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Abstract : This paper presents a partial outsourcing strategy for the vehicle routing problem with
stochastic demands (VRPSD), and routing reoptimization is considered for the single-vehicle case. In
the VRPSD, a vehicle may arrive at a customer’s location with insufficient capacity to meet the cus-
tomer demand, which results in a route failure and requires a subsequent recourse action. We propose a
recourse action that utilizes outsourcing to handle unmet demand, deferring from the classical recourse
action. It is formulated as a Markov decision process (MDP), and an approach based on an approx-
imate linear programming (ALP) scheme is proposed to solve it. To effectively deal with the curse
of dimensionality, several algorithmic enhancements that take advantage of the problem’s structure
are proposed. These include lower bounding methods based on affine functions, decomposition-based
value function approximations, and constraint sampling. Our approach is compared against other
approaches, and the results show that our approach generally yields high-quality solutions.

Keywords : Stochastic vehicle routing, re-optimization, Markov decision process, approximate linear
programming, recourse strategy, outsourcing
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1 Introduction

The vehicle routing problem with stochastic demands (VRPSD) is essential in the family of vehicle

routing problems [15]. In the VRPSD, vehicles are dispatched to satisfy customer demands while

respecting vehicle capacity. Customer demands are random variables with known probability distri-

butions. The VRPSD has many real-world applications, such as local deposit collection from bank

branches, package collection, waste collection, residential gas propane refilling, and recent electric ve-

hicle recharging [36]. In these applications, customer demands fluctuate during the routing, and the

actual demands are observed upon the vehicles’ arrival at the customers.

In the VRPSD, a vehicle may reach a customer location with insufficient residual capacity to

fulfill the demand for collections. This leads to a route failure, in which case a recourse action is

necessary [41]. The classical recourse action requires the vehicle to perform a replenishment trip at the

depot when a failure occurs, which refers to the detour-to-depot (DTD) operating scheme, as shown in

Fig. 1(a). The DTD scheme is computationally appealing and straightforward to implement. However,

substantial effort can be made to conduct the detour trip for a small unmet demand.

This paper considers an alternative recourse action for the VRPSD, in which unmet demands

are outsourced to other carriers when failures occur, as shown in Fig. 1(b). Specifically, vehicle

routes are planned with the help of outsourced carriers. The operator is only concerned with its route

optimization, leaving the routing choices of other carriers at ease and compensating them with running

errands per unit load. This problem setting can be found in third-party logistics companies (3PL),

where the outsourcing cost can be charged per unit load depending on the contracts negotiated [e.g.,

in 35].
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Figure 1: Comparison of recourse actions in partial-outsourcing to traditional strategies

1 Q is the vehicle capacity. D ∗
i (i = 1, 2, . . .) denotes the observed demand of customer i at the vehicle’s arrival. “?”

represents the unknown demands of customers that are yet to be visited and observed.

Routing optimization for the single-vehicle case is considered in this paper. We develop a partial-

outsourcing strategy to solve the problem. Given observed customer demands, our strategy enables

the re-optimization of the operating scheme, by which dynamic routing and proactive restocking de-

cisions are made. Due to the complexity of realizing dynamic routing, determining a re-optimization

strategy remains highly challenging, and research in this area needs to be addressed [e.g., 28, 34].

The decomposition-based value function approximation is proposed to tackle the computational dif-

ficulty. As the reoptimization strategy for the VRPSD corresponds to a Markov decision process

(MDP) [32, 34, 38], one must deal with the curse of dimensionality of both the expanded state and

action spaces when considering the outsourcing action. Thus, it is not trivial to solve this extended

model in a tractable fashion. As clearly demonstrated in the previous literature of VRPSD [e.g. 38], it

is important to exploit structural properties and devise an effective reformulation scheme that allows

computational tractability.
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An approximate linear programming (ALP) method is developed to compute our strategy. ALP

methods have been employed in other problem contexts, including inventory routing [1, 2], revenue

management [3, 22, 37], scheduling problems [4, 5], and the traveling salesperson problem [38]. How-

ever, the method has not been adapted to tackle this variant of VRP with outsourcing. With an ALP

method, the Markov decision process (MDP) formulation is first transformed into its linear program-

ming (LP) counterpart, in which the variables are value functions. For tractability, affine functions are

then introduced to approximate the variables. The ALP method can yield the bounds on the value

functions. The bounds are then used to approximate value functions within the traditional Bellman

recursion to derive a price-directed policy [e.g., 9, 38].

The primal contribution of the paper is concluded as follows. A partial-outsourcing strategy is pro-

posed for the VRPSD. An alternative recourse action is developed by leveraging outsourced delivery

services. An ALP method is adapted to determine a policy for the VRPSD and is developed by exploit-

ing the structure of the problem. Several algorithm enhancement techniques are introduced, including

decomposition-based value function approximations, lower bounding procedures based on affine func-

tions, and constraint sampling. Finally, we compare our approach with other competitive solution

methods. The experimental results demonstrate that our approach yields high-quality solutions.

The remainder of the paper is organized as follows. Section 2 reviews relevant literature. Section 3

presents the partial-outsourcing strategy, formulated using an MDP formulation. Section 4 introduces

the ALP solution framework. By exploring the problem structure, a decomposition-based solution

framework is developed. Section 5 specifies the approximation for the cost of recourse actions. In

Section 6, a price-directed policy is derived based on the approximation of value functions, in which

routing and restocking decisions are elaborated given observed routing states. Section 7 discusses the

experimental results.

2 Literature review

This paper presents a solution framework that incorporates an outsourcing recourse strategy for the

VRPSD through a re-optimization paradigm. In the following section, routing strategies with different

recourse actions for the VRPSD are reviewed. Then, solution methods for solving the VRPSD with re-

optimization are presented. Here, we briefly review the relevant research to the VRPSD with recourse

decisions. For a more general review of the VRPSD, we refer to the works by Gendreau et al. [15],

Florio et al. [13], and Florio et al. [14].

Different recourse strategies have been developed since the classical DTD operating scheme was

proposed. The DTD scheme requires the vehicle to make a replenishment trip if a failure occurs at

a customer. Most recourse strategies were proposed based on this operation scheme [e.g., in 11, 21].

For another widely studied recourse action, preventive restocking is considered. By this recourse

action, the vehicle may execute a restocking trip to the depot before the inventory is depleted [e.g., in

24, 40]. Besides, Novoa et al. [25] introduced an extended recourse strategy and proposed two recourse

actions by disallowing partial deliveries. In recent years, new recourse actions have been developed.

Salavati-Khoshghalb et al. [29] presented a rule-based recourse policy in which a preventive recourse

trip is made when the remaining vehicle capacity falls below a preset customer-specific threshold.

Salavati-Khoshghalb et al. [30] developed a hybrid recourse policy by defining the risk of failure with

a distance-based measure. Florio et al. [12] proposed the switch policy. Under this policy, preventive

restocking is considered, and the visiting orders of two adjacent customers can be swapped.

There are several studies that consider the VRPSD with re-optimization. Secomandi [31] proposed

a neuro-dynamic programming (ADP) algorithm that approximates the value functions for states as

linear functions of pre-selected features. Secomandi [32] proposed a one-step rollout algorithm in which

a base routing sequence is sequentially improved, then, Novoa and Storer [26] further improved the

algorithm and developed a two-step rollout algorithm. Secomandi and Margot [34] proposed a partial

re-optimization method. By assuming a priori route, partial re-optimization is performed in each block
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of customers along the considered route. For the multi-vehicle setting, Goodson et al. [17] and Goodson

et al. [18] studied the VRPSD with duration limits and proposed rollout policies. Zhu et al. [41]

developed a paired cooperative re-optimization method in which customers are dynamically assigned

between two vehicles, and routing is implemented based on the partial re-optimization procedure.

Recently, Ulmer et al. [39] considered a variant of the VRP with stochastic customer requests and

proposed an offline-online approximate dynamic programming approach.

In summary, outsourcing was not considered a recourse action before, and the ALP method has

yet to be introduced to solve the VRPSD. Florio et al. [13] generalized another modeling perspective

for VRPSD, i.e., chance-constrained VRPSD. We do not review the relevant research because it is a

different modeling paradigm in which the capacity constraint can be violated probabilistically. In the

following section, the MDP formulation for our outsourcing strategy is introduced.

3 Partial-outsourcing strategy

In this section, the partial-outsourcing strategy is formulated using MDP. The notation and assump-

tions for the routing problem are introduced, and then the value functions and optimal actions under

the strategy with outsourcing are defined. In the end, the difference between our formulation and

those used in previous works is clarified, and the optimality equation in our formulation is generalized.

Notation and assumptions

The notation used in this paper is generally in line with other VRPSD literature [e.g., 7, 26, 31, 34].

The strategy can be formulated as a finite-horizon discrete-time Markov decision process. Considering

a complete network, customers are denoted by node set N = {1, . . . , N}, and 0 denotes the depot. A

vehicle with capacity Q (Q ∈ N+) is dispatched from a depot to visit customers, satisfies their demands

and eventually returns to the depot. Distance dlj between any two nodes l and j (l, j ∈ N ∪ 0) is

assumed to be known, symmetric, and satisfy the triangle inequality: dlj ≤ dli+dij , with i an additional

node. Demand quantity for customer l (l ∈ N ), ξ̃l, is a random variable characterized by a probability

distribution pl(e) = Pr(ξ̃l = e) (e = 0, 1, . . . , E ≤ Q) and pl(e) = 0 (e = E + 1, . . . , Q), where E is a

nonnegative integer. Customer demand ξ̃l is independent of the vehicle routing/replenishment policy,

and its realization ξl can only be observed when the vehicle arrives at the customer. The total depot

capacity is assumed to be at least N · E, so all customer demands can be fully satisfied. A summary

of notation is provided in Appendix C.

