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Abstract : This paper addresses the problem of efficiently routing vehicles for spring sweeping
operations in countries that spread sand and gravel on roads in winter. Given a road network, one
sweeping fleet, and several depots, we seek to route the fleet over the network so as to minimize the
time needed to sweep all required road segments and reduce the distance covered by deadheading trips.
The schedule is subject to service time window constraints for highways, time constraints of the crew,
and visits to depots along the route. The little work that has been carried out so far to solve this
practical problem treat it as an arc routing problem. Instead, we transform the arc routing problem
into an equivalent node routing problem and propose three decomposition-based approaches to solve
the latter. Tests are conducted on randomly generated instances as well as on a real-world case in
Victoriaville, Québec, Canada.

Keywords : OR in service industries, street sweeping problem, vehicle routing, decomposition strate-
gies, matheuristics
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1 Introduction

In the interest of driving safety, road authorities try to maintain good traction when roads are covered

by ice and snow, which make surfaces treacherously slippery. To improve traction, abrasives, i.e., sand

and gravel, are spread on roads and highways. While this practice makes the roadways safer in winter,

loose abrasives negatively affect traction on dry surfaces. Removing leftover abrasives from roads and

highways in the spring is thus necessary both for safety and for reducing airborne dust and the amount

of abrasive material that enters water courses and groundwater.

The work of sweeping abrasives is done by private contractors who are awarded contracts to sweep

and dispose of leftover material on specified roads and highways in a given contract area. In the

sweeping process that we consider, a contractor uses a fleet that consists of two sweepers, two dump

trucks, and a safety vehicle that follows the sweepers and trucks to warn vehicles approaching from

behind. The first sweeper is the principal sweeper, and it continuously loads a dump truck while

sweeping. When the truck is full, it goes to the assigned dump site to offload the swept abrasive

material, and the second truck takes its place. The secondary, or finishing sweeper, picks up what

the first sweeper missed, but it does not fill as quickly as the principal sweeper. The presence of two

trucks ensures that the primary sweeper is never idle, and hence the fleet operates in a continuous

process. The spring sweeping season is only a few weeks long, and so having an efficient vehicle routing

plan is of utmost importance. Because of the small profit margins involved, a major concern of every

contractor is to devise a plan that minimizes the completion time and thereby the costs.

In devising the routing plan, two main operational constraints must be respected. Since a crew

cannot work 24 hours per day, work must be done in shifts. Shift changes must occur at pre-designated

depots, which are typically work sites where equipment can be stored and serviced. A crew starts at a

depot, services a single route, and returns to a depot within the shift time limit (8-10 hours) to hand

over the fleet to another crew. The other main constraint is that roads designated as highways can

only be swept at night, according to law, so as not to excessively hinder heavier daytime traffic from

moving efficiently. Secondary roads and streets can be swept during the day or during the night. It

is worth noting that a contract (a sector) consists of non-contiguous areas because of jurisdictional

boundaries and geography, among other things. This means that deadheading trips are necessary, i.e.,

the sweeping fleet must traverse some road segments without sweeping them.

The spring sweeping routing problem (SSRP) consists of finding a route to be performed by the

sweeping fleet, such that all road segments of a given contract are swept, all operational constraints are

satisfied, and the total cost of the operation is minimized. The total cost is defined as the sum of fixed

and variable costs. The variable costs depend on the distance the sweeping fleet must travel, including

the deadheading trips, while the fixed costs are associated with the cost of equipment, salaries, and

renting depots. Minimizing the time it takes to complete the sweeping tasks is equivalent to minimizing

the total costs.

The goal of this paper is to develop a decision-support tool to assist spring sweeping companies

in making routing decisions to reduce their operating costs and improve profitability, while meeting

contractual obligations. To do so, we propose a mathematical formulation of the SSRP described

above and three decomposition-based strategies to solve it. Such methodologies are capable of solving

large-scale instances of practical relevance and should be able to produce good solutions in a reasonable

amount of time.

Various real-world routing problems have similarities with the SSRP, including the street sweeping

problem and the vehicle routing problem for snow plowing and salt spreading operations. The latter is

known to be difficult and site specific due to the range of factors and the various operational constraints

that influence how and when winter road maintenance operations are carried out (Perrier et al., 2007b).

The problem has been extensively studied in the literature. For an overview of the problem variants

and the optimization techniques developed for solving such problems, the reader is referred to the

exhaustive surveys in Perrier et al. (2007a,b). The literature on the street sweeping problem, which
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consists of routing and scheduling street sweepers, is, on the other hand, relatively sparse. The problem

can be modelled as a directed rural postman problem with additional constraints (Eiselt et al., 1995).

In what follows, we describe the constraints considered in the literature and outline the methods

developed to solve the proposed models.

In urban areas, streets are often one-way and can only be swept at specific times due to parking

regulations. This constraint was considered by Bodin and Kursh (1978, 1979), who developed an

algorithm for designing balanced workload sweeper routes in New York City and Washington DC.

In Eglese and Murdock (1991), the authors considered rural areas where parking regulations are not a

concern, and all roads to be swept are two-way. The constraints accounted for in this case are capacity

constraints: each sweeper has a bin with a limited capacity, necessitating visits to tip-off sites to empty

the bin when full, potentially several times a day. The problem is to construct routes starting and

ending at the depot such that each required road is swept, and to determine which tip-off sites to use to

empty each sweeper in order to minimize deadheads. The authors developed a constructive heuristic to

produce a feasible solution and designed a computerized system to assist planners in constructing and

evaluating routing plans. The decision support system has been implemented in Lancashire, England.

While Bodin and Kursh (1978, 1979) and Eglese and Murdock (1991) considered either one- or two-

way streets, Blazquez et al. (2012) considered both types. Parking restrictions were disregarded, similar

to the study by Eglese and Murdock (1991). By assuming that there is only one sweeper with sufficient

capacity to sweep all required street segments without needing to empty the bin, the authors showed

that the problem reduces to the asymmetric travelling salesman problem. A nearest neighborhood

procedure, where each street segment is iteratively added to the solution, was developed to solve the

problem. This procedure was tested on real data from Santiago, Chile. Cerrone et al. (2014) addressed

the integration of two problems: scheduling parking restrictions and designing sweeper routes. The

objective was to minimize the distance travelled, assuming that there is only one sweeper servicing all

required streets over two days. An arc formulation of the integrated problem was proposed and solved

using a genetic algorithm. Tests were performed on instances involving up to 882 arcs representing

the street segments that require sweeping.

Recent models have incorporated more characteristics encountered in practice. For instance, Yu

et al. (2019) focused on minimizing the time for service completion considering real-time traffic data in

the city of Zhengzou, China. An arc formulation of the problem was developed and solved using Gurobi.

Yurtseven and Gokce (2019) considered the case of electric-powered sweepers in Izmir, Turkey. Given a

heterogenous fleet of sweepers with different capacities and battery levels, the problem considered was

to design a set of routes such that each street segment is swept while minimizing energy consumption
required for the sweeping, travelling, and disposal operations. The problem was formulated as an

arc routing problem and solved using CPLEX. More recently, Kraiem et al. (2025) investigated the

special case of spring sweeping on highways and provincial roads (the SSRP), which is also the focus

of this paper. The authors proposed an arc routing formulation for the SSRP, which was solved using

CPLEX. It was concluded that the problem is computationally intractable. Within a two-hour time

limit, CPLEX was able to solve only small instances with up to 24 road segments.

