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Abstract : We explore a scaled spectral preconditioner for the efficient solution of sequences of
symmetric and positive-definite linear systems. We design the scaled preconditioner not only as an
approximation of the inverse of the linear system but also with consideration of its use within the con-
jugate gradient (CG) method. We propose three different strategies for selecting a scaling parameter,
which aims to position the eigenvalues of the preconditioned matrix in a way that reduces the energy
norm of the error, the quantity that CG monotonically decreases at each iteration. Our focus is on
accelerating convergence especially in the early iterations, which is particularly important when CG is
truncated due to computational cost constraints. Numerical experiments provide in data assimilation
confirm that the scaled spectral preconditioner can significantly improve early CG convergence with
negligible computational cost.

Keywords : Sequence of linear systems, conjugate gradient method, deflated CG, spectral precondi-
tioner, convergence rate, data assimilation

Résumé : Nous explorons la mise a I’échelle d’un préconditionneur spectral pour résoudre efficace-
ment une suite de systémes linéaires symétriques et définis positifs. La mise & 1’échelle proposée du
préconditionneur agit non seulement comme une approximation de I'inverse du systeme linéaire, mais
elle prend également en compte 'utilisation du préconditionneur dans la méthode du gradient conjugué
(CG). Nous proposons trois stratégies différentes pour la sélection d’un parametre de mise & 1’échelle.
L’objectif est de positionner les valeurs propres de la matrice préconditionnée de maniere a réduire la
norme d’énergie de l'erreur, qui est la quantité minimisée par CG a chaque itération. La méthodologie
proposée permet d’accélérer la convergence, notamment lors des premieres itérations de CG, ce qui est
particulierement important lorsque le CG est arrété prématurément en raison des contraintes de cofit
de calcul. Des expériences numériques en assimilation de données confirment que la mise a 1’échelle
du préconditionneur spectral améliore de maniere significative la convergence initiale du CG, avec un
cotlt de calcul négligeable.

Acknowledgements: This work was funded by French National Programme LEFE/INSU.
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1 Introduction
Efficiently solving sequences of symmetric positive-definite (SPD) linear systems
AV =p) =12 .. (1)

is crucial in various inverse problems of computational science and engineering. For instance, in
data assimilation [4, 15], where one aims to solve a large-scale weighted regularized nonlinear least-
squares problem via the truncated Gauss-Newton algorithm (GN) [11, 20], each iteration involves
solving a linear least-squares subproblem. The latter may be formulated as a large SPD linear system,
typically solved using the preconditioned conjugate-gradient method (PCG). Since consecutive systems
do not differ significantly, recycling Krylov subspace information has been explored and proven to be
effective [6, 10, 17, 19].

One way of recycling Krylov subspace information involves leveraging search directions obtained
from PCG on earlier systems to construct a limited-memory quasi-Newton preconditioner (LMP) [17,
19]. This preconditioner, built solely from PCG information, does not require explicit knowledge of
any matrix in the sequence, making it particularly suitable for applications where only matrix-vector
products are available, which is the case of data assimilation. [10] generalizes this limited-memory
preconditioner, and introduces specific variants when used with eigen- or Ritz pairs.

They focused on a first-level preconditioner, capable of clustering most eigenvalues at 1 with few
outliers, is already available for the first linear system in sequence. Then, they used LMP as a second-
level preconditioner to improve the efficiency of the first. The goal of the LMP is to capture directions
in a low-dimensional subspace that the first-level preconditioner may miss, and use them to improve
convergence of PCG. When AY) = A for all j, spectral analysis of the preconditioned matrix when
used with k pairs has shown that LMP can cluster at least k eigenvalues at 1, and that the eigenvalues
of the preconditioned matrix interlace with those of the original matrix [10]. The efficiency of this
approach has been demonstrated in a real-life data assimilation applications [10, 24].

We focus on improving the performance of the spectral LMP [7, 10], which is built by using eigen-
pairs of AU). The spectral LMP shares the same formulation as the abstract balancing domain decom-
position method [18] and is equivalent to deflation-based preconditioning when used with a specific
initial point [24].

When designing preconditioners for PCG, the primary focus in the literature is mostly on A and the
significance of the initial guess is overlooked. Although the importance of the initial guess is mentioned,
its impact on the choice of a preconditioner is not well studied. Favorable eigenvalue distributions are
also highlighted in terms of clustering, but there is little emphasis on the position of the clusters.
The performance of the preconditioner is also measured in terms of the total number of iterations to
converge, with little focus on the convergence in the early iterations. When PCG is truncated before
convergence due to computational budget or when used as a solver within a optimization method like
GN, the effect of the preconditioner on the early convergence of PCG is also crucial. In this paper,
we aim to explore those overlooked aspects to design a good preconditioner. We not only aim to
improve convergence by reducing the total number of iterations but also ensure that, from the very
first iteration, the preconditioned iterates outperform those of the original system. In doing so, we
specifically focus on strategically positioning the eigenvalues captured by the LMP, in that the energy
norm of the error at each iteration of CG is reduced.

The paper is organized as follows. In Section 2 we start by introducing the necessary notation. In
Section 3, we review PCG and its convergence properties. We then discuss the characteristics of an
efficient preconditioner that can be applied to (1). Section 4 is our main contribution. We define the
scaled spectral preconditioner and discuss its properties. Next, we outline three key approaches for
selecting the scaling parameter, which influences the positioning of the eigenvalue cluster, to reduce
total number of iterations and enhance convergence in the early iterations. In Section 5, we provide nu-
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merical experiments using the Lorenz 95 reference model from data assimilation to validate theoretical
results. Finally, conclusions and perspectives are discussed in Section 6.

2 Notation

The matrix A € R™ " is always SPD. Its spectral radius is p(A4). Its spectral decomposition is
A = SAST with A = diag(A1,...,A\n), A1 > ... > X\, >0, and S = [81 sn] orthogonal.
Its i-th eigenvalue is v;(A). Its range space is R(A). The A-norm, or energy norm, of vector x is
lz]|a = V& T Az. The spectral norm is ||.||2.

