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Abstract : Integer (linear) programs are a standard way of formalizing a vast array of optimization
problems in industry, services, management, science, and technology. By the logic of the underlying
business problem, such models are often composed of independent building blocks that are kept together
by, e.g., spatial, temporal, or financial constraints. Over the years, Branch-and-Price, i.e., column
generation applied in every node of a search tree, became a, likely the standard approach to solving
such structured integer programs. The charm of the method lies in its ability to leverage algorithms for
the building blocks by way of decomposition. Hundreds and hundreds of papers have been written on
successful applications in logistics, transportation, production, energy, health care, education, politics,
sports, etc. Besides collecting and unifying the literature, the authors wanted to share their experience
with the subject.

They expect the reader to have modeling experience with network, linear and integer linear pro-
grams. Essentials are presented in Chapter 1 (Linear and Integer Linear Programming). Column
Generation is an algorithm for solving large scale linear programs: as such, there is the dedicated
Chapter 2 in which we see the similarities and differences with the primal simplex algorithm. The
Dantzig-Wolfe decomposition is, in fact, a reformulation method: Chapter 3 presents the classical
way for linear programs; this is based on the convexification approach of a sub-domain. Chapter 4
goes further, adapting it to integer linear programs, and also presenting the reformulation based on
the discretization approach. Chapter 5 (Vehicle Routing and Crew Scheduling Problems) follows and
gives access to important applications. Chapter 6 explores the Dual Point of View: it notably presents
another decomposition method, the Lagrangian relaxation approach. We see its relationships with
the Dantzig-Wolfe reformulation. A better understanding of duality leads to stabilization approaches.
Chapter 7 (Branch-Price-and-Cut) presents how to handle various branching and cutting decisions to
get integer solutions, indeed, to solving the original model. The final chapter, Conclusion, is where
the authors stop after several years of understanding, writing, classifying, etc. They tell the story of
Montréal’s GENCOL group since the early 80s and list some possible writing subjects for interested
people. The book comprises a set of exercises in every chapter and the authors give all the answers
but two. Sometimes, these exercises provide new theory.

Keywords : Integer linear program, column generation, Dantzig-Wolfe decomposition, convexification
and discretization approaches, Lagrangian relaxation, branch-price-and-cut

Acknowledgements: It would not have been possible to write this book without the support in various
ways that the authors received from the RWTH Aachen University, HEC Montréal, Polytechnique
Montréal, and the GERAD Operations Research Center. Special thanks go to François Soumis for
writing the Foreword.
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About the authors

Jacques Desrosiers, born in 1950, is the second of a fam-
ily of six children (XY,XY,XX ,XY,XY,XY ). His mother
Gisèle, one of the few women of her time to hold a grade
11 diploma, was very good at mental arithmetic, while his
father Raymond, excellent in a variety of sports such as
golf (+4), baseball, bowling, and badminton, was a long-
time traveling salesman.

Jacques obtained from Université de Montréal a bache-
lor’s degree in mathematics in 1973, a master’s degree in
statistics in 1974, and a PhD (specialized in transportation)
in 1979 under the supervision of Jacques A. Ferland and
Jean-Marc Rousseau. Since 1978, he is a professor in the
Department of Management Sciences at HEC Montréal.

Teenage Jacques was a member of the Laval Olympique athletics club: at the age
of 15, he jumped 6.09 metres (20 feet less dust), which launched a five-year career
in track and field. At the same age, and with the knowledge available to him at
the time, he proved the Pythagorean theorem on a geometry homework assignment.
This was one of the key events that pushed him towards mathematics. Jacques likes
photography, a hobby he’s been pursuing since 1972, the year he started to teach
at high school, before teaching at college and university. He also loves red wines,
especially those from Bordeaux. But he’s not averse to Burgundy wines, as well as
those from the Douro and Tuscany regions.

In 1993, he became partner in AD OPT Technologies which commercializes the
Altitude software system for the management of air transport operations. In 1999,
the company was listed on the Toronto Stock Exchange until 2004 when acquired by
Kronos, a world leader in workforce management solutions. In 2019, the AD OPT
division was sold to the aviation and transportation IT services provider IBS Soft-
ware. The Altitude product line is powered by GENCOL, a state-of-the-art column
generation solver developed at GERAD, the result of over 40 years of collabora-
tive research among Montréal’s universities in the field of applied mathematics and
operations research. It’s worth noting that the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) has been a major supporter of Jacques and his
team. It has enabled a young university team to develop mathematical tools of much
higher quality than those offered by the competition. The research, publications,
and transfers carried out by Jacques during his career have been rewarded several
times, notably in 1997 by the Prix d’Excellence en Partenariat Innovateur with his
friend François Soumis, awarded jointly by NSERC and the Conference Board of
Canada. This Synergy Award for Innovation recognizes outstanding research and
development partnerships between academia and industry.
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path to becoming a teaching awards-winning profes-
sor was winding. Marco is a first generation student,
actually the first from his family who went to a higher
school. When he was not admitted to the university
subject he originally wanted to study, he enrolled in
mathematics (which he liked in school). He graduated
from the Technical University in Braunschweig, and stayed to earn a doctoral degree
in mathematics in 2001. Marco applied for postdoctoral jobs in the US and Canada,
but only received rejections. But why look far when everything good is so near? The
combinatorial optimization and graph algorithms group welcomed Marco to Berlin.
He completed his habilitation thesis in mathematics at the Technical University in
2007. A month before his contract (and so it seemed: his academic career) ended, the
Technical University in Darmstadt appointed him as a visiting professor in discrete
optimization. At the age of 39, Marco got his first and only permanent position when
he was named full professor and head of the operations research group at RWTH
Aachen University in 2010, only after five other individuals had declined that same
offer. Also because of persistence, support, privilege, coincidence, and luck, Marco
can live his passion (and pass it on). He is a very thankful person.

Marco is a father of six. For the 11km commute to the office he uses his bike. He
likes photography (active) and music (passive), and he is not so bad at fixing things
at home. Despite a chronic illness that may cost him control over his limbs one day,
he started to play drums during the writing of this book. In 1983, Marco got his first
computer, a Commodore C64. He was fascinated by this machine and he still thinks
that limitations drive creativity. Apropos C. Marco’s initiation in solvers was with
CPLEX 3.0, and he was part of the first team that ever used SCIP’s column gen-
eration capabilities (with version 0.81). Since 2008 he has been leading the efforts
of creating a decomposition based solver that automatically applies a reformulation
and branch-price-and-cut to any mixed-integer program: the GCG project which is
based on SCIP. Marco’s research shows all facets of computational optimization:
theory, structure, models, algorithms, implementations, experiments, and applica-
tions. He understands his work as truly interdisciplinary: he feels home in opera-
tions research, algorithmic discrete mathematics, and theoretical computer science,
and more recently he has been making forays into engineering. Marco loves about
mathematics that we exactly know the moment when we grasp something (and feel
it when we do not understand it yet). He loves the pure beauty, the perfect organi-
zation, the waterproofness. And he loves the tears of joy in the eyes of practitioners
when mathematical optimization helps making their lives easier.

Marco has no middle name. The copyright form of the first paper he published
requested a middle initial, and he tried all 26 possibilities, “E.” looked best to him.



About the authors v

Guy Desaulniers, born in 1964, grew up with his
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his intense training allowed him to run a 5K in 20:08 and 10K in 42:38. Again, he in-
jured himself, to an Achille’s tendon this time, and stopped running. He got married
to Lucie in 2000, became a proud father of two daugthers Alexane and Charlotte,
and began a more sedentary life in Blainville, on the North shore of Montréal.

Guy always loved mathematics, a game in his view. At 3 years old, he started
to learn mental arithmetic with his father Edouard; this helped him to be a first
of the class student throughout his studies. During his high school fourth year, his
math teacher, Madame Boisclair, asked him live to replace her to complete a lecture.
He successfully took up the challenge and enjoyed the teaching experience. Later,
during his undergraduate studies in mathematics, he often answered the questions of
his classmates an hour before the exams. He loved sharing his passion with others,
found it very rewarding, and decided to become a university professor.

Guy holds a BSc and a MSc in mathematics from Université de Montréal (1987,
1989), and a PhD in applied mathematics from Polytechnique Montréal (1993). His
PhD thesis, supervised by François Soumis, focuses on trajectory optimization for
autonomous vehicles. Surprisingly, it does not involve column generation. After
his PhD, he occupied various professor and researcher positions during a difficult
economical period in Québec and started to generate columns with François and
Jacques. In 2000, he was hired as an associate professor in the Department of Ap-
plied Mathematics and Industrial Engineering at Polytechnique Montréal where he
still teaches, conducts research, and supervises graduate students as a full profes-
sor since 2007. From 2015 to 2019, he was the Director of the GERAD, a world-
renowned research center focusing on decision-making and data sciences that gath-
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Foreword

The quality of a Dantzig-Wolfe reformulation can be appreciated, not only in
terms of the optimal objective value of its linear relaxation, but also its fea-
sible region. By considering complex structural constraints and integrality re-
quirements in the pricing problem, we can imagine the objects it generates as
molecules that are handled by the master problem. Of course, we can also iden-
tify those molecules in any integer solution of the original formulation, but with
respect to its linear relaxation, it is like we are dealing with atoms that combine
in any way, including ways that do not even respect chemical bonds.

Atoms vs. Molecules
François Soumis

The Dantzig-Wolfe reformulation and resolution by column generation allow
complex constraints to be handled in subproblems, and often, to be separated into
several subproblems, by, e.g., person, vehicle, scenario, etc. It is then possible to
efficiently solve each of these subproblems, for example, by dynamic program-
ming, integer programming, convex or non-convex non-linear programming. The
exact resolution of the subproblems, compared to solving the linear relaxation of
the complex constraints in the original problem, greatly reduces both the integrality
gap and the size of the branch-and-bound tree to explore. This underpins the success
of column generation to handle the many applications that follow.

The column generation algorithm was first used to tackle basic optimization
problems such as cutting stock, multi-commodity flows, set partitioning/covering,
bin packing, generalized assignment. These form the core of today’s applications,
with many more practical side constraints.

Regarding the applications, column generation now makes it possible to solve
very large problems with good precision. We are successfully tackling weekly air-
line crew pairing problems of more than ten thousand flights and personalized
monthly crew scheduling problems involving thousands of flight attendants requir-
ing as many subproblems. The same applies to aircraft routing problems, cover-
ing thousands of flights while taking into account the maintenance requirements
of each aircraft. We also solve public transit bus and driver scheduling problems
for the world’s largest cities, as well as similar problems for major rail and maritime
networks, school transport, and on-demand transportation for disabled persons. Col-
umn generation is also utilized for solving freight transportation problems by truck,
as well as scheduling of personnel working shifts in a wide range of domains: retail
stores, healthcare systems, manufacturers, public safety, leisure and hospitality, and
many others. It is also applied to problems concerning traffic assignment in road net-
works and in communication networks, where the subproblems generate the routes
of users described by tens of thousands of origin-destination pairs.



x Foreword

The progress has been sufficiently significant for innovation to now focus on the
simultaneous resolution of several transportation planning steps: crew pairings and
monthly crew schedules, vehicle itineraries and crew schedules in air, rail and public
transit applications. Progress has also made it possible to fairly rapidly deal with
re-optimization problems that require the simultaneous treatment, over shorter time
horizons, of what has been planned in several steps: for example, service timetables,
vehicle itineraries, employee schedules, and user routes.

There is also a vast body of scientific literature on column-generation-based al-
gorithms for solving vehicle routing problems with various side constraints: time
windows, capacity limits or tour duration, heterogeneous fleet, pickup and deliv-
ery, time-dependent travel costs, electric vehicles with recharging, stochastic fac-
tors, etc. Many research projects focus on modeling resource constraints to get a
good approximation of integer subproblems that can be solved in a reasonable time.
The approximation is often refined during the solution process to improve the lower
bound. In problems where networks may contain cycles, integrality gaps can be
large, and a great deal of research develops specialized cuts to reduce them.

Column generation is now used by a large community of researchers. Looking
at those who have cited the seminal paper Time constrained routing and scheduling
which is cited more than 1400 times on Google Scholar Citation Index, there are 165
column-generation-based papers cited more than 100 times, some of them several
hundred times. These papers have been written by around a hundred different teams.