In our formulation, split deliveries are allowed. When a failure occurs at customer l, the vehicle

delivers its existing load q (q < ξl) to the customer, and the remaining unmet demand is outsourced

with an expense of b · (ξl − q), where b is the unit price for outsourcing.

Value functions

The strategy is formulated as an MDP with stages in set Ω = {N,N − 1, . . . , 0}, with stage k ∈
Ω corresponding to the number of unvisited customers. Each stage k ∈ Ω\{N} starts when the

vehicle finishes serving the current customer. The corresponding state is denoted by sk = (l, q,Rk(l)),

representing the vehicle departing from current location l (l ∈ N ) with available capacity q (q ∈ Q =

{0, 1, . . . , Q}) and set of remaining unvisited customers Rk(l) (Rk(l) ⊆ N ). Ψ denotes the state space

for the process, and it is composed of

Ψ = {sN = (0, Q,N )} ∪ {sk = (l, q,Rk(l)) |k ∈ Ω\{N}, l ∈ N , q ∈ Q,Rk(l) ⊂ N } . (1)

For state sk = (l, q,Rk(l)) at stage k ∈ Ω\{N, 0}, two decisions must be made. First, it must be

decided which customer j ∈ Rk(l) to visit next. Second, it must be decided whether the vehicle will

go directly to that customer (a case labeled D(j)) or return to the depot to restock before proceeding
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to that customer (a case labeled R(j)). At the beginning stage N , the only available decision is which

customer to visit first. For the final stage 0, the only available action is to return to the depot without

replenishing.

Let Vk(l, q,Rk(l)) denote the optimal expected cost-to-go from state sk = (l, q,Rk(l)) ∈ Ψ. The

cost-to-go values at the final stage are

V0(l, q, ϕ) = dl0, ∀l ∈ N , q ∈ Q. (2)

For state sk = (l, q,Rk(l)) at stage k ∈ Ω\{N, 0}, the optimal policy satisfies the following Bellman

equations,

Vk(l, q,Rk(l)) = min
j∈Rk(l)

{
min

{
V

D(j)
k (l, q,Rk(l)), V

R(j)
k (l, q,Rk(l))

}}
, ∀sk ∈ Ψ. (3)

where V
D(j)
k (l, q,Rk(l)) and V

R(j)
k (l, q,Rk(l)) are the cost-to-go values associated with stage k and

state (l, q,Rk(l)), corresponding to visiting next customer j directly and by first replenishing at the de-

pot, respectively. min{V D(j)
k (l, q,Rk(l)), V

R(j)
k (l, q,Rk(l))} ensures customer j (j ∈ Rk(l)) is reached

in the most efficient way. The optimal next customer j∗ (j∗ ∈ Rk(l)) corresponds to the one with the
minimum cost-to-go value. The cost-to-go values for the two cases can be written as follows.

V
D(j)
k (l, q,Rk(l)) = dlj +Bj(q) +

∑
e≤q

pj(e) · Vk−1(j, q − e,Rk−1(j; l)) + Vk−1(j, 0,Rk−1(j; l)) ·
∑
e>q

pj(e),

V
R(j)
k (l, q,Rk(l)) = dl0 + d0j +

∑
e

pj(e) · Vk−1(j,Q− e,Rk−1(j; l)), ∀j ∈ Rk(l), sk ∈ Ψ, (4)

where Rk−1(j; l) = Rk(l)\{j}, and Bj(q) = b ·
∑
e>q

pj(e) · (e − q) calculates the expected outsourcing

cost if residual capacity q is not sufficient to meet customer j’s demand. Bj(q) equals to 0 when q ≥ E.

The vehicle may encounter two situations when visiting customer j directly. When residual capacity

q is sufficient to satisfy the demand of customer j (i.e., e ≤ q), the residual capacity is updated after

completing the service of customer j, and the remaining capacity equals q − e. Otherwise, when the

demand exceeds the residual capacity (i.e., e > q), the vehicle depletes its inventory and leaves unmet

demand e− q to be outsourced.

At beginning stage N , for unique starting state sN = (0, Q,N ), the optimal value function is

VN (0, Q,N ) = min
j∈N

{
d0j +

∑
e

pj(e) · VN−1(j,Q− e,N\{j})

}
. (5)

Optimal actions

The optimal action at final stage 0 is to return to the depot from the final customer, whereas beginning

stage N includes a choice of which customer j to visit in such a way that

jN (0, Q,N ) = argmin
j∈N

{
d0j +

∑
e

pj(e) · VN−1(j,Q− e,N\{j})

}
. (6)

Variable uj,l,Rk(l)(q) is then introduced to denote the replenishment decision at state (l, q,Rk(l))

concerning routing customer j next. The optimal replenish decision uj,l,Rk(l)(q) is determined by

uj,l,Rk(l)(q) =

{
1, ifV

R(j)
k (l, q,Rk(l)) ≤ V

D(j)
k (l, q,Rk(l))

0, ifV
R(j)
k (l, q,Rk(l)) > V

D(j)
k (l, q,Rk(l)).

∀j ∈ Rk(l), for sk ∈ Ψ. (7)

By defining uj,l,Rk(l)(q), Equation (4) can be rewritten as
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V
uj,l,Rk(l)(q)

k (l, q,Rk(l)) =dlj +Bj(q) + (∆lj −Bj(q)) · uj,l,Rk(l)(q)

+ E
[
Vk−1(j, q

′,Rk−1(j; l))
∣∣q, uj,l,Rk(l)(q)

]
. ∀j ∈ Rk(l), sk ∈ Ψ, (8)

where ∆lj = dl0 + d0j − dlj represents the extra cost for a preventive return to the depot when l
and j are consecutive customers in the delivery route. q represents the initial residual capacity at
current customer l. q′ denotes the residual capacity after satisfying the demand of next customer j.
E
[
Vk−1(j, q

′,Rk−1(j; l))
∣∣q, uj,l,Rk(l)(q)

]
is the expected future cost, given initial residual capacity q

and taking the replenish decision given by Equation (7)

E
[
Vk−1(j, q

′,Rk−1(j; l))
∣∣q, uj,l,Rk(l)(q)

]
=

∑
e≤q

pj(e) · Vk−1(j, q − e,Rk−1(j; l)) + Vk−1(j, 0,Rk−1(j; l)) ·
∑
e>q

pj(e), if uj,l,Rk(l)(q) = 0,∑
e

pj(e) · Vk−1(j,Q− e,Rk−1(j; l)), ifuj,l,Rk(l)(q) = 1.
(9)

Based on the definition of V
uj,l,Rk(l)(q)

k (l, q,Rk(l)), for state sk = (l, q,Rk(l)) at stage k ∈ Ω\{N, 0},
the best next customer location is determined by

jk(l, q,Rk(l)) = arg min
j∈Rk(l)

{
V

uj,l,Rk(l)(q)

k (l, q,Rk(l))
}
. (10)

Comparison of dynamic programming equations for VRPSD with outsourcing, and
traditional VRPSD

In traditional VRPSD [see, e.g., 32, 34, 40], the cost-to-go value for each state sk can be expressed as

Vk(l, q,Rk(l)) =min
{
V

D(jDk (sk))
k (l, q,Rk(l)), V

R(jRk (sk))
k (l, q,Rk(l))

}
, ∀ sk ∈ Ψ, (11)

where jDk (sk) and jRk (sk) are the best following customer locations for the case of proceeding to the

next customer directly and the case of first replenishing at the depot, respectively. The best routing

options are considered first in their formulations, and then replenishment decisions are made. It

contrasts to Equation (3), where replenishment decisions are made first, after which the best routing

option is decided. Note that we change the decision sequence (i.e., u →j, instead of j →u) for ease of

formulation for our approximation scheme.

Our partial-outsourcing strategy is formulated as in Section 3. Correspondingly, optimality equa-
tions (3) and (4) can be jointly expressed as

Vk(l, q,Rk(l)) =

min
j∈Rk(l)

{
dlj +Bj(q) + (∆lj −Bj(q)) · uj,l,Rk(l)(q) + E

[
Vk−1(j, q

′,Rk−1(j; l))
∣∣q, uj,l,Rk(l)(q)

]}
∀j ∈ Rk(l), sk ∈ Ψ. (12)

The ALP solution framework to solve (12) is described in the subsequent section.

4 Decomposition-based approximate linear program framework

Solving the MDP formulation will inevitably lead to the curse of dimensionality. In our formulation, the

cardinality of the state space is 1+N(Q+1)2N−1, which is intractable as the number of customers grows.

One effective approach to solving this problem is the approximate linear programming framework. The

MDP formulation is transformed into a linear programming (LP) formulation. Then, the lower bounds

of the value functions are generated in a minimization problem by approximating the value function

with affine functions. The MDP model (2)–(5) can be formally rewritten as an LP
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max VN (0, Q,N ) (13a)

s.t. VN (0, Q,N ) ≤ d0j +
∑
e

pj(e) · VN−1

(
j,Q− e,N\{j}

)
, j ∈ N , (13b)

Vk

(
l, q,Rk(l)

)
≤ dlj +Bj(q) +

∑
e≤q

pj(e) · Vk−1

(
j, q − e,Rk−1(j; l)

)
(13c)

+ Vk−1

(
j, 0,Rk−1(j; l)

)
·
∑
e>q

pj(e),

Vk

(
l, q,Rk(l)

)
≤ dl0 + d0j +

∑
e

pj(e) · Vk−1

(
j,Q− e,Rk−1(j; l)

)
, ∀k ∈ Ω\{N, 0}, ∀l ∈ N ,

q ∈ Q,Rk−1(j; l) ⊆ N\{l, j},
j ∈ Rk(l), (13d)

V0(l, q, ϕ) ≤ dl0, ∀l ∈ N , q ∈ Q. (13e)

One potential approach to reduce the complexity of the model is to leverage affine functions to ap-

proximate value functions. Toriello et al. [38] studied a traveling salesman problem with stochastic

arc costs and identified the challenge of applying ALP in a routing problem. They shared the insight

that the approximation of value functions can be poor if directly replaced by simple affine functions

and pointed out that strong affine functions can be derived based on exploring the structure of the

routing problem first [38].

