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3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2024-81
https://www.gerad.ca/en/papers/G-2024-81
https://www.gerad.ca/en/papers/G-2024-81


MERCURY: A fast and versatile multi-resolution based
global emulator of compound climate hazards

Shruti Nath a

Julie Carreau b, c

Kai Kornhuber d, e

Peter Pfleiderer f

Carl-Friedrich Schleussner e, g

Philippe Naveau h

a Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford

b GERAD, Montréal, Canada
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Abstract : High-impact climate damages are often driven by compounding climate conditions. For
example, elevated heat stress conditions can arise from a combination of high humidity and tempera-
ture. To explore future changes in compounding hazards under a range of climate scenarios and with
large ensembles, climate emulators can provide light-weight, data-driven complements to Earth Sys-
tem Models. Yet, only a few existing emulators can jointly emulate multiple climate variables. In this
study, we present the Multi-resolution EmulatoR for CompoUnd climate Risk analYsis: MERCURY.
MERCURY extends multi-resolution analysis to a spatio-temporal framework for versatile emulation
of multiple variables. MERCURY leverages data-driven, image compression techniques to generate
emulations in a memory-efficient manner. MERCURY consists of a regional component that repre-
sents the monthly, regional response of a given variable to yearly Global Mean Temperature (GMT)
using a probabilistic regression based additive model, resolving regional cross-correlations. It then
adapts a reverse lifting-scheme operator to jointly spatially disaggregate regional, monthly values to
grid-cell level. We demonstrate MERCURY’s capabilities on representing the humid-heat metric, Wet
Bulb Globe Temperature, as derived from temperature and relative humidity emulations. The emu-
lated WBGT spatial correlations correspond well to those of ESMs and the 95% and 97.5% quantiles of
WBGT distributions are well captured, with an average of 5% deviation. MERCURY’s setup allows for
region-specific emulations from which one can efficiently “zoom” into the grid-cell level across multiple
variables by means of the reverse lifting-scheme operator. This circumvents the traditional problem of
having to emulate complete, global-fields of climate data and resulting storage requirements.

Keywords: Compounding climate hazards, climate model emulators, multi-resolution analysis, lifting
scheme extended to additional climate variables, spatio-temporal emulation
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1 Introduction

High impact climatic events are often driven by a combination of physical variables acting together (Ray-

mond et al., 2020; Lesk et al., 2022). For example, consequences for human health from extraordinary

temperatures are most severe when they coincide with high levels of humidity (Baldwin et al., 2023).

Multivariate events have been classified as one type of compound events in which correlated or entirely

independent variables (or hazards) occur at the same location at the same time, leading to amplifica-

tion of an impact (Zscheischler et al., 2020). With the aggravated risk of high-impact climate events,

there is urgent demand for climate information that allows agile exploration of future climate risks.

State-of-the-art Earth System Models (ESMs) provide the basis for climate impact studies. How-

ever, they are computationally expensive to run and require large storage costs. Moreover, only a

small number of their outputs (often post-processed e.g. to specific mean and spread values) are de-

ployed for climate risk assessments, leading to information redundancy. This provides an entry point

for low-cost statistical emulators focussing on application relevant output indicators. To date, a wide

range of emulators for different applications have been developed, providing yearly to monthly spatially

resolved fields of climate variables such as temperature and precipitation, to allow for real-time impact

assessments (Alexeeff et al., 2018; Beusch et al., 2020; Nath et al., 2022). Most emulators however

focus on one to two variables at a time (Snyder et al., 2019; Liu et al., 2023; Schöngart et al., 2024;

Bassetti et al., 2024), or jointly sample multivariate fields based on time sampling approaches. Time

sampling approaches however, are hindered under scenarios where not many analogue samples exist

leading to repeated sampling of the same fields (Tebaldi et al., 2022). Moreover, problems of data

storage costs and information redundancy, especially when moving to more climate variables, are still

present.

