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Y. Diouane, S. Gürol, O. Mouhtal, D. Orban

G–2024–66

Septembre 2024

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
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nécessaire et un lien vers l’article publié est ajouté.
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Abstract : We explore a scaled spectral preconditioner for the efficient solution of sequences of
symmetric and positive-definite linear systems. We design the scaled preconditioner not only as an
approximation of the inverse of the linear system but also with consideration of its use within the con-
jugate gradient (CG) method. We propose three different strategies for selecting a scaling parameter,
which aims to position the eigenvalues of the preconditioned matrix in a way that reduces the energy
norm of the error, the quantity that CG monotonically decreases at each iteration. Our focus is on
accelerating convergence especially in the early iterations, which is particularly important when CG is
truncated due to computational cost constraints. Numerical experiments provide in data assimilation
confirm that the scaled spectral preconditioner can significantly improve early CG convergence with
negligible computational cost.

Keywords : Sequence of linear systems, conjugate gradient method, deflated CG, spectral precondi-
tioner, convergence rate, data assimilation

Résumé : Nous explorons la mise à l’échelle d’un préconditionneur spectral pour résoudre efficace-
ment une suite de systèmes linéaires symétriques et définis positifs. La mise à l’échelle proposée du
préconditionneur agit non seulement comme une approximation de l’inverse du système linéaire, mais
elle prend également en compte l’utilisation du préconditionneur dans la méthode du gradient conjugué
(CG). Nous proposons trois stratégies différentes pour la sélection d’un paramètre de mise à l’échelle.
L’objectif est de positionner les valeurs propres de la matrice préconditionnée de manière à réduire la
norme d’énergie de l’erreur, qui est la quantité minimisée par CG à chaque itération. La méthodologie
proposée permet d’accélérer la convergence, notamment lors des premières itérations de CG, ce qui est
particulièrement important lorsque le CG est arrêté prématurément en raison des contraintes de coût
de calcul. Des expériences numériques en assimilation de données confirment que la mise à l’échelle
du préconditionneur spectral améliore de manière significative la convergence initiale du CG, avec un
coût de calcul négligeable.

Acknowledgements: This work was funded by French National Programme LEFE/INSU.
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1 Introduction

Efficiently solving sequences of symmetric positive-definite (SPD) linear systems

A(j)x(j) = b(j), j = 1, 2, . . . (1)

is crucial in various inverse problems of computational science and engineering. For instance, in

data assimilation [4, 15], where one aims to solve a large-scale weighted regularized nonlinear least-

squares problem via the truncated Gauss-Newton algorithm (GN) [11, 20], each iteration involves

solving a linear least-squares subproblem. The latter may be formulated as a large SPD linear system,

typically solved using the preconditioned conjugate-gradient method (PCG). Since consecutive systems

do not differ significantly, recycling Krylov subspace information has been explored and proven to be

effective [6, 10, 17, 19].

One way of recycling Krylov subspace information involves leveraging search directions obtained

from PCG on earlier systems to construct a limited-memory quasi-Newton preconditioner (LMP) [17,

19]. This preconditioner, built solely from PCG information, does not require explicit knowledge of

any matrix in the sequence, making it particularly suitable for applications where only matrix-vector

products are available, which is the case of data assimilation. [10] generalizes this limited-memory

preconditioner, and introduces specific variants when used with eigen- or Ritz pairs.

They focused on a first-level preconditioner, capable of clustering most eigenvalues at 1 with few

outliers, is already available for the first linear system in sequence. Then, they used LMP as a second-

level preconditioner to improve the efficiency of the first. The goal of the LMP is to capture directions

in a low-dimensional subspace that the first-level preconditioner may miss, and use them to improve

convergence of PCG. When A(j) = A for all j, spectral analysis of the preconditioned matrix when

used with k pairs has shown that LMP can cluster at least k eigenvalues at 1, and that the eigenvalues

of the preconditioned matrix interlace with those of the original matrix [10]. The efficiency of this

approach has been demonstrated in a real-life data assimilation applications [10, 24].

We focus on improving the performance of the spectral LMP [7, 10], which is built by using eigen-

pairs of A(j). The spectral LMP shares the same formulation as the abstract balancing domain decom-

position method [18] and is equivalent to deflation-based preconditioning when used with a specific

initial point [24].

When designing preconditioners for PCG, the primary focus in the literature is mostly on A and the
significance of the initial guess is overlooked. Although the importance of the initial guess is mentioned,

its impact on the choice of a preconditioner is not well studied. Favorable eigenvalue distributions are

also highlighted in terms of clustering, but there is little emphasis on the position of the clusters.

The performance of the preconditioner is also measured in terms of the total number of iterations to

converge, with little focus on the convergence in the early iterations. When PCG is truncated before

convergence due to computational budget or when used as a solver within a optimization method like

GN, the effect of the preconditioner on the early convergence of PCG is also crucial. In this paper,

we aim to explore those overlooked aspects to design a good preconditioner. We not only aim to

improve convergence by reducing the total number of iterations but also ensure that, from the very

first iteration, the preconditioned iterates outperform those of the original system. In doing so, we

specifically focus on strategically positioning the eigenvalues captured by the LMP, in that the energy

norm of the error at each iteration of CG is reduced.

The paper is organized as follows. In Section 2 we start by introducing the necessary notation. In

Section 3, we review PCG and its convergence properties. We then discuss the characteristics of an

efficient preconditioner that can be applied to (1). Section 4 is our main contribution. We define the

scaled spectral preconditioner and discuss its properties. Next, we outline three key approaches for

selecting the scaling parameter, which influences the positioning of the eigenvalue cluster, to reduce

total number of iterations and enhance convergence in the early iterations. In Section 5, we provide nu-
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merical experiments using the Lorenz 95 reference model from data assimilation to validate theoretical

results. Finally, conclusions and perspectives are discussed in Section 6.

2 Notation

The matrix A ∈ Rn×n is always SPD. Its spectral radius is ρ(A). Its spectral decomposition is

A = SΛS⊤ with Λ = diag(λ1, . . . , λn), λ1 ≥ . . . ≥ λn > 0, and S =
[
s1 · · · sn

]
orthogonal.

Its i-th eigenvalue is νi(A). Its range space is R(A). The A-norm, or energy norm, of vector x is

∥x∥A =
√
x⊤Ax. The spectral norm is ∥.∥2.

3 Background

3.1 CG algorithm

The Conjugate Gradient (CG) method [13] is the workhorse for Ax = b with SPD A ∈ Rn×n and

b ∈ Rn. If x0 ∈ Rn is an initial guess and r0 = b − Ax0 is the initial residual, then at every step

ℓ = 1, 2, . . . , n, CG produces a unique approximation [22, p.176]

xℓ ∈ x0 +Kℓ(A, r0) such that rℓ ⊥ Kℓ(A, r0), (2)

which is equivalent [22, p.126] to

∥x∗ − xℓ∥A = min
x∈x0+Kℓ(A,r0)

∥x∗ − x∥A , (3)

where x∗ is the exact solution, Kℓ(A, r0) := span{r0, Ar0, . . . , A
ℓ−1r0} is the ℓ-th Krylov subspace

generated by A and r0. In exact arithmetic, the method terminates in at most µ iterations, where µ is

the grade of r0 with respect to A, i.e., the maximum dimension of the Krylov subspace generated by A

and r0 [22]. The most popular and computationally efficient variant of (2) is the original formulation

of [13], that recursively updates coupled 2-term recurrences for xℓ+1, rℓ+1, and the search direction

pℓ+1. Algorithm 1 states the complete algorithm. A common stopping criterion is based on sufficient

decrease of the relative residual norm. However, in practical data assimilation implementations, a

fixed number of iterations is used as stopping criterion due to computational budget constraints. CG

is presented alongside its companion formulation, Algorithm 2, to be detailed in Section 3.3.

