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entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: B. Rodrigues, M. Carvalho, M. F. Anjos,
N. Sugishita (January 2025). Unboundedness in bilevel optimization,
Technical report, Les Cahiers du GERAD G–2025–22, GERAD, HEC
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recherche du Québec – Nature et technologies.
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3000, chemin de la Côte-Sainte-Catherine
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Abstract : Bilevel optimization has garnered growing interest over the past decade. However, little
attention has been paid to detecting and dealing with unboundedness in these problems, with most
research assuming a bounded high-point relaxation. In this paper, we address unboundedness in
bilevel and multilevel optimization by studying its computational complexity. We show that deciding
whether an optimistic linear bilevel problem is unbounded is strongly NP-complete, even without
linking constraints. Furthermore, we extend the hardness result to the linear multilevel case, by showing
that for each extra level added, the decision problem of checking unboundedness moves up a level in the
polynomial hierarchy. Deciding unboundedness of a mixed-integer multilevel problem is shown to be
one level higher in the polynomial complexity hierarchy than the decision problem for linear multilevel
problem with the same number of levels. Finally, we introduce two algorithmic approaches to determine
whether a linear bilevel problem is unbounded and, if so, return a certificate of unboundedness. This
certificate consists of a direction of unboundedness and corresponding bilevel feasible point. We present
a proof of concept of these algorithmic approaches on some relevant examples, and provide a brief
computational comparison.

Keywords : Computational complexity, unbounded, bilevel optimization, multilevel optimization
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1 Introduction

Bilevel optimization is a modelling framework for hierarchical interactions between non-cooperative

decision makers. This framework models a Stackelberg game [24, 25] with at least two players: a

leader and a follower. First, the leader makes its decision. Then, given the leader’s decision, the

follower reacts optimally according to its own possibly-conflicting objective. In turn, the reaction of

the follower influences the objective that the leader can realise. Hence, the leader must anticipate the

follower’s behaviour in order to accurately optimize its objective. Mathematically, a bilevel problem

is an optimization model where some of the variables, corresponding to the follower’s decisions, are

constrained to be optimal for another optimization problem. This type of mathematical models with

optimization problems in the constraints were first formulated in [9].

Bilevel problems are known to be challenging to solve. For instance, mixed-integer bilevel problems

are shown to be Σp
2-hard in [16]. In fact, even in their simplest form with linear objective functions

and constraints, bilevel problems are strongly NP-hard [15]. In this paper, we focus on this linear case

of bilevel problems, whose optimistic formulation is expressed in (B):

min
x,y

c⊤x+ d⊤y (B.1)

s.t. Ax+By ≤ a, (B.2)

y ∈ argmin
ỹ

f⊤ỹ (B.3)

s.t. Cx+Dỹ ≤ b, (B.4)

where A, B, C, D, a, b, c, d, f are matrices and vectors of rational numbers of appropriate di-

mension. The decision problem of the leader (B.1)–(B.2) is called the upper-level, and that of the

follower (B.3)–(B.4) is the lower-level problem. The upper- and lower-level decision variables are

denoted x and y, respectively, and the feasible region (B.2)–(B.4) is often referred to as inducible

region.

The links between linear bilevel and mixed-integer optimization have long been the topic of research.

In fact, Audet et al. [2] showed in 1997 that a binary variable x ∈ {0, 1} can be modelled by the

constraints y = 0, 0 ≤ x ≤ 1, and the linear continuous problem:

y ∈ argmax
ỹ

{ỹ : ỹ ≤ x, ỹ ≤ 1− x}.

Thus showing that 0-1 linear optimization problems are a special case of linear bilevel problems. Given
this connection, it should come as no surprise that the inducible region is, in general, non-convex [5],

and it might even be disconnected [1, 10] in the presence of linking constraints (also known as coupling

constraints), this is if B ̸= 0.

Due to the inherent complexity of bilevel models, many bilevel solution approaches start by solving

a simpler single-level relaxation. The most common relaxation is the high-point relaxation (HPR)

which is obtained by simply optimizing the upper-level objective over the constraint set of upper- and

lower-level constraints (FHPR):

min
x,y

{
c⊤x+ d⊤y : (B.2), (B.4)

}
. (HPR)

It is known that, if an optimal solution of the bilevel problem exists, it can be found at a vertex of

this relaxation’s feasible set [5], which hints at the relevance of the HPR in bilevel optimization. Nev-

ertheless, if this relaxation is unbounded, nothing can be concluded about the optimality status of the

corresponding bilevel problem. The examples in [17] show that when the HPR model is unbounded, the

corresponding bilevel model can be finite optimal, unbounded, or infeasible. Due to this inconclusive-

ness, most bilevel solution approaches assume that the feasible set of the HPR is bounded [6, 8, 18, 21].

Consequently, there is little existing research on how to handle bilevel problems when this relaxation

is unbounded.



Les Cahiers du GERAD G–2025–22 2

1.1 Motivation

The majority of progress in the study of unbounded HPR models is made under the assumption that

this unboundedness originates in the lower-level problem alone. In fact, if there is a feasible upper-level

solution such that the corresponding lower-level problem is unbounded, then the bilevel problem is

infeasible [26, 30]. This key lemma has driven most of the results in this field. Note that this result

is derived for mixed-integer in [30] and for integer in [26] linear bilevel problems, but it can be easily

adapted to linear bilevel problems. The same holds true for the following surveyed results.

In [30], a mixed-integer linear problem is designed to track the reason for the unboundedness of

the HPR, under the assumption that upper-level variables are bounded. Depending on the optimal

objective value of this mixed-integer problem, we can conclude whether the bilevel problem is infeasible,

unbounded, or finite optimal [30] (see Example 3 for an unbounded bilevel model with bounded upper-

level variables). Furthermore, it is shown in [12] that, when the HPR is unbounded, one can detect

whether the lower-level problem is unbounded by solving a linear problem. Depending on the optimal

value of this model, we can conclude that either the bilevel problem is infeasible or the lower-level

problem is well-defined for every feasible point of the HPR. Nevertheless, when the HPR is unbounded,

but the lower-level problem is not unbounded, solving this linear model will not allow us to determine

the status of the original bilevel problem. One of the main drawback of both these works [12, 30]

in the study of unboundedness is the assumption that some of the variables are explicitly bounded,

restricting the possible scenarios leading to an unbounded bilevel problem to unboundedness arising

in the lower-level problem. Finally, the watermelon algorithm presented in [26] to solve integer bilevel

problems can provide a certificate of unboundedness, when one exists. This algorithm is based on

a branch-and-bound approach which uses multi-way disjunctive cuts to eliminate bilevel infeasible

solutions from the search space. This approach cannot be extended to linear bilevel optimization,

because the designed sets of infeasible points rely on the feasible region being disconnected, a property

enforced by integrality constraints. Moreover the branch-and-bound applied to the variables would

also not be directly adaptable to a linear continuous framework.

1.2 Contributions

To sum up, studying the conclusions that can be drawn about the bilevel problem when its relaxation

is unbounded is a relevant but often overlooked topic. In this paper, we address this gap and close

important open questions with our main contribution being from a theoretical computational complex-

ity perspective. Jeroslow’s ground-breaking work [16] establishes that the complexity of determining

if a multilevel model admits an optimal solution rises one level in the polynomial hierarchy for each

additional level added. Complementing this seminal work, we show the hardness of deciding unbound-

edness in multilevel problems. Additionally, we present two algorithmic approaches for dealing with

unboundedness from a practical perspective.

The remainder of this paper is organised as follows. In Section 2, we show that the decision problem

of whether a linear bilevel problem is unbounded is strongly NP-complete, and draw some parallels

to the pessimistic bilevel formulation. More generally, we also show that checking unboundedness of

a linear multilevel problem with k levels is Σp
k−1-hard in Section 3. In this section, we also show the

Σp
k-hardness of deciding unboundedness of a mixed-integer k-level problem. In Section 4, we detail

two possible algorithmic approaches for checking whether a bilevel problem is unbounded and, if so,

computing a certificate of unboundedness. We also depict the potential of these algorithms for some

example instances of interest, and present a brief computational comparison. Finally, in Section 5, we

summarise our contributions, and propose directions for future research.
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2 Computational complexity of checking unboundedness

We formalize the problem of deciding the unboundedness of a bilevel problem in Section 2.1. Then,

in Section 2.2, we show that the problem is NP-complete for the optimistic bilevel formulation, and in

Section 2.3, we show the problem’s NP-hardness for the pessimistic bilevel formulation.

2.1 Decision problem

The decision problem of deciding whether a linear optimization model (LP)

min
x

{
c⊤x : Ax ≤ b

}
(LP)

is unbounded can be formulated as

∃x,∆x ∈ Qn, ∀k ≥ 0 : A(x+ k∆x) ≤ b ∧ c⊤∆x < 0 ?

This problem has an existential quantifier, followed by a universal quantifier, and a property that can

be verified in polynomial time. Consequently, it belongs to the class Σp
2 [28]. However, this question

can be simplified into one with only an existential quantifier as:

∃x,∆x ∈ Qn : Ax ≤ b ∧ A∆x ≤ 0 ∧ c⊤∆x < 0 ?

Therefore, this allows us to say that the problem is in NP⊆ Σp
2. Furthermore, we know that we

can solve a linear model in polynomial-time by applying an interior point method [31], and that such

algorithm also identifies unboundedness. Thus, we can further write the question without an existential

quantifier, allowing us to conclude that the problem is in P⊆ NP. It is exactly this type of reasoning

that will guide our contributions when proving that the decision problem of checking unboundedness

of a linear bilevel problem is in NP. But first, we formally define this decision problem.

We know that a linear optimization problem is unbounded if it admits a feasible point, and a

direction of unboundedness at that point. In turn, a direction of unboundedness must be a direction

along which feasibility is preserved and the objective value improved. Therefore, in linear bilevel

optimization, we say that a direction (∆x,∆y) is a direction of unboundedness at a feasible point

(x, y), if it verifies:

(x, y) + k(∆x,∆y) ∈ FB ∀k ≥ 0, (2)

c⊤∆x+ d⊤∆y < 0, (3)

where FB denotes the inducible region. Condition (2) ensures that every point on the half-line generated

by the feasible solution (x, y) and the direction (∆x,∆y) is a feasible solution for the bilevel problem,

and condition (3) that the upper-level objective value improves along this half-line. Consequently,

we define the decision problem for whether the optimistic linear bilevel problem (B) is unbounded as

Unbounded-BLP.