3 Background

3.1 CG algorithm

The Conjugate Gradient (CG) method [13] is the workhorse for Az = b with SPD A € R™*™ and
b e R"” If zg € R™ is an initial guess and ro = b — Axg is the initial residual, then at every step
£=1,2,...,n, CG produces a unique approximation [22, p.176]

xy € o + Ke(A,m9) such that 7, L Kp(A, 1), (2)
which is equivalent [22; p.126] to

¥ —z = min ¥ —z 3
lo* ~adla= _ min " =l 3

where z* is the exact solution, Kyz(A,rg) := span{rg, Arg, ..., A*"lry} is the f-th Krylov subspace
generated by A and 7. In exact arithmetic, the method terminates in at most p iterations, where p is
the grade of ry with respect to A, i.e., the maximum dimension of the Krylov subspace generated by A
and rg [22]. The most popular and computationally efficient variant of (2) is the original formulation
of [13], that recursively updates coupled 2-term recurrences for x,y1, r¢4+1, and the search direction
pe+1. Algorithm 1 states the complete algorithm. A common stopping criterion is based on sufficient
decrease of the relative residual norm. However, in practical data assimilation implementations, a
fixed number of iterations is used as stopping criterion due to computational budget constraints. CG
is presented alongside its companion formulation, Algorithm 2, to be detailed in Section 3.3.

Algorithm 1 CG Algorithm 2 PCG
1: 7o = b— Axg 1: 7o = b— Az
2: 2: 29 = Fry
3: po = T‘(—)r’r'() 3: [)0 = TA(—)FZO
4 po=To 4: Po = 20
5. for £ =0,1,... do 5. for £ =0,1,... do
6:  qo= Ape 6:  Go= Ape
7 ag=pe/(q/ pe) Ty = pe/(q] Pe)
8  Tpp1 = Ty + aepy 8  Tpp1 = Ty + QP
9 Tep1 =T — uqp 9 Foqp1 =Tp— Gude
10: 10: 2p41 = F'f‘g+1
11 pop1 =T Tem 110 Popr =P 201
12: Boy1 = pev1/pe 122 Bogr = pesr/pe.

130 prg1 = Tex1 + Besape 130 Prg1 = Zes1 + Ber1De
14: end for 14: end for
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3.2 Convergence properties of CG

The approximation x, uniquely determined by (2) minimizes the error in the energy norm:

n

2
* 2 . * 2 : 2"

Tzt —x = min A)(x* —x = min i , 4

| el pEFL(0) [p(A)( o)lla pePs(0) Zl:110( ) A (4)

where 1; = s 1o and P¢(0) is the set of polynomials of degree at most ¢ with value 1 at zero [22,
p-193]. Thus, at each iteration, CG solves a certain weighted polynomial approximation problem over

the discrete set {\1,..., A, }. Moreover, if zy), cey zée) are the ¢ roots of the solution p; to (4),

n n 2
ool = i =TT (122 ) % o
la = ALY i = Z(f) )\i.
i=1 i=1j=1 j

The zj(-z) are the Ritz values [5]. From (5), if zj(-z) is close to a A;, we expect a significant reduction in
the error in energy norm. Based on the above, [5] explains the rate of convergence of CG in terms of
the convergence of the Ritz values to eigenvalues of A. Assuming that Aq,...,\, take on the r distinct

values p1, ..., pr, CG converges in at most r iterations [20, Theorem 5.4].
Using (4) and maximizing over the values p()\;) [22, p.194] leads to

lle” = @dlla < min max [p(\;)]. (6)
lx* — zolla — pePe(0) 1<i<n

By replacing {A1, ..., A, } with the interval [A1, A,] and using Chebyshev polynomials, we obtain an

upper bound [22, p.194]:
¢
2" — 2| a VE(4) —1
T S22 e | (7)
[[z* — wolla VE(A)+1
where k(A) := A1/, is the condition number of A. While (6) and (7) provide the worst-case behavior
of CG [12], the convergence properties may vary significantly from the worst case for a specific initial
approximation. Note also that upper bounds (6) and (7) only depend on A, and not on r. Though (7)
relates the convergence behavior of CG to x(A), one should be careful as convergence is also influenced
by the clustering of the eigenvalues and their positioning [2, 3].

3.3 Properties of a good preconditioner

In many practical applications, a preconditioner is essential for accelerating the convergence of
CG [1, 25]. Assume that a preconditioner ' = UU T € R"*" is available in a factored form, where U
is SPD, and consider the system with split preconditioner

UTAUy=U"», (8)

whose matrix is also SPD. System (8) can then be solved with CG. The latter updates estimate y,
that can be used to recover z, := Uy,. Algorithm 2, the preconditioned conjugate gradients method,
is equivalent to the procedure just described, but only involves solves with F' and does not assume
knowledge of U [8, p.532]. PCG updates &, directly.

PCG looks for an approximate solution in the Krylov subspace
zo + UK (UTAU,U " rg),
and as in (4), it minimizes the energy norm,

o = ella = min [Ug(UT AV)U (& — z0)lla. o)
q€P,(0)
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Although there is no general method for building a good preconditioner [1, 25], leveraging the
convergence properties of CG on (9) often leads to the following criteria: (i) F' should approximate
the inverse of A, (ii) F should be cheap to apply, (iii) x(U " AU) should be smaller than x(A), and (iv)
UT AU should have a more favorable distribution of eigenvalues than A. Note that, all four criteria
only focus on A and overlook the significance of the initial guess.

3.4 Preconditioning for a sequence of linear systems

In the context of (1), it is common to use a first level preconditioner, F' (), for the initial linear
system, AMz(1) = p(1) The selection of the first-level preconditioner depends on the problem and
may take into account both the physics of the problem and the algebraic structure of A™) [1, 21, 25].
To further accelerate convergence of an iterative method such as PCG on subsequent linear systems
AU G+ — U+ one can perform a low-rank update of the most-recent preconditioner, F(),
leveraging information obtained from solving A z() = p(7) [10, 17].

One common choice of low-rank update is to use the (approximate) spectrum of AY) [6, 7, 10].
The main idea is to capture the eigenvalues not captured by the first-level preconditioner, and cluster
them to a positive quantity, typically around 1.

In this paper, we will consider the case where only the right-hand side is changing over the sequence
of the linear systems, i.e., AU) = A for all j. Perturbation analysis with respect to A will be presented
in a forthcoming paper.

