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Abstract : Mean Field Game equilibria are based on the assumption of instantaneous interactions
within a population of interchangeable agents, where each agent’s impact diminishes as the popula-
tion size increases. However, in practical scenarios, agents may not continuously observe the overall
population state. Instead, in some situations, agents observe the empirical mean state only at discrete
time intervals. This observation structure likely influences the nature of Nash equilibria that agents
can attain. This paper characterizes the best responses of agents under such discrete observation
conditions. Sufficient conditions for the existence of a so-called Markov Nash equilibrium within a
finite population of agents are presented. Additionally, the difference in cost due to discrete versus
continuous mean observations is evaluated.

Acknowledgements: Research supported by NSERC–RGPIN–2022–0540.
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1 Introduction

Information shapes in critical ways the decision-making process in multi-agent systems. In contexts

such as Mean Field Games (MFGs) and aggregative games, based on access to aggregate information

established to be sufficient, agents anticipate the statistical characteristics of the population to shape

their control policies and navigate effectively. The assumption of sufficient aggregate information access

underlies much of the existing MFG literature (See e.g. [1–5]). Several works do address situations of

partial information within this framework. Thus [6] analyzes the impact on equilibrium of partial own

state observability by agents, while [7–9] tackle various situations of partial observability within the

so-called major-minor agent MFG framework. The papers address linear and nonlinear state models,

partial observability by minor agents of their own state and that of the major agent state, as well as

partial observability of the major agent state by itself. In addition, [8, 10] establish ε-Nash equilibria

for a partially observed major agent. Paper [11] explores MFG with nonlinear dynamics cost functions

and addresses a problem with partial state observations, leveraging nonlinear filtering theory and

the separation principle. [12, 13] study major-minor agents MFGs with partial observability for all

populations. Finally, [14] tackles the partial observability situation for MFGs in discrete time for a

risk-sensitive cost structure.

The studies mentioned above generally assume that agents can observe a subset of the population,

such as their neighbors, while those farther away remain unobservable. They then attempt to infer

information about the unobservable portion based on the data from the visible subset.

In contrast, the objective of the current work is to investigate scenarios where agents only have

access to the empirical mean state of the population at discrete time intervals. This setting is motivated

by practical situations such as the movement of individuals within a crowd or the dynamics of vehicles

in traffic, where continuous observation of the global state is not feasible. Under these conditions,

the agents’ control policies are determined by a dynamic programming analysis that accounts for

the discrete observation structure. This paper characterizes the best response policies and identifies

the conditions under which a Nash equilibrium (NE) may arise in a finite population setting. The

analysis, conducted within a linear quadratic stochastic mean field framework over a finite time horizon,

involves coupled dynamic programs that incorporate both continuous time dynamics and discrete time

observations. The results provide insights into the impact of discrete observations on the expected

cost incurred by agents due to the inability to continuously observe the empirical mean state.

The research contributions can be outlined as follows:

1. Establishing best response policies for agents under discrete, periodic information sharing, amidst

continuous agent dynamics.

2. Quantifying performance degradation, termed as “regret,” for periodic observation of empirical

mean every ∆t seconds and demonstrating a linear growth rate of regret.

3. Simulating cost comparison under proposed observation structure and continuous observation

for different population size and terminal times

The rest of the paper is organized as follows: In Section 2, we discuss the formulation of the game.

In Section 3, we use stochastic DP to find the best response policy for the problem. In Section 4, we

calculate the loss of performance due to partial observability, referred to as regret, and show that the

regret has a linear growth rate.

2 An aggregative game with sampled empirical mean observations

Consider a non-cooperative game in a population of N agents that are uniform and have scalar dynam-

ics. The dynamics equation for agent i is written in the following as a linear and stochastic differential

equation.

dxi(t) =
(
axi(t) + bui(t)

)
dt+ σdwi(t), t ≥ 0 (1)
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In (1), xi(t) is the state of agent i and ui(t) is the control input or action of agent i. Coefficients a,

b are in R and σ is a non-negative finite value. Noises wi(t), i = 1, 2, . . . , N are mutually-independent

zero-mean Wiener processes that are also independent from initial agent states. The agents’ initial

conditions are assumed to be random with finite variance. The agents are assumed to have access to

the global empirical mean state x̄N (t) = 1
N

∑N
i=1 xi(t) only at discrete-time instants tj = t0+ j∆t, j =

0, . . . , (T/∆t) = n, where T is the time horizon and ∆t is the inter-observation time interval, whereas

they observe continuously their own state xi(t).