Unbounded-BLP:
instance: A, B, C, D, a, b, c, d, f matrices and vectors of rational numbers and of appropriate
dimension.
question: Is the bilevel problem (B) unbounded? Equivalently, are there a feasible solution
(x, y) ∈ FB and a direction (∆x,∆y) at that point that satisfy (2)–(3)?

In the following section, we show that this decision problem is strongly NP-complete, by proving

that it is both in NP and strongly NP-hard.
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2.2 NP-completeness of optimistic bilevel case

2.2.1 Inclusion in NP

In this section, we prove that Unbounded-BLP belongs to the complexity class NP. First, we present

two auxiliary results that allow us to formulate the problem’s question as one involving a single

existential quantifier. This formulation is based on the reformulation of the inducible region as a finite

union of polyhedra from [7].

Lemma 1. The bilevel problem (B) is unbounded if and only if the finite-union-of-polyhedra reformu-

lation (P) is unbounded.

min
x,y,λ

c⊤x+ d⊤y (P.1)

s.t. (x, y, λ) ∈
⋃

ω∈{1,2}n2

Pω, (P.2)

where λ are the dual variables of the lower-level problem, n2 is the number of lower-level constraints,

and the polyhedra Pω are defined as:

Pω = {(x, y, λ) ∈ FHPR ×FD : (Cx+Dy − b)i = 0 ∀i : ωi = 1;

λi = 0 ∀i : ωi = 2},

where FD = {λ : D⊤λ = −f ;λ ≥ 0} is the feasible set of the dual of the lower-level problem.

Proof. From [7, Theorem 8], we know that the set of linear bilevel representable feasible regions is

equivalent to a set of finite unions of polyhedra. In particular, the proof of this result is constructive,

showing that by applying the KKT conditions to the lower level of (B), we obtain the equivalent

set (P). In other words, there is a linear transformation between the points in the feasible sets of

problems (B) and (P).

If the bilevel problem (B) is unbounded, then there exists a sequence of feasible points {(xi, yi)}i∈Z+

with decreasing upper-level objective value. Applying the linear transformation between (B) and (P),

which we know exists from [7], we obtain a sequence of points {(xi, yi, λi)}i∈Z+ feasible for prob-

lem (P) with decreasing (upper-level) objective value. Therefore, we conclude that the problem (P) is

unbounded. A similar argument can be used to show the opposite implication, hence proving that the

problem (B) is unbounded if and only if the reformulation (P) is unbounded.

Theorem 2. The finite-union-of-polyhedra reformulation (P) is unbounded if and only if ∃ω ∈ {1, 2}n2

such that the linear problem (Pω) is unbounded.

min
x,y,λ

c⊤x+ d⊤y (Pω)

s.t. (x, y, λ) ∈ Pω.

Proof. If ∃ω ∈ {1, 2}n2 such that (Pω) is unbounded, then (P) is also unbounded, because (P) is a

relaxation of (Pω).

To prove the opposite implication, we assume that (P) is unbounded and, by contradiction, that

for all ω ∈ {1, 2}n2 (Pω) is not unbounded (i.e., it is either infeasible or finite optimal). Consequently,

we have that ∀ω ∈ {1, 2}n2 ∃Lω ∈ R ∪ {+∞} such that:

∀(x, y, λ) ∈ Pω : c⊤x+ d⊤y ≥ Lω,

where the convention is that Lω = +∞ corresponds to an infeasible problem. Note that since (P) is

feasible, we know that at least one of these bounds Lω ∈ R is finite. Therefore, we know that:

∀(x, y, λ) ∈
⋃

ω∈{1,2}n2

Pω : c⊤x+ d⊤y ≥ min
ω∈{1,2}n2

{Lω} ∈ R,
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which contradicts the assumption that (P) is unbounded. Hence, if (P) is unbounded, then ∃ω ∈
{1, 2}n2 such that (Pω) is unbounded. We have proved both implications as required.

Given Lemma 1 and Theorem 2, we conclude that the question of Unbounded-BLP can be

equivalently expressed as:

∃ ω ∈ {1, 2}n2 : (Pω) is unbounded?

This is a formulation with a single existential quantifier, followed by the property of whether a linear

problem is unbounded, which can be verified in polynomial time [31]. Therefore, this problem belongs

to the complexity class NP [28]. Note that the cardinality of the set {1, 2}n2 is exponential in the

instance size, therefore we cannot trivially say that the problem is polynomially solvable.

2.2.2 Strong NP-hardness

We now conclude that Unbounded-BLP is strongly NP-complete by proving that it is also strongly

NP-hard. We show this result for problems without linking constraints. We present a similar result for

bilevel problems with linking constraints in Appendix A, whose proof is useful for building intuition

for the multilevel linear case in Section 3.1.

In order to prove this result, we derive a reduction from the decision version of the 3-SAT problem

known to be NP-complete [13].

3-Satisfiability (3-SAT):
instance: S set of m clauses on the Boolean variables {ai}i∈{1,...,n}, each clause with at most 3
literals
question: Is there a true/false assignment of the Boolean variables ai such that S is satisfied?

Following the notation used in [19], S is satisfiable if an only if there exists a ∈ {0, 1}n such that

ASa ≥ 1 + cS, where AS ∈ {−1, 0, 1}m×n and cS ∈ {−3,−2,−1, 0}m. Based on this rewriting of

3-SAT, we prove that Unbounded-BLP is a strongly NP-complete problem in Theorem 3.

Theorem 3. Unbounded-BLP without linking constraints is strongly NP-complete.

Proof. From Lemma 1 and Theorem 2, we concluded that Unbounded-BLP is in NP. It remains to

show that it is (strongly) NP-hard. We achieve this by showing that 3-SAT is a YES instance if and

only if the bilevel model (B̄) is unbounded.

min
x,y,z,w

n∑
i=1

zi −
1

2n

n∑
i=1

wi (B̄)

s.t. ASx+ y ≥ 3

2
+ cS,

1

2
− y ≤ xi ≤

1

2
+ y ∀i ∈ {1, . . . , n},

(z, w) ∈ argmax
z̄,w̄

n∑
i=1

zi −
1

2n

n∑
i=1

wi

s.t. zi ≤ y − 1

2
+ xi ∀i ∈ {1, . . . , n},

zi ≤ y − xi +
1

2
∀i ∈ {1, . . . , n},

wi ≥ xi −
1

2
∀i ∈ {1, . . . , n},

wi ≥
1

2
− xi ∀i ∈ {1, . . . , n}.
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Note that the problem (B̄) is always feasible, because y = 0, xi = 1
2 ∀i ∈ {1, . . . , n}, z = w = 0 is

a feasible solution. Furthermore, for any given upper-level decisions y and x, the lower-level optimal

solution is given by:

zi =min

{
y − 1

2
+ xi; y − xi +

1

2

}
= y −

∣∣∣∣xi −
1

2

∣∣∣∣ ∀i ∈ {1, . . . , n},

wi =max

{
xi −

1

2
;
1

2
− xi

}
=

∣∣∣∣xi −
1

2

∣∣∣∣ ∀i ∈ {1, . . . , n}.

Proof of if. Assume that 3-SAT is a YES instance, then S is satisfiable and we know that ∃a ∈ {0, 1}n
such that ASa ≥ 1 + cS.

Let y ≥ 0, and build

x =

{
1
2 − y if ai = 0
1
2 + y if ai = 1

, z = 0, wi = y ∀i ∈ {1, . . . , n}.

First, we show that for all y ≥ 0, this yields a feasible solution of problem (B̄). Since x ∈
{

1
2 − y, 1

2 + y
}n

,

it is straightforward to verify that this solution is optimal for the lower-level problem, and that it verifies

the upper-level constraint:
1

2
− y ≤ xi ≤

1

2
+ y.

Therefore, we must only show that it also verifies ASx + y ≥ 3
2 + cS. Note that for each clause

t ∈ S, there are exactly three literals s̄t1, s̄t2, s̄t3 such that:

(ASx− cS)t = s̄t1 + s̄t2 + s̄t3,

where for all j ∈ {1, 2, 3}, there exists i ∈ {1, . . . , n} such that s̄tj is either xi or 1 − xi. From the

bounds on x, we know that:

xi, 1− xi ≥
1

2
− y ∀i ∈ {1, . . . , n} ⇒ s̄tj ≥

1

2
− y ∀j ∈ {1, 2, 3}. (5)

Furthermore, since a is a true assignment, then at least of its literals in clause t ∈ S is true, this is
∃j ∈ {1, 2, 3} : stj = 1, where (ASa− cS)t = st1 + st2 + st3. This implies that the corresponding literal

in the x variables is 1
2 + y:

∃j ∈ {1, 2, 3} : s̄tj =
1

2
+ y. (6)

From Equations (5) and (6), we obtain:

(ASx− cS)t ≥
(
1

2
− y

)
+

(
1

2
− y

)
+

(
1

2
+ y

)
=

3

2
− y.

Since this holds true for any clause t ∈ S, then for all y ≥ 0, the solution we build is feasible for

problem (B̄).

In addition, the upper-level objective value at these solutions is:

n∑
i=1

zi −
1

2n

n∑
i=1

wi = −1

2
y.

Consequently, we can create a sequence of feasible points with decreasing (improving) objective value,

by picking y ∈ {0, 1, 2, . . . }, and the corresponding x, z, and w values. Thus, problem (B̄) is unbounded.
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Proof of only if. Assume that problem (B̄) is unbounded. Then, there is a feasible point (ȳ, x̄, z̄, w̄)

and a direction of unboundedness (∆y,∆x,∆z,∆w) at that point. Since (B̄) is a minimization prob-

lem, we know that the objective value decreases along (ȳ, x̄, z̄, w̄) + k(∆y,∆x,∆z,∆w) towards −∞,

as k → +∞. In particular, we know that there is a k̄ > 0 such that (y, x, z, w) = (ȳ, x̄, z̄, w̄) +

k̄(∆y,∆x,∆z,∆w) is a feasible point with strictly negative upper-level objective value:

n∑
i=1

zi −
1

2n

n∑
i=1

wi < 0.

