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Préface

Le CRM, IVADO et le GERAD organisèrent conjointement le Quatorzième atelier de résolution de problèmes
industriels de Montréal, qui eut lieu du 13 au 17 mai 2024 à HEC Montréal. Les organisateurs en sont très
reconnaissants à HEC Montréal, qui est maintenant un des partenaires académiques du CRM. J’aimerais
aussi remercier Jean-François Plante et Juliana Schulz, coprésidents du comité scientifique de l’atelier,
Janosch Ortmann, Sylvain Perron, Samuel Perreault, Mike Lindstrom et Gilles Caporossi, coordonnateurs
d’équipes, et Dany Plourde et Mariam Tagmouti, conseillers chez IVADO. Finalement j’aimerais souligner la
contribution exceptionnelle du CRM et du GERAD à l’organisation matérielle de l’atelier, qui fut assurée par
Sakina Benhima, Marie Perreault, Marilyne Lavoie et Karine Hébert.

Odile Marcotte
Conseillère spéciale aux partenariats, CRM
Professeure associée, UQAM et membre associé, GERAD
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Foreword

The CRM, IVADO, and GERAD jointly organized the Fourteenth Montreal Industrial Problem Solving
Workshop, which took place on May 13-17, 2024, at HEC Montréal. The organizers are grateful to HEC
Montréal, which is now a CRM academic partner, for the use of its premises. I would like to thank
Jean-François Plante and Juliana Schulz, cochairs of the workshop Scientific Committee; Janosch Ortmann,
Sylvain Perron, Samuel Perreault, Mike Lindstrom, and Gilles Caporossi, team coordinators; and Dany
Plourde and Mariam Tagmouti, advisors at IVADO. Finally I wish to highlight the contribution of the CRM
and GERAD to the workshop logistics, especially the exceptional work of Sakina Benhima, Marie Perreault,
Marilyne Lavoie, and Karine Hébert.

Odile Marcotte
Special Advisor, Partnerships, CRM
Adjunct Professor, UQAM and Associate Member, GERAD
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Abstract: This report summarizes the findings of the team working on Problem 1 of the 2024 CRM industry workshop

(IPSW), proposed by Air Canada. We study the problem of scheduling staff for the customer service centres. Our main

contributions are a supervised machine learning model that predicts the number of incoming requests and an optimization

model that suggests a staff schedule based on the expected number of requests.

1.1 Introduction

Founded in 1937 as Trans-Canada Air Lines, Air Canada is the largest airline in the country. Headquar-
tered in Montréal, Québec, the airline operates a vast network of domestic and international routes,

serving over 200 destinations across six continents.

Air Canada’s cargo operations have been an integral part of its business since its early days. The

cargo division, known as Air Canada Cargo since 1977, has evolved significantly over the decades,

expanding its capabilities and reach. By 2021 Air Canada Cargo was Canada’s largest provider of air

cargo transportation services as measured by cargo capacity, with a presence in over 50 countries and

hubs in Montréal, Toronto, Vancouver, Chicago, London, and Frankfurt.

Initially focused on domestic routes, Air Canada Cargo quickly grew to include international

markets, leveraging the airline’s extensive route network. During the COVID-19 pandemic, the cargo

division played a crucial role in transporting essential goods, including medical supplies and vaccines,

demonstrating its reliability and adaptability. Since 2021 a fleet of eight dedicated cargo aircraft (767F)

has been providing extra capacity.

The current project concerns scheduling of customer service centre staff for Air Canada Cargo.

The report is structured as follows:

• In Section 1.2 we give a detailed context and problem statement, including an overview of the

available data;

• Section 1.3 consists of a descriptive analysis of that data;

• Section 1.4 outlines our predictive and prescriptive methodology;

• The results of our analysis are presented in Section 1.5;

• Section 1.6 is the conclusion of our report.

1.2 Problem description

Air Canada Cargo Customer Service Centres handle customer service inquiries for customers with

freight originating from, transiting through, or departing from Canada. We offer service through

telephone and email and are reviewing alternative contact channels such as chat. Outside of standard
customer service inquiries, the service centres handle new cargo bookings and speciality bookings such

as Active Containers and Live Animals (horses, dogs, cats etc.). The service centres in Toronto (YYZ),

Montréal (YUL), and Moncton (YQM) are open from 0600 – 2200 EST, seven days a week and offer

bilingual service to our customers.

With the ability to bid schedules only once per year, we need to forecast contacts and generate

schedules that are linked across the three Customer Service Centres. Currently Air Canada relies on

Excel spreadsheets and “heat mapping” to determine the heaviest contact volumes of the day and when

staffing should be scheduled. This is only based on historical data, however, and takes into account

neither language requirements (English or French) nor future expected freight volumes.
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The objective is to create a model that could estimate required staffing based on contact volumes,

taking into account our service level requirements and current staffing levels (number of total staff).

This model should be based on an average estimated weekly.

1.2.1 Goals of the project

Forecast the number of required staff: Based on the available data, we need to identify the total

staff demand for each hour. This will allow us to forecast the number of staff required per hour

for the next 365 days. The forecasting horizon is crucial, as we must provide the schedules for

staff at the beginning of the year.

Optimize the schedule based on the Forecast: The goal is to minimize the number of staff re-

quired while reducing waiting times and meeting all demands as efficiently as possible. By

achieving this, we can enhance customer satisfaction and decrease the costs associated with

overstaffing.

1.2.2 Available data

Together with the challenge, Air Canada provided four data sets. The first, VoiceCallComplete, contains

information about all the requests (calls and emails) received by the customer service centre. Some of

these contain a Case reference number, which means that the request led to a case being opened. All of

the cases are collected in the AllCases file, merged from six individual cases files. To benchmark against

the current schedule, we were provided with the AWD-Connect data set. Finally we also received a

AirwaysBills data set containing all data about all the airway bills (cargo bookings) originating in

Canada between March 2023 and April 2024.

A more detailed description of the data sets, including the attributes, can be found in Appendix 1.A.

1.3 Data presentation

In this section, we briefly present the data that was made available to us and discuss the pre-processing

steps that we considered necessary for further analysis.

1. VoiceCallComplete .csv: Initially, the start and end date/time columns for the calls were modified

to concatenate the date and time into two separate columns. This allowed for the calculation of

the call duration by subtracting the start date/time from the end date/time and converting the

result into minutes.

Certain columns such as ‘ToPhoneNumber’, ‘CallDisposition’, ‘CallType’, and ‘From Phone #

(area Code)’ were deemed non-essential for our preliminary modelling and analysis and therefore

we excluded them.

Following consultations with representatives of Air Canada Cargo, an upper bound of 60 minutes

was set for the call durations to enhance the robustness of the model by focusing on more

representative cases rather than outliers. This upper bound impacted only 0.4% of the data. Also

records with call durations of less than 30 seconds, constituting 10.4% of the remaining data,

were removed as these short durations were insufficient for substantive inquiries.

The call centre operates from 6 AM to 10 PM. Interestingly, 15% of the calls were received during

midnight hours when no staff was scheduled to be available. Based on advice from the Air Canada

team, these calls were excluded from the analysis. The distributions of the call duration during

working hours and midnight were found to be similar, suggesting the validity of these midnight

calls despite their exclusion.

The distribution of call durations is illustrated in Figure 1.1.

After these preprocessing steps, 55% of the raw data were retained.
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Figure 1.1: Distribution of call durations.

The dataset also contained some calls that did not lead to a reference case number. It was

explained to us by the Air Canada team that customer service agents are encouraged to do so in

cases where there was only a short enquiry that the agent was able to deal with immediately. For

example, a customer might ask for the status of one of their shipments. In those cases, logging a

new case could take up more time than answering the query itself, so in order to save time agents

do not log a case number.

The language of the calls was also extracted to determine the need for bilingual staff. Further

derived features included the hour of the day, calendar day, month of the year, and weekday from

the Call Start date/time column.

2. all cases.csv: In this dataset, only closed cases are considered in order to obtain better estimates

of their duration and other attributes. Removing the cases that are not closed reduces the dataset

by 0.27%. Extra columns such as ‘Closed Date FORMATED’, ‘Status’, ‘Issue Type c’, ‘Issue c’,

and ‘IsClosed’ are then dropped. Note that only one of the ‘Closed Date FORMATED’ columns

is retained as they are duplicates.

The ‘Origin’ field indicates the type of communication. If the origin is ‘Transferred’ or ‘Manual’,

it is categorized as ‘Phone’. If the origin is ‘Email’, it remains as ‘Email’. Cases with the origin

‘Proactive’ are removed from the dataset.

As in the case of the previous dataset, the creation and closing dates and times are concatenated

into two separate columns. Approximately 94% of the demand is through email, and the remaining

6% is through phone communication.

In addition some case references from the previous dataset are a subset of cases in the all cases

dataset. After data cleaning, 96% of these references exist in the all cases dataset.

The case durations are then calculated in minutes. Interestingly some cases have negative

durations, which are displayed in Figure 1.2. A lower bound is set to remove cases with durations

less than 30 seconds, which constitute 10% of the dataset. An upper bound is not set as long

durations may still be valid due to multiple related emails for a single case.

Furthermore cases in languages other than English or French (e.g., German) are treated as English

after consulting with representatives. This results in approximately 94% of cases being in English

and the rest in French. Only data from 2023 is considered to avoid incomplete data cycles for

2024.
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Figure 1.2: Instances of negative case durations.

New columns for the hour of the day, calendar day, month of the year, and weekday are derived

from the case creation date/time column. This processed data is then concatenated with the

cleaned VoiceCallComplete dataset.

Finally, feature engineering is performed to extract the periodic nature of the time series data using

sine and cosine functions applied to features such as HourOfDay, MonthOfYear, and Weekday.

1.3.1 Descriptive analysis

Overall, we had access to 15 months of data, from January 2023 to April 2024. In order to avoid bias

stemming from the fact that some months (January – April) are represented twice, we restricted our

analysis to the period from January 2023 to 2024 (so as to include a full calendar year) when comparing

weekly or monthly data.

Our first question concerned the existence of any seasonal trends. The overall peak appears to occur
in autumn, with a secondary local spike in March. It is also interesting to note that requests in French

almost completely disappear in the summer months, see Figure 1.3.

Figure 1.3: Number of requests by month and week.

By looking at the distribution across weekdays (see Figure 1.4), we observed a small number of

requests on the weekend. Moreover the greatest variability, but also the highest average number of

requests, occurred on Monday, with a slight decline every weekday until Friday.

We also looked at the time of arrival for each request across the day. Times are given in the Eastern

Time zone, i.e. the local time of two of the three call centres (YYZ, YUL), and one hour behind the

third (YMQ). Nevertheless the business hours at YMQ are the same (6am - 10pm) as the ones in the

Eastern Time zone. On the other hand, it is important to note that customers may be sending requests

from all parts of Canada, which also includes time zones to the west of Toronto, from Victoria (3 hours

behind Eastern Time) to Winnipeg (1 hour behind Eastern Time). This may explain the skew towards

the afternoon and evening hours that we have observed, see Figure 1.5.

We were also interested in studying the work time required per request. In order to do so, we

analyzed the difference between the time that the request was received (a call was answered or an email
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Figure 1.4: Number of requests by weekday.

Figure 1.5: Number of requests by hour of the day.

opened by the agent) and the time it was closed (marked as completed) by the agent. The distribution

of these times, displayed in Figure 1.6, appeared to follow a bimodal distribution: a positively skewed

continuous distribution with a mode around 5 minutes, combined with a second mode close to zero.

We concluded from this that there are two types of requests: those that can be completed almost

immediately (for example a simple enquiry about the status of a particular shipment) and those which

take the agent longer to deal with.

1.4 Methodology

Our methodology follows the classical three-step approach of data analytics: first, a descriptive phase

allows us to gain an overview of the data set and a general understanding. The highlights of this

analysis can be found in the previous section. In the second step, i.e., a predictive analysis, we aim

to develop a model to predict future call volumes based on past data. Finally the prescriptive step

consists of developing a decision-making model, using mathematical optimization, that allows us to

propose a schedule of how call centre employees should best be deployed in the next year.

The fact that the schedule is only made once a year has had a significant impact on our analysis

and the conclusions that we were able to draw. Based on our analysis, a more flexible staffing schedule,
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perhaps allowing for extra staff during expected surge periods or taking into account short-term

fluctuations, would be beneficial. Given the problem parameters, however, we have not had time to

pursue this line of research.

Figure 1.6: Work time required per request.

1.4.1 Forecasting the demand

When working towards a forecasting model for the number of incoming requests, we were faced with

two challenges that stemmed from the once-a-year schedule. First of all, we had to predict demand far

ahead into the future (more precisely one year ahead).

When predicting time-indexed data, autoregressive models are often used. The term autoregressive

means that the model uses previous values in the series to predict future values. A typical example

would be predicting tomorrow’s stock price: here one would use prices from the past several days to

make one’s prediction. This is often an effective method because past values have a relationship with

future values. Predicting values far into the future with these models is, however, challenging and often

unreliable for several reasons.

First of all, the patterns and trends that the model relies on might change over long periods of time,

due to seasonal effects but also due to external factors (in the airline industry, extreme examples of

this would be 9/11 and more recently the COVID-19 pandemic). Worse still, the errors of the model

accumulate over time: while the difference between tomorrow’s demand and the demand forecast by

the model may be small, the erroneous value is then fed into the prediction for two days into the future,

and so on. In this way, prediction errors even for a good model propagate in such a way as to make

them essentially useless after a few months.

In order to verify this, we trained a few autocorrelated and recurrent models (such as ARIMA and
Xgboost). Our results confirm that, in fact, these models don’t work well.

1.4.2 Non-autoregressive models

Instead we adopted a simpler approach that turned out to be more fruitful. We decided to train several

supervised machine learning models taking only three predictive variables into account: the calendar

month, the day of the week, and the hour of the day. The models were trained to predict the number of

requests coming in during a given hour of the day on a given weekday in a given month (see Figure 1.7).



Les Cahiers du GERAD G–2024–76 13

The supervised machine learning algorithms we trained include linear regression, support vector

machine, random forest and k-nearest neighbour models. As can be seen in the results section, the

random forest model performed the best, predicting the number of requests coming in to a mean

absolute error of about 5 minutes.

Hour of Day

Weekday Month

Machine Learning Model

Predicted Number of Requests

Figure 1.7: Representation of our ML pipeline.

1.4.3 Creating the training and test sets

We encountered a further problem when building training and test sets. In supervised machine learning,

these are separated in order to simulate the challenge of predicting unknown data. The training set

is a subset of historical data used to train the model. This dataset allows the model to learn and

understand the underlying patterns, trends, and relationships within the time series data.

The test set is a separate subset of historical data that is not used during the training phase. Instead,

it is reserved for evaluating the model’s performance. After the model has been trained on the training

set, it makes predictions on the test set data. These predictions are then compared to the actual values

in the test set to assess the model’s accuracy and capability to generalize.

When training on temporal data, the train-test split is usually performed by choosing a cut-off date

(that constitutes the proxy for the present), with all data points before the cut-off date making up the

training set and all data points thereafter being included into the test set. In this way, the procedure

of training on past data and evaluating on future data is simulated.

In our context, however, this was not possible, since we only had one full year of data (16 months

to be precise). Hence we could not perform a train-test split as explained above while still retaining a

full year in the training set. We observed in the descriptive analysis that there are significant seasonal

trends and therefore training a forecasting model on a dataset that did not contain at least every month

would not work.

In order to address this issue we used the following trick: since the day of the month itself did not

appear to have an influence on the demand, we included the data from the 2nd to the 19th of each

month into the training set and the data from the 21st to the 29th of each month into the test set.

This procedure, illustrated in Figure 1.8, allowed us to create a suitable train-test split while preserving

information about each month in each set. We left out a buffer between both sets (i.e., the 1st, 20th,

30th and 31st of each month) in order to minimize information leakage between the training set and

the test set.
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Figure 1.8: Splitting into training and test sets using the day of the month.

While this procedure of creating training and test sets is sub-optimal, we considered it the best

choice given the circumstances. Once more data (spanning several years) is collected, the procedure

becomes unnecessary and can be replaced by the approach of taking the first few years as the training
set and the last few years as the test set.

1.4.4 Optimizing the schedule

For the prescriptive part of the analysis, we propose a mathematical optimization model that can derive,

based on a given request distribution for customer service centre staff, the optimal shift structure.

Based on what we were told by Air Canada representatives, we did not model assignment of staff

members to shifts, since we understand that staff choose shifts based on seniority within the company.

Our model is based on several key assumptions.

1. Each request is processed at the exact moment it is made.

2. Requests are aggregated hourly, and their duration is not considered.

3. On average, it takes 10 minutes to respond to a request, whether it is a call or an email.

4. There is no difference in length of time between responding to English or French calls.

5. The primary focus of our modelling is the minimization of the total cost, rather than minimizing

the waiting time, which should ideally be our main objective.

6. Staff members split into anglophones who can deal with English-language requests only and

bilinguals who can deal with either English- or French-language requests.

Due to time constraints during the workshop, we were not able to build a pipeline that feeds the

predicted demand (obtained during the predictive step) into the optimization model. Instead the latter

takes as input the true number of requests from 2023. In other words, we work on the hypothesis of

having perfect information. While this is clearly not realistic, it nevertheless provides a good benchmark

for the optimization model. A future step (see also the conclusion) should consist of combining the

predictive and prescriptive models into a single pipeline.

A further simplifying hypothesis is that each request (call or email) takes exactly the average time

of 10 minutes. In other words we assume that each staff member can handle exactly 6 requests per

hour.

For modelling purposes, we calculate two pivot tables: the total labour demand and the English

labour demand. The labour demand is calculated as the ceiling of the count of demands (both email

and phone) multiplied by the response time and divided by 60. An instance of the pivot tables is

displayed in Figure 1.9, which pertains to the total demand. For example, the total labour demand on

a Sunday from 10 AM to 11 AM is 2 staff members.

The optimization model (whose precise mathematical formulation can be found in Appendix 1.B)

is formulated as follows: the objective function to be minimized is the total wage cost, based on an

hourly wage of $20, which yields a cost of $160 for a full-time (FT, 8 hour) and $120 for a part-time

(PT, 6 hour) shift. In order to avoid the model calling for only bilingual staff (since these can handle

all calls and therefore give more flexibility), we added an additional cost of $40 per FT shift and $20
per PT shift assigned to a bilingual employee. Thus a FT shift of a bilingual employee is assumed to

cost $200 and a PT shift of a bilingual employee is assumed to cost $140.
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Figure 1.9: Heatmap of total labor demand.

Because of the operating times of 6am to 10pm, PT shifts can start at any time between 6am and

4pm and FT shifts at any time between 6am and 2pm. In this model, we did not account for any

breaks.

The decision variables of the optimization model are the number of shifts scheduled at any given
hour in a given day of the week (thus yielding a weekly shift) for FT and PT, anglophone and bilingual

employees. The goal of the model is to find an optimal configuration of these decision variables, subject

to the constraint of satisfying demand: see Appendix 1.B for the mathematical formulation of our

prescriptive model.

1.5 Results

1.5.1 Results of the autoregressive time series forecasting

As expected (see the methodology section), autoregressive forecasting models did not produce useful

predictions: see Figure 1.10 below for the specific example of an ARIMA forecast.

1.5.2 Results of ML-based forecasting

In contrast to the autoregressive models, a basic supervised machine learning model using the hour,

the weekday, and the month (recall Figure 1.7) has performed reasonably well.

In total we trained four models. The mean absolute error (MAE) on training and test sets are

displayed in Table 1.1 below. Given that the average number of requests per hour is 27.6, these

errors, especially for the best-performing random forest model (MAE of 6.4 on the test set), are quite

reasonable. A better performance could potentially be achieved with data spanning more than one

year.

Going beyond the mean performance of the predictive model, we have also analyzed the precise

error distribution, in order to test whether the model’s performance is reliable overall. Figure 1.11

shows that the residuals (differences between predicted and observed values) cluster closely around

zero, with few outliers.
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Figure 1.10: ARIMA time-series forecast.

Table 1.1: Performance of the four supervised ML models.

Model MAE (train) MAE (test)

Random forest 4.9 6.4
k-nearest neighbour 5.0 7.0
support-vector regression 7.2 7.5
linear regression 14.8 14.8

Figure 1.11: Distribution of residuals for the random forest model.

By plotting the predictions on the test set against the actually observed values, we can see that

these points lie on a narrow band around the diagonal line, once more confirming the robustness of the

model’s performance: see Figure 1.12.

In summary we conclude that, even though it is simple, our predictive model achieves a reasonably

accurate prediction of future demand and maintains this accuracy consistently. Without another set of

new data, we do not believe that changing the model is the most promising avenue for obtaining a

higher level of accuracy.
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Figure 1.12: Distribution of residuals for the random forest model.

1.5.3 Staff scheduling

We now examine the proposed scheduling results. In the scheduling for Monday (see Figure 1.13), the

description of the columns is as follows:

1. Hour: The start time of a shift. For example, “hour = 7” means the shift starts at 7 AM. Note

that we cannot have any shift starting from 5 PM onwards as the staff would not complete their

optimal number of working hours (6 hours for part-time or 8 hours for full-time staff);

2. Total Demand: The total labour demand required in the office;

3. Total in Office: The total number of people that would be available in the office as a result of

scheduling optimization;

4. English FT Start: The total number of anglophone FT staff starting their shift at that hour;

5. English PT Start: The total number of anglophone PT staff starting their shift at that hour;

6. Bilingual FT Start: The total number of bilingual (fluent in both English and French) FT staff

starting their shift at that hour;

7. Bilingual PT Start: The total number of bilingual PT staff starting their shift at that hour.

Figure 1.13: Proposed staff scheduling for Monday.
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For weekends, we have a similar scheduling with a significantly lower labour demand, as shown in

Figure 1.14.

Figure 1.14: Proposed staff scheduling for Sunday.

While the result of hiring both full-time and part-time staff might not seem entirely realistic, this

can certainly be improved with further exploration and by including more realistic constraints into
the model. The current model serves as a foundational approach to optimizing staff scheduling by

balancing costs and meeting labour demands.

1.6 Conclusion

Overall we have seen that even a relatively simple model with only three predictors can predict the

demand quite well. We have had to make choices and restrict our training due to the availability of

only one year of data (given that the schedule must be produced for a full year). Over time Air Canada

will have access to more data, which will improve the quality and reliability of the trained model and

also allow for more robust testing.

The optimization model we built should be viewed as a work in progress since it was subject to a
number of simplifying assumptions. For simplicity, the current optimization model takes the point of

view of creating the customer service centre shifts from scratch. That is, we look to minimize staff cost

given a fixed objective of responding to each request within the hour. Given that there is an ongoing

operation, this should be reversed, i.e., the model should aim to optimize coverage and service levels

given staff levels. Doing so will also iron out two issues we encountered, namely the unrealistic ratio of

part-time and bilingual employees (compared to full-time and anglophone staff members, respectively).

The former are favoured by the model because they lead to more flexibility than the latter.

