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activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
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Abstract : We propose some diagonal Hessian approximations of the least-squares nonlinear function.
We use suitable diagonal matrices that carry some information of the quasi-Newton condition and/or
the specific structure of the least-squares function. It is shown that the proposed methods perform
well when used to solve a collection of standard test problems.

Keywords : Unconstrained optimization, large-scale problem, nonlinear least-squares problem, diag-
onal Hessian approximations, the quasi-Newton condition, the BFGS update
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1 Introduction

We consider solving the nonlinear least-squares unconstrained optimization problem

min
x∈ℜn

f(x) =
1

2

l∑
i=1

[ri(x)]
2 =

1

2
r(x)T r(x)

=
1

2
∥r(x)∥2,

(1)

where ri: ℜn → ℜ, i = 1, . . . , l, are smooth functions, l ⩾ n, r = (r1, ..., rl)
T and ∥ · ∥ denotes the

Euclidean norm. It is assumed that n is large so that a matrix cannot be stored explicitly, but the

Jacobian matrix A(x) = ∇rT can be stored implicitly so that the products Au and AT v, for any

vectors u ∈ ℜl and v ∈ ℜn, can be computed. These products can be computed efficiently (see for

example Al-Baali [4], and Bouaricha and Moré [13]). The gradient of f can be represented as

g(x) = ∇f(x) =

l∑
i=1

r(i)(x)∇r(i)(x) = A(x)r(x), (2)

denoted at xk by

gk = Akrk, (3)

where rk = r(xk), Ak = A(xk), etc. The Hessian as

G(x) = ∇2f(x) = A(x) A(x)T +

l∑
i=1

r(i)(x) ∇2r(i)(x), (4)

referred at xk by

Gk = AkA
T
k +

l∑
i=1

r
(i)
k ∇2r

(i)
k . (5)

Letting x∗ denotes a solution to problem (1), a value of the residual r(x∗) = 0 reduces the Hessian

matrix G(x∗) to the Gauss-Newton (GN) Hessian A(x∗)A(x∗)T (in this case, the problem is referred

to as zero residual) (for further details, see Fletcher [15], for instance).

Thus, the Hessian Gk can be approximated by the GN Hessian AkA
T
k , for zero and small residual rk.

This matrix has been modified to the Levenberg-Marquardt (LM) Hessian, that is

Bk = AkA
T
k + λkI, (6)

where λk ≥ 0 is the LM parameter (see e.g. Fan and Yuan [14] and Nocedal and Wright [24]).

We note that the second order part of the Hessian (5) is ignored in both approximations. As a

result, the corresponding methods are expected to work well when applied to small residual problems.

Nevertheless, when solving sufficiently large residual problems, the methods may work badly (for

further details, see Al-Baali and Fletcher [5] and Fletcher [15], for instance).

For solving nonlinear least-squares problems, most of the classical and modified algorithms require

the computation of the gradient and the Hessian matrix or its approximation (see Fletcher [15] and

Nocedal and Wright [24], for instance). In practice, the Hessian matrix is too expensive to compute and

store, especially when considering large-scale problems. Several studies have been made to improve

the algorithms for solving the nonlinear least-squares problems (see, for example, Al-Baali [4], Al-

Baali and Fletcher [5], Al-Baali and Fletcher [6], Dehghani and Mahdavi-Amiri [11], Fletcher and

Xu [16], Lukšan and Vlček [20] and the reference therein). For solving large-scale nonlinear least-

squares problems, Mohammad and Santos [21] define a diagonal Hessian approximation by using the

structure of least-squares function (1). The authors demonstrate that the proposed algorithm is more



Les Cahiers du GERAD G–2024–82 2

efficient and robust than some published methods. As an extension to this technique, we will consider

several proposed methods for maintaining the Hessian approximation Bk diagonal. We first consider

some quasi-Newton methods which are defined iteratively in the following way. For given x1, the search

direction is represented by

Bksk = −gk, (7)

where Bk is some symmetric and positive definite matrix that approximates the Hessian Gk which

ensures that sk is a descent direction (i.e., sTk gk < 0) so that a positive steplength αk, which minimizes

f(xk+αsk), (exactly or approximately) along sk from a point xk, must exists (see for example Al-Baali

and Fletcher [6]). In practice, αk is usually chosen to satisfy the Wolfe-Powell conditions

fk+1 ⩽ fk + σ0αkg
T
k sk, gTk+1sk ⩾ σ1g

T
k sk, (8)

where fk denotes f(xk), 0 < σ0 < 0.5 and σ0 < σ1 < 1. Then a new point is given by

xk+1 = xk + αksk. (9)

