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Abstract : In this paper, we address the problem of online estimation of spherical features in the field
of camera for robotics. Specifically, we consider a mobile robot equipped with inertial measurement
units (IMUs) – providing linear acceleration and rotational velocity measurements in the body-fixed
frame – and a pinhole camera that projects 3D points onto the image plane. To tackle this problem,
we adopt the parameter estimation-based observer (PEBO) approach on manifolds to design a feature
observer. Under a sufficient excitation condition, our design guarantees a globally exponentially con-
vergent estimate of both the radius and the center coordinates of spherical targets. Simulation results
validate the theoretical analysis and demonstrate the performance of the proposed feature observer.

Keywords : Observers Design, nonlinear systems, visual estimation, robotics
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1 Introduction

Accurate online estimation of visual features from images taken by a camera on a mobile robot is

a fundamental topic in robotics, computer vision, and control engineering. In particular, consistent

estimation of visual features, such as pose, depth, and size of objects in the environment, is critical

for applications like navigation [18], object tracking [13], and simultaneous localization and mapping

(SLAM) [25].

The existing approaches to this type of estimation problem can be broadly classified into smooth-

ing and filtering methods. In smoothing methods, online state estimation is formulated as a batch

optimization, which generally provides higher accuracy by considering the entire set of historical mea-

surements [5]. However, this approach comes with significant scalability issues, as it requires substantial

memory and computational resources. In contrast, filtering approaches solve the estimation problem

recursively, which remain very popular in many robotic applications [16].

In this paper, we follow the second category of approaches to estimate 3D features. A large body of

literature has explored the use of various Kalman filters to achieve efficient online estimation [8]. These

methods, particularly extended Kalman filters (EKFs), have been widely adopted due to their ability to

recursively process sensor measurements and provide real-time state estimates. However, EKFs often

suffer from a key limitation: they only provide locally convergent solutions and thus require an accurate

initial guess. This is due to the highly nonlinear nature of the output function of a planar camera.

In recent years, there has been significant interest within the control community in addressing this

challenge, leading to the development of various globally convergent observers, e.g. [3, 4, 6, 14, 21].

In [17], the authors provide a general feature observer framework to three types of 3D structures,

including points, spheres, and cylinders.

In most existing works, it is typically assumed that the robot has direct access to its linear and

rotational velocities in the body-fixed frame. However, in practice, a mobile robot is usually equipped

with inertial measurement units (IMUs), which only provide inertial measurements, such as linear

accelerations and rotational velocities, rather than the velocities themselves. As pointed out in [21],

the main technical challenge in this case arises from the unknown orientation matrix, which lives on

the Lie group SO(3), and its appearance in the dynamics. Our previous work [21] presented the first

solution in the literature to such a problem for feature points. In this paper, we aim to extend this

approach to tackle spherical visual features.

Our design is based on the recently proposed parameter estimation-based observer (PEBO) [9, 10],
and its extension to matrix Lie groups [21, 22, 24]. The fundamental idea behind PEBO is to design a

dynamical extension that transforms the estimation of time-varying system states into the estimation

of constant parameters. This approach has shown great success in solving many open problems in

nonlinear observer design. The interested reader may refer to [20] for its geometric interpretation, and

to [23] for its connections to the widely popular IMU preintegration approach in robotics [7]. The main

contribution of this paper is to extend our previous approach [21] from feature points to 3D sphere

targets with only inertial measurements and images, leading to a simple spherical feature observer

design. Under certain persistency of excitation (PE) conditions, the proposed design ensures global

exponential convergence.