The above literature review shows that most research on the street sweeping problem has focused

on urban areas. The main exceptions we are aware of are the problem studied by Eglese and Murdock

(1991), who discussed the case of rural areas and the more recent problem studied by Kraiem et al.

(2025), who considered a context similar to that addressed in this paper, i.e., spring sweeping of

highways and provincial roads. Most optimization models for the street sweeping problem are arc

routing formulations since the sweeping activity involves the traversal and service of arcs of the road

network. To solve the proposed models, most studies focused on constructive heuristics or used off-

the-shelf solvers.

Our paper takes a novel approach by proposing a new node routing formulation for the SSRP.

Node routing is a more suitable and effective modeling approach to handle the SSRP than arc routing

because, on highways and provincial roads, spring sweeping takes place on road segments scattered
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over a wide area and not on a continuous collection of roads, as is common in urban areas. Our

contributions also consist of developing three solution approaches based on decomposition to tackle

the problem. The first one, Infrastructure-based decomposition (IBD), takes advantage of the structure

of the problem and builds sub-problems by partitioning the roads into highways and other roads.

The second one, Proximity-based decomposition (PBD), first groups roads within a short distance of

each other and then creates the sub-problems accordingly. The last one, Shift-only decomposition

(SOD) does not decompose the set of roads, but rather the set of shifts and thus can be seen as

a time-decomposition approach. We conduct computational experiments using a real-world case in

Victoriaville, Québec and randomly generated instances of various sizes. We analyze the effects of the

number of highway segments and the number of depots on the performance of the solution approaches.

Our experiments and analysis indicate that the SSRP is a computationally challenging problem. Out

of the three proposed decomposition approaches, we found only one, the PBD, to be efficient on

randomly generated large instances of practical interest, obtaining near-optimal solutions within a

reasonable amount of time. When applied to the real-world instance, this PBD method is able to

achieve significant cost savings compared to the existing manual solution.

The remainder of the paper is divided into four sections. Section 2 gives a formal description

of the problem under study and presents a mathematical formulation of it. Section 3 describes the

solution methodology we have developed. Section 4 gives the computational results. This is followed

by conclusions in Section 5.

2 Problem description and formulation

In this section, we first introduce a formal description of the SSRP addressed in this paper and some

notation and terminology that will be used throughout the paper. We then present the proposed node

routing formulation.

2.1 Problem definition

We are given a set of tasks N , each corresponding to a road segment that must be swept by an available

sweeping fleet, and a set of shifts S over which the tasks can be performed. With each task i ∈ N is

associated a positive duration δi that indicates how long it will take to perform the task, and with each

shift s ∈ S is associated a time limit U
s
, which dictates the number of tasks that can be completed

during the shift. We assume, without loss of generality, that δi ≤ U
s
for all i ∈ N and s ∈ S, which

means that any given task can be completed within a single shift.

The shifts are specified either as day or night shifts. We denote the day shifts by Sd and the night

shifts by Sn (S = Sd ∪ Sn and Sd ∩ Sn = ∅). The tasks are partitioned into two main classes: H and

O representing highways and other roads, respectively (N = H∪O and H∩O = ∅). Tasks in H must

be performed during night shifts to minimize traffic disruptions, whereas those in O can be performed

during either day or night shifts.

Each shift s ∈ S incurs fixed and variable costs. Fixed costs include fleet costs and costs of renting

depots, which serve as hubs where equipment is maintained and crews are changed at the end of each

shift. The depot where a shift ends is therefore the same depot where the next shift begins. We denote

the set of depots by D. Variable costs include the costs of fuel and are a function of the mileage.

Usually, road segments to be swept (tasks) are not connected, so moving from one task to another or

from a depot to a task might require deadheading along some road segments. Variable costs are thus

proportional to the distance traveled.

The goal of the SSRP is to assign tasks to shifts so as to minimize the global cost and satisfy the

constraints described above. It can be modelled as a routing problem that seeks to determine a set of

routes, each associated with a shift, in conjunction with the depots at which each route starts and ends,

such that the routes are connected and cover all tasks within appropriate periods, the duration of each
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route does not exceed the shift length, and the global cost is minimized. Recall that the global cost

depends on the global distance traveled (variable costs) and the number of shifts used (fixed costs).

Therefore, minimizing the global cost is equivalent to minimizing the completion time.

In Kraiem et al. (2025), the authors formulate the SSRP as an arc routing problem, a natural

formulation because demand for sweeping is located on arcs in a road network. The model involves six

types of variables: shift variables (binary), deadheading variables (binary), service variables (binary),

time variables (continuous), and end-shift variables (continuous). Shift variables indicate whether a

shift is used or not. Deadheading and service variables are four-index variables indicating if an arc is

swept or traversed in a given shift and the position of the route in which it appears. Time variables

are also four-index variables. They specify the starting time of service or traversal. Finally, end-shift

variables are defined for every shift and represent the completion time of the shift. The drawback of

this arc routing approach is that it results in a very large model, with |S|+2|A||S||K| binary variables

and |S|+ |A||S||K| continuous variables (|A| and |K| being the number of arcs and possible positions,

respectively). As pointed out in Kraiem et al. (2025), this model is intractable even for small instances.

In the next section, we present an equivalent node routing formulation, which is more compact and

has fewer binary variables. To transform the arc routing problem into a node routing problem, we

basically adapt standard techniques described in Baldacci and Maniezzo (2006), Longo et al. (2006),

and Tagmouti et al. (2007), among others.

2.2 Problem formulation

We consider a directed graph G = (V,A), where V is the set of vertices and A is the set of arcs. V is

partitioned into three subsets D, N , {0, e} ⊂ V: D is the set of depots, N is the set of tasks, and 0

and e are dummy start and end terminals used to model the start and end of a shift, respectively. We

assume that there is a complete interconnection between the vertices of N , that the start terminal 0

is connected to all the depot nodes, that all depot nodes are connected to all tasks nodes, and that all

depot nodes are connected to the end terminal, e. That is, there are no arcs from the start terminal

to tasks (A∩ ({0}×N ) = ∅) or from tasks to the end terminal (A∩ (N ×{e}) = ∅) or between depots

(A∩ (D×D) = ∅). Through this paper, we write A = A0D ∪AR ∪ADe where A0D = {(0, d) : d ∈ D},
AR = {(i, j) : i ∈ D, j ∈ N} ∪ {(i, j) : i, j ∈ N , i ̸= j} ∪ {(i, j) : i ∈ N , j ∈ D}, and ADe = {(d, e) :
d ∈ D}. Figure 1 shows a small graph example with D = {d1, d2} and N = {i, j, k}.

0

d2

d1

k

j

i

d1

d2

e

Figure 1: A small graph example with two depots and three tasks.
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A cost cij and a travel time τij are associated with each arc (i, j) ∈ A. For arcs in A0D, the cost

represents the fixed cost that has to be paid if a shift is used in the schedule, and the travel time is set

equal to zero. For arcs in ADe, both the cost and the travel time are set equal to zero. Finally, for the

other arcs (i, j) in subset AR, the cost and travel time are those of the shortest path between i and j.

With each vertex i ∈ V is associated a service time σi. For i ∈ N , this is the time needed to perform

task i, and therefore we have σi = δi. For any other vertex in D ∪ {0, e} the service time is set equal

to zero.

Two types of decision variables are used in the mathematical model: binary variables xs
ij ∈ {0, 1}

equal to 1 if and only if vertex j ∈ V is visited after vertex i ∈ V in shift s ∈ S, and continuous variables

ysi ≥ 0 indicating when the sweeping fleet arrives at location i. The latter are only well-defined when

vertex i is actually visited in shift s.