Initially B1 is chosen positive definite (usually, B1 = I, the identity matrix). To define the other Hes-

sian approximations Bk+1, for k ≥ 1, many quasi-Newton formulae have been presented for updating

Bk. It is considered that Broyden-Fletcher-Goldfarb-Shanno (BFGS) is the most popular quasi-Newton

update. It is provided by

Bk+1 = bfgs(Bk, δk, γk), (10)

where for any symmetric matrix B and two vectors δ and γ,

bfgs(B, δ, γ) = B − BδδTB

δTBδ
+

γγT

δT γ
, (11)

δk = xk+1 − xk (12)

and

γk = gk+1 − gk. (13)

Often, in practical implementation, instead of solving the system of equations (7), it is preferable to

compute the search direction for the next iteration by

sk+1 = −Hk+1gk+1 (14)

where Hk = B−1
k and the inverse BFGS update is

Hk+1 = bfgs−1(Hk, δk, γk), (15)

where for any symmetric matrix H and two vectors δ and γ,

bfgs−1(H, δ, γ) =H +

(
1 +

γTHγ

δT γ

)
δδT

δT γ
− δγTH +HγδT

δT γ
. (16)

We note that the product bfgs−1(H, δ, γ)u, for any vector u, can be calculated in terms of only the

vector pair {δ, γ} without storing matrices explicitly, assuming H is stored implicitly.

The following is a breakdown of the structure of this paper. In the next section, we consider several

proposals for maintaining Bk diagonal, based on quasi-Newton feature and/or using the nonlinear least-

squares features. In Section 3, we discuss the convergence property, while Section 4 discusses some

numerical results. It is demonstrated that the proposed methods improve the performance of diagonal

matrices significantly. Finally, Section 5 concludes the paper.
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2 Diagonal Hessian approximations

It is worth considering the particular low storage method of Gilbert and Lemaréchal [17], who suggest

using the BFGS formula (10) with Bk replaced by a diagonal matrix B̂k and use the diagonal of the

updated matrix to obtain a new approximation of Gk as follows:

B̂k+1 = diag
[
bfgs(B̂k, δk, γk)

]
. (17)

On substituting (10)–(11), this diagonal update can be written as follows:

B̂k+1 = B̂k − diag[B̂kδk(B̂kδk)
T ]

δTk B̂kδk
+

diag[γkγ
T
k ]

δTk γk
. (18)

We note that this formula requires the storage of only three vectors (δk, γk and that of the diagonal

matrix B̂k). Similarly, we can apply the diagonal technique to the inverse BFGS update (15) to obtain

Ĥk+1 = diag
[
bfgs−1(Ĥk, δk, γk)

]
(19)

which can be expressed as:

Ĥk+1 =Ĥk +

(
1 +

γT
k Ĥkγk
δTk γk

)
diag

[
δkδ

T
k

]
δTk γk

− 2
diag

[
(Ĥkγk)δ

T
k

]
δTk γk

. (20)

It is worth noting that this formula requires only the storage of three vectors. This diagonal of inverse

BFGS update has been suggested by Gilbert and Lemaréchal [17], with a certain positive definite

diagonal matrix Ĥ1. Thus, the updated diagonal matrices are maintained positive definite if the

curvature condition δTk γk > 0 is satisfied. Although the inverse BFGS updated matrix

bfgs(B̂k, δk, γk)
−1 = bfgs−1(Ĥk, δk, γk),

since Ĥk = B̂−1
k , we note that

diag[bfgs(B̂k, δk, γk)]
−1 ̸= diag[bfgs−1(Ĥk, δk, γk)].

In practice, the diagonal choice (17) is preferable to (19) (see Al-Siyabi and Al-Baali [9], and Gilbert

and Lemaréchal [17], for details).

