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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2025-07
https://www.gerad.ca/en/papers/G-2025-07
https://www.gerad.ca/en/papers/G-2025-07


Asymptotic normality of cumulative cost in linear quadratic
regulators

Borna Sayedana a, b

Peter Caines a, b

Aditya Mahajan a, b
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Abstract : The central limit theorem is a fundamental result in probability theory that characterizes
the distribution of deviation from the mean in the law of large numbers. Similar distributional behavior
emerges in other frameworks such as maximum likelihood estimation, least squares estimation, and
stochastic approximation. In this paper, we establish a central limit theorem for the cumulative per-
step cost incurred by the optimal policy in linear quadratic regulators using first principles. Our
proof technique relies on a decomposition of cumulative cost using a completion of square argument,
properties of the noise sequence with even density, and a central limit theorem for martingale difference
sequences.

Keywords: Central Limit Theorem (CLT), linear quadratic regulators, cumulative cost, asymptotic
normality, distributional behavior of cost

Résumé : Le théorème central limite est un résultat fondamental en théorie des probabilités qui
caractérise la distribution de l’écart par rapport à la moyenne dans la loi des grands nombres. Un
comportement de distribution similaire apparâıt dans d’autres cadres tels que l’estimation du maximum
de vraisemblance, l’estimation des moindres carrés et l’approximation stochastique. Dans cet article,
nous établissons un théorème central limite pour le coût cumulatif par étape engendré par la politique
optimale dans les régulateurs linéaires quadratiques en utilisant les premiers principes. Notre technique
de preuve repose sur une décomposition du coût cumulatif en utilisant un argument de complétion du
carré, les propriétés de la séquence de bruit à densité uniforme, et un théorème central limite pour les
séquences de différences martingales.

Mots clés : Théorème Central Limite (TCL), régulateurs linéaires quadratiques, coût cumulatif,
normalité asymptotique, comportement distributionnel du coût
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1 Introduction

1.1 Motivation

The Central Limit Theorem (CLT), is one of the most important results in probability theory and

mathematical statistics. It establishes that the distribution of deviation from the mean in the law of

large numbers asymptotically converges to a normal distribution. Similar asymptotic normality for the

deviations emerges in other processes as well. For example, in the parameter estimation framework,

the asymptotic normality is established for maximum likelihood estimation (see e.g. [12, 19, 22]). In

regression models, asymptotic normality is established for various estimation and prediction methods

(see e.g. [3, 8, 15, 23–25], for a list of such results, see [9]). This property is also established in the

stochastic approximation framework (see e.g. [16,31]). The importance of asymptotic normality results

become evident when they are used to derive confidence bounds for different frameworks.

In the systems and controls literature, there are various characterization of the law of large numbers

(e.g. [2,14,20,21,27,29,36]) but the distribution of the deviation from the mean is less explored. There

are some results on CLT for Markov cost/reward process (e.g. [14, 21, 27, 29]) which are derived using

advanced tools in Markov chain theory including weighted geometric ergodicity and weighted uniform

ergodicity. These results imply a CLT for the LQR setting (i.e., systems with linear dynamics and

quadratic cost). In this paper, we revisit the distribution of the deviation from the mean for LQR

setting and establish asymptotic normality using an elementary proof based on first principles. Our

result is different from the existing characterizations in the literature and uses different and much

simpler proof techniques.

The sample path behavior of the cumulative cost has recently also been studied in the context of

regret analysis for adaptive controllers. These analyses are either in the Bayesian framework (e.g.,

in [30, 32]) or in terms of high probability guarantees for the frequentist regret (e.g., in [1, 10, 11, 13,

18,28,35,37]) or almost sure guarantees for the frequentist regret (e.g., in [17,26,33]). However, these

bounds are not not sharp enough to characterize the distribution of the cumulative cost.

1.2 Contributions

Our main contribution is to establish asymptotic normality of the cumulative cost in the LQR frame-

work using an elementary argument. Under a mild technical assumption on the noise distribution, we

show the cumulative cost incurred by the optimal policy converges weakly to a Gaussian distribution.

Our analysis uses a completion of square argument to decompose the cumulative cost to bounded

terms plus a Martingale Difference Sequence (MDS). The convergence argument follows from this

decomposition, properties of the noise sequence with even density, and a version of the CLT for MDS.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we present the system model, assumptions,

and the main results. In Section 3, we present preliminary results on the cost decomposition, impli-

cations of our assumption on the noise process, a preliminary on the CLT for MDS, and the proof of

the main result. Our concluding remarks are presented in Section 4.

