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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2024-58
https://www.gerad.ca/en/papers/G-2024-58
https://www.gerad.ca/en/papers/G-2024-58


Column generation and local search for the profit-oriented
hub-line location problem with elastic demands

Brenda Cobeña a, b

Claudio Contardo a, b

a Department of Mechanical, Industrial and
Aerospace Engineering, Concordia University,
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Abstract : Population growth and city sprawl have been driving increasing amounts of traffic con-
gestion in multiple major cities worldwide. In this scenario, developing efficient public transportation
networks becomes critical to ensure adequate mobility. Hub network location models address the
problems of designing public transit networks to model —and to optimize— passenger mobility. More
specifically, hub-line location problems (HLLP) play an essential role in the design of rapid transit
corridors and subway lines. In this work we address the profit-oriented hub-line location problem
(ED-HLLP) for which we introduce a column generation method to solve the linear relaxation of a
mixed-integer model and matheuristic that combines column generation and local search. The pro-
posed methodologies lead to the calculation of primal and dual bounds. We assess the performance of
the proposed methods on some classic datasets from the HLLP literature. Furthermore, we conduct a
more realistic study on a problem instance representing the metropolitan area of Montreal, Canada.
Finally, we conduct a sensitivity analysis to assess the major attributes driving our results, both from
an algorithmic point of view as well as from a planning perspective.

Keywords : Hub location, urban mobility hubs, gravity models, column generation, local search
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1 Introduction

Population growth, city sprawl and the urbanization of rural areas have been driving incremental levels

of traffic in major cities worldwide —mainly due to an increase in the acquisition and use of private

vehicles— significantly impacting the mobility of passengers on their daily trips (Nations, 2019; Aydin

et al., 2022). In this context, hub location problems (HLPs) play an important role in the design of

transportation networks. Specifically, the hub-line location problem (HLLP) addresses the problem of

designing a corridor (such as a subway line, or a rapid transit bus corridor) in transportation planning

to improve passenger mobility in their daily trips (Contreras and O’Kelly, 2019).

HLLP enables the integration of multiple modes of transportation, allowing for the allocation of

passengers to multiple sub-systems, which in turn translates into direct interactions between non-hub

nodes and multiple assignments for each origin and destination (OD) pair to more than one hub. A

hub node may be a a metro, train, or tram station where two or more transportation modes interact.

A non-hub node may be a bus, taxi, car/bike share station or urban district. The flows are ridership or

users travelling between the multiple OD pairs in one or more modes such as train, metro, or subway

(Martins de Sá et al., 2015).

In the classical HLLP, the demand is assumed to be inelastic and independent of the design of

the resulting hub-line system. Recently, Cobeña et al. (2023) introduced the profit-oriented hub line

location problem with elastic demand (ED-HLLP). They use gravity models to incorporate demand

elasticity into an optimization model. ED-HLLP aims to maximize revenue that in turn depends of

the time savings obtained when using the hub-line system with respect to the existing network. It is

only natural to try to capture the fact that increased time savings will result in higher demands in the

new system. Hence, considering the elasticity of demand in ED-HLLP makes the model more realistic.

The HLLP and the ED-HLLP give raise to difficult optimization models. In Cobeña et al. (2023)

the authors model the ED-HLLP as a mixed-integer nonlinear optimization problem. A commercial

off-the-shelf solver is shown to be able to scale and solve very small instances of the nonlinear model.

To better cope with the nonlinear nature of the problem, the same authors reformulate the problem as

a mixed-integer linear problem (MILP) using a very large number of variables, one for every possible

OD-path in the network, including or not nodes in the new hub-line system. Via a smart enumeration

mechanism, the authors can solve to proven optimality larger problems when compared to solving the

nonlinear models. The combinatorial nature of their enumeration algorithm, however, only pushes

but does not get rid of the combinatorial explosion. Small problems only (with up to 25 total nodes)

remain tractable for their method.

We address the problem of solving the ED-HLLP for larger problem sizes. Since the number of

feasible OD-paths grows exponentially with the problem size, an enumeration of all possible paths

may quickly become prohibitively inefficient. In this article, we investigate the development of more

scalable methods to address the ED-HLLP. A novel variable enumeration mechanism based on the

column generation (CG) paradigm is used to generate promising paths dynamically. A local search

procedure is then applied to generate high-quality feasible solutions quickly.

This paper presents several significant contributions to the field of urban planning and optimization.

The key contributions are as follows:

1. We introduce a novel column generation method that uses dynamic programming for efficient

path selection for the ED-HLLP. Its efficiency depends on the ability to identify promising OD-

paths, incorporating extension and dominance rules to avoid the generation of non-promising

ones. The strategy used in the path extension step is a label-setting algorithm. The proposed

method allows us to compute primal and dual bounds efficiently.

2. We introduce a hybrid matheuristic that combines column generation and local search (LS) to

enrich the pool of promising paths for the ED-HLLP. The proposed method allows us to compute

primal bounds in short computing times.
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3. We provide a thorough comparison between the path enumeration method of Cobeña et al.

(2023) and the new methods introduced in this manuscript using the classical CAB dataset. In

particular, our methods are compared against the sequential and parallel implementations of the

path enumeration mechanism of Cobeña et al. (2023).

4. We conduct a case study using data from the metropolitan area of Montreal to show the applica-

bility and relevance of the proposed heuristic on a real-world context. This study offers insights

for city planners, urban planners and public transport managers on the design of urban mobility

systems.

The remainder of this article is structured as follows. In Section 2 we provide a the literature

review on hub-line location and related problems. In Section 3 we provide a formal definition of the

problem. In Section 4 we describe in full detail the CG method to address the solution of the linear

relaxation of ED-HLLP and the computation of primal and dual solutions. Section 5 describe the

proposed matheuristic algorithm that combines the column generation and local search. Section 6 is

dedicated to presenting the results of extensive computational experiments designed to evaluate the

performance of the proposed methodologies. It includes a detailed examination of the application of

the proposed method using the CAB dataset and a case study focused on the metropolitan area of

Montreal, Canada. This case study demonstrates the application of the new method to tackle real

instances. It quantifies the benefits of implementing mobility hubs, including the percentage reduction

in travel time facilitated by the hub-line system and an assessment of spatial coverage. The paper

culminates in Section 7, where we conclude our study, highlighting the significant contributions and

potential avenues for future research.

2 Literature review

The first mathematical model for Hub location problems (HLPs) is introduced by O’kelly (1986). HLPs

are pivotal in designing hub-and-spoke networks by locating a set of hub facilities and selecting a set

of links to route flows between OD pairs. One main assumption of a classical hub location problem is

that hubs are fully interconnected and that direct connections between non-hub nodes are not allowed;

however, for applications in public transport planning, the hub-level network is an incomplete hub

network (Alumur and Kara, 2008).

Nickel et al. (2001) made a notable contribution by introducing HLPs in urban public transportation

networks. Their models introduced the concept of HLPs, where the hubs are not fully interconnected,

and direct connections between pairs of non-hub nodes are allowed. Afterwards, Gelareh and Nickel

(2011) proposed hub location problems in urban transportation and liner shipping network design. In

this problem, the complete interconnection assumption is relaxed, but no specific topology is required;

multiple allocations and direct connections between non-hub nodes are allowed.

Zhong et al. (2018) design a multi-level hub and spoke (H&S) network to determine the location of

integration of rural and public transport hubs; Another concrete example of applying HLPs in public

transportation planning is the Hub Line Location Problems (HLLPs). It fits in the multiple-allocation

HLP with incomplete hub-level networks in which direct connections between pairs of non-hub nodes

are allowed. Particularly, HLLP is applied in designing rapid transit systems and highway networks

to enhance users’ travel times.