In the L-BFGS method of Nocedal [23], Al-Siyabi and Al-Baali [8] construct some schemes for

defining the basic matrix B0
k and reported encouraging numerical results for the nonlinear least-squares

problem (1). They recommend extracting some values of the new GN HessianMk+1 = Ak+1A
T
k+1 which

is useful for approximating the Hessian (5) for zero and small residual problems. Thus, we consider

using the diagonal GN Hessian to define the Hessian approximation as follows

M̂k+1 = diag [Mk+1] , (21)

noting that M̂
(i)
k+1 = diag[Mk+1]

(i) = ∥AT
k+1ei∥2, where ei is i−th coordinate vector, for i = 1, 2, . . . , n,

which is positive semi-definite (usually positive definite).

Another possible improvement of the diagonal Hessian is to enforce the quasi-Newton property (or

nearly so) by adding a suitable diagonal matrix Dk+1 to the diagonal GN Hessian M̂k+1 such that

B̂k+1 = M̂k+1 +Dk+1 (22)

is positive diagonal elements and satisfies the quasi-Newton condition(
M̂k+1 +Dk+1

)
δk = γk. (23)
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Solving this equation for Dk+1 ≻ 0, we suggest the following safeguarded positive definite diagonal

matrix

B̂
(i)
k+1 =


γ
(i)
k

δ
(i)
k

, if ϵ2 ≤
γ
(i)
k

δ
(i)
k

⩽
1

ϵ3
, δ

(i)
k ̸= 0,

M̂
(i)
k+1, otherwise,

(24)

where ϵ2 and ϵ3 are positive parameters. We also consider a modification to this choice by the following:

B̂
(i)
k+1 =


γ
(i)
k

δ
(i)
k

, if
γ
(i)
k

δ
(i)
k

> M̂
(i)
k+1, δ

(i)
k ̸= 0

M̂
(i)
k+1, otherwise,

(25)

In practice, the first choice performs better than the second one (see Section 4 for details).

Like the Levenberg-Marquardt technique, we replace Dk+1 in (22)–(23) by λkI, where λk is non-

negative scalar. We suggest a new diagonal Hessian approximation that satisfies the quasi-Newton

condition as follows: (
M̂k+1 + λkI

)
δk = γk. (26)

Since this equation may not hold exactly for any value of λk, we define

λk = argmin
λ

∥M̂k+1δk − γk + λδk∥.

Solving this one variable minimization subproblem, it follows that

λk =
δTk γk − δTk M̂k+1δk

∥δk∥2
. (27)

To safeguard the positive definiteness of the diagonal Hessian approximation B̂k+1, we suggest

B̂k+1 =

{
M̂k+1 + λkI, if δTk γk > δTk M̂k+1δk

M̂k+1, otherwise.
(28)

Another possible improvement of this choice is to replace it by the diagonal BFGS update (17)

with B̂k replaced by (28) to obtain

B̂k+1 = diag
[
bfgs(B̂∗

k+1, δk, γk)
]
, (29)

where B̂∗
k+1 denotes the diagonal updated matrix (28). In practice, this choice works better than

choices (21), (25) and (28) but it is slightly worse than choice (24) (see Section 4 for details). Thus,

we suggest updating the diagonal matrix (24) by the diagonal BFGS update again. We obtained a

slight improvement (see Al-Siyabi [7] for details).

Now, the corresponding algorithm for the above diagonal updates can be outlined in Algorithm 1.

Notice that the search direction is computed in Steps 0 and 5 without explicitly forming B̂−1
k (i.e.,

s
(i)
k = −g

(i)
k /B̂

(i)
k , for i = 1, 2, . . . , n). Moreover, if the diagonal GN Hessian (21) is considered, then

Step 3 is not used.
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Algorithm 1

Step 0: Given an initial point x1, a symmetric and positive definite diagonal matrix B̂1 and ϵ > 0 (a tolerance on

the gradient norm). Set k = 1 and compute the initial search direction s1 = −B̂−1
1 g1.

Step 1: Compute a steplength αk and a new point xk+1 = xk + αksk such that the Wolfe-Powell conditions (8)
hold.

Step 2: Stop if ∥gk+1∥ ≤ ϵ.

Step 3: Compute the vectors δk = xk+1 − xk and γk = gk+1 − gk.