Using the notation above, the SSRP can be modeled as follows:

(P ) min
∑
s∈S

∑
(i,j)∈A

cijx
s
ij (1)

s.t.
∑
s∈S

∑
i∈D∪N

xs
ij = 1 ∀j ∈ O (2)

∑
s∈Sn

∑
i∈D∪N

xs
ij = 1 ∀j ∈ H (3)

∑
d∈D

xs
0d ≤ 1 ∀s ∈ S (4)

∑
d∈D

xs
0d =

∑
d∈D

xs
de ∀s ∈ S (5)

xs+1
0d ≤ xs

de ∀d ∈ D, s ∈ S (6)∑
i:(i,k)∈A0D∪AR

xs
ik =

∑
j:(k,j)∈AR∪ADe

xs
kj ∀k ∈ D ∪N , s ∈ S (7)

ys0 = 0 ∀s ∈ S (8)

ysi ≤ U
s ∑
(i,j)∈AR

xs
ij ∀i ∈ D ∪N , s ∈ S (9)

yse ≤ U
s ∀s ∈ S (10)

ysi + σi + τij − ysj ≤ (U
s
+ σi + τij)(1− xs

ij) ∀(i, j) ∈ A, s ∈ S (11)

xs
ij = 0 ∀(i, j) ∈ A, s ∈ S : σi + τij > U

s
(12)

xs
ij ∈ {0, 1} ∀(i, j) ∈ A, s ∈ S (13)

ysi ≥ 0 ∀i ∈ V, s ∈ S. (14)

The objective function (1) minimizes the sum of fixed costs associated with the shifts and travel
costs. Constraints (2) and (3) guarantee that each task is completed exactly once in an appropriate
shift. Constraints (4) and (5) state that a shift is used only if the sweeping fleet leaves the start
terminal to go to a depot, in which case it must enter the end terminal from a depot at the end of the
shift. Constraints (6) capture the interdependence between shifts. They impose that the depot where
a shift ends is the same depot where the next shift begins. Together with constraints (7) this ensures
that consecutive paths are formed for each shift. Constraints (8)–(11) ensure that the y variables
track the time elapsed from the beginning of a shift and guarantee that the maximum length of any
shift is never exceeded. They also eliminate subtours. Constraints (12)–(14) define the domains of the
decision variables and fix some of them according to temporal considerations.

The SSRP is an extension of the vehicle routing problem (VRP) (if |D| = 1 and H = ∅, the problem
can be viewed as a VRP by considering each of the S shifts to be a vehicle). Because only small instances
of the VRP can be solved exactly, it is clear that one cannot solve the SSRP with formulation (1)–(14),
even though, according to our preliminary tests, this formulation is computationally more efficient than
its arc routing counterpart proposed in Kraiem et al. (2025). Decomposing the problem into a set of
smaller sub-problems appears a methodological avenue worth taking. In the next section, we describe
the three decomposition strategies that we propose.
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3 Solution methodology

Advances in the sophistication and power of MIP solvers in recent years have made it possible to
solve difficult combinatorial optimization problems such as the one addressed in this paper. Yet, there
are still limits to the sizes that these solvers can handle in a reasonable amount of time. Supplying
an integer feasible solution to the solver as a warm start can significantly speed up the solution
process (Bertsimas and Weismantel, 2005). Not only does the warm start solution provide an initial
upper bound on the optimal solution, allowing more efficient pruning of the search tree, but it also
serves as a starting point for local search heuristics (Bertsimas and Dunn, 2019). The effectiveness of
this approach depends on the quality of the warm start. Hence, before solving, it is useful to quickly
and heuristically find a good feasible solution. In our case, this can be done by taking advantage of
the tractability of instances with just a few tasks. We start by decomposing the problem into a series
of sub-problems, each associated with a subset of tasks and/or a subset of shifts. These sub-problems
are solved separately, and then their solutions are merged to obtain a feasible solution of the SSRP.
Because this solution will be improved, solving the sub-problems to proven optimality is not necessary.

To summarize, we use a two-phase procedure. In the first phase, a decomposition-based heuristic
is used to build an initial solution, while in the second phase the so-obtained solution is refined. It
is supplied to a state-of-the-art MIP solver as a warm start for the solution process. The solution
procedure is summarized in Algorithm 1. The approaches proposed to decompose the problem (Line
3 of Algorithm 1) are discussed in detail in sections 3.1–3.3.

Algorithm 1 Solution procedure

Input: an instance of the SSRP; optimality tolerance Tol%; maximum CPU time Tmax.
Output: solution xbest.
1: Set xinit ← ∅ and xbest ← ∅ (initial and best feasible solution)
2: Phase I: Generating a warm start (initial) solution
3: Decompose the instance into K smaller sub-problems, SPk

4: k ← 1
5: while k ≤ K and time < Tmax do
6: Solve SPk to get a partial route xk within Tol% of optimality
7: xinit ← xinit ∪ xk

8: k ← k + 1
9: end while
10: Phase II: Improving the solution
11: if time < Tmax then
12: xbest ← xinit

13: Solve formulation (1)–(14) using xinit as a warm start for the solution process
14: Update xbest

15: end if
16: return xbest.

3.1 Infrastructure-based decomposition

Recall that tasks are differentiated according to whether they are highways or other roads (N = H∪O
and H ∩ O = ∅) and that shifts are either day or night shifts (S = Sd ∪ Sn and Sd ∩ Sn = ∅). Recall
also that tasks in H must be performed during night shifts Sn, whereas those in O can be performed
during either day or night shifts. A natural idea is therefore to decompose the problem into two sub-
problems: one associated with the pair (H, Sn) and one associated with the pair (O, Sn ∪ Sd). Both
sub-problems have the same definition and the same structure as the original problem (P ), but they
consist of a limited number of variables in contrast to (P ), which consists of all variables.

Since tasks in H have more restrictions than tasks in O, it makes sense to start by solving the sub-
problem associated with the pair (H, Sn). Referring to Algorithm 1, this sub-problem is denoted by
SP 1. We solve SP 1 to the predefined optimality tolerance Tol% and extract the binary variables that
take value 1 in the solution. The set of such variables is denoted by B1. Recall that, by construction,
each route visiting vertices 0, d, v1, v2, . . . , vh, d

′, e, where d, d′ ∈ D and v1, v2, . . . , vh ∈ N , corresponds
to a feasible shift that starts at depot d, consecutively performs tasks v1, v2, . . . , vh, and ends at depot
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d′ (see constraints (4)–(7)). Let B1 be the subset of B1 containing only variables related to arcs whose
head and tail are tasks and let B1 denote its complement. We fix variables in B1 to their current value
(one), leave the variables in B1 free, and solve the original problem (P ) (referring to Algorithm 1,
fixing the variables corresponds to generating the partial route x1, and the problem solved after the
variable fixing corresponds to the second sub-problem, SP 2). Leaving variables in B1 free can be seen
as “breaking” the links from and to the depots to avoid locking short shifts. That way, further tasks
can be added to shifts in Sn when solving SP 2, which should produce an initial solution better than
the one that would be produced if variables in B1 were also fixed. Recall that each shift incurs a fixed
cost, so the objective is to minimize the number of shifts (see the objective function (1)).

Obviously, the heuristic described above does not help in solving instances where there are no
highways. Also, it might not be successful at solving large scale practical instances with highways
since the two sub-problems could be large and very time consuming to solve. In the next section, we
present an alternative decomposition strategy that avoids these shortcomings.