In the subsequent section, the structure of the value functions in our formulation is analyzed, and

an approximation reformulation scheme is proposed.

Decomposition-based value function approximation

Re-optimization and a priori optimization are two major approaches for VRPSD [15]. A priori opti-

mization is often modeled by stochastic programming with recourse (SPR). A fundamental structural

characteristic is revealed in the objective function of the SPR formulations, as the objective function

is typically composed of two parts [e.g., 23, 24, 29]

Similarly, value functions within our problem can also be decomposed into two parts.

Vk(l, q,Rk(l)) =

min
[J,(jJ

k−1
,jJ

k−2
,...,jJ1 )]

{[
dlJ + vk−1(J,Rk−1(J ; l))

∣∣∣(jJ
k−1

,jJ
k−2

,...,jJ1 )

]
+ fJ

k (l, q,Rk(l))
∣∣∣(jJ

k−1
,jJ

k−2
,...,jJ1 )

}
,

J ∈ Rk(l), ∀sk ∈ Ψ. (14)

The first component [dlJ + vk−1(J,Rk−1(J ; l))
∣∣∣(jJk−1,j

J
k−2,...,j

J
1 ) ] is relevant to the travel cost between

customers, given routing sequence [l, J, (jJk−1, j
J
k−2, . . . , j

J
1 )]. The realized route starts from loca-

tion l and includes remaining customers in Rk(l), by visiting customer J ∈ Rk(l) first and cus-

tomers jJk′ (jJk′ ∈ Rk−1(J ; l)\{jJk−1, . . . , jJk′+1}) at subsequent stages k′ = {k − 1, k − 2, . . . , 1}.
vk−1(J,Rk−1(J ; l))

∣∣∣(jJk−1,j
J
k−2,...,j

J
1 ) refers to the travel cost related to the partial route starting from

customer J and including the remaining customers in Rk−1(j; l). The second component

fJ
k (l, q,Rk(l))

∣∣∣(jJk−1,j
J
k−2,...,j

J
1 ) is related to the penalty cost, including any additional distance traveled

for replenishment, as well as potential outsourcing cost. The second component also indicates the

expected future penalty cost given current state (l, q,Rk(l)) and the decision for routing customer J

next. Both components rely on the future routing policy, represented by [J, (jJk−1, j
J
k−2, . . . , j

J
1 )], where

superscript J in jJk′ (k′ = {k− 1, k− 2, . . . , 1}) indicates that future routing policy should be made by

fixing J as the next customer to be visited. Equation (14) aims at determining the optimal routing

policy [J, (jJk−1, j
J
k−2, . . . , j

J
1 )] for state sk, to minimize expected future costs.
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The decomposition-based value function approximation is derived from Equation (14). An original

value function is approximated by decomposing it into two components and then estimating each

separately. The following relation holds for the second component in Equation (14)

fJ
k

(
l, q,Rk(l)

) ∣∣∣∣(jJk−1
,jJ

k−2
,...,jJ1 ) ≥ min

(jJ
k−1

,jJ
k−2

,...,jJ1 )

{
fJ
k

(
l, q,Rk(l)

) ∣∣∣∣(jJk−1
,jJ

k−2
,...,jJ1 )

}
= min

{
fJ
k

(
l, q,Rk(l)

)}
,

∀sk ∈ Ψ, J ∈ Rk(l), (15)

where the right-hand side of the equation is obtained as term min
{
fJ
k

(
l, q,Rk(l)

) ∣∣∣(jJk−1,j
J
k−2,...,j

J
1 )

}
in-

dicates the minimal penalty cost among all realized routing sequences. Let LJ
sk

denote the lower bound

of the future expected penalty cost for state sk along with routing customer J next. Assuming that

better lower bounds LJ
sk

(∀sk ∈ Ψ, J ∈ Rk(l)) are given, L
J
sk

are then used to approximate the second

component fJ
k

(
l, q,Rk(l)

) ∣∣∣(jJk−1,j
J
k−2,...,j

J
1 ) . Let Ṽk

(
l, q,Rk(l)

)
(sk ∈ Ψ) denote the approximated value

functions. The value functions are approximated as

Ṽk

(
l, q,Rk(l)

)
= min

[J,(jJk−1,j
J
k−2,...,j

J
1 )]

{
dlJ + vk−1(J,Rk−1(J ; l))

∣∣∣(jJk−1,j
J
k−2,...,j

J
1 ) + LJ

sk

}
(16a)

= min
J∈Rk(l)

{
dlJ + min

(jJk−1,j
J
k−2,...,j

J
1 )

{
vk−1(J,Rk−1(J ; l))

∣∣∣(jJk−1,j
J
k−2,...,j

J
1 )

}
+ LJ

sk

}
(16b)

= min
J∈Rk(l)

{
dlJ +min {vk−1(J,Rk−1(J ; l))}+ LJ

sk

}
, ∀sk ∈ Ψ, (16c)

where Equation (16c) holds for the same reason as in equation (15). In fact, min
{
vk−1

(
J,Rk−1(J ; l)

)}
implies a deterministic TSP process. Following the definition of vk−1

(
J,Rk−1(J ; l)

)
, min{vk−1

(
J,Rk−1

(J ; l)
)
} determines a route that includes remaining customers in Rk−1(J ; l) and ends at the depot with

the minimal traveling cost. For a deterministic TSP problem, tight lower bounds can be fast generated

by extant methods [8, 19]. Let l
J,Rk−1(J;l)
tsp (l ∈ N , J ∈ Rk(l), |Rk(l)| = k) represent the lower bounds

for approximating min
{
vk−1

(
J,Rk−1(J ; l)

)}
. Value functions can be further estimated by

Ṽk

(
l, q,Rk(l)

)
= min

J∈Rk(l)

{
dlJ + l

J,Rk−1(J;l)
tsp + LJ

sk

}
, ∀sk ∈ Ψ. (17)

In our method, value functions are approximated using two steps. In the first step, expected penalty

costs LJ
sk

are approximated for possible states sk ∈ Ψ and associated routing decisions J ∈ Rk(l). In

the second step, the approximated travel cost for potential TSP routes
{
l
J,Rk−1(J;l)
tsp |∀J ∈ Rk(l)

}
are

calculated, given realized state sk and each potential routing decision J ∈ Rk(l). Based on the two

steps, the optimal routing decision at state sk is made according to

jk
(
l, q,Rk(l)

)
= arg min

J∈Rk(l)

{
dlJ + l

J,Rk−1(J;l)
tsp + LJ

sk

}
, given a realized statesk. (18)

In other words, LJ
sk

are calculated a priori, whereas l
J,Rk−1(J;l)
tsp are generated as needed. More specif-

ically, at state sk =
(
l, q,Rk(l)

)
, values LJ

sk
(J ∈ Rk(l)) are already available, so only l

J,Rk−1(J;l)
tsp

(J ∈ Rk(l), Rk−1(J ; l) = Rk(l)\{J}) need to be computed. The following LP formulation can be uti-

lized to generate l
J,Rk−1(J;l)
tsp for each routing decision J ∈ Rk(l), and this LP is solvable in polynomial

time [8, 20, 27].

l
J,Rk−1(J;l)
tsp = min

x

 ∑
i′∈Rk−1(J;l)

dJi′xJi′ +
∑

i′∈Rk−1(J;l)

∑
j′∈Rk−1(J;l)∪{0}\i′

di′j′xi′j′

 (19a)

s.t.
∑

i′∈Rk−1(J;l)

xJi′ = 1, (19b)

∑
i′∈Rk−1(J;l)

xi′0 = 1, (19c)



Les Cahiers du GERAD G–2024–70 8

∑
j′∈Rk−1(J;l)\i′

xi′j′ = 1, i′ ∈ Rk−1(J ; l), (19d)

∑
j′∈Rk−1(J;l)\i′

xj′i′ = 1, i′ ∈ Rk−1(J ; l), (19e)

∑
i′∈U

∑
j′∈Rk−1(J;l)∪{0}\U

xi′j′ ≥ 1, ∀ϕ ̸= U ⊆ Rk−1(J ; l) ∪ {0},

(19f)

x ≥ 0, x ∈ R. (19g)

The LP formulation (19) is used to determine lower bounds l
J,Rk−1(J;l)
tsp (J ∈ Rk(l)). In the next

section, the approximation of expected penalty cost,
{
LJ
sk

|∀sk ∈ Ψ, J ∈ Rk(l)
}
, is calculated.

5 Lower bound of the expected penalty

The expected cost-to-go value for each state sk (sk ∈ Ψ) is approximated according to (17). dlJ is

the distance between current location l and the potential next destination J ∈ Rk(l). l
J,Rk−1(J;l)
tsp is

the lower bound of the corresponding TSP problem, which can be obtained from formulation (19).

Therefore, to approximate the cost-to-go value, only the lower bound of expected penalty cost LJ
sk

is

required.