Step 4: Define a new positive definite diagonal Hessian approximation B̂k+1.

Step 5: Compute the new search direction sk+1 = −B̂−1
k+1gk+1.

Step 6: Set k = k + 1, and go to Step 1.

3 Convergence analysis

The convergence property of our suggested diagonal Hessian approximations is studied in this section.

Since they are maintained positive definite, the descent condition

sTk gk < 0 (30)

is satisfied for all k. Before presenting the convergence property, we first state the following standard

assumption.

Assumption 1.

a) Consider the set Ω = {x ∈ ℜn : f(x) ≤ f(x1)} and let Ω̃ be an open set containing Ω.

b) The function f(x) is bounded and continuously differentiable in Ω̃.

c) The gradient g(x) is Lipschitz continuous on Ω̃, that is, there exists a constant L > 0 such that

∥g(x)− g(x̃)∥ ≤ L∥x− x̃∥, ∀ x, x̃ ∈ Ω̃. (31)

We state the following result which is similar to the well-known result of Zoutendijk [25].

Theorem 1. Suppose Assumption 1 holds. Consider iterations (9) with x1 is any starting point, the

search direction sk being defined such that the descent condition (30) holds and the steplength αk

satisfies the Wolfe-Powell conditions (8). Then, the so-called Zoutendijk condition

∞∑
k=1

(sTk gk)
2

∥sk∥2
< ∞, (32)

is obtained.

Proof. Similar to many analyses (see, for example, Nocedal and Wright [24]), we state the following

proof (for complete illustration). Rearranging the second Wolfe-Powell condition in (8) and using the

Lipschitz condition (31), in consequence

L∥sk∥∥xk+1 − xk∥ ≥ sTk (gk+1 − gk) ≥ (σ1 − 1)sTk gk.

Substituting xk+1 = xk + αksk and using (30), we obtain:

αk ≥ (1− σ1)

L

|sTk gk|
∥sk∥2

.

Using this result, the first Wolfe-Powell condition in (8) implies

fk − fk+1 ≥ σ0(1− σ1)

L

(sTk gk)
2

∥sk∥2
.
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By summing this expression over k and using the assumed bound on fk, we obtain the Zoutendijk

condition (32).

To obtain the global convergence result for the Algorithm 1, it is assumed that the condition

number of the positive definite diagonal Hessian approximate B̂k is uniformly bounded, that is, there

is a constant M such that

κ(B̂k) =
λ1

λn
≤ M, ∀ k, (33)

where λ1 and λn are the largest and smallest eigenvalues of B̂k, respectively.

Theorem 2. Suppose that f satisfies Assumption 1. Let x1 be a starting point and B̂1 be a positive

definite diagonal matrix. Consider Algorithm 1 with ϵ = 0 in Step 0, B̂k+1 in Step 4 is defined such

that condition (33) holds. Then, the algorithm converges globally, that is

lim
k→∞

∥gk∥ = 0. (34)

Proof. Substituting sk = −B̂−1
k gk into the Zoutendijk condition (32), we obtain:

1

M

∞∑
k=1

∥gk∥2 = λn
1

λ1
∥gk∥2 ≤

∞∑
k=1

(sTk B̂ksk)(g
T
k B̂

−1
k gk)∥gk∥2

∥sk∥2∥gk∥2
< ∞,

where M is given as in (33). Hence, the limit (34) is obtained.

This result is easily applied to all diagonal methods we consider here, because the diagonal Hessian

approximations are defined sufficiently positive and bounded from above.

4 Numerical results

This section considers testing the proposed methods on a set of standard test problems (defined below).

All the methods are implemented as in Algorithm 1, which differ only in Step 4 for defining the updated

Hessian approximation B̂k+1 by choices (17), (21), (24) (with ϵ2 = 10−2 and ϵ3 = 10−14), (25), (28)

and (29), (referred to as Lq1, Lq2, ..., Lq6, respectively).

In all algorithms, we consider the followings. For Step 0, we choose B̂1 = I and ϵ = 10−7 is used

below in (36). For Step 1, we calculate a value of the steplength αk such that the strong Wolfe-Powell

conditions

fk+1 ≤ fk + σ0αks
T
k gk, |sTk gk+1| ≤ −σ1s

T
k gk (35)

hold, using the usual values of σ0 = 10−4 and σ1 = 0.9, which imply the Wolfe-Powell conditions (8).