Algorithm 1 CG

1: r0 = b−Ax0

2:

3: ρ0 = r⊤0 r0
4: p0 = r0
5: for ℓ = 0, 1, . . . do
6: qℓ = Apℓ
7: αℓ = ρℓ/(q

⊤
ℓ pℓ)

8: xℓ+1 = xℓ + αℓpℓ
9: rℓ+1 = rℓ − αℓqℓ

10:

11: ρℓ+1 = r⊤ℓ+1rℓ+1

12: βℓ+1 = ρℓ+1/ρℓ
13: pℓ+1 = rℓ+1 + βℓ+1pℓ
14: end for

Algorithm 2 PCG

1: r̂0 = b−Ax̂0

2: z0 = F r̂0
3: ρ̂0 = r̂⊤0 z0
4: p̂0 = z0
5: for ℓ = 0, 1, . . . do
6: q̂ℓ = Ap̂ℓ
7: α̂ℓ = ρ̂ℓ/(q̂

⊤
ℓ p̂ℓ)

8: x̂ℓ+1 = x̂ℓ + α̂ℓp̂ℓ
9: r̂ℓ+1 = r̂ℓ − α̂ℓq̂ℓ

10: zℓ+1 = F r̂ℓ+1

11: ρ̂ℓ+1 = r̂⊤ℓ+1zℓ+1

12: β̂ℓ+1 = ρ̂ℓ+1/ρ̂ℓ
13: p̂ℓ+1 = zℓ+1 + β̂ℓ+1p̂ℓ
14: end for
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3.2 Convergence properties of CG

The approximation xℓ uniquely determined by (2) minimizes the error in the energy norm:

∥x∗ − xℓ∥2A = min
p∈Pℓ(0)

∥p(A)(x∗ − x0)∥2A = min
p∈Pℓ(0)

n∑
i=1

p(λi)
2 η

2
i

λi
, (4)

where ηi = s⊤i r0 and Pℓ(0) is the set of polynomials of degree at most ℓ with value 1 at zero [22,

p.193]. Thus, at each iteration, CG solves a certain weighted polynomial approximation problem over

the discrete set {λ1, . . . , λn}. Moreover, if z
(ℓ)
1 , . . . , z

(ℓ)
ℓ are the ℓ roots of the solution p∗ℓ to (4),

∥x∗ − xℓ∥2A =

n∑
i=1

p∗ℓ (λi)
2 η

2
i

λi
=

n∑
i=1

ℓ∏
j=1

(
1− λi

z
(ℓ)
j

)2
η2i
λi

. (5)

The z
(ℓ)
j are the Ritz values [5]. From (5), if z

(ℓ)
j is close to a λi, we expect a significant reduction in

the error in energy norm. Based on the above, [5] explains the rate of convergence of CG in terms of

the convergence of the Ritz values to eigenvalues of A. Assuming that λ1, . . . , λn take on the r distinct

values ρ1, . . . , ρr, CG converges in at most r iterations [20, Theorem 5.4].

Using (4) and maximizing over the values p(λi) [22, p.194] leads to

∥x∗ − xℓ∥A
∥x∗ − x0∥A

≤ min
p∈Pℓ(0)

max
1≤i≤n

|p(λi)|. (6)

By replacing {λ1, . . . , λn} with the interval [λ1, λn] and using Chebyshev polynomials, we obtain an

upper bound [22, p.194]:

∥x∗ − xℓ∥A
∥x∗ − x0∥A

≤ 2

(√
κ(A)− 1√
κ(A) + 1

)ℓ

, (7)

where κ(A) := λ1/λn is the condition number of A. While (6) and (7) provide the worst-case behavior

of CG [12], the convergence properties may vary significantly from the worst case for a specific initial

approximation. Note also that upper bounds (6) and (7) only depend on A, and not on r0. Though (7)

relates the convergence behavior of CG to κ(A), one should be careful as convergence is also influenced

by the clustering of the eigenvalues and their positioning [2, 3].

3.3 Properties of a good preconditioner

In many practical applications, a preconditioner is essential for accelerating the convergence of

CG [1, 25]. Assume that a preconditioner F = UU⊤ ∈ Rn×n is available in a factored form, where U

is SPD, and consider the system with split preconditioner

U⊤AUy = U⊤b, (8)

whose matrix is also SPD. System (8) can then be solved with CG. The latter updates estimate yℓ
that can be used to recover x̂ℓ := Uyℓ. Algorithm 2, the preconditioned conjugate gradients method,

is equivalent to the procedure just described, but only involves solves with F and does not assume

knowledge of U [8, p.532]. PCG updates x̂ℓ directly.

PCG looks for an approximate solution in the Krylov subspace

x0 + UKℓ(U
⊤AU,U⊤r0),

and as in (4), it minimizes the energy norm,

∥x∗ − x̂ℓ∥A = min
q∈Pℓ(0)

∥Uq(U⊤AU)U−1 (x∗ − x0)∥A. (9)
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Although there is no general method for building a good preconditioner [1, 25], leveraging the

convergence properties of CG on (9) often leads to the following criteria: (i) F should approximate

the inverse of A, (ii) F should be cheap to apply, (iii) κ(U⊤AU) should be smaller than κ(A), and (iv)

U⊤AU should have a more favorable distribution of eigenvalues than A. Note that, all four criteria

only focus on A and overlook the significance of the initial guess.

3.4 Preconditioning for a sequence of linear systems

In the context of (1), it is common to use a first level preconditioner, F (1), for the initial linear

system, A(1)x(1) = b(1). The selection of the first-level preconditioner depends on the problem and

may take into account both the physics of the problem and the algebraic structure of A(1) [1, 21, 25].

To further accelerate convergence of an iterative method such as PCG on subsequent linear systems

A(j+1)x(j+1) = b(j+1), one can perform a low-rank update of the most-recent preconditioner, F (j),

leveraging information obtained from solving A(j)x(j) = b(j) [10, 17].

One common choice of low-rank update is to use the (approximate) spectrum of A(j) [6, 7, 10].

The main idea is to capture the eigenvalues not captured by the first-level preconditioner, and cluster

them to a positive quantity, typically around 1.

In this paper, we will consider the case where only the right-hand side is changing over the sequence

of the linear systems, i.e., A(j) = A for all j. Perturbation analysis with respect to A will be presented

in a forthcoming paper.

4 A scaled spectral preconditioner

We focus on the scaled spectral preconditioner, known in the literature as the deflating precondi-

tioner [7] or spectral Limited Memory Preconditioner (LMP) [10], which is defined using a scaling

parameter that determines the positioning of the cluster. We will provide several strategies for the

choice of the scaling parameter, which has a significant impact on the convergence of PCG.

