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Abstract : Blending problems occur when different components are mixed to form an end product.
The recipe typically has some flexibility as long as specific quality conditions are met. We consider the
blending problem as a multi-period, multi-level lot sizing problem. The problem involves determining
the setup periods for purchasing the components and producing the products, along with their respec-
tive quantities and blending. A two-stage stochastic programming formulation is introduced to account
for demand uncertainty for the end products. In the first stage, before demand is realized, decisions
are made on the setup periods for both production and purchase, and their corresponding quantities.
In the second stage, after demand is revealed, the inventory and lost sales decisions are made. The
goal is to minimize the expected total cost incurred by the decisions made in both stages. Heuristic
approaches are proposed to solve the problem, using the expected demand through the determinis-
tic formulation and sets of demand scenarios in the application of the sample average approximation
method. Finally, numerical experiments are conducted with test instances to evaluate the modeling
results for the expected cost and computational time using the proposed heuristics.

Keywords : Lot sizing problem, blending problem, demand uncertainty, stochastic optimization,
sample average approximation
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1 Introduction

In contrast to discrete manufacturing, where typically a predetermined number of components is used

to produce an end product, blending problems in the process industry allow for some flexibility with

respect to the quantity of the inputs used. In such cases the amount used of the components may

vary as long as specific quality characteristics remain within certain boundaries. Notable applications

of such flexible manufacturing can be found in fertilizer (Ashayeri et al. 1994), food (Akkerman et al.

2010), petrochemical (Yang et al. 2017), and coal production (Chen et al. 2022).

Process industries determine the mix for producing the end products, while also deciding on the

quantities of the components to purchase and the quantities of the end products to produce. In

standard blending problems, these decisions typically aim to satisfy an external demand for the end

products within a single period. However, it is sometimes possible to store quantities for later use.

As a result, the planning horizon for the associated decisions can be extended to account for multiple

time periods, where the inventory provides the link between consecutive periods (Pathumnakul et al.

2011).

The planning of the blending problem over multiple time periods is done at two levels. One is

the production level, where recipes for the products are determined, and the setups are prepared

to produce them. The other is the purchase level, where the purchase periods and quantities for

the required components are determined. Clearly, there is a hierarchical relationship between these

levels, which is essential for material coordination and inventory control. An integrated approach is

used to manage both levels simultaneously, leading to improved planning performance in multi-level,

multi-period blending problems (Fiorotto et al. 2021).

Often, the external demand for the end products is not known with certainty in advance. Because

demand variability directly affects material inventory management, it is important to consider that

the actual demand may be unknown when making the purchase and production decisions. However,

in blending problems, the predominant assumption is still that the demand is deterministic.

The aim of this paper is to address the blending problem under demand uncertainty. The problem

is considered as an integrated two-level lot sizing problem considering production flexibility. We

assume that material quantity flexibility is incorporated in the choice of the proportions of the input

components used to produce the output end products. Additionally, constraints related to inventory

balance, machine capacity and quality requirements are also taken into account. The general problem

is referred to as MCLSB, which stands for Multi-item Capacited Lot Sizing and Blending problems.
In this regard, the contributions of this paper are as follows:

• Proposing a two-stage stochastic programming formulation to address the MCLSB problem under

stochastic demand. In this formulation, the associated decisions for production and purchase

follow the static uncertainty strategy used in the stochastic lot sizing problems;

• Developing a solution algorithm for the stochastic problem based on the Sample Average Ap-

proximation (SAA) method. We also improve the computational efficiency and solution quality

through the Adjustable SAA variant (ASAA);

• Providing computational results to evaluate the expected costs and computational complexity

for different heuristic solutions. The experiments include comparisons between the deterministic

and SAA heuristics, as well as between the adjustable and regular SAA approaches.

The remainder of the paper is structured as follows. Section 2 reviews the literature related

to the MCLSB problem. Section 3 provides the general assumptions and the deterministic Mixed-

Integer Linear Programming (MILP) formulation for the MCLSB problem, followed by a two-stage

stochastic programming formulation taking into account demand uncertainty. In Section 4, we describe

the methodology for generating heuristic candidate solutions and evaluating them in the stochastic

setting. The solution approaches for approximating the stochastic problem include the deterministic

Mean Value (MV) heuristic choosing the expected value of the probabilistic demand, and the SAA
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and ASAA heuristics sampling sets with a number of demand realizations. Section 5 presents the

computational experiments and average results conducted with randomly generated instances. Finally,

Section 6 provides the conclusions and the proposals for future research.

2 Literature review

Mathematical programming models for blending problems in process industries are typically designed

considering single-period planning (Ashayeri et al. 1994). In the single-period blending, a model is

used to exploit material quantity flexibility to produce the demand for an end product (Rutten 1995).

The concept of material quantity flexibility in blending problems enables the quantity of components

in the recipe (or mix) of the end product to vary. Additionally, specific conditions in the recipe ensure

that some prescribed quality requirements of the end product, derived from the quality attributes of

the components used, remain within certain bounds. For example, in fuel processing involving the

blending of various crude oils, chemical compound levels are monitored to control pollutant emissions

and consumption rates (Singh et al. 2000), and in food production involving the blending of various

flours, specific nutritional levels are established for dietary requirements (Akkerman et al. 2010). Thus,

the standard single-period model for blending problems is used to determine the proportions of the

components in the recipe that minimize the costs so that the end product quality specifications are

met.

Unlike the single-period problem, accounting for material quantity flexibility while simultaneously

considering usage in future time periods generally results in more economic planning for process in-

dustries (Williams and Redwood 1974; Reddy et al. 2004; Chen and Maravelias 2022). As such, a

multi-period blending model that includes inventory considerations can play a crucial role in minimiz-

ing total costs by optimizing decisions on the purchase quantities of components and the production

quantities of end products over an extended planning horizon. When also taking into account the

need for setup preparations to satisfy a dynamic demand, the value provided by the inventory in the

multiple-period planning can be even more beneficial (Pathumnakul et al. 2011). Moreover, indus-

tries must generally account for limitations in their planning, such as machine capacity and resource

availability constraints (Kilic et al. 2013).

In the multi-period blending problem, there is a lot sizing structure at two levels: the level related

to the production of the end products and the level related to the purchase plan for the components.

Basically, there are two approaches to plan the coordination and optimization of these correlated

activities. First, there is the sequential approach, which first optimizes the decisions at the production

level to satisfy the external demand. These decisions subsequently set the limitations for the decisions

at the purchase level regarding the internal demands. Second, there is the integrated approach, which

covers the total problem with the use of one large model that captures the full interaction between the

two levels. The early integrated blending models were usually dealt with using the sequential approach

due to their prohibitive solution time and complexity drawbacks (Rutten 1993). However, the speed of

computer power has increased rapidly, so nowadays new mathematical programming packages enable

the implementation and solution procedure of comprehensive blending models in a reasonable amount

of time. Thus, novel extensions for blending problems focus more and more on incorporating trends

for cost savings, since the local optimization of compact models usually does not result in a global

optimum (Fiorotto et al. 2021).

A limitation in existing approaches for process manufacturing is the reliance on deterministic

assumptions for data (Mula et al. 2006). In blending problems, important industrial considerations

focus on production planning procedures that utilize recipe flexibility to address uncertainty (Rutten

and Bertrand 1998). One relevant source of uncertainty can arise from the supply aspect regarding

the quality composition of the components, which can lead to infeasibility in meeting the requirements

of the end products (Candler 1991; Yang et al. 2017; Peng et al. 2021). Another critical issue is

demand uncertainty, as neglecting it can lead to stockouts and a lower service level. Whereas the
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deterministic approach, using the expected value of a probabilistic demand, is commonly used in

blending problems to address demand uncertainty (Bertrand and Rutten 1999), the exploration of

more accurate approaches is still in its early stages (Chen et al. 2022; Hilali et al. 2023). To our

knowledge, planning strategies that incorporate demand uncertainty while integrating production and

purchase lot sizing decisions, along with recipe flexibility, remain superficial in the literature for the

blending problem. This paper aims to fill this research gap by proposing improved planning strategies

through mathematical programming models.

Depending on the planning framework, different decision responses can be adopted to handle un-

certainty. Within the scope of the lot sizing problem, the level of adaptability of decision-making in

response to demand uncertainty is classified by Bookbinder and Tan (1988) into three uncertainty

strategies: static, dynamic and static-dynamic. The static uncertainty strategy is the most stable

approach as it determines that setup and production decisions are made at the beginning of the plan-

ning horizon and remain unchanged regardless of how demand is realized. In contrast, the dynamic

uncertainty strategy is the most adaptable approach, as the setup and production decisions can be

made after the demand is revealed in each period. The static-dynamic uncertainty strategy addresses

a balance between these two previous approaches: the setup decisions are made at the beginning of the

planning horizon and remain unchanged, whereas production quantities can be made after the demand

is revealed. In this paper, we assume that the planning prioritizes a steady decision-making approach

by employing the static uncertainty strategy. A shortcoming of limiting the production adaptability in

response to the demand realization is that stock-outs can occur. In case the demand cannot be satis-

fied on time, a common approach is to quantify the costs of not satisfying the demand using lost sales

penalties proportional to the unmet demand (Absi and Kedad-Sidhoum 2008). In lot sizing problems

under demand uncertainty, lost sales can be incorporated to consider the possibility of stock-outs in

some demand scenarios (Ghamari and Sahebi 2017; Quezada et al. 2020).

When demand uncertainty is considered for production and purchasing over a planning horizon,

periods are naturally associated to decision stages. As a result, part of the literature focuses on a

multi-stage stochastic programming approach to model the associated lot sizing problem (Tempelmeier

2013). In general, the combination of increased dimensionality and decision dependency on the possible

branches for the uncertainty realization makes multi-stage stochastic problems too complex. In order

to get a simpler but reasonable approximation, modeling approaches can use a two-stage stochastic

programming approach (Higle 2005). In the two-stage stochastic approach, the aim is to minimize the

cost incurred by decisions made before the uncertainty is revealed, called first-stage decisions, plus the

expected cost for the recourse decisions after the uncertainty has been realized, called second-stage

decisions. Two-stage stochastic programming approaches have been successfully used to assess the

impact of demand uncertainty on planning problems, considering lost sales as a recourse mechanism

(Gruson et al. 2021; Alvarez et al. 2021). Furthermore, two-stage stochastic formulations can be

applied in a rolling/receding horizon fashion as a heuristic to solve multi-stage stochastic lot sizing

problems under demand uncertainty (Sereshti et al. 2021, 2022).

This paper addresses a two-stage stochastic problem setting for the blending problem under demand

uncertainty. The first stage consists of the planning for purchasing and production over the time

periods, which includes the decision on the production quantities and blending of end products and

purchase quantities of the components, along with their corresponding setup periods. The second stage

involves the recourse in the form of lost sales and inventory decisions. We cannot directly solve the

two-stage stochastic program using a solver due to the presence of the random data and the expectation

terms in its objective function. Given this premise, a heuristic approximation to address stochastic

programming problems can be implemented using sampling and scenario approximation techniques

(Kaut and Stein 2003). In particular, the Sample Average Approximation (SAA) method proposed

by Shapiro and Homem-de Mello (1998) is an approach utilized to tackle stochastic programs. In the

SAA approach, the uncertain data is replaced by a finite number of sampled realizations, and the true

expected objective value of the problem is approximated by the average cost over these realizations.
Then, candidate solutions are yielded from independent replications of the sets of realizations by
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solving the corresponding approximated problems with a solver. The SAA method has been applied

successfully for a variety of two-stage stochastic programming problems in the literature, including

routing problems (Verweij et al. 2003), hub location problems (Contreras et al. 2011), supply chain

design problems (Santoso et al. 2005; Schütz et al. 2009; Oliveira and Hamacher 2012), as well as

stochastic lot sizing problems (Taş et al. 2019; Sereshti et al. 2024).

While larger sets intuitively provide a better approximation of the optimal solution (Kleywegt

et al. 2002; Mak et al. 1999), they also increase the computational complexity, as solvers are often

unable to handle large problems efficiently within reasonable time limits. As an improvement to the

computational limitation of the regular SAA method, the Adjustable Sample Average Approximation

(ASAA) method proposed by Agra et al. (2018) divides the generation of solutions into distinct phases.