HLLP was first introduced by Martins de Sá et al. (2015). The authors introduce mathematical

models to address the problem of locating p special facilities known as hubs and p−1 hub edges to form

a path network. The HLLP incorporates a service-based objective that minimizes the total travel time

between OD pairs. The flows represent passengers traveling between OD pairs who wish to minimize

their commute time. Users will use the hub-line whenever time savings are perceived, otherwise,

they will use a direct link. The models introduced in that article capture other aspects relevant to

model travel times, such as the access and exit times incurred when using the hub network. To solve
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the resulting model, the authors propose an exact algorithm based on Benders decomposition. They

provide computational evidence of their method by considering two standard benchmark instances

from the hub location literature: the data set of the U.S. Civil Aeronautics Board (CAB) (see, O’kelly,

1987) and the Australian Post data set (see, Ernst and Krishnamoorthy, 1996).

In the previous works in HLPs applied in public transportation, the demand is assumed to be static

and independent from the location of the hub facility; however, this is not a reasonable assumption.

According to Alumur et al. (2021), the nature of the demand and how it affects the resulting hub

network is a key aspect of better modelling HLPs. The authors emphasize the importance of incorpo-

rating the elasticity of demand to price or quality of service, including the location of hubs and the

opportunities to serve only some of the demand, especially within a profit maximization model.

Location problems with demand elasticities have already been studied in the past. In competitive

facility location problems, a decision maker seeks to minimize lost demand or maximize the market

share captured considering elastic demand. Solution algorithms and extensions of these can be found

Marianov et al. (1999), Eiselt and Marianov (2009), Marianov et al. (2005), and Marianov et al. (2008).

In network design problems, Aboolian et al. (2012) introduced the profit-maximizing service network

design problem and Zetina et al. (2019) introduced profit-oriented multi-commodity network design,

both incorporating elastic demands.

Furthermore, the concept of demand elasticity has been integrated into gravity-type models used

in transportation planning models (see, De Dios Ortúzar and Willumsen, 1991; Tamin and Willumsen,

1989). Traffic assignment problems (TAPs) were among the earliest to incorporate elastic demands into

transportation planning problems. The TAP is a sub-class of transit network design problems in which

high-level decisions such as adding road capacity, deciding vehicle passing frequency (mostly for public

transit), or vehicle capacities must be determined (Newell, 1979). The TAP with elastic demands

induces a bi-level optimization structure that is very hard to address computationally. Because of this,

the majority of solution algorithms for these problems have been heuristics (Cipriani et al., 2012).

These studies demonstrate the importance and impact of accounting for elastic demands in strategic

hub network design problems in public transportation. To the best of our knowledge, ED-HLLP is

the only problem that addresses the design of the hub line system using gravity models to incorporate

demand elasticity within an optimization framework. In the ED-HLLP the authors Cobeña et al. (2023)

present two mixed-integer nonlinear programming formulations (MINLP) using arc-based variables

to model OD paths and capture the nonlinear components. Furthermore, given how difficult these

nonlinear formulations are to optimize using state-of-the-art MINLP solvers, the authors also propose

mixed-integer linear programming formulations (MILP) using path-based variables to model OD paths.

They introduce an a priori enumeration algorithm to generate all candidate OD paths to used in the

MILP formulations. In their computational study, they report that the MINLP formulations require

very high solving times, often much higher than enumerating the paths and solving the MILP models.

Significant efforts have been made to develop algorithms to achieve superior solutions for a range

of HLPs. The use of column generation approaches to address HLPs remains rather limited (see,

Farahani et al., 2013; Alumur and Kara, 2008; Alumur et al., 2021; Contreras and O’Kelly, 2019).

In Rothenbächer et al. (2016), the authors propose an exact branch-and-price-and-cut algorithm for

the service network design and hub location problem. They consider a path-based formulation for

the problem where the subproblems resort to shortest paths with resource constraints (SPPRC), and

solved by means of a labeling algorithm.

3 Problem definition and mathematical formulation

Let us consider the linear model of Cobeña et al. (2023) for the ED-HLLP. Let G̃ = (N,A) be a directed

graph for the ED-HLLP model, derived from the undirected graph G = (N,E) where N is the set of

nodes and E the set of edges e := [k,m] with k < m. Here A = {(k,m)∪(m, k) : e = [k,m] ∈ E} is the
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set of arcs induced by E. Furthermore, let C be the collection of OD pairs whose demands must be

routed either through a hub line or directly from origin to destination. Each OD pair will be referred

to as commodity c ∈ C and its origin and destination nodes denoted oc and dc, respectively.

For each commodity c ∈ C, tocdc ≥ 0 denotes the optimal (minimum) travel time required to travel

from oc to dc in the absence of the hub line. Without loss of generality, tocdc
also incorporates any

average transfer time required when changing modes of transportation from oc to dc. When a hub arc

is located between hub nodes (k,m) ∈ A, the travel time between k and m is computed as αkmtij ,

where αkm (0 ≤ αij ≤ 1) is a reduction factor that models the use of a faster transport technology to

connect oc and dc. Also, the access and exit times to the hub line through node i ∈ N respectively are

incorporated, denoted as t̃ai ≥ 0 and t̃ei ≥ 0 respectively.

The demand of a commodity c ∈ C, denoted by wc, is modeled with a gravity-like attraction that

depends on the attraction between oc and dc, as well as the travel time. It satisfies the equation:

wc =
PocPdc

(tc)r
, (1)

where Poc and Pdc
are weights associated to the populations of oc and dc, respectively. Moreover, we

denote Rc ≥ 0 the revenue for each unit of time reduction for c ∈ C when using the hub line system.

Because of the triangle inequality property of the travel times tocdc
, there exists a solution of

the HLLP that routes the demands wc either with a direct connection between OD or with a path

containing at most two access arcs and at least two hub nodes and one hub arc. Thus, once a commodity

leaves the hub-line, it cannot access the hub-line again.

Let Pc denote the set of all possible paths using a hub-line of p hubs with an associated travel time

smaller than or equal to tocdc
. Each path π ∈ Pc can be expressed as: π = [oc, h1, . . . , hk, dc], where

hm, for m = 1, . . . k with k ≤ p, denote the hub nodes that the path π traverses in its correct order.

In particular, h1 and hk represent the access-to and exit-from nodes in the hub-line, respectively. We

can recognize four types of paths π ∈ Pc:

(ODHc)-paths. Corresponding to paths in which all the nodes are hubs. In particular, oc and dc
must be hubs.

(DHc)-paths. Corresponding to paths whose origin node (oc) is not a hub node, but the destination

node (dc) is.

(OHc)-paths. Correspnding to paths whose destination node (dc) is not a hub node, but the origin

node (oc) is.

(ODNHc)-paths. Corresponding to paths in which neither oc nor dc are hub nodes.

Then, the travel time for routing commodity c ∈ C via a path π ∈ Pc, and denoted τπc is:

τπc = toch1 + t̃ah1
+

k−1∑
m=1

αthmhm+1 + t̃ehk
+ thkdc .

Therefore, if all the links of a path π ∈ Pc are known and fixed, its associated travel time τπc is

also known and, consequently, associated with a profit of:

gπc = Rc
PocPdc

(τπc)r
(tocdc − τπc).

The previous two observations regarding the travel times and profits of the paths give raise to the

following MILP formulation of the ED-HLLP.

We use binary hub-line variables vπc, π ∈ Pc, c ∈ C, equal to 1 if and only if commodity c is

delivered using path π. Also, the following binary variables are used: zk, k ∈ N , equal to 1 if and



Les Cahiers du GERAD G–2024–58 – Revised 5

only if a hub is located at node k and ykm, (k,m) ∈ A equal to 1 if and only if a hub arc is located

between hubs k and m, enabling flows to be routed in both directions. Finally, for every node k ∈ N

we consider integer variables lk representing the order in which nodes are traversed in the hub-line.