3.2 Proximity-based decomposition

We extend the idea of the infrastructure-based decomposition by considering finer partitions of the
tasks and the shifts. Let {N 1, . . . ,NK} be a partition of N . One can also partition the shifts into
{S1, . . . ,SK′}, with K ′ ≥ K. We start by solving for routes that consider only tasks and shifts in
subsets N 1 and S1. This problem could be infeasible if the number of shifts in S1 is insufficient to
cover all tasks in N 1. We address this by simply extending the subset of shifts to include the next
subset, S2, and solve again. This is repeated until feasible routes are obtained (because the number of
shifts is not fixed a priori, feasibility is guaranteed after a finite number of iterations). We then break
the links from and to depots, fix the resulting partial routes, include tasks and shifts from the next
subsets, and solve again. As stated earlier, breaking the links from and to depots is desirable because
if we decide not to do so, we commit ourselves to locking shifts, which precludes adding more tasks to
them. The cycle of fixing partial routes, adding tasks, progressively adding shifts, and solving repeats
until all tasks are assigned and thus we have solved the original problem. A more formal description
of the procedure is given in Algorithm 2. Note that the sub-problem SP k solved at each iteration is a
restriction of the original problem since the former contains only a subset of the variables of the latter.

Therefore, we refer to it as P (
k⋃

p=1
N p,

q⋃
p=1

Sp,B1), where B1 denotes the set of fixed xs
ij .

Algorithm 2 Proximity-based decomposition

Input: a partition of the set of tasks {N 1, . . . ,NK}; a partition of the set of shifts {S1, . . . ,SK′}.
Output: a feasible solution (x̂, ŷ) to (P ).

1: Set (x̂, ŷ)← ∅ and B1 ← ∅
2: k ← 1
3: q ← 1
4: while k ≤ K do

5: SPk ← P (
k⋃

p=1
N p,

q⋃
p=1
Sp,B1)

6: Solve SPk

7: if SPk is infeasible then
8: q ← q + 1
9: else
10: (x̂, ŷ)← Sol(SPk)

11: Update B1 = {xs
ij : i, j ∈

k⋃
p=1
N p, s ∈

q⋃
p=1
Sp, x̂s

ij = 1}

12: k ← k + 1
13: q ← q + 1
14: end if
15: end while
16: return (x̂, ŷ).

The effectiveness of the heuristic described above strongly depends on how astutely the partitions
are chosen. Let us first consider the set of shifts, S. Because the number of shifts is not fixed but
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the main goal is rather to complete all tasks with the fewest possible number of shifts, including two
consecutive shifts in each subset of S is an appealing strategy, since it will allow us to introduce more
shifts only when needed. Further, it will lead to small sub-problems, reducing the computational
burden. So, in our implementation, S1 is composed of shifts 1 and 2, S2 is composed of shifts 3 and 4,
and so on.

Let us now consider the set of tasks, N . We break this set down by dividing tasks into two
geographically proximate groupings. We continue dividing each set of tasks in two until each group
of tasks can be completed within a shift period, and not two, in order to accommodate deadheads
and traverses between tasks and from and to the depot. To do so, we recursively call an algorithm
akin to the linear-time mincut algorithm proposed in Fiduccia and Mattheyses (1982) for the graph
partitioning problem.

The Fiduccia-Mattheyses (FM) graph partitioning algorithm is based on the popular Kernighan-
Lin algorithm (Kernighan and Lin, 1970). It can roughly be summarized as an iterative procedure
that, starting from an initial partition (N 1 ,N 2), progressively improves that partition by moving
one vertex from its current group to the other. The objective is to find a partition that minimizes
the cost of the cut, defined as C(N 1 , N 2) =

∑
(i,j)∈(N 1,N 2) c(i, j), where c(i, j) represents the cost

associated with edge (i, j). The partition must also satisfy a balance criterion that requires the sizes
of N 1 and N 2 to be within a certain factor of each other. Because our purpose is to divide the tasks
into geographically proximate groupings, we define c(i, j) = M − dij , where M is a large value and
dij is the length of the shortest path leading from i to j. Also, because the partition we wish to find
needs to be balanced in terms of workload, instead of using the cardinality of N 1 and N 2 as a balance
criterion, we use the sum of service time. More precisely, any subset T ⊆ N is evaluated using the
function W (T ) =

∑
i∈T σi. Dividing tasks terminates when, for each subset N k, W (N k) ≤ Umin,

where Umin is the length of the shortest shift (Umin = mins∈S Us). This means that we impose that
the total duration of service in each group of tasks is no larger than the duration of any shift period.

As stated above, a partition of the tasks into K groups such that each group of tasks can be
completed within a single shift period, and not two (although each subset of shifts consists of two
shifts), allows us to accommodate deadheads and traverses between tasks and from and to the depots.
It also increases the likelihood that other tasks can be inserted in subsequent iterations, thereby
alleviating the negative consequence of decomposition (missing good solutions).

3.3 Shift-only decomposition

In this section, we present a third decomposition strategy based on the fix-and-relax heuristic, also
known as the sliding time window heuristic (Dillenberger et al., 1994; Escudero and Salmeron, 2005;
Brown et al., 2001; Pochet and Wolsey, 2006; Lamghari and Dimitrakopoulos, 2016). Unlike the
strategies presented in Sections 3.1 and 3.2, which partition both the set of tasks and the set of shifts,
here, only the set of shifts is partitioned. We do this because partitioning tasks might not achieve the
best performance in terms of solution quality, for decisions made in the early stages of the algorithm
limit the available possibilities in later stages. Considering all tasks allows us to adopt a less myopic
and more flexible strategy. While this may result in longer computational times, it has the potential
to yield better solutions.

Each iteration of the heuristic consists of two main steps. In the first step, we solve a sub-problem
to obtain routes for a small number of shifts, ν. Variables xs

ij associated with shifts s > ν are not
projected out, as in Section 3.2. They are retained, but with their integrality relaxed. This guarantees
that a feasible solution can be obtained and that the sub-problem to be solved is of tractable size. In
the second step of the algorithm, the routes obtained are fixed and the next ν shifts are considered.
The process continues until all tasks are assigned to appropriate shifts. A pseudo-code of the procedure
is given in Algorithm 3. The set of shifts S is partitioned into three disjoint subsets S1, S2, and S3

(Lines 2–4). The sub-problem obtained from the original problem after fixing variables xs
ij associated

with s ∈ S1 and relaxing the integrality of those associated with s ∈ S3 is denoted P (S1,S2,S3).
Once a sub-problem is solved (Line 8), the partition is updated (Lines 10–13).
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Algorithm 3 Shift-only decomposition

Input: ν, the number of shifts to consider at each iteration.
Output: a feasible solution (x̂, ŷ) to (P ).
1: Set (x̂, ŷ)← ∅
2: S1 ← ∅
3: S2 ← {1, . . . , ν}
4: S3 ← S \ {S1 ∪ S2}
5: k ← 1
6: repeat
7: SPk ← P (S1,S2,S3)
8: Solve SPk

9: (x̂, ŷ)← Sol(SPk)
10: S1 ← S1 ∪ S2
11: k ← k + 1
12: S2 ← {(k − 1)ν + 1, . . . , kν}
13: S3 ← S \ {S1 ∪ S2}
14: until all tasks are assigned
15: return (x̂, ŷ).

