.

minΨ =min

[ ∑
j∈Iw

∑
l∈L

fjlYjl +
∑
j∈Iw

∑
p∈P

∑
t∈Θ

hpj

(
SSprox

jpt +
Ijpt−1 + Ijpt

2
+

1

2
Tjp

∑
k∈Ic

µpktXjkp

)
+

∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

cijsZijst +
∑
k∈Ic

cjksZjkst

)
+

∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

gijsWijst +
∑
k∈Ic

gjksWjkst

)

+
∑
j∈Iw

∑
p∈P

∑
t∈Θ

( ∑
i∈If

c′ijρpQijpt +
∑
k∈Ic

c′jkρpηktµpktXjkp

) (72)
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s.t. Constraints (2)− (7), (11)− (25), (47)− (57).

Sjpt =
∑
i∈If

∑
k∈Ic

(Tjp + ℓij)µpktUijkp + SSprox
jpt , ∀j ∈ Iw, p ∈ P, t ∈ Θ. (73)

∑
i∈If

Qijpt =
∑
k∈Ic

ηktµpktXjkp + Ijpt − Ijpt−1 + SSprox
jpt − SSprox

jp,t−1, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (74)

SSprox
jpt ≥ 0, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (75)

An accurate solution can be obtained by calculating the real safety stock and its corresponding cost
using the allocation demand decisions derived from the approximate model. Subsequently, we update
the cost component related to the safety stock within the objective function. Lastly, we verify that the
capacity constraints are still satisfied with the updated safety stock. Note that while the approximated
model can yield infeasible solutions, the LBBD method always guarantees a feasible solution.

4.4 Sequential approach SQAP

The problem can be solved sequentially (which represents the existing approach employed by the com-
pany), starting with the location-allocation problem and then addressing inventory management and
transportation planning. The location-allocation problem incorporates information about the original
problem, such as cycle inventory, anticipation inventory, variable transportation costs, and capacity
constraints, to select the location and capacity levels of DCs. Subsequently, the decisions made during
location-allocation, along with those decisions derived from them (safety stock and transportation de-
cisions from DCs to retailers), are fixed to determine the order quantity, anticipation inventory level,
and cargo weight from the plant to DCs. Since the location-allocation problem doesn’t consider all
the constraints, the upper-level decisions may become infeasible at the lower levels. We present the
formulations as follows.

Upper level

minΨ =min

∑
j∈Iw

∑
l∈L

fjlYjl +
∑
j∈Iw

∑
p∈P

∑
t∈Θ

hpj

(Ijpt−1 + Ijpt
2

+
1

2
Tjp

∑
k∈Ic

µpktXjkp

)
+

∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

cijsZijst +
∑
k∈Ic

cjksZjkst

)
+

∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

gijsWijst +
∑
k∈Ic

gjksWjkst

)

+
∑
j∈Iw

∑
p∈P

∑
t∈Θ

( ∑
i∈If

c′ijρpQijpt +
∑
k∈Ic

c′jkρpηktµpktXjkp

) (76)

s.t. Constraints (2)− (7), (11)− (25). (77)∑
i∈If

Qijpt =
∑
k∈Ic

ηktµpktXjkp + Ijpt − Ijpt−1, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (78)

Bottom level:

minΨ =min

∑
j∈Iw

∑
l∈L

fjlȲjl +
∑
j∈Iw

∑
p∈P

∑
t∈Θ

hpj

(
S̄Sjpt +

Ijpt−1 + Ijpt
2

+
1

2
Tjp

∑
i∈If

∑
k∈Ic

µpktŪijkp

)
+

∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

cijsZijst +
∑
k∈Ic

cjksZ̄jkst

)
+

∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

gijsWijst +
∑
k∈Ic

gjksW̄jkst

)

+
∑
i∈If

∑
j∈Iw

∑
p∈P

∑
t∈Θ

(
c′ijρpQijpt +

∑
k∈Ic

c′jkρpηktµpktŪijkp

) (79)

s.t. Constraints : (11), (14), (16)− (17), (22)− (25),

(68)− (69) fixing the variable values Z̄jkst and W̄jkst. (80)
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5 Computational experiments

In this section, we report the computational performance of the proposed solution method. The aim
is to evaluate the efficiency of the tailored solution methods in providing good quality solutions in
a reasonable running time. We first analyze and identify the most promising version of the logic-
based Benders decomposition and the linearized model. Subsequently, we compare the best versions of
every method. In addition, we explore the advantages of integrated planning compared to traditional
sequential decision-making approaches. Lastly, we conduct a sensitivity analysis, delving into the
effects of different parameter settings on the solution. Instances and detailed results can be accessed
in Mendeley data (Jalal et al. 2025).

All algorithms were coded in C++ programming language and run on a PC with an Intel Gold
6148 Skylake processor with 16.0 GB of RAM and a single thread. The MIP and LP models were
solved using IBM CPLEX Optimization Solver 20.1. The stopping criterion was due to the elapsed
time exceeding the time limit of 12 hours or the optimality gap becoming smaller than 10−4. This
maximum time limit is appropriate for this problem as the company could set up a process to run the
solution algorithm overnight for this tactical planning problem.

5.1 Data description

This section presents the instances created from the real-world data obtained from the pharmaceutical
company. The company produces part of its commercialized products in a plant. Other products are
imported from foreign plants and packed in the plant. From this plant, products are sent to DCs
managed by logistics operators, from which the company fulfills the demand of retailers all over the
country. The company groups the retailers according to demand areas: the capital and countryside of
each state.

Aligned with the business process at company, we assume that a one-year planning horizon is
appropriate to evaluate the DC location since DC rental agreements are made annually, but demand
allocation and shipping decisions should be considered in shorter periods. Hence, we consider 12
months to address tactical decisions of inventory management and transportation planning. The review
interval Tjp at all DCs is 10 days. The lead-time ℓij was calculated considering the distance and the
mean velocity of trucks on roads. We create instances by considering different subsets of products
comprising up to 100 products. The product’s cost ρp was assumed to be 40% of the product’s price.
The mean and variance of the daily demand, µpkt and σ2

pkt, were defined according to the data provided
by the company. We assume the same number of selling days at each retailer ηkt = 30 days. The
storage capacity levels ql were estimated based on the total demand volume, and the opening costs fjl
were estimated based on the fixed and operational costs of the installed DCs, i.e., inventory insurance
and rental space or volume in DCs that depend on the selected capacity level. The holding costs
were calculated based on the cost of $53.45 per month to store a pallet (120x100x25 cm3) at room
temperature. From this information, the unit cost of inventory per product (hpj) was calculated.
Without loss of generality, the initial stocks were considered null at the beginning of the planning
horizon. We assume a service level of 95%, this corresponds to Φα = 1.64. The fixed and variable
costs of transportation gijs and cijs, respectively, as well as the breakpoints bs, were defined based on
the transportation tables from carriers.

