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3000, chemin de la Côte-Sainte-Catherine
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Abstract : We consider chemical graphs that are defined as connected graphs of maximum degree
at most 3.We characterize the extremal ones, that is, those that maximize or minimize 33 degree-
based topological indices. This study shows that five graph families are sufficient to characterize the
extremal chemical graphs of 29 of these 33 indices. In other words, the extremal properties of this set
of degree-based topological indices vary very little.
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1 Introduction

Chemical graphs provide a powerful tool for modeling molecular structures. These graphs, where

vertices represent atoms and edges represent bonds, allow researchers to investigate various chemical

and physical properties of molecules through graph-theoretical concepts.

According to Patrick Fowler [21]: “The definition of chemical graphs that is useful depends on

context. Two definitions appropriate to different kinds of carbon framework can be found in the

literature. The graphs that can be regarded as skeletons of saturated hydrocarbons (such as alkanes),

are connected and have maximum degree ∆ at most 4. If instead the interest is in (unsaturated)

conjugated π systems, such as alkenes, polyenes, benzenoids, and fullerenes, the maximum degree

should be at most 3, since a conjugated carbon atom participates in at most three single bonds.”

In this paper, we focus on the second definition of chemical graphs (where the maximum degree

is at most 3) and explore the bounds on topological indices of such graphs. A topological index, or

molecular descriptor, is a graph invariant used to study specific physicochemical properties of molecules.

Among the most well-known indices is the Randić index, introduced by Milan Randić [38] in 1975,

which has been widely used in quantitative structure-activity relationship (QSAR) and quantitative

structure-property relationship (QSPR) studies. Its value Ra(G) for a chemical graph G is defined as

Ra(G) =
∑

vw∈E

1√
d(v)d(w)

,

where d(v) is the degree of vertex v. This is an example of so-called degree-based topological index,

that is an index computed from the sum of the weights of the edges, each edge vw having a weight

defined by a formula using the degrees of v and w.

As stated by Ivan Gutman [24], “Countless topological indices have been and are being proposed

so far, in many cases without any examination if these correlate with any of the various physical

properties, chemical reactivity or biological activity. To use a mild expression, today we have far too

many such descriptors, and there seems to lack a firm criterion to stop or slow down their proliferation.”

In this paper, we consider 33 degree-based topological indices that we found in the literature (see

Section 2) and whose extremal properties have given rise to scientific publications [1–5, 7–17, 19, 20,

22, 23, 26, 27, 29–35, 37, 39–45]. In the same spirit as Gutman’s words, we can wonder whether these

indices are very different from each other. We provide a partial answer by analyzing the extremal

properties of these indices. We use the word “partial” for several reasons. First, we are only interested

in the extremal properties of topological indices and it could therefore be that various indices are

distinguished by other properties of interest to chemists. Second, we only deal with chemical graphs

of maximum degree at most 3. Finally, the list of topological indices studied in this article is not

exhaustive, although we have tried to consider the most cited and studied in the scientific literature.

Our conclusions will be clear: five families of chemical graphs are sufficient to characterize the vast

majority of extremal chemical graphs of degree-based topological indices.

Let G = (V,E) be a graph of order n = |V | and size m = |E|. The maximum degree of a graph

G is denoted ∆(G). An edge with endpoints u and v of degree d(u) = i and d(v) = j is called an

(i, j)-edge and is denoted uv. We denote xij the number of (i, j)-edges in G while ni is the number of

vertices in G of degree i. In what follows, Kn, Pn and Cn denote the complete graph of order n, the

path of order n and the cycle of order n, respectively.

In the next section, we give a precise definition of the chemical graphs considered in this paper and

we give the list of 33 topological indices whose extremal properties are analyzed. Section 3 is dedicated

to defining five families of chemical graphs which are sufficient to characterize the extremal graphs for

a large majority of degree-based topological indices. Tools used in our proofs are given in Section 4,

and a characterization of extremal chemical graphs for the 33 topological indices is given in Section 5.



Les Cahiers du GERAD G–2025–05 2

2 Preliminaries

As mentioned in the previous section, we are interested in connected graphs of maximum degree at

most 3. To avoid border effects, we will not consider small or dense graphs which have only few possible

xij values. This is now explained in detail.

There are only 10 connected graphs of order n with 1 ≤ n ≤ 4, Six of them, namely K1,K2,K3, K4,

P3 and the diamond (K4 minus an edge), are the only ones having their order and size. They therefore

maximize and minimize any topological index of their order and size. The two pairs (n,m) with n ≤ 4

that have different chemical graphs of order n and size m are P4 and the star with 3 branches for

(n,m) = (4, 3) and C4 and a triangle plus a pending vertex for (n,m) = (4, 4). By restricting ourselves

to connected graphs of maximum degree at most 3, it is not difficult to show that there are 10 such

graphs of order n = 5 and 29 ones of order n = 6. These can be obtained using PHOEG [18], House

of Graphs [6] or Nauty’s geng [36]. Hence, given any topological index, it is easy to determine which

chemical graph of order n ≤ 6 has maximum or minimum value. From now on, we will therefore only

consider connected graphs G of order at least 7, which implies x11 = 0 and 2 ≤ ∆(G) ≤ 3.

Definition 1. A degree-based topological index is any function f of the form

f(x12, x13, x22, x23, x33) = c12x12 + c13x13 + c22x22 + c23x23 + c33x33,

where every cij is a real number.

By abuse of notation, for a graph G, we will write f(G) instead of f(x12, x13, x22, x23, x33), where

xij is the number of (i, j)-edges in G. For example, the Randić index (see Section 1) is the degree-based

topological index with cij =
1√
ij
.

Let’s focus now on dense graphs. Since we restrict ourselves to graphs G of maximum degree at

most 3, the size m of such graphs is at most 3n
2 : if m = 3n

2 , then x33 = m (G is 3-regular); if

m = 3n−1
2 , then x23 = 2 and x33 = m− 2; if m = 3n−2

2 , then there are three possible cases:

• x13 = 1 and x33 = m− 1;

• x23 = 4 and x33 = m− 4;

• x22 = 1, x23 = 2 and x33 = m− 3.

Hence, given a pair (n,m) with m ≥ 3n−2
2 , and given any degree-based topological index f , it is not

difficult to determine the xij values of the connected graphs of order n, size m and maximum degree

at most 3 which maximize or minimize f .

From now on, when we talk about chemical graphs, we assume that we are not in the above extreme

cases (i.e., very small or very dense graphs). More precisely, here is the definition of the chemical graphs

studied in this paper.

Definition 2. A chemical graph is a connected graph of order n ≥ 7, size m ≤ 3n−3
2 and maximum

degree at most 3.

It is important to specify here that although the results that we demonstrate are valid for chemical

graphs as defined above, it is possible that these results are also valid for some connected graphs of

maximum degree at most 3 and of order n < 7 or size m > 3n−3
2 .

We found in the literature 33 degree-based topological indices. They are described in Table 1. Most

of them, namely 28, appear in [25], the exceptions being ABSC which appears in [5], AG-GA, which

appears in [42] and lnZagreb1, lnZagreb2 and lnZagreb3 which can be found in [39]. We are interested

in the extremal properties of these indices. More precisely, given a topological index f , we aim to

characterize the chemical graphs that maximize f and those that minimize f . For the 33 indices of

Table 1, this gives potentially 66 families of chemical graphs. As will be shown, 5 families (instead

of 58) are sufficient to characterize the extremal chemical graphs of 29 of the 33 topological indices.
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Table 1: 33 Degree-based topological indices.

Name Short name cij

Atom-bond connectivity index ABC
√

i+j−2
ij

Atom-bond sum-connectivity index ABSC
√

i+j−2
i+j

Albertson index Albertson |i− j|
Arithmetic-geometric index AG i+j

2
√
ij

Difference between AG and GA AG-GA i+j
2
√
ij

− 2
√
ij

i+j

Extended index Extended 1
2
( i
j
+ j

i
)

Forgotten index Forgotten i2 + j2

Geometric-arithmetic index GA 2
√

ij
i+j

First Gourava index Gourava1 i+ j + ij
Second Gourava index Gourava2 (i+ j)ij
First hyper-Gourava index hGourava1 (i+ j + ij)2

Second hyper-Gourava index hGourava2 ((i+ j)ij)2

Gourava sum-connectivity index GouravaSC 1√
i+j+ij

Gourava product-connectivity index GouravaPC
√

ij(i+ j)
Harmonic index Harmonic 2

i+j

Inverse degree index InvDeg i−2 + j−2

Inverse sum of degree index InvSumDeg ij
i+j

Randić index Randić 1√
ij

Reciprocal Randić index rRandić
√
ij

Sigma index Sigma (i− j)2

Sombor index Sombor
√

i2 + j2

Reduced Sombor index rSombor
√

(i− 1)2 + (j − 1)2

Sum connectivity index SumConn 1√
i+j

Reciprocal sum connectivity index rSumConn
√
i+ j

First Zagreb index Zagreb1 i+ j
Second Zagreb index Zagreb2 ij

Augmented Zagreb index aZagreb ( ij
i+j−2

)3

First hyper-Zagreb index hZagreb1 (i+ j)2

Second hyper-Zagreb index hZagreb2 (ij)2

Nat. log. of the mult. sum Zagreb index lnZagreb1 ln(i+ j)

Nat. log. of the first mult. Zagreb index lnZagreb2 2(
ln(i)
i

+
ln(j)
j

)

Nat. log. of the second mult. Zagreb index lnZagreb3 ln(i) + ln(j)
Modified first Zagreb index mZagreb i−3 + j−3

Definition 3. Given a degree-based topological index f defined by cij values, its complement denoted

f is the degree-based topological index defined by −cij values.