Let us assume that k largest eigenvalues of A, i.e. {λi}ki=1, are available. We define the spectral

preconditioner

Fθ := In +

k∑
i=1

(
θ

λi
− 1

)
sis

⊤
i = In + Sk(θΛ

−1
k − Ik)S

⊤
k = S

[
θΛ−1

k

In−k

]
S⊤, (10)

where Sk :=
[
s1 · · · sk

]
and Λk := diag(λ1, . . . , λk). The factor of Fθ = U2

θ is

Uθ = U⊤
θ := In +

k∑
i=1

(√
θ

λi
− 1

)
sis

⊤
i = S

[√
θΛ

− 1
2

k

In−k

]
S⊤. (11)

Preconditioner Fθ clusters λ1, . . . , λk around θ, and leaves the rest of the spectrum untouched, i.e.,

UθAUθ = S

[
θIk

Λ̄k

]
S⊤ = θSkS

⊤
k + S̄kΛ̄kS̄

⊤
k , (12)

where S̄k :=
[
sk+1 · · · sn

]
and Λ̄k := diag(λk+1, . . . , λn). As in (9), PCG minimizes

∥x∗ − x̂ℓ(θ)∥A = min
q∈Pℓ(0)

∥Uθq (UθAUθ)U
−1
θ (x∗ − x0)∥A

= min
q∈Pℓ(0)

∥q (UθAUθ) (x
∗ − x0)∥A, (13)

where we used Uθq (UθAUθ)U
−1
θ = UθU

−1
θ q (UθAUθ) = q (UθAUθ). Using (4) in the context of Equa-

tion (13), we obtain the following result.



Les Cahiers du GERAD G–2024–66 5

Theorem 1. Let x̂ℓ(θ) be generated at iteration ℓ of Algorithm 2 applied to Ax = b with precondi-

tioner (10). Then,

∥x∗ − x̂ℓ(θ)∥2A = min
q∈Pℓ(0)

k∑
i=1

η2i
λi

q(θ)2 +

n∑
i=k+1

η2i
λi

q(λi)
2, (14)

where ηi = s⊤i r0 is the i-th component of the initial residual in the basis S.

Proof. Given (12), we have for any polynomial q,

q (UθAUθ) = Sq

([
θIk

Λ̄k

])
S⊤.

Since x∗ − x0 = A−1r0 = SΛ−1S⊤r0,

q (UθAUθ) (x
∗ − x0) = Sq

([
θIk

Λ̄k

])
Λ−1S⊤r0. (15)

Substituting Equation (15) into Equation (13), we obtain the result.

The scaled LMP Equation (11) is typically used with θ = 1. This choice is operational in numerical

weather forecast [6, 24]. In the next subsections, we explore various choices for θ aiming to improve

convergence properties of PCG.

4.1 On the choice of the scaling parameter

The scaling parameter θ, which defines the position of the cluster, is often set to 1 [6, 7, 10]. This

choice is motivated by several factors, such as the eigenvalue distribution of A, the behavior of the

first-level preconditioner, and the convergence behavior of PCG.

We investigate clustering the eigenvalues at a general θ > 0, which, compared with the conventional

choice of 1, results in enhanced convergence of PCG. It is important to note that the notion of “better

convergence” may vary across different applications. For instance, in some applications, one may

require high accuracy, in which case, a better convergence may be defined as a lower number of

iterations. In other applications, we may want to get an approximate solution quickly, which requires

to improve the convergence especially in the early iterations. In this case, there is no guarantee that

the early preconditioned iterates will provide a better reduction in the energy norm compared to the

unpreconditioned iterates (Section 4.2). For certain applications, such as numerical weather forecast,

where PCG is stopped before reaching convergence due to computational budget, early convergence

properties could be of critical importance. As a first direction, we will focus on the following question:

Is there θ > 0 such that for any x0,

∥x∗ − x̂ℓ(θ)∥A ≤ ∥x∗ − xℓ∥A , ℓ = 1, . . . , n? (16)

To accelerate early convergence, we will investigate optimal choices for θ with respect to the error in

the energy norm at the first iteration of PCG, i.e.,

min
θ

Φ(θ) := ∥x∗ − x̂1(θ)∥2A.

We focus solely on the first iteration as it allows us to derive the optimal value of θ in closed form.

On the other hand, for PCG, it is well known that removing eigenvalues causing convergence delay

can improve the convergence rate significantly [6, 10]. This can be done by using deflation techniques, in

which the aim is to “hide” (problematic) parts of the spectrum of A from PCG, so that the convergence

rate of PCG is improved [14, 23]. Finally, our focus will be also on answering the question

Can we choose θ > 0 such that for any x0, PCG generates iterates close to those of

deflation techniques?
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4.2 θ providing lower error in energy norm

In general, although scaled spectral preconditioning is expected to help reduce the number of iterations

required to achieve convergence, Equation (16) may not hold for any choice of θ > 0 and all iterations

ℓ as given by the following proposition.

Proposition 1. Let x1 be the first CG iterate when solving Ax = b. Let x̂1(θ) be generated at the first

iteration of Algorithm 2 applied to Ax = b with preconditioner (10). Let x0 be such that η2i = λi for

i = k, k + 1 and ηi = 0 otherwise. Then,

∥x∗ − x̂1(θ)∥2A ≤ ∥x∗ − x1∥2A ⇐⇒ λ2
k+1

λk
≤ θ ≤ λk.

Proof. For ℓ = 1, (5) yields ∥x∗ − x1∥2A = p∗1(λk)
2 + p∗1(λk+1)

2, where

p∗1(λ) = 1− r⊤0 r0
r⊤0 Ar0

λ = 1− λk + λk+1

λ2
k + λ2

k+1

λ.

Similarly, (14) gives ∥x∗ − x̂1(θ)∥2A = q∗1,θ(θ)
2 + q∗1,θ(λk+1)

2, where

q∗1,θ(λ) = 1− r⊤0 Fθr0
r⊤0 FθAFθr0

λ = 1− θ + λk+1

θ2 + λ2
k+1

λ

is the polynomial that realizes the minimum. Using these relations, we obtain

∥x∗ − x1∥2A =

(
1− λk + λk+1

λ2
k + λ2

k+1

λk

)2

+

(
1− λk + λk+1

λ2
k + λ2

k+1

λk+1

)2

=
(λk − λk+1)

2

λ2
k + λ2

k+1

and

∥x∗ − x̂1(θ)∥2A =

(
1− θ + λk+1

θ2 + λ2
k+1

θ

)2

+

(
1− θ + λk+1

θ2 + λ2
k+1

λk+1

)2

=
(θ − λk+1)

2

θ2 + λ2
k+1

.

Hence,

(θ − λk+1)
2

θ2 + λ2
k+1

≤ (λk − λk+1)
2

λ2
k + λ2

k+1

⇐⇒ λ2
k+1

λk
≤ θ ≤ λk.

Proposition 1 shows that Equation (16) is not satisfied for all θ > 0. If θ > 0 lies outside of

[λ2
k+1/λk, λk], then ∥x∗ − x̂1(θ)∥A > ∥x∗ − x1∥A for x0 as defined in Proposition 1.

In what comes next, we focus on the properties of θ such that Equation (16) is guaranteed for all

iterations ℓ, and for any given x0. An intuitive approach is to identify a range of θ values where the

eigenvalue ratios of the preconditioned matrix are less than or equal to those of the unpreconditioned

matrix, as noted in [12, Lemma 1]. The next lemma shows that this property holds for θ ∈ [λk+1, λk],

and for such choice, there exists a polynomial that promotes favorable PCG convergence.