Notation. Throughout the paper, the arguments and subscripts of functions or signals are omitted

when clear from context. We use generally ϵt to represent exponentially decaying terms with proper

dimensions. 0n ∈ Rn and 0n×m ∈ Rn×m denote the zero column vector of dimension n and the zero

matrix of dimension n × m, respectively. We use p to represent the differential operator p := d
dt [·],

and | · | as the Euclidean norm of a vector. We use SO(3) = {R ∈ R3×3|R⊤R = I3, det(R) = 1}
to represent the special orthogonal group, and so(3) is its Lie algebra. Given a ∈ R3, we define the

operator (·)× as a× :=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 ∈ so(3).
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Nomenclature

{I}, {B} Inertial and body-fixed frames

x ∈ R3 Robot’s position in the inertial frame {I}

v ∈ R3 Linear velocity in the body frame {B}

a ∈ Rn Apparent linear acceleration in {B}

ω ∈ R3 Rotational velocity in {B}

R ∈ SO(3) Robot’s attitude

g ∈ R3 Gravity with the value [0, 0, 9.8]⊤ m/s2

q0,
Iq0,∈ R3 Structure center coordinates in {B} and {I}

r ∈ R>0 Radius of the spherical target

y ∈ R3 Measurable output from the camera

(̂·) Estimate of a variable or signal (·)

L Planar limb surface in the camera view

d ∈ R>0 Distance from the camera to L

2 Problem formulation

2.1 Model

The paper extends the results on visual feature structure estimation in [21] from points to spheres.

In this section, we introduce the dynamical model of a mobile robot and the output function of the

camera.

Dynamical Model and Inputs. We consider a mobile robot moving in three-dimensional space, with

its kinematics given by
ẋ = Rv

Ṙ = Rω×,
(1)

and the dynamics is

v̇ = −ω×v + a+R⊤g, (2)

where x ∈ R3 is the coordinate of the robot’s central point, and R ∈ SO(3) represents the robot’s

orientation in three-dimensional space. The mobile robot is equipped with IMUs, and thus the “system

inputs” – including the linear apparent acceleration a ∈ R3 and the rotational velocity ω ∈ R3 – are

available. However, we do not have the information of the attitude R, the position x, or the linear

velocity v. See [21] for additional details and, without loss of generality, we assume the following.

Assumption 1. The system input (ω, a) is bounded such that all the system states in the model (1)–(2)

are bounded over time.

Spherical Target and Output Function. We consider a spherical target appearing within the camera’s

field of view, adopting the output model in [17]. For ease of presentation, we assume that the camera

is positioned at the robot’s central point, meaning that the camera’s frame of reference coincides with

the robot’s coordinate system.

The spherical target is assumed with radius r > 0 and center located at the coordinate Iq0 ∈ R3

in the inertial frame {I}, as shown in Fig. 1. Equivalently, the center coordinate q0 in the body frame

{B} is

q0 = R⊤(Iq0 − x) =:
[
q0,x q0,y q0,z

]⊤
. (3)
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Figure 1: Spherical target at the center q0

Note that Iq0 is constant in {I}, but q0 is a time-varying signal in the body-fixed frame. The planar

limb surface L in the camera view is characterized as

L = {x ∈ R3 : n⊤0 x+ d = 0},

where d ∈ R is the plane distance to the camera and n0 ∈ S2 is the plane unit normal vector.

We assume the following for the robot’s trajectory and the visual feature.

Assumption 2. The robot never coincides with the spherical target over time, i.e.

|x(t)− Iq0| = |q0(t)| ≥ r + ϵ, ∀t ≥ 0,

for some ϵ > 0.

Consider a calibrated pinhole camera with the planar projection model. Namely, for a 3D point

q = col(qx, qy, qz) in the body frame {B}, its perspective projection onto the image plane of the camera

is given by
cq =

[ qx
qz
,
qy
qz
, 1
]⊤

(4)

In order to estimate spherical features, including the radius r and the center coordinates q0, [17]

consider the output y = h(q0, r) with the function

h(q0, r) =


q0,xq0,z

(q20,z−r2)h3(·)a21
q0,yq0,z

(q20,z−r2)h3(·)a21√
1+a21
a21

 ,
a21 =

r2

q20,z − r2
,

(5)

where h3(·) represents the third element of the function h. Indeed, the output is a function of the

barycenter and normalized centered moments of order 2 measured from the elliptical projection of the

sphere on the image plane. It can be calculated from image quantities in real-time; see [2, 17] for the

calculation and additional details.