3.4 Relationship of the proposed decomposition strategies to other known
methodologies

We now describe similarities and differences among the three heuristics described in Sections 3.1–3.3
and other well-known methodologies.

The basic idea of the three heuristics is to reduce the complexity of the problem by decomposing it
into smaller and easier-to-solve sub-problems, a common strategy that allows the search to focus on a
small region of the search space. The three heuristics alternate between fixing a part of the solution to
its current value and optimizing the remaining part, and as such, they are closely related to projection
strategies (Geoffrion, 1970a,b) and to the cyclic coordinate descent methods (Luenberger, 1984) used
in the Gauss-Seidel and the Jacobi procedures to optimize a function of several variables.

We also note that there is a close relationship between the heuristic described in Section 3.2 and
the large neighborhood search (LNS) heuristic proposed by Shaw (Shaw, 1998).1 Breaking links from

and to depots is essentially the destroy step in LNS, while solving SP k := P (
k⋃

p=1
N p,

q⋃
p=1

Sp,B1)

corresponds to the repair step. The degree of destruction gradually increases (as the search progresses,
more shifts are considered and therefore larger parts of the solution are destroyed. The sub-problem
solved adjusts routes associated with those shifts, in the best possible way). That said, our heuristic
does not purely follow the concepts of LNS. While LNS includes an acceptance criterion, we omit
this criterion because, in our case, the repair step necessarily returns an improved solution, with less
violations of constraints (2) and (3). Another main difference lies in the variables considered in the
repair step. LNS attempts to improve the current solution by changing only the values of the variables
selected at the destroy step, whereas the proposed heuristic considers additional variables and gradually
extends the search to previously unexplored regions of the search space.

Because the three heuristics combine various algorithmic ideas and involve mathematical program-
ming models, they can be seen as matheuristics (Gunther et al., 2019).

4 Computational results

To assess the tractability of model (1)–(14) and compare the three decomposition strategies described
in Section 3, we performed computational experiments on several classes of both random and real-world

1Note that the proposed heuristic is basically a construction heuristic, while LNS is an improvement algorithm.
However, constructing a solution can be viewed as improving a solution where violations of constraints (2) and (3) are
allowed.
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test instances. These instances are described in Section 4.1, followed by an outline of implementation
details in Section 4.2 and a summary of computational results in Sections 4.3–4.6.

4.1 Generation of instances

Since there has been little study of the SSRP in the literature, no benchmark instances exist. We
therefore randomly generated a set of 48 instances that strike a balance between realism and ease of
generation. These instances vary according to size and complexity. The size of an instance is defined
by the number of tasks (|N | = |H| + |O|), while the percentage of tasks associated with highways

(%H = |H|
|N| × 100) and the number of depots (|D|) determine the complexity of an instance.

We use the instance DI-NEARP-n422-Q2k-TP.dat of Vidal (2017) as a basis to generate our 48
instances. DI-NEARP-n422-Q2k-TP contains 710 nodes and one depot, whose Euclidean coordinates
are specified. We joined series of North-South and East-West nodes to make two highways. The other
nodes in each of the four quadrants established after making the highways were linked to constitute
other roads. The service time and travel time of each road segment (whether highway or non-highway)
were calculated first by computing the Euclidean distance between the extremities that define the road
segment. Then, the service time and travel time were obtained by multiplying this distance by the
sweeping speed and the travel speed, respectively, and rounding the result to the nearest integer. Both
speeds were provided by our industry partner, Arseno Balayage, a company that specializes in spring
sweeping.

We generated instances with sizes ranging between 40 and 180 tasks. In doing so, we made sure
that not all road segments (tasks) in any instance are connected, giving us instances that are close to
reality. These instances are divided into two classes: those with a small number of highway segments
and those with a relatively large number of highways. In the former group, tasks associated with
highway segments make up an average of 25% of all tasks, and in the latter group, they consist of
30% of all tasks on average. According to discussions with our partner, we can consider these two
percentages realistic.

For both classes, we considered two scenarios for each instance: in the first scenario, there is a
single depot, which corresponds to the depot in DI-NEARP-n422-Q2k-TP, while in the second there
are multiple depots (2 or 3 additional depots, depending on the size of the instance). These additional
depots are randomly chosen, but such that each of them is close to a cluster of road segments to be
swept, as is the case in reality. Finally, in all instances, the duration of each shift (U

s
) was set to 10

hours. The fixed cost was set to $4, 500, while the variable costs were set to 1/3 and 5/3 dollar per
minute for deadheading and sweeping, respectively. These two values represent an estimate of the fuel
cost per km for the sweeping fleet and are based on the simulation study of Ben Daya et al. (2024).
Recall that the fleet is composed of two sweepers, two dump trucks, and one pickup truck used as a
safety vehicle.

In addition to the instances described above, we also consider an instance based on real data from
Victoriaville, a municipality in the Centre-du-Québec region of Québec, Canada. The contract area,
shown in Figure 2, consists of 20.5 km of highways and 144.5 km of other roads, amounting to 46 tasks
of type H and 128 tasks of type O, represented by circles in the figure. There are 4 depots, represented
by black squares in the figure. The data collected from Google Maps and from our partner, who has
been awarded this contract many times in the past, were used to compute the service and travel times.
For the shift duration, fixed cost, and variable costs, we used values similar to those in the random
test instances.

Table 1 summarizes the characteristics of the 48 randomly generated instances and those of the
real test instance.
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Table 1: Characteristics of the instances.

# Vertices

Dataset Instance |H| |O| |N | |D|

A

A1 10 30 40 2

Number of instances: 13

A2 12 38 50 2

Percentage of tasks associated with highways: %H = 25%

A3 15 45 60 2

Number of depots: Multiple

A4 18 52 70 2
A5 22 68 90 3
A6 25 75 100 3
A7 28 82 110 3
A8 30 90 120 3
A9 33 97 130 4
A10 36 104 140 4
A11 39 111 150 4
A12 42 118 160 4
A13* 46 128 174 4

B

B1 15 35 50 2

Number of instances: 12

B2 18 42 60 2

Percentage of tasks associated with highways: %H = 30%

B3 21 49 70 2

Number of depots: Multiple

B4 24 56 80 2
B5 28 67 95 3
B6 32 73 105 3
B7 34 81 115 3
B8 38 87 125 3
B9 39 91 130 4
B10 42 103 145 4
B11 48 112 160 4
B12 54 126 180 4

C

C1 10 30 40 1

Number of instances: 12

C2 12 38 50 1

Percentage of tasks associated with highways: %H = 25%

C3 15 45 60 1

Number of depots: Single

C4 18 52 70 1
C5 22 68 90 1
C6 25 75 100 1
C7 28 82 110 1
C8 30 90 120 1
C9 33 97 130 1
C10 36 104 140 1
C11 39 111 150 1
C12 42 118 160 1

D

D1 15 35 50 1

Number of instances: 12

D2 18 42 60 1

Percentage of tasks associated with highways: %H = 30%

D3 21 49 70 1

Number of depots: Single

D4 24 56 80 1
D5 28 67 95 1
D6 32 73 105 1
D7 34 81 115 1
D8 38 87 125 1
D9 39 91 130 1
D10 42 103 145 1
D11 48 112 160 1
D12 54 126 180 1

(*): Real instance corresponding to Victoriaville, QC, Canada.