Lemma 1. Let λ1 ≥ λ2 ≥ . . . ≥ λn > 0, ℓ ∈ {1, . . . , n}, and k ∈ {1, . . . , ℓ}. For any θ ∈ [λk+1, λk],

and any polynomial p of degree ℓ such that p(0) = 1 and whose roots all lie in [λn, λ1], there exists a

polynomial q of degree ℓ such that q(0) = 1 and

|q(θ)| ≤ |p(λi)|, i = 1, . . . , k

|q(λi)| ≤ |p(λi)|, i = k + 1, . . . , n.

Proof. Let us denote (µj)1≤j≤ℓ the roots of the polynomial p given in decreasing order, so p(λ) =∏ℓ
i=1

(
1− λ

µi

)
for any λ ≥ 0. Then, three cases may occur:
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Case 1: For all j ∈ {1, . . . , ℓ}, µj < θ, we choose q(λ) = p(λ), then simply we have for i ∈
{k + 1, . . . , n}, |q(λi)| = |p(λi)|. For i ∈ {1, . . . , k}, using the property that µj < θ ≤ λi, we obtain

1− λi

µj
≤ 1− θ

µj
≤ 0.

Thus, we have |1− θ
µj
| ≤ |1− λi

µj
|, and consequently |q(θ)| ≤ |p(λi)|.

Case 2: If for all j ∈ {1, . . . , ℓ}, θ ≤ µj , we choose q(λ) =
∏ℓ

j=1

(
1− λ

θ

)
=
(
1− λ

θ

)l
. Then simply

for i ∈ {1, . . . , k}, |q(θ)| = 0 ≤ |p(λi)|. For i ∈ {k + 1, . . . , n}, using the property λk+1 ≤ θ ≤ µj , we

obtain

0 ≤ 1− λi

λk+1
≤ 1− λi

θ
≤ 1− λi

µj
.

Therefore, for i = k + 1, . . . , n, |q(λi)| ≤ |p(λi)|.

Case 3: let s ∈ {1, . . . , ℓ − 1} such that for j = 1, . . . , s, θ ≤ µj ≤ λ1, and for j = s + 1, . . . , ℓ,

λn ≤ µj < θ. Let’s denote

q(λ) =

s∏
j=1

(
1− λ

θ

) ℓ∏
j=s+1

(
1− λ

µj

)
=

(
1− λ

θ

)s ℓ∏
j=s+1

(
1− λ

µj

)
.

We have q(θ) = 0, so |q(θ)| ≤ |p(λi)| for i ∈ {1, . . . , k}. For i ∈ {k + 1, . . . , n} and j ∈ {1, . . . , s}, we
have

0 ≤ 1− λi

λk+1
≤ 1− λi

θ
≤ 1− λi

µj
,

because λk+1 ≤ θ ≤ µj . Therefore, for i = k + 1, . . . , n, |q(λi)| ≤ |p(λi)|.

Now, we can present a result that enables comparing the error in energy norm between the pre-

conditioned system given by (8) and the unpreconditioned system, Ax = b.

Theorem 2. Let (xℓ)ℓ∈{1,...,n} and x̂ℓ(θ)ℓ∈{1,...,n} be the sequences generated by CG and PCG with

Fθ with θ ∈ [λk+1, λk], respectively, when solving Ax = b. Assume that x̂0(θ) = x0. Then, for all

ℓ = 1, . . . , n, ∥x∗ − x̂ℓ(θ)∥A ≤ ∥x∗ − xℓ∥A.

Proof. Let ℓ ∈ {1, . . . , n}. From (5),

∥x∗ − xℓ∥2A = min
p∈Pℓ(0)

∥pℓ (A) (x∗ − x0)∥2A =

n∑
i=1

η2i
λi

p∗ℓ (λi)
2, (17)

where ηi represents the components of the initial residual r0 = b−Ax0 in the eigenspace of A. Applying

Lemma 1 to p∗ℓ , there exists a polynomial q of degree ℓ with q(0) = 1 such that

|q(θ)| ≤ |p∗ℓ (λi)|, i ∈ {1, . . . , k}
|q(λi)| ≤ |p∗ℓ (λi)|, i ∈ {k + 1, . . . , n}.

Applying these inequalities to (17) yields

∥x∗ − xℓ∥2A =

n∑
i=1

η2i
λi

p∗ℓ (λi)
2 ≥

k∑
i=1

η2i
λi

q(θ)2 +

n∑
i=k+1

η2i
λi

q(λi)
2

≥ min
q∈Pℓ(0)

(
k∑

i=1

η2i
λi

q(θ)2 +

n∑
i=k+1

η2i
λi

q(λi)
2

)
= ∥x∗ − x̂ℓ(θ)∥2A .
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Theorem 2 offers a range of choices for θ. Next, we discuss the practical and theoretical choices

from this range. Let us remind that to construct the spectral LMP (11), we are given k eigenpairs. As

a result, one practical choice is θ = λk. This idea is summarized in the following corollary.

Corollary 1. Let θ = λk. Then, ∥x∗ − x̂ℓ(λk)∥A ≤ ∥x∗ − xℓ∥A for any x0 and for all ℓ ∈ {1, . . . , n}.

The next theorem shows that increasing k results in improved convergence.

Theorem 3. Let 1 < k1 ≤ k2 < n and θk1
∈ [λk1+1, λk1

], θk2
∈ [λk2+1, λk2

] with, θk2
≤ θk1

. Let

(x̂ℓ(θk1
))ℓ∈{1,...,n}, (x̂ℓ(θk2

))ℓ∈{1,...,n} be the sequences obtained from PCG iterates when solving Ax = b

using Fθk1
and Fθk2

respectively with an arbitrary initial guess x0. Then, for all ℓ ∈ {1, . . . , n}, one
has:

∥x∗ − x̂ℓ(θk2
)∥A ≤ ∥x∗ − x̂ℓ(θk1

)∥A .

Proof. The eigenvalues of the preconditioned matrix using Fθk1
and Fθk2

are given in decreasing order

respectively as

ρi =

{
θk1

i ∈ {1, . . . , k1}
λi otherwise,

and ρ̃i =

{
θk2

i ∈ {1, . . . , k2}
λi otherwise.

As k1 < k2, it follows that ρ̃k2 ≤ ρk1 = θk1 . Therefore, ρ̃i can be expressed as a function of ρi as

ρ̃i =

{
θk2 ∈ [ρk2+1, ρk2 ] i ∈ {1, . . . , k2}
ρi otherwise.

Using Lemma 1, for the polynomial q∗ℓ,θk1
, there exists a polynomial q of degree ℓ with q(0) = 1, such

that for i ∈ {1, . . . , n},

|q(θk2
)| ≤ |q∗ℓ,θk1

(ρi)|, i ∈ {1, . . . , k2}
|q(ρi)| ≤ |q∗ℓ,θk1

(ρi)|, i ∈ {k2 + 1, . . . , n}

Applying this result to (14) yields that

∥x∗ − x̂ℓ(θk1
)∥2A =

n∑
i=1

η2i
λi

q∗ℓ,θk1
(ρi)

2

≥
k2∑
i=1

η2i
λi

q(θk2
)2 +

n∑
i=k2+1

η2i
λi

q(ρi)
2

≥ min
q∈Pℓ(0)

(
k2∑
i=1

η2i
λi

q(θk2
)2 +

n∑
i=k2+1

η2i
λi

q(λi)
2

)
= ∥x∗ − x̂ℓ(θk2

)∥2A .