1.4 Notation

Given a vector v, v(i) denotes its i-th component. Given a matrix A, Ai,j denotes its (i, j)-th element

and λmax(A) denotes the largest magnitudes of right eigenvalues. For a square matrix Q, Tr(Q)

denotes the trace. For a vector x, ∥x∥ denotes the Euclidean norm. 0 denotes the zero-vector in the

appropriate Euclidean space. For a matrix A, ∥A∥ denotes the spectral norm. If Q is symmetric,

Q ⪰ 0 and Q ≻ 0 denote that Q is positive semi-definite and positive definite, respectively. Given

a sequence of random variables {xt}t≥0, x0:t is a short hand for (x0, . . . , xt) and σ(x0:t) denotes the
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sigma field generated by random variables x0:t. Convergence in almost sure sense is abbreviated by

a.s. Convergence in distribution is showed by the notation
(d)−−→. Notation N (0, 1) denotes a standard

Gaussian distribution. R and N denote the sets of real and natural numbers and R+ denotes the

set of positive real numbers. Given a sequence of positive numbers {at}t≥0, aT ≍ T means that

lim supT→∞ aT /T < ∞, and lim infT→∞ aT /T > 0.

2 Problem formulation and main result

2.1 System model

Consider a discrete-time linear time-invariant system with full state observation. Let xt ∈ Rn and

ut ∈ Rd denote the state and control input at time t. The system starts at a known initial state x0

and it evolves according to the following dynamics:

xt+1 = Axt +But +Dvt+1, t ≥ 0, (1)

where A ∈ Rn×n, B ∈ Rn×d, and D ∈ Rn×n are the system dynamic matrices and {vt}t≥1, vt+1 ∈ Rn,

is an independent and identically distributed (i.i.d.) zero-mean noise process with unit covariance I.

At each time t, the system incurs a per-step cost of

c(xt, ut) = x
⊺
tQxt + u

⊺
tRut,

where Q ⪰ 0 and R ≻ 0.

We assume that the control inputs are chosen according to a time-homogeneous (and measurable)

policy π : Rn → Rd, i.e.,

ut = π(xt).

Let Π denote the set of all such policies. For a fixed policy π ∈ Π, let {xπ
t }t≥0 and {uπ

t }t≥0 denote the

sequence of states and control inputs generated over time. Let

C(π, T ) :=
T−1∑
t=0

c(xπ
t , u

π
t ),

denote the cumulative cost incurred by policy π up to time T . Note that our definition of C(π, T ) does
not include an expectation, so C(π, T ) is a random variable.

The long-term average performance of policy π ∈ Π is given by

J(π) := lim sup
T→∞

1

T
E[C(π, T )],

where the expectation is with respect to the noise process {vt}t≥1. Let

J∗ = inf
π∈Π

J(π),

denote the optimal performance. A policy π∗ ∈ Π is called optimal if J(π∗) = J∗.

We impose the following standard assumption on the model.

Assumption 1. The pair of matrices (A,B) is controllable, and the pair of matrices (A,Q1/2) is

observable.

It is well known (e.g., see [9]) that under Assumption 1, the optimal policy exists, is unique, and

is given by

π∗(xt) = −L∗xt, (2)
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where the optimal gain L∗ is given by

L∗ = (R+B
⊺
SB)−1B

⊺
SA, (3)

where S is the unique fixed point of the Discrete Algebraic Riccatti Equation (DARE) given by:

P = A
⊺
PA−A

⊺
PB(R+B

⊺
PB)−1B

⊺
PA+Q. (4)

Moreover the optimal value J∗ is given by:

J∗ = Tr(SDD
⊺
). (5)

2.2 Main result

The classical result described above characterizes the behavior of the expected value of C(π∗, T ); in

particular,

lim
T→∞

1

T
E[C(π∗, T )] = Tr(SDD

⊺
) = J∗. (6)

Our main result characterizes a much stronger sample path behavior of C(π∗, T ). In particular, we

will show that under a mild assumption, loosely speaking, the stochastic process C(π∗, T ) converges

in distribution to a Gaussian random variable. We will present this statement more precisely in this

section.

For our analysis, we impose the following additional assumption on the noise process {vt}t≥1.