Agents wish to follow a target ϕ(x̄N (t)) = Γx̄N (t) + η, with Γ ∈ R+, η ∈ R, while minimizing their

control effort. This is captured by the following cost function, with q, r > 0, h ≥ 0, i = 1, . . . , N :

Ji = E

[∫ T

t0

[
q(xi(t)− ϕ(x̄N (t)))2 + ru2i (t)

]
dt+ h

(
xi(T )− ϕ(x̄N (T ))

)2]
(2)

Cost function (2) can represent an energy function agents consume while attempting to follow the

population mean. Note that an analysis of the game in Equations (1), (2) is carried out in [1] under the

assumption that x̄N (t) is continuously observed, while sufficient Riccati equations-related conditions

for existence of a NE are derived. Here we wish to identify a set of agent “Markov” control strategies

(i.e. relying on the latest agent observations), leading to a potential NE under the described partial

information structure. We denote as Xi(t) the pair (xi(t), x̄
N (t)).

3 Predictor-based dynamic programming equations

3.1 Problem formulation

Definition 1. We define the Markov control strategies u∗i for i = 1, . . . , N as a Nash equilibrium of the

game, if given u∗−i, the vector of Markov strategies of agents other than i, agent i has no incentive to

unilaterally change its strategy since doing so, cannot lead to a lower cost.

Recall that a Markov strategy for an agent has been defined as a feedback strategy that depends

on time, the current state of the agent and the most recent empirical mean observation, i.e.:

ui = fi
(
xi(t), x̄

N (tj), t
)
, t ∈ [tj , tj+1] (3)

In order to determine this ui, we first define the following value function for i = 1, . . . , N , j = 0, . . . , n

and t ∈ [tj , T ]:

Vj,i(t,Xi) = inf
ui∈Mi

E
[ ∫ T

t

(
q(xi(τ)−Γx̄N (τ)−η)2+ ru2i (τ)

)
dτ +h(xi(T )−Γx̄N (T )−η)2|x̄N (tj)

]
(4)

And the predictor:

ˆ̄xNj,i(t) = E[x̄N (t)|x̄N (tj), xi(t)] t ∈ [tj , T ] (5)

where in (4), Mi is the admissible set of Markov control policies of agent i.

Assumption 1. To keep the analysis simple, we assume that N is large enough to neglect the impact

of ui(t) on x̄
N (t). Thus when computing the best response in the context of the game, agent i treats

x̄N (t) as a known value and its predictor, ˆ̄xNj,i(t), based on the most recent observations of empirical

mean as deterministic although a priori unknown.

Remark 1. Note that since agent i is the only one observing its own state xi(t), its predictor of x̄
N (t)

in (5) will be slightly different from that of other agents k ̸= i. But based on Assumption 1, we neglect

the local effects. Thus, herein, we shall assume that ˆ̄xNj,i(t) ≡ ˆ̄xNj (t), ∀i = 1, . . . , N where:

ˆ̄xNj (t) = E[x̄N (t)|x̄N (tj)], t ∈ [tj , T ] (6)
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Also, for simplicity, and without loss of generality, we shall assume η = 0. We define the prediction

error for t ∈ [tj , tj+1) as follows:

errj(t) = x̄N (t)− ˆ̄xNj (t) (7)

Since x̄N (t) is not observable to agents continuously, we introduce a modified cost function Ṽj,i(t,Xi)

for t ∈ [tj , T ) that will be shown to result in the same control policy. This is stated in the lemma

following definition (8) below.