To establish the piecewise linear function for safety stock, we delineate segments and determine the
values of αm based on the variance observed in retailer demand. Here, f(αm) represents the square
root of αm. As different products exhibit varying demand scales and variances, we define αm for each
j ∈ Iw, p ∈ P, t ∈ Θ, resulting in the parameters αjptm and fjptm. This definition allows adjusting the
parameters to approximate the safety stock, enabling the problem to be solved with a small number
of segments that more precisely represent the curve for each product, each DC, and each period. This
reduces the number of variables we need to adjust the curve in the problem, subsequently reducing
the time needed to achieve a good solution.
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Table 3 presents the instances’ characteristics, i.e., names, cardinality of sets, number of instances,
and number of variables and constraints.

Table 3: Instances description

Set cardinality Instance Decision variables

Name |T | |If | |Iw| |Ic| |P| |S| |L| number Binary Continuous Constraints

S1 12 2 3 30 30 5 3 8 14,049 11,160 26,553
S2 12 2 3 52 30 5 3 8 23,949 15,120 42,657
M1 12 2 3 52 40 5 3 8 28,689 16,920 52,327
M2 12 2 3 52 50 5 3 8 33,429 18,720 61,997
L1 12 2 3 52 75 5 3 8 45,279 23,220 86,172
L2 12 2 3 52 100 5 3 8 57,129 27,720 110,347

5.2 Performance of the solutions approaches

In this section, we discuss the numerical results obtained in terms of the performance of the proposed
algorithms. The list of the different approaches compared in this section is presented in Table 4.

Table 4: Solution approaches

Name Description

SLBBD Basic decomposition method of Section 4.1.
ELBBD Enhanced LBBD method of Section 4.2.
ELBBDi ELBBD + initial solution described in Appendix B
ELBBDi+Z ELBBD + initial solution described in Appendix B + logic cut (70)
ELBBDi+W ELBBD + initial solution described in Appendix B + logic cut (71)
ELBBDi+ZW ELBBD + initial solution described in Appendix B + logic cuts (70) and (71)
APXM Approximated-safety stock model of Section 4.3.
APXMi APXM + initial solution described in Appendix B.

5.2.1 Performance of the benders decomposition approaches

We first report the results for the small instances S1 and S2. Table 5 presents the upper bound
(UB), lower bound (LB), the optimality gap computed as Gap = 100UB−LB

UB , the time and number of
iterations (#iter) for the SLBBD, the ELBBD, and ELBBDi. Table 6 summarizes the performance
of methods, presenting the best UB among the three methods and the gaps computed as %LB =
100Best UB−LB

Best UB , as well as, the best LB among the three methods and the gaps computed as %UB =

100UB−Best LB
UB .

From Tables 5 and 6, it is evident that ELBBDi outperforms other methods both in terms of the
quantity and quality of feasible solutions. First, ELBBDi successfully solves all instances, in contrast to
ELBBD which cannot cope with seven instances. Furthermore, the average lower bound (LB) achieved
by ELBBDi significantly outperforms SLBBD, showcasing a remarkable 57% improvement.

We employ the ELBBDi to evaluate the performance of proposed logic cuts. Table 7 details
the count of feasible solutions provided by each method within every instance size. Table 7 also
summarizes the performances of the ELBBDi with different enhancements on all the instances, show-
casing the average gaps computed as %LB = 100 × Best UB−LB

Best UB . In addition, Table 7 shows the

%UB = 100UB−Best LB
UB for instances where feasible solutions are attainable through the methods.

The ELBBDi+ZW method provides feasible solutions for all instances while also offering good-quality
lower bounds.
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Table 5: Performance of the decomposition methods for small instances (set S1 and S2)

SLBBD ELBBD ELBBDi

Instance UB LB Gap(%) #iter UB LB Gap(%) #iter UB LB Gap(%) #iter

1 71,604,499 29,384,019 58.96 6,688 - 48,117,000 - - 54,889,394 48,057,667 12.45 618
2 78,567,411 24,646,425 68.63 6,081 67,061,370 60,400,189 9.93 479 67,014,451 60,886,519 9.14 829
3 73,530,673 28,248,639 61.58 6,027 65,065,049 57,588,638 11.49 690 64,732,667 57,607,286 11.01 469

S1 4 61,439,203 25,574,082 58.37 6,144 - 54,624,100 - - 64,696,561 54,778,046 15.33 1,245
5 59,857,482 25,514,249 57.38 6,358 58,252,552 52,189,352 10.41 817 59,036,543 52,117,231 11.72 993
6 81,431,940 21,471,740 73.63 5,344 78,238,844 73,395,081 6.19 727 78,238,838 73,588,072 5.94 578
7 86,314,142 37,002,383 57.13 2,748 84,890,001 77,708,632 8.46 186 84,035,374 77,609,551 7.65 344
8 37,086,026 12,267,478 66.92 6,204 36,091,292 29,985,535 16.92 308 35,136,427 29,602,610 15.75 696

Average 68,728,922 25,513,627 62.83 5,699 - 56,751,066 - - 63,472,532 56,780,873 11.12 722

1 107,895,024 49,309,852 54.30 2,884 - 87,315,700 - - 92,810,515 87,253,308 5.99 657
2 155,551,694 38,873,533 75.01 4,420 109,508,671 102,906,786 6.03 125 109,875,341 103,375,523 5.92 198
3 106,044,018 44,741,705 57.81 1,834 - 96,755,700 - - 104,184,297 96,883,361 7.01 65

S2 4 98,720,389 40,542,769 58.93 2,745 98,342,991 92,207,776 6.24 164 98,343,001 92,199,239 6.25 75
5 91,395,829 39,842,253 56.41 2,349 - 86,917,500 - - 96,478,288 86,865,205 9.96 109
6 140,191,097 31,949,676 77.21 3,352 124,780,293 122,447,515 1.87 116 125,300,732 123,021,327 1.82 293
7 143,719,177 59,319,272 58.73 2,415 - 129,983,000 - - 134,759,215 129,902,307 3.60 109
8 61,192,223 16,414,777 73.18 1,368 - 47,625,300 - - 57,457,179 47,659,956 17.05 178

Average 113,088,681 40,124,230 63.95 2,671 - 95,769,910 - - 102,401,071 95,895,028 7.20 211

-: No solution obtained.