Assumption 2. In addition to being i.i.d. across time and having a unit covariance, the noise sequence

{vt}t≥1 satisfies the following conditions for each time t:

(A1) The components of vt are independent and admit a density fv that is even.

(A2) vt is uniformly bounded, that is, there exists a Kv ∈ R+ such that ∥vt∥ ≤ Kv almost surely.

(A3) For matrices D and S, we have Var(v⊺t D
⊺SDvt) ̸= 0.

For the ease of notation, let {(x∗
t , u

∗
t )}t≥0 denote the (stochastic) trajectory {(xπ∗

t , uπ∗

t )}t≥0 of the

optimal policy, wt = Dvt denote the noise at time t, and A∗ = A − BL∗ denote the closed loop

dynamics under the optimal policy. Define:

M := E[w
⊺
t Swtw

⊺
t Swt]−

(
E[w

⊺
t Swt]

)2
which is a scalar constant. We now define a process {NT }T≥1 where:

NT :=

T−1∑
t=0

[
M + 4(A∗x∗

t )
⊺
SDD

⊺
SA∗x∗

t

]
and let {νT }T≥1 be a stopping time corresponding to {NT }T≥1 given by

νT := min
τ≥1

{
τ ;

τ∑
t=1

Nt ≥ T

}
. (7)

Our main result is the following theorem.

Theorem 1. We have that

C(π∗, νT )− νTJ
∗

√
T

(d)−−→ N (0, 1) as T → ∞.

The proof is presented in Section 3.

Above theorem is presented in terms of the stopping time in Eq. (7). In the following lemma, we

establish the growth rate of this stopping time in the almost sure sense.
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Lemma 1. The stopping time {νT }T≥1 satisfies:

νT ≍ T, a.s.

The proof is presented in Appendix A.

Theorem 1 and Lemma 1 together give a complete picture of distributional behavior of C(π∗, νT ),

which in the order, matches with the asymptotic normality results in other frameworks.

3 Proof of Theorem 1

In this section we present the proof of Theorem 1. Our proof relies on three techniques: (i) a completion

of square argument to establish a decomposition of the cumulative cost, similar to one used in [5];

(ii) some implications of noise having an even density; and (iii) the CLT for bounded martingale

difference sequences [7].

3.1 Decomposition of cumulative cost

The following lemma provides a decomposition of the cumulative cost of any arbitrary policy π.

Lemma 2. For any π ∈ Π, we have

C(π, T ) =x
⊺
0Sx0 − (xπ

T )
⊺
Sxπ

T

+

T−1∑
t=0

[
(uπ

t + L∗xπ
t )

⊺
(R+B

⊺
SB)(uπ

t + L∗xπ
t )

+

T−1∑
t=0

[
2(Axπ

t +Buπ
t )

⊺
Swt+1 + w

⊺
t+1Swt+1

]
,

where matrices L∗ and S are given by (3) and (4).

The proof is similar to the decomposition of E[C(π, T )] presented in [5] and is presented in Ap-

pendix B for completeness.

In the following Lemma, we use Lemma 2 to characterize the cumulative cost function induced by

the optimal policy C(π∗, T ).

Lemma 3. For the optimal policy π∗, we have

C(π∗, T ) =x
⊺
0Sx0 − (x∗

T )
⊺
Sx∗

T

+

T−1∑
t=0

[
2(A∗x∗

t )
⊺
Swt+1 + w

⊺
t+1Swt+1

]
.

Proof. The result follows by substituting u∗
t = −L∗x∗

t in Lemma 2, and substituting xπ∗

t with x∗
t .

3.2 Implications of the assumption on the noise

The assumed symmetry on the components of vt (i.e., the components of vt admitting a density fv
that is even) has important implications in our analysis. We show this structure implies that certain

cubic transformation of the noise has zero mean. Following lemma summarizes these structures.

Lemma 4. Under Assumption 2, we have the following for any time t:

1. For any odd k ∈ N and any component i ∈ {1, . . . , n}, E[vt(i)k] = 0.

2. For any i, j ∈ {1, . . . , n}, i ̸= j, E[vt(i)vt(j)
2] = 0.

3. For any arbitrary matrix M , let yt = Mvt, then E[yty
⊺
t yt] = 0.



Les Cahiers du GERAD G–2025–07 5

Proof is presented in Appendix C.

Furthermore, the boundedness assumption on the noise sequence {vt}t≥1 implies the boundedness

of optimal state trajectory {x∗
t }t≥0. This is presented in the following lemma.