Firstly, we consider solving problems using sets with small numbers of realizations and then identify

the variables that have the same value across the obtained solutions. By fixing these variables to

their respective values, the complexity is reduced and a larger set of realization can be considered

in further iterations. The general idea of the ASAA is to provide a good balance between solving

smaller problems with less computational effort in the first phase and still getting good solutions by

considering problems with a larger set of scenarios in the second phase. This technique has been

successfully applied to solve two-stage stochastic lot sizing problems considering demand uncertainty

(Tomazella et al. 2024).

3 Problem statement and mathematical formulations

In this section, we detail the base assumptions for the MCLSB problem and present its deterministic

formulation. In Subsection 3.1, we introduce the stochastic formulation taking demand uncertainty

into account.

The problem involves satisfying the demand for a set of end products over a planning horizon divided

into multiple time periods. Production occurs at a blending station, where several end products are

produced by mixing a range of components. Only the end products have external demand. The

quantity of components used in the recipe to produce the end products can vary. The components

are available to be purchased, and each component requires a different purchase setup. For each end

product, a different production setup is needed when production occurs. For the final mix of the end

products, specific quality parameters must be considered to ensure that all products meet the required

standards. In this paper, we model the most relevant operational aspects considered in capacitated

lot sizing (Jans and Degraeve 2008) and blending problems (Kilic et al. 2013). One aspect is the

capacity consumption incurred for setup and production during each time period when end products

are produced. This represents, for example, processing limitations or a cleaning operation that needs

time to be done at the blending station. Furthermore, each quality parameter in the end products is

constrained by setting limits on its proportion relative to the total amount of product produced. A

linear blending is assumed to determine the composition and qualities of the end products, defined

as the unit-weighted average of the qualities of the components in the final mix. The values for the

quality parameters of the components are assumed to be known. Overall:

1. A single blend machine is used for blending all end products, which has a limited capacity (in

units of time) in each period;

2. Setup and production consumption for end products, as well as setup costs, are sequence-

independent and do not depend on the components in their blending;

3. End products and components can be held in inventory between periods incurring holding costs,

starting with zero initial inventories;

4. Shortages in each time period incur a penalty cost given per unit of demand considered as lost

sales.

The notation utilized in the mathematical models is:



Les Cahiers du GERAD G–2025–02 5

Sets

P: Set of end products, indexed by j.

C: Set of components, indexed by i.

Q: Set of quality characteristics, indexed by q.

T : Set of time periods, indexed by t.

Cj ⊂ C: Set of components needed to make end product j.

Pi ⊂ P: Set of end products that use component i.

Parameters

MC
it : Maximum purchase of component i in period t (units).

hcCit : Inventory cost of component i in period t ($/unit).
scCit : Setup cost of component i in period t ($).
vcCit : Purchase cost of component i in period t ($/unit).
ME

jt : Maximum production of end product j in period t (units).

hcEjt: Inventory cost of end product j in period t ($/unit).
scEjt: Setup cost of end product j in period t ($).
vcEjt: Production cost of end product j in period t ($/unit).
pcjt: Lost sale cost of end product j in period t ($/unit).
Ct: Capacity available for production in period t (hours).

stjt: Setup time for end product j in period t (hours).

vtjt: Production time for end product j in period t (hours/unit).

qaqi: Value of quality parameter q in component i (#/unit).

qlqj : Minimum proportion for the quality parameter q in end product j (#/unit).

quqj : Maximum proportion for the quality parameter q in end product j (#/unit).

dEjt: Demand for end product j in period t (units).

Decision Variables

xC
it : Amount of component i purchased in period t (units).

yCit : Binary variable indicating if a setup for purchasing component i occurs in period t (1 if setup is

prepared, 0 otherwise).

sCit : Inventory of component i at the end of period t (units).

xE
jt: Amount of end product j produced in period t (units).

yEjt: Binary variable indicating if a setup for producing end product j occurs in period t (1 if setup is

prepared, 0 otherwise).

sEjt: Inventory of end product j at the end of period t (units).

lEjt: Lost sales of end product j in period t (units).

pEijt: Amount of component i blended into end product j in period t (units).

The decision-making involves determining an integrated plan for the purchase of the components

and the production of the end products to satisfy the dynamic demand. The primary objective is

to minimize the total cost, which is incurred for the setup, purchase and inventory decisions for the

components, plus the setup, production, inventory and lost sale decisions for the end products.

Blending planning models usually use deterministic demand predictions to decide on purchase and

production subject to inventory balance, capacity limitations, and quality requirements constraints

(Bertrand and Rutten 1999; Pathumnakul et al. 2011). Thus, the deterministic formulation for the
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MCLSB problem is given by (1)–(13), which is an extension of the model presented in Fiorotto et al.

(2021).

min
∑
t∈T

∑
i∈C

(scCity
C
it + vcCitx

C
it + hcCits

C
it) +

∑
t∈T

∑
j∈P

(scEjty
E
jt + vcEjtx

E
jt + hcEjts

E
jt + pcjtl

E
jt) (1)

Subject to:

xC
it ≤ MC

it y
C
it ∀i ∈ C, t ∈ T (2)

xE
jt ≤ ME

jty
E
jt ∀j ∈ P, t ∈ T (3)

sCit−1 + xC
it =

∑
j∈Pi

pEijt + sCit ∀i ∈ C, t ∈ T (4)

sEjt−1 + xE
jt + lEjt = dEjt + sEjt ∀j ∈ P, t ∈ T (5)

lEjt ≤ dEjt ∀j ∈ P, t ∈ T (6)∑
j∈P

(stjty
E
jt + vtjtx

E
jt) ≤ Ct ∀t ∈ T (7)

∑
i∈Cj

pEijt = xE
jt ∀j ∈ P, t ∈ T (8)

qlqjx
E
jt ≤

∑
i∈Cj

qaqip
E
ijt ∀j ∈ P, q ∈ Q, t ∈ T (9)

quqjx
E
jt ≥

∑
i∈Cj

qaqip
E
ijt ∀j ∈ P, q ∈ Q, t ∈ T (10)

yEjt ∈ {0, 1}, xE
jt, s

E
jt, l

E
jt ≥ 0 ∀j ∈ C, t ∈ T (11)

yCit ∈ {0, 1}, xC
it , s

C
it ≥ 0 ∀i ∈ C, t ∈ T (12)

pEijt ≥ 0 ∀i ∈ C, j ∈ P, t ∈ T (13)

The objective (1) minimizes the total cost that is incurred by setup, purchase and inventory of

components, and setup, production, inventory and lost sales of end products. Constraints (2) and (3)

indicate that the purchase of components and production of end products in a period occur only if the

proper setup is done. Constraints (2) and (3) use big-M constants. ME
jt can be set as the maximum

amount of end product j ∈ P that can be produced without violating capacity in period t ∈ T , given

by ME
jt = (Ct − stjt)/vtjt. Accordingly, for component i ∈ C in period t ∈ T , MC

it can be set as

MC
it =

∑m
τ=t

∑
j∈Pi

ME
jτ considering the simple case of using only one component to produce these

maximum amounts. Constraints (4) and (5) correspond to the inventory balance for components and

end products, respectively. Constraints (6) guarantee that the lost sales of end products in each period

are at most the realized demand. Constraints (7) impose that the total time for setup and production

in each period is limited to the time capacity available for the blending machine. Constraints (8)

define the final blending of components into end products. More specifically, the total amount of an

end product made in a period is equal to the sum of the amounts of all the components that go into

that end product. Constraints (9) and (10) ensure that the final blends meet all the required qualities.

Finally, constraints (11), (12) and (13) define the domain of the decision variables.

3.1 A stochastic programming formulation

In the MCLSB problem under demand uncertainty, we consider that demand for each end product

j ∈ P in period t ∈ T is a random parameter denoted by d̃Ejt. The uncertain demand is caracterized

by a specific probability distribution considering the corresponding mean value E[d̃Ejt], and standard

deviation σ[d̃Ejt] that is represented as a fraction of this mean (Tunc et al. 2018; Gruson et al. 2021).
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To address the randomness of the demand realizations in the planning, we assume the decision-

making process is divided into two stages according to the uncertainty realization. In the first stage, we

assume that only the joint probability distribution for the random demand vector d̃E = (d̃Ejt)j∈P,t∈T
and its support Ω underlying the potential realizations are available. In the second stage, the demand

over the whole planning horizon is revealed, where each ω ∈ Ω corresponds to a specific realization

dE(ω) of the stochastic demand, which is referred to as a demand scenario.

A stochastic formulation considering a static uncertainty strategy

In the two-stage stochastic setting, the first-stage decisions are made before the uncertain parameters

are revealed. In our model, we assume that the quantity and setup decisions related to the production

of the end products and the purchase of the components must be made before the demand is realized.

These are hence our first-stage decisions. Then, in the second stage when the actual demand infor-

mation is revealed, the remaining decisions (i.e., inventory and lost-sale variables) are the recourse

decisions, which permit reacting to the demand scenario that is observed. In this sense, uncertainty

must be absorbed through the proper dimensioning of the lot sizes for the production and purchase

plans. The approach proposed is equivalent to using a frozen schedule, which aligns with the Static

Uncertainty Strategy (Bookbinder and Tan 1988). The application of the static uncertainty strategy

is particularly justified in cases where it is important to avoid production nervousness and define a

capacity-feasible plan in order to organize the production resources in advance.

Since the purchase quantities for the components and the production quantities for the end products

are first-stage variables, blending decisions can also be considered as first-stage variables. This is

because blending decisions depend directly on the quantities of the components and the products

(e.g., defining ratios or recipes), which have been determined in the first stage, and there are no costs

associated with these blending decisions. Thus, treating pEω = pE as fixed across scenarios ω ∈ Ω

has no impact on the recourse mechanism. Moreover, this also implies that inventory for components

in the second stage are directly determined. Indeed, observe that the component inventory variables

sCω = sC results from constraints (4), which are rewritten as sCitω =
∑t

τ=1

(
xC
iτ −

∑
j∈Pi

pEijτ

)
+ sCi0 for

each period t ∈ T and component i ∈ C over all scenarios ω ∈ Ω.

In the first stage, the decision zF = (xC , yC , sC , pE , xE , yE) is initially made without knowing

the demand scenario that will be realized, incurring a fixed first-stage cost. Subsequently, full in-

formation is revealed on the realization of the demand scenario dE(ω). The second stage decision

zSω = (sEω , l
E
ω ), is then made to react to the realized demand, which incurs a second stage cost

RdE(ω)(x
C , yC , sC , pE , xE , yE). This cost is computed as the optimal value of the second stage prob-

lem (14)–(17). The timing of events for the Static Uncertainty strategy applied to the MCLSB under

demand uncertainty (Static MCLSB problem) can be visualized in Figure 1. The two-stage stochastic

programming formulation for the MCLSB problem is stated as (18)–(28).

RdE(ω)(x
C , yC , sC , pE , xE , yE) = min

∑
t∈T

∑
j∈P

(
hcEjts

E
jt + pcjtl

E
jt

)
(14)

Subject to:

sEjt−1 + xE
jt + lEjt = dEjt(ω) + sEjt ∀j ∈ P, t ∈ T (15)

lEjt ≤ dEjt(ω) ∀j ∈ P, t ∈ T (16)

sEjt, l
E
jt ≥ 0 ∀j ∈ P, t ∈ T (17)

min
∑
t∈T

∑
i∈C

(scCity
C
it + vcCitx

C
it + hcCits

C
it) +

∑
t∈T

∑
j∈P

(scEjty
E
jt + vcEjtx

E
jt) + EΩ[Rd̃E (xC , yC , sC , pE , xE , yE)] (18)
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Figure 1: Timing of events for the Static MCLSB problem.