Section 5.1 determines the optimality equation for expected penalty costs, and then the MDP

formulation is reformulated using the linear program counterpart. Section 5.2 provides the ALP

formulation for penalty costs by defining the affine functions. Section 5.3 proposes a method for

solving the ALP formulation.

5.1 Expected penalty cost

LJ
sk

(∀sk =
(
l, q,Rk(l)

)
∈ Ψ, J ∈ Rk(l)) are the lower bounds of expected penalty costs fJ

k

(
l, q,Rk(l)

)
.

The expected penalty cost of visiting customer J next for each state sk satisfies the following optimality
equation

fJ
k

(
l, q,Rk(l)

)
= min

∆lJ +
∑
e
pJ (e) · fk−1(J,Q− e,Rk−1(J ; l)), uJ,l,Rk(l)

(q) = 1,∑
e≤q

pJ (e) · fk−1(J, q − e,Rk−1(J ; l)) + b ·
∑
e>q

pJ (e) · (e− q) +
∑
e>q

pJ (e) · fk−1(J, 0,Rk−1(J ; l)), uJ,l,Rk(l)
(q) = 0,

∀sk =
(
l, q,Rk(l)

)
∈ Ψ, J ∈ N\l, k ∈ Ω\{N, 0}, (20)

where replenishment decision uJ,l,Rk(l)(q) for each state sk is made to minimize the future expected

penalty costs, either with (uJ,l,Rk(l)(q) = 1) or without (uJ,l,Rk(l)(q) = 0) replenishing before arriving

at customer J . If decision uJ,l,Rk(l)(q) = 1 is made, the vehicle arrives at customer J with full capacity

Q and with the expense of additional travel cost ∆lJ (∆lJ = dl0 + d0J − dlJ). Otherwise, decision

uJ,l,Rk(l)(q) = 0 dictates that the vehicle proceeds to customer J , with probability
∑
e>q

pJ(e) of failing

the service of customer J and leaving empty vehicle capacity.

Note that fk−1(J, q
′,Rk−1(J ; l)) equals to min

j′∈Rk−1(J;l)

{
f j′

k−1(J, q
′,Rk−1(J ; l))

}
, indicating that

fk−1(J, q
′,Rk−1(J ; l)) is the minimal expected penalty cost among all next routing decisions j′ in

set Rk−1(j
′; l). In the following, fk

(
l, q,Rk(l)

)
(f j

k

(
l, q,Rk(l)

)
) is substitued with fl,R(q) (f

j
l,R(q)) for

ease of notation.

Proposition 1. (Monotonicity of penalty cost on residual capacity q) for given customer l, customer j,

and unvisited set R, penalty cost f j
l,R(q) is non-increasing in residual capacity q.

Proposition 2. (Possible threshold-type replenishment) for particular customer l∗, customer j∗ and

unvisited set R∗ (not all), the optimal choice between replenishing and moving directly to the next

customer is of threshold type in residual capacity q.
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The proofs are shown in Appendix B.

Equation (20) is expressed by the following LP formulation (21)

max f0,N (Q) (21a)

s.t. fj
0,N (Q) ≤

∑
e

pj(e) · fj,N\j(Q− e), ∀j ∈ N , (21b)

fj
l,R(q) ≤ ∆lj +

∑
e

pj(e) · fj,R\l(Q− e), ∀l ∈ N , j ∈ R ⊆ N\l,

q ∈ Qfe
|R|(|R| ∈ {N − 1, N − 2, . . . , 2}), (21c)

fj
l,R(q) ≤

∑
e≤q

pj(e) · fj,R\l(q − e)

+ b ·
∑
e>q

pj(e) · (e− q) +
∑
e>q

pj(e) · fj,R\l(0), ∀l ∈ N , j ∈ R ⊆ N\l,

q ∈ Qfe
|R|(|R| ∈ {N − 1, N − 2, . . . , 2}), (21d)

fj
l,{j}(q) ≤ ∆lj , ∀l ∈ N , j ∈ N\l,R = {j}, q ∈ Qfe

1 , (21e)

fj
l,{j}(q) ≤ b ·

∑
e>q

pj(e) · (e− q), ∀l ∈ N , j ∈ N\l,R = {j}, q ∈ Qfe
1 , (21f)

fj
l,R(q), fl,R(q), fj

0,N (Q), f0,N (Q) ∈ R, ∀l ∈ N , j ∈ R ⊆ N\l,

q ∈ Qfe
|R|(|R| ∈ {N − 1, N − 2, . . . , 1}). (21g)

Constraints (21b) indicate that the vehicle departs from the depot with full capacity Q at initial

stage N , and its only option is to proceed to the first customer directly. Constraints (21c) and (21d)

translate Equation (20) correspondingly and capture the transition of expected penalty costs from

stage N −1 to 2. Constraints (21e) and (21f) state the situation at stage 1 when any expected penalty

cost at final stage 0, fl,ϕ(q) (∀l ∈ N , q ∈ Qfe
0 ), is zero. In addition, q ∈ Qfe

|R| (|R| = N − 1, . . . , 1) in

constraints (21c)–(21f) indicates the feasible range of residual capacity q at each stage k (k = |R| =
N − 1, . . . , 1), and Qfe

k (Qfe
|R|) is [(Q− (N − k) · E)+, Q− emin] for each stage k, where emin is the

minimal amount that demand ξ takes.

In LP formulation (21), the variables are f j
l,R(q) and fl,R(q) (l ∈ N ∪ 0, j ∈ {N ∪ 0}\l, R ⊆

{N ∪ 0} \l, q ∈ Qfe
|R|). Under objective (21a), the optimal solution f j

l,R(q)
∗ (fl,R(q)

∗) is the largest

lower bound of each expected penalty cost f j
l,R(q) (fl,R(q)).

5.2 Affine approximation for lower bound

Solving formulation (21) can be inefficient due to its many variables. Variables f j
l,R(q) and fl,R(q)

amount to the scale of O(N2 ·2N−1 ·Q) (calculated by N2 · (C1
N−1+C2

N−1+, . . . ,+CN−1
N−1) · (Q+1)+1).

Thus, a variable reduction method is applied to reduce the dimensionality of the model.

Variable reduction is firstly achieved by noting that fl,R(q) = min
j∈R

{
f j
l,R(q)

}
, meaning that con-

straints (22) are added in formulation (21).

fl,R(q) ≤ f j
l,R(q), ∀j ∈ R ⊆ N\l

(
l ∈ 0 ∪N , q ∈ Qfe

k , k ∈ {N,N − 1, . . . , 1}
)

(22)

Formulation (23) is then obtained

max f0,N (Q) (23a)

s.t. f0,N (q) ≤
∑
e

pj(e) · fj,N\j(Q− e), ∀j ∈ N , (23b)

fl,R(q) ≤ ∆lj +
∑
e

pj(e) · fj,R\l(Q− e), ∀l ∈ N , j ∈ R ⊆ N\l,

q ∈ Qfe
|R|

(
|R| ∈ {N − 1, N − 2, . . . , 2}

)
, (23c)
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fl,R(q) ≤
∑
e≤q

pj(e) · fj,R\j(q − e)

+ b ·
∑
e>q

pj(e) · (e− q)

+
∑
e>q

pj(e) · fj,R\j(0), ∀l ∈ N , j ∈ R ⊆ N\l,

q ∈ Qfe
|R|

(
|R| ∈ {N − 1, N − 2, . . . , 2}

)
, (23d)

fl,{j}(q) ≤ ∆lj , ∀l ∈ N , j ∈ N\l,R = {j}, q ∈ Qfe
1 , (23e)

fl,{j}(q) ≤ b ·
∑
e>q

pj(e) · (e− q), ∀l ∈ N , j ∈ N\l,R = {j}, q ∈ Qfe
1 , (23f)

fl,R(q), f0,N (Q) ∈ R, ∀l ∈ N ,

q ∈ Qfe
|R|

(
|R| ∈ {N − 1, N − 2, . . . , 1}

)
. (23g)

The number of variables is decreased, with only variables fl,R(q) included in the formulation. Variable

size can be further reduced by identifying a set of bases and substituting their affine form for the original

variables in the formulation. We derive the affine function forms as in (24a)–(24c) to approximate the

expected penalty costs. The affine functions are tailored to our problem structure. The affine functions

are adapted from the forms in extant research [e.g., in 37, 38].

f0,N (Q) ≈ θ0,Q,0, (24a)

fl,R(q) ≈ θl,q,0 +
∑
j∈R

(αl,q,j ·∆l,j + ωl,j · q), l ∈ N , j ∈ R ⊆ N\l, |R| ≥ 2, q ∈ Qfe
|R|, (24b)

fl,{j}(q) ≈ θl,q,0 + αl,q,j ·∆lj + ωl,j · q, l ∈ N , j ∈ N\l,R = {j}, (24c)

where θ ∈ RN ·Q+N+1, α ∈ R(N2−N)·(Q+1) and ω ∈ RN2−N . Affine functions (24a)–(24c) approximate

expected penalty cost fl,R(q). Firstly, penalty costs occur because restocking actions are taken or

outsourcing occurs, so terms αl,q,j · ∆l,j and ωl,j · q are introduced, respectively. αl,q,j · ∆lj implies

that restocking contributes to an additional travel cost ∆lj (j ∈ R ⊆ N\l), and wl,j · q indicates

that the outsourcing cost is relevant to available residual capacity q, whereas constant θ adjusts the

approximation of the penalty cost. Secondly, expected penalty costs are determined based on the

states (∀sk =
(
l, q,R)), so parameters θ, α and ω are defined concerning the states. Note that ω

is only relevant to current location l and remaining unvisited customer j (j ∈ R), considering that

residual capacity q is already reflected as a multiplier factor in term ωl,j · q. Term ω · q reflects the

monotonicity of penalty cost given residual capacity q, where the proof is indicated in Appendix A.