Table 6: Comparison of performance of the decomposition methods for small instances (set S1 and S2)

LB gap (%) comparison UB gap (%) comparison

Instance Best UB SLBBD ELBBD ELBBDi Best LB SLBBD ELBBD ELBBDi

1 54,889,394 46.47 12.34 12.45 48,117,000 32.8 - 12.34
2 67,014,451 63.22 9.87 9.14 60,886,519 22.5 9.21 9.14
3 64,732,667 56.36 11.04 11.01 57,607,286 21.66 11.46 11.01

S1 4 61,439,203 58.37 11.09 10.84 54,778,046 10.84 - 15.33
5 58,252,552 56.20 10.41 10.53 52,189,352 12.81 10.41 11.6
6 78,238,838 72.56 6.19 5.94 73,588,072 9.63 5.94 5.94
7 84,035,374 55.97 7.53 7.65 77,708,632 9.97 8.46 7.53
8 35,136,427 65.09 14.66 15.75 29,985,535 19.15 16.92 14.66

Average 62,967,363 59.28 10.39 10.41 56,780,873 17.42 - 10.94

1 92,810,515 46.87 5.92 5.99 87,315,700 19.07 - 5.92
2 109,508,671 64.50 6.03 5.60 103,375,523 33.54 5.60 5.92
3 104,184,297 57.06 7.13 7.01 96,883,361 8.64 - 7.01

S2 4 98,342,991 58.77 6.24 6.25 92,207,776 6.60 6.24 6.24
5 91,395,829 56.41 4.90 4.96 86,917,500 4.90 - 9.91
6 124,780,293 74.40 1.87 1.41 123,021,327 12.25 1.41 1.82
7 134,759,215 55.98 3.54 3.60 129,983,000 9.56 - 3.54
8 57,457,179 71.43 17.11 17.05 47,659,956 22.11 - 17.05

Average 101,654,874 60.68 6.59 6.48 95,920,518 14.58 - 7.18

-: No solution obtained.

Table 7: Comparison of performance of proposed logic cuts

Instance ELBBDi ELBBDi+Z ELBBDi+W ELBBDi+ZW

#feas %LB %UB #feas %LB %UB #feas %LB %UB #feas %LB %UB

S1 8 9.99 10.25 8 10.09 10.54 8 10.02 11.76 8 9.92 10.06
S2 8 4.76 6.93 8 4.78 6.24 8 4.78 8.89 8 4.73 6.94
M1 8 4.86 4.39 8 4.90 8.00 8 4.86 6.40 8 4.82 6.22
M2 8 3.58 4.74 8 3.69 6.10 8 3.59 3.79 8 3.62 4.30
L1 8 3.35 4.15 8 3.41 3.46 8 3.43 2.92 8 3.41 3.86
L2 7 3.27 3.94 7 3.27 4.92 7 3.23 4.82 8 3.23 4.95

Total 47 4.97 5.73 47 5.02 6.54 47 4.99 6.43 48 4.96 6.06
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5.2.2 Performance based on APXM approaches

Table 8 presents, for the small instances S1 and S2, the impact of the initial solution on the APXM
method. The warm-up of the APXM method with an initial solution positively affects its performance.
Across most instances, APXMi achieves slightly tighter LB gaps than APXM. While APXM does not
provide solutions for any instance, APXMi could obtain both the UB and LB for all the instances. The
APXMi offers solutions with a piecewise linear lower bound function of safety stock. Consequently, in
the APXMi, the safety stock costs are an approximation of the real safety stock costs and the objective
function value is an approximation of the total cost. Thus, after solving the APXMi, we compute the
real safety stock costs by using the allocation of the optimal (or last incumbent) solution provided by

the solver, i.e., Ūijkp as
∑

j∈Iw

∑
p∈P

∑
t∈Θ hpj (Φα

√∑
i∈If

∑
k∈Ic

(Tjp + ℓij)σ2
pktŪijkp). Finally, we

compute the real total costs which we call “Real UB” by updating the safety stock costs.

Table 8: Gap respect to the best upper bound for every instance

APXM APXMi LB gap (%) comparison

Instance UB LB Real UB APXMi UB LB Gap(%) APXM APXMi

1 - 48,660,043 64,404,156 64,024,400 48,904,827 24.07 24.45 24.07
2 - 60,923,269 75,459,026 75,336,285 61,944,679 17.91 19.26 17.91
3 - 57,636,766 72,533,205 72,246,483 58,128,753 19.86 20.54 19.86

S1 4 - 55,054,191 67,203,742 66,926,216 54,850,319 18.38 18.08 18.38
5 - 52,506,817 67,198,894 67,060,509 52,580,726 21.75 21.86 21.75
6 - 73,486,895 87,674,502 87,560,215 73,382,220 16.30 16.18 16.30
7 - 77,999,643 93,955,986 93,657,057 78,517,990 16.43 16.98 16.43
8 - 29,774,344 42,695,858 42,661,630 29,831,189 30.13 30.26 30.13

Average - 57,005,246 71,390,671 71,184,099 57,267,588 20.60 20.95 20.60

1 - 87,449,567 100,131,182 99,959,459 87,344,091 12.77 12.67 12.77
2 - 103,723,600 115,229,236 115,096,588 102,886,030 10.71 9.98 10.71
3 - 96,885,223 108,799,828 108,672,148 96,691,491 11.13 10.95 11.13

S2 4 - 92,512,996 102,962,427 102,837,834 91,896,332 10.75 10.15 10.75
5 - 87,177,007 98,120,187 98,009,932 87,277,198 11.05 11.15 11.05
6 - 121,864,772 130,728,085 130,645,412 123,088,909 5.84 6.78 5.84
7 - 130,082,523 142,397,547 142,234,831 129,506,560 9.05 8.65 9.05
8 - 47,911,134 58,511,996 58,478,613 47,916,933 18.11 18.12 18.11

Average - 95,950,853 107,110,061 106,991,852 95,825,943 11.18 11.06 11.18

16.00 15.89

-: No solution provided.