Determining chemical graphs with the minimum value for f is thus equivalent to determining

chemical graphs with the maximum value for f . In the subsequent proofs, we always aim to maximize

the value of a topological index in Table 1 or its complement.

Definition 4. A chemical graph G is extremal for a degree-based topological index f if it maximizes f

or f over all chemical graphs of the same order and size as G.

3 Five families of chemical graphs

A chemical graph is characterized by five xij values, namely, x12, x13, x22, x23 and x33. We therefore

have:

n1 = x12 + x13 (1)

n2 =
x12 + 2x22 + x23

2
(2)

n3 =
x13 + x23 + 2x33

3
(3)
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n = n1 + n2 + n3 =
3

2
x12 +

4

3
x13 + x22 +

5

6
x23 +

2

3
x33 (4)

m = x12 + x13 + x22 + x23 + x33. (5)

We now define five families F1, F2, F3, F4 and F5 of chemical graphs. As will be shown, these

are sufficient to characterize the extremal chemical graphs of 29 topological indices. Fo illustration,

examples of chemical graphs belonging to these families are given in Figure 1.
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(n,m)=(7,6) (n,m)=(7,7) (n,m)=(7,8) (n,m)=(7,9) (n,m)=(8,7) (n,m)=(8,8) (n,m)=(8,9) (n,m)=(8,10)

Figure 1: Examples of chemical graphs or order n∈{7, 8} and size m≤n+2 belonging to at least one of the families
F1, . . . , F5.

Definition 5. F1 is the set of chemical graphs with the following numbers xij of (i, j)-edges:

x12 x13 x22 x23 x33

0 3n−2m
2

0 0 4m−3n
2

if n if even

0 3n−2m−1
2

0 2 4m−3n−3
2

if n if odd

Definition 6. F2 is the set of chemical graphs with the following numbers xij of (i, j)-edges:

x12 x13 x22 x23 x33

2 0 m− 2 0 0 if m = n− 1
0 0 m 0 0 if m = n
0 0 m− 5 4 1 if m = n+ 1

0 0 3n− 2m− 1 2 3m− 3n− 1 if n+ 1 < m ≤ 3n−3
2

Definition 7. F3 is the set of chemical graphs with the following numbers xij of (i, j)-edges:

x12 x13 x22 x23 x33

0 3n−2m
2

0 0 4m−3n
2

if n if even

1 3n−2m−3
2

0 1 4m−3n−1
2

if n if odd

Definition 8. F4 is the set of chemical graphs with the following numbers xij of (i, j)-edges:

x12 x13 x22 x23 x33

2 0 m− 2 0 0 if m = n− 1
0 0 6n− 5m 6m− 6n 0 if n ≤ m < 6n

5
0 0 0 6n− 4m 5m− 6n if 6n

5
≤ m ≤ 3n−3

2
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Definition 9. F5 is the set of chemical graphs with the following numbers xij of (i, j)-edges:

x12 x13 x22 x23 x33

2 0 m− 2 0 0 if m = n− 1
0 0 m 0 0 if m = n

0 0 m− 6 6 0
if m = n+ 1

0 0 m− 5 4 1

0 0 a 6n− 4m− 2a 5m− 6n+ a if n+ 1 < m ≤ 3n−3
2

where a is any integer such that max{0, 6n−5m} ≤ a ≤ 3n− 2m− 1 when n+1<m ≤ 3n−3
2 .

It is not difficult to show that for every xij values of the five families defined above, there is at least

one chemical graph having xij (i, j)-edges. This can be proved in several ways. The first approach

is to use the necessary and sufficient conditions provided in Hansen et al. [28] for the existence of a

simple connected graph with given xij values. These conditions for chemical graphs can be written as

follows:

x33 ≤ n3(n3−1)
2 if n3 = 1, 2 or 3, (6)

x22 ≤ n2(n2−1)
2 if n2 = 1 or 2, (7)

x23 ≤ n2n3 if n2 = 1 or 2 and n3 = 1, (8)

x23 ≥ δ(n2) + δ(n3)− 1, (9)

x23 + x33 ≥ n3 + δ(n2)− 1, (10)

x22 + x23 ≥ n2 + δ(n3)− 1, (11)

x22 + x23 + x33 ≥ n2 + n3 − 1. (12)

where

δ(x) =

{
1 if x ≥ 1,
0 otherwise.

Condition (12) is equivalent to m−x12−x13 ≥ n−x12−x13−1, which is equivalent to m ≥ n−1.

In summary, given a pair (n,m) of integers such that n ≥ 7 and n − 1 ≤ m ≤ 3n−3
2 , and given xij

values that satisfy conditions (1)–(5), we can state that there is a chemical graph of order n and size

m with xij (i, j)-edges if and only if conditions (6)–(11) are satisfied. This is now illustrated with

family F1.

Given xij values as in Definition 5, Equations (1), (2) and (3) give
n1 = 3n−2m−(n mod 2)

2 ,

n2 = n mod 2,

n3 = 2m−n−(n mod 2)
2 .

Clearly, n = n1 + n2 + n3 and m = x12 + x13 + x22 + x23 + x33, which means that conditions (1)–(5)

are satisfied. Let’s now prove that Constraints (6)–(11) are also satisfied. Note first that n ≥ 7 implies

m ≥ n− 1 ≥ 6. Since 3n3 = m+ x33, we have n3 ≥ 2.

• If n3 = 2 then 6 = m+ x33 ≥ 6 + x33 implies x33 < 1 = n3(n3−1)
2 ; if n3 = 3, then 9 = m+ x33 ≥

6 + x33 implies x33 ≤ 3 = n3(n3−1)
2 . Hence, Constraint (6) is satisfied.

• Since x22 = 0 ≤ n2(n2−1)
2 for n2 = 1 and 2, Constraint (7) is satisfied.

• As mentioned above, n3 ≥ 2 which implies that there is no Constraint (8).

• If n is even, then x23 = n2 = δ(n2) = 0. Therefore,

– x23 = 0 ≥ δ(n2) + δ(n3)− 1;

– Since m ≥ n − 1, we have 2x33 = 4m − 3n ≥ m − 3. Hence, m − 3 + x33 ≤ 3x33 which

implies x23 + x33 = x33 ≥ m+x33−3
3 = n3 − 1 = n3 + δ(n2)− 1;
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– x22 + x23 ≥ n2 + δ(n3)− 1.

Hence, Constraints (9)–(11) are satisfied.

• If n is odd, then, x23 = 2 and n2 = δ(n2) = 1. Therefore,

– x23 = 2 > δ(n2) + δ(n3)− 1.

– Since m ≥ n− 1, we have 2x33 = 4m− 3n− 3 ≥ m− 6. Hence, m− 6 + x33 ≤ 3x33 which

implies x23 + x33 = 2 + x33 ≥ m+x33

3 = n3 = n3 + δ(n2)− 1.

– x22 + x23 = 2 > n2 + δ(n3)− 1.

Hence, Constraints (9)–(11) are satisfied.

Another way of proving that a chemical graph exists for given xij values is to give an explicit

construction for such a graph. For family F1, for an even order n ≥ 7 and for m ≥ n, one can for

example consider the following construction (a similar one can be given for odd values of n and for

m = n− 1):

1. Construct a cycle on vertices v1, v2, . . . , vm−n
2
, with edges vivi+1 (1 ≤ i ≤ m − n

2 − 1) and

v1vm−n
2
.

2. Add a matching with the m−n edges viv⌈ 2m−n
4 ⌉+i (1 < i ≤ m−n). Let W be the set of endpoints

of these edges.

3. For each vi /∈ W , add a pending vertex wi adjacent to vi.

The resulting graph belongs to F1. Indeed, every vi has degree 3 and every wi has degree 1. We thus

have x12 = x22 = x23 = 0. Moreover, x13 = m− n
2 −W | = 3n−2m

2 and x33 = m− n
2 + |W | = 4m−3n

2 .

In summary, it is tedious but easy to check that given xij values of one of the five graph families

defined above, there is at least one chemical graph with xij (i, j)-edges. Therefore, from now on, we

assume that this is true for the five families F1, . . . , F5.

4 Tools used to characterize extremal chemical graphs

Given a set of xij values, we consider transformations which generate x′
ij values having specific prop-

erties.

Definition 10. Let A = (a12, a13, a22, a23, a33) be a vector with integer coefficients.

• Given any integer k, the (A, k)-transform of a vector (x12, x13, x22, x23, x33) is the vector

(x′
12, x

′
13, x

′
22, x

′
23, x

′
33) such that x′

ij = xij + kaij .

• We say that A is (n,m)-preserving if it satisfies the two following equations:

3

2
a12 +

4

3
a13 + a22 +

5

6
a23 +

2

3
a33 = 0; (13)

a12 + a13 + a22 + a23 + a33 = 0. (14)

The idea behind these definitions is that if (x′
12, x

′
13, x

′
22, x

′
23, x

′
33) is the (A, k)-transform of

(x12, x13, x22, x23, x33) and if A is (n,m)-preserving, then

3

2
x12 +

4

3
x13 + x22 +

5

6
x23 +

2

3
x33 =

3

2
x′
12 +

4

3
x′
13 + x′

22 +
5

6
x′
23 +

2

3
x′
33 and

x12 + x13 + x22 + x23 + x33 = x′
12 + x′

13 + x′
22 + x′

23 + x′
33.