Ṽj,i(t,Xi) = inf
ui∈Mi

E

[∫ T

t

(
q(xi(τ)− Γˆ̄xNj (τ))2 + ru2i (τ)

)
dτ + h(xi(T )− Γx̄N (T ))2|x̄N (tj)

]
(8)

Lemma 1. The control policy that achieves the minimum cost to go Ṽj,i(t,Xi) given x̄
N (tj) is identical

to the one that achieves the minimum cost to go Vj,i(t,Xi).

Proof. By centering x̄N (τ) around ˆ̄xNj (τ), the optimal cost to go in (4) can be expressed as follows:

Vj,i(t,Xi)= inf
ui∈Mi

E
[ ∫ T

t

(
q(xi(τ)− Γx̄N (τ) + Γˆ̄xN

j (t)− Γˆ̄xN
j (t)

)2
+ ru2

i (τ)
)
dτ + h

(
xi(T )− Γx̄N (T )

)2∣∣x̄N (tj)
]

= inf
ui∈Mi

E
[ ∫ T

t

(
q(xi(τ)− Γˆ̄xN

j (τ))2 + qΓ2(ˆ̄xN
j (τ)− x̄N (τ))2

+ ru2
i (τ)

)
dτ + h

(
xi(T )− Γx̄N (T )

)2∣∣x̄N (tj)
]

(9)

In (9), we have used the orthogonality of the prediction error, errj(τ), and x̄N (τ). Furthermore,
having neglected the influence of xi(τ) on x̄N (τ) and thus ˆ̄xNj (τ), E[xi(τ)errj(τ)|xN (tj)] = 0. Note

that normally the predictor ˆ̄xNj (τ) would have factored in all information available to agent i at time τ
including xi(τ) and orthogonality would hold anyway (See Ch. 3 of [15]). Now the optimization in (9)
requires some interpretation. Indeed, if one considers (as in MFG types of arguments) that agents
other than i have frozen their control policy, then, in accordance with Assumption 1, they would be
responsible for producing the trajectory of the estimator ˆ̄xNj (τ), while the estimation error variance,

E[err2j (τ)|xN (tj)], would be only a function of time, independent of the specific control exerted by

agent i. In other words, the trajectory of x̄N (t) produced by the population and its predictor ˆ̄xNj (t)
based on the the latest empirical mean observation, are independent from agent i’s control policy. In
that respect, the best response policy, u∗i , for agent i would be the same if one were to use the modified

optimal cost to go function Ṽj,i(t,Xi).

Given the hybrid nature of observations, the construction of the best response policy for agent i

requires two steps:

1. Discrete Component of the DP Equation: We shall write DP equation for Ṽj,i only at sampling
times tj for t ∈ [tj , tj+1], with appropriate boundary conditions.

Ṽj,i(t,Xi) = inf
ui∈Mi

E

[∫ tj+1

t

(
q
(
xi(τ)− Γˆ̄xN

j (τ)
)2

+ ru2
i (τ)

)
dτ + Ṽj+1,i (tj+1, Xi)

∣∣x̄N (tj)

]
(10)

Boundary conditions at t = T for Ṽn,i, and at tj+1 for Ṽj,i, j = 0, .., n − 1 can be written as

follows:

Ṽn,i(T,Xi) = h
(
xi(T )− Γx̄N (T )

)2
(11)

Ṽj,i (tj+1, Xi) = E
[
Ṽj+1,i (tj+1, Xi)

∣∣∣x̄N (tj)
]

(12)

2. Interval-Wise Continuous Component Analysis: We shall write the Hamilton-Jacobi-Bellman

(HJB) equation between sampling intervals as a tracking problem since ˆ̄xNj (t) is treated as a
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deterministic, albeit unknown trajectory. As written in (12) the values of Ṽj,i at the right-hand

side of the intervals act as boundary conditions for the continuous interval-wise solution. By

solving these equations, we derive the structure of the predictor-dependent best response policy

for agent i. This analysis eventually leads to the dynamic equation for the predictor and the

expression of the best response policy in terms of xi and the empirical mean observation.