In this paper we introduce the Multi-resolutional EmulatoR for CompoUnd climate Risk AnalYsis

(MERCURY). MERCURY follows a multi-resolution approach thus representing spatio-temporal cli-

mate fields as a series of closed sub-spaces, allowing easy extension to multiple climate variables. This

approach condenses key information of large-scale responses under climate change, whilst preserving

localized small-scale features. It furthermore allows model reduction when representing the overall

mean climate responses across multiplt variables – which has previously been emphasised for climate

model emulation (Kitsios et al., 2023). Our approach is built on discrete wavelet-transform methods

to compress, estimate and recover our target climate fields of interest (Daubechies, 1992). Through

a novel lifting scheme, discrete wavelet analysis has furthermore been adapted for irregularly shaped

fields (Wim Sweldens, 1996; Park & Oh, 2022) that are more common in climate and geographical

spaces (e.g., continents). The lifting scheme is based on a local regression, to split irregularly shaped

fields into subspaces and compress them into their key features, whilst maintaining their average val-

ues. Recently, Carreau & Naveau (2023) demonstrated the use of a lifting scheme based framework to

simulate flood wave propagation by proposing an extension to represent spatio-temporal physics-based

phenomena.

The emulator framework proposed in this study is composed of two components. The first com-

ponent focuses on representing the mean response of impact-relevant regions to GMT. The second

component then uses the lifting scheme to “zoom” into and generate the higher resolution, grid-cell

level fields. This allows compression of the emulation problem and efficient extension to multivariate

representation, conserving both cross-variable and spatial correlations whilst circumventing data stor-

age issues. The structure of this paper is as follows: Section 2 describes the emulator framework of

MERCURY and its evaluation procedure. Following this emulator evaluation results are provided in

Section 3, after which we demonstrate the emulator output in Section 4 and proceed to final discussion

in Section 5.
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2 Methods

We are interested in jointly modelling monthly spatially resolved fields for a given set of variables

conditional on the yearly Global Mean Temperature (GMTy). MERCURY’s framework is summarised

in Figure 1, and is composed of a regional, component generating monthly (m), regional (r) mean

responses of a climate variable to GMT (described in Subsection 2.1). Grid-cell level (gc) values are

then reconstructed from given regional, monthly values using a month-specific lifting scheme (described

in Subsection 2.2). Data used for training and evaluating MERCURY are described in SI section 1.

a)  GMT E.g, SSP 5-8.5 

b)  AR6 Regions E.g., Jan

≈

Regional response: 𝒇𝒓,𝒎 𝑮𝑴𝑻

+

Regional variability: 𝝐𝒓,𝒎~𝑵(𝟎, 𝚺𝒎)

≈

…
𝑇

𝑅𝐻

…
𝜂!

𝜂"#

c)  Jointly emulated fields E.g., Jan

Reconstruction via lifting scheme: 𝚲𝒓,𝒎𝑻%𝑹𝑯

1850 2030 2100

𝑇

𝑅𝐻

Figure 1: MERCURY’s framework for generating monthly spatially multivariate climate fields. Yearly GMT values are
used as inputs (panel a). The monthly, regional mean response and regional variability for each climate variable is first
calculated (panel b). The lifting scheme is then employed to provide monthly spatially resolved, multivariate fields at the
grid-cell level (panel c).

2.1 Representing mean regional monthly responses

To regress the response variable V on the yearly time series of GMT, a classical Additive Model (AM)

is applied for each month and for each AR6 region, i.e.

Vr,m = fr,m(GMTy) + ϵr,m, (1)
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where m = 1, . . . , 12, r = 1, . . . , 44 and Vr,m represents the climatological response during month m

and over region r (either on temperature or relative humidity). As the relationship between Vr,m and

GMTy may not be necessarily linear, fr,m(.) denotes a smooth function modelled by a classical cubic

spline. The random vector ϵr,m corresponds to a zero-mean Gaussian vector with covariance matrix

Σr,m. This matrix represents monthly regional variability, see Figures S1 and S2 for visual checks

of the Gaussian hypothesis and serial correlation diagnostics that indicate only significant positive

auto-correlations in tropical latitudes. We illustrate (1), in the left map shown in panel b in Figure 1

that displays fitted fr,m for m = 1 (January) and two AR 6 regions with relative humidity in blue and

temperature in red. The right map of panel b in Figure 1 shows the residuals ϵr,m.