Hence, the values of n and m derived from Equations (4) and (5) are the same, whether calculated

using xij or x′
ij values.
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Let G be a chemical graph of order n and size m that maximizes the value of a topological index f

over all chemical graphs of same order and same size as G. We now study the impact on the xij values

of G if some of the four following values are strictly positive:

V1 = c13 − c22 + min
i=1,2,3

(c3i − c2i) + min
j=2,3

(c3j − c2j),

V2 = c13 − c12 + min
i=2,3

(c2i − c3i),

V3 = c22 − c13 + min
i=1,2,3

(c2i − c3i) + min
j=2,3

(c2j − c3j),

V4 = 2c22 − c12 − c23 + 2 min
i=1,2,3

(c2i − c3i).

Lemma 1. Let f be a degree-based topological index such that V1 > 0. A chemical graph G that

maximizes f over all chemical graphs of the same order and size as G has no (2,2)-edge.

Proof. Assume G contains an edge uv with both endpoints of degree 2.

• If u and v have no common neighbor, then let x be the second neighbor of u and let y be the

second neighbor of v. At least one of x, y, say y, has degree at least two, else G has order 4. We

can then obtain a chemical graph G′ by replacing ux by vx. Let i ∈ {1, 2, 3} be the degree of x

and j ∈ {2, 3} the degree of y. The graph G′ contradicts the maximality of G since

f(G′) = f(G) + c13 − c22 + (c3i − c2i) + (c3j − c2j) ≥ f(G) + V1 > f(G).

• If u and v have a common neighbor w, then w has degree 3, else G has order n = 3. Also, the

third neighbor x of w has degree at least two, else G has order n = 4.

– If x has degree 2, then let y be its second neighbor and let i ∈ {1, 2, 3} be the degree of

y. We can obtain a chemical graph G′ by replacing uv by vx. Then G′ contradicts the

maximality of G since

f(G′) = f(G) + c13 − c22 + (c3i − c2i) + (c33 − c23)

≥ f(G) + V1 > f(G).

– If x has degree 3, then let y and z be the two other neighbors of x. We can obtain a chemical

graph G′ by replacing xy and xz by uy and vz. Then G′ contradicts the maximality of G

since

f(G′) = f(G) + c13 − c22 + 2(c33 − c23) ≥ f(G) + V1 > f(G).

Lemma 2. Let f be a degree-based topological index such that V1 > 0 and V2 > 0. A chemical graph G

that maximizes f over all chemical graphs of the same order and size as G has no (1,2)-edge and no

(2,2)-edge.

Proof. We already know from Lemma 1 that G has no (2,2)-edge. Let uv be an edge in G with u of

degree 1 and v of degree 2. Let w be the second neighbor of v. Note that w has degree 3, else G has

order n = 3. Let x and y be the two other neighbors of w. At least one of them, say x has degree

i ≥ 2, else G has order n = 5. We can obtain a chemical graph G′ by replacing uv and wx by uw and

vx. Then G′ contradicts the maximality of G since

f(G′) = f(G) + c13 − c12 + (c2i − c3i) ≥ f(G) + V2 > f(G).

Lemma 3. Let f be a degree-based topological index such that V3 > 0. A chemical graph G that

maximizes f over all chemical graphs of the same order and size as G has no (1,3)-edge.
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Proof. Let uv be an edge with u of degree 1 and v of degree 3, and let x and y be the two other

neighbors of v. At least one of x and y, say y has degree at least two, else G has order n = 4. We can

then obtain a chemical graph G′ by replacing vy by uy. Let i be the degree of x and j the degree of y.

Then G′ contradicts the maximality of G since

f(G′) = f(G) + c22 − c13 + (c2i − c3i) + (c2j − c3j) ≥ f(G) + V3 > f(G).

Lemma 4. Let f be a degree-based topological index such that V4 > 0. If a chemical graph G maximizes

f over all chemical graphs of the same order and size as G then either m = n − 1 and G is Pn or

m ≥ n and G has no (1,2)-edge.

Proof. Let uv be an edge with u of degree 1 and v of degree 2. If G is not Pn, then there is a vertex

w of degree 3 in G such that v and w are linked by a chain in which all internal vertices have degree

2 in G. Let x and y be the two neighbors of w that are not on the chain. We can obtain a chemical

graph G′ by replacing wx by ux. Let i be the degree of x and j the degree of y. Then G′ contradicts

the maximality of G since

f(G′)=f(G)+2c22−c12−c23+(c2i−c3i)+(c2j−c3j)≥f(G)+V4>f(G).

5 Characterization of extremal graphs

We first characterize the extremal graphs of 29 of the 33 degree-based topological indices of Table 1.

The proofs involve the following values:

V5 = c13 − 4c23 + 3c33,

V6 = c22 − 2c23 + c33,

V7 = c12 − c13 − c23 + c33,

V8 = −2c12 + 3c13 − 2c23 + c33.

5.1 Five graph families for 29 topological indices

We first show that the chemical graphs in F1 maximize all degree-based topological indices such that

V1, V2 and V5 are strictly positive.

Theorem 1. Let f be a degree-based topological index such that V1 > 0, V2 > 0 and V5 > 0. A chemical

graph G maximizes f over all chemical graphs of the same order and size as G if and only if G ∈ F1.

Proof. Let G be a chemical graph of order n, size m and with xij (i, j)-edges. Assume that it

maximizes f over all chemical graphs of order n and size m. As shown in Lemma 2, V1 > 0 and V2 > 0

imply x12 = x22 = 0. Hence, 2n2 = x23, which means that x23 is even.

If x23 ≤ 2 then n2 = n mod 2 (since the number n1 + n3 of odd degree vertices is even),

which implies x23 = 2(n mod 2). Equations (4) and (5) then give x13 = 3n−2m−(n mod 2)
2 and

x33 = 4m−3n−3(n mod 2)
2 , which means that G belongs to F1.

If x23 ≥ 4, then consider the vector A = (0, 1, 0,−4, 3) associated with V5 and let

(x′
12, x

′
13, x

′
22, x

′
23, x

′
33) be the (A, ⌊x23

4 ⌋)-transform of (x12, x13, x22, x23, x33). We then have x′
12 =

x′
22 = 0 and x′

23 ≤ 2. Since A is (n,m)-preserving, we conclude as above that x′
13 = 3n−2m−(n mod 2)

2

and x′
33 = 4m−3n−3(n mod 2)

2 . Let G′ be a graph in F1 having exactly x′
ij (i, j)-edges. The maximality

of G is contradicted by G′ since

f(G′) = f(x′
12, x

′
13, x

′
22, x

′
23, x

′
33) = f(G) + V5⌊

x23

4
⌋ > f(G).
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Theorem 2. Let f be a degree-based topological index such that V3 > 0, V4 > 0 and V6 > 0. A chemical

graph G maximizes f over all chemical graphs of the same order and size as G if and only if G ∈ F2.

Proof. LetG be a chemical graph of order n, sizem and with xij (i, j)-edges. Assume that it maximizes

f over all chemical graphs of order n and size m. As shown by Lemmas 3 and 4, V3 > 0 and V4 > 0

imply G = Pn or n1 = 0. Hence, if m = n − 1, then G = Pn (since trees have vertices of degree 1),

which means that x12 = 2, x22 = m − 2 and G ∈ F2. So assume n ≤ m < 3n−3
2 , which implies that

n1 = 0 and x23 is even.

• If m = n, Equations (4) and (5) give x23 = x33 = 0, which implies x22 = m and G ∈ F2.

• If m = n + 1, Equations (4) and (5) give x23 + 2x33 = 6, which implies n3 = 2 and x33 ≤ 1.

Hence, there are only two possibilities:

– x22 = m− 6, x23 = 6,x33 = 0, or

– x22 = m− 5, x23 = 4,x33 = 1.

Since c22−2c23+c33=V6 > 0, the second solution has a larger value, which implies G∈F2.

• If n + 1 < m < 3n−3
2 and x23 = 2, then Equations (4) and (5) give x22 = 3n − 2m − 1

and x33 = 3m − 3n − 1, which implies G ∈ F2. So assume x23 ≥ 4, consider the vector

A = (0, 0, 1,−2, 1) associated with V6 and let (x′
12, x

′
13, x

′
22, x

′
23, x

′
33) be the (A, x23−2

2 )-transform

of (x12, x13, x22, x23, x33). Hence, x′
12 = x′

13 = 0 and x′
23 = 2. Since A is (n,m)-preserving, we

conclude as above that x′
22 = 3n− 2m− 1 and x′

33 = 3m− 3n− 1. Consider any chemical graph

G′ in F2 having exactly x′
ij (i, j)-edges. The maximality of G is contradicted by G′ since

f(G′) = f(x′
12, x

′
13, x

′
22, x

′
23, x

′
33) = f(G) + V6(

x23 − 2

2
) > f(G).

Corollary 1. F1 ∪ F2 is the set of extremal chemical graphs for the 13 degree-based topological indices

ABSC, AG, AG-GA, Extended, GA, GouravaSC, Harmonic, Randić, Sombor, rSombor, SumConn,

rSumConn and lnZagreb1.