4.2 Implementation details and performance measures

The algorithms were coded in Python, and the experiments were carried out on an Intel Core i7-8700
with a 3.2 GHz CPU and 64 GB of RAM running under Linux. We used CPLEX 22.1.1 to solve
the sub-problems and to refine the initial solution at the second stage of the solution procedure (c.f.
Algorithm 1). The time limit, Tmax, was set to 3600 seconds (one hour) for instances with up to 80
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Figure 2: Sweeping contract area - Victoriaville, Québec, Canada.

tasks (|N | ≤ 80), to 7200 seconds (two hours) for instances with 90 to 125 tasks, and to 10,800 seconds
(three hours) for instances with more than 125 tasks (|N | ≥ 130). When solving sub-problems (Phase
I), CPLEX was executed with an optimality tolerance (Tol%) of 5% and a time limit of 800 seconds.
If no solution is reached after 800 seconds, the time limit is increased by 200 seconds. This is repeated
as long as the maximum CPU time, Tmax, is not reached. For the Shift-only decomposition, an extra
parameter is required: ν, the number of shifts to consider at each iteration of the first stage of the
solution procedure. To calibrate this parameter, some preliminary experiments were completed with
the largest instances with more than 130 tasks. We considered four values for ν: 1, 2, 3, and 4. The
best results were obtained with ν = 2. Hence, we completed the rest of the tests using this value.

In the next sections, we compare the following methods:

• No decomposition (ND in the following) where we solve the monolithic formulation (1)–(14)
using CPLEX 22.1.1 with its default settings and time limits of 3600 seconds, 7200 seconds and
10,800 seconds depending on the size of the instance, as explained above.

• Decomposition methods: IBD, PBD and SOD, corresponding to the solution procedure presented
in Algorithm 1 with the Infrastructure-based decomposition, the Proximity-based decomposition
and the Shift-only decomposition described in Sections 3.1, 3.2 and 3.3, respectively.

To assess the performance of the methods, we use the following measures:

• The initial optimality gap, in percentage. Since the optimal solutions are not known, we overes-

timate this measure by the ratio (Laporte and Toth, 2022): Initial gap =
Zinit

X −LB∗

LB∗ ×100, where
Zinit
X is the objective function value of the warm start (initial) solution produced by method X

(IBD, PBD or SOD) and LB∗ is the best known lower bound. Note that this measure does not
apply to ND.

• The CPU time, in seconds, required to complete phase I. This measure also applies only to the
three decomposition methods, IBD, PBD, and SOD.

• The final gap, in percentage, measured as Final gap =
Z∗

X−LB∗

LB∗ × 100, where LB∗ is as defined
above and Z∗

X is the value of the best feasible solution found by method X, either ND, IBD,
PBD or SOD.
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• In addition to the final gap, we also report Difference =
Z∗

PBD−Z∗
X

Z∗
PBD

× 100, where X can be either

ND, IBD or SOD. This measure allows us to compare these three methods to PBD, which was
found to give the best results in preliminary tests.

The four measures are computed for each instance. Because we want to compare the behavior of
the methods with respect to problem size, and we also want to see which of them work best on each
class of instances, we chose to provide detailed results in Sections 4.3–4.5. These detailed results are
summarized in Section 4.6, where arithmetic averages over each set of instances are computed.

4.3 Results on the first set of benchmark instances (A instances)

Our first set of benchmark instances includes 13 instances with multiple depots (|D| = 2, 3 or 4). The
number of tasks |N | ranges between 40 and 174, of which highway segments constitute approximately
25%. Table 2 presents the results obtained by the four methods for these instances. For IBD, PBD
and SOD, Initial gap and Time are shown, while Final gap and Difference are given, respectively,
for all four methods and for ND, IBD and SOD. A dash (”-”) indicates that no feasible solution was
obtained within the time limit. In addition, the table also shows, in column LB∗, the value of the best
known lower bound used to compute the gaps.

Table 2: Performance of the four methods for the A instances.

|N |, |D| LB∗ Initial gap (%) Time (sec.) Final gap (%) Difference (%)

IBD PBD SOD IBD PBD SOD ND IBD PBD SOD ND IBD SOD

A1 40, 2 9,192.00 1.49 1.22 10.04 3 1 5 0.65 0.65 0.67 0.11 0.02 0.02 0.56
A2 50, 2 9,267.00 2.60 2.35 5.13 4 2 45 1.36 1.36 1.36 0.49 0.00 0.00 0.86
A3 60, 2 9,318.85 5.08 3.63 4.55 9 2 70 1.62 1.60 1.64 0.65 0.02 0.04 0.97
A4 70, 2 13,987.00 3.31 1.87 3.28 54 4 540 0.97 1.29 1.06 2.19 0.08 -0.23 -1.12

A5 90, 3 14,072.55 - 3.65 35.75 - 8 1239 - - 0.77 34.67 - - -33.64
A6 100, 3 14,144.75 - 2.58 38.44 - 9 1211 - - 1.54 34.45 - - -32.41
A7 110, 3 18,753.63 - 2.83 51.86 - 19 2475 - - 2.11 50.53 - - -47.42
A8 120, 3 18,744.00 - 2.89 50.82 - 23 2566 - - 1.90 50.15 - - -47.35

A9 130, 4 18,667.84 - 2.98 52.78 - 122 2495 - - 1.54 52.29 - - -49.98
A10 140, 4 18,747.42 - 2.98 51.88 - 124 2510 - - 1.30 51.34 - - -49.41
A11 150, 4 18,817.67 - 2.99 27.09 - 131 2467 - - 1.71 26.68 - - -24.54
A12 160, 4 18,816.79 - 3.18 50.82 - 260 2439 - - 1.97 50.22 - - -47.31

A13 174, 4 23,798.20 - 2.59 68.09 - 180 2475 - - 1.53 67.52 - - -65.00

Time limit = 3600 seconds for instances A1-A4, 7200 seconds for A5-A8, and 10800 seconds for A9-A13. A13 is the real
instance corresponding to Victoriaville, QC, Canada.

As one might expect, large instances of practical interest cannot be solved in a reasonable amount
of time without decomposing the problem. Thus ND cannot solve instances with more than 70 tasks
within the time limit. Of the three decomposition methods, PBD would rank first, SOD second, and
IBD last. The performance of IBD is comparable to that of ND. On the other hand, SOD and PBD are
able to solve all 13 instances. The performance of PBD is superior, however, as it is consistent regardless
of the number of tasks, with an average optimality gap of 1.47% (column Final gap). The performance
of SOD significantly deteriorates as the number of tasks increases, with an average optimality gap of
32.41%. The advantage of PBD over IBD and SOD is that the sub-problems are considerably smaller,
as explained in Section 3, which results in a significant reduction of the time needed to complete the
first phase and generate the warm start (initial) solution, as can be seen by examining the values of
Time. Consequently, more time remains for the second phase to improve this solution. Additionally,
PBD generates better initial solutions than SOD and IBD (column Initial gap). This could in part
be explained by the fact that PBD assigns clusters of geographically close tasks to the same shift.
Turning to the impact of the size of the problem on the time required to complete the first phase,
Table 2 shows that the rate of increase is higher for SOD than it is for PBD. This is not surprising,
given that the size of the sub-problems that PBD solves is quite similar irrespective of the number of



Les Cahiers du GERAD G–2025–10 14

tasks, while it is proportional to the number of tasks in SOD. For the largest random instance A12,
PBD takes less than 5 minutes, while SOD takes almost 10 times longer.