Overall we believe that our methodology has led to a reasonable prototype that delivers promising
results.

Thinking beyond the workshop, we suggest the following next steps. First the prediction and

optimization models need to be integrated. In order to do so, a formulation of the optimization model

that takes into account the uncertainty of the prediction model is required, for example by considering

stochastic, robust, or chance-constrained programming.

Next the overall model should be evaluated on a larger data set. Naturally, this requires waiting for

more data to come in. The simplifying assumptions mentioned above should also be removed.
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Appendix

1.A Precise description of the data sets

1.A.1 VoiceCallComplete

This dataset contains information about all the calls received by the call centre. The calls might be

relevant or irrelevant, including inquiries unrelated to cargo services. The columns of this dataset are

described as follows:

1. Id: The unique identifier of the call;

2. Call start date: The date the call started;

3. Call start time: The time the call started;

4. Call end time: The time the call ended;

5. From Phone # (area Code): The area code from which the customer called;

6. ToPhoneNumber: Various phone numbers available in the call centre to answer the call;

7. CallDisposition: The disposition of the call;

8. CallType: The type of the call, which can be inbound, outbound, callback, or transfer;

9. Reference Case Number c: The case number if the call led to a case creation;

10. Voice Call Language c: The language used during the call.

1.A.2 all cases

This dataset is a merge of all CASES datasets from 1 to 6, facilitating easier data loading in Python.

The columns are described as follows:

1. Id: The unique identifier of the case;

2. CaseNumber: The case number for agent follow-up;

3. RecordTypeId: (Unknown);

4. Status: The status of the case, whether resolved or not;

5. Origin: The method of customer contact;

6. Language: The language used for communication between the agent and the customer;

7. IsClosed: Whether the case is closed or not;

8. Created Date FORMATED: The date the case was created;

9. Time Created: The time the case was created;

10. Closed Date FORMATED: The date the case was closed;

11. Time Closed: The time the case was closed;

12. Issue Type c: The type of issue that led to the case creation;

13. Issue c: The details of the issue;

14. Closed Date FORMATED: The time the case was created. (Note: this column and column 9

refer to the same concept and are exactly the same, except the first occurrence has one extra

space.)

1.A.3 AWB

Summary information about all airway bills (cargo bookings) originating in Canada. The columns are:

1. Year;

2. Month;
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3. Destination country name;

4. AWB count (number of airway bills);

5. e-AWB count (number of e-airway bills).

1.A.4 AWSConnectData

Monthly aggregate data about each agent’s interactions with calls from March 2023 to April 2024. The

data set includes features such as the agent’s answer rate, average talk time, and online time. We did

not use this data set.

1.B Mathematical statement of the optimization model

In this section we give the details of the mathematical optimization model that we used to derive the

schedule presented above.

1.B.1 Sets

• H: Set of all hours during the operating day, H = {6, 7, . . . , 21}.
• TFT : Set of possible starting times for full-time shifts, TFT = {6, 7, . . . , 14}.
• TPT : Set of possible starting times for part-time shifts, TPT = {6, 7, . . . , 16}.
• d: Day of the week, here d = 3.

1.B.2 Parameters

• Dt: Total demand for agents at hour t ∈ H.

• Bt: Demand for bilingual agents at hour t ∈ H.

• cx = 160: Cost of an English-only full-time (FT) staff member.

• cy = 120: Cost of an English-only part-time (PT) staff member.

• cz = 200: Cost of a bilingual full-time (FT) staff member.

• cw = 140: Cost of a bilingual part-time (PT) staff member.

It is worth mentioning that the costs 160, 120, etc. are set to achieve a balance in selecting the staff

strategically and are completely arbitrary.

1.B.3 Decision variables

• xt: Integer variable indicating the number of English-only full-time staff members starting their

shift at time t ∈ TFT .

• yt: Integer variable indicating the number of English-only part-time staff members starting their

shift at time t ∈ TPT .

• zt: Integer variable indicating the number of bilingual full-time staff members starting their shift

at time t ∈ TFT .

• wt: Integer variable indicating the number of bilingual part-time staff members starting their

shift at time t ∈ TPT .

1.B.4 Objective function

Minimize the total wage cost:

Minimize
∑

t∈TFT

(160 · xt + 200 · zt) +
∑

t∈TPT

(120 · yt + 140 · wt)
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1.B.5 Constraints

Total Demand Constraints: Ensure that the total number of agents scheduled at each hour meets

the total demand.

7∑
i=0

(xt−i + zt−i) +

5∑
i=0

(yt−i + wt−i) ≥ Dt ∀t ∈ H

Bilingual Demand Constraints: Ensure that the number of bilingual agents scheduled at each hour

meets the bilingual demand.

7∑
i=0

zt−i +

5∑
i=0

wt−i ≥ Bt ∀t ∈ H

Non-negativity Constraints: Ensure that all the decision variables are non-negative.

xt ≥ 0 ∀t ∈ TFT

yt ≥ 0 ∀t ∈ TPT

zt ≥ 0 ∀t ∈ TFT

wt ≥ 0 ∀t ∈ TPT
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c GERAD

d Air Canada

November 2024
Les Cahiers du GERAD
Copyright © 2024, Farhangian, Aflaki, Perron, Tafolong, Farfaras, Gao, Ramkumar, Gagne
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auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD. Copyright and
moral rights for the publications are retained by the authors and
the users must commit themselves to recognize and abide the legal
requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



Les Cahiers du GERAD G–2024–76 23

Abstract: Objective: This study aims to optimize air cargo spot rates for a single-leg flight by dynamically adjusting

pricing based on variables such as adjustment factors, load factor, and days to departure. The objective is to maximize

revenue by identifying the optimal adjustment factor for specific conditions. Methods: Historical booking data from

2018 to 2024 was analyzed, focusing on standard cargo bookings in the North America–Europe market from July 2023 to

April 2024. Monte Carlo simulations were conducted, generating 1,000 booking requests per iteration over 500 iterations,

with varying adjustment factors. A logistic regression model was trained using 70% of the data and validated on the

remaining 30% to predict booking acceptance probabilities. Revenue was compared across different adjustment factors

to identify the optimal value. Results and Conclusion: The simulation results indicate that reducing the adjustment

factor increases revenue, with the highest average revenue achieved at a 20% reduction. Lower adjustment factors were

shown to improve revenue under specific load factor and time-to-departure conditions, highlighting the importance of

dynamic pricing strategies tailored to operational constraints.

2.1 Introduction

Air cargo is a vital pillar of global trade, accounting for just 1% of shipment volume yet contributing

around 35% of the overall trade value, highlighting its role in the transport of high-value goods [1].

The industry has experienced consistent growth, fueled by the expansion of the aviation sector and the

development of global air networks. This growth is expected to continue at an annual rate of 4.1%

over the next two decades, solidifying air cargo’s role in enabling efficient, time-sensitive logistics for

international markets [2].

Revenue management (RM) has optimized airline revenue, increasing earnings by 4-5% [3]. In the

air cargo industry, RM is essential for balancing capacity utilization and customer demand to optimize

revenue. Unlike passenger airlines, air cargo operations face unique challenges, such as multi-dimensional

capacity (weight, volume), booking uncertainty [4], fluctuating demand, and the perishable nature of

cargo space. Traditional RM techniques often fail to address these complexities due to their static

nature, highlighting the need for more adaptable solutions. Dynamic pricing and spot rate optimization,

facilitated by advanced technologies like machine learning (ML), deep learning, reinforcement learning

(RL), and optimization algorithms, allow airlines to adapt prices in real-time based on current market

conditions [5]. By adjusting cargo space prices according to demand, competitor pricing, and broader

market trends, airlines can reduce prices during low-demand periods to attract customers and increase

rates in peak times to maximize revenue. This flexibility not only optimizes revenue but also enhances
operational efficiency, competitiveness, and customer satisfaction. This report addresses the gap in air

cargo RM by applying dynamic pricing to maximize revenue.

Air Canada Cargo, Canada’s largest air cargo provider by capacity, is an award-winning leader in

air cargo transportation, connecting over 450 cities across six continents through a network of direct

flights and partnerships. With a presence in over 50 countries and strategically located hubs in cities

such as Montréal, Toronto, Vancouver, Chicago, London, and Frankfurt, Air Canada Cargo plays a

vital role in global logistics.

To enhance customer experience and maintain a competitive edge, Air Canada Cargo has made

significant investments in data analytics, APIs, and artificial intelligence. One of the key initiatives in

this strategy is the development of an intuitive spot rate recommendation tool. This tool is designed to

improve pricing accuracy and transparency by providing automated, explainable, and consistent rate

recommendations, addressing the dynamic nature of air cargo pricing where spot rates are influenced

by factors such as demand, capacity, and time-to-departure. Traditionally, setting optimal spot rates

has relied on a combination of base rates, revenue targets, and a rate change matrix that incorporates

key variables like Days to Departure, Current Load Factor, and Forecasted Load Factor. These factors

collectively determine the “change factor” applied to the base rate. This optimization process, however,
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has been largely manual, which limits its efficiency and scalability. Given the highly competitive and

time-sensitive nature of air cargo services, there is a pressing need for a more automated, data-driven

approach to rate optimization that can dynamically respond to real-time market conditions.

This report presents the development of a dynamic Spot Rate Change Factor Simulator designed to

address this gap by automating the testing of various change factor combinations and assessing their

impact on revenue. Leveraging historical booking data, AWB (Air Waybill) data, and market demand

data, the simulator aims to streamline the process, enabling Air Canada Cargo to identify near-optimal

pricing strategies swiftly. This tool will improve decision-making in rate adjustment and align with Air

Canada Cargo’s overarching goal of enhancing revenue through a data-informed strategy.

The rest of this paper is organized as follows. In Section 2.2, we review the relevant literature.

In Section 2.3, we provide the methodology. Section 2.5 is a report on the numerical experiments.
Section 2.6 contains the conclusion and recommendations of this study.

2.2 Literature review

Research on air cargo operations largely addresses areas such as flight scheduling, fleet routing, and

revenue management (RM) problems. In this regard, some studies provide a comprehensive review,

noting that air cargo scheduling and routing involve complex decisions on route selection, cargo

assignments, and crew scheduling [6]. Several studies focus on optimizing operational decisions within

these areas: they propose a planning framework that integrates airport choice, fleet routing, and

scheduling for profit optimization [7, 8], while some others develope a dynamic programming model for

routing air cargo based on real-time data [9].

Given our focus on RM, we specifically review RM-related literature. Though extensively explored

in passenger airlines [3, 10, 11], RM applications in air cargo are less studied. Early works contrasted

RM practices in passenger versus cargo industries, outlining key distinctions and complexities in air
cargo RM [12]. The others discussed cargo RM system components and implementation challenges [13],

while some studies detailed KLM’s RM implementation for cargo [14]. In 2007, some studies expanded

on this, highlighting supply-demand complexities in air cargo RM [15]. Research on RM for cargo often

uses static formulations [16, 17, 18] or dynamic models with capacity control.

In 2007, one study formulated cargo spot sales as a multi-dimensional Markov decision process

(MDP), introducing penalties to handle overbooking and developing heuristics for volume and weight
optimization [4]. Building on their work, one study proposed sampling-based heuristics [19], and

Hoffmann (2013) introduced a monotone cost heuristic that reduces computational load through

simplified control [20]. Other studies applied bid-price control to manage booking acceptance decisions [5,

21]. In network-based RM, a study proposed a linear programming method for capacity optimization

under uncertainty [22], while some others compared heuristics to improve upper bounds on capacity

utilization [23]. More recent work developed a stochastic gradient algorithm to manage capacity control

with variable availability [24].

Unlike these studies, our work focuses on dynamic pricing rather than capacity control, applying it
to spot market bookings with uncertain weight and volume. Dynamic pricing, distinct from capacity

control, adjusts prices over time. The article [25] reviewed dynamic pricing in RM, while most research

addresses single-product scenarios. Some studies explored single-product dynamic pricing, showing near-

optimal results with constant pricing [26]. For multi-product settings, they formulated a deterministic

model with near-optimal pricing, while other studies proposed dynamic programming-based heuristics

for network RM, yielding high expected revenue [26, 27]. Our study differs in its focus on dynamic

pricing for multiple air cargo bookings, incorporating continuous and uncertain weight and volume: the

problem we address thus presents unique challenges requiring robust pricing strategies.
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2.3 Methodology

Air Canada Cargo faces the challenge of optimizing its adjustment spot rate. Manual optimization of

spot rates is inefficient and can lead to suboptimal revenue, requiring an automated solution to enhance

pricing strategies. The adjustment spot rate serves as a mechanism to modify the fixed cargo rate

established in customer contracts. When a customer submits a cargo request, this adjustment rate is

offered based on two key variables: the current load factor (the percentage of cargo capacity utilized)

and the days to departure (the number of days remaining until the scheduled flight). The goal is to

optimize the adjustment rate table, which specifies adjustment factors for various load factor ranges and

day-to-departure intervals, in order to maximize overall revenue. This involves determining the optimal

adjustment factors for each combination of load factor group and day-to-departure group, considering
the dynamic nature of demand and the need to balance capacity utilization with competitive pricing.

By addressing this problem, Air Canada Cargo aims to implement a data-driven strategy that increases

revenue while maintaining operational efficiency and customer satisfaction.

Figure 2.1: Adjustment rate table showing the expected load factor (LF) averages for various combinations of days to
departure and current LF ranges. This table serves as a guide for dynamically adjusting spot rates to optimize revenue
based on capacity utilization and booking timelines.

2.3.1 Overview of proposed method

Optimizing the adjustment factors is a complex task due to the high-dimensional space of uncertainty

in demand patterns, customer behaviour, and operational constraints. This involves balancing multiple

factors, including the dynamic nature of demand, varying customer reservation prices, and operational

constraints like cargo capacity. Traditional analytical methods struggle to capture this complexity

effectively, as the problem involves a large number of possible combinations of load factor ranges and

days-to-departure intervals, each with its own stochastic behaviour.

There are various approaches to address this complexity. We propose using a Monte Carlo

Simulation to evaluate and optimize the adjustment factors. Monte Carlo simulation is well-suited for

this problem because it allows us to model the inherent randomness in customer behaviour, demand

fluctuations, and booking patterns. By simulating a wide range of scenarios, Monte Carlo simulation

provides robust estimates of average revenue for each specific pair of load factor ranges and days-to-

departure intervals. It enables the evaluation of current adjustment factors as well as alternative factor

values, allowing us to identify the combination that maximizes revenue.

This data-driven approach leverages the power of simulation to navigate high-dimensional uncertainty

and optimize pricing strategies in a dynamic and competitive environment. This involves evaluating

the adjustment factor currently in use as well as a range of plausible adjustment factors to identify

the one that maximizes revenue. Figure 2.1 displays the matrix that we want to optimize. To begin,

we fix a specific combination of load factor range and days-to-departure interval. For the Average

Expected Load Factor, there are 49 such pairs to analyze, each representing a unique combination

of these two variables. For each pair, we proceed as follows:

1. Data Generation and Strategy: Generate a random dataset of n synthetic customers requesting

cargo services;
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2. Pre-trained Logistic Regression: Use a pre-trained logistic regression model to predict the

probability of customer offer acceptance for the proposed rate. Identify customers who accept the

offer and compute the total revenue for this dataset;

3. Monte Carlo Sampling: Repeat the above process m times using Monte Carlo Markov Chain

(MCMC) simulation, generating new random datasets each time. Calculate the average revenue

over these m samples for the fixed load factor range, days-to-departure interval, and adjustment

rate;

4. Adjustment Factor Optimization: Iterate through a range of reasonable adjustment factors,

repeating the process described above. Compare the average revenues obtained for different

adjustment factors and identify the adjustment factor that yields the highest average revenue for

the fixed load factor and days-to-departure pair.

By applying this methodology to all 49 load factors and days-to-departure pairs, we can determine
the optimal adjustment factor for each pair. These optimal factors will then populate the adjustment rate

table, ensuring that revenue is maximized across all scenarios. The study considers four key components:

Load Factor intervals (lf), which is a vector consisting of 7 predefined ranges representing the
percentage of cargo capacity utilization; Days-to-Departure intervals (dd), another vector of 7

ranges capturing the number of days remaining until the scheduled flight; Adjustment Factors (af),

a vector of plausible adjustment rates used to modify the base rate dynamically, with the currently

used adjustment factor denoted as af0; and finally, Revenue (R), a single value computed as the total

revenue generated for a group of customers requesting cargo services within the specified intervals.
These components form the foundation for analyzing and optimizing pricing strategies. From lf and dd,

we form pairs (l, d), where l ∈ lf and d ∈ dd. These pairs represent the 49 unique combinations of load

factor intervals and days-to-departure intervals for which we want to find the optimized adjustment

factor based on the Algorithm 2.1.

Algorithm 2.1 Adjustment Factor Optimization using Monte Carlo Simulation.

1: Input: lf , dd, af
2: Output: Optimal AF ∀(l, d) in(L,D)
3: for all (l, d) ∈ (L,D) do
4: Initialize R← R0 = 0
5: Initialize af ← af0
6: for all a ∈ af do
7: Generate m synthetic datasets (Monte Carlo Sampling):
8: for each dataset i = 1 to m do
9: Generate n synthetic customers with random characteristics
10: Compute customer acceptance probabilities using the logistic regression model
11: Identify customers who accept the offer at adjustment factor a
12: Compute total revenue for dataset i
13: end for
14: Calculate R̄
15: if R̄ > R then
16: Update R← R̄
17: Update af
18: end if
19: end for
20: Store af for pair (l, d)
21: end for
22: Return: Table of optimal adjustment factors for all pairs (l, d)

2.3.2 Monte Carlo Simulation

Monte Carlo Simulation is a computational method used to model systems with inherent uncertainty

by simulating a large number of random scenarios. It relies on the law of large numbers to approximate

the expected outcome of a process when an analytical solution is infeasible due to high-dimensional

uncertainty or dynamic variables. Mathematically, Monte Carlo Simulation involves defining a system

or process represented by a function f(X1, X2, . . . , Xn), where X1, X2, . . . , Xn are random variables
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with known probability distributions. Random samples X
(i)
1 , X

(i)
2 , . . . , X

(i)
n are generated independently

for i = 1, 2, . . . , N , where N is the number of simulations. For each simulation, the outcome Y (i) is

calculated as

Y (i) = f
(
X

(i)
1 , X

(i)
2 , . . . , X(i)

n

)
.

The expected value of the outcome Y is estimated as the average of all simulated outcomes, i.e., the

following holds:

Ê[Y ] =
1

N

N∑
i=1

Y (i).

As N → ∞, the estimated expected value Ê[Y ] converges to the true expected value E[Y ]. Variance

or other statistical metrics can also be computed to evaluate the variability of the outcomes. Monte

Carlo Simulation is particularly useful for problems where the complexity of random interactions and

high-dimensional spaces makes traditional analytical approaches impractical. By simulating a wide

range of scenarios, it provides robust estimates of expected outcomes and insights into system behaviour

under uncertainty, making it a powerful tool for optimization and decision-making.

2.3.3 Logistic regression

Logistic regression is a generalized linear model used for both inference and prediction of binary

outcomes. In our Monte Carlo simulation, after generating each synthetic dataset, we aim to predict

the quote status of each customer (in each row of the dataset). This means determining whether they
accept (QuoteStat = 1) or reject the offer they received from the contact center. The logistic regression

model is based on the available information, including the load factor at the time of the request (LF ),

the number of days remaining until the departure time (Days), the adjustment factor offered on top of

their fixed rate (AF ), and the package weight (Weight). We can formulate the model as follows.

log

(
p

1− p

)
= β0 + β1.LF + β2.Days+ β3.Weight+ β4.AF (2.1)

Here, p = P (QuoteStat = 1) represents the probability that a customer will accept the offer. By

using a preferred threshold, we can assign each customer to either the accepted or rejected group. The

choice of the threshold will be influenced by the balance of the quote status variable, as a skewed
distribution may require adjusting the threshold to achieve meaningful classifications. The logistic

regression in Equation 2.1 is trained on the training set, which constitutes 70% of the original dataset

received from Air Canada Cargo, and tested on the rest 30%. The coefficients are estimated using

Ordinary Least Squares (OLS), and the regression model is then applied to predict unseen data —

specifically, the synthetic data generated in each iteration of the Monte Carlo simulation.

2.4 Dataset

The dataset used in this study is derived from Air Canada Cargo’s internal booking system, as illustrated

in Figure 2.2. According to Figure 2.2, in the first phase, the system collects data in real-time, capturing

essential information about booking requests. This information includes:

Routing Details: These specify the time of departure, origin, and destination;

Shipment Details: This includes the type of cargo being shipped and its specific characteristics;

Customer Information: This refers to the customer account, which contains details about the

contract and additional information related to the client.
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Figure 2.2: Illustration of the internal booking system: Phase 1 (left) collects and processes booking request information,
while Phase 2 (right) generates dynamic pricing recommendations based on variables such as load factor (indicated by
colors: green for low, yellow for moderate, and red for high), time to departure, routing options, and revenue targets.

After processing the request and collecting all relevant information, the system transitions to Phase 2,

where it recommends various options tailored to the booking. The system applies dynamic pricing rules

to calculate base rates and adjusted spot rates based on several factors, including time to departure,

available routing options, the base contract rate associated with the client, the company’s target revenue

rates, and, most importantly, the current load factor, which indicates how full the flight is at the time of

the request. By integrating these variables, the system ensures that pricing recommendations are both

competitive for the client and aligned with the company’s revenue optimization objectives. Customer

requests are logged with details, and each request’s outcome (Accept or Reject) is recorded to track

customer behaviour and improve pricing strategies.

2.4.1 Data description

In this study we used historical booking data comprising over 150,000 records collected between 2018

and 2024. The dataset is structured around several key variables, each of which plays a vital role

in modelling customer behaviour and optimizing pricing strategies. A detailed description of these

variables is provided below.

Days to Departure: The number of days remaining until the flight’s scheduled departure at the time

of booking. This variable is essential for analyzing how timing impacts pricing and acceptance

behaviour.

Routes: Data specifying the origin and destination airports, representing the start and end points of

the shipment.

Type of Cargo: The category of the shipment includes classifications such as post, standard, animal,

secure, PharmaCare, and others. This variable helps identify the nature of the cargo and its

specific handling or pricing requirements.

Chargeable Weight: The weight of the cargo for which the customer is charged. This directly

impacts revenue calculations.

Density Change Factor: A factor used to adjust the rate based on the density of the cargo, ensuring

optimal space utilization.

Adjustment Factor (Adj factor): A composite factor reflecting dynamic adjustments to the base

rate, influenced by variables such as load factor and days to departure.

Current Load Factor: The percentage of available cargo space already booked at the time of the

request. Higher load factors typically result in higher spot rates due to limited availability.

Base Rate: The initial, unadjusted rate for the cargo shipment before any adjustments.