We now show that the assignment:

ai =

{
0 if xi ≤ 1

2

1 if xi >
1
2

is a true assignment of S.

In order to do so, we start by showing that, since the feasible point (y, x, z, w) has strictly negative

objective value, then for all clauses t ∈ S, at least one of the literals has value strictly greater than 1
2 ,

this is:

∀t ∈ S, ∃j ∈ {1, 2, 3} : s̄tj >
1

2
,

where (ASx − c)t = s̄t1 + s̄t2 + s̄t3. First, since ASx + y ≥ 3
2 + c, we know that for each clause t ∈ S,

there exists j ∈ {1, 2, 3} such that the corresponding literal s̄tj ≥ 1
2 −

y
3 where ASx−c = s̄t1+ s̄t2+ s̄t3.

If, by contradiction, all literals s̄t1, s̄t2, s̄t3 < 1
2 −

y
3 , then ASx− c < 3

2 −y which implies that (x, y, z, w)

is not feasible.

Now, assume, by contradiction, that all literals s̄t1, s̄t2, s̄t3 ≤ 1
2 . We know already that there exists

j ∈ {1, 2, 3} such that s̄tj ≥ 1
2 − y

3 , let xp be the corresponding variable. Then, we can deduce that:

n∑
i=1

zi −
1

2n

n∑
i=1

wi =

n∑
i=1

[
y −

∣∣∣∣xi −
1

2

∣∣∣∣]− 1

2n

n∑
i=1

∣∣∣∣xi −
1

2

∣∣∣∣ ,
≥ y −

∣∣∣∣xp −
1

2

∣∣∣∣− 1

2n
ny,

≥ y − 1

3
y − 1

2
y,

=
2

3
y ≥ 0,

where the first inequality holds true, because xi ∈
[
1
2 − y, 1

2 + y
]
implies

∣∣xi − 1
2

∣∣ ≤ y. The second

inequality holds true, because s̄tj ∈
[
1
2 − y

3 ,
1
2

]
implies

∣∣xp − 1
2

∣∣ ≤ y
3 . In fact, if s̄tj = xp, then

xp ∈
[
1
2 − y

3 ,
1
2

]
, and if s̄tj = 1−xp, then xp ∈

[
1
2 ,

1
2 + y

3

]
. In both cases, we know that

∣∣xi − 1
2

∣∣ ∈ [
0, y

3

]
.

The final inequality holds true, because for a feasible solution x ∈
[
1
2 − y, 1

2 + y
]n

to exist, we must

have y ≥ 0. This inequality contradicts the fact that (y, x, z, w) has strictly negative objective value,

thus we conclude that for each clause t ∈ S, there exists j ∈ {1, 2, 3} such that the corresponding

literal s̄tj >
1
2 .

Now, we are ready to conclude the proof by showing that a is a true assignment of S. Let xp be

the variable associated with that literal. If s̄tj = xp, then stj = ap = 1. If s̄tj = 1− xp, then xp > 1
2 ,

ap = 0 and stj = 1− ap = 1.

In any case, we obtain:

(ASa− cS)t = st1 + st2 + st3 ≥ 1.

Since, this holds true for any clause t ∈ S, then a ∈ {0, 1}n verifies ASa ≥ 1 + cS, and the 3-SAT is a

YES instance.
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2.3 NP-hardness of pessimistic bilevel case

So far we have considered the optimistic formulation of a linear bilevel problem. Another possible

formulation is the pessimistic one, in which, if there are multiple lower-level optimal solutions, the

worst solution with respect to the upper-level will be selected. In the presence of linking constraints,

this might mean that for a given upper-level decision, the follower selects an optimal lower-level solution

that violates the linking constraints, leading to infeasibility of the selected upper-level decision.

We can equivalently formulate the optimistic problem formulation as:

min
x∈X

min
y∈S(x)

c⊤x+ d⊤y,

where X = {x : ∃y ∈ S(x) : Ax + By ≤ a} is the set of feasible upper-level variables, and S(x) =

argmin
ỹ

{
f⊤ỹ : Cx+Dỹ ≤ b

}
is the set of optimal solutions of the lower-level problem at x. Given

this notation, we define the pessimistic formulation, similarly to [11], as:

min
x∈X

max
y∈S(x)

c⊤x+ d⊤y. (P)

The underlying assumption in both formulations is that for a solution (x, y) to be bilevel feasible, the

lower-level problem cannot be infeasible, i.e. S(x) ̸= ∅. This assumption is not always considered and

an alternative approach for the pessimistic formulation is presented by Wiesemann et al. [27]. Finally,

note that problem (P) can be rewritten as:

min
x∈X

min
y∈S(x)

c⊤x+ d⊤y (P’)

s.t. c⊤x+ d⊤y ≥ c⊤x+ d⊤ȳ ∀ȳ ∈ S(x).

In general, unboundedness of the optimistic formulation of a bilevel problem does not imply that

of its pessimistic formulation, as illustrated in Example 1.

Example 1 (Unboundedness in Optimistic vs Pessimistic Formulations). Consider the following bilevel

problem:
“min

x
” −x+ y1 − y2

s.t. (y1, y2) ∈ argmin
ỹ1,ỹ2

−ỹ1 − ỹ2

s.t. −x+ ỹ1 + ỹ2 ≤ 1,
ỹ1, ỹ2 ≥ 0,

where the upper-level is purposefully ill-defined, because we will consider both the optimistic and the

pessimistic versions of the problem in this section.

The lower-level constraints imply that any feasible x must be in the interval [−1,+∞[. For any

feasible x̄ ∈ [−1,+∞[, the set of lower-level optimal solutions is given by:

ϕ(x̄) =
{
(y1, y2) ∈ R2 : y1 + y2 = 1 + x̄; y1, y2 ≥ 0

}
.

Given the upper-level objective, we can compute the optimistic yO and pessimistic yP solutions as:

yO = (yO1 , yO2 ) = (0, 1 + x̄),

yP = (yP1 , y
P
2 ) = (1 + x̄, 0).

By replacing these lower-level solutions into the upper-level objective, we obtain −2x − 1 in the

optimistic version, and 1 in the pessimistic formulation. Consequently, for the optimistic formulation,

we can build a direction of unboundedness (∆x,∆y1,∆y2) = (1, 0, 1) valid for the feasible point

(x, y1, y2) = (−1, 0, 0).
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Therefore, the optimistic formulation of the bilevel problem is unbounded. However, the pessimistic

formulation has a constant upper-level objective value for all feasible solutions. Therefore, the pes-

simistic formulation of the bilevel problem is bounded. In conclusion, unboundedness of the optimistic

formulation of a bilevel problem does not imply that of its pessimistic formulation.

Nevertheless, the NP-hardness part of Theorem 3 still holds if we consider a pessimistic formulation,

because the lower-level optimal solutions in the reduction are uniquely defined by the upper-level

variables. In other words, the pessimistic and optimistic formulations are equivalent for the bilevel

problem used in the reduction. Therefore, the decision problem of whether a pessimistic linear bilevel

model is unbounded is also strongly NP-hard, even without linking constraints:

Corollary 4. Deciding whether the pessimistic linear bilevel program (P’) is unbounded is strongly

NP-hard.

Even though we have seen in Example 1 that unboundedness of the optimistic formulation of a

bilevel problem does not imply that of its pessimistic formulation, the converse is true. To conclude

this section, we show that the boundedness of the optimistic formulation of a bilevel problem implies

that of its pessimistic formulation in Lemma 5.

Lemma 5. If the pessimistic formulation (P’) is unbounded, then the corresponding optimistic formu-

lation (B) is also unbounded.

Proof. The optimistic formulation (B) is a relaxation of the pessimistic one (P’), because the feasible

set of the pessimistic formulation is the feasible set of the optimistic formulation plus one new set of

constraints. Consequently, the optimal value of the pessimistic formulation (P’) is an upper bound

on the optimal value of the optimistic model (B). Therefore, if the pessimistic formulation (P’) is

unbounded, i.e. has optimal value −∞, then so does the optimistic formulation (B).

3 Complexity results in multilevel optimization

In this section, we extend our results to multilevel optimization by showing that deciding whether

a linear k-level optimization problem is unbounded is Σp
k−1-hard in Section 3.1, and that deciding

whether a mixed-integer k-level optimization problem is unbounded is Σp
k-hard in Section 3.2.

3.1 Linear multilevel optimization

We have already showed that for k = 2, checking if a bilevel problem is unbounded is NP-hard, or

equivalently Σp
1-hard. In this section, we extend this result to show that for each level added to a

multilevel problem, the complexity of deciding unboundedness moves up a level in the polynomial

hierarchy. First, we introduce an optimistic linear k-level problem (KLP):

min
x

f⊤
k x

s.t. x ∈ Ck

x(k−1) ∈ argmin
x(k−1)

f⊤
k−1x

(k−1)

s.t. x(k−1) ∈ Ck−1

x(k−2) ∈ argmin
x(k−2)

(. . . )

...
x(2) ∈ argmin

x(2)

f⊤
2 x(2)

s.t. x(2) ∈ C2

x(1) ∈ argmin
x(1)

f⊤
1 x(1)

s.t. x1 ∈ C1

(KLP)
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where x = (x1, . . . , xk) are the decision variables, and Ci is the linear feasible region of level i; note

the slight abuse of notation on the use of the same variable notation over different levels. The set

Ci is parametrised by the variables of all the levels above i, so the notation Ci is an abbreviation

for Ci(xi+1, . . . , xk). The subset of decision variables of level i is x(i) = (x1, . . . , xi), and fi the

corresponding objective coefficients.

The decision problem of deciding whether the linear k-level problem (KLP) is unbounded can be

stated as:

Unbounded-KLP:
instance: fk, . . . , f1 rational vectors of appropriate dimension and Ck, . . . , C1 linear polyhedra
(defined by rational coefficients).
question: Is the corresponding k-level model unbounded?