Subject to:

xC
it ≤ MC

it y
C
it ∀i ∈ C, t ∈ T (19)

xE
jt ≤ ME

jty
E
jt ∀j ∈ P, t ∈ T (20)

sCit−1 + xC
it =

∑
j∈Pi

pEijt + sCit ∀i ∈ C, t ∈ T (21)

∑
j∈P

(stjty
E
jt + vtjtx

E
jt) ≤ Ct ∀t ∈ T (22)

∑
i∈Cj

pEijt = xE
jt ∀j ∈ P, t ∈ T (23)

qlqjx
E
jt ≤

∑
i∈Cj

qaqip
E
ijt ∀j ∈ P, k ∈ Q, t ∈ T (24)

quqjx
E
jt ≥

∑
i∈Cj

qaqip
E
ijt ∀j ∈ P, q ∈ Q, t ∈ T (25)

yEjt ∈ {0, 1}, xE
jt ≥ 0 ∀j ∈ P, t ∈ T (26)

yCit ∈ {0, 1}, xC
it , s

C
it ≥ 0 ∀i ∈ C, t ∈ T (27)

pEijt ≥ 0 ∀i ∈ C, j ∈ P, t ∈ T (28)

The objective cost (18) minimizes the first-stage cost for deciding production and purchase in

advance of the demand realization, while accounting for the expected lost sale and inventory costs

resulting from the second-stage decisions. For first-stage decisions zF satisfying constraints (19)–(28),

the second-stage problem can be solved for any arbitrary demand scenario dE(ω) with a solver. How-

ever, solving the two-stage stochastic problem as a whole, considering all realizations, is prohibitive

due to the computation of the expected value term, which depends on the number of realizations in Ω

for the random demand vector. To make the problem numerically tractable in order to find the op-

timal objective value, discretizing the distribution of the random demand d̃E is typically done (Kaut

and Stein 2003). In this approach, sample approximation is an effective method, where the original

support Ω is approximated based on finite sets of randomly generated realizations.

4 Solution methodology

In this section, we present the approaches proposed to obtain and evaluate candidate solutions for

the two-stage stochastic MCLSB problem. The deterministic approximation (MV) heuristic is first

discussed in Subsection 4.1, and the application of the Sample Average Approximation (SAA) heuristic

is described in Subsection 4.2. Then, the procedure for deriving statistical bounds and indicators

regarding the optimality is discussed in Subsection 4.3. Lastly, we describe a variant of the SAA in

Subsection 4.4, called the Adjustable Sample Average Approximation (ASAA) heuristic.
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4.1 Deterministic approximation heuristic

A simple procedure to obtain a first-stage solution to the stochastic problem consists of disregarding

uncertain values and solve the deterministic approximation problem that uses expected demand val-

ues instead. The solution derived from this approach provides a first-stage solution, which must be

evaluated over a large number of demand realizations to compute the incurred costs in the stochastic

setting, as will be explained. This counterpart is referred to as the mean value formulation (MV) or

expected value problem, which is a common baseline heuristic in the literature (Verweij et al. 2003;

Santoso et al. 2005; Contreras et al. 2011; Alvarez et al. 2021).

We obtain the MV formulation by replacing the values for the demands dE in the deterministic

mathematical formulation (1)–(13) with their expected values E[d̃E ]. Thus, in the MV formulation,

the new constraints (29) and (30) are considered instead of (5) and (6). Since the resulting formulation

is a MILP model, the first-stage decision zFEV can be obtained with available commercial solvers.

sEjt−1 + xE
jt + lEjt = E[d̃Ejt] + sEjt ∀j ∈ P, t ∈ T (29)

lEjt ≤ E[d̃Ejt] ∀j ∈ P, t ∈ T (30)

4.2 Sample average approximation heuristic

To better approximate uncertainty, a finite number of specific realizations is randomly sampled. These

realizations then serve in the two-stage stochastic problem as a set of scenarios to approximate the

expected second-stage cost term. An approximate problem for the stochastic problem is then solved,

from which a first-stage solution can be derived using a solver. In the literature, this heuristic approach

is referred to as the Sample Average Approximation (SAA) method (Shapiro and Homem-de Mello

1998; Kleywegt et al. 2002). Since the yielded first-stage solution is based on an approximation, an

evaluation over an independent larger set of scenarios is required.

Sampling approximation in the two-stage stochastic MCLSB problem is applied considering a set

ΩK ⊂ Ω of K realizations of the random demand d̃E corresponding to possible demand scenar-

ios {dE(ω1), · · · , dE(ωK)}. The associated sample average approximation problem is (31) subject

to (19)–(28) in conjunction with (32)–(34), where the objective is to minimize the sum of the first-

stage cost cost(zF) (related to the decisions on setup, purchase and inventory of components, and setup

and production of end products) and the associated expected recourse cost (1/K)
∑K

s=1 RdE(ωs)(z
F)

(associated with the decisions on lost sales and inventory of products over all demand scenarios in ΩK).

The formulation is a MILP model, which is solved using a solver. The procedure is then repeated in

M iterations using independent sets (ΩK)1, · · · , (ΩK)M ⊂ Ω of K demand scenarios each, providing

the associated objective function values (ZK)1, · · · , (ZK)M and first-stage decisions zF1 , . . . , z
F
M .

min
∑
t∈T

∑
i∈C

(scCity
C
it + vcCitx

C
it + hcCits

C
it) +

∑
j∈P

∑
t∈T

(scEjty
E
jt + vcEjtx

E
jt) +

1

K

∑
ω∈ΩK

∑
j∈P

∑
t∈T

(
hcEjts

E
jtω + pcjtl

E
jtω

)
(31)

sEjt−1ω + xE
jt + lEjt = dEjt(ω) + sEjtω ∀j ∈ P, t ∈ T , ω ∈ ΩK (32)

lEjtω ≤ dEjt(ω) ∀j ∈ P, t ∈ T , ω ∈ ΩK (33)

sEjtω, l
E
jtω ≥ 0 ∀j ∈ P, t ∈ T , ω ∈ ΩK (34)

4.3 Bounding procedure

At this point, a feasible first-stage decision zF is available using either the sample approximation or

the deterministic heuristics. We now discuss the ideas for the bounding technique in order to estimate

the quality of candidate solutions compared to the optimum one, as outlined in Mak et al. (1999).
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Upper bounds

The expected second-stage term needs to be estimated in the evaluation of a given feasible first-stage

solution in the stochastic setting. To mitigate the inherent error coming from the individual samples,

the estimation process requires computing the second-stage value over a set of realizations that is much

larger than the number of scenarios used for the approximation problems. This process consequently

derives an upper bound for the true optimal stochastic program problem value based on Monte Carlo

simulation.

The evaluation process requires computing the second-stage cost RdE(ω)(z
F). For a given first-

stage decision zF and demand scenario dE(ω), the value of RdE(ω)(z
F) is obtained by solving a pure

linear programming problem on the second-stage variables, i.e., (14)–(17). In the estimation of the

expected second-stage cost for a given first-stage decision zF, the set of scenarios ΩK′ containing a

total K
′
>> K of demand scenarios is employed. Thus, the value (35) provides an upper-bound

estimate in the stochastic setting.

UBK′ (zF) = cost(zF) +
1

K ′

K
′∑

s=1

RdE(ωs)(z
F) (35)

Lower bounds

In the SAA method, solving M problems using independent sets of scenarios yields a set of optimal

objective values. The average of these values allows us to estimate the expected objective value of the

SAA problems, which serves as a statistical lower bound for the true optimal value of the stochastic

problem (Bidhandi and Patrick (2017)).

More specifically, to derive a lower bound for the optimal value of the two-stage stochastic MCLSB

problem, we need the optimal objective values (ZK)1 , . . . , (ZK)M obtained from solving M SAA

problems considering sets (ΩK)1, . . . , (ΩK)M of K demand scenarios. Given the difficulty in solving

these problems to optimality, if sub-optimal solutions are returned due to stopping criteria, the average

of the final lower bounds
(
ZLB
K

)
1
, . . . ,

(
ZLB
K

)
M

hence provides a conservative estimate. Consequently,

the value in (36) is a lower bound in the stochastic setting.

LBK,M =
1

M

M∑
r=1

(
ZLB
K

)
r

(36)

Gap and confidence

The lower and upper bounds are used to compute the estimated optimality gap of a first-stage decision

in (37). It is also possible to calculate the confidence interval for the optimality gap, assuming it is

normally distributed (Contreras et al. 2011).

GapK,M,K′ (zF) = UBK′ (zF)− LBK,M (37)

The sample variance of the estimated expected second-stage cost in (38) is used to calculate the

variance of the upper bound. Similarly, the variance of the optimal objective values from the SAA

problems in (39) provides the variance of the statistical lower bound. Then, the estimated optimality

gap variance can be calculated as in (40). For the level of confidence 95%, the extremes of the confidence

interval for the relative optimality gap are computed as in (41).

σ2
UB

K
′ (zF) =

1

K ′(K ′ − 1)

K
′∑

r=1

(
RdE(ωr)(z

F)− 1

K ′

K∑
s=1

RdE(ωs)(z
F)

)2

(38)
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σ2
LBK,M

=
1

M(M − 1)

M∑
r=1

(Z(ΩK)r − LBK,M )
2

(39)

σ2
Gap(zF) = σ2

UB
K

′ (zF) + σ2
LBK,M

(40)

CI(95%;GapK,M,K′ ) = (GapK,M,K′ )± 1.96× (σGap
K,M,K

′ ) (41)

4.4 Adjustable sample average approximation heuristic

While larger scenario sets of scenarios in the SAA method generally lead to better approximations of

the optimal solution, they also increase MILP problem size, which makes it more difficult to yield good

solutions. To address this scalability issue, the Adjustable Sample Average Approximation (ASAA)

method proposed by Agra et al. (2018) divides the process into two phases to balance computational

effort and solution quality.

Phase 1: Solving smaller problems and identifying consistent variable values

In the ASAA approach for the two-stage stochastic MCLSB problem, the goal of the first phase is

to identify and fix the setup decisions in yC and yE for those variables that consistently have the

same values. More specifically, in Phase 1, the first-stage decisions zF1 , · · · , zFM̂ are initially obtained

using M̂ independent sets (ΩK̂)1, . . . , (ΩK̂)M̂ of K̂ demand scenarios. Then, for each setup vari-

ables y, a weighted average,
∑M̂

s=1 wsys, is computed to assess how consistent each setup value is

across the M̂ iterations. In this weighted average, the weight formula is ws = (UBmax + LD −
UB(zFSAAs

))/
∑M̂

r=1

(
UBmax + LD − UB(zFSAAr

)
)
, where the two normalizing factors UBmax =

max{UB(zFSAAs
); s = 1, · · · , M̂} and LD = min{UBmax − UB(zFSAAs

); s = 1, · · · , M̂ ; UBmax ̸=
UB(zFSAAs

)} assign higher weights to the decisions with the lower evaluated cost UB(zFSAAs
). There-

fore, the evaluation of the initial first-stage decisions is necessary in Phase 1. Based on this weighted

value, the rule to either fix the setup at a value or leave it free for further iterations is set according

to two thresholds γ1 and γ2 as:

y =


0, if

∑M̂
s=1 wsys ≤ γ1;

1, if
∑M̂

s=1 wsys ≥ γ2;

not fixed, otherwise.

Phase 2: Fixing variable values and completing the partial solution

Once the yC and yE variables having the most consistent values across the M̂ iterations have been

identified, a partial first-stage decision ẑF is created. Fixing these consistent variables in ẑF simplifies

the MILP problem, allowing subsequent iterations to focus on solving SAA problems with a larger set

of scenarios. In Phase 2, the simplified SAA problems uses M independent sets (ΩK)1, . . . , (ΩK)M of

K ′ > K > K̂ demand scenarios. Thus, Phase 2 yields a set of first-stage decisions zF1 , . . . , z
F
M . As in

the regular SAA, the final evaluation of these solutions is performed over the set ΩK′ of K
′
demand

scenarios.

Because certain variables are fixed in Phase 2, the solutions from these Phase 2 replications cannot

be used to calculate the statistical lower bound, as they do not fully represent the entire stochastic

problem. Therefore, the statistical lower bound is calculated using only the solutions of Phase 1.

Finally, the workflow of the SAA and ASAA for the two-stage stochastic MCLSB problem is given in

Figures 2 and 3, respectively.
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Figure 2: Schematic diagram for the regular SAA solution procedure.

Figure 3: Schematic diagram for the ASAA solution procedure.

5 Computational experiments

The Python programming language was used to implement the heuristics. The MILP and LP models

used to solve the problem were coded and solved using the Gurobi 11.0.0 solver. The stopping criteria

for the solver are the time limit of 3600 seconds and the MIP gap tolerance of 0.01%. All experiments

were performed on an Intel(R) Core i7(R) CPU-1255U with 1.70 GHz and 16 GB of RAM. The

computational times provided in the results are expressed in seconds.