5.2.3 Performance of ELBBDi and APXMi

In this section, we present the best versions of the methods in the two previous sections, the ELBBDi
and the APXMi. Table 9 summarizes the performance of methods for every instance size, presenting the
average gaps computed as %LB = 100Best UB−LB

Best UB , %UB = 100UB−Best LB
UB , %GAP = 100× UB−LB

UB .
As outlined in Table 9, the ELBBDi+ZW method consistently achieves the best lower bounds across
all sets of instances compared to APXMi.

5.3 The complexity of the multi-plant, multi-period, and multi-product problem

Table 10 displays the average gaps and times of computational experiments comparing single-plant
and multi-plant problems for the APXMi (or APXM) and ELBBDi+ZW methods. Similarly, Table 11
presents the results of computational experiments examining single-period and multi-period problems.
Finally, Table 12 showcases the results of computational experiments involving single-product and
multi-product problems.

The results indicate that our problem presents greater complexity compared to simpler scenarios
focusing on single-plant, single-period, or single-product cases. The optimality gaps are lower for
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single-plant, single-period, and single-product problems in comparison to, respectively, multi-plant,
multi-period, and multi-product problems for the methods.

Table 9: Average gap respect to the best upper bound

Instance %LB %UB %GAP

size ELBBDi+ZW APXMi ELBBDi+ZW APXMi ELBBDi+ZW APXMi

S1 9.92 9.20 10.06 20.53 10.86 20.37
S2 4.73 4.78 6.94 10.90 7.19 11.08
M1 4.82 4.40 6.22 9.95 6.78 9.99
M2 3.62 3.38 4.30 8.51 4.77 8.62
L1 3.41 3.21 3.86 6.81 4.32 6.98
L2 3.23 3.00 4.95 6.60 5.25 6.53

Average 4.95 4.66 6.06 10.55 6.53 10.60

According to Table 10, the ELBBDi+ZW method demonstrates effective handling of both single-
plant and multi-plant problems, consistently providing feasible solutions across all instances, with
lower optimality gaps compared to the APXMi method. According to tables 11 and 12, the APXM
method, even without an initial solution to initiate the process, excels in addressing problems charac-
terized by single-period and single-product settings, providing optimal solutions across all instances,
while ELBBDi+ZW yields solutions near optimality. In multi-period and multi-product scenarios,
ELBBDi+ZW method performs better than the APXMi method.

Table 10: Average gaps and times for APXMi and ELBBDi+ZW considering single plant and multiplant problem

Single-plant problem Multi-plant problem

Instance APXMi ELBBDi+ZW APXMi ELBBDi+ZW

|T | |Iw| |Ic| |P| |S| |L| Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%)

12 3 30 30 3 5 43,200 5.89 43,200 1.45 43,200 20.37 43,200 10.86
12 3 52 30 3 5 43,200 4.93 43,200 1.67 43,200 11.08 43,200 7.19
12 3 52 40 3 5 43,200 2.76 43,200 1.45 43,200 9.99 43,200 6.78
12 3 52 50 3 5 43,200 4.29 43,200 1.67 43,200 8.62 43,200 4.77
12 3 52 75 3 5 43,200 3.37 43,200 2.32 43,200 7.08 43,200 4.32
12 3 52 100 3 5 43,200 3.08 43,200 2.89 43,200 6.53 43,200 5.25

Average 43,200 4.05 43,200 1.91 43,200 10.61 43,200 6.53

Table 11: Average gaps and times for APXM/APXMi and ELBBDi+ZW considering single period and multi-period
problem

Single-period problem Multi-period problem

Instance APXM ELBBDi+ZW APXMi ELBBDi+ZW

|If | |Iw| |Ic| |P| |S| |L| Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%)

2 3 30 30 3 5 5 0.00 43,200 0.85 43,200 20.37 43,200 10.86
2 3 52 30 3 5 29 0.00 43,200 0.80 43,200 11.08 43,200 7.19
2 3 52 40 3 5 175 0.00 43,200 0.91 43,200 9.99 43,200 6.78
2 3 52 50 3 5 296 0.00 43,200 1.00 43,200 8.62 43,200 4.77
2 3 52 75 3 5 6,928 0.01 43,200 1.08 43,200 7.08 43,200 4.32
2 3 52 100 3 5 27,876 0.01 43,200 1.14 43,200 6.53 43,200 5.25

Average 5,885 0.00 43,200 0.96 43,200 10.61 43,200 6.53
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Table 12: Average gaps and times for APXM/APXMi and ELBBDi+ZW considering single product and multiproduct
problem

Single-product problem Multi-product problem

Instance APXM ELBBDi+ZW APXMi ELBBDi+ZW

|T | |If | |Iw| |Ic| |S| |L| Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%)

12 2 3 30 3 5 122 0.00 25,698 3.16 43,200 20.37 43,200 10.86
12 2 3 52 3 5 170 0.00 20,433 0.24 43,200 11.08 43,200 7.19
12 2 3 52 3 5 100 0.00 24,264 0.18 43,200 9.99 43,200 6.78
12 2 3 52 3 5 152 0.00 23,250 0.20 43,200 8.62 43,200 4.77
12 2 3 52 3 5 133 0.00 19,306 0.24 43,200 7.08 43,200 4.32
12 2 3 52 3 5 93 0.00 34,078 0.30 43,200 6.53 43,200 5.25

Average 128 0.00 24,505 0.72 43,200 10.61 43,200 6.53

5.4 Comparison between the integrated and the sequential model

We compare sequential (SQAP) and integrated (ELBBDi) approaches in terms of cost and computa-
tional time. In the sequential approach, the location decision remains fixed, which occasionally leads to
infeasible solutions for certain instances. On the other hand, the integrated approach reduces overall
solution costs by an average of 0.3% to 9.3%, except in one case, where the sequential model per-
formed 1.35% better. However, it is worth noting that the optimality gap for the integrated solution
in this instance was 3.31%. While the integrated approach generally yields lower average costs, it
is significantly more computationally challenging to solve, requiring all instances to take 12 hours of
computation. In contrast, the sequential approach achieves a much lower average computational time
of 930 seconds. The comparison results between the integrated and sequential models are provided in
Appendix C.