Since 2006, Guy, Marco, and Jacques have organized and taught a five-day
School on Column Generation multiple times (Montréal 2006, Darmstadt 2010,
Paris 2014 and 2018) with up to 95 students each. They have used a lot of slides
that evolved from one edition to the next. They were also involved in several edi-
tions of the International Workshop on Column Generation (Aussois 2008, Bromont
2012, Búzios 2016, Montréal 2023). Their experience has led to this book that meets
the needs of the scientific community and, in particular, of new researchers wishing
to enter the field. Hundreds of articles have been published on different aspects of
the theory and applications. The notation used depends on the authors/applications
and certain concepts sometimes have different names. It takes a lot of effort and
time to go through all this literature. This book, which standardizes and simplifies
notation while clarifying concepts, will enable students to acquire the basics much
more quickly. What’s more, this standardized language will make it easier to write
papers that are clear and accessible to a broad community.

Montréal, October 2023 François Soumis

https://doi.org/10.1016/S0927-0507(05)80106-9


Preface

When one teaches, two learn.

Robert A. Heinlein

It must have been around the turn of the century that we were talking about writing
a book on column generation. The first reference we could find, including a typo, is
in an email from Jacques to Marco:

From: "Jacques Desrosiers" <jacques@crt.umontreal.ca>
To: <m.luebbecke@tu-bs.de>
Subject: Re: Happy New Year!
Date: Wed, 17 Jan 2001 08:42:46 -0500
[...]

ps : I am still interseted in ... the book.

A lot can happen in 15 years, and a lot did happen in 15 years, but no book writing.
The need for a standard text on column generation was more pressing than ever, and
it was clear to us that we were the ones to write it. A serious step forward was the
setting up of a subversion repository. The first commit message reads

r4347 | luebbecke | 2015-01-14 21:21:50 +0100 | 2 lines
this is the beginning of [DDL1x], replace x by 5,6, or 7

As you can see, we were very optimistic about the duration of such a project. On Jan-
uary 26, 2015, Jacques had a very detailed outline of a book ready, entitled “branch-
and-price,” and it contained 16 chapters. The journey had finally started.

Integer (linear) programs are a standard way of formalizing a vast array of opti-
mization problems in industry, services, management, science, and technology. By
the logic of the underlying business problem, such models are often composed of
independent building blocks that are kept together by, e.g., spatial, temporal, or fi-
nancial constraints. Over the years, branch-and-price became a, likely the standard
approach to solving such structured integer programs. The charm of the method lies
in its ability to leverage algorithms for the building blocks by way of decomposition.
Hundreds and hundreds of papers have been written on successful applications in
logistics, transportation, production, energy, health care, education, politics, sports,
etc. Besides collecting and unifying the literature, we wanted to share all our expe-
rience with the subject. One of the most rewarding side effects of writing what one
knows is that it mercilessly reveals what one does not know. “Facts” that we took
for granted (but which were wrong), details that were missing, papers that we have
overlooked, formalisms that have never been spelled out. Yes, we learned a lot!



xii Preface

We assume the reader to be reasonably familiar with basic linear programming
theory, in particular the concept of duality and a geometric understanding of the
feasible region of a linear program. We recommend the fantastic book by Chvátal
(1983) for both. Because we like puns, readers should also be familiar with non-
basic theory. We expect them to have modeling experience with network, linear and
integer linear programs. Essentials are presented in Chapter 1 (Linear and Integer
Linear Programming).

This book is about solving integer linear programs by branch-and-price, i.e., col-
umn generation applied in every node of a search tree. Column Generation is an
algorithm for solving large scale linear programs: as such, we have the dedicated
Chapter 2 in which we see the similarities and differences with the primal simplex
algorithm. The Dantzig-Wolfe decomposition is, in fact, a reformulation method:
Chapter 3 presents the classical way for linear programs; this is based on the con-
vexification approach of a sub-domain. Chapter 4 goes further, adapting it to integer
linear programs, and also presenting the reformulation based on the discretization
approach. Chapter 5 (Vehicle Routing and Crew Scheduling Problems) follows and
gives access to important applications: we make use of what we have seen previ-
ously. Chapter 6 explores the Dual Point of View: it notably presents another de-
composition method, the Lagrangian relaxation approach. We see its relationships
with the Dantzig-Wolfe reformulation. A better understanding of duality leads to
stabilization approaches. Chapter 7 (Branch-Price-and-Cut) presents how to handle
various branching and cutting decisions to get integer solutions, indeed to solving
the original model. The final chapter, Conclusion, is where we stop after several
years of understanding, writing, classifying, etc. We tell the story of Montréal’s
GENCOL group since the early 80s and list some possible writing subjects for inter-
ested people.

It is our intention that there is something for everyone, for the beginner, for the
practitioner, as well as for the seasoned researcher. Every chapter may have some
surprising news or viewpoint also for the experts. In each one, we set out with a brief
motivation and then cover the main theory in a few sections, sometimes interwoven
with some illustrations. A section Good to Know follows with more advanced mate-
rial that can be read after having worked through some examples. Then comes More
to Know with even more advanced topics that may require that the previous sections
are well digested.

The book is full of examples, every chapter contains a (long!) separate section. In
contrast to the preceding theory, the examples demonstrate how column generation
and branch-and-price is lived. A lot of ideas are transported there, and the reader
should not skip them. Reference notes is the place to see historical perspectives and
complementary lectures. Note, however, that we do not even try to cover the entire
literature. There is a set of exercises in every chapter and we give all the answers
but two (7.21 and 8.2). Sometimes, exercises provide new theory.
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We are four authors, with different views; compromises were necessary and some
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events in our research careers. While our writing is in English, it should not be too
hard to find evidence of the French Canadian culture of Jacques, Guy, and Jean
Bertrand as well as the German one of Marco. Readers who know us very well can
even differentiate our writing styles. Over the years, many colleagues asked us what
source we would recommend for learning about column generation and branch-and-
price. And now, here it is; you hold it in your hands. Enjoy reading and working with
it as much as we enjoyed writing it.
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Linear and Integer Linear

Programming

The final test of a theory
is its capacity to solve the problems which originated it.

Linear Programming and Extensions
George Bernard Dantzig

Abstract This first chapter recalls the main notions of linear programming, that
is, the primal and dual formulations as well as necessary and sufficient optimality
conditions. We also describe the primal simplex algorithm and discuss some aspects
of integer linear programs.
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Introduction

Operations Research (OR) is concerned with analytical methods to help decision-
makers construct and/or adjust their operational, tactical, and strategic plans. In this
respect, optimization, in particular linear programming, is commonplace in plenty of
industrial applications around the globe. Since we expect the reader to be more than
acquainted with linear programming, its father, George Bernard Dantzig (1914–
2005), should hardly need an introduction. This chapter therefore serves to formalize
terminology under a common notation. Nevertheless, we like to think that there is
something for even our most seasoned readers.

Let us start straight away by getting the obvious out of the way.
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Definition 1.1. With an optimization program, we aim to find values for decision
variables subject to restrictions given by constraints and bounds, i.e., the feasible
region, such that the value of the objective function is optimized. A solution is a set
of decision values, one for each variable, which may either be feasible or infeasible
depending on whether or not these values are in the feasible region.

Moreover, a feasible solution is optimal if it yields the optimal objective value
in which case we also call it an optimizer and the optimum. Observe that, with
the articles a/an/the, we acknowledge the possible existence of multiple optimal
solutions but a unique optimal objective value.

Notation. Throughout the text, vectors and matrices are set in bold face and respec-
tively use lower and upper case letters. In particular, the matrix A = [a j] j∈{1,...,n}
contains n column vectors, where such a vector a j = [ai j]i∈{1,...,m} contains m rows.

The index rule is extended to subsets of rows and/or columns as follows. We
use Ai∗ to refer to the i-th row of matrix A. For an ordered subset I ⊆ {1, . . . ,m}
of row indices and an ordered subset J ⊆ {1, . . . ,n} of column indices, we denote
by AIJ the sub-matrix of A containing the rows and columns respectively indexed
by I and J. If the row subset is omitted by dropping the first index, it allows for
standard linear programming notation like ABxB, the subset of basic columns of A
indexed by B multiplied by the corresponding vector of basic variables xB. The index
subset N = {1, . . . ,n}\B for non-basic columns is used analogously.

Moreover, we denote by Ir the r×r identity matrix, by 0 (resp. 1) a vector/matrix
of all zero (resp. one) entries of contextually appropriate dimension, and by ei a
standard unit-vector with a single non-zero entry of 1 in row i. Finally, the transpose
operation is denoted A⊺.

1.1 Polyhedral Theory

We put several definitions regarding polyhedral theory here up-front. While they
may seem unmotivated or out of place, postponing their presentations as needed
would hinder the flow of ideas surrounding more advanced material.

Definition 1.2. A hyperplane H ⊂ Rn is defined by a vector f ∈ Rn and a scalar
f ∈ R as H = {x ∈ Rn | f⊺x = f}.

Definition 1.3. An open half-space is the set of all points below (resp. above) a hy-
perplane H, i.e., H− = {x ∈ Rn | f⊺x < f} (resp. H+ = {x ∈ Rn | f⊺x > f}). A
half-space is closed if the said hyperplane also belongs to it, i.e., the strict inequali-
ties are replaced by non-strict ones in the above definitions.

Definition 1.4. A polyhedron P ⊆ Rn is a set of points satisfying a finite, say m,
number of linear inequalities, i.e., P= {x∈Rn |Qx≥ q}, where (Q,q)∈Rm×(n+1).
Moreover, a polyhedron P is said to be rational if there exists (Q′,q′) ∈ Qm×(n+1)

with rational coefficients such that P= {x ∈ Rn |Q′x≥ q′}.
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Throughout the book, we only consider rational polyhedra, see Irrational data in
Section 1.6 (Good to Know), even when we write, e.g., P⊆ Rn.

Definition 1.5. Given k points ai ∈Rn, i ∈ {1, . . . ,k}, a combination ∑
k
i=1 αiai is . . .

• linear if αi ∈ R, ∀i ∈ {1, . . . ,k};
• affine if αi ∈ R, ∀i ∈ {1, . . . ,k}, and ∑

k
i=1 αi = 1;

• conic if αi ≥ 0, ∀i ∈ {1, . . . ,k};
• convex if αi ≥ 0, ∀i ∈ {1, . . . ,k}, and ∑

k
i=1 αi = 1.

Some people also know comic combinations and we find that funny.

Definition 1.6. A set of k points ai ∈ Rn, i ∈ {1, . . . ,k}, is . . .
• linearly independent if ∑

k
i=1 αiai = 0⇔ αi = 0, ∀i ∈ {1, . . . ,k};

• affinely independent if {ai−a j}i∈{1,...,k}\{ j} is linearly independent for any j.

Definition 1.7. A point p ∈ P is an extreme point of P if it cannot be expressed as a
non-trivial convex combination of two points in P, i.e., there do not exist x1,x2 ∈ P,
x1 ̸= x2, and a scalar λ ∈ (0,1) such that p = λx1 +(1−λ )x2.

Definition 1.8. Let P0 = {r ∈ Rn
+ | Qr ≥ 0}. If P0 ̸= /0, a point r ∈ P0 \ {0} is a

ray of P. Equivalently, a vector r ∈ Rn
+ \ {0} is a ray of P if for any vector x ∈ P,

x+θr ∈ P, ∀θ ≥ 0.

Note that when r ∈ Rn
+ is a ray of P, then αr is also a ray of P for any scalar

α > 0. That is, we can scale a ray to a representation we prefer.

Definition 1.9. A ray r of P is an extreme ray of P if it cannot be written as a non-
trivial conic combination of two rays of P, i.e., there do not exist r1,r2 ∈ P0, with
r1 ̸= θr2 for any θ > 0, and scalars λ1,λ2 ≥ 0 such that r = λ1r1 +λ2r2.

The theorem by Minkowski and Weyl, commonly used in the Dantzig-Wolfe re-
formulation of linear and integer linear programs, states that there are two equivalent
representations of a polyhedron, the one seen above as the intersection of finitely
many closed half-spaces, the other one using its vertices and rays.