2.2 Grid-cell level reconstruction per region

After fitting model (1) for each month and each AR6 region, the estimated Vr,m contains the main

response signal and can be used to generate monthly time series of regional values for a given yearly

GMT trajectory. To then obtain the corresponding monthly, grid-cell level values for a given region,

we employ a lifting scheme based framework, such that:

Vgc,m,y = Λr,m(Vr,m) (2)

where gc = 1 . . . n (n representing the number of grid-cells within region r), Λr,m is a month- and

region- specific reverse lifting-scheme operator obtained by inverting the lifting scheme. In the following

subsections we start by elaborating on the framework of the lifting scheme, followed by how the reverse

lifting-scheme operator, Λr,m, is obtained from it. Finally, we describe the extension of the reverse

lifting-scheme operator, ΛT−RH
r,m , to provide the joint temperature (Tgc,m,y) and relative humidity

(RHgc,m,y) emulations.

2.2.1 Lifting scheme framework

Amonth- and region- specific lifting scheme is constructed over the training data by iteratively applying

the lifting scheme’s split, predict and update steps. These steps had been previously adapted for spatio-

temporal datasets by Carreau & Naveau (2023), and are depicted in Figure 2.

Starting from the original input grid, grid-cells are split into x-y pairs across each latitudinal band,

unless an odd number of grid-cells exists in which case one group of three is made. Following this, the

wavelet coefficients, d are the errors of a prediction with naive regression as,

d = y − x (3)

and where a group is of size three, two wavelet coefficients are obtained,

d1 = y1 − x and d2 = y2 − x. (4)

Finally, the wavelet coefficients are set aside and the x values in each pair are updated with the

scaling coefficients, c, corresponding to the average over each group,

c =
x+ y

2
= x+ λ · d = x+

1

2
· d or c =

x+ y1 + y2
3

= x+ λ · (d1 + d2) = x+
1

3
· (d1 + d2), (5)

where λ contains information on the group dimension.

The split, predict and update steps are iterated through until a single scaling coefficient corre-

sponding to the grid average, and a fully populated grid of wavelet coefficients - except for the cell

that corresponds to the scaling coefficient - are obtained. Each iteration corresponds to a resolution

level. It should be noted that the λ coefficient also needs to be tracked at each iteration, to account

for differences in group dimensions being merged during the update step. For example, in the second

iteration of the toy example depicted in Figure 2, the λ coefficient would be 3
7 to account for the

differences in the group sizes.
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2nd iteration

Starting [7×𝑡] grid

Scaling Coefficients:
[3×𝑡]

Final Scaling Coefficient:
[𝑡]

Partially populated 
Wavelet Coefficient grid

[7×𝑡]

Fully populated 
Wavelet Coefficient grid
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Figure 2: Toy example of the lifting scheme applied on a grid consisting of 7 cells with values going from time 1 to t. At
each iteration of the lifting scheme, the grid is split into groups of two (unless there is an odd number of cells in which case
one group of three exists). The ’predict’ step stores the wavelet coefficients representing the regression errors resulting
from local regression (in our case, naive regression). Finally, the x values are updated with the scaling coefficients obtained
by averaging values within each group. Split, predict and update steps are repeated until only a single scaling coefficient
exists which corresponds to the grid average, and the wavelet coefficient grid is fully populated up to 6 cells (in the toy
example’s case two iterations). Within each lifting iteration the grid’s spatial dimension is reduced by approximately a
half.

When reversing the lifting scheme, we iterate backwards from the scaling coefficient of the final

iteration to the original grid. At each iteration, the x and y values within the corresponding group are

obtained as,

x = c− λ · d and y = d+ x = d+ (c− λ · d) = c+ (1− λ) · d. (6)

As a simple interpretative summary, the lifting framework decomposes a spatio-temporal field into

a single time series i.e., scaling coefficient, that contains the spatial average at each time step and

its surrounding spatial patterns i.e., wavelet coefficients, that summarise its spatial structures - as

deviations from the average - at a given time step. It can thus be thought of as a simpler alternative

to an Empirical Orthogonal Function (EOF) analysis based on rudimentary arithmetic that is more

flexible in the sense that the decomposition does not make any linearity assumptions (apart from the

predict and update operations being locally linear). Alternatively, it could be thought of as a naive

Convolutional Network composed of 2-D average pooling layers, but suited for irregular grids with

adaptive filter sizes and having deliberate attention focused towards remembering the residual spatial

patterns.