Proof. It is easy to check that

• V1, V2 and V5 are strictly positive for ABSC, AG, AG-GA, Extended, rSumConn, Sombor, rSom-

bor, lnZagreb1, GA, GouravaSC, Harmonic, Randić and SumConn, which implies that F1 is

the set of chemical graphs which maximize ABSC, AG, AG-GA, Extended, rSumConn, Sombor,

rSombor, lnZagreb1 and minimize GA, GouravaSC, Harmonic, Randić and SumConn.

• V3, V4 and V6 are strictly positive for ABSC, AG, AG-GA, Extended, Sombor, rSombor,

rSumConn, lnZagreb1, GA, GouravaSC, Harmonic,Randić and SumConn, which implies that F2

is the set of chemical graphs which minimize ABSC, AG, AG-GA, Extended, Sombor, rSombor,

rSumConn, lnZagreb1 and maximize GA, GouravaSC, Harmonic, Randić and SumConn.

We now characterize the degree-based topological indices f for which the chemical graphs in F3

and F4 maximize f .

Theorem 3. Let f be a degree-based topological index such that V1>0, V6>0, V7>0 and V8>0. A

chemical graph G maximizes f over all graphs of the same order and size as G if and only if G ∈ F3.

Proof. LetG be a chemical graph of order n, sizem and with xij (i, j)-edges. Assume that it maximizes

f over all chemical graphs of order n and size m. As shown by Lemma 1, V1 > 0 implies x22 = 0. Let

W33 be the set of vertices of degree 2 in G with two neighbors of degree 3, and let W13 be the set of

vertices of degree 2 in G with one neighbor of degree 1 and the other of degree 3. Since n > 3, we

have n2 = |W33|+ |W13|.
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• If n2 = 0, then x12 = x22 = x23 = 0 and Equations (4) and (5) give x13 = 3n−2m
2 and

x33 = 4m−3n
2 , which implies that G belongs to F3.

• If n2 = 1, then let v be the vertex of degree 2 in G.

– if v ∈ W13 then x12 = x23 = 1, x22 = 0 and Equations (4) and (5) give x13 = 3n−2m−3
2 and

x33 = 4m−3n−1
2 ;

– if v ∈ W33 then x12 = x22 = 0, x23 = 2 and Equations (4) and (5) give x13 = 3n−2m−1
2 and

x33 = 4m−3n−3
2 .

Since c12 − c13 − c23 + c33 = V7 > 0, the first case has a larger value f(G), which implies that G

belongs to F3.

• If n2 > 1, then the two neighbors of each vertex in W33 are adjacent. Indeed, if a vertex v ∈ W33

has two non-adjacent neighbors u1 and u2, then consider any other vertex w of degree 2 and let

u3 be one of its neighbors: by replacing vu1, vu2, wu3 by vw, vu3 and u1u2, we get a chemical

graph G′ which contradicts the maximality of G since

f(G′) = f(G) + c22 − 2c23 + c33 = f(G) + V6 > f(G).

Let us now show that |W33| ≤ 1. Assume by contradiction that W33 contains at least two vertices

v1 and v2. Since n > 4, there are two non-adjacent vertices u1 and u2 such that u1 is adjacent

to v1 but not to v2, while u2 is adjacent to v2 but not to v1. Let w1 be the second neighbor of

v1, and let G′ be the chemical graph obtained from G by replacing v1w1 and v2u2 by v1u2 and

v2w1. Then G′ has n2 > 1 vertices of degree 2 and one of them, namely v1, has two non-adjacent

neighbors u1, u2 of degree 3. We have shown above that this implies that G′ does not maximize

f while f(G′) = f(G), a contradiction.

Hence, |W33| ≤ 1, which implies |W13| ≥ 1. So let v be a vertex in W13, let u be another vertex

of degree 2, let w be the neighbor of v of degree 1, and let G′ be the chemical graph obtained

from G by replacing vw by uw:

– if u ∈ W13 then f(G′) = f(G)− 2c12 + 3c13 − 2c23 + c33 = f(G) + V8 > f(G);

– if u ∈ W33 then f(G′) = f(G)− c12 + 2c13 − 3c23 + 2c33 = f(G) + V7 + V8 > f(G).

In both cases, G′ contradicts the maximality of G.

Theorem 4. Let f be a degree-based topological index such that V3>0, V4>0 and V6<0. A chemical

graph G maximizes f over all graphs of the same order and size as G if and only if G ∈ F4.

Proof. Let G be a chemical graph of order n, size m and with xij (i, j)-edges. Assume that it

maximizes f over all chemical graphs of order n and size m. As shown by Lemmas 3 and 4, V3 > 0

and V4 > 0 imply G = Pn or n1 = 0. Hence, if m = n − 1, then G = Pn, which means that x12 = 2,

x22 = m − 2 and G ∈ F4. So assume m > n − 1, which implies n1 = 0. Equations (4) and (5) give

x23 = 6n− 4m− 2x22 and x33 = 5m− 6n+ x22. Hence, x22 ≥ max{0, 6n− 5m}.

• If x22 = 0, then x23 = 6n− 4m, x33 = 5m− 6n and G ∈ F4.

• If x22 = 6n− 5m > 0, then x23 = 6m− 6n, x33 = 0 and G ∈ F4.

• If x22 > 0 and x22 ̸= 6n − 5m, then x33 > 0. Consider the vector A = (0, 0,−1, 2,−1) associ-

ated with −V6 and let (x′
12, x

′
13, x

′
22, x

′
23, x

′
33) be the (A,min{x22, x22 − 6n+ 5m})-transform of

(x12, x13, x22, x23, x33). Hence, x′
22 = max{0, 6n − 5m} and x′

12 = x′
13 = 0. Since A is (n,m)-

preserving we conclude as above that there is a chemical graph G′ in F4 having exactly x′
ij

(i, j)-edges. Then G′ contradicts the maximality of G since

f(G′)=f(x′
12, x

′
13, x

′
22, x

′
23, x

′
33)

=f(G)−V6 min{x22, x22−6n+5m}>f(G).
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Corollary 2. F3 ∪ F4 is the set of extremal chemical graphs for the 10 degree-based topological indices

Gourava1, Gourava2, hGourava1, hGourava2, GouravaPC, InvSumDeg, rRandić, Zagreb2, hZagreb1,

hZagreb2.

Proof. It is easy to check that

• V1>0, V6>0, V7>0 and V8>0 for Gourava1, Gourava2, hGourava1, hGourava2, GouravaPC,

InvSumDeg, rRandić, Zagreb2, hZagreb1, hZagreb2, which implies that F3 is the set of chemical

graphs which maximize these topological indices.

• V3>0, V4>0 and V6<0 for Gourava1, Gourava2, hGourava1, hGourava2, GouravaPC,

InvSumDeg, rRandić, Zagreb2, hZagreb1, hZagreb2, which implies that F4 is the set of chemical

graphs which minimize the 10 topological indices.

Note that F1 ∪ F3 is the set of chemical graphs with xij (i, j)-edges such that

x12 x13 x22 x23 x33

0 3n−2m
2

0 0 4m−3n
2

if n if even

1 3n−2m−3
2

0 1 4m−3n−1
2 if n is odd

0 3n−2m−1
2

0 2 4m−3n−3
2

Theorem 5. Let f be a degree-based topological index such that V1>0, V5>0 and V7=0. A chemical

graph G maximizes f over all graphs of the same order and size as G if and only if G ∈ F1 ∪ F3.

Proof. Let G be a chemical graph of order n, size m and with xij (i, j)-edges. Assume that it

maximizes f over all chemical graphs of order n and size m. Note that the two possibilities for the xij

values when n is odd give the same value f(G) since c12 − c13 − c23 + c33 = V7 = 0. As shown by

Lemma 1, V1 > 0 implies x22 = 0. Moreover, n > 3 implies x12 ≤ x23, and x12 and x23 have the same

parity.

1. If x12 = 0 then, as shown in Theorem 1, G ∈ F1, else there is a graph G′ ∈ F1 so that

f(G′) > f(G).

2. If x12 = 1 then

• if x23 = 1 then Equations (4) and (5) give x13 = 3n−2m−3
2 and x33 = 4m−3n−1

2 , which

implies that G belongs to F3.

• if x23 ≥ 3, then consider the vector A = (−1, 2, 0,−3, 2) associated with V5−V7 and let

(x′
12, x

′
13, x

′
22, x

′
23, x

′
33) be the (A, 1)-transform of (x12, x13, x22, x23, x33). Note that x′

12 =

x′
22 = 0 and A is (n,m)-preserving. Hence, we have shown in case 1. that there is a graph

G′ ∈ F1 which contradicts the maximality of G since

f(G′) ≥ f(x′
12, x

′
13, x

′
22, x

′
23, x

′
33)

= f(G) + V5 − V7 = f(G) + V5 > f(G).

3. If x12 ≥ 2 then x23 ≥ x12 ≥ 2. Consider the vector A = (−2, 3, 0,−2, 1) associated with

V5 − 2V7 and let (x′
12, x

′
13, x

′
22, x

′
23, x

′
33) be the (A, ⌊x12

2 ⌋)-transform of (x12, x13, x22, x23, x33).

Since x′
12 = x′

22 = 0 and A is (n,m)-preserving, we have shown in case 1. that there is a graph

G′ ∈ F1 which contradicts the maximality of G since

f(G′) ≥ f(x′
12, x

′
13, x

′
22, x

′
23, x

′
33) = f(G) + ⌊x12

2
⌋(V5−2V7)

= f(G) + ⌊x12

2
⌋V5>f(G).