Theorem 1.1. (Nemhauser and Wolsey, 1988, Theorem 4.8, p. 96) Consider the
polyhedron P = {x ∈ Rn | Qx ≥ q} with full row rank matrix Q ∈ Rm×n, i.e.,
rank(Q) = m≤ n and P ̸= /0. An equivalent description of P using its extreme points
{xp}p∈P and extreme rays {xr}r∈R is

P=


x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣

∑
p∈P

xpλp + ∑
r∈R

xrλr = x

∑
p∈P

λp = 1

λp ≥ 0 ∀p ∈ P
λr ≥ 0 ∀r ∈ R


. (1.1)



1.1 Polyhedral Theory 5

Proof. We refer to Nemhauser and Wolsey (1988) for step by step proofs and rather
concentrate on three important ideas.

1. Both sets P and R are finite (true for any polyhedron).
2. Under the assumptions on the polyhedron P, the set P always contains at least

one element but the set R could be empty.
3. Both descriptions are equivalent because they describe the same set of solutions:

⇒ Any x ∈ P can be written as a convex combination of the extreme points
{xp}p∈P plus a conic combination of the extreme rays {xr}r∈R, that is, there
exist scalars {λp}p∈P and {λr}r∈R such that (1.1) holds for all x ∈ P.

⇐ Any λλλ that satisfies (1.1) corresponds to an x ∈ Rn by definition but also
necessarily to an x ∈ P. ⊓⊔

Definition 1.10. A bounded polyhedron is called a polytope.

Definition 1.11. A polyhedral cone is a polyhedron P that is also a cone (that is,
x ∈ P⇒ αx ∈ P, ∀α ≥ 0). It has the form P = {x ∈ Rn | Qx ≥ 0}, where the
n-dimensional 0-vector is the unique extreme point.

Figure 1.1 shows in (a) a polytope with seven extreme points whereas three poly-
hedra (that are not polytopes are displayed on the right. The polyhedron in (b) ex-
hibits three extreme points and two extreme rays whereas that in (c) comprises only
one extreme point. That in (d) is a polyhedral cone.

•
•

•

•
•

•
•

(a) Polytope

•

•

•

(b) Polyhedron

•

(c) Polyhedron

0 •

(d) Polyhedral cone

Fig. 1.1: Extreme points and extreme rays.

Definition 1.12. The convex hull of a set of points Y, denoted conv(Y), is the set of
all convex combinations of Y. It is the smallest convex set which contains Y. Any
polyhedron P is convex, thus we have P= conv(P).

Figure 1.2 shows another polyhedron where there are three extreme points,
namely, (1,1), (1,2), and (2,1), but the set of extreme rays contains only a sin-
gle element, say (1,1). Moreover, the representation (1,1) of this extreme ray is the
same as that of the first extreme point. When necessary, we use a binary parameter to
distinguish them: 1 for a vector representing a point and 0 for a vector representing
a direction like a ray. This is notably the case for the Dantzig-Wolfe decomposition
approaches in the forthcoming chapters.
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•

•

•
(1,1)

(1,2)

(2,1)

(1,1)

(1,1)

Fig. 1.2: Polyhedron with three extreme points represented as
[
(1,1)

1

]
,
[
(1,2)

1

]
, and

[
(2,1)

1

]
,

and a single extreme ray represented as
[
(1,1)

0

]
.

1.2 Linear Programming

As calculus developed from the seventeenth century’s need
to solve problems of mechanics,
linear programming developed from the twentieth century’s need
to solve problems of management.

Vašek Chvátal (1983, p. 8)

This section recalls some fundamental results of linear programming, notably,
the primal and dual formulations of a linear program, the duality principle, and a set
of necessary and sufficient optimality conditions of a primal-dual solution pair.

Linear program

A linear program is an optimization program in which the objective function and
the constraints are linear. We consider an m× n linear program, denoted LP, and
expressed with inequality constraints as

z⋆LP = min c⊺x
s.t. Ax≥ b

x≥ 0,
(1.2)

where x, c ∈ Rn, b ∈ Rm, A ∈ Rm×n. Recall that any equality constraint can be rep-
resented by two inequalities. Each constraint Ai∗x = ∑

n
j=1 ai jx j ≥ bi, i ∈ {1, . . . ,m},

induces a closed half-space. The same is true for each lower bound x j ≥ 0, j ∈
{1, . . . ,n}. The intersection of all these closed half-spaces forms the feasible region,
denoted A= {x ∈ Rn

+ | Ax≥ b}, which is a polyhedron by definition.

• An extreme point xp, p ∈ P, of A is characterized by (and can thus be identified
with) a basic solution given by a partition of the variable indices {1, . . . ,n} into
a subset B of size m and a subset N of size n−m. These sets induce vectors xB
of basic variables and xN of non-basic variables. Then
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xp =

[
xB
xN

]
=

[
xB
0

]
=

[
A−1

B b
0

]
, p ∈ P. (1.3)

• An extreme ray xr, r ∈ R, is an edge direction that extends to infinity. It means
that from a feasible extreme point, say xp, we have

xp +θxr ≥ 0, A(xp +θxr) = b, ∀θ > 0. (1.4)

From this simple geometry, it follows that there are only three possible outcomes
in optimizing the LP. It is infeasible if the feasible region is empty, i.e., A = /0.
Otherwise, it is feasible in which case either there exists an optimizer which yields
the optimal objective value or it is unbounded because the objective value can be
improved indefinitely.

Proposition 1.1. If the LP (1.2) has an optimal objective value z⋆LP, then there exists
at least one optimal solution x⋆LP that is an extreme point xp, p ∈ P.

Proof. Consider the level curve of the objective function c⊺x = z⋆LP. The polyhe-
dron (A∩{x ∈ Rn | c⊺x = z⋆LP}) contains at least one extreme point xp. We show
by contradiction that it must be an extreme point of A as well. Assume that xp
is not an extreme point of A and let xp = λx1 + (1− λ )x2 be a convex combi-
nation for x1,x2 ∈ A, x1 ̸= x2. Since c⊺x1 ≥ z⋆LP and c⊺x2 ≥ z⋆LP, they must be
equal to z⋆LP as c⊺xp = z⋆LP must hold. This would mean that x1 and x2 also be-
long to (A∩{x ∈ Rn |c⊺x = z⋆LP}) which contradicts that xp is an extreme point of
(A∩{x ∈ Rn |c⊺x = z⋆LP}). ⊓⊔

Proposition 1.2. If the LP (1.2) has an unbounded objective value, then there exists
at least one extreme ray xr, r ∈ R, and some vertex xp, p ∈ P, such that the points
xp +θxr ∈A improve the objective value indefinitely as θ → ∞.

An immediate consequence is that we only need to search the extreme points and
extreme rays to respectively find an optimal solution or detect unboundedness. Since
this number is finite, we have a first brute-force approach.

Dual point of view

Duality theory states that we can view any linear program from a different perspec-
tive. In this respect, the formulation of the LP (1.2) is called primal and it can be
associated with another one called dual which is denoted LD.The latter optimizes
over πππ variables. The combination of these two programs is coined the primal-dual
pair. Let us present them and explore the strength of their relationship in the remain-
der of this section. The primal is repeated on the left whereas the associated dual
appears on the right:

z⋆LP = min c⊺x
s.t. Ax≥ b [πππ]

x≥ 0

z⋆LD = max b⊺πππ
s.t. A⊺πππ ≤ c [x]

πππ ≥ 0.
(1.5)
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Each variable in the primal is associated with a constraint in the dual. Each con-
straint in the primal is associated with a variable in the dual. In our notation we
explicitly point to this relation by putting the respective variables in brackets after
the constraints. Note how decision variables of one program appear as dual vari-
ables in the other. The sign of variables and type of constraints are deduced from
one another in accordance with the optimization direction that is also inverted. The
general recipe is given in Table 1.1 from which we establish a fundamental concept
of duality stated in the following proposition.

primal minimization ⇐⇒ dual maximization

≥ bi πi ≥ 0
constraint ≤ bi variable πi ≤ 0

= bi πi ∈ R

x j ≥ 0 ≤ c j
variable x j ≤ 0 constraint ≥ c j

x j ∈ R = c j

Table 1.1: Recipe to obtain primal-dual formulations.

Proposition 1.3. The dual of the dual is the primal.

Proof. We just have to apply the same transformation on the dual, first replacing
max b⊺πππ by −min −b⊺πππ:

z⋆LD =−min −b⊺πππ
s.t. −A⊺πππ ≥−c [x]

πππ ≥ 0

z⋆LP =−max −c⊺x = min c⊺x
s.t. −Ax≤−b [πππ]

x≥ 0.

In particular, we interchange right-hand side coefficients with those of the objective
function, multiply the system of constraints by −1, transpose the matrix A⊺, and
right-multiply everything by the dual variables x of the LD. ⊓⊔

Note 1.1 (Left-multiply, right-multiply, which is it?) As long as one follows matrix
multiplication rules, either one is fine. We however find it convenient to present the
dual with a right-multiplication by πππ (e.g., b⊺πππ rather than πππ⊺b), because the same
set of rules allows us to find the primal back. Moreover, the LD in (1.5) looks like
an optimization program with decision variables on the right and constraints listed
as rows. For virtually every other purpose, we use the left-multiplication because of
notation elegance.

A linear program is either feasible or its domain is empty. The following propo-
sition mathematically substantiates this statement. Indeed, it shows that we either
find a feasible solution x or provide a certificate of infeasibility as πππ .
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Proposition 1.4 (Farkas’ lemma). Given A ∈ Rm×n and b ∈ Rm, then exactly one
of the following assertions holds:

1: There exists x ∈ Rn such that Ax≥ b, x≥ 0;
2: There exists πππ ∈ Rm such that A⊺πππ ≤ 0, πππ ≥ 0, b⊺πππ > 0.

Proof. The proof is left as an exercise, done by construction using the Phase I of
the primal simplex algorithm (Exercise 1.3). ⊓⊔

Let us figure out what exactly this dual formulation LD gives us. Any feasible
solution x≥ 0 of cost z̄ provides an upper bound on the optimal objective value, i.e.,
z⋆LP ≤ z̄. It is also possible to derive a lower bound

¯
z≤ z⋆LP by combining constraints,

say πππ⊺Ax≥ πππ⊺b. If πππ ≥ 0, the inequality relations are preserved and this new con-
straint is obviously redundant. However, if every coefficient in the vector πππ⊺A is
less-than-or-equal to the corresponding one in c⊺, that is, πππ⊺A ≤ c⊺, the right-hand
side πππ⊺b is one such lower bound: πππ⊺b≤ πππ⊺Ax≤ c⊺x.

The interpretation of the dual is immediate then: We want to find the largest such
lower bound by finding an optimal combination of constraints over πππ . This is known
as weak duality and is captured in the following proposition. We subsequently show
that the largest lower bound is in fact equal to the optimum, if it exists. This is known
as strong duality.

Proposition 1.5 (Weak duality). Given primal-dual linear programming formula-
tions (1.5), if x is primal feasible and πππ is dual feasible, then

b⊺πππ ≤ z⋆LD ≤ z⋆LP ≤ c⊺x. (1.6)

Proof. We have b≤ Ax, x≥ 0, and A⊺πππ ≤ c, πππ ≥ 0. We left-multiply b≤ Ax by πππ

and right-multiply A⊺πππ ≤ c by x. This yields πππ⊺b≤πππ⊺Ax = (A⊺πππ)⊺x≤ c⊺x, where
the equality holds because of transpose properties. Since optimal values z⋆LD =πππ⋆⊺b
and z⋆LP = c⊺x⋆LP are as good as feasible ones, πππ⊺b ≤ πππ⋆⊺b ≤ c⊺x⋆LP ≤ c⊺x. Finally,
the dot product πππ⊺b is commutative. ⊓⊔

Corollary 1.1. If c⊺x = πππ⊺b for primal and dual feasible solutions x and πππ , then
these are optimal solutions for the LP and the LD, respectively.