Since there is no particular database for the MCLSB problem, two blending problems adapted from

the literature and one set of generated instances are used to define the set of instances. The main

test problems and their parameters defining the set of instances are as follows: Problem A is a fuel

production problem involving |P| = 3 products, |C| = 3 components and |Q| = 2 qualities; Problem B

is a feed production problem involving |P| = 2 products, |C| = 4 components and |Q| = 2 qualities;

Problem C is a random problem involving |P| = 6 products, |C| = 6 components and |Q| = 4 qualities.

For all problems, |T | = 15 time periods are considered.

For each main problem, six instances were generated changing the parameters for components

availability MC and production capacity C. For each main problem, we consider three levels for the
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component availability parameter (MC , 2 × MC and MC
it =

∑m
τ=t

∑
j∈Pi

ME
jτ ), and two levels for

the production capacity (C and 1.3× C). Six instances were hence generated for each main problem,

giving a total of 18 instances.

During the experimentation, the value of the stochastic model is assessed by comparing the solution

from the SAA method to the mean value counterpart. The expected demand E[d̃E ] is taken to define

the mean value (MV) problem, and to represent the uncertainty, demand scenarios dE(ω) are generated

following a uniform distribution: d̃Ejt ∼ U
[
0.8× E[d̃Ejt], 1.2× E[d̃Ejt]

]
. In the evaluation step, a set of

demand scenarios ΩK′ ⊂ Ω consisting of K
′
= 1× 104 demand scenarios is used for the evaluation of

the solutions.

The link bit.ly/4h3M1oI includes the input and output data used in the experiments, and the

appendices, which provide the procedure utilized for both the data generation and definition of the

instance data sets (Section A of the online supplements), as well as extended computational results

(Section B of the online supplements).

5.1 Complexity and evaluation of the heuristics in the recourse problem

We present an initial assessment of the SAA and MV heuristics for the two-stage stochastic MCLSB

formulation to analyze how hard it is to solve the approximation models, as well as to calculate the

value for their candidate solutions. For this initial phase of the computational experiments, we solve

M = 1 replication for sets of demand scenarios ΩK with |ΩK | = 10, 50, 100 and 500 scenarios using

the SAA heuristic.

Table 1 presents the average results of the experiments for the 18 instances. We report the corre-

sponding key indicators obtained for the different models: the number of instances solved to optimality

(#Optimal), the average final relative optimality gap for the solutions found by the solver (MIP Gap

= 1−ZLB/ZUB), the average computational time taken to optimize the corresponding instances (So-

lution Time), and the average computational time to evaluate the upper bound for the given candidate

solutions (Evaluation Time). More detailed computational results are presented in Tables B16 to B22

in Section B of the online supplements for the same experiment, which are grouped by: instance

problem, capacity factor for production and availability for components’ purchase.

Table 1 also reports the associated costs for the stochastic solutions: the upper bound (UB) ob-

tained by the evaluation over the set of demand scenarios ΩK′ , and the values corresponding to the fixed

first stage cost and the expected recourse cost (i.e., FSC= cost(zF) and SSC= (1/K
′
)
∑K

′

s=1 RdE(ωs)(z
F)).

In Tables B20 to B22 in Section B of the online supplements, these results are grouped by instances

sharing the same characteristics.

Table 1: General results for the MV and SAA heuristics considering M = 1 iteration.

Model #Opt. MIP Gap Sol. Time Eva. Time UB FSC SSC

MV, E[d̃E ] 12 0.17% 1,431.9 119.9 11,259,603 9,823,867 1,435,736
SAA, |ΩK | = 10 11 0.16% 1,657.1 127.9 11,168,465 9,799,713 1,368,752
SAA, |ΩK | = 50 7 0.34% 2,221.5 126.9 11,142,801 9,802,922 1,339,879
SAA, |ΩK | = 100 7 0.44% 2,244.2 118.3 11,146,004 9,780,545 1,365,460
SAA, |ΩK | = 500 6 1.03% 2,561.5 109.8 11,182,981 9,827,151 1,355,830

The general results in Table 1 for the two-stage stochastic MCLSB problem show that the majority

of the instances are solved to optimality using the MV model, while this value drops to less than half

using the SAA with |ΩK | = 500 scenarios. Notice also that the computational time needed to find

the candidate solutions is considerably higher than the computational time necessary to evaluate the

solutions over the large evaluation set. Moreover, while the time to find the candidate solutions grows

with the number of demand scenarios, the evaluation time remains consistent since we always use the
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same number of scenarios for the evaluation. The grouped results (Tables B18 and B19 in Section B of

the online supplements) show that the candidate solutions for the instances derived from Problem C

are more difficult to be found and evaluated, given that they comprise the largest instances in terms of

the number of variables in both the first and second stage. In the sensitivity analysis of the parameters,

a noticeable increase in the solution time is observed when the availability for components’ purchase is

loose, while a slight impact on the difficulty of the solution process is observed when the tight capacity

for production is considered.

Overall, the SAA model with |ΩK | = 50 demand scenarios provides the candidate solutions with

the smallest average upper bound. The candidate solutions using |ΩK | = 10 demand scenarios or the

MV approach yield high upper bounds for the total cost in the evaluation. Conversely, while increasing

the number of demand scenarios initially enhances the solution quality, the computational complexity

and MIP optimality gaps increase significantly with a very large number of scenarios (e.g., the SAA

solutions with |ΩK | = 500). Indeed, these stochastic approximation problems with too many demand

scenarios can lead to less efficient solutions compared to all other numbers of demand scenarios and

the MV heuristic, as observed in Problem C (Table B20), suggesting that there might be diminishing

returns or even negative effects with too many scenarios.

Examining the total cost structure, the SAA heuristic’s advantage is more pronounced in the second

stage cost reduction. Analyzing the candidate solutions derived from the SAA approach, the results

suggest that these solutions are able to generate a more resilient production plan in response to the

variability in demand. However, the deterministic baseline solution is less capable of coping with such

fluctuations, making the solution more susceptible to experiencing lost sales.

5.2 Generating multiple solutions

In this part of the experiments, we investigate the performance of the SAA heuristic for the two-

stage stochastic MCLSB problem for a different number of replications. We consider solving up to

M = 5 or 10 replications for sets ΩK with |ΩK | = 10, 50 or 100 demand scenarios using the SAA

heuristic. From the first-stage decisions zF1 , · · · , zFM across the M candidate solutions obtained in the

SAA heuristic with multiple replications, the upper bound of the first-stage decision zFSAA returning

the best evaluated value as given in (42) is selected. Considering the first-stage variables zFEV obtained

by solving the mean value formulation, the upper bound value for the deterministic baseline heuristic

is given by (43). This value was already reported in Table 1, but we use it here for measuring the

improvement of the solution provided by SAA compared to the solution provided by the deterministic

baseline heuristic (Contreras et al. 2011; Alvarez et al. 2021; Agra et al. 2018) computed as in (44).

RP = min
{
UBK′ (zF1 ), · · · , UBK′ (zFM )

}
(42)

EEV = UBK′ (zFEV) (43)

∆ =
EEV −RP

EEV
(44)

Table 2 reports the average results for the 18 instances using the SAA method with multiple

iterations. The second column presents the best upper bound value RP . The third column LB

represents the statistical lower bound for the two-stage stochastic programming problem. The fourth

column provides the estimated relative stochastic gap (Gap/RP ). The last column gives the 95%

confidence interval using the standard deviation of the optimality gap. Since the variance of the

statistical lower bound cannot be computed when M = 1 in the SAA heuristic, the presence of a ‘-’

for the corresponding confidence interval indicates that the estimations for the optimality gap is not

possible.

In general, the SAA heuristic considering M = 10 replications with sets of |ΩK | = 50 demand

scenarios achieves the best results for the minimum upper bound value. With an average optimality

gap of 0.4%, this configuration provides high quality stochastic solutions. The tighter confidence
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intervals also indicate the higher reliability in solving the two-stage stochastic MCLSB problem in this

configuration for the SAA heuristic, compared to |ΩK | = 10.

Next, we will discuss the improvement of the various versions of the SAA heuristic, compared the

baseline Mean Value heuristic, as defined by (44) and indicted in Table 2. In addition, we also provide

the computational time required to find the M solutions, the time to evaluate all of them over the

larger set of demand scenarios and the corresponding total time.

For a given number of scenarios, increasing the number of replications leads to a higher improve-

ment, but we observe some differences. Multiple replications show a greater improvement in the upper

bounds considering |ΩK | = 10, because the small number of demand scenarios used for the approxi-

mation problems does not consistently capture demand uncertainty. However, increasing the number

of replications for |ΩK | = 50 and |ΩK | = 100 causes only a slight improvement in the upper bounds,

showing that fewer runs are required until the uncertainty is adequately captured for these sizes for sets

of demand scenarios. However, taking into account the total time, iterating from M = 5 to M = 10

replications with problems of |ΩK | = 50 or |ΩK | = 100 demand scenarios does not provide substantial

improvements, since the upper bounds are similar while the setting with M = 10 takes approximately

double the time.

As noted in the experiments for the SAA with M = 1 iteration, solving the large problem with

|ΩK | = 500 is computationally complex, resulting in a solution of poor quality during the evaluation

step. Consequently, we do not provide results for multiple iterations in this configuration. We report

that the optimality gap is 1.06%, the improvement over the MV approach is 1.52%, and the total

computational time is 2,671.3 seconds when M = 1 and |ΩK | = 500.

Table 2: General results for the SAA method considering M = 1, 5 and 10 iterations.

Parameters SAA

(M , |ΩK |) RP LB Gap CI(95%;Gap) ∆ Sol. Time Eva. Time Tot. Time

(1, 10) 11,168,465 11,021,200 1.22% - 1.40% 1,657.1 127.9 1,784.9
(5, 10) 11,156,256 11,046,350 0.84% (0.14%, 1.55%) 1.63% 8,886.6 598.8 9,485.4
(10, 10) 11,153,007 11,050,983 0.80% (0.33%, 1.26%) 1.66% 18,576.9 1,176.5 19,753.4
(1, 50) 11,142,801 11,048,395 0.72% - 1.70% 2,221.5 126.9 2,348.4
(5, 50) 11,137,859 11,068,296 0.51% (0.27%, 0.76%) 1.77% 11,100.3 598.1 11,698.4
(10, 50) 11,135,677 11,079,441 0.40% (0.16%, 0.64%) 1.79% 22,032.9 1,174.7 23,207.5
(1, 100) 11,146,004 11,069,843 0.63% - 1.72% 2,244.2 118.3 2,362.5
(5, 100) 11,137,772 11,059,285 0.59% (0.37%, 0.81%) 1.77% 11,570.0 606.6 12,176.6
(10, 100) 11,137,170 11,058,822 0.56% (0.37%, 0.74%) 1.78% 23,641.5 1,222.2 24,863.6

5.3 Combining multiple solutions in the adjustable approach

In this part of the computational experiments, we assess the performance of the Adjustable variant

of the SAA heuristic (ASAA) to solve the two-stage stochastic MCLSB problem. During Phase 1 of

the ASAA approach, we consider that the initial solutions obtained using sets of demand scenarios

ΩK̂ with |ΩK̂ | = 10 are used to define the weights and a partial first-stage solution (by fixing the

setup decision variables that have common values in most initial solutions). For this analysis, we

consider doing M̂ = 5 or M̂ = 10 replications in Phase 1. We use γ1 ∈ {0, 0.1, 0.2, 0.3, 0.4} for M̂ = 5

replications, and γ1 ∈ {0, 0.1, 0.2, 0.3} for M̂ = 10 replications. In both cases, we set γ2 = 1 − γ1.

Based on these thresholds, we obtain the partial solution that fixes some of the first-stage variables in

Phase 2 of the ASAA approach. In Phase 2, we consider obtaining M = 5 or M = 10 final candidate

solutions using sets of demand scenarios ΩK with |ΩK | = 50 or |ΩK | = 100 using the partial solution.