Lemma 5. Under Assumption 2, there exists a universal constant Kx ∈ R+ (which depends only on

Kv) such that

∥x∗
t ∥ ≤ Kx, a.s., ∀t ≥ 0.

This is a classic result and its proof exists in many resources. We included a proof in Appendix D

for completeness.

3.3 CLT for martingale difference sequences

The usual CLT for martingale difference sequences is the Lindeberg-Levy CLT for triangular array of

martingale difference sequences. In our analysis, we use an implication of Lindeberg-Levy CLT stated

in [7]. Since this version of the CLT is not as well known, we restate it below for completeness.

Let {δt}t≥1, δt ∈ R, be a martingale difference sequence adapted to some filtration sequence

{Gt}t≥0, i.e.:

E[δt|Gt−1] = 0.

In addition, for all t ≥ 1, let ∆t :=
∑t

τ=1 δτ denote the martingale process corresponding to {δt}t≥1.

Let ρ2t := E[δ2t |Gt−1] denote the conditional variance of δt. For any T ≥ 0, define the stopping time

µT as:

µT = min
τ≥1

{
τ ;

τ∑
t=1

ρ2t ≥ T

}
.

The following theorem states a version of central limit theorem for the martingale sequence {∆t}t≥1.

Theorem 2 (see [7, Theorem 35.11]). Suppose the martingale difference sequence {δt}t≥1 satisfies the

following conditions:

(C1) For all t ≥ 1, |δt| is uniformly bounded, i.e., there exists a Kδ ∈ R+, such that:

|δt| ≤ Kδ, a.s.

(C2) We have:
∞∑
t=1

E[δ2t |Gt−1] = ∞.

Then we have:
∆µT√

T

(d)−−→ N (0, 1) as T → ∞.

In the subsequent subsection, we show some of the terms in the cumulative cost C(π∗, T ) satisfy

martingale difference property, we then use Theorem 2 to derive the distribution of the cumulative cost.

3.4 Preliminary results

Define the filtration to be the sigma field generated by the sequence of states and control actions, i.e.,

Ft := σ(x∗
0:t, u

∗
0:t). Using Lemma 3 and the fact that J∗ = E[w⊺

t+1Swt+1], we rewrite C(π∗, T ) − TJ∗

as following:

C(π∗, T )− TJ∗ =x
⊺
0Sx0 − (x∗

T )
⊺
Sx∗

T

+

T−1∑
t=0

[
2(A∗x∗

t )
⊺
wt+1 + w

⊺
t+1Swt+1 − E[w

⊺
t+1Swt+1]

]
.
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To simplify the algebra, we define following intermediate variables for t ≥ 0.

at+1 := w
⊺
t+1Swt+1, (8)

bt+1 := 2(A∗x∗
t )

⊺
Swt+1, (9)

ct+1 := E[w
⊺
t+1Swt+1], (10)

zt+1 := at+1 + bt+1 − ct+1. (11)

As a result of above reparametrization, we have:

C(π∗, T )− TJ∗ =

T−1∑
t=0

zt+1 + (x0)
⊺
S(x0)− (x∗

T )
⊺
S(x∗

T ).

We show that the sequence {zt}t≥1 is a martingale difference sequence satisfying conditions (C1) and

(C2) in Theorem 2. We first establish the properties of variables at+1, bt+1, and ct+1 in the following

proposition.

Proposition 1. For all t ≥ 0, we have:

(P1) E[bt+1|Ft] = 0.

(P2) E[at+1|Ft] = ct+1.

(P3) E[a2t+1|Ft] = E[a
2
t+1].

(P4) E[ct+1at+1|Ft] = c2t+1.

(P5) E[ct+1bt+1|Ft] = 0.

(P6) E[at+1bt+1|Ft] = 0.

Proof. These properties are the consequences of the assumption on the noise process.

(P1) Follows by the fact that x∗
t is Ft-measurable and based on Assumption 2, wt+1 = Dvt+1 is zero

mean and independent of Ft.

(P2) Follows from independence of wt+1 from Ft, and the definition of ct+1.

(P3) Follows from independence of wt+1 from Ft.

(P4) Follows from following equations:

E[ct+1at+1|Ft]
(a)
= ct+1E[at+1|Ft]

(b)
= c2t+1,

where (a) follows from the fact that ct+1 is not a random variable and (b) follows from Prop-
erty (P2).