Corollary 1.2. If the primal is unbounded, then the dual is infeasible (by weak dual-
ity, z⋆LD ≤ z⋆LP =−∞, {πππ ∈Rm |A⊺πππ ≤ c}= /0, and the LD has no feasible solution).

Proposition 1.6 (Strong duality). When either the LP or the LD has a finite optimal
solution, then the other also has a finite optimal solution and their respective optima
coincide:

∃x⋆LP⇔∃πππ⋆ and b⊺πππ⋆ = c⊺x⋆LP. (1.7)

Proof. This proof is left as an exercise, done by construction using an optimal basic
solution given by the primal simplex algorithm (Exercise 1.8). ⊓⊔

Corollary 1.3. There are four possible outcomes for the primal-dual formulations:
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1. primal feasible, dual feasible
2. primal feasible, dual infeasible

3. primal infeasible, dual feasible
4. primal infeasible, dual infeasible

Proof. Proposition 1.6 covers the first case and shows that both programs reach the
same optimum. Corollary 1.2 covers the second and the third by mirroring the result.
The fourth is established by recognizing that, with respect to Farkas’ lemma (Propo-
sition 1.4), primal infeasibility (i.e., A⊺πππ ≥ 0,πππ ≥ 0,b⊺πππ >0) and dual infeasibility
(i.e., Ax≥ 0,x≥ 0,c⊺x<0) can both be true simultaneously. ⊓⊔

Table 1.2 summarizes the primal-dual relationship we have established.

Dual formulation
Primal formulation Feasible Unbounded Infeasible

Feasible: z⋆LP >−∞ z⋆LD = z⋆LP
Unbounded: z⋆LP =−∞ {πππ ∈ Rm | A⊺πππ ≤ c}= /0
Infeasible: {x ∈ Rn

+ | Ax = b}= /0 z⋆LD = ∞ {πππ ∈ Rm | A⊺πππ ≤ c}= /0

Table 1.2: Relationship between the primal-dual formulations.

Finally, it can likewise be read from the dual perspective. Exercise 1.4 asks the
reader to formulate a simultaneously infeasible primal-dual pair.

Optimality conditions

Necessary and sufficient optimality conditions are given in the next proposition.

Proposition 1.7 (Complementary slackness). Given primal-dual linear program-
ming formulations (1.5), the primal-dual solution pair (x,πππ) is optimal if and only
if x is primal feasible, πππ is dual feasible, and

for all j ∈ {1, . . . ,n} : c j−πππ
⊺a j > 0 ⇒ x j = 0,

x j > 0 ⇒ c j−πππ
⊺a j = 0;

for all i ∈ {1, . . . ,m} : bi−A⊺i∗x < 0 ⇒ πi = 0,
πi > 0 ⇒ bi−A⊺i∗x = 0.

(1.8)

Proof. We derive these conditions from Propositions 1.5–1.6 which give us πππ⊺b =
πππ⊺Ax = c⊺x for any optimal primal-dual pair (x,πππ). We can rewrite this as

(c⊺−πππ
⊺A)x = 0 and πππ

⊺(Ax−b) = 0, (1.9)

where x,πππ,(c⊺−πππ⊺A), and (Ax−b) are non-negative vectors. Consequently, for
each variable index j ∈ {1, . . . ,n}, the product (c j−πππ⊺a j)x j must be zero such that
at least one of these factors must be zero, i.e., either x j = 0 or c j −πππ⊺a j = 0 or
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both. A similar result can be made for each constraint index i ∈ {1, . . . ,m} using the
components of πππ⊺(Ax−b) = 0. ⊓⊔

It is obvious then that the interpretation of complementary slackness (1.8) is vis-
cerally present in the structure of any optimal solution. While we are interested in
an optimal solution x⋆LP, the previous propositions make it clear that a certificate
of optimality for the LP necessarily comes as a primal-dual solution pair (x⋆LP,πππ

⋆).
Dual variables are so rooted in linear programming algorithms that it is convenient
to list them even when only the primal formulation is presented. Accordingly, when
we write about the dual variables in the following, we sometimes refer to their val-
ues, not the variables themselves. The reader will easily distinguish the respective
meaning depending on the context so we do not introduce an extra notation.

Where do we go from here? For starters, we can already make one important ob-
servation: If c j−πππ⊺a j > 0 then variable x j is useless. In fact, we could remove it
from the model and achieve optimality just the same. How many such “useless”
variables are there? Well, we can also observe that we are free to “test optimality”
using any x ≥ 0 together with any πππ ≥ 0. With this in mind, let us first give names
to the two expressions seen in (1.8).

Definition 1.13. Given any dual vector πππ ≥ 0, we call c̄ j = c j−πππ⊺a j the reduced
cost of variable x j, j ∈ {1, . . . ,n}, and let c̄ = [c̄ j] j∈{1,...,n}.

Definition 1.14. Given any primal vector x≥ 0, let si = bi−A⊺i∗x be called the slack
of constraint i ∈ {1, . . . ,m}. Depending on whether or not the slack is zero, we say
that the constraint is binding (aka tight) or non-binding.

Given these, the complementary slackness conditions (1.8) take a simpler form:

for all j ∈ {1, . . . ,n} : c̄ j > 0 ⇒ x j = 0,
x j > 0 ⇒ c̄ j = 0;

for all i ∈ {1, . . . ,m} : si < 0 ⇒ πi = 0,
πi > 0 ⇒ si = 0,

(1.10)

which also gives us for an optimal primal-dual pair (x⋆LP,πππ
⋆), ∑

n
j=1 c̄ jx⋆j = 0 and

∑
m
i= siπ

⋆
i = 0, that is,

c̄⊺x⋆LP = 0 and πππ
⋆⊺s = 0. (1.11)

Sensitivity analysis

In economics, linear programs are used to compute profit maximizing production
plans subject to scarce resources. The constraints are typically related to these
resources while variables indicate how much of which product is produced on
which resource. In this context, optimal dual values have a natural interpretation
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as marginal profits or shadow prices or opportunity costs (these mean all the same):
For each resource the corresponding optimal dual value states by how much the
profit could be theoretically increased if we had one more unit of this resource. On
the other hand, if a constraint is not binding, we do not use all available units of the
corresponding resource such that there is no value in having one more unit of it. We
intuitively find complementary slackness in this interpretation.

One can derive this interpretation from a linear program with an optimal solu-
tion (x⋆LP,πππ

⋆) of cost z⋆LP by keeping all parameters unchanged except one. Specif-
ically, we consider a variation of a coefficient from either the right-hand side or the
objective function. With respect to a right-hand side modification ∆bi ∈ R of bi,
i ∈ {1, . . . ,m}, the primal-dual formulations become

z⋆LP(∆bi)

= min c⊺x
s.t. Ax≥ b+∆bi ei [πππ]

x≥ 0

z⋆LD(∆bi)

= max b⊺πππ +∆bi πi

s.t. A⊺πππ ≤ c [x]
πππ ≥ 0.

(1.12)

Looking at the dual, we see that πππ⋆ remains feasible since only the objective func-
tion is modified. However, we do not know how x⋆LP is changed: the primal program
may have an optimal solution but the objective function can also be unbounded. By
weak duality, the optimum is at least b⊺πππ⋆ +∆bi π⋆

i = z⋆LP +∆bi π⋆
i . It should be

obvious that this interpretation is local to the current solution. With respect to the
primal simplex algorithm we see next, most solvers can report a sensitivity range for
which vector πππ⋆ remains unchanged (and optimal) for the modified dual program,
see Figure 1.3a.

∆bi

zLP(∆bi)

0

z⋆LP

π⋆
i

sensitivity range

(a) Sensitivity analysis for coefficient bi

∆c j

zLP(∆c j)

0

z⋆LP

x⋆j

sensitivity range

(b) Sensitivity analysis for coefficient c j

Fig. 1.3: Variation of a coefficient from the right side or objective function.

We can do a similar study with a modification ∆c j ∈ R for the objective coeffi-
cient associated with column index c j, j ∈ {1, . . . ,n} (see Figure 1.3b):
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z⋆LP(∆c j)

= min c⊺x+∆c j x j

s.t. Ax≥ b [πππ]

x≥ 0

z⋆LD(∆c j) =

max b⊺πππ
s.t. A⊺πππ ≤ c+∆c j e j [x]

πππ ≥ 0.

(1.13)

Regarding the sensitivity analysis for the lower bounds, say x≥ ℓℓℓ= 0, we com-
bine the reduced cost expression c̄⊺ = c⊺ −πππ⊺A and the equality πππ⋆⊺s = 0 (i.e.,
πππ⋆⊺Ax⋆LP = πππ⋆⊺b) to rewrite z⋆LP in the following way:

z⋆LP = c⊺x⋆LP = (c̄⊺+πππ
⋆⊺A)x⋆LP = πππ

⋆⊺b+ c̄⊺x⋆LP (1.14)

where c̄⊺x⋆LP = 0. However, it also writes as c̄⊺x⋆LP = ∑ j:x⋆j=ℓi c̄ jℓ j +∑ j:x⋆j>ℓi c̄ jℓ j,

where the second term is zero by the complementary slackness (x j > 0⇒ c̄ j = 0).
Hence

z⋆LP = πππ
⋆⊺b+ ∑

j:x⋆j=ℓ j(=0)
c̄ jℓ j. (1.15)

∆ℓ j

z⋆LP(∆ℓ j)

0

z⋆LP

c̄ j

sensitivity range not given

Fig. 1.4: Sensitivity analysis for a lower bound coefficient.

For an increase ∆ℓ j ∈ R+ of the lower bound for variable x j = 0, the objective
function varies as

z⋆LP(∆ℓ j) = πππ
⋆⊺b+ c̄ j ∆ℓ j = z⋆LP + c̄ j ∆ℓ j. (1.16)

As above, we again face a line equation illustrated in Figure 1.4, but this time with-
out having the sensitivity range computed by the commercial solvers. This can easily
be done, see Exercise 1.6 (Sensitivity range for an increase of the lower bound).

Observe that the slopes x⋆j , π⋆
i , and c̄ j are all non-negative for the three cases of

the sensitivity analysis for the LP (1.2). This is not necessarily the same for other
formulations: we always have x⋆j ≥ 0, but the last two varies according to the type
of constraints (=,≥,≤) or the optimization criterion (min,max).
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1.3 Primal Simplex Algorithm

In the primal simplex algorithm presented next, we move from one extreme point to
the next while always maintaining primal feasibility. For each extreme point, we can
derive corresponding dual values. We iterate until these values become dual feasible
at which point we have achieved provable optimality.

For the primal simplex algorithm, we consider equality constraints only, that is,
surplus and slack variables can be added in presence of inequalities. We also assume
that the matrix A is of full row rank. This is called the standard form of the LP. The
new vector of dual variables πππ ∈Rm associated with the equality constraints appears
within brackets (see Exercise 1.7 Lost in translation?), and the dual formulation LD
appears on the right of (1.17).

z⋆LP = min c⊺x
s.t. Ax = b [πππ]

x≥ 0

z⋆LD = max b⊺πππ
s.t. A⊺πππ ≤ c [x]. (1.17)

For a linear program expressed in standard form, the optimality conditions (1.8)
simplify to

for all j ∈ {1, . . . ,n} : c̄ j > 0 ⇒ x j = 0,
x j > 0 ⇒ c̄ j = 0.

(1.18)

Mechanics

The primal simplex algorithm relies on an important property of linear programs.
If the LP (1.17) has a finite optimal objective value z⋆LP, then there exists at least
one optimal solution x⋆LP given by an extreme point xp, p ∈ P. Otherwise, z⋆LP is un-
bounded and we have identified an improving direction, represented by an extreme
ray xr, r ∈ R, that extends to infinity. From a geometric point of view, if z⋆LP >−∞,
then the primal simplex algorithm moves from an extreme point to an adjacent one,
indeed, from one basis to an adjacent one by changing a single column.