Theorem 6. Let f be a degree-based topological index such that V3>0, V4>0 and V6=0. A chemical

graph G maximizes f over all graphs of the same order and size as G if and only if G ∈ F5.
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Proof. Let G be a chemical graph of order n, size m and with xij (i, j)-edges. Assume that it

maximizes f over all chemical graphs of order n and size m. Note first that the two possibilities for

the xij values when m = n+1 have the same value f(G) since c22− 2c23+ c33 = V6 = 0. For the same

reason, all solutions for n+ 1 < m ≤ 3n−3
2 have the same value.

As shown by Lemmas 3 and 4, V3 > 0 and V4 > 0 imply G = Pn or n1 = 0. Hence, if m = n− 1,

then G = Pn, which means that x12 = 2, x22 = m− 2 and G ∈ F5. So assume n ≤ m < 3n−3
2 , which

implies that n1 = 0 and x23 is even.

• If m = n, Equations (4) and (5) give x23 = x33 = 0 and x22 = m, which implies G ∈ F5.

• If m = n + 1, Equations (4) and (5) give x23 + 2x33 = 6, which implies n3 = 2 and x33 ≤ 1.

Hence, there are only two possibilities:

– x22 = m− 6, x23 = 6,x33 = 0, or

– x22 = m− 5, x23 = 4,x33 = 1,

and both imply G ∈ F5.

• If n+1<m≤ 3n−3
2 , then x23 ≥ 2 and Equations (4) and (5) give x22 = a, x23 = 6n−4m−2a and

x33 = 5m− 6n+ a. Since x33 ≥ 0 and x23 ≥ 2 , we have max{0, 6n− 5m} ≤ a ≤ 3n− 2m− 1,

which implies G ∈ F5.

Corollary 3. F1 ∪ F3 ∪ F5 is the set of extremal chemical graphs for the topological indices Forgotten,

InvDeg, Zagreb1, lnZagreb2, lnZagreb3 and mZagreb.

Proof. It is easy to check that

• V1>0, V5>0 and V7=0 for Forgotten, InvDeg, Zagreb1, lnZagreb2, lnZagreb3 and mZagreb which

implies that F1 ∪ F3 is the set of chemical graphs which maximize Forgotten, InvDeg, Zagreb1

and mZagreb and minimize lnZagreb2.

• V3>0, V4>0 and V6=0 for Forgotten, InvDeg, Zagreb1, lnZagreb2, lnZagreb3 and mZagreb, which

implies that F5 is the set of chemical graphs which minimize Forgotten, InvDeg, Zagreb1, mZa-

greb and maximize lnZagreb2.

5.2 Additional families of extremal chemical graphs

As proved in the previous section, the five families F1, . . . , F5 are sufficient to characterize all extremal

graphs of 29 topological indices. However, some degree-based topological indices have extremal chem-

ical graphs that do not belong to any of the five families. We give here four examples. More precisely,

we characterize the extremal chemical graphs of the topological indices ABC, Albertson, Sigma, and

aZagreb. For this purpose, we define new families F6, . . . , F11 of chemical graphs characterized by xij

values. Here again, as explained in Section 3, it is easy to check that given xij values of one of the

graph families, there is at least one chemical graph with xij (i, j)-edges. Examples of chemical graphs

belonging to at least one of the families F6, . . . , F11, but to none of the families F1, . . . , F5 are given

in Figure 2.

Definition 11. F6 is the set of chemical graphs with the following numbers xij of (i, j)-edges:

x12 x13 x22 x23 x33

0 a 0 6n− 4m− 4a 5m− 6n+ 3a

where a is any integer such that max{0, ⌈ 6n−5m
3 ⌉} ≤ a ≤ ⌊ 3n−2m

2 ⌋.
Theorem 7. Let f be a degree-based topological index such that V1>0, V2>0 and V5=0. A chemical

graph G maximizes f over all graphs of the same order and size as G if and only if G ∈ F6.
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F7

Figure 2: Examples of chemical graphs or order n∈{7, 8} and size m≤n+2 belonging to at least one of the families
F6, . . . , F11 but to none of the families F1, . . . , F5.

Proof. LetG be a chemical graph of order n, sizem and with xij (i, j)-edges. Assume that it maximizes

f over all chemical graphs of order n and size m. As shown in Lemma 2, V1 > 0 and V2 > 0 imply

x12 = x22 = 0. Hence, it follows from Equations (4) and (5) that x13 = a, x23 = 6n − 4m − 4a and

x33 = 5m − 6n + 3a. Since x23 ≥ 0 and x33 ≥ 0, we have max{0, ⌈ 6n−5m
3 ⌉} ≤ a ≤ ⌊3n−2m

2 ⌋. All

possible solutions with the various values of a have the same value since c13−4c23+3c33 = V5 = 0.

Definition 12. F7 is the set of chemical graphs with the following numbers xij of (i, j)-edges:

x12 x13 x22 x23 x33

2 0 m− 2 0 0 if m = n− 1
0 0 m 0 0 if m = n

0 0 m− 5 4 1
if m = n+ 11 0 m− 7 3 3

(n ≥ 8) 2 0 m− 9 2 5

0 0 3n−2m−1 2 3m−3n−1
if n+ 1<m≤ 3n−3

21 0 3n−2m−3 1 3m−3n+1

Theorem 8. Let f be a degree-based topological index such that V3>0, V6>0 and V5+V7=2V6. A

chemical graph G maximizes f over all graphs of the same order and size as G if and only if G ∈ F7.

Proof. Let G be a chemical graph of order n, size m and with xij (i, j)-edges. Assume that it

maximizes f over all chemical graphs of order n and size m. Note that the three possible cases for

m = n+1 have the same value since c12 − 2c22 − c23 +2c33 = V5 +V7 − 2V6 = 0. For the same reason,

the two possibilities for n+ 1 < m < 3n−3
3 have the same value.

As shown by Lemma 3, V3 > 0 implies x13 = 0. In what follows, for two integer a and b such

that (a, b) ̸= (x12, x23), we say that G is (a, b)-dominated if a ≤ x12, b−a ≤ x23 − x12, and there

is a chemical graph of order n and size m which has a (1, 2)-edges, b (2, 3)-edges, and no (1, 3)-

edge. In such a case consider the (n,m)-preserving vector A = (0, 0, 1,−2, 1) associated with V6 and

let (x′
12, x

′
13, x

′
22, x

′
23, x

′
33) be the (A, x23−x12+a−b

2 )-transform of (x12, x13, x22, x23, x33). We thus have

x12 = x′
12 and x′

23 = x12+ b−a. Let A′ = (−1, 0, 3,−1,−1) be the (n,m)-preserving vector associated

with 3V6−V5−V7 and let (x′′
12, x

′′
13, x

′′
22, x

′′
23, x

′′
33) be the (A

′, x12−a)-transform of (x′
12, x

′
13, x

′
22, x

′
23, x

′
33).

We now have x′′
12 = a and x′′

23 = b. Let G′ be a graph with x′′
ij (i, j)-edges. Note that if x12 = a, then
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x23 − x12 + a− b > 0. Hence, G′ contradicts the maximality of G since 3V6 − V5 − V7 = V6 > 0 and

f(G′)=f(x′′
12, x

′′
13, x

′′
22, x

′′
23, x

′′
33) = f(x′

12, x
′
13, x

′
22, x

′
23, x

′
33) + (x12 − a)V6

=f(G) + (
x23 − x12 + a− b

2
)V6 + (x12 − a)V6 > f(G).

Let us now analyze the possible values for m and use Equations (4) and (5) to derive xij values.

• If m = n − 1, then assume x23 > 0. It follows that 3 ≤ x12 ≤ x23. Hence, x12 = x23 = 3,

else G is (3, 3)-dominated. We therefore have x22 = m − 6 and x33 = 0 and f(Pn) − f(G) =

−c12 + 4c22 − 3c23 = 4V6 − V5 − V7 = 2V6 > 0, which contradicts the maximality of G. Hence

x23 = 0 which implies G = Pn ∈ F7.

• if m = n, then x12 = x23 = 0, else G is (0, 0)-dominated. We therefore have x22 = m and x33 = 0

which implies G = Cn ∈ F7.

• If m = n+ 1, then

– if x12 = 0, then x23 ≥ 4. Hence, x23 = 4 else G is (0, 4)-dominated. We therefore have

x22 = m− 5 and x33 = 1, meaning that G ∈ F7.

– if x12 = 1, then x23 ≥ 3. Hence, x23 = 3 else G is (1, 3)-dominated. We therefore have

x22 = m− 7 and x33 = 3, meaning that G ∈ F7.

– if x12 = 2, then x23 ≥ 2. Hence, x23 = 2 else G is (2, 2)-dominated. We therefore have

x22 = m− 9 and x33 = 5, meaning that G ∈ F7.

– if x12 > 2, then x23 > 2, which means that G is (2, 2)-dominated, which contradicts the

maximality of G.

• If n+ 1 < m ≤ 3n−3
2 then

– if x12 = 0, then x23 ≥ 2. Hence, x23 = 2, else G is (0, 2)-dominated. We therefore have

x22 = 3n− 2m− 1 and x33 = 3m− 3n− 1, meaning that G ∈ F7.

– if x12 = 1, then x23 ≥ 1. Hence, x23 = 1, else G is (1, 1)-dominated. We therefore have

x22 = 3n− 2m− 3 and x33 = 3m− 3n+ 1, meaning that G ∈ F7.

– if x12 ≥ 2, then x23 ≥ 2. Hence, G is (1, 1)-dominated, which contradicts the maximality

of G.