Besides the variable set, we also make use of parameters hπc
e equal to 1 if and only if path π ∈ Pc

contains the arc (k,m) or (m, k) defined by edge e = [k,m] ∈ E. The ED-HLLP is stated as the

following MILP:

(P ) max
∑
c∈C

∑
π∈Pc

gπcvπc∑
i∈N

zk = p (2)∑
k∈N

∑
m∈N

(k,m)∈A

ykm = p− 1, (3)

∑
m∈N

(k,m)∈A

ykm +
∑
m∈N

(m,k)∈A

ymk ≤ 2zk, k ∈ N. (4)

∑
l∈N

(k,l)∈A

ykl ≥ zk + zm − 1, k ∈ N \ {n},m = k + 1, . . . , n. (5)

lk − lm + nykm ≤ n− 1 (k,m) ∈ A, (6)∑
π∈Pc

hπc
[k,m]vπc ≤ ykm + ymk, [k,m] ∈ E, c ∈ C, (7)

∑
π∈Pc

vπc ≤ 1, c ∈ C, (8)

∑
π∈(ODHc)-paths

vπc +
∑

π∈(DHc)-paths

vπc ≤ zdc
, c ∈ C. (9)

∑
π∈(ODHc)-paths

vπc +
∑

π∈(OHc)-paths

vπc ≤ zoc , c ∈ C. (10)

ykm ∈ {0, 1}, (k,m) ∈ A. (11)

zk ∈ {0, 1}, k ∈ N. (12)

vπc ∈ {0, 1}, π ∈ Pc, c ∈ C. (13)

The objective function maximizes the total time savings obtained from using the hub-line system.

Constraints (2) and (3) strictly define the number of hubs and inter-hub links to be installed. The

series of constraints from (4) through (6) are crafted to uphold the design of the hub-line. Specifically,

constraints (4) limit each hub to a maximum of two links to other hubs, while constraints (5) dictate

that there must be at least one outgoing arc from each hub node on the path, excluding the hub

node with the largest index to mitigate the appearance of symmetric solutions. The constraints (6),

also referred to as Miller-Tucker-Zemlin (MTZ) constraints, act as sub-tour elimination constraints

(SECs), ensuring uninterrupted connectivity of the hub-line. By enforcing these constraints, we seek

to establish an oriented path where the highest indexed hub does not have an outgoing arc, hence

removing feasible solution symmetries.

Furthermore, constraints (8) restrict that each commodity is transported using the hub line, and

constraints (7) enforce the exclusive use of paths where hub arcs are opened. Constraints (9) and (10)

delineate between different path types. In particular, constraints (9) apply when all candidate paths

of types (ODHc) and (DHc) are identified for a specific commodity c, thus requiring dc to be a hub.

Conversely, constraints (10) apply when paths of types (ODHc) and (OHc) confirm that oc is a hub

for a specific commodity c. The decision variables’ domain is defined by constraints (11)–(13).
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The number of feasible hub line paths can be huge, so an enumeration of all possible paths is not

practicable. Instead, we use column generation to dynamically generate promising paths, as described

next.

4 Column generation

We now address the problem of solving the linear relaxation of problem ED-HLLP (see Section 3) via

column generation. We describe next the different components of this method, namely the restricted

master problem (RMP), the pricing sub-problem (SP), and a labeling algorithm for the solution of SP.

4.1 Restricted master problem

The restricted master problem (RMP) is obtained from the linear relaxation of the problem (P) by

restricting it to a subset Pc of paths for each commodity c ∈ C, which leads to a problem that we

denote RMP(P). Upon solving the linear programming relaxation of RMP(P), its dual variables are

employed to construct a subsequent problem, the pricing subproblem. The aim of this problem is

to identify new paths with the potential to enhance the value of the objective function for the LP-

relaxation, thereby bringing it closer to the optimal value of the master problem MP = RMP(P),

which contains exponentially many variables.

Let, Pc ⊆ Pc, the current subset of feasible paths under consideration. RMP(P) consists in the

following linear program:

(RMP ) max
∑
c∈C

∑
π∈Pc

gπcvπc

s.t. (2)− (6),

[β]
∑
π∈Pc

hπc
[k,m]vπc ≤ ykm + ymk, [k,m] ∈ E, c ∈ C. (14)

[σ]
∑
π∈Pc

vπc ≤ 1, c ∈ C. (15)

[ρ]
∑

π∈(ODHc)-paths

vπc +
∑

π∈(DHc)-paths

vπc ≤ zdc
, c ∈ C. (16)

[ω]
∑

π∈(ODHc)-paths

vπc +
∑

π∈(OHc)-paths

vπc ≤ zoc , c ∈ C. (17)

ykm ≥ 0, (k,m) ∈ A. (18)

zk ≥ 0, k ∈ N. (19)

vπc ≥ 0, c ∈ C, π ∈ Pc. (20)

Here β to ω are dual values from constraints (14) to (17).

4.2 The pricing sub-problem

In this section, we present the pricing sub-problem used to generate positive reduced-cost columns

when solving the problem defined in Section 4.1. We first present the exact pricing algorithm. Then,

we present a heuristic implementation of the algorithm to speed up the search for columns, especially

useful on the more challenging problem instances.

4.2.1 Exact pricing sub-problem

Because of the different types of (ODHc, DHc, OHc and ODNHc)-paths, the pricing sub-problem must

be performed for each c ∈ C and type of path π. An initial set of columns must be provided to initialize
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the CG algorithm. In Appendix A we describe the heuristic applied to obtain an initial set of feasible

paths. The pricing problem searches the variable’s hub line paths with positive reduced cost to add

them to the current set of columns of the RMP. The reduced cost for a path πc can be computed as

follows:

p̄(vπc
) =


gπc − σc − ρc −

∑
e∈E βc

e if c ∈ C, π ∈ (ODHc and DHc)-paths

gπc − σc − ωc −
∑

e∈E βc
e if c ∈ C, π ∈ (ODHc and OHc)-paths

gπc − σc −
∑

e∈E βc
e if c ∈ C, π ∈ (ODNHc)-paths

Finding a new path of positive reduced cost can be performed separately for every c ∈ C and type

of path via the solution of a shortest path problem with resource constraints (SPPRC). We address

the solution of the SPPRC using dynamic programming. We refer the reader to Irnich and Desaulniers

(2005), Ropke and Cordeau (2009), Costa et al. (2019) for overviews of constrained shortest-path

problems and appropriate solution techniques. The dynamic programming algorithm can be explored

according to different search strategies, and the order in which the labels are extended may be very

important for the effectiveness of the overall algorithm.

In label-setting algorithms, labels become permanent as soon as they are deemed as not dominated

by labels created previously. Once a label is set, it cannot change. On the other hand, label-correcting

algorithms allow labels to be updated multiple times as new, potentially shorter paths are discovered.

Label-setting algorithms are generally more efficient because they avoid re-processing labels multiple

times. Label-correcting algorithms can be less efficient due to their iterative updating of labels. Label-

setting is often preferred for problems such as the shortest path in network routing (where edge weights

are non-negative). We refer the reader to Zhan and Noon (2000), Desrochers and Soumis (1988) for a

more in-depth discussion on this subject.

In this work, we use a label-setting algorithm to solve the shortest path problem. The pricing

sub-problem is performed independently for each c ∈ C and the dual values in RMP are then used to

update the profit of each commodity c ∈ C. The following section describes the labeling algorithm for

identifying potential optimal paths and removing labels through the use of dominance rules.

Labeling algorithm. Labeling algorithms are employed to solve the SPPRC that commonly arise in CG

approaches for routing problems. The objective is to find the shortest path for each origin-destination

(OD) pair in the graph G=(N,A). The paths must satisfy conditions on resources used between OD,

for instance time and the number of hub arcs represent examples of resources consumed along the

path.

Labeling algorithms build partial paths in the graph G; paths are built from the origin (oc) to the

destination (dc) for each commodity c. Each path starts with an initial label that holds the information

about the resource consumption, and the labels are updated as the forward partial paths are extended

toward the destination of the commodity c.

Given the different types of paths between OD (see Section 3), which implies different varieties of

arcs between those nodes, a path cannot be represented merely as a sequence of nodes. Therefore, a

path is defined as π = [oc, h1, . . . , hk, dc], where h1 to hk with k ≤ p denote the hubs that the path π

traverses in its correct order.

Irnich and Desaulniers, 2005 provide an overview of techniques for addressing the SPPRC and

their potential solutions; however, in the SPPRC proposed by them, there are no constraints on the

structure of the paths. Thus, all paths are feasible. This work introduces a path structure constraint

to obtain the shortest paths using the hub line of p hubs and p − 1 hub arcs while ensuring a travel

time smaller than the direct times obtained by the labeling algorithm.