In Theorem 6, we show that Unbounded-KLP is strongly Σp
k−1-hard.

Theorem 6. Unbounded-KLP is Σp
k−1-hard.

We have divided the proof of Theorem 6 into smaller sub-proofs showing that checking unbounded-

ness of a linear trilevel model and a k-level problem for k ≥ 4 are Σp
2-hard and Σp

k−1-hard, respectively.

We have further divided the proof for the k-level problem into cases where k is odd and even. Thus,

this proof can be obtained by combining Theorem 7, Theorem 8 and Theorem 9 presented in the

remainder of this section.

The decision problem that we use in all the sub-proofs of Theorem 6 is the (k − 1)-Alternating

Quantified Satisfiability with k adjusted as suited. This decision problem is known to be Σp
k−1-

complete [29].

(k − 1)-Alternating Quantified Satisfiability:
instance: Disjoint non-empty sets of variables X1, . . . , Xk−1, a Boolean expression E over⋃k−1

l=1 Xl in a conjunctive normal form with at most 3 literals in each clause c ∈ S.
question:

• When k odd, (Bk−1 ∩ 3CNF): Is there a truth assignment ak−1 of the variables in Xk−1

such that for all truth assignments ak−2 of the variables in Xk−2, ..., such that for all truth
assignments a1 of the variables in X1 the expression E is not satisfied?

• When k even, (Bk−1 ∪ 3CNF): Is there a truth assignment ak−1 of the variables in Xk−1

such that for all truth assignments ak−2 of the variables in Xk−2, ..., such that there is a
truth assignment a1 of the variables in X1 such that the expression E is satisfied?

Following similar notation to the one used for the 3-SAT problem, we say that Bk−1 ∩ 3CNF

(for k odd) is a YES instance if and only if ∃ak−1 ∈ {0, 1}nk−1 , ∀ak−2 ∈ {0, 1}nk−2 , . . . , ∃a2 ∈
{0, 1}n2 , ∀a1 ∈ {0, 1}n1 such that

k−1∑
l=1

Alal ≱ 1 + c,

where Al ∈ {−1, 0, 1}m×nl with m = |S| the number of clauses in S, and nl = |Xl| for l ∈ {1, . . . , k−1},
and c ∈ {−3,−2,−1, 0}m.

Similarly, we say that Bk−1 ∪ 3CNF (for k even) is a YES instance if an only if ∃ak−1 ∈ {0, 1}nk−1 ,

∀ak−2 ∈ {0, 1}nk−2 , . . . , ∀a2 ∈ {0, 1}n2 , ∃a1 ∈ {0, 1}n1 such that

k−1∑
l=1

Alal ≥ 1 + c.
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3.1.1 Trilevel unboundedness problem is Σp
2-hard

Based on the 2-Alternating Quantified Satisfiability (B2 ∩ 3CNF) problem, we show that

deciding whether a linear trilevel problem is unbounded is a Σp
2-hard problem in Theorem 7.

Theorem 7. Unbounded-KLP for k = 3 is Σp
2-hard.

Proof. Let k = 3. We show that an instance of Unbounded-KLP reduces to an instance of B2∩3CNF.

Given as instance of B2 ∩ 3CNF, we build the following Unbounded-KLP instance:

max
y,x2,x1,

s,z

y

s.t. y ≥ 1,
x2 ∈ [0, y]n2 ,
z2 = 0,
s = 0,
(x1, s, z) ∈ argmax

x1,s,z
s

s.t.
2∑

i=1

Aixi ≥ s+ cy,

x1 ∈ [0, y]n1 ,
z1 = 0,
s ∈ [0, y],
zs = 0,

z ∈ argmax
z

zs +
2∑

l=1

nl∑
i=1

(zl)i

s.t. zl ≤ xl ∀l ∈ {1, 2},
zl ≤ y − xl ∀l ∈ {1, 2},
zs ≤ s,
zs ≤ y − s,

(3LP)

where we abbreviate z = (z1, z2, zs), and for l ∈ {1, 2} denote nl as the dimension of xl. Note that

optimality of level 1 implies that any feasible solution satisfies (z1)i = min{(x1)i, y − (x1)i} ∀i ∈
{1, . . . , n1}, (z2)i = min{(x2)i, y − (x2)i} ∀i ∈ {1, . . . , n2} and zs = min{s, y − s}. In addition, the

linking constraints z2 = 0, z1 = 0, zs = 0 at levels 3 and 2 enforce that x2 ∈ {0, y}n2 , x1 ∈ {0, y}n1

and s ∈ {0, y}, respectively. It is important that these linking constraints appear in the level that

decides on the corresponding variables (x2, x1 and s) whose integrality is being enforce.

We show that B2 ∩ 3CNF is a YES instance if and only if (3LP) is unbounded.

Proof of if. Assume that B2 ∩ 3CNF is a YES instance, this is that ∃ā2 ∈ {0, 1}, ∀a1 ∈ {0, 1} :

A1a1 +A2a2 ≱ 1 + c.

Let y ≥ 1, and x2 = ā2y, and a1 ∈ {0, 1}n1 . We show that (y, x2) along with x1 = a1y, s = 0,

z1 = z2 = 0 and zs = 0 constitutes a feasible solution of (3LP). It is easy to verify that the feasibility

constraints at all levels are verified. According to our observation about optimal solutions for level 1,

it is clear that this solution (z1, z2, zs) = (0,0, 0) is optimal for level 1. We show that this solution is

also optimal for level 2 by contradiction. Assume, by contradiction, that s = y would be feasible for

level 2. Then,
2∑

i=1

Aixi ≥ s+ cy ⇔ A2ā2 +A1a1 ≥ 1 + c,

where the equivalence arises from y ≥ 1. This contradicts our assumption that B2 ∩ 3CNF is a YES

instance. We also note that any assignment a2 ∈ {0, 1}n2 , a1 ∈ {0, 1}n1 satisfies A1a1 + A2a2 ≥ c,

so s = 0 is always feasible for level 2. Therefore, the problem at level 2 has optimal value 0, and the

solution considered is optimal. Since the solution we build is feasible for any y ≥ 1, then by setting
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y ∈ {1, 2, 3, ...} we can build a sequence of feasible points for (3LP) which have increasing objective

value y. Therefore, the trilevel problem (3LP) is unbounded.

Proof of only if. Assume that B2 ∩ 3CNF is a NO instance, this is that ¬(∃a2 ∈ {0, 1}n2 , ∀a1 ∈
{0, 1}n1 : A1a1 +A2a2 ≱ 1 + c). Equivalently, we can write:

∀a2 ∈ {0, 1}n2 , ∃a1 ∈ {0, 1}n1 : A1a1 +A2a2 ≥ 1 + c.

We show that (3LP) is infeasible. Assume, by contradiction, that there is a feasible solution

(y, x1, x2, s, z1, z2, zs) of (3LP). Let a2 = 1
yx2. Since x2 ∈ {0, y}n2 , then a2 ∈ {0, 1}n2 . By assumption,

we know that there exists a1 ∈ {0, 1}n1 such that A1a1 +A2a2 ≥ 1 + c. Therefore, for y and x2 fixed,

x̄1 = a1y, s̄ = y, z̄1 = z̄2 = 0 and z̄s = 0 is an optimal solution of the problem at level 2. This

implies that the optimal value of level 2 for (y, x2) is y, and consequently any other optimal solution

must have the s variable set to y. Then, our feasible solution has s = y. This however violates the

linking constraint s = 0, so the solution cannot be feasible by contradiction. By arbitrariness of the

choice of feasible solution, we conclude that (3LP) is infeasible. Hence, the 3-level problem (3LP) is

not unbounded.

3.1.2 Unbounded-KLP with odd k is Σp
k−1-hard

Throughout this section, we assume that k ≥ 4 is an odd number. Based on the (k−1)-Alternating

Quantified Satisfiability (Bk−1 ∩ 3CNF) problem, we show that Unbounded-KLP where k is

odd is a Σp
k−1-hard problem in Theorem 8.

Theorem 8. Unbounded-KLP for k odd is Σp
k−1-hard.

Proof. We show that an instance of Unbounded-KLP reduces to an instance of Bk−1∩3CNF. Given

as instance of Bk−1 ∩ 3CNF, we build the following Unbounded-KLP instance:

max
y,x,s,z

y

s.t. y ≥ 1,
xk−1 ∈ [0, y]nk−1 ,
zk−1 = 0,
s = 0,

...

l odd: (x(l), s, z) ∈ argmax
x(l),s,z

{
s : xl ∈ [0, y]nl ; zl = 0; (x(l−1), s, z) ∈ Φl−1

}
,

l even: (x(l), s, z) ∈ argmin
x(l),z

{
s : xl ∈ [0, y]nl ; zl = 0; (x(l−1), s, z) ∈ Φl−1

}
,

...
(x1, s, z) ∈ argmax

x1,s,z
s

s.t.
k−1∑
i=1

Aixi ≥ s+ cy,

x1 ∈ [0, y]n1 ,
z1 = 0,
s ∈ [0, y],
zs = 0,

z ∈ argmax
z

zs +
k−1∑
l=1

nl∑
i=1

(zl)i

s.t. (zl)i ≤ (xl)i ∀l, ∀i,
(zl)i ≤ y − (xl)i ∀l, ∀i,
zs ≤ s,
zs ≤ y − s,

(Odd-KLP)
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where z = (z1, . . . , zk−1), x
(i) = (x1, . . . , xi), x = (x1, . . . , xk−1), and Φi is the problem at level i

parametrised by the variables (y, xk−1, . . . , xi+1) of the levels above.

Note that, for l ≤ k − 2, the problem at level l is never unbounded because y is a decision of level

k − 1 and hence a parameter for this level. Optimality of level 1 implies that at any feasible solution

we have that (zl)i = min{(xl)i, y − (xl)i} ∀l ∈ {1, . . . , k − 1},∀i ∈ {1, . . . , nl} and zs = min{s, y − s}.
In addition, the linking constraints zl = 0 ∀l ∈ {1, . . . , k− 1} and zs = 0 at each level enforce that for

l ∈ {1, . . . , k− 1} : xl ∈ {0, y}nl and s ∈ {0, y}, respectively. Note also that s = 0 is always feasible for

level 2, since any set of assignment values al ∈ {0, 1}nl for l ∈ {1, . . . , k − 1} satisfies
k−1∑
i=1

Aiai ≥ c.