3.2 Interval-wise application of dynamic programming equations

3.2.1 Finding control policy for [tn−1, T )

The solution of the DP equation will proceed backwards, starting from the time interval [tn−1, T ). A

deterministic tracking trajectory ˆ̄xNj (t), t ∈ [tn−1, T ) is hypothesized, and by Lemma 1, to compute

the best response policy, one needs to solve problem (10). At this point, one writes the following HJB

equation for Ṽn−1,i(t,Xi) to find the optimal policy for t ∈ [tn−1, T ).

0 =
∂Ṽn−1,i

∂t
+min

ui

[
∂Ṽn−1,i

∂xi
(axi + bui) +

[
q
(
xi − Γˆ̄xNn−1

)2
+ ru2i

]
+
1

2
σ2 ∂

2Ṽn−1,i

∂x2i

]
(13)

We use (11) to develop the boundary condition at time T for the HJB equation on [tn−1, T ).

Ṽn−1,i (T,Xi) =E
[
Ṽn,i (T,Xi)

∣∣∣x̄N (tn−1)
]

=E
[
h
(
xi(T )− Γx̄N (T )

)2∣∣∣x̄N (tn−1)
]

=E
[
h
(
xi(T )− Γ(x̄N (T ) + ˆ̄xNn−1(T )− ˆ̄xNn−1(T ))

)2]
=h
(
xi(T )− Γˆ̄xNn−1(T )

)2
+ hΓ2E

[
err2n−1(T )

]
(14)

Variables pn−1, sn−1, and rn−1 are introduced to represent the solution of the HJB equation for

Ṽn−1,i(t,Xi), where we assume the following quadratic form for it.

Ṽn−1,i(t,Xi) = pn−1(t)x
2
i (t) + 2sn−1(t)xi(t) + rn−1(t) (15)

The minimizer value of Ṽn−1,i(t,Xi) is u
∗
i which can be found as follows:

u∗i (t) = −1

2

b

r

(
∂Ṽn−1,i(t,Xi)

∂xi

)
= − b

r
(pn−1(t)xi(t) + sn−1(t)) (16)

Substitution in (13) and identification of resulting polynomial coefficients yield a set of differential

equations and boundary conditions for pn−1, sn−1 and rn−1.

dpn−1

dt
= −2pn−1a+

b2

r
p2n−1 − q, pn−1(T ) = h (17)

dsn−1

dt
= −

(
a− b2

r
pn−1

)
sn−1 + qΓˆ̄xNn−1(t) sn−1(T ) = −hΓˆ̄xNn−1(T ) (18)

drn−1

dt
=
b2

r
s2n−1 − q

(
Γˆ̄xNn−1(t)

)2 − σ2pn−1 rn−1(T ) = hΓ2
(
ˆ̄xNn−1(T )

)2
+ hΓ2E

[
err2n−1(T )

]
(19)

In the following, we state the NE of the game for [tn−1, T ), however, the proof is similar for [tj , T ).

Proposition 1. Suppose Assumption 1 holds and a unique solution exists for the following Riccati

differential equation:

dαn−1(t)

dt
= −2

(
a− b2

r
pn−1(t)

)
αn−1(t) +

b2

r
α2
n−1(t) + qΓ, αn−1(T ) = −hΓ (20)



Les Cahiers du GERAD G–2025–09 5

Then for t ∈ [tn−1, T ), u
∗
i (t) = − b

r (pn−1(t)xi(t) + αn−1(t)ˆ̄x
N
n−1(t)), i = 1, . . . , N is a set of Markov

Nash equilibrium strategies of the game, where:

dˆ̄xNn−1

dt
=

(
a− b2

r
pn−1(t)−

b2

r
αn−1(t)

)
ˆ̄xNn−1 (21)

Proof. The policy derived from DP is the NE of the game as stipulated in Definition 1. Under the

assumptions of the proposition, we develop fixed-point calculations that characterize the Markov NE

strategies on [tn−1, T ). Indeed, the trajectory ˆ̄xNn−1(t) must be a predictor of x̄N (t) based on the

solution of the problem of optimally tracking that predictor. As a result, ˆ̄xNn−1(t) must be the solution

of a fixed-point problem. To help compute that fixed-point, we assume, following [16], the following

form for sn−1(t):

sn−1(t) = αn−1(t)ˆ̄x
N
n−1(t) (22)