Once, fully iterated over each region and month, the lifting scheme stores, from the last iteration, a

configuration of scaling coefficients (treated as the monthly, regional values), and their corresponding

wavelet coefficients (if n is the number of initial grid cells, there are n − 1 wavelet coefficients). As

the reverse lifting scheme starts from the grid average, we may use it on estimated monthly regional

values Vr,m, see (1), to reconstruct grid-cell level values by selecting suitable wavelet coefficients.

2.3 Generating new emulations

The region- and month- specific reverse lifting-scheme operator Λr,m, see (2), is able to go back down

to a grid-cell level resolution given a single monthly, regional value, interchangeable as the fully lifted

scaling coefficient. The key step within the reverse lifting-scheme operator Λr,m is identifying the

wavelet coefficients that are prototypical for a given monthly, regional value from which to reconstruct

the original climate fields with. To do so, we start by defining the neighbourhood around a given

regional, monthly value, Vr,m by choosing the twenty scaling values, corresponding to different years,
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within the lifting scheme’s decomposition that are closest to it in value. The associated prototypical

wavelet coefficients – referred to as wavelet patterns – are then sampled using Monte Carlo sampling.

The Monte Carlo sampling builds a multivariate Gaussian distribution using the 20 wavelet coefficient

vectors and samples from that. It assumes normality and stationarity in the wavelet coefficients, and

draws from a multivariate Gaussian distribution with covariance matrix constructed across the wavelet

coefficients, thus conserving spatial structures within the wavelet coefficients.

Each sampled wavelet pattern represents a possibility of spatial patterns corresponding to the

given regional, monthly value and is used to invert the lifting scheme framework and arrive at a final

spatially resolved emulation for that region and month. When doing this using regional monthly values

provided across all regions as provided by fr,m (see (1)), we arrive at a single global emulation for a

given month. We note that regional cross-correlations are conserved within fr,m, and given that the

lifting scheme conserves the regional average value, discontinuous jumps between regions are expected

to be insignificant. Nevertheless, to ensure seamless blending between regions during reconstruction, we

apply a buffer zone around each regional boundary before sampling wavelet coefficients, as previously

done to overcome boundary issues for image processing exercises (Hee-Seok et al., 2001; Naveau & Oh,

2004). The buffer zone of width one grid-cell is chosen and the lifting scheme is configured using it.

Reverse lifting is conducted using for the whole region plus the buffer zone, after which buffer zone

values are simply discarded.

2.3.1 Reverse lifting-scheme operator for multivariate sampling

The reverse lifting-scheme operator, Λr,m, is extended to a new operator, denoted ΛT−RH
r,m , which

enables the joint sampling of Tgc,m,y and RHgc,m,y. We first identify the key variable that will be

used to define the neighbourhood for sampling wavelet coefficients. In our case, we select Tr,m,y, as

its relationship to GMTy is most established (Tebaldi & Arblaster, 2014; Tebaldi & Knutti, 2018;

Herger et al., 2015). Having defined the neighbourhood through the key variable, the usual wavelet

sampling steps are then carried out. One difference however, is that the wavelet coefficients can now

be jointly sampled across each variable’s lifting scheme decomposition, given the mutually defined

neighbourhood. To ensure a strict relationship to the key variable, Tr,m,y, we additionally impose a

conditional sampling of the RH wavelet coefficients on the T wavelet coefficients within the Monte

Carlo routine, by calculating their conditional covariance matrix,

ΣRH|T = ΣRH,RH − ΣRH,T · Σ−1
T,T · ΣT,RH , (7)

where ΣRH|T is the conditional covariance matrix constructed from blocks of the covariance matrix

constructed across grid-cells and variables,[
ΣT,T ΣT,RH

ΣRH,T ΣRH,RH .