5.5 Sensitivity analysis

We conduct a sensitivity analysis using instances M2 to evaluate the impact of variations in several
network structure parameters, including the number and location of facilities, along with other planning
parameters. A higher coefficient of variation increases the optimality gap and total costs due to greater
safety stock requirements and inventory costs, with minor variations in transportation and location
decisions. Likewise, increasing opening costs affects location decisions, resulting in changes to inventory
levels and transportation costs. Fluctuations in inventory costs influence total costs and safety stock
levels, with little effect on location and transportation decisions. The results of the sensitivity analysis
are found in Appendix D.

6 Conclusions

In this study, we addressed key decisions about the tactical planning of logistics networks under
demand variability. We have presented a MINLP model that determines the optimal network structure,
transportation, and inventory levels of a multi-period, multi-echelon supply chain. Real data from a
pharmaceutical supply chain was used to illustrate the applicability of the proposed model. The model
determines the DC locations, shipments from plants to the DCs, and the assignment of retailers to DCs.
The model considers the periodic review policy (T, S) in conjunction with anticipation inventory to
control inventory in the DCs in each period. The objective is to minimize location costs, transportation
costs, and inventory holding costs over the planning horizon.

To solve the problem, we present an LBBD by exploiting the structure of the problem and obtaining
subproblems that preserve the characteristics of the original problem. We enhanced the master problem
including information about the subproblems and used a multi-cut to accelerate the convergence of
the method. We also propose a model that incorporates a piecewise linear lower bound function of
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safety stock. Real data was examined and used to construct realistic instances to validate the proposed
approaches. The method provides good solutions for most instances.

We compare the integrated model with a sequential approach, highlighting the importance of
integrating decisions within the supply chain. We empirically show that the integrated model can
achieve up to 9% in potential cost savings by utilizing instances derived from real-world data. We
also perform a sensitivity analysis aiming to understand how each parameter influences the supply
chain design and planning problem. We find that the network design is sensitive to the coefficient of
variation and the opening costs.

For future work, it is interesting to consider other inventory policies in the model and compare
the implications of different policies on logistics network planning. Another extension is to address
capacity planning in networking by considering decisions of closing and opening DCs or expanding or
reducing capacity at DCs.

Appendix A ELBBD implementation

The B&Ch algorithm is implemented using the branch-and-bound callbacks of a MIP solver. At each
node, we solve the linear relaxation of the current MPE. If it is infeasible or the objective value
solution is higher than or equal to the objective value of the incumbent solution, then the node
is pruned. Otherwise, integrality constraints are checked, and if the solution is not integer, then
branching is performed. If the solution is integer, we solve the subproblem SPE to verify the violation
of constraints (45) and (46). Constraint (45) is violated if the subproblem SPE is infeasible. If no
constraint is violated, then the solution is feasible for the original LBBD and is set as the new incumbent
solution. Constraints (70)–(71) are used to strengthen the bounds of the MPE. Otherwise, the MPE
is modified by the addition of Benders cuts, the linear relaxation of the current MPE is resolved, and
the described steps are applied again. General-purpose optimization software may additionally rely on
automated cuts. The Algorithm A1 presents the B&Ch implementation.

Algorithm A1: B&Ch algorithm

1 Initialization: Initial solution; set UB = inf , LB = 0, gap = inf , ϵ = 10−4 ;
2 Solve the linear relaxation of MPE and obtain LB = the best overall lower bound of the problem MPE ;
3 Calculate gap = (UB − LB)/UB ;
4 if gap ≥ ϵ & an integer solution (Ȳ , Ū) of the MPE is found then
5 Go to step 9 ;
6 else
7 Go to step 15 ;
8 end
9 if the solution (Ȳ , X̄, Ū) violates feasibility or optimality cuts then

10 Generate and add feasibility or optimality cuts ;
11 Go to step 3 ;

12 else
13 Update UB ;
14 end
15 if gap ≤ ϵ then
16 Stop ;
17 end
18 The algorithm is repeated in the next node selected by the Branch-and-bound ;

Appendix B Initial solution approach

In addition, we initialized the method with part of an initial solution: the location and capacity
selection provided by solving the following reduced relaxed model:

minΨ =min

[ ∑
j∈Iw

∑
l∈L

fjlYjl +
∑
j∈Iw

∑
p∈P

∑
t∈Θ

hpj

(Ijpt−1 + Ijpt
2

+
1

2
Tjp

∑
k∈Ic

µpktXjkp

)
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s.t. Constraints (2)− (7), (11), (13)− (25). (B2)∑
i∈If

Qijpt =
∑
k∈Ic

ηktµpktXjkp + Ijpt − Ijpt−1, ∀j ∈ Iw, p ∈ P, t ∈ Θ.
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qlYjl, ∀j ∈ Iw, t ∈ Θ.

(B4)

In this model, we drop the safety stock from the original order quantity and capacity constraints,
as shown in constraints (B3) and (B4). These constraints are equivalent to constraints (10) and (13)
in the original problem.

The solution provided by this model needs verification by calculating the safety stock level and
assessing the capacity of the DCs. If the capacity is confirmed to be sufficient, we have an initial solution
to the original problem, and the objective function value is updated accordingly. If the DC capacity
is insufficient, the problem is re-evaluated by integrating the safety stock from the previous solution
into the capacity constraint, followed by a reassessment of the capacity. This iterative procedure
is repeated until a feasible solution is identified or a specified number of iterations is reached. If
the maximum number of iterations is attained without achieving a feasible solution, the problem is
addressed by considering the maximum safety stock level. This approach guarantees a feasible solution
by computing the maximum safety stock for each DC, product, and period. It ensures the fulfillment
of all retailer demands exclusively from that DC while accounting for the longest lead time from the
plant to the DC.

Appendix C Comparison between the integrated and the sequen-
tial model

We carried out computational experiments to study the impact of integrating inventory decisions with
the network design problem. We compare the sequential and integrated approaches in terms of cost
and computational time. Table C1 presents, for two approaches (ELBBDi and SQAP), the costs of
location, inventory, transportation, and total costs, as well as the computational time and the ratio
between the total costs of the approaches that are computed as ratio = 100SQAP−ELBBDi

ELBBDi . ELBBDi
represents the integrated approach, SQAP represents the sequential approach, in which the location
decision is fixed in the inventory-transportation problem as described in Section 4.4.