4 A scaled spectral preconditioner

We focus on the scaled spectral preconditioner, known in the literature as the deflating precondi-
tioner [7] or spectral Limited Memory Preconditioner (LMP) [10], which is defined using a scaling
parameter that determines the positioning of the cluster. We will provide several strategies for the
choice of the scaling parameter, which has a significant impact on the convergence of PCG.

Let us assume that k largest eigenvalues of A, i.e. {\;}X_ |, are available. We define the spectral
preconditioner

k
0 _ oA !
Fopi=I,+ ) (X - 1) 8:8; = I+ Sp(OA' — ) S = S [ ey k] ST, (10)
i=1 N7 n
where S, 1= [51 sk] and Ay := diag(A1,...,\r). The factor of Fy = UZ is
~( /¢ VA, ?
Up=U =1, ——1|ss{ =8 k ST, 11
o=t = (F )t s [N .
Preconditioner Fy clusters Ay, ..., \; around 6, and leaves the rest of the spectrum untouched, i.e.,
01 T T, &R &T
UpAUy = S A S =05LS, + SeArSy, (12)
where S, 1= [5k+1 sn] and Ay := diag(Api1,---,An). Asin (9), PCG minimizes

lz* — 2¢(8)]|a = min [|Usq (UpAUp) Uy * (2" — 0)]|
qE]Pz(O)

= min ||q(UsAUy) (z* — z0)| 4, (13)
q€P,(0)

where we used Uypq (UgAUg) U, ' = UpU, ' q (UgAUy) = q (UgAUp). Using (4) in the context of Equa-
tion (13), we obtain the following result.
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Theorem 1. Let 34(0) be generated at iteration £ of Algorithm 2 applied to Az = b with precondi-
tioner (10). Then,
2
la* — &(6)|% = min }jm RPN w. e (14)

q€Py(0) “

where 1; = s;'—ro is the i-th component of the initial residual in the basis S.

Proof. Given (12), we have for any polynomial g,

([ )

Since 2* — 2o = A" 'rg = SA™1S8 Ty,
x 01, .
q (UgAUy) (z* — x9) = Sq ({ k AJ) A8 Tr. (15)

Substituting Equation (15) into Equation (13), we obtain the result. O

The scaled LMP Equation (11) is typically used with @ = 1. This choice is operational in numerical
weather forecast [6, 24]. In the next subsections, we explore various choices for § aiming to improve
convergence properties of PCG.

4.1 On the choice of the scaling parameter

The scaling parameter 6, which defines the position of the cluster, is often set to 1 [6, 7, 10]. This
choice is motivated by several factors, such as the eigenvalue distribution of A, the behavior of the
first-level preconditioner, and the convergence behavior of PCG.

We investigate clustering the eigenvalues at a general 6 > 0, which, compared with the conventional
choice of 1, results in enhanced convergence of PCG. It is important to note that the notion of “better
convergence” may vary across different applications. For instance, in some applications, one may
require high accuracy, in which case, a better convergence may be defined as a lower number of
iterations. In other applications, we may want to get an approximate solution quickly, which requires
to improve the convergence especially in the early iterations. In this case, there is no guarantee that
the early preconditioned iterates will provide a better reduction in the energy norm compared to the
unpreconditioned iterates (Section 4.2). For certain applications, such as numerical weather forecast,
where PCG is stopped before reaching convergence due to computational budget, early convergence
properties could be of critical importance. As a first direction, we will focus on the following question:

Is there 0 > 0 such that for any xq,
la* = a0()4 < lle* —wellys €= 1.2 (16)

To accelerate early convergence, we will investigate optimal choices for 8 with respect to the error in
the energy norm at the first iteration of PCG, i.e.,

min ®(0) := [l — 21 (6|3
We focus solely on the first iteration as it allows us to derive the optimal value of 6 in closed form.

On the other hand, for PCG, it is well known that removing eigenvalues causing convergence delay
can improve the convergence rate significantly [6, 10]. This can be done by using deflation techniques, in
which the aim is to “hide” (problematic) parts of the spectrum of A from PCG, so that the convergence
rate of PCG is improved [14, 23]. Finally, our focus will be also on answering the question

Can we choose 8 > 0 such that for any xo, PCG generates iterates close to those of
deflation techniques?
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4.2 0 providing lower error in energy norm

In general, although scaled spectral preconditioning is expected to help reduce the number of iterations
required to achieve convergence, Equation (16) may not hold for any choice of § > 0 and all iterations
{ as given by the following proposition.

Proposition 1. Let x; be the first CG iterate when solving Ax = b. Let #1(0) be generated at the first
iteration of Algorithm 2 applied to Az = b with preconditioner (10). Let xo be such that n? = \; for
it=k,k+1 and n; =0 otherwise. Then,

)\2
lz* = 21 (O)]1% < ll2* - z:ly = i“ <O < Ak
k

Proof. For £ =1, (5) yields |lz* — 21|34 = p;(Mk)? + pf(Akr1)?, where

To o \_ Ak + Akt

—1 o MR Ak
g Arg A+ AL

(A =1~

Similarly, (14) gives [lz* — 21(0)% = ¢} 4(6)* + af g(Me41)?, where

TTFQTO 0 4+ Ak
@ 9( ) TJFQAF@TO 02 + /\Z—&-l

is the polynomial that realizes the minimum. Using these relations, we obtain

PYREEDY 2 PYRREDY 2 = i)’
bl = (1- 20, (1 e, ) O de?

AL+ AN A+ A AR+ A
and 9 2 2
. 0+ M1 ) ( 0+ M1 ) (0 — Aey1)
*— NEZ=(1—-—=—50) +(1- 25N ="
Iz = 21 (0)1[4 ( 02 12, ZESIRGAE ZESYI
Hence,
(0= Mes1)® _ (e — A1)’ At
Pz, S g, o Sfsw -
k+1 k k+1 k

Proposition 1 shows that Equation (16) is not satisfied for all # > 0. If § > 0 lies outside of
[A7i1/ My Akl, then [|2* — &1(0)]|a > ||z* — 1] for zo as defined in Proposition 1.