Corollary 4. F6 ∪ F7 is the set of extremal chemical graphs for the topological index Sigma.

Proof. It is easy to check that V1 > 0, V2 > 0 and V5 = 0 for Sigma, while V3 > 0, V6 > 0 and

V5 + V7 = 2V6 for Sigma, which means that F6 is the set of chemical graphs which maximize Sigma,

while F7 is the set of chemical graphs which minimize Sigma.

Definition 13. F8 is the set of chemical graphs with the following numbers xij of (i, j)-edges:

x12 x13 x22 x23 x33

2 0 m− 2 0 0
if m+ 1 = n ∈ {7, 8, 9}

3 0 m− 6 3 0

2 0 m− 7 4 1 if m = n ∈ {7, 8}
1 0 1 3 3 if n = 7 and m = 8

⌊ 3n−2m
3

⌋ 0 m mod 3 ⌊ 3n−2m
3

⌋ ⌊ 7m−6n
3

⌋ otherwise

Theorem 9. Let f be a degree-based topological index such that V3>0, V6>0 and V5+V7=4V6. A

chemical graph G maximizes f over all graphs of the same order and size as G if and only if G ∈ F8.
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Proof. LetG be a chemical graph of order n, sizem and with xij (i, j)-edges. Assume that it maximizes

f over all chemical graphs of order n and size m. As shown by Lemma 3, V3 > 0 implies x13 = 0.

If m + 1 = n ∈ {7, 8, 9}, then there are only two possibilities: either x12 = 2 and x22 = m − 2, or

x12 = 3, x23 = 3 and x22 = m− 6. Since c12 − 4c22 + 3c23 = V5 + V7 − 4V6 = 0, we deduce that both

cases correspond to an optimal graph G that belongs to F8. We now assume m ≥ n or m+1 = n ≥ 10.

If n3 = 0, then G = Pn and m+ 1 = n ≥ 10 or G = Cn and n = m.

• If m + 1 = n ≥ 10, then the graph G′ with x12 = x23 = 4, x33 = 1 and x22 = m − 9 has value

f(G′) = f(G) + 2c12 − 7c22 + 4c23 + c33 = f(G) + 2V5 + 2V7 − 7V6 = f(G) + V6 > 0, which

contradicts the maximality of G.

• If n = m, then the graph G′ with x12 = 2, x23 = 4, x33 = 1 and x22 = m − 7 has value

f(G′) = f(G) + 2c12 − 7c22 + 4c23 + c33 = f(G) + 2V5 + 2V7 − 7V6 = f(G) + V6 > 0, which

contradicts the maximality of G.

If n3 > 0, then consider the following 4 cases:

• If m = n = 7, then there are only two possibilities: either x12 = 2, x23 = 4 and x33 = 1, or

x12 = 1, x23 = 3 and x22 = 3. Since c12 + c23 + c33 − 3c22 = V5 + V7 − 3V6 = V6 > 0, we deduce

that the first solution is the best, which means that G ∈ F8.

• If m = n = 8, then there are only three possibilities: either x12 = 2, x22 = 1, x23 = 4 and

x33 = 1, or x12 = 1, x23 = 3 and x22 = 4, or x12 = 2 and x23 = 6. As in the previous case, the

first solution is better than the second. Also, since c22 − 2c23 + c33 = V6 > 0, we deduce that the

first solution is better than the third one, which implies G ∈ F8.

• If n = 7 and m = 8, there are four possibilities:

– x22 = 2 and x23 = 6;

– x22 = 3, x23 = 4 and x33 = 1;

– x12 = 1, x23 = 5 and x33 = 2;

– x12 = x22 = 1, x23 = x33 = 3.

The fourth is better than the first since c12 − c22 − 3c23 + 3c33 = V5 + V7 − V6 = 3V6 > 0. It is

better than the second since c12 − 2c22 − c23 +2c33 = V5 + V7 − 2V6 = 2V6 > 0. It is better than

the third since c22 − 2c23 + c33 = V6 > 0. Hence, G ∈ F8.

• For the remaining case where n ∈ {7, 8, 9} and m ≥ 9, or n ≥ 10, consider the two (n,m)-

preserving vectors A = (0, 0, 1,−2, 1) and A′ = (1, 0,−3, 1, 1) associated with V6 and V5+V7−3V6,

respectively. Let (x′
12, x

′
13, x

′
22, x

′
23, x

′
33) be the (A, x23−x12

2 )-transform of (x12, x13, x22, x23, x33).

Note that x′
12 = x′

23 and x′
13 = 0. Let (x′′

12, x
′′
13, x

′′
22, x

′′
23, x

′′
33) be the (A

′, ⌊x′
22

3 ⌋)-transform of (x′
12,

x′
13, x

′
22, x

′
23, x

′
33). Note that x′′

13 = 0, x′′
12 = x′′

23 and x′′
22 ≤ 2. Equations (4) and (5) then give

x′′
22 = m mod 3, x′′

12 = x′′
23 = ⌊ 3n−2m

3 ⌋, and x′′
33 = ⌊ 7m−6n

3 ⌋. Consider any graph G′ in F8 with

x′′
ij (i, j)-edges. We then have

f(G′) = f(G) +
x23 − x12

2
V6 + ⌊x

′
22

3
⌋(V5 + V7 − 3V6)

= f(G) + (
x23 − x12

2
+ ⌊x

′
22

3
⌋)V6.

If x23 − x12 > 0, or x23 − x12 = 0 and x22 = x′
22 > 2,then f(G′) > f(G), which contradicts the

maximality of G. Hence, we can choose G′ equal to G, which implies G ∈ F8.

Definition 14. F9 is the set of chemical graphs with the following numbers xij of (i, j)-edges:

x12 x13 x22 x23 x33

0
6n−5m+(2m mod 3)

3
0

8m−6n−4(2m mod 3)
3

2m mod 3 if n− 1≤m≤ 6n+2
5

0 0 0 6n− 4m 5m− 6n if 6n+3
5

≤m≤ 3n−3
2
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Theorem 10. Let f be a degree-based topological index such that V1>0, V2>0 and V5<0. A chemical

graph G maximizes f over all graphs of the same order and size as G if and only if G ∈ F9.

Proof. Let G be a chemical graph of order n, size m and with xij (i, j)-edges. Assume that it

maximizes f over all chemical graphs of order n and size m. As shown by Lemma 2, V1 > 0 and V2 > 0

imply x12 = x22 = 0.

• If x33 ≤ 2, Equations (4) and (5) give x33 = (2m mod 3), x13 = 6n−5m+(2m mod 3)
3 and x23 =

8m−6n−4(2m mod 3)
3 . Since x13 ≥ 0, we have 6n− 5m ≥ −2, which implies G ∈ F9.

• If x33 ≥ 3 then

– if x13 = 0, Equations (4) and (5) give x23 = 6n − 4m and x33 = 5m − 6n. Since x33 ≥ 3,

we have m ≥ 6n+3
5 , which implies G ∈ F9.

– if x13>0, consider the (n,m)-preserving vector A=(0, 1, 0,−4, 3) associated with V5, let

a = min{x13, ⌊x33

3 ⌋}, and let (x′
12, x

′
13, x

′
22, x

′
23, x

′
33) be the (A,−a)-transform of (x12, x13,

x22, x23, x33). Then either x′
33 ≤ 2, or x′

33 ≥ 3 and x13 = 0. In both cases, we have seen that

there is a graph G′ ∈ F9 with x′
ij (i, j)-edges. We therefore have f(G′) = f(G)−aV5 > f(G),

which contradicts the maximality of G.

Corollary 5. F8 ∪ F9 is the set of extremal chemical graphs for the topological index ABC.

Proof. It is easy to check that V3 > 0, V6 > 0 and V5 + V7 = 4V6 for ABC, while V1 > 0, V2 > 0 and

V5 < 0 for ABC, which means that F8 is the set of chemical graphs which minimize ABC, while F9 is

the set of chemical graphs which maximize ABC.

Theorem 11. A chemical graph G maximizes the f=aZagreb topological index over all graphs of the

same order and size as G if and only if G∈F8, except in two cases where the xij values of G are as

follows: if n=7 and m=8 then x12=x13=x23=1, x22 = 0 and x33=5; if n=8 and m=8 then x12=x23=2,

x13=1, x22 = 0 and x33=3.

Proof. The aZagreb topological index is defined by cij=( ij
i+j−2 )

3 (see Table 1). Let G be a chemical

graph of order n, size m and with xij (i, j)-edges. Assume that it maximizes f over all chemical graphs

of order n and size m.

Consider the three (n,m)-preserving vectors A1, A2, A3 associated with the three following strictly

positive values W1,W2,W3:

• A1=(1,−1, 0,−1, 1) is associated with W1=c12−c13−c23+c33≈8.01;

• A2=(1,−1,−1, 1, 0) is associated with W2=c12−c13−c22+c23≈4.62;

• A3=(2,−3, 0, 2,−1) is associated with W3=2c12−3c13+2c23 − c33≈10.48.

Let

• (x1
12,x

1
13,x

1
22,x

1
23,x

1
33) be the (A1,max

{
0,min{x13,

x23−x12

2 }
}
)-transform of (x12, x13, x22, x23,

x33);

• (x2
12, x

2
13, x

2
22, x

2
23, x

2
33) be the (A2,min{x1

13, x
1
22})-transform of (x1

12, x
1
13, x

1
22, x

1
23, x

1
33);

• (x3
12, x

3
13, x

3
22, x

3
23, x

3
33) be the (A3, ⌊x2

13

3 ⌋)-transform of (x2
12, x

2
13, x

2
22, x

2
23, x

2
33).