Furthermore, we consider solving M = 1 large SAA problem with |ΩK | = 500 demand scenarios. The

solutions zF1 , · · · , zFM obtained from Phase 2 are evaluated over the evaluation set of demand scenarios

ΩK′ to provide the cost in the recourse problem, where the upper bound of the first-stage decisions

zFASAA with best evaluated value is selected as in (42).
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Table 3 gives some numbers on the % fixed of setup variables in the partial solution at the level of the

components, end products, and overall, using different settings in Phase 1 of the ASAA method. The

corresponding total time to obtain and evaluate the set of initial candidate solutions used to determine

the partial solution in Phase 1, and the lower bounds used next in Phase 2, are also reported. These

last values correspond to the values reported in Table 2 for the settings M = 5, |ΩK | = 10 and M = 10,

|ΩK | = 10. Table 4 provides the upper bound provided by the best evaluated solution in Phase 2, the

optimality gap (using the statistical lower bound from Phase 1), as well as the improvement compared

to the Mean Value approach. Table 5 reports the information on the computational time needed to

obtain and evaluate the candidate solutions in Phase 2, and the corresponding sum of these times for

the total time in Phase 2. The sum of the time spent for Phases 1 and 2 in the ASAA heuristic is also

reported.

A comparison of the results in Table 4 for Phase 2 of the adjustable SAA approach with the

results in Table 2 for the regular SAA approach shows that the quality of the solutions is generally

higher for the ASAA heuristic. In Phase 2 of the ASAA approach with |ΩK | = 100 demand scenarios,

no significant difference in the best upper bound value RP and relative optimality gap Gap can be

observed by increasing the replications from M = 5 to M = 10. For the ASAA approach with

|ΩK | = 50 demand scenarios, the increase in the number of replications from M = 5 to M = 10

provides a slight improvement of the best upper bound value RP and relative optimality gap Gap. In

general, a positive effect on performance in terms of the best upper bound is achieved using a moderate

threshold to fix the setup variables. This enhancement observed in the adjustable approach over the

regular SAA method partially lies in the better values for the (first-stage) decision variables related

to the production and purchase quantities obtained in the second phase of the algorithm, since we

can solve the problem now with a large number of scenarios due to the fixing of some of the setup

variables. Indeed, the comparison between the results in Tables 1 and 4 with respect to the upper

bounds demonstrates that the proposed adjustable strategy performs better than the regular SAA

heuristic to handle the large problem with |ΩK | = 500.

Increasing the value of γ from zero to a positive value leads to more fixed setup variables, and

hence problems that are easier to solve, as clearly shown by the solution times provided in Table 5.

As a result of this fixing, in the ASAA approach, the total time spent to solve one large problem

in Phase 2 with |ΩK | = 500 demand scenarios, as well as the problems considering |ΩK | = 50 or

|ΩK | = 100 demand scenarios with M = 5 and 10 replications, is significantly reduced compared to

the corresponding times reported in Tables 1 and 2. The increase in γ initially also has a beneficial

effect on the quality of the solution. However, the threshold value used should not be too large, since

the quality of the solution in the ASAA approach can become worse when too many variables are fixed

a priori, as it can be observed for M̂ = 5 with γ = 0.4 and M̂ = 10 with γ = 0.3 in Phase 1.

Next, we will discuss the performance of the regular and adjustable SAA heuristics considering the

results for the best upper bound value and the overall time taken (in Phase 1 plus in Phase 2) to obtain

the final set of candidate solutions. The results demonstrate how both time saving and enhancement

of the solution quality can be obtained with the adjustable SAA heuristic. In fact, taking into account

the best upper bound obtained with the regular SAA approach in the configuration with M = 10

replications and |ΩK | = 50 demand scenarios, a reduction in this best upper bound value can be

achieved with Phase 2 of the ASAA approach by generating M̂ = 5 solutions with demand scenarios

K̂ = 10 and using the threshold value of γ = 0.1 during Phase 1. Although this reduction is marginal,

we observe that the total time for Phases 1 and 2 for the ASAA heuristic compared to the regular

SAA heuristic is significantly shorter. Thus, the ASAA approach can produce a small improvement

in the upper bound by carefully configuring Phase 1 to solve smaller problems in advance rather than

solving SAA problems directly as in the regular SAA heuristic. For large problems, when Phase 1 of

the ASAA approach comprises fewer replications considering M̂ = 5 with γ = 0.1, 0.2 and 0.3, the

improvement for the quality of the solution and the total time is even more substantial. Specifically,

in Phase 1 of the adjustable SAA approach with M̂ = 5 replications comprising |ΩK̂ | = 10) demand

scenarios and fixing at γ = 0.1 and 0.2, the simplification results a less complex model in Phase 2
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considering |ΩK | = 500 demand scenarios, which also yields the best results. In Tables B28 to B33 in

Section B of the online supplement, the results indicate that ASAA generally outperforms SAA across

most instance groups as well.

Table 3: General results for Phase 1 of the ASAA method.

Phase 1 of ASAA

Parameters % variables fixed

(M̂ , |ΩK̂ |, γ) yC yE yC + yE Sol. Time Eva. Time Time Phase 1 LB

(5, 10, 0) 0.75 0.57 0.68 8,886.6 598.8 9,485.4 11,046,350
(5, 10, 0.1) 0.88 0.72 0.81 8,886.6 598.8 9,485.4 11,046,350
(5, 10, 0.2) 0.94 0.79 0.87 8,886.6 598.8 9,485.4 11,046,350
(5, 10, 0.3) 0.96 0.88 0.92 8,886.6 598.8 9,485.4 11,046,350
(5, 10, 0.4) 0.97 0.92 0.95 8,886.6 598.8 9,485.4 11,046,350
(10, 10, 0) 0.71 0.42 0.58 18,576.9 1,176.5 19,753.4 11,050,983
(10, 10, 0.1) 0.83 0.62 0.74 18,576.9 1,176.5 19,753.4 11,050,983
(10, 10, 0.2) 0.90 0.74 0.82 18,576.9 1,176.5 19,753.4 11,050,983
(10, 10, 0.3) 0.94 0.85 0.90 18,576.9 1,176.5 19,753.4 11,050,983

Table 4: General solution quality results for Phase 2 of the ASAA method.

Phase 2 of ASAA

Phase 1 parameters M = 5, |ΩK | = 50 M = 10, |ΩK | = 50

(M̂ ,|ΩK̂ |,γ) RP Gap ∆ RP Gap ∆

(5,10,0) 11,136,770 0.70% 1.78% 11,135,673 0.69% 1.79%
(5,10,0.1) 11,136,728 0.70% 1.78% 11,135,650 0.69% 1.79%
(5,10,0.2) 11,136,753 0.70% 1.78% 11,135,676 0.69% 1.79%
(5,10,0.3) 11,138,414 0.71% 1.79% 11,137,074 0.70% 1.78%
(5,10,0.4) 11,256,869 1.45% 1.78% 11,256,030 1.44% 1.00%
(10,10,0) 11,136,818 0.68% 1.78% 11,135,455 0.67% 1.79%
(10,10,0.1) 11,136,832 0.68% 1.78% 11,135,801 0.67% 1.79%
(10,10,0.2) 11,137,724 0.69% 1.77% 11,136,637 0.68% 1.78%
(10,10,0.3) 11,146,569 0.76% 1.70% 11,145,203 0.75% 1.71%

Phase 2 of ASAA

Phase 1 parameters M = 5, |ΩK | = 100 M = 10, |ΩK | = 100

(M̂ ,|ΩK̂ |,γ) RP Gap ∆ RP Gap ∆

(5,10,0) 11,134,809 0.68% 1.79% 11,134,583 0.68% 1.79%
(5,10,0.1) 11,134,741 0.68% 1.79% 11,134,551 0.68% 1.79%
(5,10,0.2) 11,134,734 0.68% 1.79% 11,134,551 0.68% 1.79%
(5,10,0.3) 11,136,212 0.69% 1.78% 11,136,027 0.69% 1.78%
(5,10,0.4) 11,254,985 1.43% 1.01% 11,254,726 1.43% 1.01%
(10,10,0) 11,134,537 0.66% 1.80% 11,134,262 0.66% 1.80%
(10,10,0.1) 11,134,604 0.66% 1.80% 11,134,392 0.66% 1.80%
(10,10,0.2) 11,135,572 0.67% 1.79% 11,135,343 0.67% 1.79%
(10,10,0.3) 11,144,282 0.74% 1.72% 11,144,038 0.74% 1.72%

Phase 2 of ASAA

Phase 1 parameters M = 1, |ΩK | = 500

(M̂ ,|ΩK̂ |,γ) RP Gap ∆

(5,10,0) 11,133,861 0.67% 1.80%
(5,10,0.1) 11,132,943 0.67% 1.81%
(5,10,0.2) 11,132,945 0.67% 1.81%
(5,10,0.3) 11,134,528 0.68% 1.79%
(5,10,0.4) 11,253,505 1.42% 1.02%
(10,10,0) 11,140,579 0.71% 1.80%
(10,10,0.1) 11,134,576 0.67% 1.79%
(10,10,0.2) 11,133,853 0.66% 1.80%
(10,10,0.3) 11,142,642 0.73% 1.73%
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Table 5: General solution time results for Phase 2 of the ASAA method.

Phase 2 of ASAA

Phase 1 parameters M = 5, |ΩK | = 50 M = 10, |ΩK | = 50

(M̂ ,|ΩK̂ |,γ) Sol. Eva. Phase 2 Phase 1&2 Sol. Eva. Phase 2 Phase 1&2

(5, 10, 0) 2,752.6 570.9 3,323.4 12,808.8 5,393.3 1,143.1 6,536.4 16,021.8
(5, 10, 0.1) 1,814.4 566.2 2,380.6 11,866.0 3,620.2 1,132.0 4,752.2 16,021.8
(5, 10, 0.2) 5.9 546.2 552.1 10,037.5 12.0 1,095.6 1,107.6 10,593.0
(5, 10, 0.3) 2.5 552.1 554.6 10,037.5 5.1 1,103.0 1,108.1 10,593.5
(5, 10, 0.4) 1.4 571.7 573.1 10,058.5 2.8 1,123.2 1,126.0 10,611.4
(10, 10, 0) 3,819.4 590.3 4,409.6 24,163.0 8,124.3 1,162.9 9,287.3 29,040.6
(10, 10, 0.1) 2,872.1 633.8 3,505.8 23,259.2 5,772.3 1,324.9 7,097.1 26,850.5
(10, 10, 0.2) 180.6 710.8 891.4 20,644.8 354.5 1,404.5 1,759.0 21,512.4
(10, 10, 0.3) 5.2 686.3 691.5 20,444.8 10.2 1,367.7 1,377.8 21,131.2

Phase 2 of ASAA

Phase 1 parameters M = 5, |ΩK | = 100 M = 10, |ΩK | = 100

(M̂ ,|ΩK̂ |,γ) Sol. Eva. Phase 2 Phases 1&2 Sol. Eva. Phase 2 Phases 1&2

(5, 10, 0) 3,488.4 649.1 4,137.5 13,622.9 6,325.0 1,216.8 7,541.7 17,027.1
(5, 10, 0.1) 1,947.9 590.4 2,538.2 12,023.6 3,727.5 1,153.0 4,880.5 14,365.9
(5, 10, 0.2) 19.7 576.2 595.9 10,081.3 39.1 1,140.3 1,179.4 10,664.8
(5, 10, 0.3) 6.6 547.0 553.6 10,039.0 14.3 1,106.2 1,120.6 10,606.0
(5, 10, 0.4) 3.6 570.4 574.0 10,059.4 7.3 1,154.5 1,161.9 10,647.3
(10, 10, 0) 4,838.3 580.6 5,418.8 25,172.2 9,130.8 1,159.0 10,289.8 30,043.2
(10, 10, 0.1) 3,030.0 581.6 3,611.6 23,365. 6,157.1 1,158.6 7,315.7 27,069.1
(10, 10, 0.2) 456.6 576.3 1,032.9 23,365.0 870.1 1,139.8 2,009.9 21,763.3
(10, 10, 0.3) 11.4 667.9 679.3 20,432.7 19.7 1,256.4 1,276.1 21,029.5

Phase 2 of ASAA

Phase 1 parameters M = 1, |ΩK | = 500

(M̂ , |ΩK̂ |, γ) Sol. Eva. Phase 2 Phases 1&2

(5, 10, 0) 1,103.8 125.1 1,228.9 10,714.3
(5, 10, 0.1) 443.9 115.4 559.2 10,044.6
(5, 10, 0.2) 51.2 109.6 160.8 9,646.2
(5, 10, 0.3) 14.6 108.5 123.0 9,608.4
(5, 10, 0.4) 5.4 116.0 121.5 9,606.9
(10, 10, 0) 1,103.8 125.1 1,228.9 21,276.6
(10, 10, 0.1) 952.5 122.3 1,074.9 20,828.3
(10, 10, 0.2) 506.6 119.7 626.3 20,379.7
(10, 10, 0.3) 20.5 108.9 129.5 19,882.9

6 Conclusions

In this paper, we address a blending problem that integrates purchasing and production decisions

over multiple time periods. We develop a stochastic programming formulation to consider demand

uncertainty. The stochastic programming formulation we have proposed aims to minimize the minimum

expected overall costs, considering a combination of two-stage stochastic programming modeling (Higle

2005) and the static uncertainty strategy discussed for stochastic lot sizing problems (Bookbinder and

Tan 1988). In this formulation, demand uncertainty is taken into account with determining production

and purchasing decisions upfront to demand realization. The Sample Average Approximation (SAA)

method is used as a heuristic scheme to obtain candidate solutions (Shapiro and Homem-de Mello

1998) and statistical bounds (Mak et al. 1999). Furthermore, we implemented an adjustable variant

of this heuristic (ASAA) method (Agra et al. 2018) to enhance the efficiency of the solution approach

by using information from the solutions generated in the process.