We used the MATLAB line search routine ‘lswpc’ of Al-Baali, which is essentially written with slight

differences in Fortran by Fletcher. It is based on using quadratic and cubic interpolations for estimating

a value of the steplength αk. It also guarantees finding a positive value of αk in a finite number of

operations (see Al-Baali and Fletcher [6] or Fletcher [15]). We stop the run when either

∥gk∥ ≤ 10−7 max{∥g1∥, 1}, fk − fk+1 ≤ 10−14, (36)

or the number of line searches reaches 105.

All codes were written in MATLAB R2017b, and the runs were performed on an Intel(R) Core(TM)

i7- (2.7 GHz) processor with 16.0 GB RAM memory.
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The test problems were selected from the collection of Andrei [10], (which belong to the CUTEst

collection established by Gould et al. [18], Moré et al. [22] and Himmelblau [19]. We picked 48 test

functions (as given in Table 1). We observed that increasing the number of variables in some extended

test problems (e.g., Extended Rosenbrock) does not increase the number of line searches, function

evaluations, or gradient evaluations required to solve the problems (see for example Al-Baali [3]). To

avoid this occurrence, we modify the standard starting point x1 (as suggested by the author) to

x
(i)
1 = x

(i)
1 +

1

i+ 1
, (37)

for i = 1, . . . , n. We used all 48 test functions with the standard starting points and their modifica-

tions (37) for n = 60, 600 and 6000 so that the total number of the test problems is 288 tests.

Table 1: List of test functions.

No. Function’s Name No. Function’s Name

1 Extended Freudenstein & Roth 25 FLETCHR
2 Extended Trigonometric 26 TRIDIA
3 Extended Rosenbrock 27 ARGLINB
4 Generalized Rosenbrock 28 NONDIA
5 Extended White & Holst 29 NONDQUAR
6 Extended Beale 30 DQDRTIC
7 Extended Penalty 31 Broyden Tridiadonal
8 Perturbed Quadratic 32 Almost Perturbed Quadratic
9 Generalized Tridiagonal 1 33 Perturbed Tridiagonal Quadratic
10 Extended Tridiagonal 1 34 Staircase 1
11 Generalized Tridiagonal 2 35 Staircase 2
12 Extended Himmelblau 36 LIARWHD
13 Diagonal 4 37 POWER
14 Generalized White & Holst 38 EDENSCH
15 Generalized PSC1 39 CUBE
16 Extended PSC1 40 NONSCOMP
17 Extended Powell 41 QUARTC
18 Full Hessian FH2 42 SIQUAD
19 Extended BD1 (Block Diagonal) 43 Extended DENSHNB
20 Perturbed quadratic diagonal 44 Extended DENSHNF
21 Extended Hiebert 45 DIXON3DQ
22 Extended quadratic penalty QP1 46 BIGGSB1
23 Extended quadratic penalty QP2 47 Generalized Quartic
24 Extended quadratic exponential EP1 48 SINCOS

To study the behaviour of above algorithms, we compared the numerical results required to solve

the tests, using the performance profiles of Dolan and Moré [12] based on the numbers of line searches

(#ls), function evaluations (#fun) and gradient evaluations (#gra) as well as the CPU time in seconds,

required to solve the test problems. The Dolan-Moré performance profile can be briefly described as

follows. It illustrates the relative performance of the solvers on a set of test problems in terms of #ls

(similarly for #fun, #gra and cpu time). In general, PL(τ), the fraction of problems with performance

ratio τ ≥ 0, is defined by

PL(τ) =
number of problems where log2(τp,L) ≤ τ

total number of problems
. (38)

Here, τp,L is the ratio of #ls needed to solve problem p by the L method to the smallest #ls needed

to solve problem p. If the L method fails to solve problem p, this ratio τp,L is set to ∞ (or some large

number). The percentage of test problems for which the L method is best is given by PL(τ) for τ = 0,

while the percentage of test problems that the L method can solve is given by the value for τ large

enough. Thus, a solver with high values of PL(τ) or one with corresponding figure located at the top

right performs better than the ones located at lower levels.