We show that Bk−1 ∩ 3CNF is a YES instance if and only if (Odd-KLP) is unbounded.

Proof of if. Assume that Bk−1 ∩ 3CNF is a YES instance, this is that ∃ak−1 ∈ {0, 1}nk−1 , . . . , ∃a2 ∈
{0, 1}n2 , ∀a1 ∈ {0, 1}n1 :

∑k−1
l=1 Alal ≱ 1 + c.

Let y ≥ 1, and xk−1 = ak−1y, where ak−1 is the assignment we know exists by assumption. Let

xl = aly for all l ∈ {k − 2, . . . , 1}, where for l odd al ∈ {0, 1}nl can be any assignment, and for l even

al is the assignment we know exists by assumption and which depends on the choice of al+1. We show

that this choice of (y, x) along with s = 0, zl = 0 for l ∈ {k−1, . . . , 1} and zs = 0 constitutes a feasible

solution of (Odd-KLP).

It is easy to verify that the feasibility constraints at all levels are verified. According to our

observation about optimal solutions for level 1, it is clear that this solution zl = 0 for l ∈ {k−1, . . . , 1}
and zs = 0 is optimal for level 1. We must also show each xl and s are optimal for the corresponding

levels.

Let l ∈ {1, . . . , k − 2}. For even l, since we selected xl as this solution which we know exists (by

assumption), then independently of what the following levels associated with an odd l value chose,

s = 0 is always the only feasible choice for s at level 2. This setting of s = 0 minimizes the objective

value s at this level where xl for even l, is decided on. For odd l, independently of which xl values are

picked at this level, there will always be a corresponding solution for the following levels associated

with an even l value, which will enforce s = 0 in order for the assignment constraint to hold. In both

cases, the selected xl values and s = 0 are optimal decisions for the corresponding levels.

Since the solution we build is feasible for any y ≥ 1, then by setting y ∈ {1, 2, 3, ...} we can

build a sequence of feasible points for (Odd-KLP) which have increasing/improving objective value y.

Therefore, the k-level problem (Odd-KLP) is unbounded.

Proof of only if. Assume that Bk−1∩3CNF is a NO instance, this is that ¬(∃ak−1 ∈ {0, 1}nk−1 , . . . ,

∃a2 ∈ {0, 1}n2 , ∀a1 ∈ {0, 1}n1 :
∑k−1

l=1 Alal ≱ 1 + c). Equivalently, we can write:

∀ak−1 ∈ {0, 1}nk−1 , . . . , ∀a2 ∈ {0, 1}n2 , ∃a1 ∈ {0, 1}n1 :

k−1∑
l=1

Alal ≥ 1 + c.

We show that (Odd-KLP) is infeasible. Assume, by contradiction, that there is a feasible solution

(y, xk−1, . . . , x1, s, zk−1, . . . , z1, zs) of (Odd-KLP).

Let ak−1 = 1
yxk−1. Since xk−1 ∈ {0, y}nk−1 , then ak−1 ∈ {0, 1}nk−1 . Then, we show that s = y.

Let l ∈ {1, . . . , k − 2}. For odd l, the corresponding level maximizes s, and xl = aly is an feasible

solution that allows for s = y to be selected. Therefore, the optimal objective value of this level is y,

corresponding to a solution s = y at level 2. For even l, independently of the solution selected by the

corresponding level, the following levels associated with an odd l value always chose a solution that

makes s = y the optimal at level 2.
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This value of s however violates the linking constraint s = 0, so the solution cannot be feasible,

and we have reached a contradiction. By arbitrariness of the choice of feasible solution, we conclude

that (Odd-KLP) is infeasible. Hence, the k-level problem (Odd-KLP) is not unbounded.

3.1.3 Unbounded-KLP with even k is Σp
k−1-hard

Throughout this section, we assume k ≥ 4 is an even number. Based on the (k − 1)-Alternating

Quantified Satisfiability (Bk−1 ∪ 3CNF) problem, we show Unbounded-KLP where k is even is

a Σp
k−1-hard problem in Theorem 9.

Theorem 9. Unbounded-KLP for k even is Σp
k−1-hard.

Proof. We show that an instance of Unbounded-KLP reduces to an instance of Bk−1∪3CNF. Given

an instance of Bk−1 ∪ 3CNF, we build the following Unbounded-KLP instance:

max
y,x,s,z

y

s.t. y ≥ 1,
xk−1 ∈ [0, y]nk−1 ,
zk−1 = 0,
s = y,

...

l even: (x(l), s, z) ∈ argmin
x(l),z

{
s : xl ∈ [0, y]nl ; zl = 0; (x(l−1), s, z) ∈ Φl−1

}
,

l odd: (x(l), s, z) ∈ argmax
x(l),s,z

{
s : xl ∈ [0, y]nl ; zl = 0; (x(l−1), s, z) ∈ Φl−1

}
,

...
(x1, s, z) ∈ argmax

x1,s,z
s

s.t.
k−1∑
i=1

Aixi ≥ s+ cy,

x1 ∈ [0, y]n1 ,
z1 = 0,
s ∈ [0, y],
zs = 0,

z ∈ argmax
z

zs +
k−1∑
l=1

nl∑
i=1

(zl)i

s.t. (zl)i ≤ (xl)i ∀l, ∀i,
(zl)i ≤ y − (xl)i ∀l, ∀i,
zs ≤ s,
zs ≤ y − s,

(Even-KLP)

where z = (z1, . . . , zk−1), x
(i) = (x1, . . . , xi), x = (x1, . . . , xk−1), and Φi is the problem at level i

parametrised by the variables (y, xk−1, . . . , xi+1) of the levels above. This problem (Even-KLP) is

similar to the reduction problem (Odd-KLP) used in the proof for odd k, where the constraint s = 0

is replaced with s = y.

Note that, for l ≤ k − 2, the problem at level l is never unbounded because y is a decision of level

k − 1 and hence a parameter for this level. Optimality of level 1 implies that at any feasible solution

we have that (zl)i = min{(xl)i, y − (xl)i} ∀l ∈ {1, . . . , k − 1},∀i ∈ {1, . . . , nl} and zs = min{s, y − s}.
In addition, the linking constraints zl = 0 ∀l ∈ {1, . . . , k − 1} and zs = 0 at level k enforce that for

l ∈ {1, . . . , k− 1} : xl ∈ {0, y}nl and s ∈ {0, y}, respectively. Note also that s = 0 is always feasible for

level 2, since any set of assignment values al ∈ {0, 1}nl for l ∈ {1, . . . , k − 1} satisfies
k−1∑
i=1

Aiai ≥ c.

We show that Bk−1 ∪ 3CNF is a YES instance if and only if (Even-KLP) is unbounded.
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Proof of if. Assume that Bk−1 ∪ 3CNF is a YES instance, this is that ∃ak−1 ∈ {0, 1}nk−1 , . . . , ∀a2 ∈
{0, 1}n2 , ∃a1 ∈ {0, 1}n1 :

∑k−1
l=1 Alal ≥ 1 + c.

Let y ≥ 1, and xk−1 = ak−1y, where ak−1 is the assignment we know exists by assumption. Let

xl = aly for all l ∈ {k − 2, . . . , 1}, where for l even al ∈ {0, 1}nl can be any assignment, and for l

odd al is the assignment we know exists by assumption and which depends on the choice of al+1. We

show that this choice of (y, x) along with s = y, zl = 0 for l ∈ {k − 1, . . . , 1} and zs = 0 constitutes a

feasible solution of (Even-KLP).

It is easy to verify that the feasibility constraints at all levels are verified. According to our

observation about optimal solutions for level 1, it is clear that this solution zl = 0 for l ∈ {k −
1, . . . , 1} and zs = 0 is optimal for level 1. We must also show each xl and s are optimal for the

corresponding levels.

Let l ∈ {1, . . . , k − 2}. For odd l, the corresponding level whose goal is to maximise s will choose

xl = aly as the assignment that results in s = y being feasible (and hence optimal) for level 2. We

know, by assumption, that such a decision exists independently of what the following levels associated

with an even l value chose xl to be. For even l, independently of the xl selected, we know the following

levels associated with an odd l value will select the decision that lead to s = y. In both cases, the

selected xl values and s = y are optimal decisions for the corresponding levels. Since the solution we

build is feasible for any y ≥ 1, then by setting y ∈ {1, 2, 3, ...} we can build a sequence of feasible points

for (Even-KLP) which have increasing/improving objective value y. Therefore, the k-level problem

(Even-KLP) is unbounded.

Proof of only if. Assume that Bk−1∪3CNF is a NO instance, this is that ¬(∃ak−1 ∈ {0, 1}nk−1 , . . . ,

∀a2 ∈ {0, 1}n2 , ∃a1 ∈ {0, 1}n1 :
∑k−1

l=1 Alal ≥ 1 + c). Equivalently, we can write:

∀ak−1 ∈ {0, 1}nk−1 , . . . , ∃a2 ∈ {0, 1}n2 , ∀a1 ∈ {0, 1}n1 :

k−1∑
l=1

Alal ≱ 1 + c.

We show that (Even-KLP) is infeasible. Assume, by contradiction, that there is a feasible solution

(y, xk−1, . . . , x1, s, zk−1, . . . , z1, zs) of (Even-KLP).

Let ak−1 = 1
yxk−1. Since xk−1 ∈ {0, y}nk−1 , then ak−1 ∈ {0, 1}nk−1 . Then, we show that s = 0.

Let l ∈ {1, . . . , k − 2}. For even l, the corresponding level whose goal is to minimise s, will choose

xl = aly as the assignment that results in s = 0 being the only feasible (and hence optimal) for level

2. We know, by assumption, that such a decision exists independently of what the following levels

associated with an odd l value choose xl to be. For odd l, independently of the xl selected, we know

the following levels associated with an even l value will select the decision that lead to s = 0. In both

cases, The optimal values of the levels are 0 corresponding to s = 0. This value of s however violates

the linking constraint s = y, so the solution cannot be feasible, and we have reached a contradiction.