Within the sequential approach, the location decision does not change and occasionally yields
infeasible solutions for certain instances. Notice in Table C1 that the integrated approach reduces the
overall solution cost by an average ranging from 0.3% to 9.3%, even when the ELBBDi+ZW method
does not achieve optimality for the instances. In the case of one particular instance, namely instance 5
in L2, the sequential model exhibited superior performance compared to the integrated method, with
a cost reduction of 1.35%, however, it is important to note that the optimality gap associated with
the solution offered by ELBBDi+ZW for that specific instance was to 3.31%. In summary, as depicted
in Table C1, the integrated problem provides overall lower average costs. Nevertheless, solving the
integrated approach proves to be more difficult, as all instances report a computational time of 12
hours. In contrast, the SQAP demonstrates a significantly lower average time of 930 seconds.
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Table C1: Comparison between the sequential SQAP and integrated approach ELBBDi

Instance SQAP ELBBDi Ratio

Location Inv+Transp Total cost Time Location Inv+Transp Total cost Time

S1 1 - - - - 13,050,000 42,794,152 55,844,152 43,200 -
2 - - - - 12,110,000 54,112,674 66,222,674 43,200 -
3 - - - - 13,050,000 51,490,893 64,540,893 43,200 -
4 - - - - 13,050,000 47,950,866 61,000,866 43,200 -
5 - - - - 12,110,000 46,080,028 58,190,028 43,200 -
6 - - - - 13,050,000 65,927,893 78,977,893 43,200 -
7 - - - - 12,110,000 71,925,380 84,035,380 43,200 -
8 - - - - 13,100,000 22,797,985 35,897,985 43,200 -

S2 1 - - - - 19,650,000 80,481,886 100,131,886 43,200 -
2 13,100,000 103,900,060 117,000,060 637 13,100,000 93,904,598 107,004,598 43,200 9.34
3 13,100,000 98,201,888 111,301,888 1,089 13,050,000 90,289,962 103,339,962 43,200 7.70
4 13,100,000 93,238,702 106,338,702 885 13,050,000 85,434,290 98,484,290 43,200 7.98
5 13,100,000 88,291,292 101,391,292 755 19,650,000 78,568,807 98,218,807 43,200 3.23
6 13,100,000 121,675,755 134,775,755 627 13,100,000 111,680,293 124,780,293 43,200 8.01
7 13,100,000 131,654,677 144,754,677 1,144 13,100,000 121,849,249 134,949,249 43,200 7.27
8 - - - - 13,050,000 39,924,449 52,974,449 43,200 -

M1 1 13,100,000 109,405,275 122,505,275 697 19,650,000 100,405,313 120,055,313 43,200 2.04
2 13,100,000 152,982,022 166,082,022 707 13,100,000 142,986,560 156,086,560 43,200 6.40
3 13,100,000 99,963,250 113,063,250 923 19,650,000 91,001,740 110,651,740 43,200 2.18
4 13,100,000 170,882,393 183,982,393 806 13,100,000 160,875,140 173,975,140 43,200 5.75
5 13,100,000 66,911,216 80,011,216 1,919 19,650,000 58,924,443 78,574,443 43,200 1.83
6 13,100,000 130,159,124 143,259,124 978 13,100,000 120,163,661 133,263,661 43,200 7.50
7 13,100,000 103,803,518 116,903,518 658 13,100,000 93,808,056 106,908,056 43,200 9.35
8 13,100,000 123,336,993 136,436,993 739 13,100,000 113,341,531 126,441,531 43,200 7.91

M2 1 13,100,000 144,441,105 157,541,105 826 13,100,000 136,179,696 149,279,696 43,200 5.53
2 13,100,000 150,345,052 163,445,052 896 13,100,000 140,349,589 153,449,589 43,200 6.51
3 13,100,000 133,159,603 146,259,603 764 13,100,000 123,164,141 136,264,141 43,200 7.34
4 13,100,000 149,490,526 162,590,526 794 17,030,000 140,350,642 157,380,642 43,200 3.31
5 13,100,000 135,966,792 149,066,792 881 13,100,000 127,049,804 140,149,804 43,200 6.36
6 13,100,000 130,272,372 143,372,372 780 19,650,000 121,009,641 140,659,641 43,200 1.93
7 13,100,000 159,326,639 172,426,639 758 13,100,000 149,452,530 162,552,530 43,200 6.07
8 13,100,000 172,681,320 185,781,320 740 13,100,000 162,685,858 175,785,858 43,200 5.69

L1 1 13,100,000 224,038,363 237,138,363 821 13,100,000 214,042,901 227,142,901 43,200 4.40
2 13,100,000 181,211,317 194,311,317 862 13,100,000 171,215,854 184,315,854 43,200 5.42
3 13,100,000 240,040,359 253,140,359 917 19,650,000 232,462,316 252,112,316 43,200 0.41
4 13,100,000 214,630,327 227,730,327 828 13,100,000 204,634,865 217,734,865 43,200 4.59
5 13,100,000 197,468,787 210,568,787 844 13,100,000 187,473,324 200,573,324 43,200 4.98
6 13,100,000 249,097,928 262,197,928 785 13,100,000 239,102,465 252,202,465 43,200 3.96
7 13,100,000 210,824,891 223,924,891 801 19,650,000 201,292,023 220,942,023 43,200 1.35
8 13,100,000 166,689,557 179,789,557 1,362 13,100,000 156,694,094 169,794,094 43,200 5.89

L2 1 13,100,000 272,090,076 285,190,076 1,166 13,100,000 262,094,614 275,194,614 43,200 3.63
2 13,100,000 259,954,050 273,054,050 1,420 19,650,000 251,071,166 270,721,166 43,200 0.86
3 13,100,000 283,232,979 296,332,979 954 19,650,000 275,227,760 294,877,760 43,200 0.49
4 13,100,000 269,385,423 282,485,423 967 13,100,000 259,389,961 272,489,961 43,200 3.67
5 13,100,000 269,564,996 282,664,996 1,205 19,650,000 266,887,684 286,537,684 43,200 -1.35
6 13,100,000 316,919,033 330,019,033 1,159 13,100,000 306,923,570 320,023,570 43,200 3.12
7 13,100,000 264,538,137 277,638,137 1,203 13,100,000 254,542,675 267,642,675 43,200 3.73
8 13,100,000 303,816,545 316,916,545 1,042 19,650,000 296,272,242 315,922,242 43,200 0.31

Ratio=100× SQAP UB−ELBBDi UB
ELBBDi UB

-: Infeasible

Appendix D Sensitivity analysis

In this section, we present a sensitivity analysis using instances M2 to assess the impact of variations
in several network structure parameters, such as the number and location of facilities, along with other
planning parameters. We analyze the coefficient of variation and decision costs, including opening,
inventory, and transportation costs. We report the average optimality gap, objective function costs,
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inventory levels, Key Performance Indicators (KPIs) for location decisions, and transportation decision
statistics for sensitivity analysis.