Revenue Target Rate: A target rate set by the company to ensure profitability for a given route

and time frame.
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Spot Rate: The final adjusted rate offered to the customer, also referred to as the quoted spot rate, is

calculated by applying dynamic pricing adjustments to the base rate. These adjustments account

for factors such as load factor, which reflects how full the flight is, and cargo density, optimizing

pricing based on space utilization. After these adjustments, additional costs, such as handling

fees, are incorporated. The final spot rate is determined by selecting the higher value between

the revenue target and the adjusted base rate, ensuring alignment with both operational goals

and profitability targets.

Quote Status: A binary outcome indicating whether the booking request was accepted or rejected.

2.5 Experiments and results

To simplify the problem and manage complexity, we make the following assumptions and methodological

choices. We consider a single-leg flight with fixed weight and volume capacities. Since the behaviour of

area markets varies, we restrict the booking data to the North America–Europe market. Additionally,
due to policy changes and the atypical booking patterns during the COVID-19 pandemic, we limit the

dataset to bookings from July 2023 to April 2024. Furthermore, while there are various cargo types

(e.g., standard, secure, PharmaCare), this case study focuses exclusively on standard cargo. Given
the computational intensity of optimizing the entire rate matrix, we simplify the problem by focusing

on a single cell: bookings with load factors of 0%–30% and 0 to 1 day to departure. For this cell, we

simulate 500 iterations, each generating 1,000 booking requests with key variables, including Load

Factor (sampled uniformly within 0–30%), Days-to-Departure (binary values of 0 or 1 as a Bernoulli

random variable), Chargeable Weight (sampled from a Gamma distribution to reflect right-skewness),

and Base Rate (generated using a Normal distribution based on observed data characteristics), using

the average expected load factor. The distributions of chargeable weight and base rate are displayed

respectively in the density plots in Figure 2.3 and Figure 2.4.
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Figure 2.3: The distribution of chargeable weight.

Histogram of Base Rate

Base Rate

F
re

qu
en

cy

0.8 1.0 1.2 1.4 1.6 1.8

0
50

10
0

15
0

Figure 2.4: The distribution of base rate.

Spot rates are optimized by comparing the company’s base value with the ±10% and ±20% ranges

to identify the most profitable option. Logistic regression is trained on a 70% training set and a

30% validation set to predict acceptance rates. To address data imbalance, we adjust the acceptance

threshold, and accuracy is reported as the primary evaluation metric. Then, by using the pre-trained

logistic regression model, we predict the offer acceptance probability (P (QuoteStatus = 1)) for each

simulated booking and classify requests as “accepted” or “rejected” based on a threshold of 0.3. This

approach ensures realistic data simulation and accurate revenue predictions within the Monte Carlo

framework. By making these assumptions and narrowing the scope, this study establishes a manageable
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framework for developing and evaluating a dynamic pricing model while addressing the complexities of

air cargo operations.

2.5.1 Pre-trained logistic regression results

The logistic regression model was developed to predict the binary outcome of customer offer acceptance

(QuoteStatus = 1) using key variables, including the number of days left until departure (days out),

the base rate for the shipment (Base rate), the load factor at the time of the quote (LF at quote), the

chargeable weight of the cargo (chargeable wgt), and the adjustment factor applied to the base rate

(AF ). These variables were chosen for their significant influence on customer decisions and pricing

dynamics. Here is the logistic regression equation for the model.

log

(
p

1− p

)
= 0.416− 0.034×DD− 0.579× BR− 0.002× LF− 0.000148× CW− 0.564×AF

In the above equation p represents the probability of offer acceptance, and the coefficients indicate

the direction and magnitude of the effect of each predictor. The regression coefficients and their
significance levels are given in the following table.

Variable Estimate Std. Error z-value p-value

Intercept 0.416 0.659 0.631 0.528
DD −0.034 0.047 −0.726 0.468
BR −0.579 0.371 −1.562 0.118
LF −0.002 0.004 −0.587 0.557
CW −0.000148 0.000071 −2.099 0.036∗

AF −0.564 0.446 −1.267 0.205

The logistic regression results indicate that most variables, including DD, BR, and AF, are statistically

insignificant (p > 0.05), while CW is significant (p = 0.036). The negative coefficients suggest that

higher rates and adjustments decrease acceptance probability, highlighting the importance of balancing

chargeable weight and rate adjustments in order to optimize pricing strategies.

Then the revenue is computed only for customers predicted to accept the offer, using the formula

below.

Revenue = Base Rate×Adjustment Factor×Weight

2.5.2 Simulation results

This process is repeated 500 times, generating new datasets for each iteration. The average revenue

over these simulations represents the expected revenue for the specified load factor, days-to-departure

interval, and adjustment factor. The process is conducted five times with the following adjustment

factor values: AF = 0.7 (current adjustment factor), AF = 0.7 + 0.1 × 0.7 = 0.77 (10% higher),

AF = 0.7 − 0.1 × 0.7 = 0.63 (10% lower), AF = 0.7 + 0.2 × 0.7 = 0.84 (20% higher), and AF =

0.7− 0.2× 0.7 = 0.56 (20% lower). By comparing the average revenues computed for each adjustment

factor, we identify the optimal adjustment factor that maximizes revenue. For this specific case, the

maximum revenue occurs when the adjustment factor is reduced by 20% (AF = 0.56), as the base rates

are mostly below 1 (see Table 2.1).

The simulation results in Table 2.1 show that reducing the adjustment factor increases total revenue,

with the highest average revenue (35, 817.49) achieved when the adjustment factor is reduced by 20%.

A 10% reduction also yields a higher revenue (35, 791.96) compared to the current adjustment factor

(35, 764.79). Conversely, increasing the adjustment factor by 10% and 20% results in progressively

lower revenues (35, 732.87 and 35, 723.04, respectively). These results suggest that lower adjustment

factors are more effective in optimizing revenues, especially under the combination of a load factor in

the interval 0–30% and a number of days to departure in the interval 0–1.
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Table 2.1: Average Revenue using different adjustment factors for the combination of a Load Factor between 0− 30% and
a number of days to departure between 0− 1.

Adjustment Factor Total Rev

Current AF - 20% Current AF 35817.49
Current AF - 10% Current AF 35791.96
Current AF 35764.79
Current AF + 10% Current AF 35732,87
Current AF + 20% Current AF 35723.04

2.6 Conclusion and discussion

Dynamic pricing models are essential for air cargo carriers to stay competitive and maximize revenue

in today’s fast-paced market. By leveraging advanced technologies such as machine learning, deep

learning, reinforcement learning, and optimization algorithms, airlines can develop sophisticated pricing

strategies that adapt to real-time market conditions. Despite challenges related to data quality,
model explainability, and regulatory compliance, the benefits of dynamic pricing in terms of increased

revenue, competitiveness, customer satisfaction, and optimized capacity utilization make it a worthwhile

investment for air cargo carriers.

This study explored the optimization of air cargo spot rates using historical booking data and

simulation techniques. By focusing on a specific case with a load factor between 0–30% and 0–1 days to

departure, we identified how adjustment factors influence revenue generation. The results demonstrate

that reducing the adjustment factor significantly improves revenue, with a 20% reduction yielding the

highest average revenue. Conversely, increasing the adjustment factor results in progressively lower

revenues, emphasizing the sensitivity of revenue optimization to precise rate adjustments. Despite these

limitations, the findings offer actionable insights for revenue management in the air cargo industry.

Lower adjustment factors appear to align better with customer price sensitivity, particularly in scenarios

with low load factors and short booking windows. These results suggest that dynamic pricing strategies
should emphasize optimizing adjustment factors to balance profitability and customer acceptance rates.

In conclusion, this study provides a foundation for developing dynamic pricing models tailored to

air cargo operations. By leveraging predictive analytics and simulation, we demonstrate a data-driven

approach to revenue optimization that can be adapted to other market conditions and operational

settings. Future work could explore advanced reinforcement learning (RL) techniques to further

enhance dynamic pricing strategies. Proximal Policy Optimization (PPO) could be extended with

Deep Q-Networks (DQN) or Soft Actor-Critic (SAC) to manage high-dimensional state-action spaces

and improve pricing precision. Multi-agent reinforcement learning offers another promising avenue,

allowing the simulation of competitive pricing strategies where multiple airlines interact within a shared

market environment. Additionally, integrating explainable RL methods can provide transparency in

decision-making, ensuring stakeholder trust and regulatory compliance. These advancements in RL

have the potential to optimize dynamic pricing strategies, maximize revenue, and improve capacity

utilization in air cargo operations.
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Abstract: In this report, we describe strategies to improve transaction tracing on the Ethereum platform, i.e.,

determine the value of a specific transaction. Indeed, there are many types of cryptocurrency on this platform, and

the challenge is to find out the value, expressed in the WETH/ETH currency, of the total monetary amount trans-

ferred to various “sinks” by the instigator of a given complex transaction. We show that an approach based on graph

theory complements the approach currently used by the Autorité des marchés financiers and actually makes it more robust.

3.1 Introduction and statement of the problem

The rapid growth of cryptocurrencies and Decentralized Finance (DeFi) has introduced significant
complexities in financial transactions. Unlike traditional financial systems, DeFi transactions are

intricate, involving multiple layers of internal and external addresses, routers, smart contracts, and

various operations. This complexity presents considerable challenges for understanding and analyzing

these transactions, particularly for ensuring the accuracy and reliability of traced data. The Autorité

des marchés financiers (AMF) has proposed an investigation of transaction tracing methods to address

this issue. The current report examines this problem and proposes a method for transaction tracing on

the Ethereum platform.

DeFi transactions are essential because they enable financial services such as transfers, swaps, and

liquidity provision to be conducted directly between users without the need for traditional financial

intermediaries. This increases accessibility to financial services, enhances transparency, and reduces
costs [3].

Blockchain is a distributed ledger that records transactions across multiple computers. This

decentralized network maintains a synchronized and consistent log: each computer (node) participating

in the blockchain network has a copy of the entire blockchain, meaning all nodes have the same data.

To validate and add a new transaction to the blockchain, nodes use consensus mechanisms such as

Proof of Work (PoW) or Proof of Stake (PoS) (see [2]). These mechanisms ensure that all copies of the

blockchain are synchronized and agree on the current state of the ledger. Once a transaction is recorded

in a block and added to the blockchain, it is extremely difficult to alter or delete it because this would

require changing the data on all nodes simultaneously. This provides security and integrity to the data.

The Ethereum platform is built on blockchain technology. It uses this decentralized ledger to

securely record transactions and execute smart contracts. Smart contracts are self-executing contracts

with the terms directly written into the code. These contracts enable the automatic enforcement and

execution of agreements, eliminating the need for intermediaries. This blockchain-based framework

allows Ethereum to support decentralized applications (dApps) and complex financial transactions

without relying on central authorities.

Tokens on Ethereum are digital assets that can represent various items, from currencies to property.

They come in different types: for example, ERC-20 tokens are fungible, meaning each token is identical,

while ERC-721 tokens are non-fungible, meaning each token is unique.

Liquidity Pools provide liquidity to decentralized exchanges (DEXs) by allowing users to deposit

tokens into a pool. This liquidity enables other users to swap tokens directly from the pool. Liquidity

pools use Automated Market Makers (AMMs) to set prices based on supply and demand, and they

reward liquidity providers with a share of the transaction fees generated by the pool.

Routers in DeFi find the best path for a transaction, ensuring users get the most efficient and

cost-effective route for their trades. Routers can work with other systems (such as specialized cross-chain

bridges and wrapping protocols), for example, to convert non-ERC20 tokens into ERC20 tokens, making

them compatible with the Ethereum platform.
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These components interact seamlessly on the Ethereum platform to create an elaborate and robust

environment for DeFi. Smart contracts automate complex financial operations, tokens represent assets,

liquidity pools ensure there is enough liquidity for trades, and routers optimize transaction paths.

Together, they allow a wide range of financial activities to be conducted in a decentralized manner,

improving the overall efficiency and security of the financial system.

Ethereum.org is the official website for the Ethereum project, and Etherscan.io is primarily a

blockchain explorer for the Ethereum platform. It allows users to view detailed information about

transactions, addresses, tokens, smart contracts, etc. It provides real-time data and analytics, including

gas prices, block times, and historical data.

Ether (ETH) is the native cryptocurrency of the Ethereum blockchain. According to Ethereum.org [1],

“There are many cryptocurrencies and lots of other tokens on Ethereum, but there are some things that
only ETH can do.” It is used to pay for transaction fees (gas) and as a form of value transfer within

the network. Wrapped Ether (WETH) is ETH wrapped in an ERC-20 compatible token.

The primary goal of this project is to improve the accuracy of transaction tracing and explain these
transactions, specifically by determining the total asset value expressed in the WETH currency. The

approach currently employed by the AMF is efficient for simple transactions but becomes computationally

expensive for complex transactions, i.e., transactions consisting of several asset transfers. The AMF

approach involves extracting main, internal, and ERC20 transactions, tracing each one, extrapolating

the predicted rate, and looking for close ETH values in ERC transactions, then replacing their values

and completing the process.

The following five sections of this report describe, respectively, the data sets, a supervised learning

approach, the modelization of complex transactions through graph theory, the proposed algorithms,

and our results. We conclude the report with a section on future work.

3.2 Description of the data sets

The original data used in this project (and by the AMF) consists of detailed transaction records found

on the Ethereum project website. From Etherscan.io, we have the following examples of transactions.

Figure 3.1 displays a transfer of 1,695 Tether USD (USDT). Figure 3.2 is an example of a complex

transaction, i.e, a transaction with many sub-transactions.

The AMF put the original data in tabular format and provided us with JSON and Excel spreadsheets.

We had access to data from the 20th, 24th, and 28th of March 2024, as well as the 5th and 28th of

April 2024.

Within the provided spreadsheets some of the columns are labeled as follows.

tokenName/tokenSymbol: The name of the token involved in the transaction (e.g., “Toshi”,

“Brett”).

value: The amount of the token transferred in the transaction.

blockNumber: The block number in which the transaction was included.

timeStamp: The timestamp when the block was created.

date: The date and time when the transaction occurred.

from: The address initiating the transaction.

to: The address receiving the transaction.

tx type: The type of transaction (e.g., ERC20, call).

type: The nature of the transaction, if known (e.g., transfer, swap).

hash: A unique identifier for the transaction.
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transactionFee: The fee paid for the transaction.

tx source: Indicates the source of the transaction (e.g., main, internal).

blockHash: The hash of the block containing the transaction.

tokenDecimal: The number of decimal places used by the token.

nonce: The number of transactions sent from the sender’s address.

ETH: The estimated transaction value expressed in ETH.

ETH adj: The adjusted estimated transaction value expressed in ETH.

gas: The maximum amount of gas units that the transaction is allowed to use.

gasPrice: The price per unit of gas.

gasUsed: The actual amount of gas used by the transaction.

The initial phase of the project consisted of data cleansing and the creation of a new data frame for

our purposes, with the following column headings: hash, source (tx source), from, to, value, symbol

(tokenName/tokenSymbol), sub type (tx type), ETH, type, and ETH adj.

3.3 A supervised learning approach

The AMF is currently using a supervised learning approach to evaluate transactions, the details of

which we do not know. In this section, we present the approach proposed by a subgroup of our team.

(The other subgroup investigated the graph theory approach, described later in this report.) The first

subgroup tested the capability of Large Language Models to interpret logs of sub-transactions. Their

approach involved the following steps.

Figure 3.1: Example of a simple transaction.
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Figure 3.2: Example of a complex transaction.

1. Feature Extraction: Transactions are characterized by various features. We can enhance these

features by extracting additional network-based metrics, such as:

• Number of nodes in the network;

• Node with the highest number of edges;

• Longest path within the network;

• Number of sinks (nodes with no outgoing edges), among others.

2. Manual Labelling: Certain characteristics of transactions that require investigation, such as

the presence of a pool or other specific attributes, can be manually identified from a finite set of

examples.



38 G–2024–76 Les Cahiers du GERAD

3. Model Training: A supervised learning model is then trained using these manually labelled

examples. This model learns to recognize patterns associated with these labels.

4. Prediction: Once trained, the model can be applied to classify a large volume of transactions

based on the features extracted.

For an illustration of potential use, consider a long list of transactions where:

• A network algorithm extracts the value in WETH/ETH;

• Additional information about the sub-transactions network shape is gathered;

• The machine learning algorithm classifies the transactions based on this information.

The result is a summary of all transaction types, allowing for more efficient analysis and investigation.

Figure 3.3: Example of model’s input.

Figure 3.4: Example of model’s output.

3.4 Modelization through graph theory

A graph is a mathematical structure used to model pairwise relationships between objects. In this

model, the objects are represented as nodes (or vertices), and the relationships between them are

represented as edges (or arcs). In an undirected graph, an edge is a pair of nodes, and in a directed

graph (or digraph), an arc is a couple of objects denoted by (u, v), where u and v are two (not necessarily

distinct) objects. Thus, an arc has a direction and may represent a “transfer” of some quantity from u

to v. To allow for the possibility that there are several arcs from u to v, we introduce the notion of

multidigraph. An arc may also have a label or several labels. For our purposes, we define a labeled

multidigraph as a couple (N,A), where N is a finite set of nodes and A a finite multiset of quadruples

of the form (u, v, c, w) with u and v being nodes, c representing a colour or token type, and w being a

weight (i.e., a real number). We refer the reader to Graph Theory With Applications, by Bondy and

Murty, for the standard graph-theoretical phrases used in the sequel.
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We propose modelling a main transaction as a labeled multidigraph (“graph”), where the nodes

represent the addresses involved in the sub-transactions and an arc represents the flow from one address

to another. Each arc carries information about the token symbol (cryptocurrency) and its value in the

corresponding sub-transaction.

A graph is an abstract discrete mathematical structure, but it can be embedded into the plane and

thus visualized. For example, after the anonymization of the involved tokens (denoted by T1, T2, and

T3), the transaction shown in Figure 3.2 can be visualized as the graph model embedding displayed in

Figure 3.5.

Figure 3.5: Graph illustration representing the transaction described in Figure 3.2.

For simplicity, we will refer to the graph embedding simply as a “graph.” The instigator of the
transaction is always known and is represented by a red node in the graph. Moreover, any red arc

represents a quadruple (u, v, c, w) such that the label c is WETH/ETH.

Given a labeled multidigraph G = (N,A), an arc cut C ⊂ A is a non-empty multiset of arcs such

that the graph G′ = (N,A− C) is disconnected, i.e., there exists a partition (N1, N2) of the node set

of G′ such that there is no quadruple (u, v, c, w) in G′ with u ∈ N1 and v ∈ N2. Naturally, this is

equivalent to saying that there exists a partition (N1, N2) of the node set of G such that C includes

every quadruple (u, v, c, w) with u ∈ N1 and v ∈ N2.

Let C be an arc cut whose removal destroys all the paths from the instigator of the main transaction

to the recipients of the assets. Intuitively, one realizes that any asset or money dispatched by the

instigator must “go through” one of the arcs of C. Therefore, since WETH is the reference currency

(similar to the gold standard or the US dollar), one should look for an arc cut that only consists of

WETH/ETH arcs.

We say that the node u is a source if it has only outgoing arcs, i.e, it only appears in quadruples of

the form (u, v, c, w). We say that the node u is a sink if it has only incoming arcs, i.e., it only appears

in quadruples of the form (v, u, c, w).

To traverse the graph in search of an arc cut, we need a source. The instigator of the transaction is

always known, so it is a natural choice for a source. There might be cases, however, where the instigator

also receives tokens, i.e., it appears in incoming arcs. To remedy this, if the instigator is not a source,

we introduce into the graph a new node called Dummy and redirect the instigator’s incoming edges to

this Dummy node. For example, after adding a Dummy node, the graph in Figure 3.5 is transformed

into the graph displayed in Figure 3.6.
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Figure 3.6: Updated graph representation of the transaction in Figure 3.2.

In our initial algorithm, if a path existed from the instigator (now a source) to a sink where none of

the arcs along the path had the WETH/ETH label, the transaction was flagged as untraceable. We

can reduce, however, the number of transactions flagged as untraceable by addressing specific graph

patterns, as detailed below.

We say that a token T flows through a node n if n has at least one incoming or outgoing arc

labelled T . A node n is said to be a flow-conservation node if, for any token T that flows through n,

the sum of the values of all incoming arcs of label T equals the sum of the values of all outgoing arcs of

label T .

We split a flow-conservation node, i.e., for any token T that flows through the node n, we create

a new node nT and redirect all incoming and outgoing arcs of label T to nT . Finally, we delete the

node n from the graph. For an example, we refer the reader to Figure 3.9 in the Section 3.5.1.

A path from a source to a sink is called a monochromatic path if all arcs along the path have the

same label. In graph theory, it is a standard notation to refer to an arc label (in this context, the asset

type being dispatched) as a colour.

We handle a monochromatic path as follows: we identify the minimum arc value on the path and

denote it by valuemin. We then update each arc value along the path by subtracting valuemin from it.

We carry out this operation as many times as possible, and after that, we look for a WETH/ETH arc

cut by carrying out a breadth-first search (BFS) starting at the instigator node. With this approach,

we could identify arc cuts for all the reconstructed transactions. If the arc cut does not include any

WETH/ETH arc, the transaction is assigned a value of 0.

3.5 Proposed algorithms

After processing the data and modelling the transaction as a graph, we modify the graph if necessary

by including a dummy into it, splitting every flow-conservation node, detecting as many monochromatic

paths as possible, and updating the arc values of these paths.

Then, starting from the instigator (now a source), we traverse the modified graph using a Breadth-

First Search (BFS) algorithm, looking for an arc cut that disconnects the graph into two components.
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This deterministic approach provides us with an estimate of the value of the transaction: the sum

of the values of the arcs in the arc cut that are of symbol WETH/ETH. We will denote this value by

“Transaction Value”.

When there is a path from the instigator (source) to a sink in which none of the edges are of symbol

WETH/ETH and the arc cut does not include any arc of symbol WETH/ETH, the transaction is

flagged as having a zero value.

3.5.1 Illustration of the Algorithm’s process

In this section, we will demonstrate how the algorithm operates using a specific transaction (of hash

“0xe...79c”) as an example. This transaction is categorized as a “swap”, has an “ETH adj” of 1.577414,

and its “Transaction Value” is 1.612981.

For simplicity, we will display only the arcs with non-zero values. The graph representation of this

transaction consists of 16 nodes and 27 arcs, as illustrated in Figure 3.7.

Figure 3.7: Graph representation of the transaction.

In Figure 3.7 the instigator is not a source, so we add a “Dummy” node to the graph to make the

instigator a source and obtain the graph displayed in Figure 3.8.

The graph in Figure 3.8 has two flow-conservation nodes: “c” and “j”. Only “T4” flows through

“c”, so the node “c” is renamed “c T4”. Four tokens flow through the node “j”, so it will be split into

four different nodes: “j WETH”, “j T1”, “j T2”, and “j T3”. The updated graph has 20 nodes and 27

arcs, as illustrated in Figure 3.9.