Lastly, (24b) reflects that the penalty cost is attributed to visiting different next possible customer

j ∈ R when more than one customer is included in the remaining unvisited set (|R| ≥ 2). With this

approximation (24a)–(24c), formulation (23) becomes

max θ0,0,Q (25a)

s.t. θ0,0,Q ≤
∑
e

pj(e) · θj,0,Q−e

+
∑

t∈N\j
∆jt ·

(∑
e

pj(e) · αj,t,Q−e

)
+

∑
t∈N\j

ωjt ·
(∑

e

pj(e) · (Q− e)
)
, ∀j ∈ N , (25b)

θl,0,q +
∑
t∈R

(∆lt · αl,t,q + ωlt · q) ≤ ∆lj

+
∑
e

pj(e) · θj,0,Q−e

+
∑

t∈R\j
∆jt ·

(∑
e

pj(e) · αj,t,Q−e

)
+

∑
t∈R\j

ωjt ·
(∑

e

pj(e) · (Q− e)
)
, ∀l ∈ N , j ∈ R ⊆ N\l,

q ∈ Qfe
|R|

(
|R| ∈ {N − 1, N − 2, . . . , 2}

)
,

(25c)
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θl,0,q +
∑
t∈R

(∆lt · αl,t,q + ωlt · q) ≤
(∑

e≤q

pj(e) · θj,0,q−e

+
∑
e>q

pj(e) · θj,0,0
)
+ b ·

∑
e>q

pj(e) · (e− q)

+
∑

t∈R\j
∆jt ·

(∑
e≤q

pj(e) · αj,t,q−e +
∑
e>q

pj(e) · αj,t,0

)
+

∑
t∈R\j

ωjt ·
(∑

e≤q

pj(e) · (q − e)
)

∀l ∈ N , j ∈ R ⊆ N\l,

q ∈ Qfe
|R|

(
|R| ∈ {N − 1, N − 2 . . . , 2}

)
,

(25d)

θl,0,q +∆lj · αl,j,q + ωlj · q ≤ ∆lj , ∀l ∈ N , j ∈ N\l, q ∈ Qfe
1 , (25e)

θl,0,q +∆lj · αl,j,q + ωlj · q ≤ b ·
∑
e>q

pj(e) · (e− q), ∀lN , j ∈ N\l, q ∈ Qfe
1 , (25f)

θ, α, ω ∈ R. (25g)

In formulation (25), variables include θ, α and ω, reaching the scale of O(N2 · Q) (calculated by

N2 · (Q + 1) +N2 −N + 1). The variable size is dramatically reduced concerning its original size in

formulation (23a)–(23g). In the following subsection, the method to solve ALP formulation (25) is

introduced.

5.3 Constraint sampling

Formulation (25) reduces variables to a manageable size. However, the number of constraints is still

too large to solve. We employ a constraint sampling approach [10] to tackle this issue. Constraint

sampling is a general method used to tackle LP formulations with few variables and an intractable

number of constraints. It approximates the solution to the ALP. Our constraint sampling framework

selects promising constraints, and a solution based on the reduced formulation is obtained. Specifically,

a promising constraint set is formed based on selected state-action pairs, and each pair is obtained by

sample learning from a heuristic policy. Only a subset of constraints is included in the formulation,

considering that some constraints are inactive or have a minor impact on the feasible region [10].

Our method is developed based on the general framework for constraint sampling. The gen-

eral method relies on the existence of an optimal policy, which is usually unknown. We propose a

multi-policy sampling framework to mimic the optimal policy. A similar idea appears in Novoa and

Storer [26]. The constraint space relevant to the ideal policy is mimicked based on the constraints

sampled by a set of heuristic policies. The local optimum obtained by a single heuristic policy can

thus be escaped by exploring a more extensive solution space discovered via policy diversification.

In our multi-policy sampling framework, we prepare a set of heuristic policies listed in Appendix A.

Each policy is found using a heuristic algorithm to learn about each sample. The state-action pairs are

thus generated. Specifically, for sample {ξ}sam, if applying policy pl, a sequence of states and actions

is obtained in the form (
sN , asN|pl ; sN−1, asN−1|pl ; . . . ; s0, as0|pl

){ξ}sam

,

where {ξ}sam denotes a sample of realized customer demand {ξl |l ∈ N }. ask|pl = (j, uj,l,R(q)) specifies

the outcome of applying distinct heuristic policy pl, potentially indicating a different routing decision

j and restocking decision uj,l,R(q) to be taken given realized state sk. State sk =
(
l, q,R) transits

to state sk−1 = (j, [q + (Q − q) · uj,l,R(q) − ξj ]
+,R\j) depending on action ask|pl = (j, uj,l,R(q)) and

realized demand ξj , where [·]+ indicates non-negative residual capacity. Therefore, as each heuristic

policy learns each sample, a set of states s and associated actions as|pl are obtained. The sequence

can be written as a set of pairs of states and actions (s, as|pl )(s = {sN , sN−1, . . . , s0}). The pool

of state-action pairs is finally formed by combining all sets of state-action pairs obtained during the

learning, denoted as Ps−a =
∑

pl∈Pls
s′←s,ask|pl

(s, as|pl).



Les Cahiers du GERAD G–2024–70 12

Each state-action pair determines a group of constraints. For example, state-action pair (sk, ask) =(
l, q,R, j, uj,l,R(q)) (if |R| ≥ 2, R ≠ N ) implies that constraints (26) are selected.



θl,0,q+
∑
t∈R

(∆lt · αl,t,q + ωlt · q) ≤

∆lj +
∑
e

pj(e) · θj,0,Q−e

+
∑

t∈R\j
∆jt ·

(∑
e

pj(e) · αj,t,Q−e

)
+

∑
t∈R\j

ωjt ·
(∑

e

pj(e) · (Q− e)

)
, uj,l,R(q) = 1,

θl,0,q+
∑
t∈R

(∆lt · αl,t,q + ωlt · q) ≤(∑
e≤q

pj(e) · θj,0,q−e +
∑
e>q

pj(e) · θj,0,0
)

+ b ·
∑
e>q

pj(e) · (e− q)

+
∑

t∈R\j
∆jt ·

(∑
e≤q

pj(e) · αj,t,Q−e +
∑
e>q

pj(e) · αj,t,0

)

+
∑

t∈R\j
ωjt ·

(∑
e≤q

pj(e) · (q − e)

)
, uj,l,R(q) = 0,

q ∈ Qfe
|R|, 2 ≤ |R| ≤ N

(26)

Constraints (26) imply that visiting customer j next is regarded as a promising action when the

vehicle is located at customer l and given unvisited customer set R (j ∈ R). Note that all feasible

residual capacities q ∈ Qfe
|R| are included, and whether the restocking action taken (uj,l,R(q) = 1)

or not (uj,l,R(q) = 0) is taken into account. All feasible residual capacities q ∈ Qfe
|R| are considered

since some residual capacities may not be observed on sampling. Also, constraints indicating with and

without restocking are included to reveal the threshold-type restocking nature given different realized

residual capacities. Similarly, when the state-action pair is
(
l, q, {j}, j, uj,l,{j}(q)) (l ∈ N , j ∈ N\l,

R = {j}), the selection of constraints is discussed identically, indicated by (27).
θl,0,q +∆lj · αl,j,q + ωlj · q ≤ ∆lj , uj,l,R(q) = 1,

θl,0,q +∆lj · αl,j,q + ωlj · q ≤ b ·
∑
e>q

pj(e) · (e− q), uj,l,R(q) = 0, q ∈ Qfe
1

(27)

As for a state-action pair (0, q ≡ Q, j, uj,0,N (q) ≡ 0) (j ∈ N ) at beginning stage N , the selected

constraint is naturally the same form as in (25b). Therefore, the promising constraint set is formed. All

promising constraints are selected based on promising state-action pairs (sk, ask|m) ∈ Ps−a, according

to (26), (27) and (25b).

By solving ALP formulation (25) with the constraints sampled by state-action pairs (sk, ask|m) ∈
Ps−a, the values of parameters θ, α and ω are approximated. The lower bounds of expected penalty
costs LJ

sk
(J ∈ R, sk =

(
l, q,R) ∈ Ψ) are subsequently obtained based on (28a)–(30).

L
J
sN
≈

∑
e

pJ (e) · θJ,0,Q−e +
∑

t∈N\J

∆Jt ·
(∑

e

pJ (e) · αJ,t,Q−e

)
+

∑
t∈N\J

ωJt ·
(∑

e

pJ (e) · (Q− e)
)
, sN = (0, Q,N ), j ∈ N , (28a)

L
J
sk

= min

{
L
R(J)
sk

, L
D(J)
sk

}
≈min



∆lJ +
∑
e

pJ (e) · θJ,0,Q−e +
∑

t∈R\j
∆Jt ·

(∑
e

pJ (e) · αJ,t,Q−e

)
+

∑
t∈R\J

ωJt ·
(∑

e
pJ (e) · (Q − e)

)
, uJ,l,R(q) = 1,

( ∑
e≤q

pJ (e) · θJ,0,q−e +
∑

e>q
pJ (e) · θJ,0,0

)
+

∑
t∈R\J

∆Jk

·
( ∑
e≤q

pJ (e) · αJ,t,Q−e +
∑

e>q
·pJ (e) · αJ,t,0

)

+
∑

t∈R\J
ωJt ·

( ∑
e≤q

pJ (e) · (q − e)
)

+ b ·
∑

e>q
pJ (e) · (e − q), uJ,l,R(q) = 0,

∀sk =
(
l, q,R) ∈ Ψ, J ∈ N\l, l ∈ N , q ∈ Qfe

k
, 2 ≤ k ≤ N − 1,

(28b)
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L
J
s1
≈min

∆lJ , b ·
∑
e>q

pJ (e) · (e− q)

 , ∀s0 =
(
l, q, {J}) ∈ Ψ, J ∈ N\l, l ∈ N , q ∈ Qfe

1 . (28c)

(28a)–(30) approximates lower bounds for each state sk (sk ∈ Ψ, sk ∈ Ps−a) along with each routing

choice J (J ∈ R). (28a)–(30) is derived based on (24a)–(24c) and (20). Values θ, α and ω are sub-

stituted into (24a)–(24c), to approximate each fl,R(q) (∀l ∈ N ,R ⊆ N\l, q ∈ Qfe
|R|, s ∈ Ps−a). Then,

LJ
sk
, the lower bound of fJ

l,R(q), is obtained by substituting the approximation of fl,R(q) into (20).