Let us rewrite the LP in terms of basic and non-basic variables indexed by B and
N, respectively:

z⋆LP = min
[

cB
cN

]⊺[xB
xN

]
= c⊺BxB + c⊺NxN

s.t.
[
AB AN

][xB
xN

]
= ABxB + ANxN = b

xB≥ 0, xN≥ 0,

(1.19)

where the matrix AB is non-singular. Temporarily fixing xN = 0, the linear system
ABxB = b is solved with xB = A−1

B b of cost c⊺BA−1
B b.
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To verify if this solution is optimal or not, the mathematical expression of xB,
given by xB =A−1

B b−A−1
B ANxN , is substituted in the objective function. This results

in
c⊺BxB + c⊺NxN = c⊺BA−1

B b+(c⊺N− c⊺BA−1
B AN)xN . (1.20)

Observe that c⊺BA−1
B appears twice in the above expression. It is rather computed

only once as πππ⊺ ∈ Rm (called the vector of simplex multipliers), a particular choice
for the dual values such that the coefficient of xN in the objective function becomes
the reduced cost vector (c⊺N −πππ⊺AN) = c̄⊺N . Left-multiplying the system of con-
straints by A−1

B , let b̄ = A−1
B b and ĀN = A−1

B AN , then the LP (1.19) becomes:

z⋆LP = πππ
⊺b + min c̄⊺NxN

s.t. xB + ĀNxN = b̄
xB≥ 0, xN≥ 0.

(1.21)

This is also known as the dictionary representation.

Definition 1.15. Let the matrix AB be non-singular. A basic solution x is given by

x =

[
xB
xN

]
=

[
A−1

B b
0

]
=

[
b̄
0

]
. (1.22)

The associated vector of simplex multipliers is πππ⊺ = c⊺BA−1
B .

Definition 1.16. A basic solution is degenerate if at least one of the basic variables
takes value zero.

Sufficient optimality conditions

Given a basic solution x=
[

xB
xN

]
, where xB = b̄ and xN = 0, sufficient conditions for x

to be optimal in (1.21) are c̄N ≥ 0, that is, c̄ j ≥ 0, ∀ j ∈ N. By design of the primal
simplex algorithm, observe that c̄⊺B = c⊺B−πππ⊺AB = c⊺B− c⊺BA−1

B AB = 0⊺. Hence, the
stopping rule c̄N ≥ 0 for a finite objective value is equivalent to

c̄ j ≥ 0, ∀ j ∈ {1, . . . ,n}, where c̄ j = 0, ∀ j ∈ B. (1.23)

These conditions are not all requested by the complementary slackness condi-
tions: they are sufficient but not necessary. Indeed, only the positive variables are
requested to have reduced costs of zero value in (1.18) whereas the primal sim-
plex algorithm also imposes such a condition on all the basic variables, positive and
degenerate.
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Pricing problem

Given a basic solution x and corresponding dual multipliers πππ , we verify whether
the optimality conditions (1.23) are fulfilled. Otherwise, we identify a non-basic
variable xℓ, ℓ ∈ N, with a negative reduced cost (c̄ℓ < 0). Since this value indicates
the marginal impact of increasing the value of xℓ by one unit, the Dantzig’s rule is
to select a most promising one xℓ, i.e., one with the least reduced cost:

ℓ ∈ argmin
j∈N

c̄ j. (1.24)

Note 1.2 (Generic pricing.) The minimum reduced cost c̄ℓ is usually found by enu-
meration. Obviously dependent on the vector πππ , it can also be formulated as an
optimization program SP (the subproblem or pricing problem, see Linear programs
for the pricing), whose value is given by

c̄(πππ) = min
j∈N

c j−πππ
⊺a j. (1.25)

The advanced reader can already observe that (1.25) is similar to the notation

• c̄(πππ) used in the subproblem of the column generation algorithm (Chapter 2),
• c̄(πππb,π0) used in the subproblem of the Dantzig-Wolfe reformulation (Chap-

ters 3 and 4),
• the value LR(πππb) utilized in the subproblem of the Lagrangian relaxation

(Chapter 6).

In a very general sense, their purpose is always the same: pricing the variables.

Let the index-set N be further partitioned into {ℓ,N′}. Formulation (1.21) be-
comes

z⋆LP = πππ
⊺b + min

 0
c̄ℓ
c̄N′

⊺ xB
xℓ

xN′



s.t.
[
Im āℓ ĀN′

] xB
xℓ

xN′

= b̄

xB ≥ 0, xℓ ≥ 0, xN′ ≥ 0.

(1.26)

Since all non-basic variables are at zero, we can determine how much we can in-
crease xℓ using a simple system of m equalities between the basic variables and xℓ:

xB + āℓxℓ = b̄, xB ≥ 0, xℓ ≥ 0, (1.27)

hence the new x-vector is given by xB
xℓ

xN′

=
 b̄

0
0

+
−āℓ

1
0

xℓ. (1.28)
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System (1.27)–(1.28) capitalizes on the basis structure to modify the current solu-
tion. Using variable xℓ either yields infinite improvement or it trades places with
exactly one currently basic variable. It is no surprise that we have nice adjectives for
these two variables then: entering and leaving. This exchange of variable is called a
pivot. Note that any variable with a negative reduced cost could be used in (1.27).

Extreme ray direction

If āℓ ≤ 0, the basic variables remain non-negative for every xℓ > 0, that is,

xℓ > 0 ⇒ xB = b̄− āℓxℓ ≥ 0, (1.29)

and z⋆LP = −∞ as we have identified an extreme ray xr =

−āℓ
1
0

, originating from

the current basic solution. Note that because all data/coefficients are rational, xr can
be integer-scaled using an appropriate integer value for xℓ.

Adjacent extreme point

If āℓ ≰ 0, the maximum value of xℓ is restricted by its impact on xB. For all scalars
āiℓ > 0, i ∈ {1, . . . ,m}, the corresponding components must remain non-negative:
b̄i− āiℓxℓ ≥ 0, i.e., xℓ ≤ b̄i/āiℓ. Hence xℓ is computed by the minimum ratio:

xℓ = min
i∈{1,...,m}|āiℓ>0

b̄i

āiℓ
. (1.30)

• If xℓ > 0, the solution moves on an edge direction from the current extreme
point until it reaches an adjacent extreme point:

xp =

 b̄
0
0

+
−āℓ

1
0

xℓ, xℓ = min
i∈{1,...,m}|āiℓ>0

b̄i

āiℓ
. (1.31)

At least one of the former basic variables decreases to zero and one such vari-
able is chosen to leave the basis, say xs, whereas xℓ enters it:

s ∈ argmin
i∈{1,...,m}|āiℓ>0

b̄i/āiℓ. (1.32)

• If xℓ = 0, the extreme point remains the same—this is called a degenerate
pivot—but the subset of basic variables is different: xℓ enters the basis at value
zero and the variable xs that leaves it is any one for which āsℓ > 0 and b̄s = 0,
s ∈ B. This means we change a degenerate basis for another degenerate one.
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Figure 1.5 illustrates the primal simplex algorithm. At every iteration, the pricing
problem SP uses the simplex multipliers πππ , computed in accordance with the cur-
rent basis of the LP, to identify a variable xℓ of negative reduced cost c(πππ), if any.
Because the primal simplex maintains primal feasibility, the output of the algorithm
is only one of these two cases:

• a certificate of unboundedness (z⋆LP =−∞) as an extreme ray xr, r ∈ R;
• a certificate of optimality as an extreme point x⋆LP=x⋆p, p∈P, together with the

optimal value z⋆LP=c⊺x⋆LP and an optimal dual vector πππ⋆ such that c⊺x⋆LP=b⊺πππ⋆.
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Fig. 1.5: Illustration of the primal simplex algorithm for solving the LP (1.17).

At every iteration of the algorithm, the LP sends the vector πππ of simplex multipli-
ers to the pricing problem SP which returns the minimum (negative) reduced cost
c̄(πππ) together with an entering variable xℓ. These actions appear as dotted lines in
Figure 1.5. An optimal solution to the LP, here assumed finite, comes out as the
primal-dual pair (x⋆LP,πππ

⋆) together with its cost z⋆LP. Although simple, this figure is
later adapted to illustrate the column generation algorithm, the Dantzig-Wolfe re-
formulation of linear and integer linear programs, the later being finally compared
to the Lagrangian relaxation of an integer linear program.

Initialization and pseudo-code

The reader might have realized that we assumed that a basis AB is given at all times.
The initialization of the primal simplex algorithm produces an initial basic solution
to the LP. This is done using the so-called Phase I method.

An auxiliary problem is solved with m artificial variables, that is, y = [yi]i=1,...,m
that absorb the initial infeasibility of the LP by taking a trivial value y = b. Their
presence is then discouraged by minimizing their sum. The LP is feasible if and
only if z⋆Phase I = 0. If so, we obtain an initial basic solution x that is also feasible
for the LP; otherwise, A = {x ∈ Rn | Ax = b} = /0. The remainder of the solution
process is sometimes called Phase II.
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z⋆Phase I = min 1⊺y
s.t. Ax+y = b

x, y≥ 0.
(1.33)

In practice, the two phases are merged using bloated objective coefficients on the
artificial y-variables:

z⋆Phase I = min c⊺x + M1⊺y
s.t. Ax + y = b

x≥ 0, y≥ 0,
(1.34)

where the notation of the cost coefficient M echoes the big-M concept. We would
like this value to be as small as possible, but it should alas be big enough so as
to guarantee that y is expelled from at least one optimal solution. The feasibility
assumption now becomes more tricky to handle since it depends on a wise choice
of M. That is, an optimal solution with yi > 0 in the basis means one of two things:
the value of M is too small or the LP is actually infeasible.

Note 1.3 (Full row-rank matrix.) The assumption that coefficient matrix is of full
row rank is fulfilled whenever it contains at least one subset of m independent
columns. This is the case in Phase I with matrix

[
A Im

]
.

Note 1.4 (Lower and upper bounds on the optimum.) Let
[

xB
xN

]
be a basic solution for

the LP (1.17) with objective value zLP = c⊺BxB and corresponding simplex multipliers
πππ⊺ = c⊺BA−1

B . If we assume that z⋆LP is finite, then there exists a positive integer
number κ such that ∑

n
j=1 x j ≤ κ in every optimal solution. In that case, in addition

to the current upper bound zLP on z⋆LP, we also have knowledge of a lower bound at
every iteration, that is,

zLP +κ c̄(πππ)≤ z⋆LP ≤ zLP. (1.35)

The lower bound can be generalized, see Exercise 1.9, to arbitrary dual values πππ ≥ 0
as

πππ
⊺b+κ c̄(πππ)≤ z⋆LP ≤ zLP. (1.36)

Although not very exciting in practice for linear programs, the above expres-
sions, or similar ones, appear within the following chapters on column generation,
Dantzig-Wolfe decomposition, and Lagrangian relaxation.

We give the pseudo-code for the primal simplex algorithm with Dantzig’s rule in
Algorithm 1.1. It includes the expected input/output and the main loop which can
be summarized in two parts: 1) the dual vector is defined from the current basis and
passed as an argument to the pricing problem, and 2) the stopping rule based on the
sufficient optimality conditions (1.23).
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Algorithm 1.1: Primal simplex algorithm with Dantzig’s rule.
input : LP in standard form (1.17), basic and non-basic index-sets B and N
output : Certificate of optimization

1 loop
2 πππ⊺← c⊺BA−1

B // O(m3)

3 b̄← A−1
B b // O(m2)

4 c̄ j ← c j−πππ⊺a j , ∀ j ∈ N // O(mn)
5 c̄(πππ)←min j∈N c̄ j, ℓ← argmin j∈N c̄ j // O(n)
6 if c̄(πππ)≥ 0
7 x← [xB = b̄,xN = 0]
8 z← c⊺BxB
9 break by optimality

10 āℓ← A−1
B aℓ // O(m2)

11 if āℓ ≤ 0
12 x← [xB =−āℓ,xℓ = 1,xN\{ℓ} = 0], z←−∞, {x ∈ Rn

+ | Ax = b}= /0
13 break by unboundedness
14 xℓ←mini∈{1,...,m}|āiℓ>0 b̄i/āiℓ, s← argmini∈{1,...,m}|āiℓ>0 b̄i/āiℓ // O(m)

15 B← B\{s}∪{ℓ}, N← N \{ℓ}∪{s} // O(1)

16 return z, x, and πππ

Note 1.5 (Matrix operations everywhere.) We see in Algorithm 1.1 that from the
dictionary data given in (1.21), only very little information is actually needed in an
iteration: πππ⊺, b̄, and āℓ. All three vectors can be computed directly from the original
data A, b, and c. Even though on paper we write these computations using the basis
inverse A−1

B , the inversion is never actually performed. Instead, the three vectors
are computed by solving linear equation systems, all involving the same matrix AB
(or its transpose) which is LU factorized. The initial factorization costs O(m3), but
later using the factorization to solve the linear equation systems only costs O(m2).
Since the basis matrix changes only in one column per iteration, also the factoriza-
tion needs only a small update. Efficient and sparsity maintaining proposals have
been made, e.g., by Bartels and Golub (1969), Forrest and Tomlin (1972), and Reid
(1982). This usually avoids the factorization when the basis changes, but over the
iterations numerical errors may accumulate and finally, a re-factorization of the ba-
sis matrix must occur. Overall, computing only the necessary data via the solution
of linear equation systems is subsumed under the name revised simplex method.