There is a monochromatic path consisting of three arcs: from “d” to “j T3”, from “j T3” to “g”,

and finally from “g” to the sink “b”. The “valuemin” of this path is the value of the arc (“g”, “b”),

which is 360.30038 T3. After updating the monochromatic path, the final graph is shown in Figure 3.10.

Finally, the arcs connecting the set of marked nodes to the set of unmarked nodes define the arc

cut. We have the following results.

• Marked Nodes, in the order in which they are marked: “d”, “j T3”, “l”, “m”, “h”, “p”, “i”, “o”,

“g”, “c T4”, “j T1”, “Dummy” and “e”.

• Unmarked nodes: “j WETH”, “k”, “b”, “n”, “j T2”, “a”, and “f”.
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Figure 3.8: Graph with the node “Dummy” added.

Figure 3.9: Graph with the flow-conservation nodes split.

Figure 3.10: Final processed graph.
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• Arc cut: { (“h”, “j WETH”, WETH, 1.2691), (“l”, “j WETH”, WETH, 0.1140), (“o”, “j WETH”,

WETH, 0.0178), (“i”, “j WETH”, WETH, 0.1884), (“m”, “j WETH”, WETH, 0.0113),(“e”,

“j WETH”, WETH, 0.0123) }

The Transaction Value (in WETH) is 1.6129812504136791.

3.5.2 Pseudocodes

To find a monochromatic path, we use breadth-first search (BFS), a standard algorithm for exploring

the nodes of a graph. Recall that BFS constructs a rooted tree, so that the predecessor of a node (its

“father”) is uniquely defined. Let c be the colour (token type) of an arc of the form (s, u), where s is

the source (the instigator). The following algorithm finds monochromatic paths of colour c from the

source to a sink. The process is then repeated for every other colour incident to the source. Note that

for the results presented in later sections, we only computed monochromatic paths appearing in the

rooted tree initially constructed by the BFS algorithm: in some cases, it could be useful to run the
algorithm a second time, for instance, when the collection of monochromatic paths forms a directed

acyclic graph that is not a rooted tree.

In what follows a queue is a FIFO (first in, first out) list.

Algorithm 3.1 Algorithm for finding a monochromatic path (of colour c).

1: begin
2: Initialize Q to the value EmptyQueue

3: Add the source s to Q and mark s
4: while Q is not empty do
5: Let u be the first element of Q
6: Remove u from Q
7: for every v such that (u, v) is an arc of the graph with nonzero value do
8: if (u, v) is of colour c and v is not marked then
9: Add v to Q (at the end of Q) and mark v
10: Assign the value u to predecessor(v)
11: end if
12: end for
13: end while
14: if a sink t is marked then
15: valuemin ← infinity

16: v ← t
17: while v ̸= s do
18: valuemin ← min(valuemin, value of the arc (predecessor(v), v))
19: v ← predecessor(v)
20: end while
21: v ← t
22: while v ̸= s do
23: Decrease the value of the arc (predecessor(v), v) by valuemin

24: v ← predecessor(v)
25: end while
26: end if
27: end

When no more monochromatic path from the source to a sink can be found, we use BFS again to

find an arc cut constructed by starting BFS at the instigator node. The following algorithm returns a

set of marked nodes S such that S includes the source. The arc cut includes any arc from a node in S

to a node in T , where T denotes the complement of S. If every arc in this cut is of the WETH/ETH

type, we have found the value of the transaction, defined as the sum of the values of the arcs in the cut

that are of the WETH/ETH type.
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Algorithm 3.2 BFS to find the desired arc cut.

1: begin
2: Initialize Q to the value EmptyQueue

3: Add the instigator node (source) w to Q and mark w
4: while Q is not empty do
5: Let u be the first element of Q
6: Remove u from Q
7: for every v such that (u, v) is an arc of the graph with nonzero value do
8: if (u, v) is not a WETH/ETH arc and v is not marked then
9: Add v to Q (at the end of Q) and mark v
10: end if
11: end for
12: end while
13: end

3.6 Results

We gathered all available information for (sub)transactions from various Excel files and grouped them

by hash to reconstruct the transactions.

From the data provided, we reconstructed 83,486 transactions of different types, and overall, we

were able to trace 92.728% of them to a non-zero value. From the transactions whose type is “swap”,
we traced 99.986% of them to a non-zero value.

We focused on transaction types that do not begin with “0x” and have a minimum of ten samples.

Investigating additional transaction types is included in the scope of future work. A summary of the

results is presented in Table 3.1.

Table 3.1: Percentage of transactions (per type) that were traced to a non-zero value.

Type Counts Traced

swap 74011 99.99%
remove liquidity: multicall 581 0.00%
add liquidity: multicall 383 100.00%
transfer 217 19.35%
rebalance 100 0.00%
exactOutputSingle 88 100.00%
remove liquidity: collect 86 0.00%
swapExactTokensForTokens 69 100.00%
execute 65 93.85%
reinvest 52 0.00%
safeTransferFrom 48 0.00%
add liquidity: mint 40 0.00%
settleOrders 39 71.79%
non processed 29 72.41%
remove liquidity: safeTransferFrom 29 0.00%
swapExactTokensForETHSupportingFeeOnTransferTokens 24 100.00%
add liquidity: addLiquidityETH 17 100.00%
transfer token other than the pool 17 29.41%
bridge 12 100.00%
withdrawTokens 11 0.00%

Comparing with the data provided, out of the twenty transaction types analyzed, we successfully

matched or exceeded the number of (non-zero) traced transactions in fourteen cases (see Figure 3.11).

Table 3.2 contains a summary of the percentage of transactions for which the value of “ETH adj” is

matched, i.e., the absolute value of the difference between the “Transaction Value” and “ETH adj” is

less than or equal to 0.0001, based on the traced transactions.
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Figure 3.11: Comparison of the percentage of traced (to a non-zero value) transactions.

Table 3.2: Transaction types and their percentage of matches.

Type Count Match Percentage

swap 74011 89.83%
remove liquidity: multicall 581 0.00%
add liquidity: multicall 383 20.89%
transfer 217 0.00%
rebalance 100 0.00%
exactOutputSingle 88 0.00%
remove liquidity: collect 86 0.00%
swapExactTokensForTokens 69 0.00%
execute 65 81.97%
reinvest 52 0.00%
safeTransferFrom 48 0.00%
add liquidity: mint 40 0.00%
settleOrders 39 0.00%
remove liquidity: safeTransferFrom 29 0.00%
non processed 29 66.67%
swapExactTokensForETHSupportingFeeOnTransferTokens 24 50.00%
add liquidity: addLiquidityETH 17 88.24%
transfer token other than the pool 17 0.00%
bridge 12 91.67%
withdrawTokens 11 0.00%

Overall this approach allows us to trace a larger number of transactions, and once traced, the

deterministic method provides a high level of confidence in the results. Moreover the algorithms used

are of linear complexity.

3.6.1 Examples

We present here examples of transactions where the “Transaction Value” does not match “ETH adj”.

All tokens, except for WETH/ETH, have been anonymized and are denoted by Ti, where i is a natural

number.
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Transactions of type “swap”

Out of the 74,011 transactions of type “swap” that we reconstructed, we traced 74,000 to a non-zero

value. Out of the traced transactions, 1,235 had no value in the “ETH adj” column, while in 6,291

cases, the value we identified differed from the “ETH adj” value by more than 0.0001.

The graph in Figure 3.12 represents the transaction with hash “0x4...764”. This transaction is of

type “swap”, has an “ETH adj” value of NaN, and the “Transaction Value” is 1.511991 WETH/ETH.

Figure 3.12: Traced transaction of type “swap” that had no “ETH adj” value.

Figure 3.13 displays the same transaction with sub-transactions of zero value filtered out for better

readability.

Figure 3.13: The same transaction as in Figure 3.12 with zero-value sub-transactions removed.

The marked nodes are “f”, “j”, and “i”. The non-zero arcs in the arc cut are (“f”, “e”, ETH, 0.0539),

(“f”, “c”, ETH, 0.1621), (“j”, “e”, WETH, 0.2156), and (“j”, “d”, WETH, 1.0804).
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Figure 3.14 is another example where the transaction value does not match the “ETH adj” value.

This transaction of hash “0xd...779” is of type “swap”, has an “ETH adj” value of 0.103824 and a

“transaction fee” value of 0.010074, and the “Transaction Value” is 0.193881 WETH/ETH.

Figure 3.14: Traced transaction of type “swap” where the “Transaction Value” does not match the “ETH adj” value.

The graph in Figure 3.15 shows the same transaction with sub-transactions of zero value filtered

out.

Figure 3.15: The same transaction as in Figure 3.14 with zero-value sub-transactions removed.

The marked nodes are “j”, “h”, and “f”. The non-zero arcs in the arc cut are (“j”, “e”, WETH,

0.0450), (“j”, “Dummy”, WETH, 0.1038), (“f”, “d”, ETH, 0.0350), and (“f”, “j”, ETH, 0.0101).

Transactions of type “non processed”

We reconstructed 29 transactions of type “non processed”. In the “ETH adj” column, 18 transactions

had a non-zero value, while 11 showed NaN.

We traced 21 transactions to a non-zero value and found a match with the “ETH adj” value in 14

cases.

Of the 8 transactions flagged as having zero value, 6 had NaN in the “ETH adj” column.
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From the 11 transactions with NaN in the “ETH adj” column, we traced 5 to a non-zero value. To

illustrate, Figure 3.16 represents the transaction with hash “0xd...927”. This transaction is of type

“non processed”, has NaN in the “ETH adj” column, and the “Transaction Value” is 0.000209 WETH.

Figure 3.16: Traced transaction of type “non processed” that had no “ETH adj” value.

Figure 3.17 shows the same transaction with zero-value sub-transactions filtered out.

Figure 3.17: The same transaction as in Figure 3.16 with zero-value sub-transactions removed.

The marked nodes are “b”, “c”, “Dummy”, “y”, “g”, “l”, “r”, “d”, “n”, “w”, and “o”. The non-zero

arc in the arc cut is (“w”, “u”, WETH, 0.0002).

Figure 3.18 represents the transaction with hash “0x7...aa3”. This transaction is of type “non

processed”, has an “ETH adj” value of 0.047646, and the “Transaction Value” is 0.12924 WETH.

Figure 3.19 shows the same transaction with zero-value sub-transactions filtered out.

The marked nodes are “b”, “h”, and “d”. The non-zero arc in the arc cut is (“h”, “i”, WETH,

0.1292).
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Figure 3.18: Traced transaction of type “non processed” where the “Transaction Value” does not match the “ETH adj”
value.

Figure 3.19: The same transaction as in Figure 3.18 with zero-value sub-transactions removed.

3.7 Future work

3.7.1 Data processing

Reconstructing the transactions is an essential part of the work, as our approach depends on the quality

of the graphs. Thus it is important to test different ways to reconstruct transactions and evaluate

which one performs best in terms of accuracy and complexity.

As an example let us consider the transaction of hash “0x4...253”, whose type is “add liquidity:

mint” and “ETH adj” is “NaN”.

Given the available data we have for this hash, excluding only transactions of the sub type “staticcall”,

this transaction can be represented by the graph in Figure 3.20.

By standardizing all the node addresses, we obtain the following graph (Figure 3.21) representation

of the transaction.

If we filter the data excluding all non-zero transactions, we obtain the graph in Figure 3.22.

For this transaction, using the graphs in Figures 3.20 or 3.22, our approach estimates the transaction

value at 7.7495 WETH. Using the graph 3.21, we estimate the transaction value at 0 WETH. This

difference occurs because the node g from Figure 3.20 is a sink, so the arc from f to g will take the
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value zero after we update all monochromatic paths in the graph; hence, the only marked node, after

we run the algorithm to find an arc cut, is the node f . Analogously, for the graph in Figure 3.22, c is a

sink, and the only marked node is b.

Comparing some examples against the Etherscan platform, standardizing all the graphs as in

Figure 3.21 seemed to be the most accurate method. The results presented in our report are for this

kind of data processing.

For the results with the data processing as in Figure 3.22, we refer the reader to the Appendix 3.A.

Figure 3.20: Graph representation of the available data for the given hash.

Figure 3.21: Graph representation of the cleaned data for the given hash.

Figure 3.22: Graph representation of the non-zero arcs for the given hash.

3.7.2 Refining the model

The model can be refined to trace accurately more transactions.
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The next step should be to differentiate between transactions with zero value and those where the

zero value indicates a pattern that requires further investigation for accurate tracing, as illustrated by

the transaction shown in Figure 3.20.

For certain transactions types, such as “withdrawTokens”, “add liquidity: mint”, “remove liquidity:

multicall”, “remove liquidity: collect”, “safeTransferFrom”, and “remove liquidity: safeTransferFrom”,

additional investigation is needed.

Incorporating fee values is also one of the goals of our future work.

Appendix

3.A Results for the finer data processing

We reconstructed 66,591 transactions of different types, and overall, we were able to trace 95.137%

of them to a non-zero value. Out of the transactions whose type is “swap”, we traced 99.917% to a

non-zero value.

Focusing on transaction types that do not start with “0x” and have at least ten samples, we obtain

the results in Table A1.

Table A1: Percentage of transactions (per type) that were traced to a non-zero value.

Type Counts Traced

swap 62360 99.92%
remove liquidity: multicall 440 0.00%
add liquidity: multicall 293 100.00%
transfer 203 20.20%
exactOutputSingle 88 100.00%
rebalance 83 0.00%
remove liquidity: collect 69 0.00%
swapExactTokensForTokens 69 100.00%
execute 52 92.31%
safeTransferFrom 41 0.00%
settleOrders 34 0.00%
add liquidity: mint 34 100.00%
remove liquidity: safeTransferFrom 26 0.00%
swapExactTokensForETHSupportingFeeOnTransferTokens 24 100.00%
reinvest 23 0.00%
add liquidity: addLiquidityETH 17 100.00%
non traité 14 92.86%
transfer token autre que le pool 13 38.46%
withdrawTokens 11 0.00%

Comparing with the data provided, out of the nineteen transaction types analyzed, we successfully

matched or exceeded the number of (non-zero) traced transactions in thirteen cases.
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Figure A1: Comparison of the percentages of traced (to a non-zero value) transactions.
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Léo Belzile b

Thomas Binet c

Criscent Birungi d

Guillaume Cantin e

Janos C. R. Füting b
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auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
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4.1 Context and problem definition

Under the governmental Flood Hazard Identification and Mapping Program (FHIMP), Environment

and Climate Change Canada (ECCC) has been mandated to provide 2D simulations of extreme water

levels in the St. Lawrence fluvial estuary under historical and future conditions. The elevations of water

levels in this system are triggered by the complex interaction of hydrological, meteorological, and tidal

processes that must be considered to simulate river dynamics and flood events. Constraints on the

computational resources and time requirements and the necessity for background geophysical fields

currently limit the feasibility of producing fine-scale 2D hydrodynamic simulations to a limited set

of relatively short extreme events (approximately 400 events with duration ranging from one hour to

several weeks). Hence several complementary modelling tools have been explored to study the temporal

evolution of water level extreme properties. Among them, some multivariate statistical models and

machine learning tools have proven effective in reconstructing continuous water level series over long

historical periods, which is essential to assess the extreme probability distributions.

While these methodologies have shown promising performances at gauged stations, some challenges

remain in extending their applicability to describe the extreme event characteristics in the river and

fluvial estuary sections where few or no observations are available.

Figure 4.1: High water level occurrences at four water level stations ordered from the most downstream to upstream: the
typology of the identified events changes along the river.

We observe short-lived hydrological events in the river downstream sections that occur intermittently

between November and June. In contrast, moving upstream, these events become more prolonged and

are primarily concentrated during the spring freshet. Additionally, the number of stations involved

in the extremes and the event spatial extents vary significantly between upstream and downstream

sections. This leads to the first fundamental research question: how do the specific event characteristics

(e.g., return period, duration, and seasonality) change locally over the study domain? In this context,

during the workshop, we aimed to determine whether it is possible to summarize local extreme event

characteristics into few comprehensive measures, to evaluate the dominant typology of the events at

each location based on these measures, and finally to assess the spatial distribution of these metrics

along the river continuum to extrapolate the event typology between monitoring stations.

The project’s second phase involves conducting two-dimensional hydrodynamic simulations and

statistical reconstructions to reproduce the water level series. The first step is to determine how

well these simulations and reconstructions reproduce all relevant features of some specific events that

occurred in the past period over the whole study domain. Figure 4.2 provides an example of the
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practical issues involved in this evaluation by showing the hydrodynamic simulation outputs from two

nearby stations in the central part of the domain during an extreme event.

Figure 4.2: Observed water level series and corresponding numerical simulation [H2D2 hydrodynamic model].

The figure shows that the same model leads to different error types at these stations: a clear

underestimation of the signal variability and amplitude at the first station, while a constant bias in the
mean water level is seen at the second station. This discrepancy raises the following question: at which

point in space the model errors change from variability-related to bias-related errors, and how does

this transition affect the overall estimation of extreme event characteristics? Accordingly, during the
workshop, we tackled the following second objective: define one or several summary statistic(s) that

evaluate the model performance in terms of the ability to reproduce the extreme event characteristics

and that can be applied at each spatial point over the study domain.

4.1.1 Data

The project domain goes from Montréal to Saint-Joseph-de-la-Rive. This spans 450 km and includes

two fluvial lakes (Lac Saint-Louis and Lac Saint-Pierre). The domain can be schematically divided into

three sections.

1. The Montréal region where the Ontario Lake outflow and Ottawa River streamflow control the

water level fluctuations at the daily to decadal scales.

2. The fluvial section from Sorel to Trois-Rivières, including a large fluvial lake, Lac Saint-Pierre, as
well as some important tributaries (the Richelieu, Yamaska, Saint-François, and Saint-Maurice

rivers). In this section water levels are mainly influenced by long-term hydrological trends and

the annual hydrological cycles, while presenting tidal oscillations at diurnal to fortnightly scales

in periods with relatively low river discharge.

https://www.sciencedirect.com/science/article/pii/S0309170899000317
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3. The fluvial estuary, spanning from Trois-Rivières to Saint-Joseph-de-la-Rive: here water level

variability is driven by tides at semi-diurnal and lower frequencies as well as by the seasonal

variability of the river streamflow. Several tributaries are also present, mostly on the North Shore.

Tide and maritime processes such as storm surge are the main contributors to the water level variability

in the proper (maritime) estuary downstream of Saint-Joseph-de-la-Rive.

Figure 4.3: Location of the 19 water level stations available.

ECCC originally provided data suitable for a benchmark analysis, including the following datasets.

• Hourly water level records observed at 19 stations over the 1970-2022 period; the station locations

are displayed in Figure 4.3.

• Three examples of 2D hydrodynamic simulations obtained with the H2D2 hydrodynamic model

for the following high water level events: April 2011, November 2016, and December 2022.

• Hourly water levels reconstructed using three statistical models (non-stationary harmonic re-

gression, recurrent neural network, and basic multiple regression) over the whole study period

(1960-2022) at some specific stations and the corresponding extreme events.

Over the course of the week, ECCC provided additional data, including some covariates useful for

classifying the event drivers: wind speed series and the water level decomposition in long-term trends

and other variability components at one upstream and one downstream station.

In the context of the FHIMP project, ECCC applies a Peak Over Threshold (POT) approach with

temporal declustering to identify high-water-level events (see Figure ??).

To avoid biases in the event selection due to 18.6-yr nodal cycles in tides and possibly long-term

climatic trends and cycles, the series were firstly filtered by removing the water level running mean

computed on a 20-yr centred moving window. The POT threshold was set for each water level station to

sample approximately 2 extremes per year. Finally, the temporal declustering was applied by imposing

a minimum spacing between events and decreasing water level from each peak.
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Figure 4.4: Extreme event definition: POT and temporal declustering

Depending on the process generating the high water levels, in many cases, temporal overlaps can be

expected between local events sampled at two or more stations, with a time lag of the peaks depending

on the celerity of the flow waves. To discern and categorize extreme events on a regional basis effectively,

taking into account the spatial heterogeneity and temporal dynamics of these events, the declustering

strategy presented above was applied to the series of extreme events identified across all stations. This

second declustering results in a set of new start and end dates for events that may occur at several

stations in the domain, taking into account the lag time between peaks belonging to the same event
(see Figure 4.5).

Figure 4.5: Regional event definition: declustering over the stations.

4.1.2 Workflow

In the afternoon of the first day of the workshop, a collaborative brainstorming session was conducted

to refine and elucidate the problem aspect and specific question to tackle.
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This process resulted in the identification of the major steps needed to solve the problem.

1. Feature engineering for event characterization: define some statistical metrics that effectively

summarize the overall behaviour of high-water-level events. Specifically, the main goal was to

develop some scores that differentiate between hydrological, local-scale meteorological, maritime,

and astronomical drivers of these events.

2. Event dimension reduction: identify transformations of the water levels and/or the event to

further reduce the event’s dimensionality while retaining its meaningful properties.

3. Station and event classification: define the methodological steps for the systematic identification of

each event driver(s) based on complementary climatological information and hydro-meteorological

covariates; the objective of this step was to derive a classification metric that, on the one hand,

recognizes the predominant type of extremes at each sampled location and, on the other hand,

can be easily mapped in space at unsampled locations.

4. Model evaluation: estimate the spatial distribution of the summary features and classification

metric(s) and evaluate their relevance as performance score for the hydrodynamical simulation

and statistical reconstruction. The final goal was to test and possibly adapt the statistics defined

at steps 1–3 to define both location-related and regional error measures describing the overall

model performance.

Figure 4.6 displays a schematic representation created during the workshop to illustrate the

interconnections between these main procedural steps.

Figure 4.6: Problem solving workflow.

In the subsequent sections, the participants delineate the methodologies proposed to address the

four aspects of the problem and their preliminary findings obtained during the workshop. The content is

structured around the topic addressed by each of the three principal working groups: feature engineering,

event and station clustering, and model evaluation metric.

4.2 Feature engineering for the event characterization

As a first step, we created new statistics to summarize several crucial event characteristics in a

quantitative variable based on both the water levels and provided covariates. Within the dataset

provided by ECCC, the group selected the covariates that could be treated as proxies for the process

that may interact with the tides and river discharge to generate high water levels.
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We first added a few additional statistics to those already available for the local and/or regional

high-water-level events.

Peakness [m]: Ratio between the maximum and the mean filtered water level recorded during the

event.

Event inter-time [h]: Time between the end of a regional event and the beginning of the next one.

Peak inter-time [h]: Time between two consecutive regional event peaks.