Applying the above algorithms to the set of test problems, we obtained some numerical results.

Their comparisons are given in Figures 1–4, with respect to #ls, #fun, #gra and cpu time, respectively.
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We observe that Lq3 appear to be the best, better than Lq4, Lq5 and Lq6 while Lq1 and Lq2 are

worse than the other methods.
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Figure 1: Comparison among Lqi, i = 1, 2, . . . , 6, for #ls.
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Figure 2: Comparison among Lqi, i = 1, 2, . . . , 6, for #fun.
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Figure 3: Comparison among Lqi, i = 1, 2, . . . , 6, for
#gra.
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Figure 4: Comparison among Lqi, i = 1, 2, . . . , 6, for cpu
time.

To give another fair and useful comparison which shows the percentage improvement or worsening

of the algorithms, we also considered the comparison rule of Al-Baali (see, e.g., Al-Baali [2] and

essentially Al-Baali [1]). To compare two methods (say, A and B) with respect to #ls (similarly for

#fun, #gra and cpu time), the author proposes the average ratio measure of the form:

r =
1

t

t∑
i=1

ri, (39)

where t is the number of tests (here, t = 288) and

ri =


pi
qi
, if pi ≤ qi

2− qi
pi
, if pi > qi,

(40)

with pi and qi denoting #ls required to solve problem i by the A and B methods, respectively. If only

A or only B failed to solve the problem, we set ri = 2 and ri = 0, respectively. For some test problem i,

we set ri = 1 if both A and B methods fail or converge to two different local solutions. The average

ratio r in (39) always belongs to the interval [0, 2]. A value of r ≤ 1 indicates that A is better than B

by 100(1 − r)%. Otherwise, when r > 1, A is worse than B (or B is better than A) by 100(r − 1)%

(for additional information on this measurement ratio, see Al-Baali [2], for instance).
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Using the same numerical results that we used to obtain the comparison in Figures 1–4, we applied

the above average ratio measure to compare the Lq2, Lq3, ..., Lq6 algorithms versus the Lq1 algorithm

and obtained Table 2. Since we have r < 1 in all cases except for Lq2, it is clear that Lq2 gives the

worst performance of algorithms and Lq1 performs worse than Lq3, Lq4, Lq5 and Lq6 in terms of

#ls, #fun #gra and cpu time. Thus, these observations agree with those in Figures 1–4. We observe

that the best performance algorithm is obtained for the Lq3 by about 20%, 24%, 21% and 15% better

than Lq1 algorithm in terms of #ls, #fun, #gra and cpu time, respectively. Table 2 also shows that

Lq3 is better than Lq6, Lq4, Lq5, Lq1 and Lq2 in terms of #fun by about 4%, 7%, 11%, 24% and

24%, respectively (similar percentage improvements for the other measurements can be noticed from

the table). Thus we obtain the following worsening order: Lq3, Lq6, Lq4, Lq5, Lq1 and Lq2 with Lq3

is slightly better than Lq6 and Lq4. Since, however, the latter three algorithms are defined by (24),

(29) and (28), respectively, it follows that the implementation of Lq3 and Lq4 is simpler than that

of Lq6 and hence, Lq3 and Lq4 are the winners. Because Table 2 shows that Lq3 performs better

than Lq4 with percentage about 12%, 7%, 10% and 12%, in terms of #ls, #fun, #gra and cpu time,

respectively, Lq3 is the winner.

Table 2: Comparison of Lqi, i = 2, 3 . . . , 6, versus Lq1.

Method \ Measure #ls #fun #gra cpu

Lq2 1.067 1 1.057 1.108
Lq3 0.797 0.756 0.789 0.851
Lq4 0.924 0.832 0.899 0.967
Lq5 0.955 0.871 0.934 1.05
Lq6 0.876 0.799 0.862 0.899

5 Conclusion

We studied several proposals for maintaining the Hessian approximations Bk diagonal and positive

definite. Based on extensive numerical experiments for 288 test problems, we observed that the Lq3

algorithm, which defines the Hessian approximation by the simple diagonal matrix (24), is the best

among all algorithms. All these algorithms require the storage of a few vectors and, somehow, they

share the features of the quasi-Newton condition and the structure of the nonlinear least-squares

function.
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