(P5) Follows from following equations:

E[ct+1bt+1|Ft]
(c)
= ct+1E[bt+1|Ft]

(d)
= 0,

where (c) follows from the fact that ct+1 is not a random variable and (d) follows from Prop-

erty (P1).

(P6) Follows from Lemma 4. To show this, let:

yt+1 := S1/2Dvt+1 = S1/2wt+1

we have:

E[at+1bt+1|Ft]

(e)
=E[2(x∗

t )
⊺
(A∗)

⊺
S1/2S1/2wt+1w

⊺
t+1S

1/2S1/2wt+1|Ft]

(f)
=2(x∗

t )
⊺
(A∗)

⊺
S1/2E[yty

⊺
t yt]

(g)
= 0,

where (e) follows from the fact that S ≻ 0, (f) follows from the fact that S1/2 is symmetric,

and (g) follows from Lemma 4 part (3).
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3.5 Proof of Theorem 1

To prove the theorem, we first verify the conditions of Theorem 2 for the sequence {zt}t≥1. First,

recall that by definition, zt+1 = at+1 + bt+1 − ct+1. We have:

E[zt+1|Ft] = E[at+1 − ct+1|Ft] + E[bt+1|Ft]
(a)
= 0,

where (a) follows from Properties (P1) and (P2) in Proposition 1. We now verify conditions (C1) and

(C2) in Theorem 2.

3.5.1 Verifying (C1)

We know at+1 and ct+1 are uniformly bounded by (A2) in Assumption 2. By Lemma 5 and (A2) in

Assumption 2, we know |bt+1| is uniformly bounded. As a result, |zt+1| is uniformly bounded almost

surely.

3.5.2 Verifying (C2)

We compute the conditional expectation of z2t+1 given the filtration Ft as following:

E[z2t+1|Ft] = E[(at+1 + bt+1 − ct+1)
2|Ft]

=E[a2t+1|Ft] + E[b
2
t+1|Ft] + E[c

2
t+1|Ft]

+2E[at+1bt+1|Ft]− 2E[ct+1at+1|Ft]− 2E[ct+1bt+1|Ft]

(b)
=E[a2t+1|Ft] + E[b

2
t+1|Ft] + E[c

2
t+1|Ft]− 2E[at+1ct+1|Ft]

(c)
=E[a2t+1]− c2t+1 + E[b

2
t+1|Ft] (12)

where (b) follows from properties (P5) and (P6) in Proposition 1 and (c) follows from properties (P3)

and (P4). Now the term E[a2t+1] − c2t+1 is independent of t and depends only on the density fv;

therefore, by Jensen’s inequality and (A3) in Assumption 2, we know that there exists an ϵ > 0,

such that:

E[a2t+1]− c2t+1 > ϵ, (13)

for all t ≥ 0. By definition we know E[b2t+1|Ft] ≥ 0 for all t ≥ 0. As a result, we have:

T−1∑
t=0

zt+1 ≥ Tϵ.

Implying that: limT→∞
∑T−1

t=0 E[z
2
t+1|Ft] = ∞, almost surely, verifying the condition (C2).

3.5.3 Concluding the proof

Since the conditions (C1) and (C2) hold for the sequence {zt}t≥1, by Theorem 2, we have:∑νT

t=1 zt√
T

(d)−−→ N (0, 1).

By Lemma 5, we know (x∗
T )

⊺S(x∗
T ) is almost surely bounded for all T ≥ 0. Moreover xT

0 Sx0 is a

constant. Therefore, we have:

lim
T→∞

x⊺
0Sx0 − (x∗

T )
⊺Sx∗

T√
T

−→ 0, a.s.

As a result, by using Slutsky’s Theorem (see [4, Theorem 7.7.3]), we get:

C(νT , π∗)− νTJ
∗

√
T

(d)−−→ N (0, 1).
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Remark 1. In the proof of Theorem 1, each of the two sequences {at+1 − ct+1}t≥0 and {bt+1}t≥0 is a

martingale difference sequence. However, these two sequences are dependent, and therefore, the fact

that each of them converges in distribution does not trivially imply that their summation also converges

in distribution. As a result, applying Theorem 2 on each of these sequences individually would not

imply the desired result. Therefore, characterizing the behavior of the sequence {at+1+bt+1−ct+1}t≥0

similar to the approach in our proof is necessary.