If such a structure holds, it will allow a decoupling of the forward and backward propagating parts of

the complete solution. Equation (22) yields after taking time derivatives:

dsn−1(t)

dt
=
dαn−1(t)

dt
ˆ̄xNn−1(t) + αn−1(t)

dˆ̄xNn−1

dt
(23)

Recalling the definition of ˆ̄xNj (t) in (6), we substitute the closed loop control (16) in (1) for i = 1, . . . , N ,

after recognizing that best response strategies must be identical for all agents, due to their assumed

homogeneity. Taking expectations of the resulting empirical mean of the xi(t)’s under closed loop

dynamics, and using (22), one obtains the forward propagating dynamics of the fixed-point predictor

trajectory ˆ̄xNn−1(t) as in (21). One then uses (17), (21) and (23) to obtain the Riccati equation and

boundary condition in (20) for αn−1(t).

Remark 2. Equation (21) leads to the following solution for the predictor:

ˆ̄xNn−1(t) =φx̄(t, tn−1)x̄
N (tn−1) t ∈ [tn−1, T ) (24)

φx̄(t, tn−1) denotes the state transition function for ˆ̄xNn−1.

Using (19), (22), and (24) to determine rn−1(t), one can write the solution of (19) as a function of

x̄N (tn−1)
2 as follows.

rn−1(t) = ψn−1(t)x̄
N (tn−1)

2 + γn−1(t) (25)

where ψn−1(tn−1) and γn−1(tn−1) are found as:

ψn−1(t) = −
∫ T

t

φx̄(τ, tn−1)
2

(
b2

r
α2
n−1(τ)− qΓ2

)
dτ + h (Γφx̄(T, tn−1))

2

γn−1(t) = σ2

∫ T

t

pn−1(τ)dτ + hΓ2E[err2n−1(T )] (26)

3.2.2 Finding best response policy for [tj , tj+1)

We now move to determining agent best responses for the interval [tj , tj+1). A key distinction relative

to the analysis on [tn−1, T ) lies in the fact that we anticipate agents receiving new information about

mean agent state at tj+1 which will impact subsequent policies. For t ∈ [tj , tj+1), we again test a

quadratic ansatz, assuming the quadratic form of Ṽj+1,i(t,Xi) has already been validated:

Ṽj,i(t,Xi) = pj(t)xi(t)
2 + 2sj(t)xi(t) + rj(t) (27)



Les Cahiers du GERAD G–2025–09 6

The procedure for finding optimal control policy over [tj , T ) mirrors the steps taken for [tn−1, T ),

and hence, we do not repeat the detailed process here. The key difference lies in determining the

boundary condition for Ṽj,i which is obtained from (12) and computed as follows:

Ṽj,i(tj+1, Xi) =E[Ṽj+1,i(tj+1, Xi)
∣∣x̄N (tj)]

=pj+1(tj+1)x
2
i (tj+1) + 2αj+1(tj+1)xi(tj+1)ˆ̄x

N
j (tj+1)

+ ψj+1(tj+1)E[x̄N (tj+1)
2
∣∣x̄N (tj)] + E[γj+1(tj+1)] (28)

In (28), the computation of E[x̄N (tj+1)
2|x̄N (tj)] involves adding and subtracting ˆ̄xNj (tj+1) as in (14).

Furthermore, the definitions of ψj+1(tj+1) and γj+1(tj+1) are analogous to those of ψn−1(tn−1) and

γn−1(tn−1) above.

E[x̄N (tj+1)
2
∣∣x̄N (tj)] = E[err2j (tj+1)] + ˆ̄xNj (tj+1)

2 (29)

Solving the HJB equation yields differential equations for pj , sj , and rj , analogous to (17), (18),

and (19), respectively. However, the boundary conditions for these functions differ and are derived

directly from (28) as follows:

pj(tj+1) = pj+1(tj+1), sj(tj+1) = sj+1(tj+1) (30)

Similar to (22), sj can be expressed in terms of αj .