One can see that k1 < k2 =⇒ θk2
≤ θk1

, since λi are in decreasing order. In addition, when

k1 = k2, Theorem 3 shows that λk1+1 is the best choice in [λk1+1, λk1
] in terms of reducing the error

with respect to the unpreconditioned system.

4.3 Optimal choice for θ with respect to the initial residual

Our objective is to determine the value of θ that minimizes the energy norm of the error at the initial

iterate. This will provide us with the optimal reduction at the first iterate,

θr ∈ argmin
θ>0

Φ(θ) := ∥x∗ − x̂1(θ)∥2A . (18)

The expression for θr is stated in the following theorem.
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Theorem 4. Let r0 = b−Ax0. The unique λn ≤ θr ≤ λk+1 satisfying (18) is

θr :=

∑n
i=k+1 λiη

2
i∑n

i=k+1 η
2
i

=
r⊤0 Ar0 − r0SkΛkS

⊤
k r0

r⊤0 r0 − r⊤0 SkS⊤
k r0

. (19)

Proof. First, Theorem 1 implies

∥x∗ − x̂1(θ)∥2A =

k∑
i=1

η2i
λi

q∗1,θ(θ)
2 +

n∑
i=k+1

η2i
λi

q∗1,θ(λi)
2 (20)

where ηi = s⊤i r0 and q∗1,θ(λ) = 1− r⊤0 Fθr0
r⊤0 FθAFθr0

λ. Using (10), we obtain

r⊤0 Fθr0 = θ

k∑
i=1

η2i
λi

+

n∑
i=k+1

η2i and r⊤0 FθAFθr0 = θ2
k∑

i=1

η2i
λi

+

n∑
i=k+1

λiη
2
i . (21)

Then, for all θ > 0, Φ(θ) simplifies to

Φ(θ) = a1

(
a2θ − a3
a1θ2 + a3

)2

+

n∑
i=k+1

η2i
λi

(
1− a1θ + a2

a1θ2 + a3
λi

)2

,

where a1 =

k∑
i=1

η2i
λi

, a2 =

n∑
i=k+1

η2i and a3 =

n∑
i=k+1

λiη
2
i . The derivative of Φ is

Φ′(θ) =
2a1

(a1θ2 + a3)3
(a2θ − a3)(a

2θ3 + a1a2θ
2 + a1a3θ + a2a3).

Since Φ′(θ) < 0 on ]0, a3

a2
[ and Φ′(θ) > 0 on ]a3

a2
,+∞[, then a3

a2
is the global minimizer of Φ on R∗

+ and

is unique. Hence,

θr = argmin
θ>0

Φ(θ) =
a3
a2

=

∑n
i=k+1 λiη

2
i∑n

i=k+1 η
2
i

.

Moreover,

λn =

∑n
i=k+1 λnη

2
i∑n

i=k+1 η
2
i

≤ θr ≤
∑n

i=k+1 λiη
2
i∑n

i=k+1 η
2
i

= λk+1.

The expression for θr can be rewritten in terms of Sk, Λk, and r0 as follows:

θr =

∑n
i=1 λiη

2
i −

∑k
i=1 λiη

2
i∑n

i=1 η
2
i −

∑k
i=1 η

2
i

=
r⊤0 Ar0 − r0SkΛkS

⊤
k r0

r⊤0 r0 − r⊤0 SkS⊤
k r0

.

Note that θr can be interpreted as the center of mass for the remaining part of the spectrum in

which the weights are determined by η2i , i.e.

n∑
i=k+1

η2i (θr − λi) = 0.

Let us now look at the first iterate,

x̂1(θr) = x0 +
r⊤0 Fθrr0

r⊤0 FθrAFθrr0
Fθrr0, (22)

to better understand the effect of θr. Using (21) and the value of θr,
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r⊤0 Fθrr0
r⊤0 FθrAFθrr0

=

∑n
i=k+1 η

2
i∑n

i=k+1 λiη2i
=

1

θr
.

Therefore, (22) simplifies to

x̂1(θr) = x0 +
1

θr

(
S̄kS̄

⊤
k + θrSkΛ

−1
k S⊤

k

)
r0 = x0 + SkΛ

−1
k S⊤

k r0 +
1

θr
S̄kS̄

⊤
k r0.

Then, the residual of the first iteration is given by

b−Ax̂1(θr) = r0 − SkS
⊤
k r0 −

1

θr
S̄kΛ̄kS̄

⊤
k r0 = S̄kS̄

⊤
k r0 −

1

θr
S̄kΛ̄kS̄

⊤
k r0. (23)

Given (23), we conclude that, from the first iteration, we can remove all components of the residual

with respect to Sk, see Appendix A. We now provide an upper bound for the error in the energy norm

for later iterations, ℓ > 1, beginning with x̂1(θr). With this initial point, we ensure that all iterates

yield a residual within Span(S̄k).

Theorem 5. Let x̂ℓ(θr) be the ℓ-th iterate obtained from PCG when solving Ax = b using the precon-

ditioner Fθr with an arbitrary initial guess x0. Let xInit
ℓ be the ℓ-th iterate generated by CG for solving

Ax = b starting from x̂1(θr) as defined in (22). Then, for all ℓ ∈ {1, . . . , n}, ∥x∗ − x̂ℓ+1(θr)∥A ≤∥∥x∗ − xInit
ℓ

∥∥
A
.

Proof. From (23), the components of b−Ax̂1(θr) in the eigenspace of A are

0 (i = 1, . . . , k), and ηi(1− λi/θr) (i > k).

Thus, ∥∥x− xInit
ℓ

∥∥2
A
=

n∑
i=k+1

η2i
λi

(
1− λi

θr

)2

p∗,Initℓ (λi)
2, (24)

where p∗,Initℓ is the polynomial that minimizes p 7→ ∥p (A) (x∗ − x̂1(θr))∥2A over Pℓ(0).

Define

q̄(λ) =

(
1− λ

θr

)
p∗,Initℓ (λ),

and note that q̄ ∈ Pℓ(0). Now we have

∥x∗ − x̂ℓ+1(θr)∥2A = min
q∈Pℓ+1(0)

(
k∑

i=1

η2i
λi

q(θr)
2 +

n∑
i=k+1

η2i
λi

q(λi)
2

)

≤
k∑

i=1

η2i
λi

q̄(θr)
2 +

n∑
i=k+1

η2i
λi

q̄(λi)
2

=

n∑
i=k+1

η2i
λi

(
1− λi

θr

)2

p∗,Initℓ (λi)
2 =

∥∥x− xInit
ℓ

∥∥2
A
.

Note that, one can interpret x̂1(θr) as the first iteration of CG when solving the unpreconditioned

system, starting from x0 + SkΛ
−1
k S⊤

k r0, since the search direction at the first iteration is equal to:

b−A
(
x0 + SkΛ

−1
k S⊤

k r0
)
= b−Ax0 − SkS

⊤
k r0 = r0 − SkS

⊤
k r0 = S̄kS̄

⊤
k r0, (25)

and the step-length α0 is given as

α0 =
1

θr
=

r⊤0 S̄kS̄
⊤
k r0

r⊤0 S̄
⊤
k S̄kAS̄kS̄⊤

k r0
.