In what comes next, we focus on the properties of 6 such that Equation (16) is guaranteed for all
iterations ¢, and for any given zg. An intuitive approach is to identify a range of 6 values where the
eigenvalue ratios of the preconditioned matrix are less than or equal to those of the unpreconditioned
matrix, as noted in [12, Lemma 1]. The next lemma shows that this property holds for 6 € [Agy1, Ax],
and for such choice, there exists a polynomial that promotes favorable PCG convergence.

Lemma 1. Let \y > o> ...2>2 X, >0, 0€{1,...,n}, and k € {1,...,£}. For any 0 € [Ap+1, A,
and any polynomial p of degree ¢ such that p(0) = 1 and whose roots all lie in [A,, A1], there exists a
polynomial q of degree £ such that ¢(0) =1 and

gD < [P, i=k+1,....n

Proof. Let us denote (uj)1<j<¢ the roots of the polynomial p given in decreasing order, so p(A\) =

Hle (1 — %) for any A > 0. Then, three cases may occur:
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Case 1: For all j € {1,...,4}, p; < 0, we choose g(A) = p(A), then simply we have for ¢ €
{k+1,...,n}, l[g(\)| = |p(N\i)|. For i € {1,...,k}, using the property that p; < 6 < \;, we obtain

1—ﬁ§1—£§0.
K Hj

Thus, we have [1 — &| < |1 — 2
Hj K

i
3

, and consequently |¢(8)] < [p(\;)].

Case 2: If for all j € {1,...,¢}, 8 < pu;, we choose g(\) = H?:l (1 — %) = (1 — %)l. Then simply

for i € {1,...,k}, |¢(8)] =0 < |p(\;)|. Fori e {k+1,...,n}, using the property Apy1 < 6 < p;, we

obtain N N N

0<l—-——<1-—2<1--—"
k41 0 Hj

Therefore, for i = k+1,...,n, [¢g(\)] < |p(N)|-

Case 3: let s € {1,...,£ — 1} such that for j = 1,...,s, 0 < p; < A\j, and for j = s+1,...,¢,
An < pj < 6. Let’s denote

-10-3) fL0-2)-0-3) 1,6-2)

We have ¢(0) = 0, so |g(8)] < [p(\;)] for i € {1,...,k}. Forie {k+1,...,n} and j € {1,...,s}, we
have

0<1-— As gl—ﬁgl—ﬁ,
Ak+1 ¢ Hj
because Ap1 < 6 < p;. Therefore, for i =k +1,...,n, |[g(\:)] < [p(N)]- O

Now, we can present a result that enables comparing the error in energy norm between the pre-
conditioned system given by (8) and the unpreconditioned system, Az = b.
Theorem 2. Let (2¢)eeq1,....ny and 2¢(0)req1,...ny be the sequences generated by CG and PCG with
Fp with 6 € [Agy1, Ax], respectively, when solving Ax = b. Assume that To(0) = zo. Then, for all
(=1,....,n, |z~ —i‘z(@)”A < |lz* — x|l a-

Proof. Let ¢ € {1,...,n}. From (5),
2 2 7 2
¥ —x = min A)(z* —=x = (M), 17
Jo* il = i Ipe(4) 6" —a0) = 32 3 5i0) (17)

where 7; represents the components of the initial residual o = b— Axg in the eigenspace of A. Applying
Lemma 1 to pj, there exists a polynomial ¢ of degree ¢ with ¢(0) = 1 such that

@) <Pzl i€ {l,....k}
g < i (NI, e {k+1,...,n}.

Applying these inequalities to (17) yields

2 = 77’2 2 a 77‘2 2 - 77'2 2
o —aely =D R 2D Sra0) + Y Sral)
=1 v i=1 " i=k+1 7"
k 772 n 7]2
> min Tiq(0)? + a2 = |l = 20 O
g (S a0 3 o) = s
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Theorem 2 offers a range of choices for §. Next, we discuss the practical and theoretical choices
from this range. Let us remind that to construct the spectral LMP (11), we are given k eigenpairs. As
a result, one practical choice is # = Ag. This idea is summarized in the following corollary.

Corollary 1. Let 0 = \,. Then, ||x* — &¢( )|l 4 < [|a* — x4 4 for any xo and for all € € {1,...,n}.

The next theorem shows that increasing k results in improved convergence.
Theorem 3. Let 1 < k1 < ko < n and le S [)\k1+17)\k1}7 9k2 S [)\k2+17)\k2] with, 9k2 < le. Let
(@e(Or,))eeqt,...n}s (Ze(Oky))eeqn,...,ny be the sequences obtained from PCG iterates when solving Ax = b
using Fy, —and Fy,  respectively with an arbitrary initial guess xo. Then, for all £ € {1,...,n}, one
has:

o — (60l < 1™ — 26O,

Proof. The eigenvalues of the preconditioned matrix using Fp, and Fp,  are given in decreasing order
respectively as

0 ) 1,....,k 0 ; 1,...,k
pi = k1 26{7. ) 1} and ﬁ;: ko ZE{,. ) 2}
A;  otherwise, A;  otherwise.

As k1 < ko, it follows that pr, < px, = 0k,. Therefore, p; can be expressed as a function of p; as

~ {9k2 € [Phat1,Pro) 1€ {1, . ka}
pi = )
Pi otherwise.

Using Lemma 1, for the polynomial qzekl, there exists a polynomial ¢ of degree ¢ with ¢(0) = 1, such
that for i € {1,...,n},

9(0k.)| <z, (Pi)], T€{1,... K2}
la(pi)l < lazg, (pi)l, i€ {ka+1,...,n}

Applying this result to (14) yields that

n_o 92
% 4 2 N
|z *W(le)”A: E qukl (Pz‘)z
i=1 "t

kQ 2 n
; 2 i 2
=D Shw (U > iq(pl)
i=1 i=ko+1
&2 772 2 - 77'2 2 2
> mi —q(0 + T\ = [|z" — Z¢(0 : N
> min ; 3 10) i:%l A aO) l2* = 20(0k,) I

One can see that k1 < ky = 60, < 0, since \; are in decreasing order. In addition, when
k1 = ko, Theorem 3 shows that A, 1 is the best choice in [Ag, 41, Ak, ] in terms of reducing the error
with respect to the unpreconditioned system.