Finally, expected cost-to-go values Vk

(
l, q,R) (sk ∈ Ψ, sk ∈ Ps−a) are approximated by substituting

LJ
sk

into (17).

6 Price-directed policy

ALP methods can lead to price-directed policies [2, 4, 38]. If solving a minimum problem, any feasible

solution of an ALP formulation generates lower bounds of value functions. The proof can be found in

relevant articles [e.g., in 3, 38]. In a price-directed policy, lower bounds are utilized to approximate

the value functions and then to guide decision-making for each realized state.

We develop an ALP method to approximate expected penalty costs. Based on (17), lower bounds

for the value functions are generated. Our price-directed policy determines next routing location

jk
(
l, q,R) and makes restocking decision uj,l,R(q) for state sk =

(
l, q,R) (sk ∈ Ψ, k ∈ Ω\{N, 0},

sk ∈ Ps−a) based on (29a)–(29b).

uJ,l,R(q) =

{
1, ifL

R(J)
sk ≤ L

D(J)
sk

0, ifL
D(J)
sk > L

R(J)
sk

, ∀J ∈ R, J ∈ Ps−a (29a)

jk
(
l, q,R) = arg min

J∈R,J∈Ps−a

{
dlJ + l

J,R\J
tsp + LJ

sk

}
, where LJ

sk
= min

{
LD(J)
sk

, LR(J)
sk

}
(29b)

For state sk =
(
l, q,R) at stage k ∈ {N−1, . . . , 1}, (29a) is applied first to make the restocking decision

for each routing choice J ∈ R. Then, the optimal routing option jk
(
l, q,R) is selected based on (29b),

and restocking decision uj,l,R(q) is made accordingly based on routing choice jk
(
l, q,R). L

R(J)
sk and

L
D(J)
sk are calculated as in (28b) or (30) for different states, when restocking occurs at customer J

(uJ,l,R(q) = 1) or not (uJ,l,R(q) = 0), respectively. Additionally, (30) determines routing decision

(jN (0, Q,N )) at the beginning, when the vehicle departs from depot 0 with full capacity Q and goes
directly to the first customer (i.e., uj,0,N (Q) ≡ 0), where LJ

sN is obtained from (28a).

jN (0, Q,N ) = arg min
J∈N ,J∈Ps−a

{
d0J + l

J,N\J
tsp + LJ

sN

}
(30)

Lastly, at final stage 0, the vehicle proceeds directly to the depot (i.e., j0
(
l, q, ϕ) = 0 and u0,l,ϕ(q) = 0).

Note that observed states s and routing decisions j are restricted by the promising state-action

space Ps−a for the tractability of the corresponding ALP formulation. Theoretically, our price-directed

policy can infinitely approach the optimal policy if the state-action space Ps−a is well-selected.

7 Computational study

This paper proposes a partial-outsourcing strategy and an ALP method is developed to compute it.

The ALP method is employed to approximate value functions which are then used within the Bellman

equation to derive a price-directed policy (PD). The solution quality of PD policy is demonstrated using

a computationally effective a posteriori bound, and the method is further compared with other dynamic

and static routing policies. The experimental results show the solution quality and computational cost

of our method.
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Instance generation

Instances are generated following the instance generation procedures used in Gendreau et al. [16]. Cus-

tomer locations are randomly generated in 1,000 by 1,000 square. The depot is located at coordinates

(0, 0) or (500, 500), labeled as corner and midpoint, respectively. Customer demand corresponds to

a discrete uniform random variable with support {1, 2, . . . , 5}, and the mean demand of any customer

in any instance is 3. The problem size ranges from 10 to 40 customers in increments of 5. We consider

instances with 40 customers or fewer for comparison with other benchmark approaches and for the

computational difficulty of solving larger ones. This is in line with the sizes of instances considered in

Toriello et al. [38]. The expected filling rate is determined by f̄ =
∑N

l=1 E(ξ̃l) /Q , and takes 1.9, 2.5

or 3.4 to show different failure frequencies. Vehicle capacity Q is computed by rounding 3N/f̄ to the

nearest integer.

Outsourcing price b is set to ∆̄lj /
∑

e(pj(e) · e) , when the outsourcing cost b ·
∑

e(pj(e) ·e) equals to
∆̄lj , where ∆̄lj is the average cost of a restocking trip. Price b reveals a threshold. If a higher price is

incurred, restocking may save costs. Otherwise, it is better to outsource. ∆̄lj is the average restocking

cost between consecutive customers on a feasible route; herein, a TSP route is used. Also, price b can

fluctuate to reflect the network characteristics. 20 instances are generated for each combination of

settings.

Settings of PD policy

The PD policy is developed based on the multi-policy sampling framework. In practice, tiny adjust-

ments are made to elicit better performance. Specifically, an action is taken if it can be obtained from

the state-action pool. Namely, the next customer is only selected from those regarded as promising by

the policy set. We also arbitrarily adjust the composition of policies in the set. For each instance, the

best combination of policies is chosen to find the solution to our PD policy. The candidate policies

are described in Appendix A. In our implementation, the states and relevant actions are generated

by implementing each candidate heuristic to learn about each sample. A sample is a set of realized

customer demands ({ξ}sam, as defined in Section 5.3). To determine state-action pool Ps−a, 500

samples are generated for learning by each candidate heuristic. We observe numerical stability with

200 samples where there is no significant deviation in terms of the solution quality compared to the

solutions obtained using 500 samples or even more. This observation is also in line with the reported in

Secomandi [32] and Bertsimas [6], where 200 samples are considered appropriate. Nevertheless, we use

500 samples as our approach could scale to this number of samples without any noticeable performance

drop.

Solution quality of PD policy

Performances are compared in terms of solution quality and solution time against the benchmark

approaches in the literature, namely, the partial re-optimization (PR) [34], the one-step rollout algo-

rithm (ORA) [32], the two-step rollout algorithm (TRA) [26], and the rollout algorithm (RA) [33].

The benchmark approaches are all adapted to generate solutions for the VRPSD with outsourcing.

PR, realized by PH(10) [refers to 34], creates an effective a posteriori bound (denoted as BPR). The

comparisons with ORA and TRA exhibit the performance of various re-optimization methods. RA is

introduced as a baseline approach to indicate the benefit of routing dynamically.

To indicate the solution quality, relative gap εPR and improvement rates γRA, γORA and γTRA

are introduced. εPR is used to evaluate the difference between the results obtained by PD policy

and the posteriori bound (εPR =
V PD
N (0,Q,N )−BPR

BPR ). γRA, γORA and γTRA are used to reveal the

improvement percentages of policies PD vs. RA (γRA =
V PD
N (0,Q,N )−V RA

N (0,Q,N )

V RA
N (0,Q,N )

), policies PD vs. ORA

(γORA =
V PD
N (0,Q,N )−V ORA

N (0,Q,N )

V ORA
N (0,Q,N )

), and policies PD vs. TRA (γTRA =
V PD
N (0,Q,N )−V TRA

N (0,Q,N )

V TRA
N (0,Q,N )

),
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respectively. By implementing policies PD, PR, RA, ORA and TRA, the actual costs are observed for

each problem setting. 20 instances are generated for each problem setting. The results in each line of

Tables 1 and 2 reveal the averages over the 20 instances in a set. Tables 1 and 2 indicate the cases

where the depot is located at the midpoint and in the corner, respectively. The problem number with

an asterisk(*) indicates the problem setting when our approach performs the best.