Then we identified two reference stations for the upstream and downstream signals influencing the

water levels: Sorel-Lanoraie, in the fluvial section of the domain, and Sept-̂Iles, in the open Gulf of the

St. Lawrence. At these two stations, the group decided to use the following signal decomposition based

on five-yr harmonic analyses computed on annual sliding windows:

hUP,t = HYD+ f(Qt) + FTt, upstream station - Sorel-Lanoraie, (4.1)

and

hDW,t = SEA+ f(St) +ATt, downstream station - Sept-̂Iles, (4.2)

where each variable is defined as follows (all units are meters):

HYD: sliding harmonic analysis intercept, representing the inter-annual variability of upstream water

levels [m] linked to medium- and long-term (e.g., decadal) hydrological cycles;

f(Qt): upstream water level residual (after the removal of HYD and the fortnightly tidal signal FTt),

proxy of the river streamflow that represents the hydrologically-induced water level variability;

SEA: sliding harmonic analysis intercept, representing the inter-annual variability of downstream water

levels [m] linked to medium- and long-term (e.g., decadal) oceanic cycles;

f(St): low-passed downstream water level residual (after the removal of SEA and the astronomical
tidal signal ATt), proxy of the storm surge waves generated by large-scale meteorological systems.

Additionally, the river streamflow [m3/s] is directly collected upstream (Sorel-Lanoraie) and the wind

speed [km/h] recorded at 3 meteorological stations (Québec, Saint-Hubert and Montréal airports) were

considered. The group decided not to use the wind direction for two reasons: the studied water level

gauge locations were unevenly distributed between the St. Lawrence River’s north and south shores,

and the group wanted to start by approximating the domain on a single spatial dimension following the

water line (centre of the river). The group computed the basic statistics (minimum, mean, maximum,

standard deviation, and peak date) of the considered records observed over the 1970-2022 period.

4.2.1 Summaries for fixed-duration events

The duration of each event is a crucial characteristic in determining the causes of a high-water episode,

and the declustering defined was aimed at preserving such a difference between events. For calculating
certain statistics, however, the group found it impractical to work with regional events ranging from

one hour to 1825 hours (roughly 2 months). During the workshop, some analyses were thus made by

considering a time window of 13 hours before and after the local event peak. This fixed-length window

corresponds roughly to a lunar day (24 hours and 50 min), and the procedure led to the identification

of local events.

Moreover, to further homogenize the series between different locations and periods, the fixed-duration

event analysis was conducted on scaled series: namely the filtered water level series was re-centred

around the median and scaled using the median absolute deviation (MAD), to account for the fact that

the distribution of water levels at some upstream locations is skewed.
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Using the rescaled series and the fixed-length event set, the following statistics were also recomputed.

Amplitude [m]: Difference between maximum and minimum rescaled water levels observed in the

26h window. Note that in the context of tidal analysis, this variable is typically called “range.”

Spatial influence [−]: Number of stations with water levels that exceed their marginal 95 percentile.

Normalized peakness [m]: Difference between the maximum and mean rescaled water levels during

the 26h window, divided by the difference between the mean and minimum rescaled water levels

during the fixed-length event; for each station j and event Ei this measure is computed as:

Ri =
maxi∈Ei(Yij)− Y ij

Y ij −mini∈Ei(Yij)
,

where Y ij = |ni|−1
∑

i∈Ei
Yij is the event average rescaled water level, and ni the event duration

in hours. As the final step, Ri was centered by subtracting the median and the MAD of the Ri’s

was scaled (through computations at each site over the whole observation period, for both median

and MAD).

Return levels [m]: A Generalized Pareto Distribution (GPD) was fitted to the 26h local event peak

exceedances using the exceedances identified by ECCC, and the quantiles corresponding to various

return periods were extracted from there (this means that the threshold level varies from site to

site). When the number of observations was too small to reliably fit a GPD, the following plotting

positions were considered to estimate the empirical probability distribution of the rescaled water

level exceedances:

rank(Yij)/(nu + 1), for i = 1, . . . , nu,

where nu indicates the number of events (exceedances). These empirical quantiles are then divided

by 1.05 and mapped to the unit exponential scale for the clustering phase; this reduces the impact

of extreme values.

Direction of the flow [−]: Kendall’s rank correlation between the indices of site exceedances and the

observed stations identifiers (1 to 16) for stations at which the cluster peak (i.e., the maximum

observation during the time window used to define the event) exceeds the site-wise 0.9 quantile.

This statistic is only defined when more than four sites are above the 0.9 quantile.

Annual timing [−]: Calendar day mapped to [0,1] and shifted by 58 days so that the year starts in

March. Besides being sub-optimal for hydrological floods, this shift allows to separate roughly

the 26h events connected to winter processes from those related to spring freshets. Conventional

methods applied to the St. Lawrence watershed generally lead to the definition of hydrological

years starting in periods of low flow (typically August or December).

Considering the fixed-duration event approach, the regional declustering was also re-defined using

a geometrical approach: for each local extreme from a spatio-temporal plane event, consider the

fixed-length extremes and the river km of the event (station location), measured as the distance from

Pointe-Claire, as the spatial variable, and the event peak date as the time. Given the small time

delay, we can aggregate the local events occurring in this time interval, to reconstruct a pattern that is

expected to reproduce a regional event. We depict in Figure 4.7 the distribution of these patterns in

the spatio-temporal plane.

When analyzing Figure 4.7 at a finer scale (e.g., on temporal windows of several days), three

patterns can be distinguished, each corresponding to events of a different nature. The first type of

pattern corresponds to monotone decreasing patterns, as schematized in Figure 4.8 (a). For such a

pattern, the date of a local event decreases if its location along the St. Lawrence River increases.

Therefore a monotone decreasing pattern corresponds to a regional event spreading upstream (Sept-̂Iles

to Pointe-Claire). Conversely, a monotone increasing pattern [Figure 4.8 (b)] corresponds to a regional

event which is spreading downstream (Pointe-Claire to Sept-̂Iles). Finally, a non-monotone pattern

corresponds to a regional event that we call complex [Figure 4.8 (c)], which can, for instance, be the

result of two events of opposite directions. According to this approach, the majority of the sampled
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Figure 4.7: Spatio-temporal distribution of patterns obtained by aggregating local events occurring within a small delay of
arbitrary amplitude (26h window).
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Figure 4.8: Analysis of patterns reproducing regional extreme events. (a) Monotone decreasing pattern corresponding to
an upstream event. (b) Monotone increasing pattern corresponding to a downstream event. (c) Non-monotone pattern
corresponding to a complex event.

events appear to be generated by hydrological processes originating upstream in the St. Lawrence

basin.

Some measures aiming at quantifying event complexity were tested. They showed, however, a clear

correlation – either positive or negative – with the peak amplitude. This confirms a known result in the

literature: compound processes tend to damp the high-water-level peaks or generate the most intense

extremes depending on the spatial location. It should be noted, however, that the uneven distribution

of the station locations along the study domain introduces a strong bias in this analysis. While some

methods could be improved by re-scaling the spatial dimension, we preferred to keep this descriptive

method as a preliminary data exploration tool during the workshop.

Based on these descriptive analyses and discussions, participants decided to carry out investigations

to define simple statistics capable of capturing the intensity of peaks at the same time as the direction

of propagation of the high-water-level episodes. Event duration analysis, on the other hand, will only

be possible after the refinement of the local and regional declustering criteria.
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4.2.2 Dynamical characterization of local events: lagged regression parameters

On a regular basis ECCC uses interpolated water levels based on simplified dynamic relations, in

order to reconstruct sparse or short water level series at a target location; this interpolation relies on

sampled records taken at two reference stations. In an operational approach, the parameters used for

the interpolation are in general estimated on an hourly basis through a lagged linear regression on the

whole period for which records are available at the three locations. In this part of our work we adapted

the ECCC methodology by estimating the interpolation parameters for each sampled local event. Hence

the lagged regression parameters may be considered as statistics characterizing each event’s dynamics

as a function of signal variability at the two reference stations: Sorel-Lanoraie (upstream reference

station) et Sept-̂Iles (downstream reference station).

Lagged regression model

Let si ∈ 0, ..., N be a series of stations such that s0 is the most (upstream) station, sN the most

(downstream) station, and the subscript list 0, ..., N is sorted according to the stations positions along

the St. Lawrence River. The river is assumed to be a closed system between stations s0 and sN : thus

for i such that 0 < i < N the water level at station si (denoted by wlsi) depends upon the water levels

at stations s0 and sN (denoted respectively by wlU and wlD), with respective lags of τU and τD. The

equation of the predictive model is thus

wlsi(t) = α+ βwlU (t− τU ) + γwlD(t− τD), ∀i ∈ 1, .., N − 1,∀t ∈ R. (4.3)

The model parameters are computed for each extreme event at each station in two steps: first one

estimates the temporal lags τU and τD through the maximization of the correlation between the variable

wlsi(t) and the water levels wlU (t−τU ) and wlD(t−τD). The coefficients α, β, and γ are then optimized

by applying the least squares method. We have excluded events lasting less than two hours.

In order to evaluate quickly the quality of the estimated model, the prediction error was checked at

each available station, excluding the two reference series (observed respectively at Sorel-Lanoraie and

Sept-̂Iles). Figure 4.9 shows that the mean prediction error is less than 10cm for all stations upstream of

Portneuf, when one considers the set of all sampled events. In some cases the approximation error is of
the same order as the error in the observations measurements, i.e., a few centimeters. For downstream

stations, however, the model exhibits greater prediction errors, in part because the height of the waves

(and thus the signal amplitude during events) is higher in this section of the river than in the rest of the

domain. An isolated instance of error larger than 50cm was obtained for certain events at the station

of Vieux-Québec: this is probably due to a numerical error in the estimation of Equation (4.3). The

participants did not have the time to solve this problem.

This lagged linear regression model allows one a good prediction of a station’s water level in the

case of an extreme event. It allows us to summarize extreme events using five parameters, which may

then be compared to understand better the various event types. A physical interpretation of the two

temporal parameters τU et τD will be used in the next section to identify the flow direction during a

specific event.

4.2.3 Event direction

After some discussion, the participants agreed that the primary criterion for distinguishing events driven

by hydrological processes from those driven by maritime processes should be the direction of water

flow, with hydrological processes propagating from upstream to downstream and maritime processes

from downstream to upstream.

Three methodological approaches have been tested for estimating the regional and fixed-length

event direction.
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Figure 4.9: Boxplot by station of the model RMSE for every extreme event. The RMSE unit is the meter (m).

Peak direction - Computed for each regional event as the arithmetic average of the local event

directions: for each regional event involving at least 2 stations, a value in {0, 0.5, 1} is attributed

to each peak based on the spatial location of the 2 adjacent peaks in time; Table 4.1 details the

specific values taken by the direction statistics. The closer the peak direction is to 0, the more

stations record an event flow going from upstream to downstream. Conversely, the closer the

peak direction is to 1, the more the event is recorded flowing from downstream to upstream.
Accordingly, it is possible to determine whether the wave of high water levels at a given station

comes from upstream or downstream.

Table 4.1: Peak direction - Rules used to determine the direction value attributed to each peak within a given
regional extreme event. Entries filled with dashes (–) indicate that the previous (or next) peak location cannot
be determined within the event. The abbreviation “up” stands for upstream and “down” for downstream.

Previous peak location up – down down down up –
Next peak location down down up – down up –

Direction value 0 0 1 1 0.5 0.5 0.5

Correlation direction (dirflow) - Computed considering the rescaled water level in the 26h fixed-

duration events: for each event, we selected the set of variables in the 26h time window that

exceeded the 90th marginal percentile of the series for each site and computed Kendall’s τ rank

correlations between the direction of flow and the exceedances whenever at least four stations

exhibited high water levels. The resulting measure takes positive values for events flowing from

downstream to upstream while negative values represent events driven by upstream processes.

Dynamical model direction - Computed for each local event through the use of the lagged regression

parameters: the signs of the two “lag parameters” τU and τD allow one to classify events as
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coming from upstream (+,−) or downstream (−,+), caused by local meteorological conditions

(+,+), or being influenced by the two directions of the waves (−,−). For instance, in the case

of the (+,−)combination, if one wishes to predict the water level of a station at time t, then

one needs the water level of the upstream station at time tU ≤ t and the water level of the

downstream station at time tD ≥ t. In other words an event characterized as a (+,−) event is an

event originating upstream. The following table summarizes the four scenarios. This measure is

interesting because it can be computed for any local event, not only for those having an impact

on several stations. Indeed the direction of the water flow is determined through the lagged

regression model, rather than through the lag with respect to the peaks of the other stations.

Furthermore simple mathematical developments could allow one to incorporate the size of the lag
into the definition of a continuous measure of direction.

lag parameters
Event origin

τU τD

+ + Local
+ - Upstream

- + Downstream
- - Compound (both directions)

Figure 4.10: Classification of events according to the flow direction, based on the signs of the lag parameters.

Some participants also highlighted the possibility of calculating simple direction statistics based on

the geometric approach described in Section 4.2.1. Because of a lack of time, it was decided to retain

the geometrical analysis as a descriptive method for data exploration.

4.3 Measures for the classification of events and stations

A team worked specifically on defining and testing various numerical approaches to discriminate between

events of different natures based on the defined features. The goal is to identify distinct event clusters

that would separate clearly in the feature space and be interpretable regarding the events’ physical type

and/or drivers. The teams further analyzed which proportion of overall events at each station belonged

to the clusters that were found, i.e., which events and characteristics are important for modelling the

high-water-level events at each particular station of the St. Lawrence River and fluvial estuary. Note

that Montréal-Jetée, located at the Vieux-Port in Montréal, was excluded from the analysis due to

its unique morphological features, which introduce some variability related to human activities into

water-level time series.

4.3.1 Event clustering

In different teams, we explored various clustering methods to obtain a descriptive classification of 26h

events. The objective is to define a clustering measure that can later be mapped to one or two spatial

dimensions on the study domain. The explored methods included K-means, tree-based methods, and

two types of mixture models based on Gaussian and Vine Copulas. PCA-based dimensionality reduction

was initially considered for preparing the datasets but discarded because it did not significantly improve
cluster separation and complicated the interpretation of the identified groups. The teams ultimately

converged on using Gaussian Mixture Models (GMM), identifying either 3 or 4 clusters as optimal based

on the computed Bayesian Information Criteria (BIC). Finally, the 4-cluster model was rejected in favour

of the 3-cluster model, as the additional cluster did not enhance separation, and thus interpretation,

of the events and stations. The 3-cluster model provided interpretable clusters when examining the

separation along various variable axes.
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Figure 4.11: High-water-level event clusters (colours) along four selected pairs of event features (z-scores).

Figure 4.11 displays the scatterplots of the z-scores of four event feature pairs, indicating with the

dot colour the group to which 26h events belong. In these scatterplots, the black points represent the

events with high peakness, relatively small mean water level, and large water level standard deviation,

indicative of events that overcome a tidal cycle (e.g., semi-diurnal cycles in the fluvial estuary section of

the domain). In fact, it can be seen that there is a precise positioning of the black dots in the positive

plane of the direction-amplitude scatter in the bottom-left panel of Figure 4.11. This indicates that

these events mostly have a downstream-to-upstream direction. As an exception, a smaller group of

events in the black cluster has negative direction and strong (positive) amplitude values. This suggests
that a sub-cluster of the black events flowing from upstream to downstream can be identified. In this

sense, such a sub-cluster could be interpreted as events driven by truly intense and more localized

hydrometeorological processes (e.g., intense rain events occurring on specific sub-watersheds inducing

local floods in tributaries).
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The green-coded cluster of events displays low peakness and variability [Fig. 4.11 top-right and

bottom-right] and widely varying amplitude values [Fig. 4.11 bottom-left], suggesting a possible influence

of astronomical tides on this group. Interestingly, the red cluster presents a net separation from the

other two groups in terms of correlation direction (dirflow) [Fig. 4.11 bottom-left], suggesting the

association of these events with river-driven phenomena.

Based on these results, we concluded that the 3 mixture components achieve very good separation

in feature space and are reasonably interpretable. Note, however, that caution should be used when

interpreting the separation between the black and red clusters since 2 sub-clusters seem visible for the

black-group events, one of which may be appropriately grouped with the red cluster. This distinction is

particularly evident in Figure 4.11 from the fact that we get very clear separation within the black
cluster when looking at the standard deviation of the water level in the upper right panel of Figure 4.11,

and to a lesser extent in the upper left panel. Increasing the flexibility of the GMMs by allowing more

components did not facilitate this separation. Further investigation could involve fitting a more flexible

model, such as a restricted vine copula, initialized with the current cluster assignment to achieve the

desired separation without imposing such separation manually. Alternatively, one could consider fitting

a larger number of GMM components and subsequently grouping these components into clusters to

achieve the desired separation.

4.3.2 Stations clustering

Figure 4.12 shows the probabilities of an event belonging to one of the three identified clusters of events

for each station considered in the application. The change in the proportions of occurrences of the
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Figure 4.12: Cluster assignment proportions by station. Stations are ordered (from left to right) from downstream (Sept-̂Iles)
to upstream (Pointe-Claire). Cluster colours are as in the previous figure.

3 clusters from upstream to downstream supports the interpretation that red events are influenced by

river flow, as this influence is only relevant between Portneuf and Pointe-Claire (the most upstream

station available). Similarly, the significant decrease in the proportions of green-cluster events when

transitioning from the estuary (left) through the fluvial-estuary to the fluvial section (right) suggests
that this cluster mainly represents the events generated by sea-related processes. Finally, the large

proportion of black-cluster events in the central region of the fluvial estuary (i.e., between Lauzon and

Deschallons-sur-St-Laurent) indicates that this cluster likely represents events induced by combined

fluvial and maritime or astronomical conditions. This is likely due to the simultaneous occurrence of

high streamflow and storm surges or elevated astronomical tides. As anticipated, the relatively gradual



Les Cahiers du GERAD G–2024–76 67

variation in event proportions along the river suggests the feasibility of interpolating these proportions

from stations with known cluster assignments in order to estimate them at ungauged locations. We

suggest using the GMM classification probability estimates as a candidate measure to map the dominant

type of high-water-level episodes over the study region.

4.4 Measures describing the model performance

This section reports the discussion and methodological exploration carried out to evaluate and possibly

rank the statistical reconstruction and hydrodynamic model simulations. The evaluation target was

the ability and effectiveness of the model in reproducing high water levels across various parameters.

The analysis aimed to determine the relative performance of these methods in accurately simulating

extreme hydrological events.

4.4.1 Error measures for hydrodynamic model evaluation

We started by considering the accuracy of the H2D2 hydrodynamic model simulations provided by

ECCC for 3 high-water-level events. The shallow water model H2D2, developed at the Institut National

de la Recherche Scientifique (INRS), is used by the Canadian Meteorological Centre (CMC) to produce

daily water level forecasts for the study domain. H2D2 solves the Saint-Venant equations using a

two-dimensional (2D) finite element discretization. The water levels at Saint-Joseph-de-la-Rive and the

flows of the major tributaries draining into the St. Lawrence upstream section define the boundary

conditions for the models. The other simulation inputs, including hourly wind and ice data, are based

on the ECCC’s Regional Deterministic Prediction System (RDPS) reanalysis outputs.

As shown in ECCC’s presentation of the problem, there is a clear spatial pattern in the errors

observed for the example simulations due to biases in both the signal mean and its amplitude. Overall,

this results in a mean absolute error (MAE) between the observed and simulated series that decreases

when moving from upstream to downstream. Moreover, a phase shift has been observed in the provided

example, and is shown in Figure 4.13: at the St-Joseph-de-la-Rive station, in the first row, we can

see both an error in the signal amplitude, most visible in water level maximum and minimum peaks

[Fig. 4.13 top left], and a clear residual pattern due to a signal phase shift [Fig. 4.13 top center]. When

analyzing the residuals between the two series as a function of the observed water level, the phase shift

results in a doughnut pattern showing in the top-right panel of Figure 4.13: the systematic shift implies

that the difference between series is never zero when the water level takes values close to the mean
monthly water level used to filter the series. Therefore, we used this result to define a preliminary

error measure that evaluates the phase shift by measuring the radius of the centred circle that does not

report any data point.

As a second step, we analyzed how the phase shift behaves for the other stations and simulated

events. Considering that the water level signal becomes non-stationary when moving upstream, the

phase shift estimation should thus be reformulated to account for the squashed ellipsoid shape observed

in the middle right panel of Figure 4.13. More specifically, the middle panel of Figure 4.13 also

shows a signal phase shift for the Deschaillons-sur-Saint-Laurent station location, but this shift is

less pronounced and skewedly distributed on the standardized water level values. Moreover a mean

water level bias becomes evident. Considering that the harmonic patterns of the simulation are more

symmetric than those of the observed data, the residual values clustered around two values: −0.25 and

0.75. This can be seen by looking at the range in the middle panel, or at the spread of points in the

rightmost plot of the second row of Figure 4.13.
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Figure 4.13: Hydrodynamic reconstruction at St-Joseph-de-la-Rive (top), Deschaillons-sur-Saint-Laurent (middle) and
Lac-Saint-Pierre (bottom) for the extreme event of April 2011: time series of homogenized simulated and observed water
levels (left), time series of differences (middle) and difference against the scaled observed homogenized water levels.

Finally, considering the residual for locations further upstream [e.g., Figure 4.13 bottom row, for

the Lac-Saint-Pierre station], we noticed a clear temporal autocorrelation of the residuals, which is,

in turn, explained by the correlation of the residual with the filtered water level series [Figure 4.13

bottom right]. Estimating the phase shift is challenging in this case, and the error measures should

focus on the stationary bias affecting the mean simulated water levels. In this context, a wide range of

simulation errors can be observed for a single event simulated across the entire domain. Analyzing

more simulated events would be necessary to identify the phase shift’s significant spatial and temporal

patterns, which could be used to classify the events.
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To define a single summary statistic that accounts for the different patterns observed in the previous

examples, we consider a location-scale transformation with scale a > 0 and shift b ∈ R for the difference

between the filtered simulated series Si and the filtered observed water level:

n∑
i=1

|a · (Si − b)− Yi|. (4.4)

This transformation can be used to estimate the following quantities.

1. Radius: The radius of the circle identified by the closest observation in the scatterplot formed

by the standardized water series and the difference between standardized predictions and water

series. Large values are indicative of phase shift.

2. Asymmetry: The ratio of interquartile ranges for the positive and negative residuals, capturing the

asymmetry of the predictions. Values larger than unity indicate more spread in overpredictions

(positive residuals) relative to underpredictions.

3. Shift: The location coefficient b is a robust estimator of the median bias and represents the

amount of series shifting relative to the reconstruction.

4. Scaling: The scale coefficient a, which mostly captures the difference in the signal amplitude.

Reconstructed series that are less variable than observations (e.g., since they do not capture

extremes) have coefficients smaller than one.

Figure 4.14 reports the values of the proposed Equation (4.4) decomposition computed for each station

on the 3 available simulations. Using the proposed measure, it is possible to determine which stations
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Figure 4.14: Statistical summaries for each station and simulated event. Clockwise: phase shift for radius, asymmetry
measure, location, and scale. Stations are ordered downstream to upstream from top to bottom.

present biases in the mean due to a systematic decrease of the location shift values when moving

upstream [Fig. 4.14 bottom left]. Likewise, it is possible to detect that signal dephasing mostly affects
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the downstream stations for the spring event of April 2011, but the spatially variable phase shifts are

visible for the other two simulated events, occurring in fall and winter [Fig. 4.14 top left]. This result is

particularly interesting since the spring event is most likely triggered by a spring freshet and important

upstream streamflow values. The asymmetry measure reported in the top right panel of Figure 4.14

further suggests that the positive prediction errors cover a larger range of values than underestimation

errors, especially for upstream stations, for the April 2011 and November 2016 events. Finally, the

scaling statistic reported in the lower right panel of Figure 4.14 did not show a consistent spatial

pattern for the 3 events. A larger score variability, however, is observed for upstream stations (scaling

scores between 0.8 and 1.25). This consideration should be combined with the fact that parameter

A correlates as much with bias as with accuracy in terms of the amplitude of water level predictions.
Consequently, the statistic seems challenging to interpret with only the 3 example simulations provided

by ECCC.