Computational experiments were conducted on randomly generated instances and examples to

provide an evaluation of the benefits and shortcomings of the proposed stochastic approach and its

solutions. The computational results demonstrated that the SAA heuristic outperforms the deter-
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ministic approach, resulting in substantially lower total costs when the number of demand scenarios

was appropriately selected. Additionally, the results demonstrate that the ASAA approach can lead to

faster computation times while improving solution quality of the solutions obtained by the regular SAA

approach. In general, our findings contribute to a better understanding of blending planning under

demand uncertainty, highlighting the advantages and limitations of stochastic programming methods

in achieving cost effectiveness for production and purchase plans.

The data that support the findings of this study are openly available in Google Drive at bit.ly/

4h3M1oI, reference number Online Supplement – MCLSB Problem.

Further research can be focused on the investigation of the different configurations in which in-

tegrated blending and lot sizing problems may appear in practice under demand uncertainty. Other

extensions could be proposed such as a multi-stage stochastic programming problem considering a

rolling horizon fashion. An interesting formulation could be based on the static-dynamic uncertainty

strategy, which would consider only setup variables as first-stage decisions for the lot sizing problem

associated with the production of end products. The resulting dynamic stochastic framework would

make the problem inherently difficult to solve exactly, requiring some approximation approaches. In

this sense, we could explore the approximated solutions in the new approach obtained from the two-

stage stochastic MCLSB formulation in a multi-stage stochastic context. Similar implementations

were investigated by Sereshti et al. (2024). Finally, a comparison between the different strategies could

then provide insights into steady-versus-adaptable approaches through different recourse mechanisms

to address demand uncertainty. Similar approaches were investigated by Tomazella et al. (2024).

A Instances set

In this section, we describe the primary instances utilized for the implementation of the proposed

method and the formulations discussed for the MCLSB problem. These instances cover two specific

applications as well as a procedure used to generate random instances. The formulas and ideas used

to define part of the parameters in the test problems were adapted from Fiorotto et al. (2021); Absi

et al. (2013).

A.1 Random instances and data generation

We consider that parameters are invariant across time periods, unless stated otherwise. The parameters

listed below are taken from a uniform distribution considering the indicated intervals.

• Production time for end products (vtjt = vtj): [1, 5];

• Setup time for end products (stjt = stj): [10, 50];

• Production cost for components (vcCi = vcCi ): [50, 150];

• Expected demands of end products (E[d̃Ejt] = E[d̃Ej ]): [500, 1500].

Dataset generation for blending

To design the blending problem, it is necessary to determine the relation between the components and

end products, as well as their quality conditions.

The relation between components is generated to entail a product structure based on a Bill-of-

Materials (BOM), which is typically present in the production line of companies that integrate pro-

curement and production activities. Thus, Cj for each end product j ∈ P is determined by random

and distinct subsets of components of size |Cj | = 0.5× |C|, ∀j ∈ P.

For all components i ∈ C, the generation of quality attributes qai = (qaiq)∀q∈Q takes place in two

steps, as follows.

bit.ly/4h3M1oI
bit.ly/4h3M1oI
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1. Initialization: The entries of qai are initialized using a uniform distribution in [0, 1] to define its

entries representing the rate for the qualities;

2. Adjustment: Then, qai is altered to turn qaq0i = 0 for a random quality index q0 ∈ Q.

The second step is predicated to recognize that some components typically contain negligible quality

attributes in practical blending problems.

To define the quality requirements across all end products, the average quality content of the

components that are linked through the BOM are utilized. In particular, the quality requirement is a

range centered on qr in which the extremes are defined by ql and qu, where:

qrqj =
∑
i∈Cj

qaqi
|Cj |

,∀q ∈ Q,∀j ∈ P,

quqj = 1.1× qrqj ,∀j ∈ P,

qlqj = 0.9× qrqj ,∀j ∈ P.

Overall, this generation of quality attributes determines that all products need at least two com-

ponents in their blend in order to meet the feasibility for quality requirements. This condition is

verified analyzing the solutions of a single-period blending model involving the expected demand and

the quality constraints for the end products. In this step, it is also verified that solutions in the inte-

grated problem do not need for adjustment via lost sales decisions to compensate the nonexistence of

a feasible blending.

Dataset generation for production setting

For all end products j ∈ P in the random instances, production cost is zero vcEjt = 0 and the setup

cost is defined as scEjt = scEj = 1000×
∑

i∈Cj
vcCi /|Cj |.

We set the inventory cost of components proportional to its corresponding purchasing cost, which

is hcCit = hcCi = 0.003× vcCi . The storage costs of the end products are considered as a fraction of the

average cost for components in the BOM hcEjt = hcEj = 0.0045×
∑

i∈Cj
vcCi /|Cj |. The factors in these

expressions derives from the typical average weekly rate for inventory cost.

The setup cost of components are defined consistently with the other costs based on the EOQ cost

approximation. The formula gives scCit = scCi =
(
hcCi /2

)
·
(
TBOC

i

)2 · E[d̃Ci ], where TBOC
i stands for

the Time Between Orders and E[d̃Ci ] represents the expected demand for the component i ∈ C. Since
these two terms are not given beforehand, the missing information is approximated based on the BOM

size and the maximum Time Between Orders for the expected demand of end products that are linked

through the BOM. In this approach, TBOC
i = maxj∈Pi{TBOE

j } and E[d̃Ci ] =
∑

j∈Pi
E[d̃Ej ]/|Cj |, where

TBOE
j =

(√
2scEj E[d̃Ej ]/hcEj

)
/E[d̃Ej ] is considered the time between orders of the end product j ∈ P.

Since the lost sale cost of end products is considered as a penalty cost, the estimated total produc-

tion cost for the expected demand is used to set this cost to avoid lost sales when production is possible.

The lost sale cost is given by pcjt = pcj = scEj /E[d̃Ej ] +
∑

i∈Cj
scCi /E[d̃Ej ] +

∑
i∈Cj

vcCi /|Cj |+ vcEj .

Capacity is defined as Ct = C =
∑

j∈P

(
vtjE[d̃Ej ] + stj

)
for all time periods t ∈ T . For the case

where the big M constants MC and ME are not specified for the setup constraints (2) and (3), the

value of ME
jt can be determined by the maximum amount of end product j ∈ P that can be produced

without violating capacity constraints in period t ∈ T , which is ME
jt = (Ct − stjt) /vtjt. Consequently,

considering the trivial BOM of selecting only one component to produce these maximum amounts,

a valid value for MC is derived summing up the limits ME
jt of all end products in P for periods

{t, · · · ,m}, which is MC
it =

∑m
τ=t

∑
j∈Pi

ME
jτ for the component i ∈ C in period t ∈ T . However, in

regard to the purchase of the components, the constants used in the setup constraints are defined as

MC
it = MC

i = E[d̃Ci ] unless stated otherwise.
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During our analysis in the computational experimentation, we are restricted to a generated random

instance problem with |P| = |C| = 6 end products and components under the condition of |Q| = 4

required quality attributes. Tables A1 to A5 list all the parameters and costs for the generated random

example.

Table A1: Qualities specification for products (ql and qu) in # per unit.

j1 j2 j3 j4 j5 j6

q1 0.28 0.35 0.28 0.35 0 0 0.08 0.09 0.53 0.64 0.24 0.30
q2 0.44 0.54 0.43 0.53 0.33 0.40 0.59 0.73 0.41 0.51 0.57 0.69
q3 0.30 0.37 0.37 0.45 0.42 0.52 0.48 0.58 0.51 0.62 0.67 0.81
q4 0.33 0.40 0.29 0.35 0.41 0.51 0.33 0.40 0.09 0.11 0.29 0.36

Table A2: Qualities content of components (qa) in # per unit.

i1 i2 i3 i4 i5 i6

q1 0.94 0 0 0 0.55 0.26
q2 0.44 0.95 0.05 0.09 0 0.94
q3 0.10 0.62 0.51 0.28 0.91 0.68
q4 0 0.67 0.29 0.42 0.31 0

Table A3: Components information — price for purchasing, setup and inventory $ per unit and setup and bound for
purchase in units.

vcC scC hcC MC

i1 68 48,035 0.203 1,059
i2 108 177,615 0.324 1,595
i3 128 79,471 0.383 603
i4 87 81,823 0.26 916
i5 95 45,579 0.284 631
i6 122 93,345 0.367 1,000

Table A4: Products information — cost for production setup, inventory and lost sales $ per unit and setup; expected
demand in units; production and setup consumption utilization per unit and bound for production in units.

vcE scE hcE pc E[d̃E ] vt st ME

j1 0 87,440 0.394 485 994 2 36 9,232
j2 0 101,127 0.455 450 1,164 5 19 3,649
j3 0 107,487 0.484 798 647 2 46 9,079
j4 0 105,653 0.475 520 1,107 1 48 13,801
j5 0 94,803 0.427 371 1,021 4 18 3,821
j6 0 108,283 0.487 595 873 3 22 6,008

Table A5: Production information — bill-of-materials of products (Cj) and total capacity.

j1 j2 j3 j4 j5 j6 C

i4, i1, i2 i3, i2, i1 i2, i3, i4 i4, i2, i6 i1, i5, i6 i5, i6, i2 17,023

A.2 Animal feed production

Blending models are particularly prevalent in the feed and food industries, where the blending of cattle

feed, flour, and other edible products requires precise formulation to ensure nutritional value, taste, and

cost-effectiveness. Notable papers demonstrating the versatility and effectiveness of blending models

in addressing challenges for study-case problems in these industrial contexts include: (Akkerman et al.

2010) on optimizing food production processes, (Kilic et al. 2013) on intermediate flour products
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blending, and Pathumnakul et al. (2011) on strategic formulations for feed mills. The data used in our

experiments is sourced from Arenales et al. (2015).

The base example problem is contextualized for a manufacturer in which animal feed products P =

{Feed A, Feed B} are produced using components: C = {Corn,Bone, Soy, F ish}. Furthermore, the

blending of animal feed must meet the specifications regarding the minimum and maximum percentages

of qualities in its final composition: Q = {Protein, Calcium}. All values reported to the purchase,

production, and blending data for the various products and components are given per tons. Tables A6

to A10 list all the parameters and costs for the example.

Table A6: Qualities information — nutritional requirements of animal feeds (ql and qu) in % per ton.

Feed A Feed B

Protein 0.4 0.5 0.3 0.8
Calcium 0.3 0.6 0.5 0.8

Table A7: Qualities information — nutritional content of components (qa) in % per ton.

Corn Bone Soy F ish

Protein 0.2 0.4 0.5 0.8
Calcium 0.6 0.4 0.4 0.1

Table A8: Components information — price for purchasing, setup and inventory $ per ton and setup and bounds in tons
for ordering of components.

vcC scC hcC MC

Corn 27 15,500 0.081 10
Bone 35 7,788 0.105 10
Soy 51 58,556 0.153 14
Fish 41 9,111 0.123 12

Table A9: Production information — cost for production setup, inventory and lost sales $ per ton; expected demand in
tons; production time necessary per ton and setup and bound for production of end products in ton.

vcE scE hcE pc E[d̃E ] vt st ME

Feed A 0 39,667 0.178 6,505 19 1 10 61
Feed B 0 37,667 0.170 9,996 12 3 6 22

Table A10: Production information — bill-of-materials of products (C|) and total capacity time available.