αj(tj+1)ˆ̄x
N
j (tj+1) = αj+1(tj+1)E[x̄N (tj+1)|x̄N (tj)] (31)

This leads to the boundary condition for αj :

αj(tj+1) = αj+1(tj+1) (32)

Remark 3. The boundary conditions in (30) and (32), along with quadratic forms of Ṽn−1,i and Ṽj,i
in (15) and (27) imply that the differential equations for pj and sj , mirror those of pn−1 and sn−1.

Consequently, pj and αj can be treated as part of a continuous trajectory over j = 0, 1, 2, . . . , n − 1

with the same boundary conditions governing each segment:

dp(t)

dt
= −2pa+

b2

r
p2 − q, p(T ) = h (33)

dα(t)

dt
= −2(a− b2

r
p(t))α(t) +

b2

r
α2(t) + qΓ, α(T ) = −hΓ (34)

Using (33), (34) and (28), we derive the differential equation and boundary condition for rj :

drj
dt

=
b2

r
(αˆ̄xNj )2 − q(Γˆ̄xNj )2 − σ2p

rj(tj+1) = ψj+1(tj+1)(E[err2j (tj+1)] + ˆ̄xNj (tj+1)
2) + γj+1(tj+1) (35)

To solve rj , we express it as a linear function of of x̄N (tj)
2 using ψj and γj similar to (25):

ψj(t) =−
∫ tj+1

t

(
b2

r
α(τ)2 − qΓ2)φx̄(τ, tj)

2dτ

+ ψj+1(tj+1)φx̄(tj+1, tj)
2 (36)

γj(t) =γj+1(tj+1) +

∫ tj+1

t

σ2p(τ)dτ

+ ψj+1(tj+1)E[err2j (tj+1)] (37)

Given (26) and (36), we can also derive the differential equation for ψ(t). For clarity, we omit the

index j from ψ from this point forward:

dψ

dt
= −2

(
a− b2

r
(p(t) + α(t))

)
ψ(t) +

(
b2

r
α(t)2 − qΓ2

)
ψ(T ) = hΓ2 (38)

The above analysis and remarks lead us to the main result of the paper which is an interval-wise

generalization of Proposition 1 and characterizes Markov Nash strategies.
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Theorem 1. Suppose Assumption 1 holds and a unique solution α(t) exists for (34) where p(t) is the

solution of (33), then for t ∈ [tj , tj+1), j = 0, . . . , n − 1 and i = 1, . . . , N , u∗i (t) = − b
r (p(t)xi(t) +

α(t)ˆ̄xNj (t)), is a set of Markov Nash equilibrium strategies of the game, where:

dˆ̄xNj
dt

=

(
a− b2

r
p(t)− b2

r
α(t)

)
ˆ̄xNj , ˆ̄xNj (tj) = x̄N (tj)

3.3 Error calculation

In this section, we compute the error, errj , based on observations of x̄N (tj) at time tj . To do so,

we first express x̄N (t) over the interval [tj , tj+1) by solving the differential equation in (1). Using the

results from [17], x̄N (t) is the average of xi(t) under the closed-loop best response control law. The

error is then derived from this expression. Here, φ(t, t0) = exp
(∫ t

t0

(
a− b2

r p(τ)
)
dτ
)
represents the

state transition function for xi(t).

x̄N (t) =φx̄(t, tj)x̄
N (tj) + σ

∫ t

tj

φ(t, s)dw̄N (s) = ˆ̄xNj (t)

+ σ

∫ t

tj

φ(t, s)dw̄N (s), w̄N (s) =
1

N

n∑
i=1

dwi(s)

errj(t) =σ

∫ t

tj

φ(t, s)dw̄N (s) t ∈ [tj , tj+1) (39)

Remark 4. Equation (39) further is consistent with Lemma 1 since it indicates that errj(t) is only a

function of noises.