4.3 Optimal choice for 6 with respect to the initial residual

Our objective is to determine the value of # that minimizes the energy norm of the error at the initial
iterate. This will provide us with the optimal reduction at the first iterate,

: o * A 2
0r € argmin () := o™ — &1 ()] - (18)

The expression for 6, is stated in the following theorem.
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Theorem 4. Let ro = b — Axg. The unique A, < 0, < Agy1 satisfying (18) is

0 — St Nl rd Arg — roSkArSy o (19)
DY oo —1g SkSETo

Proof. First, Theorem 1 implies

k 2 n 2
* ~ 2 U i«

e =201 =3 Taia@? + Y Mg o0 (20)

i=1 " i=k+1 "

T
F,
where 7; = s ro and ¢ o(A) =1 — %)\. Using (10), we obtain
k 2 n k 2 n
ro Foro = 92 7/7\—1 + n? and 1 FpAFyry = 6° Z 7/7\4 + Z \in?. (21)
i=1 """ i=k+1 i=1 """ i=k+1

Then, for all § > 0, ®(0) simplifies to
a0 = a (2005 ) S (o mOra 2
- a10? + as e A a160? + a3 ‘)

k 2 n n

where a1 = Z %, as = Z nf and az = Z )\mf. The derivative of @ is
i=1 """ i=k+1 i=k+1

2&1

(I)/(e) = (a192 +a3)3

(a20 — a3)(a*0® 4 a1a20* + araz0 + azas).

Since ®'(¢) < 0 on |0, 32[ and ®'(#) > 0 on |22, +ocl, then 72 is the global minimizer of ® on R and

is unique. Hence,
n 2
as Z¢:k+1 i

0, = arg min ®(0) = = ="
" g9>0 (®) az Z?:kﬂ n;

Moreover,
Z?:k.u >\n77i2
n 2
D i1

The expression for 0, can be rewritten in terms of Si, Ay, and ry as follows:

n 2
Zi:k+1 Aim); —
n72 - k+1-

Zi:k+l i

)\n: SHT‘S

o — Lt NI~ S Aim? g Aro — roSiAwSTo .

n 2 k 2 T T T
D1 = i1 Ty 7o 70 = T SkS) T0

Note that 6, can be interpreted as the center of mass for the remaining part of the spectrum in
which the weights are determined by n?, i.e.

Let us now look at the first iterate,

1(0,) = — 0% Fy o, 22
1’1( ) xO+TE)rF9 AF@TTO 0-70 ( )

to better understand the effect of ,. Using (21) and the value of 6,,
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T n 2
ro Fo.mro Zi:k.an‘ 1

T(—)I—FQTAFQTT’O N Z?:k—&-l )\17)22 N HT'

Therefore, (22) simplifies to

1 - - 1. -
#1(0,) = 2o + T (SkSy 4 0,.SkA; 1S, ) ro = @0 + SkAy M Sg o + G—SkS,;rro.
Then, the residual of the first iteration is given by
1 - - = . 1 - - =
b— Ai1(0,) = ro — SiS) o — G—SkAkSkTro = 5.5 ro — G—SkAkS,Iro. (23)

Given (23), we conclude that, from the first iteration, we can remove all components of the residual
with respect to Sk, see Appendix A. We now provide an upper bound for the error in the energy norm
for later iterations, ¢ > 1, beginning with &, (6,.). With this initial point, we ensure that all iterates
yield a residual within Span(Sy,).

Theorem 5. Let &4(6,) be the £-th iterate obtained from PCG when solving Ax = b using the precon-
ditioner Fy, with an arbitrary initial guess zo. Let x{™ be the (-th iterate generated by CG for solving
Az = b starting from &1(0,) as defined in (22). Then, for all ¢ € {1,...,n}, ||z* — Ze11(6r)||4 <
[Ja = g™ .-

Proof. From (23), the components of b — AZ;(f,) in the eigenspace of A are
0 (i=1,...,k), and n;(1—=X;/0,) (i>k).

Thus,

n 2
o=t = 3 % (1= 0) o (24)
L i 9,) v
i=k+1

*,Ini

where p;"™" is the polynomial that minimizes p — ||p (A) (z* — 21(6,.))]|% over P,(0).
Define

a0 = (1= 5 ) s

and note that ¢ € P;(0). Now we have

a€Pe 1= 1=k+1
k 172 n 772
<D SEal)*+ Y e
i=1 """ i=k+1 7"
"2 X\ 2 . .
_ 7777, 1— 3 p?lnlt(}\i)2 _ ||5,971,%mt||124 O
. Ai 0,
1=k+1

Note that, one can interpret #1(6,) as the first iteration of CG when solving the unpreconditioned
system, starting from xq + SkA,ZlSkTrO, since the search direction at the first iteration is equal to:

b— A (zo + SkA; 'Sy o) = b— Azo — SkSy 10 = 19 — SkSy 1o = SKSy 7o, (25)
and the step-length «q is given as
i _ TOTS’;CS,ITO
97« N TJSJS’]CAS']CS;TQ.

ag =

This highlights the strong connection between preconditioning, CG with different initial point and
deflation techniques [23, 24]. This connection will be explored in detail in the next subsection, providing
another choice for the scaling parameter.
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4.4 0 as the mid-range between A\, and A\,

We focus now on choosing a scaling parameter € to obtain approximate iterates to those of deflated
CG (see Algorithm 3). The deflation technique, with S; as the deflation subspace, is equivalent to
standard CG applied to Az = b with initial guess

25" = zo + SpAL TS, (b — Axg).
From (25), the residual of z0°f is given as
b— AxDef ng_’,;rro.

One can see that this initial guess gives a residual which is an orthogonal projection of ry onto span(Sy),
so that the ¢-th iterate of CG, xDEf starting with 25°f satisfies

« _ Def||2 _ . - 77712 32
b= g (32, o)

We now provide the main result of this section.