Feed A Feed B C

Corn, F ish, Soy Soy, Corn,Bone 71

A.3 Petroleum company manufacturer

Blending models are essential in the petroleum industry, particularly in the optimization of fuel pro-

cessing, where blends must meet specific rating requirements influencing the efficiency and profitability

of refinery operations. Research in line with this domain has focused on advanced mathematical pro-

gramming techniques to address blending challenges, in which significant contributions include: (Yang

et al. 2017) exploring chance-constrained optimization for blending planning, (Peng et al. 2021) devel-

oping robust optimization bounds for blending operations. Understanding the critical role of blending

models in the petroleum industry, we have adapted a similar example problem from CPLEX 22.1.0

library (IBM 2022).
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The example contextualizes an oil company that manufactures different types of gasoline P =

{Super,Regular,Diesel}. Being each type of gasoline the blending obtained using alternative types

of crude oil: C = {Crude 1, Crude 2, Crude 3}, the end products are required to contain an index rate

of quality conditions: Q = {Lead,Octane}. All values considered for the purchase, production and

blending data for the various products and components are given per unit of a barrel (bbl). Tables A11

to A15 list all the parameters and costs for the example.

Table A11: Qualities information — specifications for chemicals in gasoline products (ql and qu) given in rate per bbl.

Super Regular Diesel

Octane 10 12 8 12 6 12
Lead 0.5 1 0.5 2 0.5 1

Table A12: Qualities information — chemical content of crude oils (qa) given in rate per bbl.

Crude 1 Crude 2 Crude 3

Octane 12 6 8
Lead 0.5 2 3

Table A13: Crude oils information: price for purchasing, setup and inventory in $ per bbl and setup; and bounds for
ordering of components in bbl.

vcC scC hcC MC

Crude 1 45 540,000 0.135 5,000
Crude 2 35 105,000 0.105 5,000
Crude 3 25 75,000 0.075 5,000

Table A14: Gasoline products information — cost for production setup, inventory, and lost sales in $ per bbl and setup;
expected demand in bbl; production and setup consumption; and bound for production of gasolines in bbl.

vcE scE hcE pc E[d̃E ] vt st ME

Super 4 35,000 0.158 357 3,000 1 0 14,000
Regular 4 35,000 0.158 174 9,500 1 0 14,000
Diesel 4 35,000 0.158 840 1,000 1 0 14,000

Table A15: Production information — bill-of-materials of gasoline (Cj) and total available processing capacity.

Super Regular Diesel C

Crude 1, 2, 3 Crude 1, 2, 3 Crude 1, 2, 3 14,000

B Complementary results

Table B16: Grouped results for the number of optimal solutions using the MV and SAA heuristics for the 18 instances
problems considering one replication.

Instance MV, E[d̃E ] SAA, |ΩK | = 10 SAA, |ΩK | = 50 SAA, |ΩK | = 100 SAA, |ΩK | = 500

Prob.A 5 4 4 4 4
Prob.B 4 4 2 2 2
Prob.C 3 3 1 1 0

C×1 6 5 3 3 3
C×1.3 6 6 4 4 3

MC×1 5 5 2 2 2
MC×2 1 0 0 0 0

MC×UNL 6 6 5 5 4
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Table B17: Grouped results for the MIP Gap for the solutions using the MV and SAA heuristics for the 18 instances
problems considering one replication.

Instance MV, E[d̃E ] SAA, |ΩK | = 10 SAA, |ΩK | = 50 SAA, |ΩK | = 100 SAA, |ΩK | = 500

Prob.A 0.09% 0.10% 0.13% 0.13% 0.53%
Prob.B 0.15% 0.11% 0.23% 0.26% 0.26%
Prob.C 0.27% 0.27% 0.67% 0.93% 2.29%

C×1 0.17% 0.20% 0.46% 0.58% 1.17%
C×1.3 0.18% 0.11% 0.22% 0.30% 0.89%

MC×1 0.10% 0.09% 0.27% 0.38% 0.88%
MC×2 0.42% 0.38% 0.59% 0.72% 1.66%

MC×UNL 0.00% 0.00% 0.17% 0.22% 0.54%

Table B18: Grouped results for the CPU times to solve the MIP models using the MV and SAA heuristics for the 18
instances problems considering one replication.

Instance MV, E[d̃E ] SAA, |ΩK | = 10 SAA, |ΩK | = 50 SAA, |ΩK | = 100 SAA, |ΩK | = 500

Prob.A 641.5 1,203.0 1,226.0 1,255.7 1,672.3
Prob.B 1,211.4 1,247.3 2,401.6 2,401.5 2,411.6
Prob.C 2,442.7 2,521.0 3,036.8 3,075.5 3,600.7

C×1 1,575.8 1,938.2 2,404.7 2,412.7 2,500.9
C×1.3 1,287.9 1,375.9 2,038.2 2,075.7 2,622.2

MC×1 735.7 877.2 2,423.5 2,443.5 2,764.3
MC×2 3,038.5 3,600.7 3,602.5 3,604.6 3,601.3

MC×UNL 521.4 493.3 638.3 684.6 1,319.0

Table B19: Grouped results for the CPU times to evaluate the solutions of the MV and SAA heuristics for the 18 instances
problems considering one replication.

Instance MV, E[d̃E ] SAA, |ΩK | = 10 SAA, |ΩK | = 50 SAA, |ΩK | = 100 SAA, |ΩK | = 500

Prob.A 123.9 130.2 129.4 99.9 91.7
Prob.B 75.6 86.8 90.7 90.6 84.7
Prob.C 160.1 166.6 160.7 164.4 153.0

C×1 116.8 129.6 121.2 121.9 110.3
C×1.3 123.0 126.1 132.6 114.8 109.3

MC×1 114.3 136.7 140.9 119.3 109.5
MC×2 129.3 126.7 129.3 127.9 110.2

MC×UNL 116.1 120.2 110.6 107.8 109.8

Table B20: Grouped results for the first stage cost term (cost(zF )) of the MV and SAA solutions for the 18 instances
problems considering one replication.

Instance MV, E[d̃E ] SAA, |ΩK | = 10 SAA, |ΩK | = 50 SAA, |ΩK | = 100 SAA, |ΩK | = 500

Prob.A 13,967,680 13,899,906 13,889,649 13,856,832 13,885,526
Prob.B 948,556 956,223 956,676 949,964 949,961
Prob.C 14,555,365 14,543,010 14,562,442 14,534,838 14,645,965

C×1 9,739,903 9,743,803 9,758,155 9,738,090 9,777,203
C×1.3 9,907,831 9,855,623 9,847,690 9,822,999 9,877,098

MC×1 12,617,293 12,562,621 12,535,932 12,548,566 12,617,326
MC×2 9,730,400 9,657,258 9,670,229 9,636,850 9,710,256

MC×UNL 7,123,908 7,179,260 7,202,606 7,156,217 7,153,870
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Table B21: Grouped results for the estimated expected second stage cost term
(
(1/K

′
)
∑K

′

s=1 R
dE(ωs)

(zF)
)

of the MV

and SAA solutions for the 18 instances problems considering one replication.

Instance MV, E[d̃E ] SAA, |ΩK | = 10 SAA, |ΩK | = 50 SAA, |ΩK | = 100 SAA, |ΩK | = 500

Prob.A 1,377,059 1,236,125 1,213,013 1,243,355 1,210,885
Prob.B 191,601 162,906 158,509 164,374 164,268
Prob.C 2,738,547 2,707,225 2,648,116 2,688,651 2,692,338

C×1 1,706,389 1,637,336 1,599,687 1,624,917 1,631,215
C×1.3 1,165,082 1,100,168 1,080,071 1,106,002 1,080,445

MC×1 2,252,525 2,238,291 2,251,193 2,244,825 2,213,764
MC×2 1,092,321 1,073,024 1,024,321 1,060,329 1,049,431

MC×UNL 962,360 794,940 744,124 791,225 804,296

Table B22: Grouped results for the evaluated cost in the two-stage stochastic MCLSB problem (UB) of the MV and SAA
solutions for the 18 instances considering one replication.

Instance MV, E[d̃E ] SAA, |ΩK | = 10 SAA, |ΩK | = 50 SAA, |ΩK | = 100 SAA, |ΩK | = 500

Prob.A 15,344,739 15,136,030 15,102,662 15,100,186 15,096,410
Prob.B 1,140,157 1,119,129 1,115,185 1,114,338 1,114,229
Prob.C 17,293,912 17,250,234 17,210,557 17,223,488 17,338,303

C×1 11,446,292 11,381,138 11,357,842 11,363,007 11,408,418
C×1.3 11,072,913 10,955,791 10,927,761 10,929,001 10,957,544

MC×1 14,869,818 14,800,911 14,787,125 14,793,391 14,831,090
MC×2 10,822,721 10,730,282 10,694,550 10,697,179 10,759,687

MC×UNL 8,086,269 7,974,200 7,946,729 7,947,442 7,958,165

Table B23: Grouped results for the best upper bound (RP ) for the 18 instances of two-stage stochastic MCLSB problem
using the SAA method with |ΩK | demand scenarios and M replications.

SAA setting (M ,|ΩK |)
Instance (5,10) (5,50) (5,100) (10,10) (10,50) (10,100)

Prob.A 15,128,525 15,100,961 15,097,529 15,122,631 15,099,126 15,097,263
Prob.B 1,114,815 1,114,327 1,114,233 1,114,590 1,114,287 1,114,215
Prob.C 17,225,428 17,198,289 17,201,553 17,221,802 17,193,617 17,200,033

C×1 11,368,893 11,350,925 11,352,449 11,365,602 11,348,185 11,351,974
C×1.3 10,943,619 10,924,793 10,923,094 10,940,412 10,923,169 10,922,366

MC×1 14,798,729 14,782,769 14,781,312 14,797,171 14,780,869 14,780,503
MC×2 10,704,980 10,690,009 10,689,702 10,701,682 10,687,013 10,689,544

MC×UNL 7,965,059 7,940,799 7,942,301 7,960,170 7,939,149 7,941,464

Table B24: Grouped results for the lower bound (LB) for the 18 instances of the two-stage stochastic MCLSB problem
using the SAA method with |ΩK | demand scenarios and M replications.

SAA setting (M ,|ΩK |)
Instance (5,10) (5,50) (5,100) (10,10) (10,50) (10,100)

Prob.A 14,990,537 15,038,060 15,054,387 14,992,607 15,059,901 15,060,685
Prob.B 1,109,988 1,111,220 1,110,111 1,109,193 1,112,070 1,110,942
Prob.C 17,038,523 17,055,609 17,013,357 17,051,149 17,066,351 17,004,841

C×1 11,250,233 11,265,595 11,251,775 11,254,753 11,277,357 11,251,729
C×1.3 10,842,466 10,870,998 10,866,796 10,847,213 10,881,524 10,865,916

MC×1 14,678,697 14,696,931 14,687,123 14,682,483 14,711,735 14,689,821
MC×2 10,587,448 10,608,379 10,594,534 10,591,329 10,620,080 10,588,593

MC×UNL 7,872,904 7,899,580 7,896,199 7,879,137 7,906,507 7,898,053
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Table B25: Grouped results for the stochastic optimality gap (CI(95%) for stochastic Gap) for the 18 instances of the
two-stage stochastic MCLSB problem using the SAA method with |ΩK | demand scenarios and M replications.