4 Performance evaluation

We now aim at calculating Vj,i(t,Xi) based on the knowledge of Ṽj,i(t,Xi) that we have developed

in the earlier sections. A DP equation for Vj,i(t,Xi), analogous to that for Ṽj,i(t,Xi) in (10), is first

written. We then compute the discrepancy between these two value functions using the knowledge

from Lemma 1 that the associated best response policies are identical. Thus, we have:

Vj,i(t,Xi) = inf
ui∈Mi

E

[∫ tj+1

t

(
q(xi(τ)− Γx̄N (τ))2 + ru2i (τ)

)
dτ + Vj+1,i(tj+1, Xi)

∣∣x̄N (tj)

]
(40)

Subtracting (40) from (10) yields interval wise:

∆Vj(t) :=Vj,i(t,Xi)− Ṽj,i(t,Xi)

=E

[∫ tj+1

t

(
q(xi(τ)− Γx̄N (τ))2 − q(xi(τ)− Γˆ̄xNj (τ))2

)
dτ +∆Vj+1(tj+1)|x̄N (tj)

]
(41)

=qΓ2E

[∫ tj+1

t

err2j (τ)dτ

]
+ E[∆Vj+1(tj+1)|x̄N (tj)] (42)

Note that ∆Vj(t) is 0 at T , and is independent of agent i. For calculation of V0,i from t0 to T , we sum

all ∆V0 for j = 0, 1, . . . , n− 1:

V0,i(t0, Xi) =Ṽ0,i(t0, Xi) + ∆V0(t0) = Ṽ0,i(t0, Xi)

+ qΓ2
n−1∑
j=0

E

[∫ tj+1

tj

err2j (τ)dτ

]
= p(t0)x

2
i (t0)
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+ 2α(t0)x̄
N (t0)xi(t0) + ψ(t0)x̄

N (t0)
2 + γ0(t0)

+ qΓ2σ
2

N

n−1∑
j=0

∫ tj+1

tj

∫ τ

tj

φ2(τ, s)dsdτ (43)

where the value of γ0(t0) using recursive Equation (37) will be:

γ0(t0) = σ2

∫ T

t0

p(τ) dτ +

n−1∑
j=0

ψ(tj+1)E
[
err2j (tj+1)

]
+ hΓ2E

[
err2n−1(T )

]
(44)

4.1 Comparing costs with full observation game

In this section, we quantify the performance loss due to partial observability, referred to as regret. Since

agents have limited discrete observations, their costs differ from the fully observable case. Therefore, we

also consider the scenario where agents have continuous observations of the empirical mean, leading to

the control policy uFulli (t) = − b
r (p(t)xi(t)+α(t)x̄

N (t)) derived through similar fixed-point calculations

as presented in this paper. In the fully observed setting, each agent continuously observes the empirical

mean x̄N (t), removing any need for prediction. The formula for the full observation cost is derived

in [1]:

V Full(t0, Xi) = p(t0)(xi(t0))
2 + 2α(t0)x̄

N (t0)xi(t0) + ψ(t0)(x̄
N (t0))

2 + σ2

∫ T

t0

p(τ) dτ (45)

In other words, the fully observed scenario yields a value function with the same quadratic structure

in xi(t0) and x̄
N (t0) as the partially observed one, but without any terms that stem from prediction

errors. The absence of the prediction-related integral ensures that V Full is strictly lower than V0,i
obtained under partial observability.

The formula for regret is defined in the following:

Regret =E
[
V0,i(t0, Xi)− V Full(t0)

∣∣x̄N (t0)
]

=qΓ2E

[∫ T

t0

err(τ)2 dτ

]
+

n−1∑
j=0

ψ(tj+1)E
[
err2j (tj+1)

]
+ hΓ2E

[
err2n−1(T )

]
=qΓ2σ

2

N

n−1∑
j=0

∫ tj+1

tj

∫ τ

tj

φ2(τ, s)dsdτ

+

n−1∑
j=0

ψ(tj+1)

∫ tj+1

tj

φ2(tj+1, s)ds+ hΓ2

∫ tj+1

tj

φ2(tj+1, s)ds (46)

Theorem 2. The Regret exhibits linear growth rate.