Theorem 6. Let &¢(0) be the £-th iterate obtained from PCG iterates when solving Ax = b using Fy
starting from an arbitrary initial guess xo € R™. Let x, Del pe the (-th iterate generated with CG when

solving Ax = b starting with x, Def — xo + SpA, 1Sk (b— Axgy). Then, in exact arithmetic,

with a(0) = max (|[Agr1 — 0],160 — \n) -

a(f)

2| < le = g @l < 57|

x* —l‘eJrl

: (26)

Tt —x
¢ A

Proof. Let us start by showing the first inequality. From Theorem 1

n_ o9
llz* — o1 (0 ||A = E (12+1 0(0)% + E TQZ—H,G()W)Q

i=1 i=k+1 "

77'2 2
Z iQZ+1,e(Ai)

i=k+1
n
>  min (Z @q ) Def
9€Pen (0) \ 5 Ai

Now, to prove the second inequality, we consider p,’ Def

p > |p(A) (z* — 20 || over Py(0)., i.e.,

r* — efHA Z T’z *Def

i=k+1 Z

the polynomial that minimizes

~ ~ A *,De
Consider gg+1 € Py+1(0) such as for all A € R,gp+1(A) = (1 - 0) pz’D f(A). Hence,

ko 2
. 2 ;

la* =21 O = D gt 6(0)° EjA%ﬂe
i=1 "

i=k-+1

ko 2
; ~
< E )\f(]e-w-l E )\ QE+1
i=1

i=k+1
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n 2 2
7 Def,x Ai
> P () (1 - 0)

2

i=k+1
A0 . be al0) | . pern2
< moe (1=5) o - P = 22 e -

Choosing 6 > 0 such that «(0)/6 > 1 in (26) would give a pessimistic upper bound. For a better
bound, we select § > 0 such that «(6)/6 < 1, which is equivalent to impose § > A;41/2. The value of
0 that minimizes «(6)/0 is 0* = (Ag41 + An)/2.

Given that Agyp is unknown, and A, can be predetermined in various applications, e.g., in data
assimilation problems A, = 1, a practical approach for selecting 8 (the closest to 6*) is by choosing
the average between the A, and \,, i.e., 0, = (Ax + \,)/2, for which we have «(6,,)/0m = (M —
An)/(Ak + An) < 1. Note that the choice § = Xy yields in (26) to a worst upper bound compared to
Om, i, a(Ag) /A > a(Om)/O0m

4.5 Discussion

The analysis in this section raises two key questions. The first is: why use a scaled spectral precon-
ditioner when we know that deflated CG iterations using the deflated subspace Sk, or using an initial
guess as defined in (22), produce better results in exact arithmetic (see Theorem 6)? The assumption
in this section is that the eigenpairs used to construct the deflated subspace or the initial guess are
exact, ensuring that components of the initial residual within the eigenspace of Sy are eliminated.
However, when an approximate eigen-spectrum is used, such as the eigen-spectrum of A is applied to
solve a system involving a perturbed matrix, A the initial guess may fail to remove the components of
the initial residual within the eigenspace of A. For instance, consider the perturbed matrix A=A+ E,
A is modified by a small perturbation matrix F. This results in the following expression:

A:EDef Al’Def + E(EODef,

where the value of b — Ax§f from (25) becomes: b — AzDef SpST (b — Azg) + Eadel.

This illustrates that the perturbation F introduces additional components to the residual, which
the initial guess fails to fully eliminate, unlike in the exact case. When the perturbation exists, we show
in numerical experiments that using a scaled spectral LMP becomes advantageous over deflated CG.

The second question is: why not combine the initial guess (22) with the scaled spectral LMP using
¢ = 1. When the initial guess fails to eliminate components of the initial residual within the eigenspace
of A, these components influence the convergence of PCG. Their impact on the energy norm of the
error can be reduced by appropriately positioning the largest eigenvalues.

5 Numerical Experiments

In this section, we illustrate the performance of the scaled spectral LMP, as defined in (11), within the
context of a nonlinear weighted least-squares problem arising in data assimilation, i.e.,

min_f(wo) = min *Ilwo—wbIIB 1ty leyz i(Mi 1, (wo)) 51 (27)

wo€ER™

Here, wg = w(tp), is the state at the initial time ¢, for instance temperature value, wy € R™ is a priori
information at time tg and y; € R™¢ represents the observation vector at time t; for ¢ = 1,..., N;.
My, 1, (+) is a nonlinear physical dynamical model which propagates the state wy at time ty to the the
state w; at time ¢; by solving the partial differential equations. H;(-) maps the state vector w; to a
m;-dimensional vector representing the state vector in the observation space. B € R"*", R; € R™i*™i
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are symmetric positive definite error covariance matrices corresponding to the a priori and observation
model error, respectively.

The TGN method [11] is widely used to solve the nonlinear optimization problem (27). At each
iteration j of the TGN method, the linearized least-squares approximation to the nonlinear least-
squares problem (27) is solved. This quadratic cost function at the j-th iterate is formulated as

; 1
Dy = 2 le — (3)‘ (g, _ g2
QU(s) = 3 s — wy w43 §j||G — DI, (28)

where s € R” d(j =y; —Gi(w (j)) with G;(w, (j)) = Hi(Myy ., (w (j))) and G(j) represents the Jacobian

() The quadratic cost function (28) is minimized with respect to s which

is then used to update the current iterate, i.e. w((f D ((J 7) + s where s\9) is an approximate
solution of the problem (28). This process continues till the convergence criterion is met. For large
scale problems with computationally expensive models My, ,(-), a limited number of TGN iterations

are applied. The solution to the quadratic problem (28) can be found by solving

of G; at a given iterate wy

(B—1 + (G<J’>)TR—1G<J'>) s = B~ (wy, — w{) — (GUYTR=14W). (29)

where dU) is a m-dimensional concatenated vector of dz(- withm = Z My, GU) € R™*™ represents a
concatenation of ng) € R™i*" and R € R™*™ is a block diagonal matrix, i.e. R = diag(Ry,...,Ry).
The matrix B~ + (G(j ))TR_lG(j ) is SPD, matrix-vector products with it are accessible only through
operators, and n can be large for data assimilation problems. Hence, CG is widely used to solve such
systems.

Let us assume that a square root factorization of B = LLT is available. The linear system (29)
can be then preconditioned by using this first-level split preconditioner,

(In + LT(GU))TR—lGU)L) e=1L7 (B—l(wb —wl) - (G(j))TR_ld(j)> . (30)

CG at the ¢-th iteration provides an approximate solution xé 7) which is then used to obtain an approx-

imate solution of the linear system (29), i.e. séj ) = Lxéj ). In operational data assimilation problems,
in general m < n. Consequently, the preconditioned matrix AY) = I, + LT(GU)TR-IGUIL has

n — m eigenvalues clustered around 1, while the remaining eigenvalues are greater than 1.