By arbitrariness of the choice of feasible solution, we conclude that (Even-KLP) is infeasible. Hence,

the k-level problem (Even-KLP) is not unbounded.

3.2 Mixed-integer multilevel optimization

In this section, we discuss the computational complexity of deciding unboundedness in mixed-integer

multilevel optimization. A mixed-integer linear multilevel problem is a linear multilevel problem where

some or all of the variables are restricted to take integer values. For each level l ∈ {1, . . . , k} of a k-

level problem, we can define the subset I l of variables at that level which are integer, and add the

corresponding constraints to level l:

(xl)i ∈ Z ∀i ∈ I l,

where xl denotes the decision variables of level l.

The decision problem of deciding whether a mixed-integer linear k-level problem is unbounded can

be stated as:
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Unbounded-MI-KLP:
instance: fk, . . . , f1 rational vectors of appropriate dimension, Ck, . . . , C1 linear polyhedra (de-
fined by rational coefficients), and Ik, . . . , I1 index subsets of integer variables at each level.
question: Is the corresponding mixed-integer k-level model unbounded?

Based on the (k)-Alternating Quantified Satisfiability problem (Bk∩3CNF or Bk∪3CNF),

we show that Unbounded-MI-KLP is a Σp
k-hard problem in Theorem 10. In other words, the decision

problem of deciding on unboundedness of a mixed-integer multilevel problem is one level higher in the

polynomial complexity hierarchy than the decision problem for linear multilevel problem with the

same number of levels. This result follows naturally from the previous section, since the reduction

problems used can be equivalently reformulated using binary decision variables, instead of enforcing

this integrality with the auxiliary variables z and the extra level setting their value.

Theorem 10. Unbounded-MI-KLP is Σp
k-hard.

Proof idea. The reduction problems in this proofs are direct adaptations of the ones in Theorem 7,

Theorem 8 and Theorem 9, where the constraints xl ∈ [0, y]nl and zl = 0 are replaced with the

integrality constraint xl ∈ {0, 1}nl . Similarly, the constraints s ∈ [0, y] and zs = 0 are replaced with

the integrality constraint s ∈ {0, 1}. The variable y is removed, and an auxiliary variable r is introduced

to create the unboundedness of any feasible instance of the problem. In addition, the lowest level 1,

in which the z variables were optimized, is removed. For more details on these reduction problems see

Appendix B.

4 Algorithmic approaches

Despite the theoretical intractability, assuming P̸=NP, of deciding whether the linear bilevel prob-

lem (B) is unbounded, this section explores methods for addressing it in practice. We present two

algorithmic approaches to check whether a bilevel problem is unbounded when its HPR is. The first

is a natural method leveraging on previously presented results, reduces to solving a theoretically in-

tractable problem. The second is more intricate and it is designed so that each step solves theoretically

tractable problems.

4.1 LPCC reformulation

The first approach consists in reformulating our decision problem as a linear problem with comple-

mentarity constraints (LPCC). Such problems can be inputted into mixed-integer linear solvers like

Gurobi, where complementarity constraints are handled using SOS constraints of type 1. As shown in

Theorem 11, the objective value of this LPCC allows us to conclude whether the corresponding bilevel

problem is unbounded.

Theorem 11. The bilevel problem (B) is unbounded if and only if the LPCC (U) has strictly negative

optimal value.

min
x,y,λ,∆x,∆y

c⊤∆x+ d⊤∆y (U.1)

s.t. (x, y, λ) ∈ FHPR ×FD, (U.2)

(Cx+Dy − b)⊤λ = 0, (U.3)

A∆x+B∆y ≤ 0, (U.4)

C∆x+D∆y ≤ 0, (U.5)

(C∆x+D∆y)⊤λ = 0, (U.6)

− 1 ≤ ∆x,∆y ≤ 1, (U.7)
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where once again FHPR × FD =
{
(x, y, λ) : (B.2), (B.4), D⊤λ = −f, λ ≥ 0

}
. Moreover, for any fea-

sible solution with strictly negative value exists, the component (x, y) provides a feasible point and the

component (∆x,∆y) a direction of unboundedness at (x, y).

Proof. According to Theorem 1 and Theorem 2, we can prove this theorem by showing the following

equivalence instead: There exists ω ∈ {1, 2}n2 such that the linear problem (Pω) is unbounded if and

only if (U) has strictly negative optimal value.

Proof of if. Assume that there exists ω ∈ {1, 2}n2 such that the linear problem (Pω) is unbounded.

Then, we know that there exists a feasible point (x⋆, y⋆, λ⋆) ∈ Pω and a corresponding direction of un-

boundedness (∆x⋆,∆y⋆,∆λ⋆). Without loss of generality, we assume that this direction is normalised

(∥∆x⋆,∆y⋆,∆λ⋆∥ = 1) such that constraint (U.7) holds. Note that, since there is the bilevel feasible

solution (x⋆, y⋆, λ⋆), we know that problem (U) is finite optimal (because (x⋆, y⋆, λ⋆, 0, 0) is a feasible

solution and constraint (U.7) ensures boundedness).

We now show that there is a feasible solution for (U) with negative objective value. Since (x⋆, y⋆, λ⋆)

∈ Pω, then (x⋆, y⋆, λ⋆) verifies constraints (U.2)–(U.3). Furthermore since (∆x⋆,∆y⋆,∆λ⋆) is a di-

rection of unboundedness for (Pω) and (x⋆, y⋆, λ⋆) ∈ Pω, then we know that (∆x⋆,∆y⋆, λ⋆) verifies

constraints (U.4)–(U.6). Therefore, (x⋆, y⋆, λ⋆,∆x⋆,∆y⋆) is a feasible solution of problem (U). More-

over, since (∆x⋆,∆y⋆,∆λ⋆) is a direction of unboundedness for (Pω), we have that c
⊤∆x⋆+d⊤∆y⋆ < 0.

Consequently, we can conclude that problem (U) has strictly negative objective value.

Proof of only if. Assume that the problem (U) has strictly negative optimal objective value and

(x⋆, y⋆, λ⋆,∆x⋆,∆y⋆) is one of its optimal solutions. Then, we define ω⋆ such that ω⋆
i = 1 when

λ⋆
i > 0 and ω⋆

i = 2 when λ⋆
i = 0. From constraints (U.2)–(U.3), the point (x⋆, y⋆, λ⋆) is feasible

for problem (Pω). Furthermore, from constraints (U.4)–(U.6), we can ensure that along the direc-

tion (∆x⋆,∆y⋆,0) there is a sequence {(x⋆, y⋆, λ⋆) + k(∆x⋆,∆y⋆,0)}k∈Z+
0
of feasible points for prob-

lem (Pω). Finally, from the fact that the optimal objective value is strictly negative, we know that

as k increases, the objective value of (Pω) at the points in this sequence decreases. Hence, there

exists ω ∈ {1, 2}n2 (as defined from the optimal values of λ⋆) such that the linear problem (Pω) is

unbounded.

Note that we can extract further conclusions about the corresponding bilevel problem (B), from

the optimization status and optimal value of the problem (U). The problem (U) cannot be unbounded,

because of constraint (U.7). When the model (U) is infeasible, so is the bilevel problem (B). We know

this because (∆x,∆y) = (0,0) is always feasible for (U), so infeasibility of this model reveals that there

is no bilevel feasible point (x, y, λ). When the model (U) is finite optimal, we know that its optimal

value is non-positive. On the one hand, if the optimal value is strictly negative, Theorem 11 allows us

to conclude that the bilevel problem is unbounded. On the other hand, if the optimal value is zero,

then we know that the bilevel problem (B) is finite optimal, since it is feasible and not unbounded. In

this case, the component (x, y) of optimal solution yield a bilevel feasible point.

4.2 Vertex-enumeration algorithm

In this section, we present another approach to detect bilevel unboundedness. This approach is a

vertex-enumeration algorithm and it is detailed in Algorithm 1. This algorithm is inspired by the

observation that, for a fixed dual variable λ, the problem (U) becomes a linear problem. Furthermore,

the feasible space of the dual of the lower-level problem

FD = {λ ≥ 0 : D⊤λ = −f}

only depends on the dual variables λ. Therefore, we can check all vertices of this set FD, and for

each vertex solve a linear problem (step 2) to determine whether there is a corresponding certificate
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of unboundedness for the bilevel. In other words, we simultaneously search for a bilevel feasible point

(x, y), and a direction of unboundedness (∆x,∆y) which belong to the same polyhedron Pω as the

fixed dual vertex λ.

Algorithm 1: Vertex-enumerating algorithm.

1 for vλ vertex of FD do
2 Solve linear model (U’): (U) for λ = vλ fixed;
3 if Optimal value of (U ′) < 0 then
4 stop: Bilevel model (B) is unbounded;

5 conclude: Bilevel model (B) is bounded (optimal or infeasible);

Note that similarly to the discussion at the end of Section 4.1, we are able to extract further

conclusions about the feasibility and optimality of the bilevel problem from Algorithm 1.

Another natural idea would be to enumerate the vertices of the feasible set of the HPR and corre-

sponding extreme rays in search of an unbounded polyhedra Pω. Nevertheless, a preliminary compu-

tational experience revealed that the enumeration of the dual vertices shows more potential. Hence,

we focus solely on Algorithm 1 in this work.

In order to ensure the correctness of Algorithm 1, we present Lemma 12.

Lemma 12. The bilevel problem (B) is unbounded if and only if there exists λ a vertex of the feasible

region of the lower-level dual problem FD such that the corresponding (U’) has strictly negative optimal

value.

Proof. If there exists λ a vertex of the feasible region of the lower-level dual problem FD such that

the corresponding (U’) has strictly negative optimal value, then (U) also has strictly negative optimal

value. From Theorem 11, we know that the bilevel problem (B) is unbounded.

If the bilevel problem (B) is unbounded, from Lemma 1 and Theorem 2, we have that there exists

ω ∈ {1, 2}n2 such that (Pω) is unbounded. Let (∆x′,∆y′,∆λ′) be a direction of unboundedness of

that linear problem.