]
(8)

A strict conditionality of the distributional space sampled by the Monte Carlo routine on RH to

the key variable T is imposed. To this extent, spatially co-occurring and thus compounding patterns

are expected to be conserved within the reconstruction process.

2.4 Evaluation

In evaluating MERCURY, ten monthly, regional values are produced from fr,m, and for each value

100 reconstructions are performed with the reverse lifting-scheme operator ΛT−RH
r,m resulting in 1000

spatially resolved, monthly, multivariate emulations. MERCURY is evaluated on the test scenario

SSP2-4.5. To evaluate the final multivariate T and RH emulations, we first consolidate them into a

single representative compound index, the indoor Wet Bulb Globe Temperature (WBGT ). WBGT is

calculated using Stull’s method (Stull, 2011) by first calculating Wet Bulb Temperature (WBT ):
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WBTgc,m,y =Tgc,m,y · (c1 ·
√

RHgc,m,y + c2) + tan−1(Tgc,m,y +RHgc,m,y)− tan−1(RHgc,m,y − c3)

+ c4 ·RH
3
2
gc,m,y · tan−1(c5 ·RHgc,m,y)− c6,

(9)

where c1, c2, c3, c4, c5 and c6 constants with values 0.16, 8.31, 1.68, 0.0039, 0.023 and 4.69 respectively.

WBGT is then obtained from WBT as follows,

WBGTgc,m,y =
2

3
·WBTgc,m,y +

1

3
· T. (10)

Final WBGT emulations are inspected for their representation of spatial structures by means of

Spearman correlations. For both the ESM and emulator outputs, a Spearman correlation matrix is

constructed across all grid cells. The difference is then taken by simply subtracting the emulator’s

Spearman correlation matrix from the ESM’s Spearman correlation matrix. This provides useful

diagnosis into how well dominant spatial structures are approximated, where ideally the difference

between the two matrices is zero.

We furthermore evaluate MERCURY’s representation of theWBGT distributions on a grid-cell and

regionally aggregated level. On a grid-cell level, we investigate MERCURY’s ability to approximate

the median (50%) and the extreme upper (95% and 97.5%) quantiles of WBGT distributions as

calculated from T and RH values outputted by the ESM at each month. We do so by calculating

monthly, grid-cell level quantile deviations as used in previous emulator evaluations (Beusch et al.,

2020; Nath et al., 2022; Quilcaille et al., 2022). Quantile deviations for a quantile, qgc,m, are calculated

by calculating quantile time series from the generated emulations for quantile q, grid-cell gc and month

m. The proportion of time steps that the ESM values appear below the emulated quantile value is

then calculated (qESM
gc,m ). The quantile deviation is then qESM

gc,m −qgc,m, such that a positive value means

that the emulated quantile is larger in value than that of the actual ESM and vice versa.

We evaluate the emulator’s representation of WBGT distributions on a regionally aggregated

level by means of probability rank distributions. Multiple layers of aggregation – calculated using

a latitudinally weighted average – from AR6 regions to continental to global are investigated. For each

level of aggregation, the probability rank distribution is obtained by calculating the probability rank

of the actual, ESM value with respect to the emulated ensemble over all time steps. If the emulated

ensemble perfectly captures the actual ESM distribution, we would expect the median probability rank

value to correspond to 50% and so on, such that their final distribution is uniformly distributed.

3 Results

In the following subsections we first show evaluation results on the test scenario SSP 2-4.5 for the

representation of spatial correlations within the multivariate emulations (Section 3.1) and then the

representation of the overall distribution (Section 3.2).

3.1 Spatial evaluation

Differences in the Spearman correlation matrix of the ESM to that of MERCURY are shown in Fig-

ure 3. Across ESMs and months, we note a positive difference, indicating an underestimation of spatial

correlations within the emulator. This is particularly apparent in July and concentrated towards cor-

relations with grid cells in equatorial latitudinal bands (i.e. -1.25°N). Since the emulator is a statistical

approximation of the ESMs with an approximated spatial covariance matrix, such underestimation of

spatial structures is not entirely unexpected. Moreover, equatorial latitudes have stronger temporal

correlations (see Durban-Watson test for serial correlation Figure S2, and this indicates some short-

coming in MERCURY’s design choice of not accounting for serial correlations. Across all ESMs and
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months, an overestimation of spatial correlations at latitudes higher that 61.25°N can also be noted.