2.2 Problem set

We consider a mobile robot satisfying the model introduced in the above subsection, with the image

output y = h(q0, r) defined in (5), and the “inputs” (a, ω) obtained from the IMU. The objective is to

design an observer in the form of
ξ̇ = N(ξ, a, ω, y)[

q̂0
r̂

]
=M(ξ, a, ω, y),
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with the observer state ξ on manifolds, the observer output (q̂0, r̂) ∈ R3 × R, and some functions N

and M to be constructed, such that it achieves asymptotically convergent estimates, i.e.

lim
t→∞

∣∣∣∣[ r̂(t)− r
q̂0(t)− q0(t)

]∣∣∣∣ = 0, (6)

when the robot trajectory satisfies certain excitation condition.

Remark 1. [17] proposes a novel solution with the measurements of velocities (v, ω) in the body-

fixed frame {B}. In contrast, in this paper we address a more challenging scenario, relying only on

the inertial measurements (a, ω). As figured out in [21], the main difficulty lies in the fact that the

dynamics of the unknown linear velocity v depends on the unknown attitude R ∈ SO(3).

3 Main results

3.1 Observer design

In this section, we introduce a novel adaptive observer designed for the online estimation of sphere

structures. Building on the PEBO approach, we propose the following observer, whose properties are

subsequently analyzed and discussed in detail throughout the paper.

Observer Design:

- Observer dynamics:
Q̇ = Qω×

η̇ = A(t)η + ua(t), η(0) = 06

Φ̇ = A(t)Φ, Φ(0) = I6

˙̂
θ = γϕ(t)[Y (t)− ϕ(t)⊤θ̂]

(7)

with Q ∈ SO(3), and the other variables in Euclidean space.

- Observer output:1

r̂ = θ̂−1
1

q̂0 = yr̂
(8)

- Intermediate signals:

A(t) =

[
−ω×(t) Q⊤(t)

0 0

]
ua(t) =

[
a(t)
0

]
Y (t) = p2H(p)[y]− pH(p)[y×ω]

ϕ(t) = H(p)[ψ⊤]

ψ(t) =

[
c(t)

[
ω× −Q⊤]Φ]

c(t) =
[
ω× −Q⊤] η − a

(9)

with the differential operator p := d
dt and the stable filter

H(p)[·] := 1

(p+ λ1)(p+ λ2)

- Gains: the adaptation gain γ > 0, and the filtering gains λ1, λ2 > 0

2

1θ̂1 is the first element of θ̂.



Les Cahiers du GERAD G–2025–05 5

Proposition 1. Consider the dynamical model in Section 2 and the sphere feature observer (7) under

Assumptions 1–2. If the mobile robot trajectory satisfies the persistency of excitation (PE) condition

for some T, δ > 0 ∫ t+T

t

ϕ(s)ϕ⊤(s)ds ≥ δI, ∀t ≥ 0 (10)

where ϕ is defined above in (9), then the proposed observer achieves the convergence (6) globally and

exponentially, and all the internal variables in the observer are bounded over time.

Proof. Following [2, 17] and invoking (1)–(2), the output y and the variables (v,R) satisfy the dynamics
Ṙ = Rω×

v̇ = −ω×v + a+R⊤g

ẏ = −1

r
v + y×ω

(11)

Define the error between Q and R on the group SO(3) as

E(R,Q) := RQ⊤,

and we have

Ė = ṘQ⊤ −RQ−1Q̇Q−1 = 0,

thus there exists a constant matrix Qc ∈ SO(3) such that the attitude variable R can be parameter-

ized as

R(t) = QcQ(t), ∀t ≥ 0.

Note that the signal Q(t) is available. Similarly to [21], we have

R(t)⊤g = [QcQ(t)]⊤g

=: Q(t)⊤gc
(12)

in which we have defined a constant (unknown) vector gc := Q⊤
c g.