According to the smooth patterns observed in Figure 4.14, it seems possible to interpolate the

parameters of Equation (4.4) to ungauged locations with reasonable accuracy. In that sense, ECCC

should consider decomposing the prediction error into the four proposed statistics to answer the

problem’s second question.

4.4.2 Measures based on Principal Component Analysis (PCA)

The other direction explored to evaluate the reconstruction and hydrodynamic models during the high-

water-level events is based on comparing the ensemble of event features estimated on the observed and

simulated series. With nearly all variables described in Section 2, each extreme event was characterized
by 55 features. One way of summarizing the information contained in this large set of statistics is

to use dimension-reduction methods such as Principal Component Analysis (PCA). In simple terms,

PCA is a linear transformation technique that allows one to project a large set of covariates into a

lower-dimensional space while retaining as much variability as possible. These components are defined

by the eigenvectors of the original data covariance matrix, and they thus form an orthonormal basis.

In our application, once the features were scaled using standard z-scores, PCA was applied at each
station to the set of features estimated for each local event. By examining the variance explained

by each principal component, we determined that the first 5 components generally accounted for

slightly more than 70% of the 55-feature variance. The linear combinations used to compute the

first five components were thus stored and subsequently applied to the corresponding features of the

high-water-level events simulated by the harmonic model in the first configuration. This allowed the

construction of an evaluation metric comparing the 5 principal component values in observed and

simulated events. More specifically, the differences ∆PC(i) = PC
(i)
obs −PC

(i)
sim for i = 1, 2, 3, 4, 5, as well

as the L2 norm of the 5-element vector of the ∆PC(i) values were considered in our tests for a direct

comparison of the feature combinations between the simulated and observed events. Figure 4.15 shows

the computed ∆PC(i) values for an example event. In this example, the largest differences are found

for the fifth component (∆PC(5) = 1.9963), which can be mostly interpreted as a difference in the min
and peakness, which is itself computed from the max and mean. The error seen in the figure, mostly

bias, strongly affects the min, mean, and max, and hence the fifth component.

In summary, by analyzing the coefficients of the linear combinations, particularly those associated

with the first components, we can infer which combinations of features are well reproduced in the

simulations and which combinations present larger errors. It would be interesting to explore this method

using only the key water level features: minimum, mean, maximum, standard deviation, amplitude,

peakness. The principal components might then be easier to interpret.
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Figure 4.15: Observed and simulated water levels during an extreme event in May 2022 at the Batiscan station. The model
used was the harmonic model configuration 1.

4.5 Concluding remarks

We sought to define some statistical metrics that characterize the dominant typology of events at each

location and subsequently assess the spatial distribution of this metric along the river continuum. To

this end, we first created useful statistics to describe key event features during the workshop, with

special attention to event direction proxies. Subsequently, we explored some possible methodologies for

combining the event characteristics into summary measures that can be used in event classification.
Finally, we investigated how the summary measures could be adapted to the definition of evaluation

scores for different types of event predictions and water level numerical simulations. Our preliminary

tests indicate that the adequate estimation of basic event statistics, such as the duration and direction,

is sufficient for the event classification via conventional clustering methods. The clustering measures

can then be used for mapping the classification at unsampled locations since they present fairly smooth

variability across the provided stations.

Regarding the numerical model evaluation, it was found easier to define summary metrics based

directly on the water level prediction residuals than to evaluate the error in the estimated event statistics

or summary features. In doing so, we defined some evaluation scores capable of assessing the overall

performance of numerical models in terms of the phase and magnitude of prediction errors. These

scores also show a clear spatial distribution between stations and thus seem easy to interpolate spatially.
A more extensive application on a larger sample of simulated events, however, is required to validate

this hypothesis. It is anticipated that Environment and Climate Change Canada (ECCC) will utilize

some of our findings in the coming months to address this question.

In addition to those described in the report, one notable outcome of the week is the creation of an

elegant interactive dashboard (using plotly in python). It visually encapsulates some of our findings

and could be easily extended by ECCC to include other statistics. Some screenshots of this dashboard

are shown in Figure 4.16.

In summary, we consider that the workshop allowed fruitful continuous exchanges and produced

valuable insights for ECCC. From a methodological point of view, the data analysis pipeline we
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Figure 4.16: Screenshot of the interactive dashboard created during the workshop.

created during the discussions was our most impactful product, and the entire analysis itself helped us

understand the essential problem.

Finally, we were very fortunate to have a team with members from diverse backgrounds. Despite

our shared passion for mathematics and statistics, the best part of the week may have been getting to

know one another!
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Abstract: At the 14th Montreal Industrial Problem Solving Workshop, the International Air Transport Asso-

ciation (IATA) presented an extensive dataset of measured turbulence values (Eddy Dissipation Rate) collected by

thousands of aircraft over several years. With these data, IATA requested estimates for how long turbulence persists

and for the probability of a given aircraft encountering turbulence given historical and live data. Through a series

of approaches, we present preliminary quantitative findings and a preliminary toy model for the development of turbulence.

5.1 Introduction

The Federal Aviation Administration (FAA) defines turbulence as the irregular motion of an aircraft in

flight, caused by a rapid variation of atmospheric wind velocities (FAA-H-8083-28, Aviation Weather

Handbook, 2022). According to [1], turbulence is estimated to cost roughly 200 million USD annually

in the United States. Turbulence is also the leading cause of injuries to cabin crew and passengers in

non-fatal accidents (FAA). Aircraft turbulence can also cause brand damage and contribute to fear of

flying.

There are various causes of turbulence, such as convective currents, obstructions in the wind flow,

and wind shear (FAA-H-8083-28, Aviation Weather Handbook, 2022). Some forms of turbulence are

more predictable, such as that caused by mountain waves or storms, and in some instances an aircraft

can avoid such turbulent events. Clear-air turbulence (CAT), which is an invisible form of turbulence, is

a more difficult phenomenon [1]. According to a recent study [1], CAT has increased in both frequency

and duration over the past years and is expected to continue to do so in response to climate change. In

particular, [2] projects a 149% increase in the frequency of severe turbulence events.

It is challenging to predict and manage aircraft turbulence for several reasons. First, pilot reports are

generally subjective as different sized aircraft will experience turbulence differently. CAT, in particular,

cannot be detected by weather radar. In addition, forecasts are often hours long and inaccurate. As a

step towards addressing these issues, the International Air Transport Association (IATA) Turbulence

Aware tool was created as a data-driven tool for reporting and managing turbulence in real time.

Recent technical advancements have equipped aircraft with the ability to measure objectively the state
of the atmosphere around the aircraft and report this data in real time. In particular, turbulence is

measured using the Eddy Dissipation Rate (EDR), which is a turbulence intensity metric measuring

the state of the atmosphere around an aircraft in flight. It typically takes on values ranging from 0 to 1

m2/3/s. The higher the dissipation rate, the higher the atmospheric turbulence. Note that the EDR is

an aircraft-independent absolute value and thus allows one to measure turbulence objectively.

With rich data collected through the IATA Turbulence Aware tool, several questions related to

turbulence can now be further studied. Three main questions were explored at the Fourteenth Montreal

Industrial Problem Solving Workshop (IPSW) [3]. Here they are.

1. How long does turbulence last? Furthermore, does the duration of turbulence depend on the

time of the year, altitude, wind speed, temperature, or any other factors? Meteorologists have

been attempting to answer this question for a very long time. With the IATA Turbulence Aware

tool, it is the first time that a rich enough dataset of objective turbulence measures is available,

allowing us to address this question.

2. Given the aircraft’s location, trajectory, and speed, can we determine the likelihood of turbulence

ahead of the aircraft based on live and historical turbulence data? Can the wind speed and direction,

temperature and location, historical and live data, all be taken into account in determining the

likelihood of turbulence ahead? Such information would be invaluable, as it could be dispatched

to pilots in real-time thus allowing them to make informed tactical decisions and potentially avoid

turbulence.
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3. Can we model the number of thermal-based turbulent events based on the EDR measures and

cloud cover data at low levels? This is particularly relevant for the descent phase of an aircraft,

which tends to be quite “bumpy.” Addressing this question would be helpful for pilots, as there

is a lack of guidance and forecasts for the descent phase of flights.

In Section 5.3, we present our analysis for solving problem 1; in Section 5.4, we study problem 2;

and in Section 5.5, we study a toy model for the physical phenomena and qualitative behaviours of
turbulence. Problem 3 was not studied, due to time constraints. A conclusion of this work is given in

Section 5.6.

5.2 Dataset

The IATA Turbulence Aware tool allows for objective measures of the intensity of turbulence via the

EDR measured from an aircraft sensor. While continuously monitored, the actual reported values

provide the average and peak EDR value over a one-minute time span. In addition to the EDR measures,

each record provides the 4D position of the aircraft, along with measurements of the wind speed and

direction, temperature, as well as information on the flight, including flight number, the departure
airport and the arrival airport. Note that whenever an aicraft is actively in a turbulence state (i.e.,

the EDR measure is greater than 0), measurements are recorded each minute. Otherwise, “heartbeat”

measures are taken at 15-minute intervals.

The dataset available at the IPSW included the following fields:

measurement observationTime: a timestamp of format “yyyy-mm-dd hh:mm:ss” in UTC time;

measurement altitude: the altitude in feet, based on air pressure readings;

measurement latitude: the latitude in degrees;

measurement longitude: the longitude in degrees;

measurement temperature: the temperature in degrees Celsius;

measurement wind speed: the wind speed in knots;

measurement wind direction: the direction of the wind in degrees clockwise relative to magnetic

north;

measurement edr peak value: the peak measurement of EDR over an interval of one-minute length;

metadata tafi: the TAFI ID, a unique identifier for each flight that takes off (two distinct flights

between the same airports with the same flight number have different identifiers) to track data

across a given flight; and

other fields, such as departure/arrival airport, mean EDR reading, and peak time within the one-minute

interval, were also included in some datasets.

Conversions were made to convert timestamps to times in seconds relative to a fixed date. Figure 5.1

depicts a Python pandas dataframe storing one set of records.

5.3 Approaches for Problem 1

5.3.1 Clustering

Data preparation and use

The clustering analysis was carried out on the dataset ’Top city pairs by no of flights and peak

EDR and data for three flights.csv’, containing the most popular flights between pairs of cities

spanning approximately 120 days.

Additional data were computed from the given data for the analysis. Firstly, Cartesian coordinates

were computed to represent datapoints. Let (a, α, β) denote the altitude, longitude, and latitude of a
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Figure 5.1: The first three records of one particular dataset – individual datasets examined may have had more or fewer
fields.

measurement after converting degrees to radians. Then we compute

x = (a+R) sin
(π
2
− β

)
cosα

y = (a+R) sin
(π
2
− β

)
sinα

z = (a+R) cos
(π
2
− β

)
where R = 2.093 × 107 ft is the mean earth radius (we have used a spherical earth approximation).

From Cartesian coordinates, distances can be readily computed.

From the wind speed and direction, we can infer information about the vector form of the wind

velocity. Lacking specific data about the wind components up or down, for the sake of this analysis,

we model the wind velocity U as having only two components U = (U1, U2) in the (local) plane while

varying in R3. With a wind speed w and direction θ, we define

U = (w sin θ, w cos θ)

to give the East- and North-components of the wind velocity.

We also added various gradient information for fields such as temperature, a scalar, and velocity, a

vector. Let f : R3 × R → Rn be assumed smooth: f represents the temperature (with n = 1) or the

wind velocity (with n = 2). Let x : R → R3 represent the airplane’s trajectory. We concern ourselves

with the evolution and changes in F (t) = f(x(t), t). This corresponds to the measurements taken

within the aircraft during its flight at position x(t) and time t.

Let two readings be taken at times s1 and s2 with s1 < s2. Then for i = 1, ..., n,

Fi(s2)− Fi(s1) = (s2 − s1)F
′
i (ri)
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= (s2 − s1)(∇fi(x(ri), ri) · x′(ri) + fi,t(x(ri), ri)) (5.1)

where ri ∈ [s1, s2]. Similarly, for j = 1, 2, 3,

||xj(s2)− xj(s1)|| = (s2 − s1)||x′
j(r

∗
j )||

where r∗j ∈ [s1, s2].

We now consider two different discrete difference quotients: we can divide Equation (5.1) by the

time interval s2 − s1 or by the distance between measurement points,

||x(s2)− x(s1)|| =

√√√√ 3∑
j=1

(s2 − s1)2||x′
j(r

∗
j )||2.

Dividing first by s2 − s1 and then by ||x(s2)− x(s1)||, we obtain

∆2Fi = ∇fi(x(ri), ri) · x′(ri) + fi,t(x(ri), ri) (5.2)

∆1Fi = ∇fi(x(ri), ri) ·
x′(ri)√∑3

j=1 ||x′
j(r

∗
j )||2

+
fi,t(x(ri), ri)√∑3

j=1 ||x′
j(r

∗
j )||2

. (5.3)

The first formula is effectively the total rate of change of Fi with respect to t: it describes how fi
changes from the airplane’s perspective. The second formula is more or less a directional derivative of

fi in the direction of motion, with an additional component. In the limit, with s2 ↓ s1, and replacing

s1 with s, we obtain

lim∆2F = F ′(s) = ∇f(x(s), s) · x′(s) + fi,t(x(s), s)

lim∆1F = ∇f(x(s), s) · v̂ + fi,t(x(s), s)

||v||

where v := x′(s) and v̂ = v/||v||hold. This is written in vector form and when n > 1, ∇f is a Jacobian.

In the clustering, we opt to compute ∆2 for the temperature and velocity and we focus on the

magnitudes, computing over [s1, s2],

|∆xT | =
|T (x(s2), s2)− T (x(s1), s1)|

||x(s2)− x(s1)||
(5.4)

|∆xU | = ||U(x(s2), s2)− U(x(s1), s1)||
||x(s2)− x(s1)||

. (5.5)

By sorting the data according to the TAFI ID criterion and then the time criterion, the generalized

gradients can be computed. We first filter out all records whose TAFI ID appears only once since

differences cannot be computed for these records. For those with two or more TAFI IDs, we compute

the gradients; since differencing reduces the length of the dataset and to avoid losing data, the last

gradient for a given TAFI ID is set equal to the second last gradient for that ID.

Identifying turbulence events

Because a small aircraft will experience noticeable instability at an EDR above 0.13, we select all data

with EDR-values above 0.13 for the task of identifying turbulent events.

From industry knowledge, data that are older than 4 hours have “expired” and are not relevant. To

err on the side of caution, we break the dataset into 6-hour chunks to help ensure each chunk can “see

beyond the expiry time.” These chunks are from many different locations and span more time than a

typical turbulence event.
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Our next stage is to cluster each chunk spatially based on the Cartesian (x, y, z) coordinates of each

reading. We use kmeans and choose the cluster number so as to optimize the Silhouette score [4].

Finally, these spatial clusters may include multiple turbulence events, so we cluster each of these

clusters in time, again with kmeans and Silhouette scoring for choosing the number of clusters.

We define these resulting temporal clusters within spatial clusters within chunks as turbulence

events and compute summary statistics for these events.

In the dataset studied, the chunking resulted in 19 different segments ranging from 5 to 1588 records

(with a median of 326 records). From the 19 segments, the spatial clustering resulted in 52 clusters from

1 to 1066 records (with a median of 32 records). From those 52 spatial segments, the temporal clustering

resulted in 180 temporal clusters from 1 to 621 records (with a median of 12 records). In Figure 5.2, an

example of the spatial and temporal clusters is given. Hence we work with 180 spatiotemporal clusters,

which we refer to as turbulence events.

Figure 5.2: Examples of the clusters formed. Left: spatial clusters for a randomly chosen time chunk. Right: temporal
clusters for a randomly chosen spatial cluster with times relative to the start of the dataset. Within each plot, different
colors indicate data belong to different clusters.

Figure 5.3: Distributions of duration, mean radius, and intensity. Vertical bars mark the medians, which are respectively:
1700 s, 100, 000 ft, and 0.22 m2/3/s.

Characterizing turbulence events

From the clustering, we can concern ourselves with the characteristics of the size, duration, and intensity

of the turbulence events identified. We define the size of an event as the mean distance to the cluster

centroid, the duration as the difference between the latest and earliest event times of the cluster, and

the intensity as the peak EDR measured across all points in the cluster.

The distributions of the sizes, durations, and intensities are given in Figure 5.3. The median values

are 100,000 ft (approximately 30 km), 1700 s (approximately 28 minutes), and 0.22 m2/3/s for the sizes,

durations, and intensities, respectively.
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For an exploratory analysis, we consider the relationship between different properties of the clusters.

We continue to define the size, duration, and intensity of the clusters as above, but we add altitude

(the mean altitude of points in the cluster), mean difference quotient of temperature magnitude

(Equation (5.4)), and mean difference quotient magnitude (Equation (5.5)). While not exact, we treat

these quantities as heuristic estimates for a directional derivative of temperature and a “directional”

shear rate, respectively.

Figure 5.4: Scatterplots of trends between turbulence event statistics. The respective pairs of R and p-values are:
(−0.18, 0.013), (0.36, 8.7× 10−7), (0.56, 5.2× 10−16), (0.27, 1.9× 10−4), (0.31, 2.4× 10−5) (−0.17, 0.025), (0.22, 0.026),
(−0.21, 0.0042), and (0.21, 0.0054) read lexicographically.
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Identifying trends

In Figure 5.4, we illustrate the relationships with scatterplots and the lines of best fit. The data are

quite noisy and the R2−values are 0.3 or less, but the trendlines point to possible patterns worthy of

further exploration.

Summary

By using the clustering analsyis, we were able to identify groups of records considered as isolated

turbulence events, which we were then able to study. The summary statistics of these events have

yielded a possible ballpark figure for the duration of turbulence: the median duration of turbulence

is approximately 28 minutes and it tends to be localized to a region with a characteristic

radius of approximately 30 km. We also identified possible patterns in turbulence that are found

on very large scales, such as more intense turbulence events lasting longer.

These results are promising, but there are limitations to this analysis. There is a lot of noise in the

data and linear relationships do not capture a lot of the variance. Some of the estimated durations

may have been artificially deflated due to the 6-hour time chunking and a more careful filtering process

could remove data that are too close to the end of the time chunk.

It would be of interest to explore these patterns on more of the IATA datasets and to try to find
empirical formulae for the EDR rating, turbulence size, and duration from properties of turbulence

events.

5.3.2 Classifier

Data preparation and use

The dataset used in this study is aggregated from three separate files, covering comprehensive flight
data across the US during the last week of April 2024:

• East to West Coast US Last week of April 2024 ;

• East Coast US Last week of April 2024 ; and

• West Coast US Last week of April 2024

The data from these files were loaded and combined to create a comprehensive dataset. The dataset

encompasses a variety of flight-related variables as described previously.

The initial phase involved loading the dataset from the CSV files and converting the observa-

tiontime column to a datetime format. Unnecessary columns such as id, tafi, departureAerodrome,

destinationAerodrome, direction, and mean were then removed. The dataset was filtered to include

only observations at or above 30,000 feet, as high-altitude turbulence is of primary concern. Thus we

only look at turbulence events that happen during the flying phase and not the ones that occur during

takeoff or landing. An indicator of turbulence, turbulence presence, was created, with a value of 1 if

the peak EDR is greater than 0.13 and 0 otherwise. The data was then sorted by observationtime

to facilitate time-series analysis. A visualization of turbulence events in time series is displayed in

Figure 5.5.

Grid formation. A key step in this analysis is the formulation of a geospatial grid. The data is

converted into a GeoDataFrame to enable spatial analysis and the geographical bounds of the data

are determined. The area is divided into a grid with cells of 200 km x 200 km. An example of the

grid is shown in Figure 5.6. Note that the altitude is ignored as part of the grid formation. This grid

was represented by polygons, and each observation was assigned to a corresponding grid cell based

on its geographical coordinates. The step of formulating grids leads to calculating the local gradient,

described below.
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Figure 5.5: Time Series Events of Turbulence.

Figure 5.6: Separating the Dataset into Grids by Latitude and Longtitude.

Gradient calculation. Local and global gradients for temperature, wind speed, and peak EDR were

calculated for each grid cell. Local gradients capture the rate of change over short time intervals (up

to 900 seconds) between consecutive observations. The local gradients for temperature (T ), wind
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speed (W ), and peak EDR (E) were calculated using the following formulas:

gradient tempi =
Ti+1 − Ti

∆ti
,

gradient windi =
Wi+1 −Wi

∆ti
,

gradient peaki =
Ei+1 − Ei

∆ti
,

where ∆ti is the time difference between consecutive observations at records i and i+ 1.

Global gradients represent the rate of change over longer durations, capturing broader trends. The
global gradients for temperature and wind speed were calculated over continuous observation periods

using these formulas:

global gradient temp =
Tend − Tstart

∆T
,

global gradient wind =
Wend −Wstart

∆T
,

where Tstart and Wstart are the temperature and wind speed at the start, and Tend and Wend are the

values at the end of the observation period, with ∆T being the total duration.

Turbulence duration calculation and classification. The duration of turbulence was calculated using

the following approach. The data within each grid cell was sorted by observationtime and the time

difference between consecutive observations (∆t) was computed. A mask was applied to identify time

differences less than or equal to 900 seconds. To avoid division by zero, any zero time differences were
replaced with 1 second. A division by zero can happen when two planes in the same cell encounter a

turbulence at the same time. Adding a 1 second time difference was a way to avoid division by zero

but still retain the reports that are very close in time. Local gradients for temperature, wind speed,

and peak EDR were then calculated for these time intervals.

An empty series for turbulence duration was initialized. A loop was used to iterate through the

observations and calculate the duration of continuous turbulence events. If the time difference between
consecutive observations was less than or equal to 900 seconds, the duration was accumulated. When a

gap greater than 900 seconds was encountered, the accumulated duration was assigned to the relevant

observations, and the gradients over the entire duration were calculated. This process ensured that

both the local and global trends were captured accurately.