When we consider that our goal is to find a way for our industry partner to reduce costs, it is
noteworthy that the solution provided by PBD for the real instance A13 consists of 5 shifts, as opposed
to 15.5 shifts in the solution generated manually by our industry partner. Given the fixed costs, the
economic gains realized by implementing a PBD solution in this case can be near $50,000, a significant
amount for a small company. Moreover, the company would be able to bid on more contracts, as
the time saved would make their equipment available for more work. Recall that the sweeping season
is very short, so time saved is an extremely important consideration. PBD thus provides an efficient
vehicle routing plan that minimizes completion time and costs and is of benefit to our industry partner.

4.4 Results on the second set of benchmark instances (B instances)

The second set of benchmark instances is used to analyze the performance of the four methods when
the percentage of highways is increased. It contains 12 instances of various sizes with multiple depots
and with highway segments constituting around 30% of all tasks, as opposed to 25% in the set A
considered in the previous section. While the difference between 25% and 30% seems relatively small,
values beyond 30% would not be realistic, according to our industry partner.

Table 3: Performance of the four methods for the B instances.

|N |, |D| LB∗ Initial gap (%) Time (sec.) Final gap (%) Difference (%)

IBD PBD SOD IBD PBD SOD ND IBD PBD SOD ND IBD SOD

B1 50, 2 9,258.42 4.39 2.68 3.02 6 2 51 1.53 1.53 1.59 0.65 0.06 0.06 0.93
B2 60, 2 9,417.17 2.53 2.76 99.54 675 3 1349 2.12 1.26 1.29 0.05 -0.82 0.03 1.22
B3 70, 2 14,015.10 2.92 3.02 35.24 12 6 1324 34.91 1.70 1.34 34.27 -33.12 -0.36 -32.49
B4 80, 2 13,995.04 4.27 2.07 34.48 16 8 1220 - 2.98 1.16 32.98 - -1.80 -31.46

B5 95, 3 18,605.51 - 2.68 2.98 - 13 1207 - - 1.68 1.21 - - 0.46
B6 105, 3 18,779.99 - 3.52 51.35 - 14 1454 - - 1.59 49.72 - - -47.37
B7 115, 3 18,768.34 - 3.00 52.56 - 18 1562 - - 1.85 51.08 - - -48.34
B8 125, 3 18,745.14 - 2.97 51.88 - 22 2464 - - 1.76 50.75 - - -48.14

B9 130, 4 18,713.76 - 2.67 3.24 - 44 1429 - - 1.81 1.85 - - -0.03
B10 145, 4 18,772.76 - 3.60 52.47 - 154 2528 - - 2.51 51.14 - - -47.44
B11 160, 4 18,786.92 - 4.11 51.93 - 160 2501 - - 2.17 50.28 - - -47.09
B12 180, 4 23,447.58 - 3.10 24.86 - 175 2750 - - 1.99 23.97 - - -21.54

Time limit = 3600 seconds for instances B1-B4, 7200 seconds for B5-B8, and 10800 seconds for B9-B12.

The numerical results are summarized in Table 3. We see that IBD performs very well on small
instances. In all but one case (B4), a feasible solution within less than 2% of optimality is obtained.
However, IBD fails to solve larger instances in the maximum time allowed. As explained above, this
is a direct result of the large size of the sub-problems to be solved in the first phase of the solution
procedure. Overall, when there are more highway segments, IBD outperforms ND, which is contrary
to the instances when the number of highways was smaller. The average gaps for IBD and ND are
1.50% and 12.85%, respectively, as opposed to 1.23% and 1.15% (considering only instances where
both methods are able to produce a feasible solution within the time limit).

The other two methods, PBD and SOD, were able to solve all instances for this benchmark set
before the time limit was reached (similar to the set A), confirming their ability to tackle large instances
within a reasonable amount of time. The two methods perform the same for one instance (B9), SOD
performs slightly better for 3 instances (the two smallest instances and B5), and PBD performs better
for the remaining 8 instances. Despite the apparent similarities between the two methods, the range
of optimality gaps obtained demonstrate that PBD is much more robust than SOD, with optimality
gaps ranging between 1.16% and 2.51% when PBD is used, and optimality gaps between 0.05% and
51.14% when SOD is employed. In fact, the optimality gaps for instances other than B1, B2, B5, and
B9 are very high for SOD, ranging from 23.97% to 51.14%. These large values are due to the fixed
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costs associated with each shift. For example, PBD and SOD report a final gap of 2.51% and 51.14%,
respectively, for B10. This is not surprising, considering that in the solution found by PBD, 4 shifts
are used, whereas in that provided by SOD, 6 shifts are necessary to sweep all segments.

The results above seem to indicate that increasing the percentage of highways makes the problem
less complicated for SOD, which performs better on average for set B than for set A (average final
gap of 29% versus 32.41%). On the other hand, PBD’s performance slightly degrades (1.73% versus
1.47%). With respect to the time required to complete the first phase, there is no notable difference
between set A and set B for both methods.

4.5 The impact of the number of depots (C and D instances)

We now analyze how the results are affected when only one depot is considered. Instances in sets C and
D, considered in this section, were derived from those in sets A and B by considering the single depot
in DI-NEARP-n422-Q2k-TP (Vidal, 2017). This single depot serves all the area under consideration,
unlike cases with multiple depots, where each depot was close to a cluster of road segments to be
swept.

Table 4 summarizes the results of the experiments. Two key observations can be made from this
table. First, the performance of all methods deteriorates when one depot is considered compared to
the case with multiple depots. This can be partially explained by the fact that the best lower bound
values are quite similar to those obtained in the case of multiple depots (see column LB∗). The upper

Table 4: Performance of the four methods for the C and D instances.

|N |, |D| LB∗ Initial gap (%) Time (sec.) Final gap (%) Difference (%)

IBD PBD SOD IBD PBD SOD ND IBD PBD SOD ND IBD SOD

C1 40, 1 9,198.48 2.76 3.77 8.88 3 1 1 0.88 0.88 0.88 0.30 0.00 0.00 0.57
C2 50, 1 9,256.50 3.43 4.15 5.13 4 2 5 2.08 2.08 2.07 1.23 -0.01 -0.01 0.82
C3 60, 1 9,315.25 5.73 3.97 4.91 8 2 179 - 2.28 2.54 1.37 - 0.25 1.14
C4 70, 1 13,991.43 - 2.82 34.32 - 4 607 - - 1.17 0.73 - - 0.43

C5 90, 1 13,955.22 - 3.65 40.21 - 47 1231 - - 2.27 36.44 - - -33.41
C6 100, 1 14,008.25 - 2.47 40.94 - 30 1235 - - 2.01 36.44 - - -33.75
C7 110, 1 18,595.77 - 3.31 30.31 - 51 2440 - - 3.02 29.63 - - -25.83
C8 120, 1 18,757.33 - 3.48 51.71 - 1226 3450 - - 2.81 51.22 - - -47.09

C9 130, 1 18,671.23 - 4.11 3.98 - 254 1658 - - 3.22 3.33 - - -0.11
C10 140, 1 18,746.01 - 3.75 28.16 - 370 2444 - - 3.05 27.43 - - -23.66
C11 150, 1 18,813.60 - 3.62 53.36 - 176 2502 - - 2.91 52.89 - - -48.52
C12 160, 1 18,814.33 - 3.38 52.57 - 829 2550 - - 3.19 52.22 - - -47.52

D1 50, 1 9,255.00 4.77 4.50 3.12 19 2 660 2.56 2.68 2.76 1.69 0.19 0.07 1.04
D2 60, 1 9,321.86 53.20 4.15 102.79 1225 15 1290 101.67 3.42 3.35 99.86 -95.13 -0.07 -93.39
D3 70, 1 13,889.32 5.27 5.06 37.08 16 6 2400 - 3.82 3.24 36.28 - -0.56 -32.00
D4 80, 1 13,998.90 4.77 3.07 38.87 1374 7 2200 - 2.96 2.67 34.02 - -0.29 -30.54