4 Conclusion

In this paper we have established the asymptotic normality of the cumulative cost in the LQR frame-

work. We have shown that under mild assumptions on the noise process, asymptotic normality holds

for the distribution of the cumulative cost only using first principles. Our result gives a complete

description of the cost distribution induced by the optimal policy. We believe this analysis opens new

doors to understanding the distributional behavior of the cumulative cost and may pave the way to

derive confidence bounds for this framework. These confidence bounds can be used in risk-averse or

distributional reinforcement learning within this setup. A natural extension of this work is to derive

similar results for larger classes of policies or to weaken the assumption on the noise sequence to be

Gaussian or sub-Gaussian.

Appendix A Proof of Lemma 1

Using Eq. (12), we have:

E[z2t+1|Ft] = E[a
2
t+1]− c2t+1 + E[b

2
t+1|Ft].

By (A3) in Assumption 2 and Jensen’s inequality, we know there exists a ϵ > 0 such that E[a2t+1] −
c2t+1 > ϵ. Since E[b2t+1|Ft] > 0, we have:

lim inf
T→∞

NT

T
= lim inf

T→∞

∑T−1
t=0 E[z

2
t+1|Ft]

T
≥ ϵ > 0, a.s.

From the definition of bt+1, it is clear that there exists a constant C ∈ R+ such that E[b2t+1|Ft] ≤
C∥xt∥2 for all t ≥ 0. As a result, by following arguments similar to [34, Lemma 5], we have:

lim sup
T→∞

∑T−1
t=0 E[b

2
t+1|Ft]

T
< ∞, a.s.

Since the term E[a2t+1]− c2t+1 is independent of t and only depends on the density fv, there exists an

ϵ̄ > 0, such that:

E[a2t+1]− c2t+1 < ϵ̄.

As a result,

lim sup
T→∞

NT

T
= lim sup

T→∞

∑T−1
t=0 E[b

2
t+1|Ft]

T
+ ϵ̄ < ∞,

almost surely, implying that NT ≍ O(T ) and therefore νT ≍ O(T ), almost surely.

Appendix B Proof of Lemma 2

B.1 Preliminary result

The proof of this lemma is similar to the regret decomposition in [33] . Following algebraic lemma is

adapted from [6, Lemma 6.1].
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Lemma 6. We have following statements:

1. (Algebraic completion of square) For x ∈ Rn and u ∈ Rd and matrices A,B, S,R with appropriate

dimensions, we have

u
⊺
Ru+ (Ax+Bu)

⊺
P (Ax+Bu) + x

⊺
Qx

=[u+L(P,R,A,B)x]
⊺
[R+B

⊺
PB][u+L(P,R,A,B)x]

+ x
⊺
K(P,A,B,R,Q)x, (14)

with L(P,R,A,B) := −[R+B⊺PB]−1B⊺PA, and K(P,A,B,R,Q) is defined as:

Q+A
⊺
PA−A

⊺
PB(R+B

⊺
PB)−1B

⊺
PA.

2. The Discrete Algebraic Riccati Equation (DARE) in Eq. (4), i.e. K(P,A,B,R,Q) = P has a

unique positive definite fixed point solution S ⪰ 0. As a result, we have:

u
⊺
Ru+ (Ax+Bu)

⊺
S(Ax+Bu) + x

⊺
Qx

=[u+L(S,R,A,B)x]
⊺
[R+B

⊺
SB][u+L(S,R,A,B)x] + x

⊺
Sx

B.2 Proof of Lemma 2

Proof. The proof follows by applying Lemma 6. We start by adding and subtracting the term

(xπ
T )

⊺S(xπ
T ) to the expression. Recall that {xπ

t }t≥0 and {uπ
t }t≥0 denote the sequence of state and

actions induced by the policy π. We have:

C(π, T ) =
T−1∑
t=0

[
(xπ

t )
⊺
Q(xπ

t ) + (uπ
t )

⊺
R(uπ

t )
]
+ (xπ

T )
⊺
S(xπ

T )− (xπ
T )

⊺
S(xπ

T )

=

T−2∑
t=0

[
(xπ

t )
⊺
Q(xπ

t ) + (uπ
t )

⊺
R(uπ

t )
]
− (xπ

T )
⊺
Sxπ

T

+
[
(xπ

T−1)
⊺
Q(xπ

T−1) + (uπ
T−1)

⊺
R(uπ

T−1) + (xπ
T )

⊺
S(xπ

T )
]

=
[ T−2∑

t=0

(xπ
t )

⊺
Q(xπ

t ) + (uπ
t )