A label L is a tuple that associates the set of information for a partial path starting at the origin

oc and ending at the destination dc: the final node η of the label, τ - the cumulative time at the node,

the cumulative β dual value, Π - the set of the nodes visited, HA - the accumulated number of hubs
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arcs. Our resources are τ , ρ̄, Π and HA. The notation τ(L) is used to refer to the cumulate time in

label L, and a similar notation is used for the rest of the resources (e.g. η(L), β(L)). Thus, the label

of each forward partial path is denoted by L = (η, τ, β,Π, HA).

The dynamic programming recursion starts from a label Li
0 = ({oc}, 0, 0, ∅, 0). It is based on a

label extension rule to create paths π and a dominance rule to discard nonpromising labels.

Label extension. The label extension process is performed until the destination dc is reached. Paths

are extended, and resource usage is accumulated during path construction. Then, for each resource

HA, type of path, and commodity c, if extension along the arc (η, j) is feasible, a new label L′ is

created at node j. The information in label L′ is set as follows:

η(L′) = j (21)

τ(L′) =

{
τ(L) + (α ∗ τη(L),j) if (η(L), j) ∈ A

τ(L) + τη(L),j otherwise
(22)

β(L′) =

{
β(L) + βη(L),j if (η(L), j) ∈ A

β(L) otherwise
(23)

Π(L′) =

{
Π(L) ∪ {j} if j is a node visited, j ∈ N

Π(L) otherwise
(24)

HA(L
′) =

{
HA(L) + {j} 1 if j is selected as a hub node, j ∈ N

HA(L) otherwise .
(25)

Equations (21)–(23) set the current node, the time, and the cumulative β dual value associated

of the constraint whose hub edges are opened of the new label, respectively. Equation (24) updates

the set of visited nodes, this ensures that the paths are simple, meaning they do not contain a cycle.

Equation (25) updates the total of open hub edges.

In the path-searching process, to efficiently select the next adjacent nodes to explore, we employ

the resource of the number of hub arcs (HA) as a referential dimension in the partial paths process.

To preserve feasibility, paths are checked for travel time when extending a label L along an arc (η, j),

the extension is valid only if path times are less than direct times (tocdc
).

Dominance criterion. In addition to the infeasible labels rejected by the extending rule, unpromising

labels are also eliminated by the dominance rule. Let L1 and L2 be two labels sharing the same

terminal node η. We say that L1 dominates L2 if:

η(L1) = η(L2), τ(L1) ≤ τ(L2),

β(L1) ≥ β(L2), HA(L1) ≤ HA(L2),

Π(L1) ⊆ Π(L2).

(26)

The dominance rule is correct in the sense that it allows to discard the label L2 when every feasible

extension of it also is feasible for L1, leading to a larger value of p.

Acceleration of the dominance processes. To reduce computational time in the dominance processes,

we store the label list as an ordered list, which means that the set of the non-dominated labels is sorted

by descending order of cumulative β dual values. Furthermore, the rule of dominance is applied to

labels sharing the same destination node and having less or equal hub arcs. Then, the time complexity

of the dominance process is linear. Once the destination of the commodity dc is reached, dominance

and extension rules are not applied any further, and the labels are stored.

The pricing sub-problem is solved sequentially. Algorithm 1 summarizes the label-setting applied

to get new columns (paths) for each commodity c and type of path. We omit the outer loop and
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concentrate on the labeling algorithm. There are two main restrictions on every path this procedure

must ensure: Firstly, the travel time must not exceed the current travel time, and secondly, paths must

not exceed the number of hub edges (p-1 hubs) until the destination (dc) of the commodity is reached.

In general terms, Algorithm 1 returns new paths with a positively reduced cost for each OD pair

and path type. Finally, to solve the ED-HLLP, we solve the RMP as an integer program to obtain a

heuristic solution.

Algorithm 1: Dynamic programming algorithm for the solution of the pricing sub-problem (Li
0 = ({oc}, 0, 0, ∅, 0))

Input: Li
0, t̃

a
oc
, t̃edc , tocdc

Output: L // (ODHc, DHc, OHc and ODNHc)-paths for c ∈ C

1 Initialize Q← Li
0,L ← ∅

2 repeat
3 Take label L from Q and set Q← Q\{L}
4 for all r ∈ R s.t. τ(L) + t̃aoc + t̃edc < tocdc do

5 for all j ∈ N\Π(L) do
6 Extend L to j to create a new label L′ // 4.2.1

7 Apply dominance rule L′ // 4.2.1

8 if L′ has not been discarded and η(L′) ̸= dc then
9 Q← Q ∪ {L′}

10 else
11 L ← L ∪ {L′} // set label by desc order

12 end

13 end

14 end

15 until Q = ∅
16 return {L ∈ L | p̄ > 0}

4.2.2 Heuristic pricing algorithm

The exact solution of the pricing sub-problem can be complex in the presence of a large set of paths.

Therefore, before executing the exact pricing method described before, we consider a truncated labeling

algorithm as a heuristic. In this truncated labeling method, only the 5 nearest neighbors of every node

are considered for the extension step.

4.3 Computing primal and dual bounds

The CG described before naturally leads to the calculation of a dual bound. To compute a primal

bound, we proceed by enforcing integrality on the path variables vπc. This is a known technique in

the scientific literature (see for instance Ceselli et al., 2009; Joncour et al., 2010; Yuan et al., 2021). A

feasible solution to the resulting MILP provides a primal bound of the problem, however not necessarily

an optimal solution, which could only achieved if the CG was repeated on every node of the branching

tree, thus leading to a branch-and-price method (Barnhart et al., 1998).

5 A hybrid matheuristic

This section introduces a hybrid matheuristic that combines CG using the labeling algorithm described

in the previous section with local search (LS). Local search is the most widely heuristic used in ap-

plications to large problems (Ribeiro et al., 2002; Gendreau et al., 2010). It has been extensively

applied to multiple combinatorial optimization problems including hub-location problems (see for in-

stance, Contreras et al., 2011; de Sá et al., 2015). These methods are particularly effective in exploring

neighborhood structures to escape local optima. This section details the implementation of LS for the

ED-HLLP, highlighting its operators and their integration with CG.
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5.1 Initialization

Like all local search procedures, the proposed method requires an initial feasible solution to the ED-

HLLP. We consider a simple strategy that involves using the columns generated by the CG applied to

problem (P). The resulting RMP resulting from solving the linear relaxation of the problem is then

solved upon adding the integrality constraints. Note that this procedure in general cannot guarantee

the return of a feasible solution to the problem. In the ED-HLLP, however, commodities may always

choose to use the current network (without the hub-line), and therefore such solution always exists.

5.2 Generation of new paths and hub-line configurations

The proposed local search relies on the fact that thanks to constraints (2)–(3), every solution to the

problem contains exactly p hub nodes and p− 1 hub-arcs. We have therefore designed two operators

that maintain this structure at all times, as described below:

• Swap operator: this operator exchanges the positions of two hubs within the hub line network.

Specifically, starting from the initial hub-line solution, each pair of hubs is swapped. Then, for

each Swap, all possible combinations of paths are recalculated for every commodity c and path

type (ODH, OH, DH, and ODNH). In Fig. 1, we illustrate this operator by means of an example

for n = 3 and p = 6. Fig. 1-(a) shows the current hub-line configuration solution that traverses

nodes 1, 2, and 3 and the different feasible paths using the hub nodes. Fig. 1 from (b) to (d) show

the three different swaps of two nodes in this configuration and, after each Swap, the multiple

paths that are added to Ω. Note that only the paths that result in time savings are added to Ω

(see Algorithm 2).