Note that Pω = P(x,y)
ω × Pλ

ω , where P(x,y)
ω = {(x, y) ∈ FHPR : Cx + Dy = b ∀i : ωi = 1} and

Pλ
ω = {λ ∈ FD : λi = 0 ∀i : ωi = 2}. Hence, since Pω is non-empty, then both P(x,y)

ω and Pλ
ω are also

non-empty. Since Pλ
ω is non-empty, we know that it has a vertex, because the corresponding constraint

matrix has full-row rank, i.e.

span
{
[D⊤

i ]i∈{1,...,nλ}, [ei]i∈{1,...,nλ}
}
= Rn2 ,

where ei is the ith unit vector, and nλ is the number of lower-level dual variables λ. In fact, this

property holds valid for any problem in standard form, i.e. with non-negativity constraints. Let

(x, y) ∈ P(x,y)
ω = {(x, y) ∈ FHPR : Cx + Dy = b ∀i : ωi = 1}, which we know is non-empty. Then

(x, y, λ) ∈ Pω = P(x,y)
ω ×Pλ

ω . Furthermore, since (Pω) is a linear problem, we know that (∆x,∆y,∆λ)

is a direction of unboundedness for (Pω) at (x, y, λ). Therefore, applying a similar argument to the

one in the proof of Theorem 11, we know that (x, y, λ,∆x,∆y) is a feasible solution of problem (U)

and that it has strictly negative objective value. Hence, (x, y,∆x,∆y) is a feasible solution of problem

(U’) for fixed variables λ, which is a vertex of FD, and this solution (x, y,∆x,∆y) has strictly negative

objective value.

The preceding Lemma 12 along with the fact that the feasible set FD has a finite number of vertices,

lead us to the conclusion that:

Theorem 13. Algorithm 1 determines in a finite number of steps whether (B) is unbounded, and if

so, it returns a certificate of unboundedness. This certificate consists of a bilevel feasible point and a

direction of boundedness at that point.
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4.3 Insights from illustrative examples

We illustrate the behaviour of these algorithmic approaches, the LPCC reformulation, and the vertex-

enumeration Algorithm 1 on three examples. Example 2 and Example 3 consist of unbounded bilevel

problems, and Example 4 is an example of a bounded bilevel with an unbounded HPR.

Example 2 (Book Spine). Consider the unbounded bilevel model below and the corresponding graph,

where the bilevel feasible region is coloured green, and the direction is that of improving lower-level

objective.

max
x≥0,y1,y2

y2

s.t. (y1, y2) ∈ argmin
ỹ1,ỹ2≥0

{ỹ2 :

x+ ỹ1 − ỹ2 ≤ 2
x− ỹ1 − ỹ2 ≤ 0}.

y1

y2

x

Lower-level Obj.

In this example the sequence of points leading to unboundedness of the bilevel lays on the intersection

of two facets defined by lower-level constraints, this is along the “book spine”. There is not a single

lower-level facet that is unbounded (and bilevel feasible), but rather the intersection of two facets. In

addition, for x ∈ [0, 1[, there are multiple lower-level optimal solutions (green area where y2 = 0).

Both the LPCC (U) and the vertex-enumeration Algorithm 1 reveal the direction of unboundedness

(∆x,∆y1,∆y2) = (1, 0, 1) at the bilevel feasible point (x, y1, y2) = (1, 1, 0). In our implementation

(see Section 4.4.1 for further details), the vertex-enumeration algorithm only performed one iteration,

exploring one vertex of the dual feasible region FD. The dual vertex found was (λ1, λ2, λ3, λ4) =

( 12 ,
1
2 , 0, 0), where λ3 and λ4 are the dual variables associated with the non-negativity constraints on y1

and y2, respectively. The model (U’) is solved for this dual vertex, and the feasible point and direction

of unboundedness are found. Thus, the algorithm concludes correctly that the bilevel problem is

unbounded, and that (1, 0, 1) is a direction of unboundedness at the bilevel feasible point (1, 1, 0).

Example 3 (Bounded Upper-level Variables). Consider the unbounded bilevel model below and the

corresponding graph, where the bilevel feasible region is coloured green, and the direction is that of

improving lower-level objective.

min
x≥0,y1,y2

x− y1

s.t. x ≤ 2
(y1, y2) ∈ argmin

ỹ1,ỹ2≥0
{ỹ1 − ỹ2 :

−ỹ1 + ỹ2 ≤ 2
x− ỹ1 − ỹ2 ≤ −1}. y1

y2

x

Lower-level obj.

This example is relevant because even though the upper-level variables x are bounded, and the lower-

level problem is finite optimal for each feasible value of x, the bilevel is unbounded. This is possible,

because for fixed variables x, the lower-level is bounded (with respect to the lower-level objective),

but it has an infinite number of optimal solutions that form a sequence of bilevel feasible points with

improving upper-level objective.

Both the LPCC (U) and the vertex-enumeration Algorithm 1 confirm that (∆x,∆y1,∆y2) =

(0, 1, 1) is a direction of unboundedness at the bilevel feasible point (x, y1, y2) = (0, 0, 2). In our

implementation (see Section 4.4.1 for further details), the vertex-enumeration algorithm only per-

formed one iteration, exploring one vertex of the dual feasible region FD. The dual vertex found was

(λ1, λ2, λ3, λ4) = (1, 0, 0, 0), where λ3 and λ4 are the dual variables associated with the non-negativity

constraints on y1 and y2, respectively. The model (U’) is solved for this dual vertex, and the feasible

point and direction of unboundedness are found. Thus, the algorithm concludes correctly that the
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bilevel problem is unbounded, and that (0, 1, 1) is a direction of unboundedness at the bilevel feasible

point (0, 0, 2).

Example 4 (Bounded Bilevel). Consider the bilevel model below and the corresponding graph, where

the bilevel feasible region is coloured green, and the direction is that of improving lower-level objective.

min
x≥0,y

−x− y

s.t. x− y ≤ 3
y ∈ argmin

ỹ≥0
{ỹ : −x− 2ỹ ≤ −6

−x− ỹ ≤ −4},

x

y

Lower-level Obj.

In this example, the HPR is unbounded along the direction (∆x,∆y) = (1, 1). However, the bilevel

feasible region (in green) is bounded, and the bilevel problem is finite optimal with optimal solution

(x, y) = (4, 1).

Confirming this boundedness of the bilevel problem, the LPCC (U) has optimal value 0, and

the vertex-enumeration Algorithm 1 does not find any direction of unboundedness of the bilevel. In

our implementation (see Section 4.4.1 for further details), the vertex-enumeration algorithm checks all

possible vertices to get to this same conclusion. For example, when it finds the dual vertex (λ1, λ2, λ3) =

(0, 0, 1), the corresponding model (U’) is infeasible. From constraints (U.3), we have that y = 0. By

substituting this in the upper-level constraint, we obtain that x ≤ 3, and in the lower-level constraints,

we obtain that x ≥ 6. These simultaneous restrictions deem the problem (U’) infeasible. Alternatively,

when the dual vertex (λ1, λ2, λ3) = (0, 1, 0) is found, the corresponding model (U’) has optimal value

0. There is a bilevel feasible point (x, y) = (2, 2) that verifies the complementarity constraints with

this dual vertex. However, from constraints (U.6), we have that −∆x − ∆y = 0, and since both

variables ∆x and ∆y are non-negative, the only solution is (∆x,∆y) = (0, 0). In other words, there is

no direction of unboundedness of the bilevel problem at this dual vertex.

Thus, Algorithm 1 discards both of these dual vertices, and keeps searching. As a matter of fact,

since the bilevel is bounded, all dual vertices are discarded either because (a) they do not have a

corresponding bilevel feasible solution (x, y), (b) there is no direction of unboundedness at any of the

bilevel feasible solution with which the dual vertex matches.

4.4 Computational comparison

4.4.1 Implementation details

For our instance set, we considered the linear relaxations of the mixed-integer bilevel problems from

the BOBILib: Bilevel Optimization (Benchmark) Instance Library [23]. Since all instances had a

bounded HPR, we further relaxed the explicit bounds on the decision variables to the standard form

of non-negativity constraints, i.e. for all variables v, we defined v ∈ [0,+∞[. With this procedure we

obtained 48 linear bilevel instances whose HPR was unbounded. The names of these instances can be

found in the Supplementary Materials.

All computational experiments were conducted on a Dell PowerEdge R740 server running Ubuntu,

equipped with four Intel Gold 6234 processors (3.3 GHz, 8 cores/16 threads each) and 1.5TB of local

storage. The implementation was done in Python [22], and optimization models were solved with the

Gurobi 11.0.1 [14].

For the implementation of the vertex-enumeration procedure in our algorithms, we used the pre-

compiled binaries available at [3], which contain the lrs reverse search vertex-enumeration algorithm [4].
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We impose a two-hour time limit, and a four-thread limit on the lrs vertex enumeration, and increase

the maximum number of cached dictionaries from 50 to 100. Since solving each optimization problem

(U ′) may take longer than enumerating vertices, some problems (U ′) may remain unsolved when the

time limit is reached. In this case, we continue solving these remaining problems (U ′) after the vertex

enumeration stops. We also impose the same time limit and a limit of four threads on the Gurobi

solver when solving the linear problem with complementarity constraints (U).

4.4.2 Results and discussion

In Table 1, we depict the average of the total computational time (in seconds) to solve instances with

both the LPCC approach and the vertex-enumeration Algorithm 1. We present this average per bilevel

optimality status, and the total average on the last line. For each of these averages, we also show in

the column # Instances, the number of instances that were categorized within the time limit.

Table 1: Average total computational time (in seconds) per optimality status.

LPCC Vertex-enumeration Algorithm 1

Bilevel Status # Instances CPU Time (s) # Instances CPU Time (s)

Unbounded 15 6.396 9 5241.181
Finite Optimal 25 22.629 11 1270.638
Infeasible 8 0.121 8 0.377

Total 48 13.805 28 6882.173

We observe that the vertex-enumeration Algorithm 1 has a higher computational time in all cat-

egories. While this difference is significant for unbounded and finite optimal instances, Algorithm 1

is quick at detecting infeasible instances. This is due to the fact that this infeasibility stems from an

unbounded lower-level problem, or equivalently an infeasible dual lower-level problem.