Grid cells above 61.25°N mainly correspond to Greenland, and this could be a product of Greenland

being treated as its own AR6 region, leading to overestimation of its regional correlations.

Difference in spatial spearman correlation matrix: ESM-Emulator
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Figure 3: Difference between the ESM and emulator Spearman correlation matrix obtained by subtracting the emulator’s
Spearman correlation matrix from that of the ESM’s for test scenario SSP 2-4.5. The Spearman correlation matrix is
calculated over all land grid cells for January (upper triangle) and July (lower triangle).

Comparing the results from Figure 3 to inter-comparison results against the existing monthly

temperature emulator MESMER-M (Figure S3), we note that ESMs which had overall poorer CRPSS

scores against the benchmark emulator MESMER-M – and therefore no notable improvement in skill –

also show larger underestimation of spatial correlations. For further analysis, we focus on 2 ESMs, MRI-

ESM2-0 and UKESM1-0-LL, representative of where MERCURY brings meaningful improvements with

respect to MESMER-M and where not so much, respectively. We furthermore focus on July as this is

the month where the most underestimation of spatial correlations occurs. In case readers are interested

in an in-depth analysis of spatial correlations for select grid-cells please refer to SI section 4.

3.2 Representation of the overall distribution

Figure 4 shows 50%, 95% and 97.5% quantile deviation maps (panel a) for the two representative

ESMs, MRI-ESM2-0 and UKESM1-0-LL, in July. Positive quantile deviations indicate overestimation

of the quantile value by MERCURY and vice versa. Whereas 95% and 97.5% quantile deviations

are quite low (between -5% and 5%), 50% quantile deviations show large overestimations with some

grid-cells e.g., in South Asia, having values of up to 20%. This indicates that MERCURY may be

overestimating the overall mean response of WBGT to GMT on a grid-cell level.

Probability rank distributions (panel b) look reasonably uniformly distributed for both ESMs across

all aggregation levels, albeit globally aggregated showing lower median values (i.e., again an overes-

timation by MERCURY). In addition to the quantile deviation maps, this indicates that selection of

regions could lead to biases in representation of grid-cell level distributions (e.g., perhaps a grid-cell’s

responses is not so well correlated to the regional response). Consequently, an overall bias in repre-

sentation of global distributions – as seen in the globally aggregated probability rank distribution –

results. Nevertheless, in this study we seek to represent the most impact relevant regions and note

that this is a consequence of that design choice.
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Figure 4: Comparison between the emulated and actual distribution for test scenario SSP 2-4.5. a) Quantile deviation
maps for the 50%, 95% and 97.5% quantiles, where red means that the emulated quantile is warmer than the actual
ESM quantile and vice versa for blue. b) Probability rank distributions of the actual data with respect to the emulated
ensemble. Data is aggregated to AR6 regional, continental and global levels before calculating the probability ranks.
Whiskers indicate the 5th and 95th percentiles. If the distribution of actual data is captured perfectly, then the median
should correspond to 0.5, edges to 0.75 and 0.25, and whiskers to 0.05 and 0.95.

4 Example WBGT superensemble time series

Figure 5 provides 2-D histogram time series of a superensemble pooling together 1000 WBGT emula-

tions for each ESM, so a total of 5000 emulations. WBGT values are aggregated to AR6 regions, Sahel

and South Asia, and globally. ESM values are also provided for reference. We again show results for

the SSP 2-4.5 scenario. A notable spread and divergence in ESM values across regions and globally

is apparent. For example, South Asia displays two modes of ESM WBGT values, starting at approx-

imately 22 °C and 24 °C in the year 1850 and increasing at different rates till they converge around

24°C-25°C by 2100. MERCURY is able to capture both the spread within each ESM initial-condition

ensemble as well as the inter-ESM spread in magnitude and rates of change. This provides useful

perspective into the potential of multivariate, lightweight emulators to inform impact assessments. To

this extent, they not just provide useful approximations of the ESM initial-condition ensemble spread,

but also of the inter-ESM spread, which in some cases may be larger and thus have a greater degree

of uncertainty.