Figure 1: Example of the Swap operator with n = 6, p = 3

• Replace operator: this operator deactivates an existing hub and activates a non-hub node as

a hub, at the same position in the current hub-line. Fig. 2 illustrates this operator with an

example for n = 3 and p = 6. Paths are then generated and evaluated under the same criteria

as for the Swap operator, making sure that only paths that provide time savings are generated

(see Algorithm 3).
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Algorithm 2: Swap operator

Input: Initial hub-line h = (h1, . . . , hp)
Output: List of feasible paths Ω, Final hub line η = (η1, . . . , ηp)

1 Initialize: Paths Ω← ∅, hub-line η ← h
2 while true do
3 Let τ ← η
4 foreach 1 ≤ i < j ≤ p do
5 Evaluate swapping τi ↔ τj , let τ ′ be the resulting hub-line
6 Generate valid paths in τ ′

7 foreach path π do
8 Calculate time(π)
9 if time(π) < tocdc then

10 Add π to Ω
11 end

12 end
13 if profit(τ ′) > profit(τ) then
14 τ ← τ ′

15 end

16 end
17 if profit(τ) > profit(η) then
18 η ← τ
19 else
20 break
21 end

22 end
23 return Ω, η

Figure 2: Example of the Replace operator with n = 6, p = 3

The proposed local search procedure iterates over the two operators defined above, achieving an

appropriate balance between exploration and exploitation. The Swap operator is computationally

efficient because it only changes two hub nodes at a time, limiting the combinatorial explosion of

paths. The Replace operator allows for a broader exploration of the solution space compared to Swap,

as it introduces previously non-hub nodes into the hub configuration. The LS effectively balances

computational effort by prioritizing paths with shorter travel times. In the two pseudocodes, the

profit associated with a line configuration corresponds to evaluating the objective in problem (P) for

appropriate choices of paths π.



Les Cahiers du GERAD G–2024–58 – Revised 12

Algorithm 3: Replace operator

Input: Initial hub-line h = (h1, . . . , hp)
Output: List of feasible paths Ω, Final hub line η = (η1, . . . , ηp)

1 Initialize: Paths Ω← ∅, hub-line η ← h, non-hub nodes w = (w1, . . . , wn−p)
2 while true do
3 Let τ ← η, ω ← w
4 foreach 1 ≤ i ≤ p, 1 ≤ j ≤ n− p do
5 Evaluate replacing τi by ωj , let τ ′ be the resulting hub-line
6 Generate valid paths in τ ′

7 foreach path π do
8 Calculate time(π)
9 if time(π) < tocdc then

10 Add π to Ω
11 end

12 end
13 if profit(τ ′) > profit(τ) then
14 Swap ωj ←→ τi
15 end

16 end
17 if profit(τ) > profit(η) then
18 η ← τ
19 w ← ω

20 else
21 break
22 end

23 end
24 return Ω, η

An important attribute of every local search procedure is its capability to evaluate operators as

efficiently as possible (in O(1) ideally), both in terms of feasibility of the resulting configuration, as

in terms of economic benefit. For the feasibility requirement, note that the two proposed operators

always produce feasible hub-line configurations. To compute the economic benefit, one can compute

by simple inspection all possible paths connecting oc and dc for a given commodity c in the resulting

hub-line, simply by considering all pairs of entrance-exit nodes in the hub-line, and by discarding those

with non-positive profits.

5.3 Post-optimization

Our local search concludes when no operator can be applied to construct a configuration achieving a

better total profit. Note that our local search not only allows for the finding of a better solution than

that constructed by the initialization procedure, but also constructs paths π, many of which may have

failed to be enumerated by the CG. We re-solve the RMP as a MILP powered with the new paths

generated using our local search. Algorithm 4 summarizes the proposed hybrid matheuristic. In lines

1 and 2, we obtain the initial feasible paths using the heuristic pricing algorithm and solve the RMP

as MILP to obtain the initial lower bound, respectively. In line 3, we execute the LS procedure using

the initial hub line obtained in the previous step to add new columns. Finally, we resolve the RMP

with the paths generated using the CG method and LS.

Algorithm 4: Hybrid matheuristic for the ED-HLLP

1 Solve the LP relaxation of the restricted master by CG; // see Section 4

2 Solve the RMP with integrality constraints and obtain a primal solution; // see Section 5.1

3 Execute the local search method and generate new paths and solutions; // see Section 5.2

4 Update the subsets Pc, c ∈ C of paths and resolve the RMP with integrality constraints; // see Section 5.3
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6 Computational experiments

In order to assess the performance of the methodology described in Sections 4 and 5, we have conducted

a series of tests for which we present computational results in this section. The algorithm has been

coded in Python v3.9.14. IBM CPLEX 22.1.1 has been used to solve the linear and integer programs

associated with our method. All experiments has been executed on an Intel Xeon Gold 6258R CPU

@ 2.70GHz with a 512GB RAM computer and given a time limit of 48 hours.

In this campaign we consider the following configurations for the two proposed methods. The

baseline CG (denoted “CG”) solves a heuristic pricing subroutine whenever possible to generate paths

of positive reduced costs, and an exact pricing routine upon failing to generate paths with the heuristic.

Our hybrid matheuristic (denoted “CG+LS”), on the other hand, considers a simplified CG phase

where the exact pricing subroutine is entirely ignored.

The remainder of this section is divided in two, as follows. In Section 6.1 we compare the perfor-

mance of our proposed methods in this paper against Cobeña et al. (2023), using the same CAB data

instances that the authors used. Then, in Section 6.2 we demonstrate the effectiveness of the proposed

methodology employing a real data set from the metropolitan area of Montreal.

6.1 Computational analysis and comparison

We assess the computational efficiency of the proposed methodologies to solve ED-HLLP and solution

algorithm using the well-known Civil Aeronautics Board (CAB) (see, O’kelly, 1987) as the basis of our

testbed. In the next two sections we first describe the experimental setup used through this experiment,

and next we present detailed computational results where we compare the proposed methods against

the enumeration based of Cobeña et al. (2023) for the same problem.

6.1.1 Experimental setup

The population weights of each node Pi are calculated as the sum of all inbound and outbound demand

in each node. Moreover, the results applying the methodologies proposed in this paper are compared

with the methodology applied for the authors Cobeña et al. (2023) to solve the linear formulation of

ED-HLLP (For the parallel processes, the maximum number of simultaneous sub-processes is fixed to

4 CPUs).

We considered instances with n ∈ {10, 15, 20, 25}. These instances have symmetric OD demand

matrices. In addition, regarding the parameters of the problem, we use Rc = (1 + γc)tocdc
where γc

is drawn uniformly in ∈ [0, 1]. Parameters r, α, and p are as follows: r = 1.7, α ∈ {0.2, 0.5, 0.8} and

p ∈ {3, 5, 7} (see, Fotheringham and O’Kelly, 1989; Zetina et al., 2019). Similarly to Martins de Sá

et al. (2015), the access and exit times do not depend on the node, i.e., t̃ak = t̃a and t̃ek = t̃e for all

k ∈ N . Additionally, the access and exit times are defined as a proportion of the average travel time:

t̃a = t̃e = ϑ

∑
(i,j)∈A tij

n · (n− 1)
,

where ϑ is fixed to 0.1 for these computational results.

For the presentation of our results, we sometimes report mean values. Please note that in all

cases, the averages are computed using a geometric mean. For a collection X = {x1, . . . , xn} of n real

numbers (not necessarily unique), the geometric mean is defined as:

gm(X) = n

√√√√ n∏
i=1

xi.
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The geometric mean is less sensitive to outliers when compared to the arithmetic mean. However,

it may be biased when the set X contains numbers close to zero. In those cases, it may be convenient

to consider the shifted geometric mean that, for X and a shift value t ∈ R, is defined as

gm(X, t) = n

√√√√ n∏
i=1

(xi + t)− t.

In this manuscript we consider geometric means for all the averages reported, except for the average

computing times that are reported using a shifted geometric mean with shift value t = 1.0, and for

the average gaps that are computed using a shift value of t = 0.01. Since all problems are given a

time limit of two days, timeouts are given a time of 86, 400 × 7 = 604, 800 seconds for the effect of

computing the means of the CPU times. Memory limits are not given any specific time, but instead

are ignored from the computation of the means across all methods. In this way we make sure that all

the means reported are comparable.

6.1.2 Performance analysis of proposed methods

This section shows the results of the two proposed methodologies to solve the ED-HLLP. In Tables 1

and 2, the first column presents the number of nodes (n), the second column reports the number of

open hubs (p), then the used values of the parameters ϑ, r and α are specified.