Furthermore, due to the time limit imposed on the lrs vertex-enumeration, Algorithm 1 was only

able to arrive at a definitive conclusion about whether the bilevel problem was unbounded for 28 of

the 48 instances. In Table 2, we further explore this theme, and consider the number of instances

with each optimality status (including an inconclusive one) for which the lrs algorithm reached the

time limit and not. Note that if the lrs algorithm does not time out, a proper optimality status will

Table 2: Number of instances with each optimality status from the dual enumeration algorithm (out of 48).

lrs Timed Out?

Bilevel Status Yes No

Unbounded 5 4
Finite Optimal - 11
Infeasible - 8
Inconclusive 15 -
Inconclusive Feasible 5 -

Total 25 23

always be found and an inconclusive status is not possible. Similarly, if the lrs algorithm times out,

we will not be able to conclude that the instance is finite optimal nor infeasible, as we would have

to explore all dual vertices to reach that conclusion. In case, we were not able to decide whether the

bilevel instance is unbounded nor feasible, an Inconclusive status is assigned, and if we were not able to

decide whether the bilevel instance is unbounded, but we did find a feasible solution, an Inconclusive

Feasible status is assigned.

We can observe that the lrs algorithm reached its two-hour time limit on 25 of the instances, but in

five of those instances it was still able to conclude the bilevel was unbounded, since the dual vertex that
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allows this had already been found before the time out. Out of those 25, it could discard infeasibility

in five instances, but nothing was concluded in the remaining 15.

While in the LPCC approach most of the computational time is spent solving the model, in Algo-

rithm 1 there are two tasks where the algorithm spends most of its time. The first is naturally running

the lrs vertex-enumeration algorithm, which takes on average 4129.761 seconds, and the second is

building and solving the linear problems at each vertex found, with an average of 3087.721 seconds

spend on building and 1597.400 seconds on solving these problems. Note that each instance solved,

on average, 3542190.3 of these linear problems corresponding to the number of vertices evaluated until

either one that resulted in unboundedness was found or all were explored. Our implementation per-

forms this evaluation of vertices dynamically as they are found and outputted by the lrs algorithm,

and 63% of the evaluated vertices were processed while the lrs was still running.

In conclusion, these results suggest that directly solving a theoretically intractable problem can

be more effective than solving a potentially very large number of polynomially solvable subproblems.

This supports the idea that solving of the LPCC gains by being driven by leader’s objective.

5 Conclusion

We presented results aimed at dealing with the often-overlook topic of unboundedness in bilevel and

multilevel optimization. In Table 3, we summarise the computational complexity results derived in this

work. In general, we show that deciding unboundedness of an optimistic k-level problem is Σp
k−1-hard

Table 3: Overview of computational complexity of deciding unboundedness.

Bilevel Multilevel (k levels)

Optimistic Pessimistic Optimistic

Linear NP-complete NP-hard Σp
k−1-hard

Mixed-integer Σp
2-hard Σp

k-hard

for linear problems and Σp
k-hard for mixed-integer problems. In the bilevel case, we extend the hardness

result for pessimistic formulations by showing that deciding on unboundedness in these problems is

also NP-hard.

Future research could focus on deriving the computational complexity of deciding unboundedness of

mixed-integer pessimistic multilevel problems, or of multi-follower bilevel problems. A more exhaustive

computational experience comparing the performance of the two algorithmic approaches proposed is

also warranted. While the LPCC approach requires solving an NP-hard problem, Algorithm 1 solves

a series of linear optimization problems. However, if the bilevel problem (B) is bounded (and its HPR

unbounded), we must enumerate all vertices of the lower-level dual feasible region. Thus, in this case,

it would be worth saving the best bilevel feasible solution along Algorithm 1, so that we are also able

to return an incumbent solution. Furthermore, developing heuristics to prioritize the enumeration of

vertices of the dual feasible space that correspond to primal lower-level faces which are unbounded for

the HPR may enhance the algorithm’s efficiency in proving unboundedness.

Finally, this work demonstrates that more attention should be paid to ensure unboundedness is

accounted for and dealt with in bilevel and multilevel optimization. This can be achieved by ensuring

that deciding on unboundedness and returning a certificate of unboundedness, if one exists, become

integral practices when developing multilevel algorithmic approaches. In addition, designing a diverse

dataset of bilevel problems with a) unbounded bilevel instances and b) bounded (optimal or infeasible)

bilevel instances whose corresponding HPR is unbounded would also be desirable, as these are scarce

in existent datasets [20, 23, 32].
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Appendix A Strong NP-hardness with linking constraints

In this section, we show that Unbounded-BLP is strongly NP-hard for problems with linking con-

straints. Naturally, the hardness result for problems without linking constraints in Section 2.2.2 is

stronger. Nevertheless, the ideas used for the reduction proof with linking constraints are useful for

building intuition for the multilevel linear case in Section 3.1. This is the main reason why, in this

appendix, we introduce the hardness proof for deciding on unboundedness of bilevel problems with

linking constraints.

Theorem 14. Unbounded-BLP with linking constraints is strongly NP-complete.

Proof. From Lemma 1 and Theorem 2, we concluded that Unbounded-BLP is in NP. It remains to

show that it is (strongly) NP-hard. We achieve this by showing that 3-SAT is a YES instance if and

only if the bilevel model (B’) is unbounded.

max
x,y,z

y (B’)

s.t. ASx ≥ (1 + cS)y,

0 ≤ xi ≤ y ∀i ∈ {1, . . . , n},
y ≥ 1,

z = 0,

z ∈ argmax
z̄

{
n∑

i=1

z̄i : z̄i ≤ xi; z̄i ≤ y − xi ∀i ∈ {1, . . . , n}

}
.

Proof of if. If 3-SAT is a YES instance, then ∃a ∈ {0, 1}n : ASa ≥ (1 + cS). Consequently, we build

a bilevel feasible solution of (B’) with (x∗, y∗, z∗) = (a, 1,0), and a direction of unboundedness with

(∆x,∆y,∆z) = (a, 1,0). Hence, (B’) is unbounded.

Proof of only if. If 3-SAT is a NO instance, then there is no a ∈ {0, 1}n such that ASa ≥ 1 + cS.

Thus, any feasible a ∈ [0, 1]n for ASa ≥ 1 + cS implies that ∃i : ai ∈]0, 1[.

We remark that due to the linking constraint zi = 0, any bilevel feasible solution must have

x ∈ {0, y}n. Moreover, since y ≥ 1, we can write:

ASx ≥ (1 + cS)y ⇔ AS

x

y
≥ 1 + cS.

This makes it clear that (i) any upper-level feasible (x, y) can be map onto a = x
y ∈ [0, 1]n such that

ASa ≥ 1 + cS and (ii) any a ∈ [0, 1]n such that ASa ≥ 1 + cS can be mapped onto an infinite set of

upper-level feasible solutions of the form (x, y) = (a · y, y) ∀y ≥ 1. Given that S is a NO instance, this

reasoning implies that any upper-level feasible solution has some xi ∈]0, y[. However, this results in

z̄i = min{xi, y − xi} > 0 which is infeasible for the upper-level linking constraint z = 0. Hence, (B’)

is not unbounded.



Les Cahiers du GERAD G–2025–22 24

Appendix B Complete proof of Theorem 10

In this section, we present a complete proof of Theorem 10 where we explicitly present the reduction

problems considered.

Proof. For k = 2, the mixed-integer bilevel problem used in the reduction is:

max
r,x2,x1,s

r

s.t. r ∈ R,
x2 ∈ {0, 1}n2 ,
s = 0,
(x1, s) ∈ argmax

x1,s
s

s.t.
2∑

i=1

Aixi ≥ s+ c,

x1 ∈ {0, 1}n1 ,
s ∈ {0, 1},

The proof showing that this problem reduces to B2 ∩ 3CNF is similar to that of Theorem 7 for trilevel

linear problems. This shows that if B2∩3CNF is a YES instance, the reduction problem is unbounded,

and if it is a NO instance, the reduction problem is infeasible (i.e. not unbounded).

In general, for a multilevel problem, we separate the odd and even cases. For k even, we adapt the

reduction problem in Theorem 8 as:

max
r,x,s,z

r

s.t. r ∈ R,
xk ∈ {0, 1}nk ,
s = 0,

...

l odd: (x(l), s) ∈ argmax
x(l),s

{
s : xl ∈ {0, 1}nl ;(x(l−1), s) ∈ Φl−1

}
,

l even: (x(l), s) ∈ argmin
x(l)

{
s : xl ∈ {0, 1}nl ;(x(l−1), s) ∈ Φl−1

}
,

...
(x1, s) ∈ argmax

x1,s
s

s.t.
k−1∑
i=1

Aixi ≥ s+ c,

x1 ∈ {0, 1}n1 ,
s ∈ {0, 1},

The proof showing that this mixed-integer k-level problem reduces to Bk ∩ 3CNF is similar to that of

Theorem 8. It shows that if Bk ∩ 3CNF is a YES instance, the reduction problem is unbounded, and

if it is a NO instance, the reduction problem is infeasible (i.e. not unbounded).
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For k odd, we adapt the reduction problem in Theorem 9 as:

max
r,x,s,z

r

s.t. r ∈ R,
xk ∈ {0, 1}nk ,
s = y,

...

l odd: (x(l), s) ∈ argmax
x(l),s

{
s : xl ∈ {0, 1}nl ;(x(l−1), s) ∈ Φl−1

}
,

l even: (x(l), s) ∈ argmin
x(l)

{
s : xl ∈ {0, 1}nl ;(x(l−1), s) ∈ Φl−1

}
,

...
(x1, s) ∈ argmax

x1,s
s

s.t.
k−1∑
i=1

Aixi ≥ s+ c,

x1 ∈ {0, 1}n1 ,
s ∈ {0, 1},

The proof showing that this mixed-integer k-level problem reduces to Bk ∪ 3CNF is similar to that of

Theorem 9. It shows that if Bk ∪ 3CNF is a YES instance, the reduction problem is unbounded, and

if it is a NO instance, the reduction problem is infeasible (i.e. not unbounded).
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