For the location decision KPIs, we present the average values across instances M2. The installed
capacity is defined as the selected capacity level for each opened DC, multiplied by the number of
periods in the planning horizon. The percentage of used capacity is calculated as the ratio of used
capacity to installed capacity. To determine used capacity, we accumulate the capacity utilization for
each product at each location and for each period. This involves multiplying the product’s volume
by target and anticipation inventory levels. Regarding transportation statistics, we report the average
values across instances M2. Thus, ”Max weight plant-DC” represents the average of the highest
cargo weights observed between plants and DCs over different periods across instances M2. Similarly,
”Avg weight plant-DC” and ”Min weight plant-DC” refer to the average and lowest cargo weights
transported from any plant to a distribution center across instances M2, respectively. These statistics
are also provided for transportation from DCs to retailers.

D.1 Coefficient of variation

This analysis is related to the parameter coefficient of variation, i.e., the ratio of the standard deviation
to the mean demand. Table D2 presents the average gap and costs, KPIs, and statistics for different
values of the coefficient of variation.

Table D2: Variation on the coefficient of variation

Coefficient of variation
20% 50% 80% 100%

Optimality gap 3.24% 3.47% 4.77% 5.15%

Location costs 15,228,750 13,918,750 14,410,000 14,035,714
Objective Inventory costs 43,112,716 45,731,986 49,018,755 50,569,427
function Transportation costs 74,462,962 74,633,292 74,735,677 76,176,630
costs Security costs 13,719,023 13,758,254 13,775,806 13,738,506

Total costs 146,523,451 148,042,282 151,940,238 154,520,277

Safety stock costs 2,553,084 5,173,621 8,459,384 10,095,059
Inventory costs Anticipation inv costs 1,256 0 1,256 0

Cycle inv costs 40,558,376 40,558,366 40,558,115 40,474,369

Safety stock units 401,349 914,027 1,514,738 1,933,155
Inventory levels Anticipation inv units 3 0 3 0

Cycle inv units 7,516,518 7,516,518 7,516,518 7,834,600
Total units 7,917,869 8,430,545 9,031,258 9,767,755

Location KPIs Total Opened DCs 2 2 2 2
Installed capacity 5,067 4,766 4,870 4,929
% Used capacity 47.33% 50.80% 51.51% 52.19%

Max weight plant-DC 108,333,995 108,437,091 108,557,900 111,548,106
Avg weight plant-DC 72,318,739 78,099,573 76,561,731 77,635,872

Transportation Min weight plant-DC 24,172,115 27,517,408 23,979,899 29,432,119
statistics Max weight DC-retailer 108,251,166 108,251,166 108,251,166 111,166,690

Avg weight DC-retailer 2,501,016 2,489,927 2,501,016 2,572,631
Min weight DC-retailer 971,184 1,268,303 740,156 1,223,541

Notice in Table D2 that the coefficient of variation increases the average optimality gap, thus the
problem seems to be more difficult to solve. The total objective cost also increases considering a
higher coefficient of variation. This increase in the total cost is observed because of an increment in
the inventory cost. As expected, the levels of safety stock increase, and consequently the safety stock
costs increase. Notice in Table D2 that opening costs change because different DCs are opened. The
percentage of used capacity varies slightly from 47% to 52%, due to the total installed capacity changes
and the safety stock increases. Table D2 also shows changes in the average and minimum weight of the
goods transported between plants and DCs, which suggests the use of transportation segments with
different capacities. Although the retailer demand does change, the minimum weight among DCs and
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retailers varies. It can be explained due to the changed location decisions, so the transported cargo
weight among arcs changes.

D.2 Opening costs variation

This analysis is related to the parameter of the opening costs. The model is tested for this parameter
on +/- 50% of its initial value. Table D3 presents the average gap and costs, KPIs, and statistics
for different values of opening costs. As expected, the variation of opening costs directly affects the
total opening costs, changing the location decisions. When opening costs are high, inventory units are
increased, and transportation decisions are changed, resulting in higher transportation expenses.

Table D3: Variation on Opening costs

Variation of opening costs
50% 100% 150%

Optimality gap 3.64% 4.77% 9.75%

Location costs 7,368,750 14,410,000 27,018,750
Objective Inventory costs 49,183,323 49,018,755 50,344,468
function Transportation costs 74,063,627 74,735,677 74,851,850
costs Security costs 13,735,148 13,775,806 13,726,489

Total costs 144,350,848 151,940,238 165,941,557

Safety stock costs 8,623,472 8,459,384 9,785,938
Inventory costs Anticipation inv costs 1,256 1,256 0

Cycle inv costs 40,558,595 40,558,115 40,558,529

Safety stock units 1,581,670 1,514,738 1,664,895
Inventory levels Anticipation inv units 3 3 0

Cycle inv units 7,516,518 7,516,518 7,516,518
Total units 9,098,190 9,031,258 9,181,413

Location KPIs Total Opened DCs 2 2 3
Installed capacity 5,316 4,870 6,158
% Used capacity 49.70% 51.51% 40.95%

Max weight plant-DC 108,566,230 108,557,900 108,591,975
Avg weight plant-DC 70,720,551 76,561,731 61,063,180

Transportation Min weight plant-DC 27,537,186 23,979,899 26,332,165
statistics Max weight DC-retailer 108,251,166 108,251,166 108,251,166

Avg weight DC-retailer 2,501,016 2,501,016 2,501,016
Min weight DC-retailer 1,460,216 740,156 431,610

D.3 Inventory costs variation

This analysis is related to the parameter of the inventory costs. The model is tested for this parameter
on +50% and +100% of its initial value. Table D4 presents the average gap and costs, KPIs, and
statistics for different values of inventory costs. The variation of inventory costs directly affects the
total inventory costs and slightly affects the location costs that increase and the transportation costs
that decrease.