The number of paths is displayed in column | P |, the total time in seconds to generate paths and

time to solve the integer model are reported in columns tpaths, tMIP respectively. Columns zLB1 and

zUB represent the primal and dual bound, respectively, the percentage of paths that the proposed

CG does not enumerate is reported under column “%del”. Column zLB2 represent the primal bound

applying the second methodology (CG+LS). The column labeled ttot represents the total CPU time

(in seconds) spent by the exact method proposed by Cobeña et al. (2023); this time is the time to

generate all paths using the parallel process that the authors used plus time to solve the MILP. Column

labeled “Opt” represent the optimal solutions within the time limit under the methodology proposed

by Cobeña et al. (2023).

Let us now describe the three types of relative gaps reported. The value gap1 is calculated

(zUB − Opt)/Opt × 100, gap2 is calculated as (Opt − zLB1)/zLB1 × 100, and gap3 is calculated as

(Opt − zLB2)/zLB2 × 100. In simple words, the value gap1 represents the relative deviation between

the dual bound computed by our CG and the optimal solution; the value gap2 represents the relative

deviation from the optimal solution of the primal bound achieved upon solving the RMP with inte-

grality constraints immediately after solving the linear relaxation, this is without considering our local

search; the value gap3 corresponds to the relative deviation from the optimal solution of the primal

bound achieved by our hybrid matheuristic.

Tables 1 and 2 show the performance of our proposed methodologies against the method used in

Cobeña et al. (2023). We can see in Table 1 that for small instances with n ∈ {10, 15} our first method

described in Section 4 is effective in generating good primal solutions (zLB1), with most instances

achieving the optimal or near-optimal solutions and a significant percentage of deleted paths (% del).

For example, we can see that for the instances with n = 15 and for different values of p and α that

our method can solve them in less than 1 hour in a sequential way, often faster to Cobena’s method

that solves them in a parallel way to find all paths in usually longer computing times. Furthermore,

on average, this method in these instances solves them in less than 1 minute with a gap1 of 1.05% and

a gap2 of 0.87%, demonstrating that our method remains competitive for these small problems.

Table 1 shows that the quality of the primal bounds zLB1 are improved with the second method

proposed (zLB2), combining the heuristic pricing algorithm and local search. We can see in the “gap3”

column, most of the gaps are 0.00%. Furthermore, on average, this method solves them is less than

10 seconds and on average the “gap3” is 0.24%.
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Table 1: Comparison of performance and solution for n ∈ {10, 15} with CAB instances

n p ϑ r α
This paper

(CG) % del
This paper
(CG+LS) gap1

ED-HLLP
Cobeña et al. (2023) gap2 gap3

| P | tpaths tMIP zLB1 zUB | P | tpaths tMIP zLB2 | P | ttot Opt

10 3 0.1 1.7
0.2 3556 0.1 0.1 190104 190788 9.05% 2398 1.6 0.1 190104 0.36% 3910 0.4 190104 0.00% 0.00%
0.5 1098 2.0 0.0 35001 35001 17.07% 1042 1.3 0.0 35001 0.00% 1324 0.1 35001 0.00% 0.00%
0.8 188 1.4 0.0 1767 1767 4.08% 172 0.5 0.0 1767 0.00% 196 0.1 1767 0.00% 0.00%

10 5 0.1 1.7
0.2 20134 108.2 1.5 314993 327751 67.36% 6272 5.8 13.5 318197 3.00% 61692 16.0 318197 1.02% 0.00%
0.5 3296 30.0 1.4 51761 55083 43.91% 1850 9.6 0.3 52411 5.10% 5876 4.6 52411 1.26% 0.00%
0.8 210 2.0 0.0 3032 3071 31.82% 244 1.6 0.0 3032 1.29% 308 0.5 3032 0.00% 0.00%

10 7 0.1 1.7
0.2 26766 249.4 41.5 361535 401746 93.78% 16202 28.5 64.5 373933 3.91% 430314 1668.6 6.95% 3.40%
0.5 3052 52.4 9.5 63031 70739 72.76% 2396 22.8 7.6 64946 8.92% 11206 34.9 3.04% 0.00%
0.8 208 4.0 0.1 3985 4163 32.90% 254 3.2 0.1 3985 4.47% 310 5.6 3985 0.00% 0.00%

15 3 0.1 1.7
0.2 8246 14.1 0.1 1364045 1364045 59.12% 6168 4.8 0.9 1364046 0.00% 20172 1.3 1364050 0.00% 0.00%
0.5 3402 7.4 0.1 250647 250647 42.22% 2624 2.9 0.3 250647 0.00% 5888 0.8 250647 0.00% 0.00%
0.8 670 2.7 0.0 27510 27510 16.87% 504 1.8 0.0 27510 0.00% 806 0.3 27510 0.00% 0.00%

15 5 0.1 1.7
0.2 61048 318.8 26.4 1798981 1908211 93.27% 16706 14.4 29.1 1868014 0.10% 906590 4158.6 5.96% 2.04%
0.5 13932 194.6 0.2 341080 351007 77.28% 4578 11.9 0.6 345665 1.20% 61330 107.4 346829 1.69% 0.34%
0.8 774 27.9 0.1 34012 34012 65.93% 782 7.2 0.0 34012 0.00% 2272 12.3 34012 0.00% 0.00%

15 7 0.1 1.7
0.2 110148 2615.1 91.8 1848060 2106849 99.62% 42068 58.0 331.0 1927969 - 28999594 mem - -
0.5 19608 2002.5 81.7 417624 445284 93.81% 7016 114.0 1.8 432351 1.66% 316966 4.89% 1.31%
0.8 774 39.3 0.3 37400 38185 72.08% 1046 22.2 0.2 37964 0.58% 2772 1.51% 0.00%

Mean 2767 23.3 1.7 40.71% 1873 6.8 1.5 1.05% 7895 18.8 0.87% 0.24%

We next analyze in Table 2 the results for instances with n ∈ {20, 25}. While our CG method

provides good dual bounds (with an average deviation of 3.85%), it fails as a primal heuristic as it

achieves an average gap2 of 5.33%. Our hybrid matheuristic on these problems proves much more

efficient to find feasible configurations of high-quality, with an average gap3 of 0.2%, within computing

times often orders of magnitude lower than for Cobeña et al. (2023).

Table 2: Comparison of performance and solution for n ∈ {20, 25} with CAB instances

n p ϑ r α
This paper

(CG) % del
This paper
(CG+LS) gap1

ED-HLLP
Cobeña et al. (2023) gap2 gap3

| P | tpaths tMIP zLB1 zUB | P | tpaths tMIP zLB2 | P | ttot Opt

20 3 0.1 1.7
0.2 65184 201.5 3.1 7520167 8681283 35.84% 13856 14.1 2.5 8215958 5.7% 101600 6.1 8215970 9.25% 0.00%
0.5 24406 47.1 0.4 1378229 1590003 17.54% 7208 9.7 1.4 1456083 9.2% 29596 3.8 1456080 5.65% 0.00%
0.8 3530 13.8 0.1 144485 144485 9.16% 1360 4.7 0.2 144485 0.0% 3886 1.1 144485 0.00% 0.00%

20 5 0.1 1.7
0.2 318222 3910.7 673.2 11063604 12309935 96.71% 85022 1807.0 237.6 11888094 2.3% 9683748 15335.3 12032900 8.76% 1.22%
0.5 151562 2789.0 124.7 1892184 2207708 78.11% 21178 230.5 185.1 2047280 6.7% 692466 651.1 2069720 9.38% 1.10%
0.8 4680 91.7 0.3 174727 189417 80.16% 2344 23.0 0.7 183535 3.2% 23592 126.1 183535 5.04% 0.00%

20 7 0.1 1.7
0.2 337616 6475.0 1144.7 8764050 9955766 - 112988 96.0 731.8 9076959 - - time -
0.5 103380 7973.6 311.1 1991589 2084199 98.70% 18210 129.2 70.8 2050411 - 7977830 mem -
0.8 8464 783.5 36.5 197314 212704 82.59% 3300 73.0 4.3 207659 2.4% 48622 21909.8 207659 5.24% 0.00%