Now, we may rewrite the dynamics of v as[
v̇
gc

]
=

[
−ω×(t) Q(t)⊤

0 0

] [
v
gc

]
+

[
a(t)
0

]
= A(t)χv + ua(t),

(13)

and for simplicity, we have defined

χv := col(v, gc) ∈ R3.

Following the idea of parameter estimation-based observer [10] but for this reduced-order dynamics,

it is straightforward to get the dynamics of (χv − η) as

˙︷ ︷
χv − η = A(t)

[
χv − η

]
.

It can be viewed a linear time-varying (LTV) system, and Φ is its corresponding fundamental matrix.

Therefore, we have
χv − η = Φ

(
χv(0)− η(0)

)
=⇒ χv(t) = η(t) + Φ(t)χv(0)

=⇒ χv(t) = η(t) + Φ(t)β,

(14)
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where in the last implication we have defined the constant vector

β :=

[
v(0)
gc

]
∈ R6

that is unknown. This leads to the parameterization to v and gc:[
v(t)
gc

]
= η(t) + Φ(t)β.

The next step is to get a linear regression model from the dynamics of y. By taking its second-order

time derivative, we have

ÿ − ˙︷ ︷
y×ω = −1

r
v̇

=
1

r

(
ω×v − a−Q⊤gc

)
=

1

r

[
ω× −Q⊤] η − a︸ ︷︷ ︸

:=c(t)

+
[
ω× −Q⊤]Φβ


=

[
c(t)

[
ω× −Q⊤]Φ]︸ ︷︷ ︸
ψ(t)

 1
r

β
r


︸︷︷︸
θ

.

(15)

We apply the stable LTI filter

H(p) :=
1

(p+ λ1)(p+ λ2)

to both sides, then yielding

p2H(p)[y]− pH(p)[y×ω] = H(p)[ψ]θ + ϵt,

or equivalently

Y (t) = ϕ(t)⊤θ + ϵt, (16)

in which ϵt is an exponentially decaying term stemming from the initial conditions of these stable LTI

filters. Since it does not affect the stability analysis under sufficient excitation, we omit it in the sequel

of the proof.

The estimation error θ̃ := θ̂ − θ admits the following LTV dynamics

˙̃
θ = −γϕ(t)ϕ(t)⊤θ̃,

for which the zero equilibrium is globally exponentially stable in terms of the PE condition (10) [15].

It is straightforward to verify the boundedness of the observer. On the other hand, since the first

element of θ is 1
r and we also have the algebraic relationship q0 = yr, it completes the proof.

2

3.2 Discussions

Some remarks to the proposed adaptive observer are in order.

Remark 2. When numerically implementing the observer, we need to use the state-space realizations

for H(p)[ψ], p2H(p)[y] and pH(p)[y×ω]. For convenience, we define k1 = λ1 + λ2 and k2 = λ1λ2 thus

H(p) = 1
p2+k1p+k2

. These realizations are given by
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- H(p)[ψ]
ẋ1 = x2

ẋ2 = −k1x2 − k2x1 + ψ

H(p)[ψ] = x1

- pH(p)[y×ω] =
p

p2+k1p+k2
[y×ω]

ẋ3 = x4

ẋ3 = −k1x4 − k2x3 + y×ω

pH(p)[y×ω] = x4

- p2H(p)[y] := p2

p2+k1p+k2
[y]

ẋ5 = x6

ẋ5 = −k1x6 − k2x5 + y

p2H(p)[y] = −k1x6 − k2x5 + y.

Since all the dynamics are stable, there are no specific requirements for the initial conditions, and we

may simply choose zero initial conditions.

Remark 3. In practice, the measured acceleration a often includes a bias ba ∈ R3 that needs to be

calibrated. The proposed approach can be easily adapted to account for this case, where the dynamics

of the linear velocity v becomes

v̇ = −ω×v + a+ ba +R⊤g.

The unknown bias ba approximately assumed constant, can be included into the model the χv. To

be precise, the vector χv = col(v, gc) is extended to χv = col(v, gc, ba). The subsequent steps in the

observer design proceed mutatis mutandis.