Since in the context of TGN, a sequence of closely related linear systems is solved, it is common to
update the first-level preconditioner L by using approximate eigenspectrum of the previous linear sys-
tem [6, 10]. Let us denote b) := LT (B Hwp — wi) = (GO)TR™ 1d(3)) For j =1, CG Algorithm 1
solves the linear system AWz = b1, for the Varlable z. Using the recurrences of CG, we can easily
compute approximate eigenpairs of A1) (see [22, p.174] for more details). These pairs can then be
used to construct a second-level preconditioner, Ue(ll), by using the formula (11). Consequently, (U, 9(11))2
is an approximation to the inverse of the matrix A®). Then, assuming that A is close to the matrix
AWM for j = 2, CG Algorithm 1 is applied to the preconditioned system, U (1) A(2)U(§11)33 = Uéll)b@).
The approximate solution at ¢-iterate is obtained from the relation 3(2 LU, (1 2). At the end of the
CG, we can obtain approximate eigenpairs of Ue(l)A(z)Ug(ll) and use it to construct a preconditioner
for the next linear system. At the j-th outer loop of TGN, CG is applied to the preconditioned linear

system:
j—1 1) 4()rr(2 j—1 j—1 1, (5
(Uéj_1 ). Uél)A(])Uél) . Ue(f_l )) T = U(Sj_l ) Uél)b(])7 (31)

and the approximate solution to (29) is obtained from S(J) Ue(j__ll) . Ue(ll);véj).
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5.1 Setup

In our numerical experiments, we use the Lorenz-96 [16] model as the physical dynamical system,
My, 1, (+), which is commonly used as a reference model in data assimilation. The observation operator
H(-) is defined as a uniform selection operator, meaning H(x) extracts a subset of x that is uniformly
selected. B is chosen as a discretized diffusion operator with a standard deviation o, = 0.8 [9]. We
consider R1 = Ry = JfIm with o, = 0.2. We choose n = 1000 and N; = 2, and we consider two
different scenarios, with a different number of observations: (1) LowObs with m; = my = 150 and (2)
HighObs with m; = mo = 300. For both cases, 2 outer loops are performed within TGN. CG is applied
to the first linear system AWz = b(1) with 100 iterations. Then, approximate largest eigen-pairs of
AW (Sy, Ay), are computed and selected based on convergence criteria with a tolerance of ¢ = 1073
(See [Section 1.3][24] for further details). With this criteria, the number of selected eigen-pairs is 45
in the LowObs case and 26 in the HighObs case. Using these pairs, the scaled LMP, Ue(ll), is applied
as a preconditioner for j = 2. Matrix-vector products with the preconditioner are carried out via an
operator using the selected pairs, meaning the preconditioner matrix is not explicitly constructed.

5.2 Numerical results

In this section, we present numerical results only for the second outer loop (j = 2) of the TGN
method. We compare the performance of the methodologies of Table 1 in terms of convergence rate
and computational cost.

Table 1: Description of methods used in the numerical experiments

Method Description Initial guess
BPrec Algorithm 1 applied to (30) z0=0
sLMP-Base Algorithm 1 applied to (31), 61 =1 zo=0
Init-sLMP-Base  Algorithm 1 applied to (31), 1 = 1 20 = U;llskA,gls]jb@)
sLMP-)\, Algorithm 1 applied to (31), 61 = Ay, zo=0
sLMP-6, Algorithm 1 applied to (31), 61 = 6, z0 =0
sLMP-0,, Algorithm 1 applied to (31), 61 = (A, +1)/2 zo=0
DefCG Algorithm 3 applied to (30), W = Sy, z_1=0
< BPrec <o Init—sLMP—Base /A sSLMP—0y, DefCG
sLMP—Base ) sLMP—)\ =3¢ sLMP—0,
4% 10" ! 4 x 10°

3 x 10° 113 % 10°

Quadratic cost function

o Wl
‘Trssennsesn Htdnannssss
0 100 200 300 0 100 200 300
Iterations Matrix—vector product

Figure 1: Quadratic cost function values along all CG iterates (left) and with respect to the number of matrix-vector
product with the matrix A(Y) and A®) (right).

We can easily see that sSLMP-Base is not necessarily better than BPrec especially in the early
iterations. This means that the scaled spectral LMP, clustering the largest k eigenvalues around 1,
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might reduce the total number iterations to converge, however it does not guarantee better convergence
for early iterations. The slow convergence of sSLMP-Base can be partly explained by the fact that
perturbations may cause some eigenvalues to appear near zero, as depicted in Figure 2. When changing
the clustering position from 1 to Ax by using sSLMP-)\;, we can see that the method performs better
than BPrec. In this case, however the gap between the cluster and the remaining spectrum as defined
in Theorem 6, i.e. a(9§1))/9§1), can be large. When clustering around 6, and 6,, is applied with
sLMP-6,. and sLMP-0,, respectively, the value of a(@il)) / 951) reduces for both cases (see Figure 2).
This improves the convergence compared to sLMP-)\; as seen from Figure 1.

®,
83 Q
10% Lo . o o
B\ Bl ne
10 hi\ 10* ., H(ﬂ:U(ell)A(Z)Uéll) with 0, =1
= 0 A\&\ - o e Ho = Up)AQURD with ;= A
A
10! x o Hy = U AP with 6y =6,
\h;,% o Hg = UPARUN  with 6, =6
100 e R e e ] 0 = Yo, 0, ‘ 1=0
107!
1 200 400 600 800 1000
Index i

Figure 2: Spectrum of UéI)A(Q)Ue(I) for different values of 0; on a logarithmic scale. LowObs scenario (k = 45).