25 3 0.1 1.7
0.2 213792 473.3 9.9 15821095 18346406 31.99% 24490 28.4 0.8 17066439 7.5% 314344 20.4 17066500 7.87% 0.00%
0.5 53826 104.0 0.5 2800596 3213313 34.59% 12160 16.7 0.5 3018559 6.5% 82296 11.2 3018560 7.78% 0.00%
0.8 3842 24.8 0.3 269573 298545 53.13% 2606 9.5 0.2 279629 6.8% 8198 2.9 279628 3.73% 0.00%

25 5 0.1 1.7
0.2 422908 1674.5 860.0 18310039 20265806 99.20% 72166 44.6 421.9 19132368 - 53008052 mem - -
0.5 164652 5001.9 75.5 3705786 4195470 94.78% 27776 163.6 38.1 3985180 4.3% 3154792 32648.8 4021640 8.52% 0.91%
0.8 12496 999.5 16.2 377178 396779 80.98% 4374 38.6 26.8 390592 1.6% 65684 853.6 390592 3.56% 0.00%

25 7 0.1 1.7
0.2 785430 16929.8 6044.8 17163561 19750300 - 200656 311.5 33571.5 19750063 - time - -
0.5 39900 9272.3 187.5 3340542 3549913 - 48204 307.9 749.8 3504538 - time - -
0.8 13040 12255.2 52.5 437827 466640 - 5946 200.4 43.2 453527 - time - -

Mean 42963 744.7 25.2 47.78% 13460 60.9 23.0 3.85% 180076 1133.9 5.33% 0.20%

We are now in a position to highlight the following remark. The baseline CG consistently constructs

a larger pool of paths when compared to our hybrid matheuristic. The latter, however, consistently

achieves better primal solutions (by comparing gap2 and gap3). While this observation may seem

counterintuitive at first, it is often the case when the optimal solution of the linear relaxation of a

problem is not entirely capable of capturing the structure of an integer-feasible optimal solution. This

has been observed in the past in problems that present with high degrees of fractionality (see, for

instance, Joncour et al., 2010; Michel and Vanderbeck, 2012). Again, this highlights the efficiency of

the proposed matheuristic which consistently constructs near-optimal solutions to the ED-HLLP.
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6.2 Case study: Montreal’s metropolitan area

We now apply our proposed methodology to a case study involving data from the City of Montreal,

Canada. More specifically, we consider data from Montreal’s 2018 Origin-Destination (OD) survey, as

utilized by Cobeña et al. (2023), building on the analysis conducted with the CAB instances in the

previous section. This analysis uses the methodology CG+LS described in Section 5.

6.2.1 Comparison against Cobeña et al. (2023)

In this section, we conduct a detailed comparative analysis using a test-bed of 36 instances derived from

the Montreal OD survey, ranging from small- to large-scale. These instances are divided into three

sets based on size: the first set includes 12 small instances with n ∈ {10, 15}; the second set comprises

medium-sized instances with n ∈ {20, 25}; and the third set contains large instances with n ∈ {30, 39}.
The classification into small, medium, and large scales follows the criteria established in the previous

analysis. For these experiments, we adopted the parameters r = 2.68 (see, Goh et al., 2012), ϑ = 0.1,

and discount factors α ∈ {0.2, 0.5}. The time limit was set to 48 hours for all runs. Tables 3-5 report

the same type of data also reported in Tables 1-2, except that we omit the computation of the dual

bounds, to focus explicitly in the performance of the proposed matheuristic.

In Table 3, we observe that the proposed matheuristic remains competitive with the method of

Cobeña et al. (2023), taking about the same time and achieving the optimal solutions in all these

instances. Moreover, it is also more robust as it never runs out of resources, as opposed to Cobeña

et al.’s method that runs out of memory in one instance.

Table 3: Comparison between the proposed matheuristic and Cobeña et al. (2023) for n ∈ {10, 15} on MTL instances

n p ϑ r α
CG+LS

ED-HLLP
Cobeña et al. (2023) gap3

| P | tpaths tMIP zLB2 | P | ttot Opt

10 3 0.1 2.68
0.2 902 2.0 0.3 15270 1252 0.3 15270 0.00%
0.5 272 0.8 0.0 1480 292 0.1 1480 0.00%

10 5 0.1 2.68
0.2 6948 9.0 3.0 27096 21288 5.7 27096 0.00%
0.5 330 2.4 0.3 2442 358 0.5 2442 0.00%

10 7 0.1 2.68
0.2 18440 33.9 57.7 35106 86956 127.9 35106 0.00%
0.5 334 3.9 0.3 3161 358 4.9 3161 0.00%

15 3 0.1 2.68
0.2 4528 8.4 3.0 18960 7692 9.2 18960 0.00%
0.5 1002 4.1 0.2 1881 1226 0.3 1881 0.00%

15 5 0.1 2.68
0.2 15902 35.1 23.6 32729 266882 169.5 32729 0.00%
0.5 1192 10.7 1.3 3016 2012 10.1 3016 0.00%

15 7 0.1 2.68
0.2 43310 175.9 209.1 43584 4367192 mem -
0.5 1372 30.8 6.9 3879 2018 608.2 3879 0.00%

Mean 1729 7.6 2.5 3476 9.5 0.00%

For the medium-sized instances with n ∈ {20, 25}, the results reported in Table 4 show a clear edge

in favor of our method, leading to computing times one order of magnitude lower than Cobeña et al.’s

on average (120 seconds vs 19 minutes), while ensuring solutions that are no farther from the optimal

ones than 0.13% on average. The robustness of the proposed method is confirmed, as it is efficient to

address all problems, while Cobeña et al. (2023)’s method runs out of resources in four of them.

For the instances with n ∈ {30, 39} reported in Table 5, our method again shows robustness; in

spite of the considerable computational challenges posed by these instances, our method efficiently

generates promising paths which lead to the optimal solutions in all cases for which such certificate is

available, which showcases the robustness of our method across all instance sizes.
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Table 4: Comparison between the proposed matheuristic and Cobeña et al. (2023) for n ∈ {20, 25} on MTL instances

n p ϑ r α
CG+LS

ED-HLLP
Cobeña et al. (2023) gap3

| P | tpaths tMIP zLB2 | P | ttot Opt

20 3 0.1 2.68
0.2 9110 18.8 79.9 27078 24276 354.0 27078 0.00%
0.5 2070 10.6 0.3 2596 2962 0.9 2596 0.00%

20 5 0.1 2.68
0.2 33070 56.9 1167.4 47036 1404644 2170.6 47871 1.74%
0.5 2486 30.5 12.0 4259 6708 101.7 4259 0.00%

20 7 0.1 2.68
0.2 93202 265.6 9758.8 63672 51308490 mem -
0.5 2986 104.6 29.6 5724 6756 14410.2 5724 0.00%

25 3 0.1 2.68
0.2 16208 32.3 117.3 28486 83198 2087.1 28486 0.00%
0.5 3874 24.2 0.7 2754 8920 2.6 2754 0.00%

25 5 0.1 2.68
0.2 62018 112.3 11007.1 49762 8014748 mem -
0.5 5214 68.0 38.3 4609 40146 719.7 4609 0.00%

25 7 0.1 2.68
0.2 370664 488.0 69806.6 67519 time -
0.5 6594 260.5 61.4 6111 time -

Mean 9055 55.4 65.2 24653 1154.6 0.13%

Table 5: Comparison between the proposed matheuristic and Cobeña et al. (2023) for n ∈ {30, 39} on MTL instances

n p ϑ r α
CG+LS

ED-HLLP
Cobeña et al. (2023) gap3

| P | tpaths tMIP zLB2 | P | ttot Opt

30 3 0.1 2.68
0.2 24336 63.3 293.0 30066 175142 4156.4 30066 0.00%
0.5 5922 46.8 1.2 2935 16000 6.2 2935 0.00%

30 5 0.1 2.68
0.2 96834 172.5 10910.6 52113 23985418 mem -
0.5 7676 132.3 14.2 4864 84798 2907.0 4864 0.00%

30 7 0.1 2.68
0.2 295274 644.0 11080.6 71217 time -
0.5 10410 516.9 136.6 6332 time -

39 3 0.1 2.68
0.2 42432 152.1 967.2 30451 539280 86511.1 30451 0.00%
0.5 10920 176.5 2.8 3036 41652 31.2 3036 0.00%

39 5 0.1 2.68
0.2 188454 424.2 66609.3 52199 time -
0.5 15048 374.9 86.9 4907 350788 time -

39 7 0.1 2.68
0.2 1562846 1935.5 86404.7 72054 time -
0.5 22902 1304.3 391.7 6496 time -

Mean 36644 294.5 353.1 111020 28932.3 0.00%

We can conclude that the proposed method is efficient at consistently identifying near-optimal

solutions which highlights its practical applicability to address large-sized hub-line location problems,

as opposed to Cobeña et al. (2023)’s method which fails to scale past medium-sized problems.