D5 95, 1 18,603.99 - 4.27 59.33 - 84 1212 - - 2.95 2.30 - - 0.63
D6 105, 1 18,780.76 - 3.86 58.65 - 1426 1223 - - 3.27 52.47 - - -47.64
D7 115, 1 18,766.68 - 3.63 62.20 - 212 1479 - - 3.50 51.86 - - -46.72
D8 125, 1 18,743.58 - 3.89 54.94 - 1450 2464 - - 3.52 53.28 - - -48.07

D9 130, 1 18,714.33 - 3.44 28.88 - 54 2441 - - 2.97 28.12 - - -24.42
D10 145, 1 18,771.75 - 4.19 109.04 - 934 3510 - - 2.78 107.08 - - -101.47
D11 160, 1 18,798.92 - 3.98 28.17 - 158 2449 - - 3.01 27.61 - - -23.88
D12 180, 1 23,452.96 - 3.61 25.34 - 371 2519 - - 3.11 24.28 - - -20.54

Time limit = 3600 seconds for instances C1-C4 and D1-D4, 7200 seconds for C5-C8 and D5-D8, and 10800 seconds for C9-C12
and D9-D12.

bound values, however, become larger because distances to the depot are longer when one depot is
considered, which results in more deadhead time and thus higher costs. This does not favorably affect
the gaps, and it is not surprising to see their values increase. We also note that, irrespective of the
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method, the time required to complete the first phase is higher than when there is more than one
depot.

Second, the results of the tests clearly exhibit the expected pattern: small instances with up
to 50 tasks are solved to near optimality by all four methods and thus do not yield insights into
the performance of the decomposition approaches. We see, though, that as the size of the problem
increases, decomposition has a positive effect on the performance as long as the sub-problems to be
solved are not large and the warm start is a good quality solution, as in PBD. ND performs very
poorly, as it finds a feasible solution for only 4 instances out of 24. Again, IBD is effective only for
small instances with up to 80 tasks, while SOD was able to solve all instances but with an average
gap of 33.84%. PBD solved all instances in sets C and D within the time limit, with an average gap
of 2.76%, which reinforces its superiority over the other three methods.

4.6 Summary of results

Table 5 shows comparative statistics for the four methods by set of instances. Under Solved, we report
the percentage of instances that each method was able to solve within the time limit. The second
group of columns, Best solution, gives the percentage of instances for which each method can find the
best solution. The columns under the heading Average gap provide the obtained average final gaps
over i) the instances that ND was able to solve (Restricted) and ii) over all instances (Overall).

Table 5: Summary of the results.

Set Solved (%) Best solution (%) Average gap (%)

Restricted Overall

ND IBD SOD PBD ND IBD SOD PBD ND IBD SOD PBD SOD PBD

A 30.77 30.77 100.00 100.00 7.69 0.00 23.08 69.23 1.15 1.23 0.86 1.18 32.41 1.47

B 25.00 33.33 100.00 100.00 0.00 0.00 25.00 75.00 12.85 1.50 11.66 1.41 29.00 1.73

C 16.67 25.00 100.00 100.00 0.00 0.00 33.33 66.67 1.48 1.48 0.77 1.47 24.44 2.43

D 16.67 33.33 100.00 100.00 0.00 0.00 16.67 83.33 52.11 3.05 50.78 3.05 43.24 3.09

A: multiple depots, %H = 25%; B: multiple depots, %H = 30%; C: single depot, %H = 25%; D: single depot, %H = 30%.

The numerical results indicate that among the four methods considered in this paper, ND performs
the worst as it is able to solve only 11 small instances out of all 49 instances tested (22.45%) within the
time limit. Considering these 11 instances, the average gap of the solutions provided by ND is 16.90%
as opposed to 1.81% for IBD, 16.02% for SOD, and 1.78% for PBD. Clearly, the results indicate that it
pays off to decompose the problem, as the three decomposition methods find better solutions, except
for one instance in set A.

IBD was able to solve the 15 smallest instances out of 49 (30.61%). For these instances, it finds
good quality solutions, comparable to or better than those produced by ND. The comparison between
IBD and SOD shows that SOD is able to obtain better solutions for instances with a small percentage
of highways. However, for the instances with a larger percentage of highways, IBD typically gives
better solutions than SOD.

SOD and PBD are distinguished by their ability to solve all 49 instances. The comparison between
SOD and PBD shows that the performance of SOD is slightly better than that of PBD when the
instances are of small size, but for larger instances, PBD is significantly better except for a handful of
instances (4 out of 37). The results also indicate that the percentage of highways and the number of
depots has almost no impact on the performance of PBD. PBD always provides high quality solutions
with a final gap generally below 3%, independent of the particularities of a given instance or its size.

The look-ahead features that SOD includes (considering all tasks and not only a subset of tasks at
each iteration of the first phase as PBD does) are beneficial and apparent on small instances. However,
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as the problem size increases, the advantages of the look-ahead features are offset by the large size of
the sub-problems. Although somewhat smaller than the original problem, these sub-problems remain
quite large, making the first phase time consuming. PBD performs better with larger problems most
likely due to the small size of the sub-problems and the geographical proximate groupings strategy
that allow a good feasible warm start (initial) solution to be generated quickly. This strategy leads
to a more effective solution procedure, as supported by the excellent results obtained for all tested
instances, including the real test instance, A13.

It is worth noting that the quality of the initial solution provided by PBD is very good, with an
average gap of 3.31%, which is affected neither by the number of depots nor by the percentage of
highways. The experiments also showed that very little time, up to a few minutes, is actually spent
generating this solution. Therefore, the proximity-based decomposition (phase I of PBD) is a useful
decision-support tool that can be employed by sweeping companies in contexts where solutions must be
obtained quickly and/or when they want to test various scenarios of travel and service times in order
to construct and evaluate routing plans before bidding on a contract. Phase II can be incorporated in
contexts where a precise measure of deviation from optimality is required.

5 Conclusions

In this paper, we have considered the practical problem of generating efficient routing plans that
minimize costs for spring sweeping of road abrasives (the SSRP). We have proposed a node formulation
that is more compact than the arc formulation previously proposed in the literature, and we have
developed three decomposition procedures to solve the problem. The performance of these procedures
was evaluated through computational testing on a set containing 49 random and real-life instances.
The three procedures were compared to each other and to a general-purpose solver (CPLEX), which
was used to solve the SSRP directly as an MILP model.

The computational study indicates that CPLEX can only solve instances with a small number of
tasks. Of our three proposed decomposition strategies, the proximity-based decomposition strategy
has proven to be the most efficient for addressing large real-world instances. Such instances cannot
be solved directly as MILP models and are also difficult for the infrastructure-based and shift-only
decomposition approaches.

Future directions for research include the incorporation into the model of some additional con-
straints encountered in practice, such as sweeping hierarchy constraints that impose that high-priority
roadways must be cleaned first. Another possible avenue for research is to extend the model to incor-
porate uncertainty in travel and service times, which vary depending on the state of the roads, the
quantity of abrasives spread in winter, and the weather conditions when sweeping occurs. Last but
not least, we have observed that the lower bound progresses very slowly. Thus, developing strategies
to obtain better lower bounds is a promising research area worth pursueing.
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