Table 1: Total costs based on different approaches (midpoint depot)

problem
No.

customers &
capacity
(N,Q)

method
PD

bound
BPR

method
TRA

method
ORA

method
RA

gap
εPR

rate
γTRA

rate
γORA

rate
γRA

*1 (10,16) 4065.21 4066.06 4522.68 4455.09 4372.1
-

0.02%
-10.12% -8.75% -7.02%

*3 (15,24) 4188.86 4196.78 4094.76 4247.62 4247.62
-

0.19%
2.30% -1.38% -1.38%

5 (20,24) 4343.21 4003.77 4363.64 4598.18 4481.84 8.48% -0.47% -5.55% -3.09%
7 (25,30) 5587.74 5471.54 5646.72 5583.55 5583.55 2.12% -1.04% 0.08% 0.08%
9 (30,36) 5378.2 5271.42 5631.77 5663.46 5426.35 2.03% -4.50% -5.04% -0.89%
11 (35,31) 5722.17 5646.82 6077.37 6112.4 6112.41 1.33% -5.84% -6.38% -6.38%
13 (40,35) 6107.5 5922.32 6456.65 6317.32 6317.32 3.13% -5.40% -3.32% -3.32%

Table 2: Total costs based on different approaches (corner depot)

problem
No.

customers &
capacity
(N,Q)

method
PD

bound
BPR

method
TRA

method
ORA

method
RA

gap
εPR

rate
γTRA

rate
γORA

rate
γRA

2 (10,16) 5908.02 5863.57 6628.63 7174.42 7309.71 0.76% -10.87% -17.65%
-

19.18%
4 (15,24) 6256.74 6149.11 6366 6157.94 6181.17 1.75% -1.72% 1.60% 1.22%

*6 (20,24) 7018.32 7106.39 7925.02 7947.54 7962.74
-

1.24%
-11.44% -11.69%

-
11.86%

8 (25,30) 7798.34 7426.21 8158.41 8310.55 8348.96 5.01% -4.41% -6.16% -6.60%

*10 (30,36) 7849.41 7991.7 9690.45 9752.51 9326.71
-

1.78%
-19.00% -19.51%

-
15.84%

12 (35,31) 9560.66 9442.15 9811.08 9566.41 9592.3 1.26% -2.55% -0.06% -0.33%
14 (40,35) 10547.54 9954.79 10812.76 10929.05 10936.33 5.95% -2.45% -3.49% -3.56%

Our method exhibits good performance. The solution quality is demonstrated using posterior bound

BPR. A smaller gap of less than 10% is observed for our ALP approach versus the posterior bound

BPR. A similar finding was observed by Torriello et al. [38] in their study of a TSP problem. The gap

between their ALP approach and the posteriori bound was within 20%. Their bound is comparable to

bound BPR, which is determined by adapting the PR method to their problem context. Additionally,

our policy (PD) generally outperforms the two dynamic routing policies (ORA and TRA) and the

fixed routing policy (RA).

The results demonstrate the potential of our algorithm in solving VRPSD. The competitive per-

formances of our policy versus PR are shown in problem settings 10, 6, 3, and 1. Our algorithm is

realized by incorporating enhancement techniques, including decomposition-based value function ap-

proximations, lower bounding procedures based on affine functions, and constraint sampling. It should

be noted that a simple and intuitive constraint sampling is in use in our framework. This constraint

sampling approach exploits a local solution space restricted by current heuristic policies, which might

impede the performance of our method. A better version of constraint sampling is to exploit the entire

space. The encouraging results from problem settings 10 and 6 make us optimistic about the potential

of our solution framework for solving VRPSD.

The experiments were conducted on a personal computer with an Intel Core 3.2 GHz processor and

16 GB RAM, using Gurobi as the LP solver. The computational time for solving the problem with

different settings is discussed in the following.
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Computational costs

The total time for PD policy comprises two parts, i.e., the pre-compute time (indicated by prep.) and

the time for implementation (indicated by imple.). The pre-compute time mainly consists of the time

required to prepare constraints (i.e., the formation of the state-action pool) and the time required to

choose the best subset of constraints (see Appendix A). As shown in Tables 3 and 4, it takes an almost

equal amount of computational effort to obtain the solution by PD policy as it does to obtain the

posteriori bound by PR policy.

Table 3: CPU times of different approaches in seconds (midpoint depot)

problem
No.

customers &
capacity (N,Q)

method PD bound

BPR
method
TRA

method
ORA

method
RA

time(PD)/

time(BPR)prep. imple. total

1 (10,16) 1657.22 5.34 1662.56 1612.07 209.83 7.94 3.28 103.13%
3 (15,24) 4501.26 10.81 4512.07 4480.33 1063.96 23.76 5.38 100.71%
5 (20,24) 8254.44 25.78 8280.22 8187.7 1827.99 52.06 19.05 101.13%
7 (25,30) 13197.41 37.82 13235.23 12655.04 4550.32 95.08 27.11 104.58%
9 (30,36) 36873.15 229.15 37102.3 33943.47 8277.56 166.59 49.18 109.31%
11 (35,31) 32546.75 170.37 32717.12 31928.81 8008.07 286.81 143.74 102.47%
13 (40,35) 37249.45 176 37425.45 35754.07 11883.46 393.28 184.03 104.67%

Table 4: CPU times of different approaches in seconds (corner depot)

problem
No.

customers &
capacity (N,Q)

method PD bound

BPR
method
TRA

method
ORA

method
RA

time(PD)/

time(BPR)prep. imple. total

2 (10,16) 5677.84 6.29 5684.13 5619.02 235.3 23.56 18.84 101.16%
4 (15,24) 4571.56 28.09 4599.65 4472.1 1050.55 22.44 4.23 102.85%
6 (20,24) 9028.58 29.83 9058.41 8705.63 2114.29 60.86 27.69 104.05%
8 (25,30) 13081.9 59.18 13141.08 12425.25 4452.79 105.11 34.95 105.76%
10 (30,36) 37971.87 76.65 38048.52 35572.98 8127.48 174.37 52 106.96%
12 (35,31) 23957.89 143.37 24101.26 23291.4 9938.88 306.63 162.09 102.86%
14 (40,35) 50101.47 348.81 50450.28 48165.15 14865.93 579.09 367.47 104.74%

Solution quality of PD policy in time limits

Computational efficiency is further improved by limiting runtimes for solving the ALP formulation (25)

to see if the performance of our algorithm noticeably degrades. The performance of PD policy is

captured at different runtimes (at 1 minute, 5 minutes, 10 minutes, 30 minutes, and 1 hour), and

comparisons are drawn with posteriori bound BPR. Tables 5 shows the resulting gaps and indicates

that our algorithm can yield good-quality solutions within limited runtimes. The relative gaps are

reduced along with the increased time limits and achieve within 15% after a runtime of 30 minutes.

Sensitivity analysis of outsourcing price

In the sensitivity analysis, outsourcing price b fluctuates; the mean ratios of outsourcing to restock-

ing are computed. In Table 6, b0 refers to the initial price, taking value ∆̄lj /
∑

e(pj(e) · e) . The

price increases (β · b0, β = 1.2, 1.5, 1.9) or decreases (β · b0, β = 0.8, 0.5, 0.1) to reflect the influence

of the outsourcing price on decision-making. As shown in Table 6, outsourcing frequency gener-

ally increases as the outsourcing price drops, which is consistent with intuition. The ratios some-

times do not change following the general trend, indicating the decisions are ultimately made by

min
{
V

D(j)
k

(
l, q,Rk(l)

)
, V

R(j)
k

(
l, q,Rk(l)

)}
based on Equation (4). Uniform demand is considered in

the analysis, and outsourcing price is altered.
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Table 5: Relative gaps εPR at different runtimes

Problem
set No.

1 min 5 min 10 min 30 min 1 hour

1 -0.02% -0.02% -0.02% -0.02% -0.02%
2 1.03% 1.03% 1.03% 1.03% 1.03%
3 7.18% 7.18% 7.18% 7.18% 7.18%
4 5.44% 5.44% 5.44% 5.44% 5.44%
5 8.48% 8.48% 8.48% 8.48% 8.48%
6 8.04% 8.04% -0.26% -0.26% -0.26%
7 3.83% 2.92% 2.92% 2.92% 2.92%
8 15.20% 15.20% 13.35% 13.35% 10.02%
9 2.63% 2.63% 2.63% 2.63% 2.63%
10 11.41% 4.14% 4.14% 4.14% 4.14%
11 1.34% 1.34% 1.34% 1.34% 1.34%
12 1.26% 1.26% 1.26% 1.26% 1.26%
13 3.51% 3.51% 3.51% 3.51% 3.51%
14 17.37% 17.37% 7.43% 5.95% 5.95%

Table 6: Sensitivity analysis of outsourcing price b

Problem
set No.

0.1·b0 0.5·b0 0.8·b0 b0 1.2·b0 1.5·b0 1.8·b0

1 Inf 1.38 1.15 1.15 1.05 0.63 0.78
2 Inf 1.10 0.65 0.33 0.33 0.33 0.23
3 Inf 0.38 0.28 0.28 0.28 0.13 0.03
4 Inf 0.50 0.40 0.10 0.10 0.13 0.10
5 Inf Inf Inf Inf Inf Inf Inf
6 1.56 0.68 0.64 0.61 0.58 0.58 0.64
7 0.71 0.16 0.09 0.08 0.04 0.02 0.04
8 Inf 0.93 0.33 0.30 0.28 0.25 0.15
9 0.58 0.50 0.20 0.15 0.12 0.09 0.08
10 5.83 0.36 0.20 0.23 0.23 0.10 0.17
11 9.62 4.67 4.53 3.78 4.62 4.57 3.59
12 1.79 1.30 1.37 1.18 1.07 0.35 0.31
13 6.55 5.41 2.38 2.93 1.53 1.56 0.92
14 14.03 0.55 0.13 0.09 0.09 0.07 0.01

8 Conclusions

The paper studies the VRPSD with re-optimization concerning the single-vehicle situation. A re-

course policy in which unmet demands are outsourced to other carriers is proposed. The partial-

outsourcing strategy is developed. The strategy is formulated with an MDP formulation, and an ALP

method is developed to solve it. Lower bounds of value functions are generated based on the proposed

decomposition-based ALP framework and are used to guide decision-making to obtain a price-directed

policy.

The multi-policy sampling framework is developed to select constraints for ALP formulation. Based

on the proposed constraint sampling, the sub-optimal solution spaces discovered by different heuristic

policies are considered using an integrated approach. The experimental results show that our approach

generally yields competitive solutions to the VRPSD.