Note 1.6 (Efficiency vs. theory.) If all bases are non-degenerate, the objective func-
tion improves at every iteration and the primal simplex algorithm terminates after a
finite number of steps. However, it can take 2n−1 iterations in the worst case using
Dantzig’s pivot rule (Klee and Minty, 1972); see also Avis et al. (2008). In case of
degeneracy, it can even cycle indefinitely (Hoffman, 1953). In practice, cycling is
not an issue and the algorithm is quite efficient and only takes approximately 3m
iterations:

The most celebrated (and the most frequently quoted) source on this issue is Dantzig’s 1963
book (p. 160):
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Empirical experience with thousands of practical problems indicates that the number
of iterations is usually close to the number of basic variables in the final set which were
not present in the initial set. For an m-equation problem with m different variables in the
final basic set, the number of iterations may run anywhere from m as a minimum, to 2m and
rarely to 3m. The number is usually less than 3m/2 when there are less than 50 equations
and 200 variables (to judge from informal empirical observations). Some believe that for a
randomly chosen problem with fixed m, the number of iterations grows in proportion to n.

Dantzig’s words are quite cautious, but they are also rather general and (perhaps delib-
erately) loosely defined. From the context it seems that he refers to the Phase II problem
only, but it is not clear how the initial feasible vertex is obtained. Also, the specific pivoting
rules used are not mentioned. Shamir (1987)

Note 1.7 (One variant to rule them all.) Implementations of the algorithm exist in
as many variants as the number of programmers who coded them. It suffices to have
a look at the overwhelming list of options available in any modern solver to get
a sense of the practical details necessary to create a successful solver. To name a
few: pre-solve reductions, model structure exploits, partial pricing strategies, basis
factorization updates, and numerical stability options. Yet, we follow the widespread
usage of the instead of a primal simplex algorithm for every algorithm presented in
this book.

Treatment of bounds on the variables

The LP (1.2) can be generalized to include lower and upper bounds on x:

z⋆LP = min c⊺x
s.t. Ax≥ b [πππ]

ℓℓℓ≤ x≤ u,
(1.37)

and the complementary slackness optimality conditions take on a similar form.

Proposition 1.8 (Complementary slackness). Given the linear programming for-
mulation (1.37), the primal-dual pair (x,πππ) is optimal if and only if x is primal
feasible, πππ is dual feasible, and

for all j ∈ {1, . . . ,n} : c̄ j > 0 ⇒ x j = ℓ j,

c̄ j < 0 ⇒ x j = u j,

ℓ j < x j < u j ⇒ c̄ j = 0;

for all i ∈ {1, . . . ,m} : si < 0 ⇒ πi = 0,
πi > 0 ⇒ si = 0.

(1.38)

Regarding the adaptation of the simplex algorithm given a basic solution
[

xB
xN

]
,

let L = { j ∈ N | x j = ℓ j} and U = { j ∈ N | x j = u j}. With this partition of N, the
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LP (1.21) in standard form writes as

z⋆LP = πππ
⊺b + min c̄⊺LxL + c̄⊺U xU

s.t. xB + ĀLxL + ĀU xU = b̄
xB≥ 0, xL≥ 0, xU ≥ 0.

(1.39)

The non-basic variables are either at their lower or upper bound and the pricing
problem selects an entering variable xℓ according to the sign of c̄ℓ: negative for
ℓ ∈ L, positive for ℓ ∈ U . The stopping rule of the simplex algorithm for a finite
objective z⋆LP becomes

c̄ j ≥ 0, ∀ j ∈ L, c̄ j ≤ 0, ∀ j ∈U, where c̄ j = 0, ∀ j ∈ B. (1.40)

Adapting (1.14)–(1.16), the sensitivity analysis for either ∆ℓ j ∈ R or ∆u j ∈ R is
easily done: z⋆LP = b⊺πππ⋆+ c̄⊺x⋆LP, which becomes, using the complementary condi-
tions (1.38):

z⋆LP = b⊺πππ⋆+ ∑
j:x⋆j=ℓ j

c̄ jℓ j + ∑
j:x⋆j=u j

c̄ ju j, (1.41)

hence z⋆LP(∆ℓ j) = z⋆LP + c̄ j ∆ℓ j or z⋆LP(∆u j) = z⋆LP + c̄ j ∆u j. (1.42)

Finally, a basic solution is degenerate if at least one of the basic variables is at its
lower or upper bound.

Note 1.8 (Dantzig, Lemke, Beale, Ford, Fulkerson, Khachiyan, Karmarkar) These
names refer to some of the OR Fathers of linear programming algorithms. Defi-
nitely, we already know the contribution of Dantzig (1963, 1990) who dates back
his findings on the primal simplex to the summer of 1947. He is followed by both
Lemke (1954) and Beale (1954) who designed a dual version that can be seen as
the application of the primal method to the dual problem. Then come Dantzig et al.
(1956) for the primal-dual method, a generalization of similar algorithms for net-
work flow problems.

Khachiyan (1979) showed, finally, that linear programming problems can be
solved in polynomial time with the ellipsoid method. Unfortunately, in practice,
this algorithm is far from being competitive with the simplex methods. But it took
only a few years to find a practical one with polynomial time complexity, an interior
point algorithm designed by Karmarkar (1984).

Then, why do we restrict our presentation to the primal simplex algorithm? Sim-
ply because the column generation algorithm described in the next chapter and used
to solve huge linear programs with gazillions of variables is the primal simplex al-
gorithm, where the entering variables are not selected from an explicitly given set
of variables, but pricing is done by solving an auxiliary optimization problem that
searches the set of variables only implicitly.
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Note 1.9 (A mathematical soap opera.) At this point, there are no timelines in which
Dantzig’s contribution to linear programming can be ignored. The same could be
true for the astonishing work of Kantorovich (1939) but it appears to have been
eclipsed by the Western literature.

Polyak (2002) ventures some explanations, the most prominent ones being polit-
ical environment and language barrier. Despite Charnes and Cooper (1962) or Isbell
and Marlow (1961) pointing out small technicalities, Schrijver (1986) confirms that
Kantorovich’s “Problem C” is indeed the general form of linear programming. In
this groundbreaking work, Kantorovich solves the program by resolving multipli-
ers and then also explains what we nowadays call sensitivity analysis by tiptoeing
around capitalism. We can feel the tensions of the era in Koopmans (1962)’s assess-
ment:

Neither do I understand the preoccupation of Charnes and Cooper with temporal priority.
Is the glory of American developers of linear programming in any way diminished if it
now turns out that, unknown to them, important aspects of linear programming models
and theory had been anticipated in another language and another economic environment,
with which communication has been somewhat difficult? If an element of national pride
is involved, can we not justifiably point to a conspicuous discrepancy in the time span
between development and application of linear programming ideas and techniques in the
two environments?

1.4 Integer Linear Programming

An integer linear program ILP literally shares the structure of a linear program but
additionally requests that the variables x take on integer values:

z⋆ILP = min c⊺x
s.t. Ax≥ b [πππ]

x ∈ Zn
+.

(1.43)

The integrality conditions make such optimization programs typically much
harder to solve than linear programs, also complexity-wise: integer linear program-
ming is NP-hard. Like we did for linear programming, we postpone the description
of an algorithm to the next section (Branch-and-Bound). Let us focus here on a few
theoretical concepts we can establish.

When we drop the integrality requirements we obtain an optimization program
which we know how to solve. In fact, the dual variables πππ are only meaningful in
this so-called linear relaxation which we denote by LP. Even though an optimal
solution x⋆LP for the LP is likely fractional, it gives us a lower bound on the integer
optimum, i.e., z⋆LP ≤ z⋆ILP.

Note 1.10 (Mixed-integer linear programming.) If only some variables are required
to be integer, we sometimes specifically call this a mixed-integer linear program
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(MILP). We can write the integrality conditions on this subset of integer variables
indexed by I ⊆ {1, . . .n} as x ∈ Z|I|+ ×Rn−|I|

+ .

Given any minimization program (linear or otherwise), let z⋆p and z⋆d be primal
and dual optima, respectively. While the construction of a dual program for the ILP
is beyond the scope of this chapter (see Nemhauser and Wolsey, 1988), it is done in
such a way that the notion of weak duality (e.g., Proposition 1.5) holds, i.e, zd ≤ zp.
However, in integer programming, strong duality (e.g., Proposition 1.6) does not
hold in general, and the respective optima usually do not coincide.

Definition 1.17. The difference between the primal and dual optima z⋆p− z⋆d ≥ 0 is
called the duality gap.

Strength of formulations

Compared to modeling with linear programs, there is a much larger freedom in for-
mulating an integer programming model for a given optimization problem. An intu-
ition for this lies in the geometry that we see often in this book, e.g., in Figure 1.6:
Together with the integrality requirement, a given set of integer points can be de-
scribed by infinitely many different sets of linear constraints.

Definition 1.18. Given a set of points Y ⊆ Zn, a polyhedron P ⊆ Rn is called a
formulation for Y if and only if Y= P∩Zn.

The freedom of choosing a formulation makes modeling with ILPs an art, and it
immediately brings up the question how we should model. First of all, the following
formulation is always a wonderful option:

Definition 1.19. Given a polyhedron P = {x ∈ Rn | Ax ≥ b}, the integer hull of P
is the convex hull of the integer points P∩Zn it contains, i.e., conv(P∩Zn).

•

•

•

• •
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Fig. 1.6: Integer points of P vs. integer hull of P.

The integer hull is itself a polyhedron, and each of its extreme points is integer
by definition, see Figure 1.6. That is, also conv(Y) is a formulation for Y⊆ Zn. The
interest in a linear description of the integer hull comes from the fact that optimizing
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a linear objective function over it ensures, when finite, the existence of an optimal
integer solution as an extreme point. Alas, except for special cases, we usually do
not know, let alone have access to such a perfect formulation for our optimization
problems.

Definition 1.20. The difference between the integer optimum and that of the linear
relaxation is called the integrality gap, i.e., z⋆ILP− z⋆LP.

For most of the ILPs in this book (and for most ILPs which are interesting in
practice), the integrality gap is strictly positive. Given an ILP, the relative integral-
ity gap (z⋆ILP−z⋆LP)/|z⋆ILP| indicates how well the integer hull is approximated by the
linear relaxation, in the direction of the objective function (undefined for z⋆ILP = 0).
Intuitively, the smaller the gap, the better. The standard notion of quality for ILP
formulations reflects this.

Definition 1.21. Given a set of points Y ⊆ Zn, and two formulations P1,P2 ⊆ Rn

for Y. We say that P2 is stronger than P1 if P2 ⊂ P1.

In our discussion of the branch-and-bound algorithm below, we see that a
stronger model can result in less work to be done: The smaller the gap, intuitively,
the more often one can prune by bound. A classical way of obtaining a stronger
formulation is by adding inequalities that are redundant for the ILP.

Definition 1.22. Given a set of points Y⊆ Zn and a formulation P1 ⊆ Rn for Y. We
call an inequality q⊺x ≥ q0 a cutting plane if P2 = P1 ∩{x ∈ Rn | q⊺x ≥ q0} is a
stronger formulation for Y than P1.