D.4 Transportation costs variation

This analysis is related to the parameter of the transportation costs. The model is tested for this
parameter from 0% to 200% of its initial value by increments of 50%. Table D5 presents the average
gap and costs, KPIs, and statistics for different values of transportation costs. The variation in trans-
portation costs directly affects the total transportation costs. It also affects directly other decisions,
such as the total inventory units which increase.
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Table D4: Sensitivity analysis: variation on inventory costs

Variation of inventory costs
50.00% 100.00% 150.00% 200.00%

Optimality gap 3.23% 4.77% 4.76% 6.03%

Location costs 13,918,750 14,410,000 13,918,750 14,737,500
Objective Inventory costs 24,494,351 49,018,755 73,455,603 98,599,936
function Transportation costs 74,277,429 74,735,677 74,402,599 74,548,397
costs Security costs 13,751,342 13,775,806 13,760,303 13,744,692

Total costs 126,441,872 151,940,238 175,537,254 201,630,525

Safety stock costs 4,208,157 8,459,384 12,631,048 17,505,238
Inventory costs Anticipation inv costs 0 1,256 0 0

Cycle inv costs 20,286,194 40,558,115 60,824,555 81,094,699

Safety stock units 1,468,614 1,514,738 1,469,846 1,491,236
Inventory levels Anticipation inv units 0 3 0 0

Cycle inv units 7,516,518 7,516,518 7,516,518 7,516,518
Total units 8,985,132 9,031,258 8,986,363 9,007,753

Location KPIs Total Opened DCs 2 2 2 2
Installed capacity 4,859 4,870 4,859 5,052
% Used capacity 51.84% 51.51% 51.84% 49.68%

Max weight plant-DC 108,549,021 108,557,900 108,549,256 108,555,768
Avg weight plant-DC 77,257,843 76,561,731 76,728,013 74,113,732

Transportation Min weight plant-DC 28,416,601 23,979,899 28,598,884 28,669,745
statistics Max weight DC-retailer 108,251,166 108,251,166 108,251,166 108,251,166

Avg weight DC-retailer 2,501,016 2,501,016 2,501,016 2,501,016
Min weight DC-retailer 1,601,528 740,156 1,351,733 1,117,602

Table D5: Sensitivity analysis: variation on transportation costs

Variation of transportation costs
0% 50% 100% 150% 200%

Optimality gap 19.23% 8.61% 4.77% 3.40% 3.00%

Location costs 18,256,562 15,550,000 14,410,000 13,918,750 14,737,500
Objective Inventory costs 50,465,621 49,534,208 49,018,755 48,951,548 49,143,390
function Transportation costs 0 38,929,361 74,735,677 111,978,321 147,625,882
costs Security costs 13,861,818 13,853,872 13,775,806 13,763,288 13,745,449

Total costs 82,584,002 117,867,441 151,940,238 188,611,907 225,252,220

Safety stock costs 9,900,911 8,975,088 8,459,384 8,393,272 8,584,649
Inventory costs Anticipation inv costs 5,207 1,256 1,256 0 0

Cycle inv costs 40,559,502 40,557,864 40,558,115 40,558,276 40,558,741

Safety stock units 1,615,337 1,581,360 1,514,738 1,468,871 1,578,054
Inventory levels Anticipation inv units 258 3 3 0 0

Cycle inv units 7,516,518 7,516,518 7,516,518 7,516,518 7,516,518
Total units 9,132,113 9,097,881 9,031,258 8,985,388 9,094,572

Location KPIs Total Opened DCs 3 2 2 2 2
Installed capacity 5,840 5,447 4,870 4,868 5,263
% Used capacity 43.85% 47.41% 51.51% 51.77% 49.68%

Max weight plant-DC 108,582,925 108,570,905 108,557,900 108,549,576 108,564,541
Avg weight plant-DC 60,241,314 67,379,417 76,561,731 76,906,998 70,826,822

Transportation Min weight plant-DC 18,562,891 28,928,828 23,979,899 28,099,709 27,827,059
statistics Max weight DC-retailer 108,251,166 108,251,166 108,251,166 108,251,166 108,251,166

Avg weight DC-retailer 2,390,389 2,497,753 2,501,016 2,497,698 2,495,322
Min weight DC-retailer 11,954 828,281 740,156 1,263,301 1,025,019
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Mathieu Bouchard, Sophie D’Amours, Mikael Rönnqvist, Rachid El-Azouzi, and Eldon Gunn. Integrated
optimization of strategic and tactical planning decisions in forestry. European Journal of Operational
Research, 259(3):1132–1143, 2017.

Nadjib Brahimi and Sharfuddin A Khan. Warehouse location with production, inventory, and distribution
decisions: a case study in the lube oil. Journal of the Operational Research Society, 12(2):175–197, 2014.

Braulio Brunaud, Matthew H. Bassett, Anshul Agarwal, John M. Wassick, and Ignacio E. Grossmann. Efficient
formulations for dynamic warehouse location under discrete transportation costs. Computers & Chemical
Engineering, 111:311–323, 2018.

Mehmet Ferhat Candas and Erhan Kutanoglu. Integrated location and inventory planning in service parts
logistics with customer-based service levels. European Journal of Operational Research, 285(1):279–295,
2020.

Qi Chen, Xiaopeng Li, and Yanfeng Ouyang. Joint inventory-location problem under the risk of probabilistic
facility disruptions. Transportation Research Part B: Methodological, 45(7):991–1003, aug 2011.

Keely L. Croxton, Bernard Gendron, and Thomas L. Magnanti. A comparison of mixed-integer programming
models for nonconvex piecewise linear cost minimization problems. Management Science, 49(9):1268–
1273, 2003.

Maryam Darvish and Leandro C. Coelho. Sequential versus integrated optimization: Production, location,
inventory control, and distribution. European Journal of Operational Research, 268(1):203–214, 2018.
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