This highlights the strong connection between preconditioning, CG with different initial point and

deflation techniques [23, 24]. This connection will be explored in detail in the next subsection, providing

another choice for the scaling parameter.
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4.4 θ as the mid-range between λk and λn

We focus now on choosing a scaling parameter θ to obtain approximate iterates to those of deflated

CG (see Algorithm 3). The deflation technique, with Sk as the deflation subspace, is equivalent to

standard CG applied to Ax = b with initial guess

xDef
0 = x0 + SkΛ

−1
k S⊤

k (b−Ax0).

From (25), the residual of xDef
0 is given as

b−AxDef
0 = S̄kS̄

⊤
k r0.

One can see that this initial guess gives a residual which is an orthogonal projection of r0 onto span(S̄k),

so that the ℓ-th iterate of CG, xDef
ℓ , starting with xDef

0 satisfies

∥∥x∗ − xDef
ℓ

∥∥2
A
= min

q∈Pℓ(0)

(
n∑

i=k+1

η2i
λi

q(λi)
2

)
.

We now provide the main result of this section.

Theorem 6. Let x̂ℓ(θ) be the ℓ-th iterate obtained from PCG iterates when solving Ax = b using Fθ

starting from an arbitrary initial guess x0 ∈ Rn. Let xDef
ℓ be the ℓ-th iterate generated with CG when

solving Ax = b starting with xDef
0 = x0 + SkΛ

−1
k S⊤

k (b−Ax0). Then, in exact arithmetic,∥∥∥x∗ − xDef
ℓ+1

∥∥∥
A
≤ ∥x∗ − x̂ℓ+1(θ)∥A ≤ α(θ)

θ

∥∥∥x∗ − xDef
ℓ

∥∥∥
A
, (26)

with α(θ) = max (|λk+1 − θ|, |θ − λn|) .

Proof. Let us start by showing the first inequality. From Theorem 1

∥x∗ − x̂ℓ+1(θ)∥2A =

k∑
i=1

η2i
λi

q∗ℓ+1,θ(θ)
2 +

n∑
i=k+1

η2i
λi

q∗ℓ+1,θ(λi)
2

≥
n∑

i=k+1

η2i
λi

q∗ℓ+1,θ(λi)
2

≥ min
q∈Pℓ+1(0)

(
n∑

i=k+1

η2i
λi

q(λi)
2

)
=
∥∥x∗ − xDef

ℓ+1

∥∥2
A
.

Now, to prove the second inequality, we consider p∗,Def
ℓ the polynomial that minimizes

p 7→ ∥p (A)
(
x∗ − xDef

0

)
∥2A over Pℓ(0)., i.e.,

∥∥x∗ − xDef
ℓ

∥∥2
A
=

n∑
i=k+1

η2i
λi

p∗,Def
ℓ (λi)

2.

Consider q̃ℓ+1 ∈ Pℓ+1(0) such as for all λ ∈ R,q̃ℓ+1(λ) =

(
1− λ

θ

)
p∗,Def
ℓ (λ). Hence,

∥x∗ − x̂ℓ+1(θ)∥2A =

k∑
i=1

η2i
λi

q∗ℓ+1,θ(θ)
2 +

n∑
i=k+1

η2i
λi

q∗ℓ+1,θ(λi)
2

≤
k∑

i=1

η2i
λi

q̃ℓ+1(θ)
2 +

n∑
i=k+1

η2i
λi

q̃ℓ+1(λi)
2
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=

n∑
i=k+1

η2i
λi

pDef,∗
ℓ (λi)

(
1− λi

θ

)2

≤ max
k+1≤i≤n

(
1− λi

θ

)2 ∥∥x∗ − xDef
ℓ

∥∥2
A
=

α(θ)

θ

∥∥x∗ − xDef
ℓ

∥∥2
A
.

Choosing θ > 0 such that α(θ)/θ > 1 in (26) would give a pessimistic upper bound. For a better

bound, we select θ > 0 such that α(θ)/θ ≤ 1, which is equivalent to impose θ ≥ λk+1/2. The value of

θ that minimizes α(θ)/θ is θ∗ = (λk+1 + λn)/2.

Given that λk+1 is unknown, and λn can be predetermined in various applications, e.g., in data

assimilation problems λn = 1, a practical approach for selecting θ (the closest to θ∗) is by choosing

the average between the λk and λn, i.e., θm = (λk + λn)/2, for which we have α(θm)/θm = (λk −
λn)/(λk + λn) < 1. Note that the choice θ = λk yields in (26) to a worst upper bound compared to

θm, i.e., α(λk)/λk > α(θm)/θm.

4.5 Discussion

The analysis in this section raises two key questions. The first is: why use a scaled spectral precon-

ditioner when we know that deflated CG iterations using the deflated subspace Sk, or using an initial

guess as defined in (22), produce better results in exact arithmetic (see Theorem 6)? The assumption

in this section is that the eigenpairs used to construct the deflated subspace or the initial guess are

exact, ensuring that components of the initial residual within the eigenspace of Sk are eliminated.

However, when an approximate eigen-spectrum is used, such as the eigen-spectrum of A is applied to

solve a system involving a perturbed matrix, Ã, the initial guess may fail to remove the components of

the initial residual within the eigenspace of Ã. For instance, consider the perturbed matrix Ã = A+E,

A is modified by a small perturbation matrix E. This results in the following expression:

b− ÃxDef
0 = b−AxDef

0 + ExDef
0 ,

where the value of b−AxDef
0 from (25) becomes: b− ÃxDef

0 = S̄kS̄
⊤
k (b−Ax0) + ExDef

0 .

This illustrates that the perturbation E introduces additional components to the residual, which

the initial guess fails to fully eliminate, unlike in the exact case. When the perturbation exists, we show

in numerical experiments that using a scaled spectral LMP becomes advantageous over deflated CG.

The second question is: why not combine the initial guess (22) with the scaled spectral LMP using

θ = 1. When the initial guess fails to eliminate components of the initial residual within the eigenspace

of Ã, these components influence the convergence of PCG. Their impact on the energy norm of the

error can be reduced by appropriately positioning the largest eigenvalues.

5 Numerical Experiments

In this section, we illustrate the performance of the scaled spectral LMP, as defined in (11), within the

context of a nonlinear weighted least-squares problem arising in data assimilation, i.e.,

min
w0∈Rn

f(w0) = min
w0∈Rn

1

2
∥w0 − wb∥2B−1 +

1

2

Nt∑
i=1

∥yi −Hi(Mt0,ti(w0))∥2R−1
i

. (27)

Here, w0 = w(t0), is the state at the initial time t0, for instance temperature value, wb ∈ Rn is a priori

information at time t0 and yi ∈ Rmi represents the observation vector at time ti for i = 1, . . . , Nt.

Mt0,ti(·) is a nonlinear physical dynamical model which propagates the state w0 at time t0 to the the

state wi at time ti by solving the partial differential equations. Hi(·) maps the state vector wi to a

mi-dimensional vector representing the state vector in the observation space. B ∈ Rn×n, Ri ∈ Rmi×mi
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are symmetric positive definite error covariance matrices corresponding to the a priori and observation

model error, respectively.