Also here, one usually restricts consideration in the direction of a particular ob-
jective function. There are very general proposals for cutting planes that work, in
principle, for every ILP. For specialized algorithms like those in this book, also
specialized cutting planes may work better. We discuss this in Chapter 7 (Branch-
Price-and-Cut).

Extended formulations

Reformulation is an alternative, or complement, for obtaining stronger formulations.
An idea is to start from a model, called original in this context, and go to a higher-
dimensional space, i.e., use more variables. These may allow for different, “more
expressive” ways of formulating constraints. Then project down to the space of the
original variables.

Definition 1.23. Given a polyhedron O = {x ∈ Rn | Ax ≥ b}. A polyhedron P =
{(x,λλλ ) ∈ Rn × Rℓ | Bx + Dλλλ ≥ d} is called an extended formulation of O if
O = projx(P), where projx(P) denotes the projection of P on the x variables, i.e.,
projx(P) = {x ∈ Rn | ∃λλλ ∈ Rℓ : (x,λλλ ) ∈ P}.

This definition extends to sets of integer points.
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Definition 1.24. Given a set Y⊆ Zn of integer points. Polyhedron P is an extended
formulation of Y if Y= projx(P)∩Zn.

In order to understand the potential of extended formulations, consider the set
Y⊆ Zn of integer solutions of some ILP. The trivial extended formulation of Y is

P= {λλλ ∈ [0,1]Y | ∑
x∈Y

xλx = 1}. (1.44)

This is the linear relaxation of a binary program that selects exactly one integer point
from Y. Obviously, this (impractical) equivalent reformulation works for every ILP.
The linear relaxation (1.44), however, is perfect as it describes conv(Y).

A more useful extended formulation is given in Example 4.1 (Integrality property
in the knapsack problem) for the binary knapsack problem; the projection is given
in (4.105). We also devote the entire Chapter 4 (Dantzig-Wolfe Decomposition for
Integer Linear Programming) to a clever reformulation technique that works for
every ILP.

Integrality property

The remainder of this subsection deals with perfect formulations.

Definition 1.25. (Geoffrion, 1974, p. 89) The ILP formulation (1.43) possesses the
integrality property if and only if its optimal objective value is equal to the optimal
objective value of its linear relaxation, regardless of the coefficients in the objective
function, i.e., z⋆ILP = z⋆LP, ∀c ∈ Rn.

Of course, one may obtain an integrality gap of zero for some objective function
even though the property does not hold. We emphasize that the integrality property
is an attribute of the model, not of the problem. A positive integrality gap does not
rule out a different formulation (for the same problem) that possesses the integrality
property. Note that the integrality property makes no guarantee about the integrality
of the solution x⋆LP. Nevertheless, it is common practice to drop the integrality condi-
tions on an ILP which possesses the integrality property. This implicitly introduces a
bias in our choice of an algorithm in the sense that one expects the selected algorithm
to output an optimal solution that naturally complies with the integer requirements
of the ILP, see Exercise 1.11 (Integrality property and algorithm selection bias).

Proposition 1.9. (Guignard, 2003, Definition 5.1) An integer linear program (1.43)
whose solutions are in A∩Zn

+, where A = {x ∈ Rn
+ | Ax ≥ b}, possesses the inte-

grality property if and only if conv(A∩Zn
+) =A.

Proof. ⇒ Assume conv(A∩Zn
+) ̸= A. This implies that conv(A∩Zn

+) ⊂ A such
that there exists at least one extreme point in A that is not in conv(A∩Zn

+). It then
suffices to assign objective coefficients that uniquely lead to this extreme point, i.e.,
∃c ∈ Rn | z⋆ILP ̸= z⋆LP.
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⇐ Assume conv(A∩Zn
+) = A. The equality implies that every extreme point of

A is an integer vector. No matter the objective coefficients, at least one of these
extreme points has the optimal objective value and z⋆ILP = z⋆LP, ∀c ∈ Rn. ⊓⊔

Definition 1.26. A polyhedron is called integral when every face contains an in-
teger point. For all our purposes, this means that all extreme points have integer
coordinates.

Total unimodularity

A matrix A is totally unimodular if each of its subdeterminants is 0, +1, or −1.
Consequently, each entry in a totally unimodular matrix is also 0, +1, or −1. This
fundamental definition ties into integer linear programming in the following way.

Theorem 1.2. (Schrijver, 1986, Theorem 19.1) If matrix A ∈ Qm×n is totally uni-
modular and vector b ∈Qm is integer, then the polyhedron P= {x ∈ Rn | Ax≥ b}
is integral.

Proof. Every feasible basis AB ⊂A of P is invertible and A−1
B has integer 0, +1,−1

coefficients. Every feasible extreme point solution x = A−1
B b is thus also integer. ⊓⊔

With respect to integer programming, under the conditions in Theorem 1.2, we get
an integer extreme point for free from solving the linear relaxation (if the optimum
is finite, i.e., z⋆LP >−∞). Corollary 1.4 extends this result to the dual formulation.

Corollary 1.4. (Schrijver, 1986, Corollary 19.1a) Given a pair of primal-dual for-
mulations min{c⊺x | Ax≥ b, x≥ 0}= max{b⊺πππ | A⊺πππ ≤ c, πππ ≥ 0} with finite op-
timum z⋆LP. If matrix A is totally unimodular and both vectors b and c are integer,
then z⋆LP is integer and there exists an integer optimal solution pair x⋆LP and πππ⋆.

Proof. Given z⋆LP > −∞, we know from Theorem 1.2 that there exists an integer
optimal solution x⋆LP to the primal formulation, which means that the optimum z⋆LP =
c⊺x⋆LP is also integer. By strong duality, this optimum holds for the dual formulation
for which there exists an integer optimal solution πππ⋆ since the transpose of a totally
unimodular matrix is also totally unimodular. ⊓⊔

Network flow problems

A prime example of total unimodularity occurs in network flow problems. Consider
the general form known as the capacitated minimum cost flow problem (CMCFP).It
is defined on a directed graph G= (N,A), where N is the set of nodes and A is the set
of arcs. We associate with each node i ∈ N an integer number bi: if bi > 0, node i is
a supply node; if bi < 0, node i is a demand node with a demand of −bi; othetwise,
bi = 0 and node i is a transshipment node. We assume that ∑i∈N bi = 0, i.e., the
demands and supplies are balanced. If bi = 0, ∀i ∈ N, we also speak of a circulation
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problem. The cost vector is c = [ci j](i, j)∈A and x = [xi j](i, j)∈A represents the vector
of flow variables bounded by non-negative vectors ℓℓℓ= [li j](i, j)∈A and u = [ui j](i, j)∈A.
An arc-flow formulation for the CMCFP is an integer linear program given by

z⋆ILP = min ∑
(i, j)∈A

ci jxi j

s.t. ∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = bi [πi] ∀i ∈ N

ℓi j ≤ xi j ≤ ui j ∀(i, j) ∈ A

xi j ∈ Z+ ∀(i, j) ∈ A,

(1.45)

where the dual vector πππ again only makes sense for the linear relaxation. The equal-
ity constraints are known as flow conservation constraints. For each node i ∈ N, the
equation reads as outflow minus inflow equals bi. Matrix A is therefore of peculiar
construction: it is a node-arc incidence matrix in which each column is associated
with an arc (i, j) ∈ A and contains exactly two non-zero entries: a +1 in row i and a
−1 in row j.

It is well known that the incidence matrix of a directed graph is totally unimod-
ular (and this property does not change if an identity matrix like for the bounds is
appended). Thus, by Theorem 1.2 and Proposition 1.9, and assuming that the right-
hand side b = [bi]i∈N as well as the bounds ℓℓℓ and u are integer vectors, the arc-flow
formulation (1.45) possesses the integrality property. It is therefore common prac-
tice to omit the integrality requirements on network flow models as all algorithms
are designed to produce primal integer solutions. By Corollary 1.4, deriving a dual
optimal integer solution from the latter is moreover possible if c is also an integer
vector (see also Ahuja et al., 1993, Theorem 11.4, p. 413).

The particular structure of the incidence matrix simplifies e.g., reduced cost com-
putations. As an example, this shows in the proof of the following little result.

Proposition 1.10. Given a network flow problem on G= (N,A) and an optimal dual
solution πππ , the translation πi +α , ∀i ∈ N, is also optimal for any scalar α ∈ R.

Proof. We are given optimality conditions in Proposition 1.8 based on the reduced
costs computed as c̄i j = ci j − πi + π j, ∀(i, j) ∈ A. These remain identical for the
proposed translation as c̄i j = ci j− (πi +α)+(π j +α), ∀(i, j) ∈ A. ⊓⊔

1.5 Branch-and-Bound

The standard solution approach to optimize the ILP (1.43) is the linear program-
ming based branch-and-bound method. While linear programming algorithms have
fathers, see Notes 1.8 and 1.9, this integer programming algorithm has mothers,
namely Land and Doig (1960). The linear relaxation is solved first. If its optimal
solution is not integer, we create at least two sub-domains, by adding constraints
that (a) eliminate the fractional solution, but (b) keep all integer solutions to the ILP
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in the union of the sub-domains, preferably each of them in a single sub-domain
(branching). This process is iterated and thus produces a search tree whose root
node (node 0) corresponds to the initial linear relaxation, with an optimal objective
value z⋆LP.

As we progress in the search tree, each new node is an offspring or child which
contains some restricted linear relaxation that depends on the branching constraints
introduced thus far. Depending on whether or not such a node ℓ has been solved (or
“explored”) already, let z⋆ℓLP denote the node value or the inherited one of its parent.
Moreover, observe that z⋆ℓLP is monotonically increasing across the descendant line
of a node. Let L denote the live (a.k.a. active) nodes of the tree, that is, those nodes
that have yet to be explored. The most optimistic objective value for the ILP, say
LB, is then simply a matter of keeping track of the linear relaxation with the minimal
node value in L, i.e.,

LB = min
ℓ∈L

z⋆ℓLP. (1.46)

The powerful bound aspect of the method allows us to discard entire sub-trees
from the search. Further exploration of a node is not necessary in three cases which
we call pruning by bound, by integrality, or by infeasibility. The node is removed
from L then. Let UB be the objective value of the incumbent solution, the best
integer solution encountered in the tree at any given time. Whenever a node yields an
integer solution, it is pruned by integrality and the incumbent is updated as needed.
A node is pruned by infeasibility if branching decisions induce an infeasible linear
relaxation. Finally, for the nodes that remain, the following inequality holds

z⋆LP ≤ LB≤ z⋆ILP ≤ UB, (1.47)

and states that the optimal objective value of the root node z⋆LP is not greater than
the objective value of an optimal integer solution z⋆ILP which is itself sandwiched
between lower and uppers bounds, as the objective values of the most optimistic
linear relaxation LB and incumbent solution UB, respectively.

Whenever z⋆ℓLP ≥ UB, the associated node ℓ is pruned by bound because none of
its offsprings can improve upon the incumbent solution. Consequently, all nodes in
L can be reviewed for pruning whenever a new UB is identified. The branch-and-
bound method terminates with a certificate of optimality for the ILP when L= /0.

The search tree may grow exponentially with branching. An indicator of the tree
size is its depth (actually, its height). For any given node, we know its depth in
the tree (also called the level), that is, the number of nodes in a descendant line
starting from the root node at level 0. As branching is performed and child nodes
are created, one question is in which order nodes should be explored. Three popular
node selection rules are depth-first, breadth-first, and best-first.

• Depth-first acts in a last-in, first-out manner where the newest nodes are ex-
plored first; this diving in the tree is memory-friendly.

• Breadth-first acts in a first-in, first-out manner thus consistently progressing
level by level.
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• Best-first jumps around in the tree by selecting the next node according to the
most promising lower bound.

After branching, the current basic solution is no longer feasible (by design), but
usually still optimal. This is a perfect use case for the dual simplex method, see
Lemke (1954) and Beale (1954) for their seminal contributions, and more recently,
Koberstein and Suhl (2007).