The proposed approach can be implemented to tackle the scenarios in a reoptimization scheme

when the dispatcher optimally makes the adaptive routing decision while considering the trade-off

between the routing and outsourcing (or penalty) costs. It is worth mentioning that our approach is

developed under a specific application background, in which outsourcing (or penalty) cost is amounted

by the demand outsourced. Further efforts can be made to enhance the approach’s applicability by

considering penalties for the unpunctuality of delivery and outsourcing carriers’ spatial and temporal

availability.
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Future efforts can be spent on refining the solution methodology, to improve its ability to solve larger

problems. The ALP approach is theoretically appealing, providing a computationally tractable solution

framework. In this solution framework, an LP formulation is solved, and then, the approximations of

value functions are made. The decisions can be determined in real-time based on the approximated

value functions that have been predetermined. To further improve the approach in solving larger

problems and scaling its ability to approximate the value functions, one should devise a heuristic that

can potentially be based on a reduced feasible space or implemented in a rolling fashion (i.e., using a

restricted set of common parameters and their associated constraints, or adding them progressively).

Future efforts can also be spent on enhancing the approach with machine learning techniques. One

possible way to enhance our approach using machine learning techniques is to enhance the ALP method

with constraint selection. Besides, it is also interesting to introduce outsourcing recourse strategies to

other routing problems, such as two-echelon logistics systems and inventory routing, to which problem

contexts the outsourcing recourse strategies can be adapted.

A Policy set in multi-policy sampling framework

A set of policies is prepared to generate the price-directed policy. These policies determine the state-

action pairs and the sampled constraints. The policy set comprises the following candidates: two

PR-type policies, two ORA-type policies, two TRA-type policies, a category of a priori optimization

policies, and a myopic policy.

In the candidate policies, the value functions are either computed originally as their methods

indicate or based on the decomposition framework as in (17). For example, partial re-optimization

(PR) [34] is applied as one heuristic policy. Another PR-type policy is generated by implementing

the partial re-optimization framework in the formulation of penalty cost, and the value functions are

then obtained based on (17). So, based on different value function evaluations (i.e., with or without

decomposition), an original policy and its variant based on decomposition are generated for each

heuristic policy. We introduce partial re-optimization (PR) [34], one-step rollout algorithm (ORA) [32],

two-step rollout algorithm (TRA) [26] and rollout algorithm (RA) [33] to generate policies in the policy

set. The variants based on the decomposition framework are generated accordingly.

Among the candidates, some policies belong to the a priori optimization method category. The fixed

routing sequence is implemented, and only restocking decisions are made during the execution of the

policy. We diversify the generation of the a priori route using the rollout static method [33], a variant

of the rollout static method (i.e., based on decomposition as in (17)) and the TSP method [8, 20, 27].

In addition, we also diversify the candidate choice by introducing a myopic policy. Under the

myopic paradigm, routing and restocking decisions are made by only considering the immediate cost

of the current state. For example, assume the current state is sk =
(
l, q,R). The restocking decision is

first made for each potential routing choice, i.e., uj,l,R(q) = 1, if dl0 + d0j ≤ dlj + b ·
∑
e>q

pj(e) · (e− q),

otherwise, uj,l,R(q) = 0, and let cime(j) denote the immediate cost if traveling to customer j (∀j ∈ R).

Then, the routing decision is made based on argmin
j∈R

{cime(j)}, and the restocking decision is determined

accordingly.

Overall, ten candidate heuristic policies are included in our setting, called par-reopt, par-reopt-

de, rollout-dynamic, rollout-dynamic-de, two-rollout-dynamic, two-rollout-dynamic-de, rollout-static,

rollout-static-de, TSP and myopic policies, where ’-de’ represents the policy variant based on decompo-

sition. In practice, some of them may be selected to form the policy set, depending on the performance

of the resulting price-directed policy. Policy candidates can also be hand-selected. Different combina-

tions of policies can be used to sample constraints, with the goal of obtaining a better price-directed

policy.
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B Properties of penalty costs

B.1 Monotonicity of penalty cost on residual capacity q

Proof. Penalty cost f j
l,R(q) is defined as in Equation (20). Proving non-increasing in q is to testify

f j
l,R(q2) ≤ f j

l,R(q1) given 0 ≤ q1 ≤ q2 ≤ Q. Four situations need to be considered, when uj,l,R(q1) and

uj,l,R(q2) take different values (uj,l,R(q) ∈ {0, 1}).

Situation (1) If uj,l,R(q1) = 1 (case R) and uj,l,R(q2) = 1 (case R), then, f
j(R)
l,R (q2) = f

j(R)
l,R (q1);

Situation (2) If uj,l,R(q2) = 0 (case D) and uj,l,R(q1) = 1, then, f
j(D)
l,R (q2) ≤ f

j(R)
l,R (q2) = f

j(R)
l,R (q1);

Situation (3) If uj,l,R(q1) = 0 and uj,l,R(q2) = 0, then,

f
j(D)
l,R (q2)− f

j(D)
l,R (q1) =

∑
e≤q2

pj(e) · fj,R\j(q2 − e) + b ·
∑
e>q2

pj(e) · (e− q2) +
∑
e>q2

pj(e) · fj,R\j(0)

−
∑
e≤q1

pj(e) · fj,R\j(q1 − e)− b ·
∑
e>q1

pj(e) · (e− q1)−
∑
e>q1

pj(e) · fj,R\j(0)

= b ·
∑
e>q2

pj(e) · (q1 − q2)−
∑
e≤q1

pj(e) · (fj,R\j(q1 − e)− fj,R\j(q2 − e))

− b ·
q2∑

e>q1

pj(e) · (e− q1)−
q2∑

e>q1

pj(e) · (fj,R\j(0)− fj,R\j(q2 − e))

≤ 0;

Situation (4) If uj,l,R(q2) = 1 and uj,l,R(q1) = 0, then,

f
j(D)
l,R (q1) ≤ f

j(R)
l,R (q1) = f

j(R)
l,R (q2),

and

f
j(D)
l,R (q1) =

∑
e≤q1

pj(e) · fj,R\j(q1 − e) + b ·
∑
e>q1

pj(e) · (e− q1) +
∑
e>q1

pj(e) · fj,R\j(0)

=
∑
e≤q2

pj(e) · fj,R\j(q1 − e)−
q2∑

e>q1

pj(e) · fj,R\j(q1 − e) + b ·
∑
e>q2

pj(e) · (e− q1)

+ b ·
q2∑

e>q1

pj(e) · (e− q1) +
∑
e>q2

pj(e) · fj,R\j(0) +
q2∑

e>q1

pj(e) · fj,R\j(q2 − e)

≥ b ·
∑
e>q2

pj(e) · (e− q2) +
∑
e>q2

pj(e) · fj,R\j(0) +
∑
e≤q2

pj(e) · fj,R\j(q2 − e)

≥ f
j(R)
l,R (q2)

∴ f
j(D)
l,U (q1) = f

j(R)
l,U (q2).

B.2 Possible threshold-type replenishment

For particular customer l∗ and unvisited set R∗ (not all), the optimal choice between replenishing and

moving directly to the next customer is of threshold type in residual capacity q ∈ Qfe
|R|.

Because of the monotonicity of the expected penalty cost function, if f
j(D)
l,R (qmin) > f

j(R)
l,R (qmin), the

decision for replenishing or proceeding to the next customer directly is of threshold-type in available

capacity q ∈ Qfe
|R|, as shown in Fig. B1(a). (qmin ∈ Qfe

|R| is the minimum feasible residual capacity

when |R| number of customers remain unvisited.) Otherwise, the optimal decision is always to move

directly to the next customer (case D), whatever the residual capacity q is, as shown in Fig. B1(b).
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Figure B1: Possible threshold-type replenishment

Outsourcing price b appears to influence whether situation (a) or (b) happens. Visiting the next

customer directly is always welcomed if the price is low enough. However, outsourcing is normally

priced so that restocking is preferred in some circumstances and can be avoided in others. We should

note that the expected penalty cost function can be piece-wise linear because of the threshold type,

and the max customer demand is lower than vehicle capacity E < Q.

C Notation

Table C1: Notation

l, j, J, i Customers

ξ̃l Demand of customer l

e Realized amount for random variable ξ̃l
pl(e) Probability when variable ξ̃l takes e
q,Q Residual capacity and capacity limit of the vehicle
dlj Traveling distance between customers l and j
∆lj Extra traveling distance for a preventive return to the depot

b Unit price for outsourcing
Rk(l) Set of unvisited customers from current customer l on stage k

sk State variable, equaling to
(
l, q,Rk(l)

)
, representing the vehicle departs from customer l with

residual capacity q and set of unvisited customers Rk(l)
Vk

(
l, q,Rk(l)

)
Cost-to-go value at state

(
l, q,Rk(l)

)
jk

(
l, q,Rk(l)

)
Optimal routing decision, customer j, given state

(
l, q,Rk(l)

)
uj,l,Rk(l)

(q) Restocking decision at state
(
l, q,Rk(l)

)
if routing customer j next

fj
k

(
l, q,Rk(l)

)
Expected penalty cost for routing customer j next at state

(
l, q,Rk(l)

)
, fj

l,R(q) for ease of
notation

fk
(
l, q,Rk(l)

)
Expected penalty cost at state

(
l, q,Rk(l)

)
, fl,R(q) for ease of notation

Lj
sk Lower bound of fj

k

(
l, q,Rk(l)

)
vk−1(j,Rk−1(j; l)) Traveling cost by following a partial route starting from customer j and visiting customers in

set Rk−1(j; l) subsequently

L
j,Rk−1(j;l)
tsp Lower bound of vk−1(j,Rk−1(j; l))

θ, α, ω Basis within affine functions to approximate value functions
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