Proof. Our goal is to demonstrate that Regret exhibits linear growth. In analyzing the long-term

behavior of Regret, we focus on the steady state solution of Riccati differential p(t), and we know this

steady state solution is p∞ := r
b2

(
a±

√
a2 + b2

r q

)
[18]. To ensure a physically meaningful solution,

we take the positive root, so c := a− b2

r p∞ = −
√
a2 + b2

r q < 0. This leads to the following expression

in steady state:∫ tj+1

tj

∫ τ

tj

φ2(τ, s) ds dτ ≈
∫ tj+1

tj

∫ τ

tj

exp(2c(τ − s)) ds dτ = − 1

2c
∆t+

1

4c2
exp(2c∆t)− 1

4c2
(47)

lim
T→∞

1

T
Regret = − 1

2c
qΓ2σ

2

N
(48)

This shows that the first term of the Regret grows linearly, while the second term decays exponen-

tially [1]. Therefore, the overall Regret exhibits a linear growth rate.
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5 Simulation

In this section, we compute and visualize the costs associated with the proposed observation scenario for

various values of ∆t and N using MATLAB. Figure 1 illustrates ∆V0, which represents the difference

between the adjusted and main cost functions across different ∆t. The results indicate that this

difference increases as the sampling frequency decreases (i.e., as ∆t becomes larger). Figure 2 presents

the case of discrete observation, showing that as N increases, the cost converges to that of continuous

observation. This behavior aligns with theoretical expectations from (MFG) arguments. Finally,

in Figure 3, we calculate the regret for three different values of N as a function of T . The plot

demonstrates that regret grows linearly over time, with larger values of N leading to a slower growth

rate (flatter curve), and smaller N resulting in steeper regret growth.

Figure 1: Simulation Parameters: a = 1, b = 1, q = 1, r = 1, T = 20, σ = 1,Γ = 0.8, N = 10

Figure 2: Simulation Parameters: a = 1, b = 1, q = 1, r = 1, T = 20, σ = 1,Γ = 0.8,∆t = 0.05



Les Cahiers du GERAD G–2025–09 10

Figure 3: Simulation Parameters: a = 1, b = 1, q = 1, r = 1, T = 20, σ = 1,Γ = 0.8,∆t = 0.05

6 Conclusion

This paper introduces a multi-agent aggregative game characterized by continuous agent dynamics

and discrete empirical mean observations over time. Leveraging dynamic programming principles,

we identify the Markov Nash strategies of this game. In the subsequent section, we outline the cost

function formula for the scenario of complete observability. By quantifying the disparity between the

costs, termed as regret, we demonstrate that this regret exhibits a linear growth rate.
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[8] Nevroz Şen and Peter E Caines. ε-nash equilibria for a partially observed mean field game with major
player. In 2015 American Control Conference (ACC), pages 4791–4797. IEEE, 2015.

[9] Nevroz Sen and Peter E Caines. Mean field game theory with a partially observed major agent. SIAM
Journal on Control and Optimization, 54(6):3174–3224, 2016.

[10] Peter E Caines and Arman C Kizilkale. ε-nash equilibria for partially observed lqg mean field games with
a major player. IEEE Transactions on Automatic Control, 62(7):3225–3234, 2016.



Les Cahiers du GERAD G–2025–09 11

[11] Nevroz Sen and Peter E Caines. Mean field games with partial observation. SIAM Journal on Control
and Optimization, 57(3):2064–2091, 2019.

[12] Dena Firoozi and Peter E Caines. ε-nash equilibria for partially observed lqg mean field games with major
agent: Partial observations by all agents. In 2015 54th IEEE Conference on Decision and Control (CDC),
pages 4430–4437. IEEE, 2015.

[13] Dena Firoozi and Peter E Caines. ε-nash equilibria for major–minor lqg mean field games with partial
observations of all agents. IEEE Transactions on Automatic Control, 66(6):2778–2786, 2020.
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