5 Discussion

We present MERCURY, a fast and versatile emulator framework that allows approximation of spatially

resolved risks from multivariate compound hazards such as wet bulb globe temperature (WBGT). Af-

ter training on ESM outputs, MERCURY starts from GMT to deterministically approximate monthly,

regional temperature and relative humidity separately by means of a month- and region- specific regres-

sion (AM, see (1)). Region-to-region correlations are then added by means of a variable- and month-

specific multivariate Gaussian process. Grid-cell level temperatures and relative humidity are jointly

reconstructed from their regional values using an operator that reverses the “lifting scheme” adapted

for spatio-temporal multivariate sampling. The lifting scheme performs an efficient compression of

regional fields based on a local regression, to iteratively split and compress irregularly shaped fields

into their key features. The differences between each iteration are stored as wavelet coefficients, thus

enabling reconstruction of the original regional field from a single, regional averaged value.
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Figure 5: 2-D histogram time series for the emulated superensemble (greys), with the actual ESM superensemble overlaid
for July, SSP 2-4.5. 1000 emulations were produced for each ESM initial-condition ensemble member. Note, that snce
historical runs have more ensemble members, the emulation count is also higher up to 2015.

The generation of grid-cell level emulations is performed by sampling wavelet coefficients within

the “neighbourhood” of a given regional, monthly value from the lifting scheme’s decomposition by

means of the Monte Carlo method. This allows flexible extension to more variables by sampling their

wavelet coefficients from the same neighbourhood. In this study, we select a key variable, temperature,

through which to define the neighbourhood which is then used in sampling wavelet coefficients for any

additional variables, i.e., relative humidity. In such, we impose a strict, hierarchical dependency of

relative humidity on temperature by defining the neighbourhood using temperature only and also

by sampling relative humidity using its conditional covariance matrix to temperature. It would be

possible to instead have a more egalitarian approach with a mutually defined neighbourhood between

variables from which to sample from. In future, a mutually defined neighbourhood could be considered

instead which would reduce the computationally complexity of our approach. In line with this, future

extension to more climate variables may also encounter non-Gaussian variables such as precipitation.

Future extensions of this study may thus benefit from more sophisticated sampling approached such

as use of Diffusion-based Neural Networks, and the framework of MERCURY is modular enough to

allow flexible extension for such alternative sampling approaches.

A key advantage of MERCURY lies in its ability to treat irregularly shaped regions. MERCURY

doesn’t require to derive high resolution information for all regions included, but one can selectively

choose regions of interest to then “zoom” into by means of the reverse lifting-scheme operator. For

impact assessments, this means real-time availability of selected impact-relevant regional information

without the need to generate and sift through global fields which amount to Peta-bytes of data. To

the best of our knowledge, this is the only emulator approach existing so far aiming to tackle the data
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management problem effectively. MERCURY itself holds low parametric complexity, mainly confined

to representing regional responses to GMT, after which it reconstructs grid-cell level responses based

on Monte Carlo sampling. This ensures limited growth of parametric uncertainty going down the

emulation chain (as otherwise seen in (Nath et al., 2024)), as well as imposes less stringent functional

forms on the grid-cell level responses to GMT.

Open research section

MESMER and MESMER-M are publicly available under Github (Hauser et al., 2021; Nath, 2022).

Code for the lifting scheme can be found within the GitHub repository: https://github.com/snath-

xoc/Lifting. The CMIP6 data are available from the public CMIP archive at https://esgf-node.

llnl.gov/projects/esgf-llnl/ (ESGF–LNLL, 2022).
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Kyle F., & Konar, Megan. 2022. Compound heat and moisture extreme impacts on global crop yields under
climate change. Nature Reviews Earth & Environment, 3(12), 872–889.