Remark 4. The calculation of the inverse in (8) may encouter singularity issues. To address this, the

first equation can be modified as follows:

r̂ =

{
θ̂−1
1 if |θ̂1| ≥ ϵ0

ϵ−1
0 otherwise

where ϵ0 > 0 is a small positive constant chosen to avoid singularity. Alternatively, the equation

θ̂1(t)r = 1 can be viewed as a linear regression model, and this allows the use of standard gradient

descent to estimate r̂.

Remark 5. For ease of presentation, we adopt the standard gradient descent estimator to identify

the unknown constant vector θ. Its convergence relies on the well-known persistency of excitation

(PE) condition. It can be significantly relaxed by using advanced techniques, e.g. dynamic regressor

extension and mixing (DREM) [1, 19] and composite learning [12].

Remark 6. The main technical challenge in using only inertial measurements is the presence of the

attitude variable R ∈ SO(3) in the dynamics of v. This can be effectively solved using the PEBO on

manifolds [21, 23, 24]. Specifically, in our context, the dynamic extension Q̇ = Qω× transforms the

daunting term R(t)⊤g into Q(t)⊤gc, where Q(t) ∈ SO(3) is an available signal, and gc is an unknown

but constant vector.

4 Simulations

In this section, we present some simulations results to validate our theoretical results.

The simulations were performed in Matlab/Simulink. The robot’s trajectory x(t) and the spherical

target are shown in Fig. 2 with r = 0.5 m, where we assumed that the target always appeared in the

camera’s field of view. Regarding our proposed observer, we selected the following initial conditions:

Q(0) = I3, η(0) = 06, Φ0 = I6,
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with the initial parameter guess θ̂(0) = 07, ensuring that the observer starts with neutral assumptions

about the system’s dynamics and parameters. The observer gains, crucial for regulating the conver-

gence rate and stability of the estimation, were selected as λ1 = 7.65, λ2 = 11.45, and γ = 0.154.

Figure 2: Robot’s trajectory and the spherical target

Fig. 3 compares the estimated radius r̂ and the real radius r of the spherical target. As shown, the

estimated radius r̂ rapidly converges to the true value r, demonstrating the accuracy of the observer in

estimating this parameter over time. Similarly, Fig. 4 shows the estimated sphere center coordinate,

q̂0(t), alongside its real coordinate, q0(t), both expressed in the body-fixed frame {B}. The results

indicate that the observer successfully converges to the true position of the sphere’s center.

0 1 2 3 4 5 6 7 8

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

6 6.05 6.1
0.499

0.5

0.501

Figure 3: Estimated and real radius
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Figure 4: The estimated sphere center coordinate q0(t) and its real value q̂0(t) over time in the body-fixed coordinate

5 Concluding remarks

In this paper, we have proposed a novel observer design to online estimate spherical features using

only the information of IMUs and a pinhole camera. By employing the PEBO approach on the matrix

Lie group SO(3), we are able to reparameterize the unknown term R(t)⊤g in the dynamics of the

unavailable linear velocity v as Q(t)⊤gc. This reparameterization significantly simplifies the problem,

enabling a robust and efficient observer design. Building on this formulation, we constructed a linear

regression model on an extended parameter vector that includes the inverse of the unknown radius

r > 0 of the spherical feature. By carefully utilizing the output function, we demonstrated that

the proposed approach enables the online estimation of this parameter in a globally exponentially

convergent way under a PE condition.

Some future research is underway under the following directions:

- Addressing the overparameterization issue in the proposed approach to potentially relax excita-

tion requirements and improve estimation performance

- Further elaborating the proposed approach to handle more complex features and geometries;

- Cascading the proposed observer to other control-related tasks, e.g. vision-based control;

- Extending the framework to handle time-varying target features in the camera field, such as

moving or deforming objects;

- Implementing and testing the proposed observer in real-world robotic data sets to validate its

performance and scalability.
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