SAA setting (M ,|ΩK |)
Instance (5,10) (5,50) (5,100) (10,10) (10,50) (10,100)

Prob.A ( 0.10% , 1.90% ) ( 0.20% , 0.67% )( -0.01% , 0.61% )( 0.44% , 1.41% ) ( 0.06% , 0.50% ) ( 0.02% , 0.49% )
Prob.B ( -0.07% , 0.96% )( 0.06% , 0.55% ) ( 0.17% , 0.65% ) ( 0.03% , 0.93% )( -0.12% , 0.55% )( 0.11% , 0.54% )
Prob.C ( 0.39% , 1.78% ) ( 0.54% , 1.05% ) ( 0.95% , 1.16% ) ( 0.52% , 1.46% ) ( 0.55% , 0.86% ) ( 0.99% , 1.20% )

C×1 ( 0.11% , 1.70% ) ( 0.40% , 0.86% ) ( 0.50% , 0.94% ) ( 0.35% , 1.32% ) ( 0.28% , 0.73% ) ( 0.53% , 0.87% )
C×1.3 ( 0.16% , 1.40% ) ( 0.14% , 0.65% ) ( 0.23% , 0.68% ) ( 0.31% , 1.21% ) ( 0.05% , 0.55% ) ( 0.22% , 0.62% )

MC×1 ( -0.04% , 1.38% )( 0.21% , 0.66% ) ( 0.27% , 0.69% ) ( 0.19% , 1.17% ) ( 0.10% , 0.55% ) ( 0.28% , 0.61% )
MC×2 ( 0.33% , 1.53% ) ( 0.48% , 0.99% ) ( 0.63% , 1.07% ) ( 0.48% , 1.28% ) ( 0.39% , 0.86% ) ( 0.66% , 1.07% )

MC×UNL ( 0.12% , 1.74% ) ( 0.11% , 0.62% ) ( 0.20% , 0.66% ) ( 0.32% , 1.34% ) ( 0.00% , 0.50% ) ( 0.17% , 0.55% )

Table B26: Grouped results for the lower bound on the value of the stochastic solution (∆) for the 18 instances of the
two-stage stochastic MCLSB problem using the SAA method with |ΩK | demand scenarios and M replications.

SAA setting (M ,|ΩK |)
Instance (5,10) (5,50) (5,100) (10,10) (10,50) (10,100)

Prob.A 1.58% 1.79% 1.82% 1.63% 1.80% 1.82%
Prob.B 2.86% 2.90% 2.91% 2.88% 2.91% 2.91%
Prob.C 0.45% 0.62% 0.59% 0.47% 0.65% 0.60%

C×1 1.71% 1.85% 1.85% 1.75% 1.87% 1.85%
C×1.3 1.55% 1.69% 1.70% 1.58% 1.70% 1.71%

MC×1 0.57% 0.65% 0.66% 0.58% 0.66% 0.67%
MC×2 1.64% 1.76% 1.76% 1.68% 1.78% 1.76%

MC×UNL 2.68% 2.90% 2.90% 2.73% 2.92% 2.91%

Table B27: Grouped results for the totaling CPU times (solution plus evaluation) for the 18 instances of the two-stage
stochastic MCLSB problem using the SAA method with |ΩK | demand scenarios and M replications.

SAA setting (M ,|ΩK |)
Instance (5,10) (5,50) (5,100) (10,10) (10,50) (10,100)

Prob.A 6,631.3 6,622.3 6,776.8 13,183.6 13,234.0 13,829.2
Prob.B 7,761.5 12,459.9 12,455.7 17,149.4 24,404.7 24,922.8
Prob.C 14,063.3 16,013.1 17,297.3 28,927.1 31,983.9 35,838.8

C×1 10,525.7 12,620.2 12,689.8 21,869.4 24,992.9 25,415.9
C×1.3 8,445.1 10,776.6 11,663.4 17,637.4 21,422.2 24,311.3

MC×1 7,132.1 12,697.7 12,853.9 16,070.5 24,895.2 25,843.7
MC×2 18,547.0 18,643.1 18,654.6 37,064.9 37,270.9 37,293.5

MC×UNL 2,777.1 3,754.4 5,021.2 6,124.8 7,456.5 11,453.6

Table B28: Grouped results for the 18 instances of the two-stage stochastic MCLSB problem with candidate solutions in
the initial phase of the ASAA method considering |ΩK̂ | = 10 demand scenarios and M̂ = 5 or M̂ = 10 replications with
different threshold γ values.

M̂ = 5,|ΩK̂ | = 10 M̂ = 10,|ΩK̂ | = 10

Instance γ = 0 γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0 γ = 0.1 γ = 0.2 γ = 0.3

Prob.A 0.68 0.73 0.81 0.88 0.93 0.55 0.64 0.72 0.82
Prob.B 0.66 0.83 0.90 0.95 0.95 0.51 0.81 0.91 0.95
Prob.C 0.69 0.88 0.91 0.94 0.97 0.67 0.77 0.85 0.93

C×1 0.74 0.83 0.86 0.91 0.94 0.56 0.73 0.80 0.89
C×1.3 0.61 0.80 0.89 0.94 0.96 0.59 0.74 0.85 0.91

MC×1 0.57 0.87 0.90 0.91 0.95 0.56 0.78 0.82 0.90
MC×2 0.63 0.70 0.83 0.91 0.94 0.47 0.61 0.78 0.87

MC×UNL 0.83 0.87 0.89 0.95 0.97 0.70 0.82 0.87 0.92
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Table B29: Grouped results for the improvement over the deterministic solution (∆) and the overall CPU times for the
18 instances of the two-stage stochastic MCLSB problem using the regular and adjustable SAA methods to solve M = 10
SAA problems with |ΩK | = 50 demand scenarios.

A
S
A
A

(P
h
a
se

1
M̂

=
1
0
,
|Ω

K̂
|=

1
0
)

A
S
A
A

(P
h
a
se

1
M̂

=
5
,
|Ω

K̂
|=

1
0
)

In
st
a
n
ce

S
A
A

γ
=

0
γ
=

0
.1

γ
=

0
.2

γ
=

0
.3

γ
=

0
γ
=

0
.1

γ
=

0
.2

γ
=

0
.3

γ
=

0
.4

P
ro
b
.A

1
.8
2
%

1
.8
0
%

1
.8
0
%

1
.8
0
%

1
.7
8
%

1
.8
0
%

1
.8
0
%

1
.8
0
%

1
.8
0
%

0
.7
5
%

P
ro
b
.B

2
.9
1
%

2
.9
1
%

2
.9
1
%

2
.9
1
%

2
.8
9
%

2
.9
1
%

2
.9
1
%

2
.9
1
%

2
.9
0
%

2
.9
0
%

P
ro
b
.C

0
.6
0
%

1
.8
7
%

1
.8
7
%

1
.8
6
%

1
.7
3
%

0
.6
5
%

0
.6
5
%

0
.6
5
%

0
.6
3
%

-0
.6
5
%

C
×
1

1
.8
5
%

a
%

b
%

c%
d
%

1
.8
7
%

1
.8
7
%

1
.8
7
%

1
.8
6
%

0
.9
0
%

C
×
1
.3

1
.7
1
%

1
.7
0
%

1
.7
0
%

1
.7
0
%

1
.6
9
%

1
.7
0
%

1
.7
0
%

1
.7
0
%

1
.6
9
%

1
.1
0
%

M
C
×
1

0
.6
7
%

0
.6
6
%

0
.6
6
%

0
.6
6
%

0
.6
4
%

0
.6
6
%

0
.6
6
%

0
.6
6
%

0
.6
6
%

0
.3
1
%

M
C
×
2

1
.7
6
%

1
.7
8
%

1
.7
8
%

1
.7
7
%

1
.7
6
%

1
.7
8
%

1
.7
8
%

1
.7
8
%

1
.7
7
%

0
.8
9
%

M
C
×
U
N
L

2
.9
1
%

2
.9
2
%

2
.9
2
%

2
.9
0
%

2
.7
3
%

2
.9
2
%

2
.9
2
%

2
.9
2
%

2
.9
0
%

1
.8
1
%

A
v
er
a
g
e

1
.7
8
%

1
.7
9
%

1
.7
9
%

1
.7
8
%

1
.7
1
%

1
.7
9
%

1
.7
9
%

1
.7
9
%

1
.7
8
%

1
.0
0
%

A
S
A
A

(P
h
a
se

1
:
M̂

=
1
0
,
|Ω

K̂
|=

1
0
)

A
S
A
A

(P
h
a
se

1
:
M̂

=
5
,
|Ω

K̂
|=

1
0
)

In
st
a
n
ce

S
A
A

γ
=

0
γ
=

0
.1

γ
=

0
.2

γ
=

0
.3

γ
=

0
γ
=

0
.1

γ
=

0
.2

γ
=

0
.3

γ
=

0
.4

P
ro
b
.A

1
3
,8
2
9
.2

2
0
,3
3
4
.6

2
0
,4
2
8
.4

1
4
,8
0
5
.4

1
4
,3
7
4
.5

1
3
,6
5
5
.5

1
3
,5
9
9
.5

7
,6
0
0
.4

7
,5
9
6
.7

7
,5
9
2
.1

P
ro
b
.B

2
4
,9
2
2
.8

2
1
,7
2
8
.7

1
7
,9
0
7
.7

1
8
,1
6
8
.4

1
8
,0
7
2
.4

9
,8
0
0
.8

8
,5
0
2
.3

8
,4
8
6
.9

8
,5
0
3
.8

8
,5
3
3
.1

P
ro
b
.C

3
5
,8
3
8
.8

4
5
,0
5
8
.7

4
2
,2
1
5
.6

3
1
,5
6
3
.4

3
0
,9
4
6
.9

1
0
,5
4
5
.7

6
,5
4
7
.7

1
,6
2
8
.2

1
,6
1
6
.5

1
,6
4
5
.6

C
×
1

2
5
,4
1
5
.9

3
0
,9
7
1
.4

2
7
,5
6
7
.8

2
3
,7
1
0
.6

2
3
,2
4
9
.5

1
5
,6
0
4
.8

1
4
,9
1
9
.4

1
1
,6
3
7
.6

1
1
,6
3
5
.0

1
1
,6
5
4
.5

C
×
1
.3

2
4
,3
1
1
.3

2
7
,1
0
9
.9

2
6
,1
3
3
.2

1
9
,3
1
4
.2

1
9
,0
1
2
.9

1
6
,4
3
8
.8

1
3
,5
5
5
.8

9
,5
4
8
.3

9
,5
5
1
.9

9
,5
6
8
.2

M
C
×
1

2
5
,8
4
3
.7

2
0
,8
7
2
.6

1
7
,3
8
6
.3

1
7
,4
9
9
.4

1
7
,4
3
8
.2

9
,5
5
2
.9

8
,2
6
6
.3

8
,2
3
4
.1

8
,2
4
2
.1

8
,2
7
1
.6

M
C
×
2

3
7
,2
9
3
.5

5
5
,0
3
5
.1

5
5
,3
0
8
.0

3
9
,4
7
5
.9

3
8
,4
5
8
.3

3
4
,4
8
5
.8

3
0
,5
4
8
.0

1
9
,6
6
3
.1

1
9
,6
5
3
.6

1
9
,6
7
7
.3

M
C
×
U
N
L

1
1
,4
5
3
.6

1
1
,2
1
4
.3

7
,8
5
7
.4

7
,5
6
2
.0

7
,4
9
7
.3

4
,0
2
6
.6

3
,8
9
8
.6

3
,8
8
1
.7

3
,8
8
4
.7

3
,8
8
5
.2

A
v
er
a
g
e

2
4
,8
6
3
.6

2
9
,0
4
0
.6

2
6
,8
5
0
.5

2
1
,5
1
2
.4

2
1
,5
1
2
.4

1
6
,0
2
1
.8

1
4
,2
3
7
.6

1
0
,5
9
2
.9

1
0
,5
9
3
.4

1
0
,6
1
1
.4



Les Cahiers du GERAD G–2025–02 28

Table B30: Grouped results for the improvement over the deterministic solution (∆) and the overall CPU times for the
18 instances of the two-stage stochastic MCLSB problem using the regular and adjustable SAA methods to solve M = 5
SAA problems with |ΩK | = 50 demand scenarios.
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Table B31: Grouped results for the improvement over the deterministic solution (∆) and the overall CPU times for the
18 instances of the two-stage stochastic MCLSB problem using the regular and adjustable SAA methods to solve M = 10
SAA problems with |ΩK | = 100 demand scenarios.
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Table B32: Grouped results for the improvement over the deterministic solution (∆) and the overall CPU times for the
18 instances of the two-stage stochastic MCLSB problem using the regular and adjustable SAA methods to solve M = 5
SAA problems with |ΩK | = 100 demand scenarios.
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Table B33: Grouped results for the improvement over the deterministic solution (∆) and the overall CPU times for the
18 instances of the two-stage stochastic MCLSB problem using the regular and adjustable SAA methods to solve M = 1
SAA problems with |ΩK | = 500 demand scenarios.
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