Note that if x2
13 > 0, then x2

22 = 0 and x2
12 = x2

23, which implies x2
33 > 0, else G has order n ≤ 6. We

then have x3
13 ≤ 2 and if x3

13 = 0, then x3
12 = x3

23 and x3
22 = 0. There are therefore only 3 possible

cases for which we can derive the x3
ij values using Equations (4) and (5):
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(1) if x3
13 = 0, then G ∈ F8. Indeed the proof of Theorem 9 uses the fact that V3 > 0 only to show

that x13 = 0, and it is easy to check that V6 > 0 and V5 + V7 = 4V6 for the aZagreb topological

index. Therefore,

– if x13 = 0, then all xij values are equal to the x3
ij values and as in Theorem 9, we conclude

that G ∈ F8;

– if x13 > 0, then as in Theorem 9, we know that there exists a graph G′ ∈ F8 of order n and

size m which contradicts the maximality of G since

f(G′) ≥f(x3
12, x

3
13, x

3
22, x

3
23, x

3
33)

=f(G)+max

{
0,min{x13,

x23 − x12

2
}
}
W1

+min{x1
13, x

1
22}W2+⌊x

2
13

3
⌋W3

>f(G).

(2) if x3
13 = 1, x3

12 = x3
23 and x3

22=0, then Equations (4) and (5) give x3
12 = x3

23 = 3n−2m−2
3 and

x3
33 = 7m−6n+1

3 , which implies m mod 3 = 2.

(3) if x3
13 = 2, x3

12 = x3
23 and x3

22=0, then Equations (4) and (5) give x3
12 = x3

23 = 3n−2m−4
3 and

x3
33 = 7m−6n+2

3 , which implies m mod 3 = 1.

Let us analyze the situation according to the value of m mod 3:

• if m mod 3 = 0 then G ∈ F8 (since we are in Case (1));

• if m mod 3 = 1, then

– if m ≥ 10 or m+ 1 = n = 8, then Case (1) is better than Case (3) since c12 − 2c13 + c22 +

c23 − c33 ≈ 5.85 > 0. Hence, G ∈ F8.

– if m = n = 7, then Case (1) is better than Case (3) since c12−2c13+3c23−2c33 ≈ 2.46 > 0.

Hence G ∈ F8.

• if m mod 3 = 2,

– if m ≥ 11 or m+1 = n = 9 then Case (1) is better than Case (2) since −c13 +2c22 − c33 ≈
1.23 > 0. Hence G ∈ F8.

– if m = 8 and n ∈ {7, 8} then Case (2) is better than Case (1) since c13 − c22 − 2c23 +2c33 ≈
2.15 > 0. Moreover, the xij values of G are equal to the x3

ij values else the graph G′ with

x3
ij (i, j)-edges is such that f(G′) > f(G). Hence, x12 = x13 = x23 = 1 and x33 = 5 if n = 7

and x12 = x23 = 2, x13 = 1 and x33 = 3 if n = 8.

Definition 15. F10 is the set of chemical graphs with the following numbers xij of (i, j)-edges:

x12 x13 x22 x23 x33

0 6n−5m
3

0 8m−6n
3

0 if n− 1 ≤ m≤ 6n−2
5

and m mod 3=0

0 6n−5m−1
3

1 8m−6n−2
3

0 if n− 1≤m ≤ 6n−2
5

and m mod 3=1

0 6n−5m+1
3

0 8m−6n−4
3

1 if n− 1≤m ≤ 6n−2
5

and m mod 3=2

0 0 1 m− 1 0 if m = 6n−1
5

0 0 0 6n− 4m 5m− 6n if 6n
5

≤ m ≤ 3n−3
2

Theorem 12. A chemical graph G minimizes the f=aZagreb topological index over all graphs of the

same order and size as G if and only if G ∈ F10.

Proof. As in the previous theorem, we have cij=( ij
i+j−2 )

3. Let G be a chemical graph of order n, size

m and with xij (i, j)-edges. Assume that it minimizes f over all chemical graphs of order n and size

m. Note that G ̸= Pn since for n = m− 1, the chemical graph G′ with x′
12 = 1, x′

13 = 2, x′
23 = 1 and

x′
22 = m− 4 would have value f(G′) = f(G)− c12+2c13− 2c22+ c23 ≈ f(G)− 9.25. Hence, x12 ≤ x23.
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Consider the five (n,m)-preserving vectors A1, A2, A3, A4, A5 associated with the five following

strictly negative values W1,W2,W3,W4,W5:

• A1=(−1, 1, 1,−1, 0) is associated with W1=−c12+c13+c22−c23≈−4.62;

• A2=(0, 1,−2, 0, 1) is associated with W2 = c13 − 2c22 + c33 ≈ −1.23;

• A3=(0,−1, 0, 4,−3) is associated with W3=−c13+4c23−3c33≈−5.54;

• A4=(0, 0,−1, 2,−1) is associated with W4=−c22+2c23−c33≈−3.39;

• A5=(0,−1, 1, 2,−2) is associated with W5=−c13+c22+2c23−2c33≈−2.15.

Let

• (x1
12, x

1
13, x

1
22, x

1
23, x

1
33) be the (A1, x12)-transform of (x12,x13,x22,x23,x33);

• (x2
12, x

2
13, x

2
22, x

2
23, x

2
33) be the (A2, ⌊x1

22

2 ⌋)-transform of (x1
12,x

1
13,x

1
22,x

1
23,x

1
33);

• (x3
12, x

3
13, x

3
22, x

3
23, x

3
33) be the (A3,min{⌊x2

33

3 ⌋, x2
13})-transform of (x2

12,x
2
13, x

2
22,x

2
23,x

2
33);

• (x4
12, x

4
13, x

4
22, x

4
23, x

4
33) be the (A4,min{x3

22, x
3
33})-transform of (x3

12,x
3
13, x

3
22, x

3
23, x

3
33);

• (x5
12, x

5
13, x

5
22, x

5
23, x

5
33) be the (A5,min{x4

13, ⌊
x4
33

2 ⌋})-transform of (x4
12,x

4
13, x

4
22, x

4
23, x

4
33).

We then have x5
12 = 0, x5

22 ≤ 1, x5
13 = 0 or x5

33 ≤ 1, and x4
22 + x4

33 ≤ 1. There are therefore only 5

possible cases for which we can derive the x5
ij values using Equations (4) and (5):

• if x5
22 = x5

33 = 0 and x5
13 ≥ 1, then x5

13 = 6n−5m
3 and x5

23 = 8m−6n
3 , which implies 6n − 5m ≥ 3

and m mod 3 = 0;

• if x5
22 = 1, x5

33 = 0 and x5
13 ≥ 1, then x5

13 = 6n−5m−1
3 and x5

23 = 8m−6n−2
3 , which implies

6n− 5m ≥ 4 and m mod 3 = 1;

• if x5
22 = 0, x5

33 = 1 and x5
13 ≥ 1, then x5

13 = 6n−5m+1
3 and x5

23 = 8m−6n−4
3 , which implies

6n− 5m ≥ 2 and m mod 3 = 2;

• if x5
22 = x5

13 = 0 and x5
33 ≥ 0, then x5

33 = 5m−6n and x5
23 = 6n−4m, which implies 6n−5m ≤ 0;

• if x5
22 = 1 and x5

13 = x5
33 = 0, then x5

33 = 5m − 6n + 1 and x5
23 = 6n − 4m − 2, which implies

6n− 5m = 1.

Hence all possible x5
ij values correspond to those in F10. So, let G′ be a graph with x5

ij (i, j)-edges.

We have

f(G′) =f(G) + x12W1 + ⌊x
1
22

2
⌋W2 +min{⌊x

2
33

3
⌋, x2

13}W3

+min{x3
22, x

3
33}W4 +min{x4

13, ⌊
x4
33

2
⌋}W5.

IfG does not belong to F10 then at least one of the five values x12, ⌊x1
22

2 ⌋, min{⌊x2
33

3 ⌋, x2
13}, min{x3

22, x
3
33}

and min{x4
13, ⌊

x4
33

2 ⌋} is strictly positive, which implies f(G′) < f(G), a contradiction.

Definition 16. Family F11 is obtained from F10 by adding the following possible values:

x12 x13 x22 x23 x33

1 6n−5m−4
3

0 8m−6n+1
3

0
if n− 1≤m≤ 6n−2

5
and m mod 3 = 1

0 6n−5m+2
3

0 8m−6n−8
3

2

0 1 0 m− 3 2 if m = 6n−1
5

Theorem 13. A chemical graph G maximizes the f=Albertson topological index over all graphs of the

same order and size as G if and only if G ∈ F11.

Proof. The Albertson topological index is defined by cij = |i− j| (see Table 1). Let G be a chemical

graph of order n, size m and with xij (i, j)-edges. Assume that it maximizes f over all chemical
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graphs of order n and size m. Note that the two possible cases for m = 6n−1
5 have the same value since

c13 − c22 − 2c23 + 2c33 = 0. Also, the case in F10 for m ≤ 6n−2
5 and m mod 3 = 1 has the same value

as the two new possibilities in F11 since c12 − c13 − c22 + c23 = c13 − c22 − 2c23 + 2c33 = 0. Moreover,

G ̸= Pn since for n = m − 1, the chemical graph G′ with x′
12 = 1, x′

13 = 2, x′
23 = 1 and x′

22 = m − 4

would have value f(G′) = f(G)− c12 + 2c13 − 2c22 + c23 = f(G) + 4. Hence, x12 ≤ x23.