The descriptive statistics for turbulence duration are given below.

count 1952497

mean 0 days 01:27:48.550094665

std 0 days 01:38:18.051322811

min 0 days 00:00:00.002000

25% 0 days 00:24:17

50% 0 days 00:55:20

75% 0 days 01:55:00

max 0 days 15:25:10

Based on the descriptive statistics, we subdivide the turbulence events into 3 classes: those lasting

less than 25 minutes, 25 - 60 minutes, and more than 60 minutes. We observe that this roughly amounts

to 25% of our data having intervals less than 25 minutes, slightly more than 25% having intervals

between 25 and 60 minutes, and slightly less than 50% of the intervals being longer than 60 minutes.
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Random forest classifier

The primary model used for predicting turbulence durations was the Random Forest Classifier. The

dataset was split into training and testing sets in a 70-30 ratio. The model was trained using the

training data and evaluated on the test data. This process was repeated 10 times to ensure consistency

and reliability of the model’s performance. The average accuracy of the Random Forest Classifier across

all iterations was approximately 0.64, indicating a reasonable effectiveness in predicting turbulence

durations based on the provided features. It is also worth noting that our classifier performed very well

on the class of turbulence events that are longer than 60 minutes (with an accuracy of 0.85), which was

expected as this class is far more represented than the other two classes.

Summary

This study presented a data-driven approach to forecast aircraft turbulence using observational data

aggregated from all US flights. The methodology involved cleaning and preprocessing the data,

formulating a geospatial grid, calculating local and global gradients for key variables, and categorizing
turbulence duration into bins. The primary model used for prediction was the Random Forest Classifier,

which demonstrated reasonable effectiveness in forecasting turbulence durations based on the selected

features.

One possible improvement to this approach is the method of grid formation. Currently the grids

are formed arbitrarily, which may not accurately represent the spatial distribution of turbulence events.

A more valid approach would be to form the grid by initially clustering the turbulence events, ensuring

that the grid cells better capture areas with similar turbulence characteristics. This could potentially

enhance the model’s performance and provide more accurate predictions.

5.4 Approaches to Problem 2

5.4.1 Neural network

Neural networks encompass a broad spectrum of architectures, each distinguished by unique strengths

suitable for specific applications. The Probabilistic Neural Network (PNN), a variant of the feedforward

neural network, is particularly noted for its foundational principles in probability theory and its

effectiveness in classification tasks [5]. This section delves into the architecture, motivations, and

empirical outcomes in the implementation of the PNN methodology.

The core mechanism of PNN involves a kernel-based approximation to compute the posterior

probabilities of a Bayesian network for class prediction [6]. Structurally, the PNN is organized into

several distinct layers: an input layer, a pattern layer, a summation layer, and an output layer. It

is highly regarded for its ability to approximate a Bayesian classifier with sufficient training samples,

showcasing its robustness and accuracy in statistical classification.

Inspired by recent advancements reported in [7], our study employed a PNN model to predict

energy dissipation rates in geophysical turbulent flows. The cited work demonstrates how PNNs adeptly

capture the distribution tails in simulations of decaying turbulence, replicating conditions similar to

those found in oceanic environments. The integration of underlying physical principles such as density

gradients and velocity structures into the PNN contributed to its enhanced predictive performance,

surpassing traditional theoretical models. This successful application underlined the model’s capability

and prompted its further adaptation to accurately represent complex fluid dynamics in stratified flows.

Architecture

Input Layer: Acts as the gateway for input features, where each neuron corresponds to one input

feature.



84 G–2024–76 Les Cahiers du GERAD

Pattern Layer: Computes the Euclidean distances between the input vector and the training vectors,

applying a radial basis function to evaluate similarity measures.

Summation Layer: Aggregates the outputs from the pattern layer, compiling the contributions by

class to generate probabilistic outputs.

Output Layer: Interprets the aggregated probabilities to determine the final classification, effectively

deciding the predicted class based on the highest probability.

Figure 5.7: Probabilistic Neural Network Structure. The network consists of four layers: Input Layer, Pattern Layer,
Summation Layer, and Output Layer.

Outcome

The deployment of the Probabilistic Neural Network (PNN) model in our study has yielded several

notable outcomes.

Improved Predictive Accuracy: Our PNN model, inspired by advances in predicting energy dissi-

pation rates in geophysical turbulent flows, has demonstrated enhanced accuracy in forecasting

turbulence. This is particularly due to its ability to capture robustly the tails of output distribu-

tions, essential for modelling the stochastic nature of atmospheric conditions.

Effective Uncertainty Modelling: By leveraging Gaussian distributions for outputs, the PNN

model efficiently incorporates prediction variance, allowing for more reliable and trustworthy

predictions in aviation safety applications.

High Fidelity in Complex Fluid Dynamics: The model’s capability to integrate physical prin-

ciples such as density gradients and velocity structures has led to high-fidelity simulations of

stratified flows, aligning closely with real-world atmospheric phenomena.

Fast and Efficient Training: The inherent nature of PNN, which does not require iterative training

procedures, has significantly reduced training times. This efficiency is crucial for real-time

applications where rapid model updates are necessary.

Robustness to Noisy Data: The probabilistic framework of the PNN has shown resilience against

noisy input data, enhancing the robustness and reliability of our turbulence predictions.

Overall, the integration of the PNN model into our framework has significantly advanced our

capabilities in predicting turbulence, showcasing its potential to improve navigational safety and
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efficiency in aerial transportation. Moving forward, we aim to incorporate additional meteorological

data and further refine our model to achieve even greater precision in our predictions.

Procedure

The procedure used in our study to develop and deploy the PNN model for turbulence prediction

involved several key steps.

Data loading and preprocessing. Data was loaded from a CSV file containing 1 million random

samples of West Coast US data over the last two years. The observation times were parsed into

datetime objects to facilitate temporal analysis. Covariates used in the model included altitude,

wind speed, temperature, humidity, and barometric pressure, chosen for their direct influence on

turbulence conditions.

Grid system and feature engineering. A grid system of 50 km x 50 km was established to segment

the data, aiding in localizing predictions and identifying spatial patterns in turbulence occurrences.

Latitude and longitude were binned to create grid cells and the target variable, turbulence

probability, was defined based on EDR values.

Model training and evaluation. The PNN model was built using TensorFlow, with a custom loss

function to account for prediction variance. The model architecture included layers to predict

both the mean and variance of the turbulence probability. The training-testing split was 70:30.

The model predicts the mean and variance of the probability of turbulence for the next 30 minutes

and over the entire duration of the flight, aiming to provide pilots with both immediate and

long-term insights into turbulence risks.

Visualization

Results were visualized using the Folium library, creating maps that show the locations of turbulence

occurrences. Green markers indicate no turbulence, while red markers indicate turbulence. The

following two images were generated using Folium.

Figure 5.8: Map of the West Coast with indexed EDR
data points, illustrating the geographic distribution of
turbulence events.

Figure 5.9: Heatmap of EDR distribution over the West
Coast, providing a visual representation of turbulence in-
tensity.

Key takeaways from the model include the identification of sudden changes in barometric pressure

and high wind speeds as strong predictors of turbulence. This information is highly interpretable,

helping pilots make informed decisions to avoid or prepare for turbulent conditions.

5.4.2 Logistic regression

Motivation and data exploration

The second problem is to determine the likelihood of turbulence ahead of an aircraft based on live
and historical turbulence data. Specifically, based on the information available to us, such as the wind
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speed and the aircraft’s position, we want to predict whether turbulence will exceed a certain peak

EDR threshold (given by IATA) that signals the occurrence of the turbulence, i.e., to assign a value to

a binary “turbulence indicator” Y .

Y =

{
1 if Peak EDR ≥ 0.13,

0 otherwise
(5.6)

Since we formulate the problem as a binary classification problem, where the outcome is categorical

with two possible values, logistic regression can be used to predict the probability of turbulence

occurrences. As we will see in the next subsection, Y will be used to compute the odds, which is the

target variable of our model. A crucial assumption we are making is that the relationship between

independent variables and the log-odds of the dependent variable is linear.

The dataset we used is the 1M East-Coast random data for 2023-2024. Given that there are

a great number (1 million) of data points, we chose to work with a subset of 425,000 observations to

improve converging efficiency. We used 82% of the data points (350,000 observations) as training data

and 18% (75,000) as testing data. We removed rows that contain XXXX as the ICAO Airport code

(departure and destination) since they are invalid codes and these rows always have an EDR of 1.

We used the following independent variables: aircraft’s location (longitude, latitude, and altitude),

wind speed, temperature, wind direction, and seasonality (in which the four seasons are represented

by 3 dummy indicator variables, as illustrated later). The Probability Density Function Graphs are

displayed in Figure 5.10.

Figure 5.10: PDFs for Independent Variables.

Both altitude and temperature appear to follow bimodal distributions. Their distributions are

similar as intuitively altitude and temperature are correlated. Speed is right-skewed since the majority

of the dataset pertains to flights where the wind speed is under 100 knots. Peak EDR and mean EDR

are also right-skewed with a similar data range. We focus on forecasting peak EDR as it incorporates

more of the extreme turbulence conditions. The wind direction is left-skewed since the majority of the

wind comes from the West (270 degrees).
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We also produced a visualization of turbulence occurrences over our sample data. As shown in

Figure 5.11, in our dataset, 15% of data show the presence of turbulence (peak EDR ≥ 0.13). We

can see that the turbulence occurred more over land than over water, and it is concentrated along the

coastline. The areas that have the strongest turbulence are mainly big cities: New York, Washington

D.C., and Miami, as shown in the green rectangles. The turbulence with peak EDR value occurred

around Orlando.

Figure 5.11: Turbulence of East Coast USA (2023-2024).

Model fitting

The model that we fitted is a logistic regression model taking the following form:

log

(
π

1− π

)
=β0 + β1Ly + β2Lx + β3V + β4T + β5D

+ β6Sspring + β7Ssummer + β8Swinter.

(5.7)

On the left-hand side of the equation, the term inside the bracket is the odds of turbulence occurring,

with π = P̂ (Y = 1|X) holding and X representing the matrix of our covariates (position, temperature,

wind direction, etc.). One can easily show that the above equation is equivalent to

P̂ (Y = 1|X) =
exp(βTX)

1 + exp(βTX)
. (5.8)

On the right-hand side, Ly and Lx are the latitude and longitude (in degrees), V is the speed of the

wind (in knots), T is the temperature (in °C), D is the wind direction (in degrees), and finally, Ssummer,

Sspring, and Swinter are indicator variables for the seasons. For example, for summer, Ssummer = 1

while Sspring = Swinter = 0. For autumn, Ssummer = Sspring = Swinter = 0.

We also omitted the altitude variable since there is a strong collinearity between altitude and

temperature (see Figure 5.12): thus including both covariates would jeopardize the model’s performance.

The model was fitted using the “glm” function in R. The output is shown in Figure 5.13.

The first thing we observe is that all the β coefficients have small p-values and therefore are

significantly different from zero, which means that all the covariates have significant effects on the odds



88 G–2024–76 Les Cahiers du GERAD

of turbulence occurring. One of the biggest advantages of regression models is their interpretive power.

Those β coefficients allow us to quantify the effect that each covariate has on the target variable. In

Figure 5.13, however, the displayed coefficients are associated with log(odds) rather than the odds

themselves. Hence we need to take the exponentials of those coefficients in order to evaluate their

respective impacts on the odds.

Figure 5.12: Correlation coefficients between the covariates: note the extremely high value between altitude and
temperature.

Figure 5.13: Output of the “glm” function of R.

Interpretations

Position of the aircraft: For every increment by one degree in latitude (towards the North), the odds

of turbulence occurring are multiplied by exp(0.029) ≈ 1.030, which represents a 3.0% increase in the

odds of turbulence when all the other variables remain constant. If the aircraft travels one degree in

longitude (towards the East), we will have a multiplication of exp(0.016) ≈ 1.016, a 1.6% increase in

the odds. Based on this, we can conclude that moving towards the North-East would give us a higher

chance of turbulence only on the East Coast of the USA.
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Wind speed and direction: An increment of one knot in wind speed results in a 0.6% increase in

odds of turbulence when all other variables remain unchanged. Although the coefficient is statistically

significant, the wind speed doesn’t impact that much the odds of turbulence compared to other variables.

Furthermore, we directly included the wind direction in the logistic regression model. We observed a

0.01% increase in odds per degree, which tells us that its impact on turbulence is negligible. We later

realized, however, that this interpretation is not accurate because of the periodic nature of the wind

direction. For example, a one degree increase from 359.5 degrees yields 0.5 degrees (which is 360.5 minus

360.0), not 360.5 degrees. For future models that contain periodic data, Flury and Levri (1999) [8]

suggest to convert it into two variables: C = cos
(
2πD
360

)
and S = sin

(
2πD
360

)
, where D represents the

wind direction in degrees. This ensures that we take into account the periodic nature of the wind

direction while having a better way of predicting turbulence.

Temperature and seasonality: If the temperature increases by one degree Celsius, the odds of having

turbulence increase by 4.3% when all other variables remain constant. We can also see from the values

of the coefficients that season seems to have the largest impact on the odds of turbulence occurring.

Especially in the spring, the odds of turbulence occurring increase by 77% compared to autumn. Indeed,

by looking at the distribution of turbulence across seasons displayed in Figure 5.14, we see that in

spring and winter (47% increase in odds compared to autumn), we have significantly more turbulence

than in autumn and summer (12% decrease in odds compared to autumn).
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Figure 5.14: Distribution of turbulence (EDR ≥ 0.13) in the East Coast across seasons.

Performance measures

Next, we would like to know how well the model performs on the test data. After predicting using the

test data, the ROC curve of the model was plotted. It is shown in Figure 5.15.

The AUC (Area Under the Curve) value was found to be 74.5%, and the best threshold value was

found to be 0.206. Using this threshold, the performance statistics and the confusion matrix were

computed and are displayed in Tables 5.1 and 5.2.

We can see that our logistic regression model has achieved a commendable performance on the test

data, even with a limited number of covariates.
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Figure 5.15: The ROC curve of the logistic regression model on the test data.

Table 5.1: Performance statistics of the fitted model on the test set.

Accuracy 69.8%
Sensitivity 68.7%
Specificity 70.0%
AUC 74.5%

Table 5.2: Confusion Matrix.

Actual
Predicted Negative Positive

Negative 44420 3615
Positive 19034 7931

Recommendations and limitations

Flight scheduling for Spring and Winter: Thanks to the interpretive ability of regression models, we

can make a few recommendations about avoiding turbulence based on the values of the regression

coefficients. As mentioned above, seasons seem to play an important role in the likelihood of turbulence.

Since we expect to have more turbulence in spring and winter, it might be a good idea to use air routes

that have fewer turbulence records in spring and winter. It is also a sound idea to arrange fewer flights

but use the larger and less turbulence-sensitive wide-body jets in the remaining flights, while in autumn

and summer more flights can be arranged with small commercial jets.

Adjusting the aircraft’s position to decrease the odds of turbulence: Furthermore we usually tell the
pilot to descend the plane when there is a turbulence event, but if the temperature is rising, the model

suggests to move upward. This would decrease the temperature and reduce the odds of turbulence.

The plane, however, cannot go too high in order not to waste fuel. We can also suggest to the pilot to

lean towards South-West until no turbulence is detected.

Although our model was able to achieve a relatively good performance, there are a few shortcomings and

limitations in our work. First, when choosing the covariates, we only used the vanilla variables which
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were neither transformed nor multiplied with other covariates to include the interaction effects. This

made our model over-simplified for real-world scenarios and inevitably, hurt the model performance.

Second, in Figure 5.12, we can see that speed and temperature also have a relatively strong correlation

(around −0.69). Although it’s not as strong as the one between temperature and altitude, including

both variables in the model introduces some level of collinearity, which can also damage the model’s

performance. Finally, our analysis only used the East Coast dataset throughout the entire work: hence

it is probable that not all the results presented above are valid in other datasets. A future extension of

this work could consist of testing the model with other datasets, as well as including the transformations

of the covariates along with the interaction effects.

5.4.3 Kriging

The Kriging Model is a powerful tool, specifically designed to make inference in spatial data. It was

first introduced by Danie G. Krige in gold mining applications, then used in environmental science,

natural resources, etc. The Kriging model is used to predict unknown values at a specific location z in

a space D. The predicted values are computed through a linear combination of known values. This

method is often confused with a regression model or Inverse Distance Weighted Interpolation, but the
difference lies in the way the weights are determined. In a Kriging prediction, the weights are only

determined after estimating a variogram model from the data. A variogram is a model representing the

spatial covariance structure. On the other hand the Inverse Distance Weighted Interpolation uses the

inverse distance raised to a power (usually the power 2) and the regression methods use weights that

minimize a loss function on a training set of data.

The Kriging predictor estimates values that are the Best Linear Unbiased Predictor (BLUP),

meaning that the estimates are the ones that minimize the prediction error in that specific location [9].

Problem formalization

The turbulence phenomenon is modeled as a random field

{zs, s ∈ D},

where

• s is the location in which we observe the value z and is represented by two coordinates, namely

longitude and latitude, and D ∈ R2 is a two-dimensional space, and

• zs ∈ [0, 1], zs ∈ R is the EDR value in location s; note that zs can be either observed (known) if

its value is included in the dataset, or unknown, in which case it has to be predicted.

Kriging second order stationarity assumptions. The Kriging model makes the following assumptions.

• Constant mean: E[zs] = mz

• Spatial Homogeneity: Cov(zsi , zsj ) = C(h), h = ||sj − si||, ∀si, sj ∈ D, where C is the

covariogram.

Model fitting

From the dataset East Coast US of the last week of May 2024, we selected all the EDR reports within

the interval 00:00-01:00 UTC on 25th April 2024. Figure 5.16 shows the estimated variogram from a

spherical model: we measure the nugget (τ2 = 0.002), the sill (σ2 = 0.00525), and the range (R = 7.5°).

Interpretation: The nugget effect is different than zero, this may be due to measurement error. R is

the range, i.e., the distance beyond which there is no correlation between two locations. When the

sill does not converge to a constant value, the process may not be stationary, in our situation we can

assume second order stationarity.



92 G–2024–76 Les Cahiers du GERAD

Figure 5.16: Variogram: γ(h) = 1
2
E[(Zsi − Zsj )

2], ∀si, sj ∈ D, h = ||si − sj ||.

From the variogram we determine the weights λi for n neighboring points, and then we make

predictions using Equation (5.9) in a grid with latitude and longitude within [35°,35°] and [-78°,-70°],
respectively, and a granularity of 0.01°.

ẑs =

n∑
i=1

λizi (5.9)

In figure 5.17, we depict the data used to build the variogram along with the Kriging prediction.

Figure 5.17: Left: the spatial data used to interpolate the values ranging over [35°,45°] in latitude and [-78°,-70°] in
longitude with a granularity of 0.01°. Right: Kriging predictions. A bright colour indicates a high likelihood of encountering
turbulence, whereas darker regions are associated with a lower EDR prediction.

Model evaluation

Using an independent test set to evaluate a model is not possible due to data scarcity; however, one

can still gain some insight through evaluation on the training set. We recall that Kriging does not

enable one to learn directly as in regression, but enables one to learn the covariance structure. This

allows us, to some extent, to use a performance metric on the training set.
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Table 5.3 reports the Mean Square Error MSE=0.0052, the Mean Absolute Error MAE=0.0630, and

the Root Mean Square Error RMSE=0.072. Predictions are made over the timeframe 00:00-01:00 UTC

of April 25th, 2024. Note that these predictions give us the likelihood of encountering a turbulence

event in that interval, but do not provide information on how much it will last.

Table 5.3: Performance metrics.

0.0052 0.0630 0.0720
MSE MAE RMSE

Model limitation

The model does not learn the general pattern of the turbulence phenomena. Instead, it uses real time
data to predict the turbulence in a wider region. The limitation in the data comes in the form of

unevenly distributed samples in terms of the following parameters.

• Altitude level: most of the time a plane flies above or below 20000 feet (see Figure 5.18).

• Latitude and Longitude: a plane follows roughly the same path, which is the shortest path

between airport hubs.

• Time of the day: during the night we have much fewer real-time data, which may make the model

fail to capture the turbulence events (see Figure 5.19).

Figure 5.18: EDR report per altitude.

In fact, unevenly distributed data coupled with bias in the dataset (high EDR reports are more

likely to be reported than low EDR, due to the reporting system) are a threat to Kriging assumptions.

And since we are using a one-hour time frame of turbulence occurrences to make predictions, the

Kriging assumptions may not be satisfied at all times.

Future work

To solve distribution issues and the bias in the dataset, one may opt for data imputation. In other

words, we insert into the dataset low EDR values along the path of a plane’s trajectory that may have

not been reported. This approach will provide a dataset that is representative enough of the turbulence
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Figure 5.19: Kriging predictions during day and night.

phenomena. Then the homogeneity and anisotropy assumptions (i.e., the spatial autocorrelations do

not depend on the direction) can be satisfied.

Experimenting with the Kriging model in higher dimensions (e.g., 3D, 4D), despite the exponential
increase in computation with respect to the grid granularity and dimension, may be worth pursuing.

Interesting experiments could include other variables, such as temperature and wind speed, into the

model.

5.4.4 Flight path trajectory study

Motivation

In the methods discussed so far, the emphasis has been on the measurements of EDR and how these

measurements are related or can be inferred based on their spatiotemporal proximity. We can also

formulate the problem of EDR inference from the perspective of an individual aircraft. Recall that

when the EDR observed is greater than 0, the aircraft will send a report every minute, otherwise there

will be a report every 15 minutes (the latter are known as “heartbeat” reports). These reports form a

time series, where at each time point we collect information on location, basic weather data, and EDR

values as described in Section 5.2. The question that we are interested in exploring here is: given the

information of the trajectory so far, can we predict the peak EDR at the next report for each individual

aircraft?
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Methods

We formulate this as a regression problem and enrich the data at each turbulence report so that we

include information on the change in the location (i.e., the change in latitude, longitude, and altitude)

since the previous report, as well as adding the previous mean and peak EDR values. The reason for

these additional variables is because we want to make a prediction of peak EDR values at each time of

a new report, and by including the extra information, we are essentially lifting the problem so that it is

approximately Markov.

We analyze the East to West coast flight data in the last week of April 2024. To fit and evaluate

the parameters of the models, we use 80% of the data as the training set and 20% of the data as the

testing set. Our target variable is the (scalar) peak EDR at the next report and the predictors are the

data from the reports with the augmented variables discussed above. The data was standardized before

being fed to the model.

We utilize and compare two methods: linear regression and Gated Residual Units (GRU). Our

baseline, naive model is a simple linear regression model (with intercept). Recurrent neural networks

(RNNs) are neural networks aiming to capture the time-dependent behaviour through the updating of

a hidden state. RNNs suffer from the vanishing/exploding gradient problem. GRUs were designed to

alleviate this problem and have been shown to be effective in applications [10].

We use a GRU to model this problem with a fully connected layer (sigmoid activation) to map
to the output. The Adam optimizer [11] is used to minimize the mean square error loss between the

predicted peak EDR and the actual peak EDR.

Results

First we make some observations concerning the patterns spotted in the data. Most of the turbulence

events occur during take-off and landing, as can be seen in Figure 5.20. In Figure 5.20, we have included

all of the Denver to Phoenix flights: note that the high EDR values are found at the ends of the

trajectories.