The TGN method [11] is widely used to solve the nonlinear optimization problem (27). At each

iteration j of the TGN method, the linearized least-squares approximation to the nonlinear least-

squares problem (27) is solved. This quadratic cost function at the j-th iterate is formulated as

Q(j)(s) =
1

2

∥∥∥s− (wb − w
(j)
0 )
∥∥∥2
B−1

+
1

2

Nt∑
i=1

∥G(j)
i si − d

(j)
i ∥2

R−1
i

, (28)

where s ∈ Rn , d
(j)
i = yi−Gi(w

(j)
0 ) with Gi(w

(j)
0 ) = Hi(Mt0,ti(w

(j)
0 )) and G

(j)
i represents the Jacobian

of Gi at a given iterate w
(j)
0 . The quadratic cost function (28) is minimized with respect to s which

is then used to update the current iterate, i.e. w
(j+1)
0 = w

(j)
0 + s(j), where s(j) is an approximate

solution of the problem (28). This process continues till the convergence criterion is met. For large

scale problems with computationally expensive models Mt0,ti(·), a limited number of TGN iterations

are applied. The solution to the quadratic problem (28) can be found by solving(
B−1 + (G(j))⊤R−1G(j)

)
s = B−1(wb − w

(j)
0 )− (G(j))⊤R−1d(j). (29)

where d(j) is am-dimensional concatenated vector of d
(j)
i withm =

∑Nt

i=1 mi, G
(j) ∈ Rm×n represents a

concatenation of G
(j)
i ∈ Rmi×n, and R ∈ Rm×m is a block diagonal matrix, i.e. R = diag(R1, . . . , RN ).

The matrix B−1 +(G(j))⊤R−1G(j) is SPD, matrix-vector products with it are accessible only through

operators, and n can be large for data assimilation problems. Hence, CG is widely used to solve such

systems.

Let us assume that a square root factorization of B = LL⊤ is available. The linear system (29)

can be then preconditioned by using this first-level split preconditioner,(
In + L⊤(G(j))⊤R−1G(j)L

)
x = L⊤

(
B−1(wb − w

(j)
0 )− (G(j))⊤R−1d(j)

)
. (30)

CG at the ℓ-th iteration provides an approximate solution x
(j)
ℓ which is then used to obtain an approx-

imate solution of the linear system (29), i.e. s
(j)
ℓ = Lx

(j)
ℓ . In operational data assimilation problems,

in general m ≪ n. Consequently, the preconditioned matrix A(j) = In + L⊤(G(j))⊤R−1G(j)L has

n−m eigenvalues clustered around 1, while the remaining eigenvalues are greater than 1.

Since in the context of TGN, a sequence of closely related linear systems is solved, it is common to

update the first-level preconditioner L by using approximate eigenspectrum of the previous linear sys-

tem [6, 10]. Let us denote b(j) := L⊤
(
B−1(wb − w

(j)
0 )− (G(j))⊤R−1d(j)

)
. For j = 1, CG Algorithm 1

solves the linear system A(1)x = b(1), for the variable x. Using the recurrences of CG, we can easily

compute approximate eigenpairs of A(1) (see [22, p.174] for more details). These pairs can then be

used to construct a second-level preconditioner, U
(1)
θ1

, by using the formula (11). Consequently, (U
(1)
θ1

)2

is an approximation to the inverse of the matrix A(1). Then, assuming that A(2) is close to the matrix

A(1), for j = 2, CG Algorithm 1 is applied to the preconditioned system, U
(1)
θ A(2)U

(1)
θ1

x = U
(1)
θ1

b(2).

The approximate solution at ℓ-iterate is obtained from the relation s
(2)
ℓ = LU

(1)
θ1

x
(2)
ℓ . At the end of the

CG, we can obtain approximate eigenpairs of U
(1)
θ A(2)U

(1)
θ1

and use it to construct a preconditioner

for the next linear system. At the j-th outer loop of TGN, CG is applied to the preconditioned linear

system:

(U
(j−1)
θj−1

. . . U
(1)
θ1

A(j)U
(1)
θ1

. . . U
(j−1)
θj−1

) x = U
(j−1)
θj−1

. . . U
(1)
θ1

b(j), (31)

and the approximate solution to (29) is obtained from s
(j)
ℓ = LU

(j−1)
θj−1

. . . U
(1)
θ1

x
(j)
ℓ .
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5.1 Setup

In our numerical experiments, we use the Lorenz-96 [16] model as the physical dynamical system,

Mt0,ti(·), which is commonly used as a reference model in data assimilation. The observation operator

H(·) is defined as a uniform selection operator, meaning H(x) extracts a subset of x that is uniformly

selected. B is chosen as a discretized diffusion operator with a standard deviation σb = 0.8 [9]. We

consider R1 = R2 = σ2
rIm with σr = 0.2. We choose n = 1000 and Nt = 2, and we consider two

different scenarios, with a different number of observations: (1) LowObs with m1 = m2 = 150 and (2)

HighObs with m1 = m2 = 300. For both cases, 2 outer loops are performed within TGN. CG is applied

to the first linear system A(1)x = b(1) with 100 iterations. Then, approximate largest eigen-pairs of

A(1), (Sk,Λk), are computed and selected based on convergence criteria with a tolerance of ε = 10−3

(See [Section 1.3][24] for further details). With this criteria, the number of selected eigen-pairs is 45

in the LowObs case and 26 in the HighObs case. Using these pairs, the scaled LMP, U
(1)
θ1

, is applied

as a preconditioner for j = 2. Matrix-vector products with the preconditioner are carried out via an

operator using the selected pairs, meaning the preconditioner matrix is not explicitly constructed.

5.2 Numerical results

In this section, we present numerical results only for the second outer loop (j = 2) of the TGN

method. We compare the performance of the methodologies of Table 1 in terms of convergence rate

and computational cost.

Table 1: Description of methods used in the numerical experiments

Method Description Initial guess

BPrec Algorithm 1 applied to (30) x0 = 0
sLMP-Base Algorithm 1 applied to (31), θ1 = 1 x0 = 0

Init-sLMP-Base Algorithm 1 applied to (31), θ1 = 1 x0 = U−1
θ1

SkΛ
−1
k S⊤

k b(2)

sLMP-λk Algorithm 1 applied to (31), θ1 = λk x0 = 0
sLMP-θr Algorithm 1 applied to (31), θ1 = θr x0 = 0
sLMP-θm Algorithm 1 applied to (31), θ1 = (λk + 1)/2 x0 = 0
DefCG Algorithm 3 applied to (30), W = Sk x−1 = 0
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DefCG

Figure 1: Quadratic cost function values along all CG iterates (left) and with respect to the number of matrix-vector
product with the matrix A(1) and A(2) (right).

We can easily see that sLMP-Base is not necessarily better than BPrec especially in the early

iterations. This means that the scaled spectral LMP, clustering the largest k eigenvalues around 1,
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might reduce the total number iterations to converge, however it does not guarantee better convergence

for early iterations. The slow convergence of sLMP-Base can be partly explained by the fact that

perturbations may cause some eigenvalues to appear near zero, as depicted in Figure 2. When changing

the clustering position from 1 to λk by using sLMP-λk, we can see that the method performs better

than BPrec. In this case, however the gap between the cluster and the remaining spectrum as defined

in Theorem 6, i.e. α(θ
(1)
1 )/θ

(1)
1 , can be large. When clustering around θr and θm is applied with

sLMP-θr and sLMP-θm respectively, the value of α(θ
(1)
1 )/θ

(1)
1 reduces for both cases (see Figure 2).