⊺
R(uπ

t )
]
− (xπ

T )
⊺
S(xπ

T ) + (xπ
T−1)

⊺
Q(xπ

T−1) + (uπ
T−1)

⊺
R(uπ

T−1)

+ (Axπ
T−1 +Buπ

T−1 + wT )
⊺
S(Axπ

T−1 +Buπ
T−1 + wT )

(a)
=
[ T−2∑

t=0

(xπ
t )

⊺
Q(xπ

t ) + (uπ
t )

⊺
R(uπ

t )
]
+ (xπ

T−1)
⊺
S(xπ

T−1)− (xπ
T )

⊺
S(xπ

T )

+
[
(uπ

T−1 + L∗xπ
T−1)

⊺
(R+B

⊺
SB)(uπ

T−1 + L∗xπ
T−1) + w

⊺
TSwT + 2(Axπ

T−1 +Buπ
T−1)

⊺
SwT

]
,

where (a) follows from Lemma 6, with L∗ being the RHS of Eq. (3). By repeating the same argument,

we get:

C(π, T ) =x
⊺
0Sx0 − x

⊺
TSxT

+

T−1∑
t=1

[
(uπ

t + L∗xπ
t )

⊺
(R+B

⊺
SB)(uπ

t + L∗xπ
t ) + 2(Axπ

t +Buπ
t )

⊺
Swt+1 + w

⊺
t+1Swt+1

]
.

Appendix C Proof of Lemma 4

For an odd n, Assumption 2, implies that for all 1 ≤ i ≤ n and for all t ≥ 0, we have:

E[vt(i)
k] =

∫ Kv

−Kv

vkfv(v)dv.
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1) Proof of part (1): The PDF fv is an even function and for odd k ∈ N, vk is an odd function . As a

result, vkfv is an odd function, and integrating an odd function from −Kv to Kv is 0.

2) Proof of part (2): For all i ̸= j, we have:

E[vt(i)vt(j)
2]

(a)
= E[vt(i)]E[vt(j)

2]
(b)
= 0,

where (a) follows from the independence of the components of vt, and (b) follows from part (1) of this

lemma.

3) Proof of part (3): Let mij denote the (i, j)-th component of M . Then Recall that we have

yt(i) = [Mvt](i) =

n∑
j=1

mijvt(j).

It is clear that E[yt(i)] = 0 for all t ≥ 0 by the linearity of the expectation operator. We show that for

all i ∈ {1, . . . , n} and all t ≥ 0, we have: E[yt(i)
3] = 0. By multinomial theorem, we have:

E
[
yt(i)

3
]
= E

[( n∑
j=1

mijvt(j)
)3

]

=E

[ ∑
k1+···+kn=3

(
3

k1,. . .,kn

)
(mi1vt(1))

k1 . . . (minvt(n))
kn

]
.

Where the notation
∑

k1+···+kn=3 denotes all possible tuples (k1, . . . , kn) such that k1 + · · ·+ kn = 3.

Let the tuple (k′1, . . . , k
′
n) be a decreasing permutation of (k1, . . . , kn), i.e.,

k′1 ≥ k′2 ≥ · · · ≥ k′n.

Since k1+ · · ·+kn = 3, there are only 3 choices for the tuple (k′1, . . . , k
′
n). These choices are (3, 0, . . . , 0)

or (2, 1, . . . , 0) or (1, 1, 1, 0, . . . , 0). By Parts (1) and (2), we get:

1. For any i ∈ {1, . . . , n}, E[vt(i)3] = 0.

2. For any i, j ∈ {1, . . . , n}, i ̸= j, E[vt(i)
2vt(j)] = 0.

3. For any i, j, k ∈ {1, . . . , n}, i ̸= j ̸= k, E[vt(i)vt(j)vt(k)] = 0.

This implies that all the permutations which are mapped to the tuples (3, 0, · · · , 0) or (2, 1, · · · , 0)
or (1, 1, 1, 0, · · · , 0) have zero expected value; therefore, E[yt(i)

3] = 0. Next we show for all i, j ∈
{1, . . . , n} such that i ̸= j, we have: E[yt(i)

2yt(j)] = 0. By using the multinomial theorem, we have:

E
[
yt(i)

2
]
= E

[( n∑
j=1

mijvt(j)
)2

]

=E

[ ∑
k1+···+kn=2

(
2

k1,. . .,kn

)
(mi1vt(1))

k1 . . . (minvt(n))
kn

]
.