Liu, Ziming, Luo, Di, Xu, Yilun, Jaakkola, Tommi, & Tegmark, Max. 2023. GenPhys: From Physical Processes
to Generative Models. 1–21.

Nath, Shruti. 2022. snath-xoc/Nath et al ESD 2022 MESMER-M. 4.

Nath, Shruti, Lejeune, Quentin, Beusch, Lea, Seneviratne, Sonia I., & Schleussner, Carl Friedrich. 2022.
MESMER-M: an Earth system model emulator for spatially resolved monthly temperature. Earth System
Dynamics, 13(2), 851–877.

Nath, Shruti, Hauser, Mathias, Schumacher, Dominik L., Lejeune, Quentin, Gudmundsson, Lukas, Quilcaille,
Yann, Candela, Pierre, Saeed, Fahad, Seneviratne, Sonia I., & Schleussner, Carl-Friedrich. 2024. Represent-
ing natural climate variability in an event attribution context: Indo-Pakistani heatwave of 2022. Weather
and Climate Extremes, 44(6), 100671.

https://github.com/snath-xoc/Lifting
https://github.com/snath-xoc/Lifting
https://esgf-node.llnl.gov/projects/esgf-llnl/
https://esgf-node.llnl.gov/projects/esgf-llnl/


Les Cahiers du GERAD G–2024–81 11

Naveau, Philippe, & Oh, Hee Seok. 2004. Polynomial wavelet regression for images with irregular boundaries.
IEEE Transactions on Image Processing, 13(6), 773–781.

Park, Seoncheol, & Oh, Hee-Seok. 2022. Lifting Scheme for Streamflow Data in River Networks. Journal of
the Royal Statistical Society Series C: Applied Statistics, 71(2), 467–490.

Quilcaille, Yann, Gudmundsson, Lukas, Beusch, Lea, Hauser, Mathias, & Seneviratne, Sonia I. 2022. Showcas-
ing MESMER-X: Spatially Resolved Emulation of Annual Maximum Temperatures of Earth System Models.
Geophysical Research Letters, 49(17), 1–11.

Raymond, Colin, Matthews, Tom, & Horton, Radley M. 2020. The emergence of heat and humidity too severe
for human tolerance. Science Advances, 6(19).

Schöngart, Sarah, Gudmundsson, Lukas, Hauser, Mathias, Pfleiderer, Peter, Lejeune, Quentin, Nath, Shruti,
Seneviratne, Sonia Isabelle, & Schleußner, Carl-Friedrich. 2024 (5). Introducing the MESMER-M-TPv0.1.0
module: Spatially Explicit Earth System Model Emulation for Monthly Precipitation and Temperature.

Snyder, Abigail, Link, Robert, Dorheim, Kalyn, Kravitz, Ben, BondLamberty, Ben, & Hartin, Corinne. 2019.
Joint emulation of Earth System Model temperature-precipitation realizations with internal variability and
space-time and crossvariable correlation: Fldgen v2.0 software description. PLoS ONE, 14(10), 1–13.

Stull, Roland. 2011. Wet-bulb temperature from relative humidity and air temperature. Journal of Applied
Meteorology and Climatology, 50(11), 2267–2269.

Tebaldi, Claudia, & Arblaster, Julie M. 2014. Pattern scaling: Its strengths and limitations, and an update
on the latest model simulations. Climatic Change, 122(3), 459–471.

Tebaldi, Claudia, & Knutti, Reto. 2018. Evaluating the accuracy of climate change pattern emulation for low
warming targets. Environmental Research Letters, 13(5).

Tebaldi, Claudia, Snyder, Abigail, & Dorheim, Kalyn. 2022. STITCHES: creating new scenarios of climate
model output by stitching together pieces of existing simulations. Earth System Dynamics, 13(4), 1557–1609.

Wim Sweldens. 1996. The lifting scheme: A construction of second generation wavelets. SIAM Journal on
Mathematical Analysis.

Zscheischler, Jakob, Martius, Olivia, Westra, Seth, Bevacqua, Emanuele, Raymond, Colin, Horton, Radley M.,
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