This improves the convergence compared to sLMP-λk as seen from Figure 1.
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(1)
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(1)
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Hθ1
= U

(1)
θ1

A(2)U
(1)
θ1

with θ1 = θr

Figure 2: Spectrum of U
(1)
θ1

A(2)U
(1)
θ1

for different values of θ1 on a logarithmic scale. LowObs scenario (k = 45).

Init-sLMP-Base performs better than sLMP-Base, i.e. starting from x0 = SkΛ
−1
k S⊤

k b(2) im-

proves performance compared to starting from x0 = 0. This improvement arises because the initial

residual’s components in the eigenbasis of A(2) are reduced. In fact, without any perturbation, these

components would be completely eliminated. Although, the performance is improved with this initial

guess, it can not reach the performance of DefCG. This demonstrates that modifying the initial guess

enhances convergence; however, the placement of the eigenvalue clustering can have an even more

significant impact. This is evident from the fact that the performance of sLMP-θm and sLMP-θr
are very close to that of DefCG.

The right panel of Figure 1 shows the values of the quadratic cost function as a function of the

number of matrix-vector products performed with A(j) for j = 1, 2 across different methods. Although

DefCG performs better, it is computationally expensive as it requires forming the projected matrix

S⊤
k A(2)Sk. Among the other techniques, sLMP-θr requires one additional matrix-vector product with

A(1) to compute θr. However, as shown in Figure 1, sLMP-θm and sLMP-λk do not require any

extra matrix-vector products either A(1) or A(2).

These results indicate that the performance of CG, when used with scaled spectral LMP, can be

significantly improved, approaching that of deflated CG, by selecting the position of the eigenvalue

clusters based on CG’s convergence properties. The cluster position is determined by θ, whose com-

putation incurs no additional cost for sLMP-θm and sLMP-λk. Conclusions from experiments with

HighObs are very similar, the obtained results are depicted in Figures 3 and 4 in Appendix B.

6 Conclusion

We have proposed a scaled spectral LMP to accelerate the solution of a sequence of SPD systems

A(j)x(j) = b(j) for j ≥ 1. The scaled LMP incorporates a low-rank update based on k eigenpairs of

the matrix A. We have provided theoretical analysis of the scaled spectral LMP when A(j) = A. We

have shown that the scaled spectral LMP (10) clusters k eigenvalues around the scaling parameter θ,

and leaves the rest of the spectrum untouched.
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We have focused on the choice of θ to ensure that PCG achieves faster convergence, particularly in

the early iterations. In the first approach, we have proposed choosing θ to guarantee a lower energy

norm of the error at each iteration of PCG. In the second approach, we have obtained an optimum θ

in the sense that it minimizes the energy norm of the error at the first iteration. Our analysis reveals

that, with the optimal θ, the components of the first residual is eliminated from the eigenspace of A,

which aligns with the core principle of deflated CG. Lastly, we have also explored a scaling parameter

that approximates the iterates of deflated CG. We have provided the link between the deflated CG

and PCG with the scaled spectral LMP.

We have compared different methods for solving a nonlinear weighted least-squares problem arising

in data assimilation. In our numerical experiments, we used approximate eigenpairs to construct the

scaled spectral LMP. First, we have demonstrated that selecting θ based on PCG convergence prop-

erties significantly accelerates early convergence compared to the conventional choice of θ = 1. Then,

we have shown that θ values that reduce the spectral gap between θ and the remaining eigenvalues

lead to faster convergence. Additionally, we have compared the scaled spectral LMP with deflated

CG, showing that the scaled spectral LMP produces iterates similar to deflated CG, but at a negli-

gible computational cost and memory, unlike deflated CG. These numerical results clearly highlight

the importance of selecting the preconditioner not only as an approximation to the inverse of A, but

also with consideration of its role within PCG. In particular, we have demonstrated the significance

of the placement of clustered eigenvalues, an often overlooked factor in the literature, on the early

convergence of PCG.

As the next step, we will provide a detailed theoretical perturbation analysis in a forthcoming

paper. Additionally, we aim to validate the proposed preconditioner in an operational weather predic-

tion system.

A Deflated CG with Sk

The deflation technique outlined in Algorithm 3 is defined for any deflation subspace W , see [23] for

more details. The main idea is to speed-up the CG starting from an initial point such that the initial

residual does not have components in the deflation subspace W and to update the search directions

such that W⊤Apj = 0. A widely used approach is to choose W as the eigenvectors corresponding to

the eigenvalues that slows down the CG convergence.

Algorithm 3 Deflated-CG

1: Choose k linearly independent vectors w1, w2, . . . , wk.
2: Define W = [w1, w2, . . . , wk], and choose x−1.
3: Set xDef

0 = x−1 +W (W⊤AW )−1W⊤r−1, where r−1 = b−Ax−1. W⊤r0 = 0

4: Set p0 = r0 −W
(
W⊤AW

)−1
W⊤Ar0. W⊤Ap0 = 0

5: for j = 1, 2, . . . do
6: αj−1 = r⊤j−1rj−1/(p

⊤
j−1Apj−1)

7: xDef
j = xDef

j−1 + αj−1pj−1

8: rj = rj−1 − αj−1Apj−1 W⊤rj = 0

9: βj−1 = r⊤j rj/(r
⊤
j−1rj−1)

10: pj = βj−1pj−1 + rj −W
(
W⊤AW

)−1
W⊤Arj W⊤Apj = 0

11: end for

If we choose W = Sk, and using the fact that S⊤
k ASk = Λk and ASk = SkΛk, we can achieve the

following simplifications:

• xDef
0 = x−1 + SkΛ

−1
k S⊤

k r−1,

• p0 = r0 − SkS
⊤
k r0.

• pj = βj−1pj−1 + rj − SkS
⊤
k rj .

Lemma 2. The residual rj and the direction pj are orthogonal to span(Sk).
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Proof. We proceed by induction. For j = 0, r0 = r−1−SkS
⊤
k r−1, from which it follows that S⊤

k r0 = 0.

As a consequence, S⊤
k p0 = 0. Assume that rj and pj are orthogonal to span(Sk) for j. We have rj+1 =

rj−αjApj . From [23, Proposition 3.3], replacingW by Sk, we have S
T
k Apj = 0. Since pj , rj ⊥ span(Sk)

by assumption, it follows that rj+1 ⊥ span(Sk). For pj+1 = βjpj + rj+1 − SkS
⊤
k rj+1 = βjpj + rj+1,

we get pj+1 ⊥ Span(Sk) since S⊤
k rj+1 = 0 as shown and pj ⊥ Span(Sk) by assumption.

From Lemma 2, it follows that pj = βj−1pj−1 + rj − SkS
⊤
k rj = βj−1pj−1 + rj . With these sim-

plifications, it is clear that in exact arithmetic, deflated CG, when used with the deflated subspace

consisting of a set of eigenvectors of A, generates iterates equivalent to those generated by using the

initial guess xDef
0 in standard CG.

B Results for the HighObs scenario
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Figure 3: Quadratic cost function values along all CG iterates and with respect to the number of matrix-vector product
for the HighObs scenario.
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