Consider the five following (n,m)-preserving vectors A1, A2, A3, A4, A5, A6:

• A1 = (−2, 3, 0,−2, 1) is associated with −2c12 + 3c13 − 2c23 + c33 = 2;

• A2=(−1, 2,−1,−1, 1) is associated with −c12+2c13−c22−c23+c33=2;

• A3 = (0, 1,−2, 0, 1) is associated with c13 − 2c22 + c33 = 2;

• A4 = (0, 0,−1, 2,−1) is associated with −c22 + 2c23 − c33 = 2;

• A5 = (−1, 1, 0, 1,−1) is associated with −c12 + c13 + c23 − c33 = 2;

• A6 = (0,−1, 0, 4,−3) is associated with −c13 + 4c23 − 3c33 = 2.

Let

• (x1
12, x

1
13, x

1
22, x

1
23, x

1
33) be the (A1, ⌊x12

2 ⌋)-transform of (x12, x13, x22, x23, x33);

• (x2
12, x

2
13, x

2
22, x

2
23, x

2
33) be the (A2,min{x1

12, x
1
22})-transform of (x1

12, x
1
13, x

1
22, x

1
23, x

1
33);

• (x3
12, x

3
13, x

3
22, x

3
23, x

3
33) be the (A3, ⌊x2

22

2 ⌋)-transform of (x2
12, x

2
13, x

2
22, x

2
23, x

2
33);

• (x4
12, x

4
13, x

4
22, x

4
23, x

4
33) be the (A4,min{x3

22, x
3
33})-transform of (x3

12, x
3
13, x

3
22, x

3
23, x

3
33);

• (x5
12, x

5
13, x

5
22, x

5
23, x

5
33) be the (A5,min{x4

12, x
4
33})-transform of (x4

12, x
4
13, x

4
22, x

4
23, x

4
33);

• (x6
12, x

6
13, x

6
22, x

6
23, x

6
33) be the (A6,min{x5

13, ⌊
x5
33

3 ⌋})-transform of (x5
12, x

5
13, x

5
22, x

5
23, x

5
33).

We then have x6
12 + x6

22 ≤ 1, min{x6
12, x

6
33}=0, min{x6

22, x
6
33}=0, and x6

13 = 0 or x6
33 ≤ 2. Hence, there

are 6 possible cases for which we can derive the x6
ij values using Equations (4) and (5):

• if x6
12 = 0, x6

22 = 1 and x6
33 = 0, then x6

13 = 6n−5m−1
3 and x6

23 = 8m−6n−2
3 , which implies

6n− 5m ≥ 1 and m mod 3 = 1;

• if x6
12 = 1, x6

22 = 0 and x6
33 = 0, then x6

13 = 6n−5m−4
3 and x6

23 = 8m−6n+1
3 , which implies

6n− 5m ≥ 4 and m mod 3 = 1;

• if x6
12 = x6

22 = x6
13 = 0 then x6

23 = 6n− 4m and x6
33 = 5m− 6n, which implies 6n− 5m ≤ 0;

• if x6
12 = x6

22 = x6
33 = 0 and x6

13 ≥ 1, then x6
13 = 6n−5m

3 and x6
23 = 8m−6n

3 , which implies

6n− 5m ≥ 3 and m mod 3 = 0;

• if x6
12 = x6

22 = 0, x6
33 = 1 and x6

13 ≥ 1, then x6
13 = 6n−5m+1

3 and x6
23 = 8m−6n−4

3 , which implies

6n− 5m ≥ 2 and m mod 3 = 2;

• if x6
12 = x6

22 = 0, x6
33 = 2 and x6

13 ≥ 1, then x6
13 = 6n−5m+2

3 and x6
23 = 8m−6n−8

3 , which implies

6n− 5m ≥ 1 and m mod 3 = 1.

Hence all possible x6
ij values correspond to those in F11. So, let G′ be a graph with x6

ij (i, j)-edges.

We have

f(G′) =f(G)+2
(
⌊x12

2
⌋+min{x1

12, x
1
22}

)
+ 2

(
⌊x

2
22

2
⌋+min{x3

22, x
3
33}+min{x4

12, x
4
33}+min{x5

13, ⌊
x5
33

3
⌋}
)

IfG does not belong to F11 then at least one of the six values ⌊x12

2 ⌋, min{x1
12, x

1
22}, ⌊

x2
22

2 ⌋, min{x3
22, x

3
33},

min{x4
12, x

4
33}, min{x5

13, ⌊
x5
33

3 ⌋} is strictly positive, which implies f(G′) > f(G), a contradiction.
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Definition 17. F12 is the set of chemical graphs with the following numbers xij of (i, j)-edges:

x12 x13 x22 x23 x33

2 0 m− 2 0 0 if m = n− 1
0 0 m 0 0 if m = n

(n ≥ 8) 2 0 m− 9 2 5

if m = n+ 1
1 1 m− 8 1 5
1 0 m− 7 3 3
0 1 m− 6 2 3
0 0 m− 5 4 1

0 0 3n− 2m− 1 2 3m− 3n− 1
if n+ 1 < m ≤ 3n−3

21 0 3n− 2m− 3 1 3m− 3n+ 1

Theorem 14. A chemical graph G minimizes the f=Albertson topological index over all graphs of the

same order and size as G if and only if G ∈ F12.

Proof. As in the previous theorem, we have cij = |i− j|. Let G be a chemical graph of order n, size

m and with xij (i, j)-edges. Assume that it minimizes f over all chemical graphs of order n and size

m. If m = n− 1, then G = Pn since f(Pn) = 2 while f(G) ≥ 6 if n3 > 0. Also, if m = n, then G = Cn

since f(Cn) = 0 while f(G) > 0 if n1 + n3 > 0 and m < 3n
2 . Hence, in these cases, we have G ∈ F12.

Assume now m ≥ n+ 1. We thus have x12 ≤ x23 and f(G) is an even number at least equal to 2

(since m < 3n
2 ). To reach value 2, there are only three possibilities:

• if x13 = 1 and x12 = x23 = 0, then x22 = 0 and Equations (4) and (5) give x22 = 3n − 2m − 2

and x33 = 3m− 3n+ 1 which implies m = 3n−2
2 , a contradiction.

• if x12 = x23 = 1 and x13 = 0, then Equations (4) and (5) give x22 = 3n − 2m − 3 and x33 =

3m− 3n+ 1, which implies m > n+ 1 (else x33 = 4 and n3 = 3 imply x33 = 4 > 3 = n3((n3−1)
2 ))

and G ∈ F12.

• if x12 = 0, x23 = 2 and x13 = 0, then Equations (4) and (5) give x22 = 3n − 2m − 1 and x33 =

3m− 3n− 1, which implies m > n+ 1 (else x33 = 1 and n3 = 1 imply x33 = 1 > 0 = n3((n3−1)
2 ))

and G ∈ F12.

Hence, if m > n + 1 then G ∈ F12. The remaining case is m = n + 1 for which f(G) ≥ 4. There are

only six possibilities to reach the minimum value 4:

• if x12 = x23 = 2 and x13 = 0, then x22 = m− 9 and x33 = 5.

• if x12 = x23 = 1 and x13 = 1, then x22 = m− 8 and x33 = 5.

• if x12 = 1, x23 = 3 and x13 = 0, then x22 = m− 7 and x33 = 3.

• if x12 = 0, x23 = 2 and x13 = 1, then x22 = m− 6 and x33 = 3.

• if x12 = 0, x23 = 4 and x13 = 0, then x22 = m− 5 and x33 = 1.

• if x12 = x23 = 0 and x13 = 2, then x22 = 0 and x33 = m− 2, which implies n = 6.

Since G is of order n ≥ 7, we have G ∈ F12.

6 Conclusion

Many topological indices have been proposed to study the chemical properties of molecules, and many

papers focus on extremal graphs for these indices, each paper dealing with a particular index. We

have shown that many of these topological indices have the same extremal properties in the sense that

the chemical graphs that maximize or minimize the values of these indices are often the same. Thus,

for example, for 29 of these indices, one might expect 58 classes of extremal chemical graphs, while 5

families are sufficient to describe them all. Also, for another example, chemical graphs of even order n
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for which x13 = 3n−2m
2 , x33 = 4m−3n

2 and x12 = x22 = x23 = 0 are extremal for 29 topological indices

(since these graphs belong to F1 ∩ F3).

Most of the characterizations we have given for extremal graphs are based on a set of 8 values

V1, . . . , V8. If new topological indices are proposed, it is therefore easy to check whether they have the

same extremal properties of the indices studied in this paper. Note that some degree-based topological

indices that we have not analyzed in this paper do not have any of the stated properties that allow

us to characterize their extremal chemical graphs. For example, the reduced reciprocal Randić index

(rrRandić) mentioned in [27] and defined by cij =
√
(i− 1)(j − 1) is such that V1, V2, V3 and V4

are strictly negative. An analysis similar to those performed in Section 5 easily shows that the set

of extremal chemical graphs of order n ≥ 10 for the aZagreb index is strictly contained in that for

rrRandić.

As Ivan Gutman pointed out [24], “today we have far too many topological indices, and there seems

to lack a firm criterion to stop or slow down their proliferation”. We believe we have provided a tool

to quickly test whether a new topological index has the same extremal properties as many existing

indices.
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