6.2.2 Sensitivity analysis of r, p and α

In this section we analyze how parameters r, p and α impact the topology of the resulting hub network

in Montreal using the methodology proposed in Section 5.2 on large-sized problem instances, more

specifically on those with n ∈ {25, 30, 39}. The metrics used to perform the sensitivity analysis are

similar to those used in Cobeña et al. (2023), namely:

Spatial Distributions. The % of served demand measures the proportion of total demand that ben-

efits from the hub network, highlighting the spatial impact of different parameter configurations.
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Total Travel Time. The % of saved time assesses the average reduction in travel time resulting from

the hub network’s implementation, providing insights into the efficiency gains achievable through

an optimal hub placement.

Figures 3 and 4 show the percentage of demand served and the average time saved after the

establishment of the hub line and different number of hubs for n = 39 | ϑ = 0.1 | r = 2.68 | α = 0.2, 0.5.

The demand increases with the installation of more hubs in the city, and the average saved time after

establishing the hub line decreases as the values of hubs increase and the values of α decrease. Figures 3

and 4 show the impact between the number of hubs (p) and the discount factor (α) on the percentage

of demand served and the average time saved after establishing the hub line for n = 39, ϑ = 0.1, and

r = 2.68.
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Figure 3: Impact of parameter α on % Served Demand for Different Numbers of Hubs. n = 39 | ϑ = 0.1 | r = 2.68
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Figure 4: Impact of of parameter α on % Time Savings for Different Numbers of Hubs. n = 39 | ϑ = 0.1 | r = 2.68

We observe that an increase in the number of hubs correlates positively with an increase in the

percentage of demand served, particularly at a high discount factor (α = 0.2). This shows that a high

discount factor (1 - α), improves the utilization of the hub line system (see Figure 3). We can also see

in Figure 4 that the average time saved decreases when the number of hubs increases and the discount

factor decreases. The increase in hubs may enhance demand coverage but may also increase travel

times.

Furthermore, Table 6 shows the % of served demand and % of saved time for different values of n.

We can see that as the values of α decrease and p increases, the spatial distribution tend to increases

too; moreover, the average time saved is higher for a small number of hubs (p).
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Table 6: Sensitivity analysis of # hubs(p) and discount factor(α)

n p r ϑ α % served demand % saved time

25

3 2.68 0.1
0.2 18% 31%
0.5 4% 26%

5 2.68 0.1
0.2 42% 20%
0.5 8% 22%

7 2.68 0.1
0.2 55% 20%
0.5 12% 21%

30

3 2.68 0.1
0.2 16% 25%
0.5 4% 25%

5 2.68 0.1
0.2 35% 22%
0.5 7% 21%

7 2.68 0.1
0.2 56% 19%
0.5 10% 20%

39

3 2.68 0.1
0.2 13% 22%
0.5 3% 24%

5 2.68 0.1
0.2 33% 17%
0.5 6% 23%

7 2.68 0.1
0.2 44% 16%
0.5 8% 13%

6.2.3 Analysis of the hub-line configurations

We now analyze the different hub-line configurations and the metrics presented above for different

values of n and r for large-sized problems. Figures 5a and 5b show the hub lines obtained for n = 30,

p = 5, α = 0.2, and r ∈ {2.68, 1.7}. Note that although the selected hub nodes are similar in both

configurations, the resulting hub lines differ, which brings to light the sensitivity of the resulting hub

line network to changes in the parameter r. This variation shows the importance of fine-tuning r to

balance efficiency and connectivity.

(a) n = 30, p = 5, α = 0.2, r = 2.68 (b) n = 30, p = 5, α = 0.5, r = 1.7

Figure 5: Hub line configuration for the study case with n = 30, p = 5, ϑ = 0.1

In Figure 6, for n = 39, p = 5, r = 2.68 and α = 0.2, one of the hubs chosen is Villeray, a

neighbourhood centrally located in the metropolitan area of Montreal. Its selection is likely driven
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by the high density around it, its proximity to important Points of Interest (POI) such as the Jean-

Talon Market and Little Italy, and its closeness to shopping areas like Rockland Center and Marché

Central. Another important node selected as a hub is Saint Laurent, close to Hotels and Montréal-

Pierre Elliott Trudeau International Airport. This hub line configuration aligns with the model’s focus

on maximizing profit by reducing travel times and capturing high demand, as outlined in the ED-HLLP

framework.

Figure 6: Hub line configuration for the study case with n = 39, p = 5, ϑ = 0.1, α = 0.2, r = 2.68

7 Conclusions

We have introduced a column generation-based algorithm and a hybrid matheuristic that combines

column generation with local search to address the ED-HLLP for large-sized problems. The pro-

posed methods are based upon the solution of a linear program with a very large number of variables

(columns), from which only a subset of promising ones is identified. The proposed matheuristic is

shown to be more robust and to provide optimal and near-optimal solutions on all problems consid-

ered when compared to the method introduced in Cobeña et al. (2023), providing valuable insights

into the modeling of profit-oriented hub line location problems with elastic demands. Moreover, the

proposed CG is also capable of providing dual bounds when powered by an exact pricing subroutine,

but remains practical for small- to medium-sized problems only.

We have also conducted an analysis on a real network, namely that of the metropolitan area of

Montreal, and performed a thorough sensitivity analysis to assess the behavior of the resulting solutions

to different parameters. The proposed method can address the ED-HLLP effectively for problems with

up to n = 39 nodes, higher than the reach of Cobeña et al.’s method. This shows our approach’s

practical applicability in real-world instances of the ED-HLLP, particularly in complex urban settings

such as those of a city like Montreal.

Finally, our work provides a valuable tool for decision-makers such as city or transport planners,

allowing them to design more effective and efficient transit networks, improving the accessibility of the

citizens and reducing their travel times through the use of the hub line system, primarily to address

the continuous increase of the demand of urban mobility, ensuring that urban public transportation

systems can meet the needs of expanding urban areas and their surroundings.
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Future research would incorporate additional service levels at the hub stations, particularly at the

hub line’s access and exit hubs, to enhance their attractiveness by integrating services such as car/bike

share stations or POIs.

Appendix

A Starting feasible solution

Our procedure to obtain an initial feasible solution to be used in the RMP computes the shortest paths

in a hub line composed of p hubs, by commodity and type of path. As mentioned in Section 3, the

objective of the problem is to maximize the total revenue for the time saving using the hub line. Here,

fc(t
′
c) corresponds to the profit obtained for each commodity c ∈ C, for each OD pair.

fc(t
′
c) = Rc

PocPdc

(t′c)
r

(tocdc
− t′c) .

To obtain an initial solution, we look for the smallest value of t′c, i.e., the shortest path by type

between oc and dc using the hub line. If the shortest (in terms of time utilization) path is such that

t′c < tocdc and its length between 2 and p, it is added to Pc.

The search for the shortest paths is performed in a weighted network Gc as described in Cobeña

et al. (2023). This procedure allows us to build paths for every commodity c between its origin node

oc and its destination node dc using the hub line with an associated travel time smaller than or equal

to tocdc .
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