(a) Trajectories over the entire week. (b) A single trajectory.

Figure 5.20: 3D plot of the location of the turbulence reports and the peak EDR values of flights from Denver to Phoenix
in the last week of April.

The hyperparameters of the final fitted GRU model are given in Table 5.4. Over the timeline of

this project, there was not sufficient time to do a thorough hyperparameter optimization and these

hyperparameters could be refined in future work. The residuals of the linear regression and GRU models
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are displayed in Figure 5.21. Regression has achieved a RMSE of 0.045 whilst the more advanced GRU

model achieved a lower RMSE of 0.029.

Table 5.4: Hyperparameters for the final GRU model.

Hyperparameter name Value

epoch 20
num hidden neurons 16

learning rate 0.001
batch size 64

(a) Regression residuals, RMSE: 0.045. (b) GRU residuals, RMSE: 0.029.

Figure 5.21: Residuals for the two methods.

By making inference and prediction at the aircraft level, we can also reconstruct the path of predicted

(peak) EDR values for each model, an example of which can be seen in Figure 5.22. This has the

potential to be developed into a tool that pilots/air traffic controllers would use to determine whether

to change the flight course or not.

Figure 5.22: True peak EDR vs inferred peak EDR (from the GRU model).

Summary and potential developments

In this section, we have seen that the information from EDR reports forms a time series for each

aircraft. With data from current reports and augmented data from previous reports, we can use the
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information to infer whether there is still turbulence when an aircraft moves to a new location. Further

enhancement could be achieved by using the complete trajectory of the flight and making predictions

more than one step ahead. In addition, by quantifying uncertainty, we could make density forecasts

rather than point forecasts alone. We could also incorporate the current information of other flights

into the region (perhaps leveraging other methods discussed in this report).

5.5 Toy model

One of the problems that we explored was to determine whether there is a model for ‘turbulence’ that
can mimic the observed behaviour. Such a model should have a foundation in the physical process and

be applicable on the time scale seen in the data observations of measured EDR values. Some of the

basic assumptions include, for simplicity, assuming that the air density ρ(x, t) evolves in one spatial

dimension which is associated with the flight path. The model will assume that mass is conserved,

and that the velocity dependence of the density is a property that can vary from one air mass to

another. In this particular way of viewing the interaction of air masses, the turbulence is associated

with discontinuities in density ρ.

With respect to the existence and uniqueness of conservation laws with a discontinuous flux, the

situation is far from trivial. For clarity, consider a model of the form

∂ρ

∂t
+

∂A(x, ρ)

∂x
= 0, x ∈ R, t ∈ R+, (5.10)

ρ(x, 0) = ρ0(x) ∈ L∞(R). (5.11)

If we assume the following properties for A(x, ρ),

1. A(x, ρ) is continuous at all points of R \ N where is N is a closed set of measure zero,

2. ∃ continuous functions f , g such that ∀x ∈ R, f(ρ) ≤ |A(x, ρ)| ≤ g(ρ),

3. ∀x ∈ R \ N , A(x, ·) is locally Lipschitz and one-to-one from R → R,

then a unique solution exists. For the purposes of this report, we have set these details aside, and refer

the reader to [12] and the references therein.

As a base case consider a velocity dependence of v(ρ) = 1− ρ, where 0 ≤ ρ ≤ 1, and associated flux

j = ρv(ρ) = ρ− ρ2. With this prescription, the density satisfies the equation

∂ρ

∂t
+ (1− 2ρ)

∂ρ

∂x
= 0, ρ(x, 0) =

{
1, 1 ≤ x ≤ 2,

0, otherwise,
(5.12)

where the density ρ verifies 0 ≤ ρ ≤ 1. The solution breaks into two regimes. For 0 ≤ t < 1 the

discontinuity originally at x = 2 becomes a vertex of a rarefaction fan that spreads out and the

discontinuity at x = 1 remains in this location: that is, for 0 ≤ t < 1, we have

ρ(x, t) =


0, x < 1, x > 2 + t,

1, 1 ≤ x < 2− t,
1
2

(
1− x−2

t

)
, 2− t ≤ x ≤ 2 + t.

(5.13)

Beyond this time, t ≥ 1, the shock at x = 1 interacts with the rarefaction fan causing it to bend to the

right, giving a density of

ρ(x, t) =

{
0, x < σ(t), x > 2 + t,
1
2

(
1− x−2

t

)
, σ(t) ≤ x ≤ 2 + t,

(5.14)

with σ(t) = 2 + t− 2t1/2. The discontinuity weakens as the rarefaction fan continues to spread with

ρ(σ(t), t) = t−1/2 for t ≥ 1.
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The initial density can be thought of as a uniform distribution with initial support on the interval

1 ≤ x ≤ 2. This means that the effective location and spread of the distribution can be characterized

with mean

E(x(t)) =
∫
R
xρ(x) dx =


3

2
+

t2

6
, 0 ≤ t ≤ 1

2 + t− 4t1/2

3
, t > 1,

(5.15)

and spread given by the variance

Var(x(t)) = E(x2(t))− (E(x(t)))2 =


1

12
+

t2

6
− t4

36
, 0 ≤ t ≤ 1,

2t

9
, t > 1.

(5.16)

Figure 5.23 displays the solution with the corresponding effective location of the ‘turbulence’ as given

by this expected position and variance.

1 2 3 4 5 6

1

2

3

4

t− 2

E(x(t))

v(ρ) = 1− ρ

2 + t− 2t1/2

x

t

Figure 5.23: The evolution of the base situation with v(ρ) = 1 − ρ and an initial uniform density on 1 ≤ x ≤ 2. The
red curve shows the location of the shock and the solid cyan curve shows E(x(t)) whereas the dashed cyan curves are
separated by a distance of ±V (x(t))1/2.

Now that the base case is described, consider an air mass with a different velocity dependence of

v2(ρ) = 1− ρ2 that approaches with unit speed. Figure 5.24 displays the resulting situation. In this

scenario, in front of the weather system, x > t, the density ρ(x, t) is unchanged with

∂ρ

∂t
+ (1− 2ρ)

∂ρ

∂x
= 0, ρ(x, 0) =

{
1, 0 ≤ x ≤ 1,

0, otherwise.
(5.17)

For t > 1 the air mass overtakes the rarefaction fan. The density in this region satisfies the PDE

∂ρ

∂t
+ (1− 3ρ2)

∂ρ

∂x
= 0, ρ(x = t, t) =

0, t < 1,
1

t
, t ≥ 1.

(5.18)

Solving for the density using the method of characteristics we obtain the formula

ρ(x, t) =
1

2t

(
1 +

(
1 +

4

3
(x− t)

)1/2
)
. (5.19)
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1 2 3 4 5 6

1

2

3

4

t− 2

v1(ρ) = 1− ρ

v2(ρ) = 1− ρ2

Ω

x

t

Figure 5.24: With an approaching front for x ≤ t the density is v2(ρ) = 1−ρ2. The region Ω density needs to be consistent
with v2. In addition the initial condition must be consistent with the rarefaction fan generated within the region with v1.

With the density evolved beyond t = x, the location of the shock initially located at x = 1, t = 1 can

be computed. This ‘bounding’ shock, x = σ1(t), is determined by the Rankine-Hugoniot condition

dσ1

dt
= 1−

(
1

2t

(
1 +

(
1 +

4

3
(σ1 − t)

)1/2
))2

, σ1(1) = 1. (5.20)

Note that asymptotically, as t → ∞, σ1(t) = t+ o(t) holds, so that σ1(t) becomes parallel to the line

x = t − 2. In essence, for x < t, there is a region, Ω = {x |σ1(t) < x < t}, with a different PDE to

reflect the different air mass (see Figure 5.24).

In this sense, the trajectory of the turbulence gives an indication of the density dependence of the

velocity of the incident air mass. This toy model shows that by viewing ‘turbulence’ as an interface

between air masses, theories based on the conservation of mass can predict the motion of these interfaces.
This provides a way to connect the climatology along a flight path with the observations of regions of

persistent EDR values from clear air turbulence.

5.6 Conclusions and future work

Our methods of analysis have given useful insights into the resolution of Problems 1 and 2 posted by

IATA at the IPSW. Due to limitations on time, we did not have the chance to explore the incorporation

of meteorological data, such as cloud coverage, to build models for thermal-based events, but that

investigation would be an interesting next step.
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f Université Claude Bernard Lyon 1

November 2024
Les Cahiers du GERAD
Copyright © 2024, Caporossi, Dufresne, Gervais-Dubé, Goulet, Karimi, Moisan-Plante, Sagueni
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activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
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6.1 Introduction

Tax evasion is a significant issue for governments across the world. As data becomes more accessible in

our information age, governments are increasingly turning to advanced data analytics tools to assess

individuals and companies. These numerical tools allow for faster analysis of large data sets. Revenu

Québec, the entity responsible for managing the Government of Québec’s tax collection, has begun

using databases to detect tax evasion patterns.

Different methods have been proposed in the literature to solve tax risk and tax evasion related

problems. Approaches proposed can be found in a review by Zheng and al. [1]. Among them are

association rules mining methods, random forests and support vector machine classifiers applied on

companies, transactions or reports, neural networks to predict companies behaviour, and agent-based

models to simulate and understand these behaviours. Graph learning methods are also employed and

used on the graph representation of datasets. This representation puts forward structural and relational

information. Graph neural networks, topological feature extraction, and graph pattern matching have

been used on them.

For the Fourteenth Montreal ISPW, Revenu Québec has made an anonymized real estate transactional

database available for participants to find potential novel patterns of tax evasion. Normally, detection

of tax evasion patterns relies on the experience of tax auditors combined with transactions sampling.
As auditors permit a deeper analysis of transactions cases, choosing promising samples of transactions

or entities for the auditors to audit is tedious and time consuming and if it is not supported by data, it

is left to luck.

In an effort to automatize and formalize this sampling problem, Revenu Québec’s representatives

wish to develop a support tool to detect potential novel tax fraud patterns. A key point of this problem

is its unsupervised nature: the goal was not to find labeled patterns in a graph but to assign the label
suspicious or fraudulent to certain patterns. Therefore we could not rely on labeled data.

To tackle this problem, we propose graph-modelling approaches of the database and feature

engineering methods. Notably, we develop a support tool to detect suspicious communities of actors

through maximal biclique enumeration. Although the tool is not complete, we hope it will be a starting

point for future explorations.

6.2 The data set

In this section the data set provided by Revenu Québec is described. It begins with a brief overview of

the data before providing a graph theoretical approach to modelling the data set.

6.2.1 Transactional real estate database

The data set consisted of all (anonymized) real estate transactions that occurred in Québec from

2011 to 2022. Each transaction was associated with a single property and a set of actors (individuals

or legal entities involved in a transaction), and various features about each of these three element

type were provided. Some examples of these features are the estimated price of a property, its postal

code, the type of actors or property involved in a transaction, etc... In total, 3.6 million transactions

occurred in Québec for that time period, involving around 2.1 million properties and 11.2 million actors.

Furthermore details regarding the relationships between actors were provided.



Les Cahiers du GERAD G–2024–76 103

6.2.2 Graph representation

The entire database can be modelled as a network or an undirected partial tripartite graph N =

(A, T, P,E), where A is the set of actors, T the set of transactions, P the set of real estate properties,

and E the set of edges. The network is partially tripartite since there are edges between actors

(ea1a2 ∈ E) but not between properties or between transactions (et1t2 /∈ E and ep1p2 /∈ E). Actors and

properties may belong to edges including the transactions they are involved with. Actors belong to

edges including other actors if they are involved in a transaction together or if they have relationships

apart from transactions. These relationships might be personal or business-related. Figure 6.1 shows

an example of such a graph.

Figure 6.1: A partial tripartite graph. Dashed lines represent edges that can be omitted to model the database without
actor-actor edges, resulting in a tripartite graph.

The network, however, can be altered by not including the edges between actors. We consider two

different networks: one with the a-a edges and one without them. We observed that 7 671 848 actors

were not directly related to a transaction and that the a-a edges made up the bulk of the edges in the

network. Table 6.1 displays the cardinalities of these various sets according to the modelling of the
network. Processing these networks necessitated significant computing resources, with the first version

requiring around 40Gb of RAM simply to be loaded in memory - without labels or metadata about

edges and nodes.

Table 6.1: Cardinalities of networks according to the presence of a-a edges.

Network with a-a edges Network without a-a edges

Nb. of nodes 17 096 773 9 424 925
Nb. of edges 63 332 237 15 099 371
Nb. of actors 11 253 698 3 581 850
Nb. of a-a edges 48 226 866 NA
Nb. of properties 2 179 427
Nb of transactions 3 663 648
Nb. of a-t edges 11 435 723
Nb. of p-t edges 3 663 648

We then looked at the connected components (CCs) in the hope of reducing the complexity of the

problem. For the first network (with a-a edges), 99% of its nodes and edges are found in the largest

connected component; for the second one, 93% of its nodes and 99% of its edges are found in the

largest connected component. Other CCs in the networks are not comparable in terms of size and are

not reported on; however, adjacency lists for each CC are still made available to the Revenu Québec

representatives. Table 6.2 displays the contents of the largest connected component for each network.
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Table 6.2: Cardinalities of the biggest CC for each network.

CC with a-a edges CC without a-a edges

Nb. of nodes 17 007 724 8 773 121
Nb. of edges 63 327 521 14 498 213
Nb. of actors 11 203 385 3 259 578
Nb. transactions 3 642 175 3 486 526
Nb. of properties 2 162 164 2 027 017
Nb. of a-t edges 11 389 110 11 011 687
Nb. of p-t edges 3 642 175 3 486 526
Nb. of a-a edges 48 206 236 NA

6.3 The proposed tool

In this section, the tool developed to detect suspicious communities is described. First anomalies are

detected in the transaction database through feature engineering and statistical analysis. In the second

step these abnormal transactions are used as a way to detect suspicious communities using a distance

criterion.

6.3.1 Statistical detection of abnormal transactions using feature engineering

This subsection describes the use of statistics to define and detect abnormal transactions.

Large data sets often contain mistakes and missing parts. The first step of the work consisted of

cleaning the data: for instance, by removing the transactions for which the value or the associated

property is missing. The second step consisted of feature selection, where we determined the important

features we would work with and gathered them in a single table. Amongst these features was the

region of a property. By studying the regions independently, we established that the data of a certain

region of the city of Montréal was so poor that it was better to analyze it independently.

For the rest of this subsection, we consider the data as a table containing the following features:

category, year, region, value (of the transaction), estimated value (of the property).

A first step was to measure the discrepancy (or error) between the value of the property and its

estimated value and to define a suspicious transaction as a transaction with very high/low error.

We quickly found out about the inefficiency of our first approach and suggested a new error definition.

Instead, we computed the ratio between the value of the property and its estimated value, we consider

those transactions with high/low ratio to be suspicious. The ratio is defined in the following Equation 6.1.

Value Ratio =
Transaction value

Municipal Evaluation
(6.1)

The histograms in Figure 6.2 show the robustness of median ratio per year and region.

Given the previous figure, one might think of considering the 0.2% ∼ 0.5% quantile to be suspicious.
By investigating the median ratio by category (Figure 6.3), however, we found out that this criterion

makes sense except for one category, which is “parking lots.” The reason this category has a very large

median ratio is because its value is often underestimated. We should then compute the 0.2% ∼ 0.5%

quantile of the “parking lots” category separately.
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Figure 6.2: Median ratio by region and by year.

Figure 6.3: Median ratio by category.

Our conclusion was that a suspicious transaction is a transaction of ratio within the 0.2% ∼ 0.5%

quantile for a restricted category. Moreover we conclude that one can refine our analysis by looking at

specific years and regions in order to gain more accuracy.

6.3.2 Detecting suspicious communities by maximal biclique enumeration

In this subsection the approach to detect suspicious communities of actors in the transactional database

is described.

Actor - Actor graph

In the first step, a multigraph G = (V,E) is created where the set of vertices V consists of all the

actors. For each pair of actors in V , an edge is present in G if both are involved in a given transaction.

Therefore, for each transaction in the transactional database involving a subset of actors P ⊆ V , a

clique is formed in G. The following Figure 6.4 gives an example of such a graph.

Actors - Suspicious transactions bipartite graph

In the second step a bipartite graph B = (V ′, T, L) is created with V ′ ⊆ V a subset of the actors

involved in abnormal transactions, T the set of abnormal transactions, and L the set of edges (links)

between V ′ and T .

The following criterion is used to link participants to abnormal transactions.
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Figure 6.4: A graph linking actors by their common transactions.

Definition 6.1 (Distance zero criterion) Let t ∈ T be an abnormal transaction and let N0
G(t) be all of

the actors which are involved in this transaction. An actor a ∈ V is linked to an abnormal transaction

t ∈ T according to the distance zero criterion if a ∈ N0
G(t).

Figures 6.5a and 6.5b give an example of two transactions t1 and t3 with their sets of involved

actors, respectively {a3, a6} and {a1, a6}.

(a) Actors at distance zero from transaction t1 are a3 and a6 (b) Actors at distance zero from transaction t3 are a1 and a6.

Figure 6.5: Actors linked to abnormal transactions.

We construct the bipartite graph B = (V ′, T, L) as follows. A pair {v, t} : t ∈ T, v ∈ V is an edge

of B if v ∈ N0
G(t). Figure 6.6 gives an example of a bipartite graph created using this criterion on the

graph in Figure 6.4.

Finding suspicious communities

In this subsection the third step is detailed. The use of a maximal biclique enumeration algorithm to

find suspicious communities in the transaction database is explained in detail.

We start by giving the definition of maximal biclique in a bipartite graph.

Definition 6.2 (Biclique) A complete bipartite graph is a bipartite graph G = (X,Y,E) such that

E = {{x, y} : x ∈ X ∧ y ∈ Y }: that is, all possible edges are included in G. A biclique in G (where G

is not necessarily complete bipartite) is a complete bipartite subgraph B = (X ′, Y ′, EB) of G.
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Figure 6.6: The bipartite graph linking actors to abnormal transactions.

Definition 6.3 (Maximal biclique) A complete bipartite graph B = (X ′, Y ′, EB) is an inclusion-wise

maximal biclique in G = (X,Y,EG) if there does not exist a vertex v ∈ (X ∪ Y ) \ (X ′ ∪ Y ′) such that

the induced subgraph G[X ′ ∪ Y ′ ∪ {v}] is a biclique.

For this workshop, suspicious communities are detected using a maximal biclique enumeration

algorithm. In a bipartite graph of people and items, it is possible to detect communities by finding

maximal bicliques since each community represents a group of people interacting with the same set of

items.

One example of this is detecting web communities by creating a bipartite graph where one set of
vertices represents web users and one set of vertices represents visited url [2]. A maximal biclique in

this graph corresponds to a group of users visiting the same group of urls, meaning that the users have

the same interest.

In this workshop the same idea is used to detect suspicious communities of actors in the real estate

transactions database. The criterion in Definition 6.1, used to link actors and abnormal transactions in

the bipartite graph, implies that a maximal biclique in the bipartite graphs represents a group of actors

that are all involved in the same abnormal transactions. Furthermore we enumerate only the bicliques

in which each side has more than one vertex: indeed multiple actors linked to the same transaction do

not arouse suspicion and neither do multiple transactions linked to the same actor.

Figure 6.7 shows a bipartite graph and one of its maximal bicliques.
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(a) A bipartite graph G. (b) A maximal biclique in G.

Figure 6.7: Actors linked to abnormal transactions.

An in-house maximal biclique enumeration algorithm was applied to find all the maximal bicliques.

To detect abnormal transactions, transactions were clustered geographically, by type, and by year.

Quantiles were calculated on the ratio equation (6.1) for each cluster.

Table 6.3 shows the number of maximal bicliques found using the biclique enumeration algorithm

when applied to the actors-abnormal transactions bipartite graph. Transactions are considered as

suspicious if their ratio is greater than the calculated quantile. For each cluster the two quantiles 0.95

and 0.98 were calculated using the quantile function in the Statistics package of the Julia programming

language.

Table 6.3: Number of suspicious communities detected for the two quantile thresholds.

Quantile threshold Number of Communities

0.95 11 174
0.98 4 926

6.4 Future work

We conclude by outlining further directions for the detection of fraudulent patterns. All implemented

pipelines and proofs-of-concept described here are privately made available to the Revenu Québec

representatives.

6.4.1 Further exploration of the networks

To facilitate further study of the networks, scripts are provided to generate, from the original CSV

files, the adjacency matrices of both networks and their connected components (to separate files). Also
recent developments in the CuGraph library [3] allow for the parallelization of multiple graph-related

operations. This gain in performance allowed for the testing of more hypotheses regarding the structure

of the networks. While we could not achieve useful information extraction during the workshop - outside

of generating hypotheses for other approaches - we hope that this proof-of-concept will allow Revenu

Québec representatives that have more domain-specific knowledge to find relevant graph metrics in the

future.
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6.4.2 A graph neural network approach

Graph neural networks are a burgeoning field of study [4], with a wild landscape of various techniques.

A particularly interesting technique for detecting statistical outliers in an unsupervised context is the

use of Graph Neural Network Autoencoders (GAE) [5].

GAEs are used like convolutional autoencoders to recreate the inputs fed to a model. Instead of

recreating an image, however, GAEs can be used to recreate the topological structure of a graph. The

differences between the training graph and the resulting recreated graph point to statistical outliers in

the former. Indeed a GAE can be thought of as recreating the true structure of a graph, where errors

in recreation could point to potentially suspicious patterns. Although the main weakness of GAEs is

the loss of non-topological data, past [6] and ongoing efforts are made to circumvent this weakness.

Figure 6.8 shows an example of outlier detection from a GAE.

6.4.3 Statistical detection of abnormal transactions using machine learning tech-
niques

Following our definition of suspicious transaction in Section 6.3.1, we explored more advanced approaches

relying on machine learning techniques to detect suspicious actors. We first put aside the transactions

with very high/low ratio (ratio=value of the transaction / estimated value of the property); we then

used Isolation Forest and K-means clustering (separately) to extract more information from the data.

The previous techniques provide a definition, hence detection, of what is abnormal.

Figure 6.8: An example recreation of a graph by a GAE. It suggests the actor a5 should not have played a role in transactions
between a2 and a3. It should therefore be replaced with an edge ea2a3 .

6.4.4 Complete proposed pipeline

Considering the unsupervised approach, maximizing the number of features - and therefore of data

points - should be kept in mind. Luckily, there are many possible approaches for feature engineering

described in this document that should provide good food for thought for future work. Figure 6.9

shows how all our various approaches can be combined for creating a new enriched database for Revenu

Québec representatives.

The idea is that while we proposed metrics for detection of fraudulent patterns, these metrics can
still be used as new features for the data set and provide insights for further metrics to analyze or

features to define. Furthermore, since the network structures are part of this new database, all these

various features and metrics can be used as labels for nodes and edges. This provides the basis for

a positive feedback loop, where new metrics can help improve the precision of prior metrics or used

methods.
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Figure 6.9: A simplified version of the proposed pipeline.
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