Init-sLMP-Base performs better than sLMP-Base, i.e. starting from zy = SkA,QIS,jb@) im-
proves performance compared to starting from zg = 0. This improvement arises because the initial
residual’s components in the eigenbasis of A are reduced. In fact, without any perturbation, these
components would be completely eliminated. Although, the performance is improved with this initial
guess, it can not reach the performance of DefCG. This demonstrates that modifying the initial guess
enhances convergence; however, the placement of the eigenvalue clustering can have an even more
significant impact. This is evident from the fact that the performance of sLMP-6,, and sLMP-6,
are very close to that of DefCG.

The right panel of Figure 1 shows the values of the quadratic cost function as a function of the
number of matrix-vector products performed with AU for j = 1,2 across different methods. Although
DefCG performs better, it is computationally expensive as it requires forming the projected matrix
S,—CFA(Q)S;.C. Among the other techniques, sSLMP-6,. requires one additional matrix-vector product with
AWM to compute 6,. However, as shown in Figure 1, sSLMP-6,, and sLMP-); do not require any
extra matrix-vector products either A or A3,

These results indicate that the performance of CG, when used with scaled spectral LMP, can be
significantly improved, approaching that of deflated CG, by selecting the position of the eigenvalue
clusters based on CG’s convergence properties. The cluster position is determined by #, whose com-
putation incurs no additional cost for sSLMP-60,, and sLMP-)\;. Conclusions from experiments with
HighObs are very similar, the obtained results are depicted in Figures 3 and 4 in Appendix B.

6 Conclusion

We have proposed a scaled spectral LMP to accelerate the solution of a sequence of SPD systems
AWz = pl@) for j > 1. The scaled LMP incorporates a low-rank update based on k eigenpairs of
the matrix A. We have provided theoretical analysis of the scaled spectral LMP when AU) = A. We
have shown that the scaled spectral LMP (10) clusters k eigenvalues around the scaling parameter 6,
and leaves the rest of the spectrum untouched.
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We have focused on the choice of 8 to ensure that PCG achieves faster convergence, particularly in
the early iterations. In the first approach, we have proposed choosing 6 to guarantee a lower energy
norm of the error at each iteration of PCG. In the second approach, we have obtained an optimum 6
in the sense that it minimizes the energy norm of the error at the first iteration. Our analysis reveals
that, with the optimal €, the components of the first residual is eliminated from the eigenspace of A,
which aligns with the core principle of deflated CG. Lastly, we have also explored a scaling parameter
that approximates the iterates of deflated CG. We have provided the link between the deflated CG
and PCG with the scaled spectral LMP.

We have compared different methods for solving a nonlinear weighted least-squares problem arising
in data assimilation. In our numerical experiments, we used approximate eigenpairs to construct the
scaled spectral LMP. First, we have demonstrated that selecting 6 based on PCG convergence prop-
erties significantly accelerates early convergence compared to the conventional choice of # = 1. Then,
we have shown that 6 values that reduce the spectral gap between 6 and the remaining eigenvalues
lead to faster convergence. Additionally, we have compared the scaled spectral LMP with deflated
CG, showing that the scaled spectral LMP produces iterates similar to deflated CG, but at a negli-
gible computational cost and memory, unlike deflated CG. These numerical results clearly highlight
the importance of selecting the preconditioner not only as an approximation to the inverse of A, but
also with consideration of its role within PCG. In particular, we have demonstrated the significance
of the placement of clustered eigenvalues, an often overlooked factor in the literature, on the early
convergence of PCG.

As the next step, we will provide a detailed theoretical perturbation analysis in a forthcoming
paper. Additionally, we aim to validate the proposed preconditioner in an operational weather predic-
tion system.

A Deflated CG with S},

The deflation technique outlined in Algorithm 3 is defined for any deflation subspace W, see [23] for
more details. The main idea is to speed-up the CG starting from an initial point such that the initial
residual does not have components in the deflation subspace W and to update the search directions
such that WTApj = 0. A widely used approach is to choose W as the eigenvectors corresponding to
the eigenvalues that slows down the CG convergence.

Algorithm 3 Deflated-CG

: Choose k linearly independent vectors wi,ws, ..., wg.
: Define W = [w1, w2, ..., wk], and choose z_1.
Set zODef =z_1+ W(WTAW)_lWTrfl, where r_1 =b— Ax_. WTlrog=0
Set po =10 — W (WTAW) ™' WT Arg. WT Apo =0
for j=1,2,...do

ajo1=r]_yrji-1/(p]_1Apj-1)

el = 2Pl +aj_1pja

rji =Tj_1— aj_lAp]-_l HvTT_/ =0

T (T o

Bj—1=r;ri/(r;_17j-1)

pj = Bj—1pj_1 +rj — W (WTAW) ' WT Ar, WT Ap; =0
: end for

2O © 0 DOl Wi

— =

If we choose W = S, and using the fact that S,IASk = Ay and ASy = SipAg, we can achieve the
following simplifications:

° x(]))ef =x_1+ SkAlzlS,:rfl,

® Do =T — SkS,;rro.

o pj = Bj_1pj—1+7;— SkS) ;.
Lemma 2. The residual r; and the direction p; are orthogonal to span(Sk).
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Proof. We proceed by induction. For j =0, rg =r_; —SkSkTr_l, from which it follows that S,Iro =0.
As a consequence, S,;rpo = 0. Assume that r; and p; are orthogonal to span(Sy) for j. We have rj4q =
r;—a;Ap;. From [23, Proposition 3.3], replacing W by Sy, we have S{ Ap; = 0. Since pj,r; L span(S)
by assumption, it follows that 7;11 L span(Sk). For pji1 = Bijp; + rjs1 — SkSy rj+1 = Bipj + rit1,
we get p;jy1 L Span(Sy) since S];r’rj+1 = 0 as shown and p; L Span(Sj) by assumption. O

From Lemma 2, it follows that p; = B;_1pj—1 +7; — SkS,Irj = Bj_1pj—1 + ;. With these sim-
plifications, it is clear that in exact arithmetic, deflated CG, when used with the deflated subspace
consisting of a set of eigenvectors of A, generates iterates equivalent to those generated by using the
initial guess 25/ in standard CG.

B Results for the HighObs scenario
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Figure 3: Quadratic cost function values along all CG iterates and with respect to the number of matrix-vector product
for the HighObs scenario.
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Figure 4: Spectrum of UéI)A@)Ue(i) with different 0; for the HighObs scenario (k = 26).
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