Again let the tuple (k′1, . . . , k
′
n) be a decreasing permutation of (k1, . . . , kn). Since k1 + · · ·+ kn = 2,

there are only 2 choices for the tuple (k′1, . . . , k
′
n). These choices are (2, 0, . . . , 0) or (1, 1, 0, . . . , 0). Now

since yt(j) =
∑n

k=1 mjkvt(k), expanding yt(i)
2yt(j) and ordering the permutations we again end up

with 3 choices for (k′1, . . . , k
′
n), i.e., (3, 0, . . . , 0) , (2, 1, . . . , 0) , and (1, 1, 1, 0, . . . , 0). By repeating the

arguments similar to the previous part, we have that E[y(i)2y(j)] = 0. At last, since

E[yy
⊺
y] =

y(1)...
y(n)

(
y(1)2 + · · · y(n)2

)
. (15)

All the terms are either of the form E[y(i)3] or E[y(i)2y(j)], i ̸= j, implying that:

E[yy
⊺
y] = 0.
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Appendix D Proof of Lemma 5

Given that ∥vt∥ ≤ Kv, we have that ∥wt∥ ≤ ∥D∥∥vt∥ =: Kw. Let ρmax = λmax(A
∗) < 1 (recall

A∗ = A−BL∗) since L∗ is a stabilizing controller gain. Pick an ε > 0 such that ρmax + ε < 1. Then,

by Gelfand’s formula, we know that there exists a T0 such that for all t > T0, ∥(A∗)t∥ < ρmax + ε. By

the convolutional form of the output, we have that for T > T0,

∥xT ∥ = ∥(A∗)Tx0∥+
∥∥∥∥ T∑
τ=1

(A∗)τwT−τ

∥∥∥∥
≤ ∥(A∗)T ∥∥x0∥+

T∑
τ=1

∥(A∗)τ∥∥wT−τ∥

≤ ∥(A∗)T ∥∥x0∥+Kw

T∑
τ=1

∥(A∗)τ∥

≤ (ρmax + ε)T ∥x0∥+Kw

T∑
τ=1

(ρmax + ε)τ

(a)

≤ (ρmax + ε)T0∥x0∥+
Kw

1− (ρmax + ε)
=: Kx

where (a) uses the fact that ρmax + ε < 1.
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[8] Svetlana Borovkova, Hendrik P Lopuhaä, and Budi Nurani Ruchjana. Consistency and asymptotic nor-
mality of least squares estimators in generalized star models. Statistica Neerlandica, 62(4):482–508, 2008.

[9] Peter E Caines. Linear stochastic systems. SIAM, 2018.

[10] Asaf Cassel, Alon Cohen, and Tomer Koren. Logarithmic regret for learning linear quadratic regulators
efficiently. In International Conference on Machine Learning, pages 1328–1337. PMLR, 2020.

[11] Alon Cohen, Tomer Koren, and Yishay Mansour. Learning linear-quadratic regulators efficiently with
only

√
(T ) regret. In International Conference on Machine Learning, pages 1300–1309. PMLR, 2019.

[12] Harald Cramér. Mathematical methods of statistics, volume 26. Princeton university press, 1999.

[13] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. Regret bounds for robust
adaptive control of the linear quadratic regulator. Advances in Neural Information Processing Systems,
31, 2018.

[14] M. Duflo. Random iterative models. Berlin-Heidelberg: Springer, 1997.

[15] Friedhelm Eicker. Asymptotic normality and consistency of the least squares estimators for families of
linear regressions. The annals of mathematical statistics, 34(2):447–456, 1963.

[16] Vaclav Fabian. On asymptotic normality in stochastic approximation. The Annals of Mathematical
Statistics, pages 1327–1332, 1968.



Les Cahiers du GERAD G–2025–07 12

[17] Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis. On adaptive linear–
quadratic regulators. Automatica, 117:108982, 2020.

[18] Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis. Optimism-based adaptive
regulation of linear-quadratic systems. IEEE Trans. Autom. Control, 66(4):1802–1808, 2020.

[19] Ronald A Fisher. On the mathematical foundations of theoretical statistics. Philosophical transactions
of the Royal Society of London. Series A, containing papers of a mathematical or physical character,
222(594-604):309–368, 1922.

[20] Bruce Hajek. Ergodic process selection. In Open Problems in Communication and Computation, pages
199–203. Springer, 1987.
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