Optimality gap

The optimality gap is computed as the difference between the objective value of the
incumbent solution and the best we can hope for:

optimality gap = UB−LB. (1.48)

The relative optimality gap (UB−LB)/|UB| (for UB ̸= 0) is frequently used in prac-
tice to prematurely terminate an algorithm. For a fixed threshold 0≤ γ < 1, one may
stop as soon as UB−LB≤ γ |UB|. This trades the optimality certificate in favor of a
potential computation time reduction. If c⊺x > 0 for all feasible x, an interpretation
is that the resulting objective value is no worse than 1/(1− γ) z⋆ILP.

Note 1.11 (Role inversion of bounds if maximizing.) For a maximization program,
the roles of LB and UB are inverted such that the relative optimality gap is com-
puted as |LB−UB|/|LB|. This is why one speaks of primal bounds (coming from a
feasible solution) and dual bounds (coming from a relaxation).

Variable fixing by reduced cost

The elimination of an integer variable (or fixing it to zero) can sometimes be done in
a preprocessing step but also commonly using an optimal primal-dual solution pair
(x⋆LP,πππ

⋆) for the linear relaxation of the ILP (1.43) (see Nemhauser and Wolsey,
1988, p. 389). We assume known an upper bound UB on z⋆ILP and consider the lower
bound LB = z⋆LP = c⊺x⋆LP = πππ⋆⊺b.

Recall the sensitivity analysis for a variable x j at its lower bound ℓ j = 0 in (1.16):
z⋆LP(∆ℓ j)=πππ⋆⊺b+ c̄ j ∆ℓ j, where c̄ j > 0. Therefore, if the reduced cost c̄ j >UB−LB
for some j ∈ {1, . . . ,n}, then x⋆j = 0 in every optimal solution x⋆ILP because x⋆j ≥ 1
would yield a contradiction on the upper bound, i.e., c⊺x⋆ILP ≥ LB+ c̄ j > UB. In this
case, x j can be fixed to 0 after solving the linear relaxation.

Observe that we only need a feasible dual solution to get LB and non-negative
reduced costs. Consequently, the dual solution does not have to be optimal to apply
this variable fixing technique. A version adapted to branch-and-price algorithms,
where the column generation pricing problem consists in computing feasible paths
in a network, is later presented in Chapter 7 (p. 487).
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Illustration 1.1 Branch-and-bound experiment

Figure 1.7 depicts a branch-and-bound tree, where 25 linear relaxations have been
solved, the branching decisions are not presented, and the node numbers are irrele-
vant. We reach a maximum level of 8 with node 9 being at level 3. We first take the
opportunity to underscore that an integer objective value is not synonymous with
an integer solution, see for instance z⋆0

LP = 7064 and node 3 with an objective value
of 7091. On the other hand, this particular application has integer objective coeffi-
cients. This implies that the optimal objective value is also integer, which explains
why the node 29 is pruned by bound at ⌈7110.5⌉ = 7111 ≥ 7111. Finally, node 30
is primal infeasible and the objective takes value −∞.

This illustration is presented in the form of an exercise, answering one by one a
series of questions.

0:7064

1:7064.7

3:7091

7:7154.04 8:7091.15

13:7101.58

15:7105.88

29:7110.5 30:−∞

16:7140

14:7233.61

4:7093.77

9:7100.19

19:7167 20:7101.05

23:7104.57

25:7105

31:7134.19 32:7106

35:7111 36:7138

26:7180

24:7129.5

10:7236.82

2:7244.1

Pruned by bound
Pruned by integrality
Pruned by infeasibility
Optimal

(a) Tree

z⋆LP = 7064

z⋆ILP = 7111

UB
LB
UB = LB

(b) Bounds

Fig. 1.7: A linear programming based branch-and-bound tree as well as lower and
upper bounds evolution at a glance.

(a) Using the best-first rule, give the exploration order of the nodes.
▶ Recall that before being solved, every node inherits the objective value of its

parent. The actual order is
. 0, 1, 2, 3, 4, 7, 8, 13, 14, 9, 10, 19, 20, 23,
. 24, 15, 16, 25, 26, 31, 32, 29, 30, 35, 36.
However, the root node produced two child nodes both initialized at z̃LP = z⋆LP.
Whether one solves first the node 1 or 2 is then a matter of left or right internal
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workings. The same is true for every other node in the tree. Therefore, any order
using a permutation of siblings such as 0, 2, 1, 3, 4, . . . is legitimate.

(b) Can the same question be answered for depth- and/or breadth-first rules? List
pros and cons of depth, breadth, and best-first node selection rules.
▶No. The depth-first rule would dive into node 2 or follow-up on nodes 1-3-7

depending once again on idiosyncratic coding details. The breadth-first rule
would solve 1, 2 and then 3, 4 and then solve the hidden child nodes of 2 in
order to complete the second level of the tree. Since we have no information
after nodes 2 and 7, we cannot conclude for either rules as the pruning would
be impossible to predict.
By following successive branching decisions down a descendant line, the depth-
first rule rapidly reaches leaf nodes whereby either an integer solution is found
or the latest branching caused infeasibility, i.e., the effort is put on the upper
bound. The best-first rule works on the other front by lifting the smallest lower
bound. The breadth-first rule manages the tree size but does not actively seek
progress on either bound.

(c) Venture an explanation regarding the absence of nodes 5 and 6.
▶ After the node 2 is solved, the child nodes 5 and 6 are created right away from

the fractional solution. Since they inherit z̃LP = 7244.1, they are pruned at the
same time as node 2.

(d) Assuming an exact reproduction of the tree behavior, describe an implementa-
tion that would strictly produce the 25 nodes.
▶ The implementation would need to create child nodes only after the next node

is selected. This implies quite a bit of bookkeeping since one would need to
save the solution of the linear relaxation until the branching decision is applied.
Furthermore, explored nodes have an ambivalent status depending on whether
child nodes are already created or not.

(e) Give the largest tolerance for which the branch-and-bound method would have
stopped at the integer solution 7140.
▶ Given the order listed in (a), LB = 7104.57 when the integer solution 7140 is

found which results in a relative optimality gap computed as

(7140−7104.57)/7140≈ 0.0050.

Since we used the best-first node selection, the largest tolerance can be com-
puted with respect to the objective value of the parent node, i.e.,

(7140−7101.58)/7140≈ 0.0054.

For good measure, we should mention that this small tree is in no way repre-
sentative of the expected benefits of a premature stopping rule.

(f) Compute the relative integrality gap.
▶ (7111−7064)/7111≈ 0.0066 < 1%.
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Branch-and-cut

In the branch-and-bound algorithm, the number of nodes to explore in the search
tree and, thus, the total computation time usually increase with the integrality gap.
To achieve a better dual bound and reduce this gap, cutting planes can be added to
the formulation.

In theory, only a limited number of them should be added to partially describe the
convex hull of the feasible solution set Y around an optimal solution. However, given
that the useful ones are not identified as such, they cannot be added a priori. On the
other hand, we know families of inequalities, usually of exponential or even infinite
cardinality, to which they belong. Given the solution x⋆LP of a linear relaxation, we
can then search in those inequality families, one or several cutting planes that cut
off x⋆LP from the domain of the current linear relaxation domain without removing
any solution in Y. This search is performed using a separation algorithm. Note that,
interestingly, we can even discard feasible but non-optimal integer solutions, e.g.,
see the successive z-cuts restricting the objective value in Example 7.9 (Preferential
bidding system).

The pure cutting plane algorithm (e.g. Gomory, 1963) solves a sequence of linear
relaxations, each obtained from the previous one by adding cutting planes, until
finding an integer optimal solution. Because it converges very slowly in general, it
is rather merged with the branch-and-bound algorithm to yield the branch-and-cut
algorithm (Padberg and Rinaldi, 1991).

After solving the linear relaxation at a node of the search tree that cannot be
pruned, an exact or heuristic separation algorithm is called to search for cuts. If
cuts are found in a limited computational effort, they are added to the relaxation
which is then reoptimized. Otherwise, branching is performed to create child nodes.
Given that the separation algorithm might be time-consuming, a compromise must
be achieved between searching for cuts and exploring less nodes in the search tree.

Note 1.12 (Branch-and-cut in practice.) A lot of research and engineering went
into implementations of the branch-and-cut algorithm. One could not solve as large
ILPs as we do today without a choreography of preprocessing techniques, cutting
plane strategies, primal heuristics, node selection rules, branching strategies, etc.
We remark on some of these components in Chapter 7 (Branch-Price-and-Cut).

1.6 Good to Know

Here we examine some more advanced theoretical elements that may be overlooked
on a first reading of the chapter.
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Linear programs for the pricing

Consider the LP (1.17) in standard form and assume we are given a vector πππ ∈ Rm.
The minimum reduced cost c̄(πππ) = min j∈{1,...,n} c̄ j is usually found by enumeration.
We can however formulate different linear programs for computing it.

Let µ = min j∈{1,...,n} c̄ j denote the least reduced cost. By linearizing the mini-
mum function, the following formulation uses µ as a variable unrestricted in sign.
It is maximized with respect to πππ , that is, pushed as much as possible to the right
until the least reduced cost value is encountered:

c̄(πππ) = max µ

s.t. µ ≤ c̄ j [y j] ∀ j ∈ {1, . . . ,n}.
(1.49)

0

µ →
c̄ j, j ∈ {1, . . . ,n}

c̄(πππ) . . .. . .

In (1.49), y j acts as a dual variable for the constraint j ∈ {1, . . . ,n} and the dual
program reads as

c̄(πππ) = min ∑
j∈{1,...,n}

c̄ jy j

s.t. ∑
j∈{1,...,n}

y j = 1 [µ]

y j ≥ 0 ∀ j ∈ {1, . . . ,n}.

(1.50)

In (1.50), we are looking for a convex combination of variables, where an extreme
point solution selects a single variable, one with the least reduced cost.

Alternatives to (1.49) use a vector w of positive weights w j > 0, ∀ j ∈ {1, . . . ,n},
e.g., w j = ∥a j∥. The dual formulation becomes

c̄(w,πππ) = max µ

s.t. µ ≤
c̄ j

w j
[y j] ∀ j ∈ {1, . . . ,n}.

(1.51)

0

µ →
c̄ j
w j

, j ∈ {1, . . . ,n}

c̄(w,πππ) . . .. . .
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We propose two versions for the primal pricing problem.

The left one is derived from the above whereas the right one is obtained after rewrit-
ing µ ≤ c̄ j

w j
as µw j ≤ c̄ j, ∀ j ∈ {1, . . . ,n}:

min ∑
j∈{1,...,n}

(
c̄ j

w j

)
y j

s.t. ∑
j∈{1,...,n}

y j = 1 [µ]

y j ≥ 0, ∀ j ∈ {1, . . . ,n}

min ∑
j∈{1,...,n}

c̄ jy j

s.t. ∑
j∈{1,...,n}

w jy j = 1 [µ]

y j ≥ 0, ∀ j ∈ {1, . . . ,n}.

(1.52)

By construction in the primal simplex algorithm, the reduced cost of all the basic
variables are set to 0 (i.e., c̄ j = 0, ∀ j ∈ B) by defining πππ⊺ = c⊺BA−1

B , but other variants
exist.

For example, as suggested by the optimality conditions in Proposition 1.7 (Comple-
mentary slackness), we can impose c̄ j = 0 only for the positive variables. Optimizing
the reduced cost of the other variables results in the improved primal simplex algo-
rithm (IPS) (El Hallaoui et al., 2011; Raymond et al., 2010b; Metrane et al., 2010).
The pricing problem in its dual version writes as

c̄(πππ) = max
πππ,µ

µ

s.t. 0 = c j−πππ
⊺a j [y j] ∀ j ∈ {1, . . . ,n} : x j > 0

µ ≤ c j−πππ
⊺a j [y j] ∀ j ∈ {1, . . . ,n} : x j = 0.

(1.53)

In this case, the entering variable is a convex combination of several variables,
basic and non-basic, and only non-degenerate pivots occur.

Similarly, one can optimize the reduced cost of all the variables (see Exer-
cise 1.10: this leads the minimum mean cycle-canceling algorithm (MMCC), well
known for network flow problems (Goldberg and Tarjan, 1989; Radzik and Gold-
berg, 1994) and extended to linear programs in Gauthier et al. (2018); Gauthier and
Desrosiers (2022). This algorithm also ensures non-degenerate pivots.

Irrational data

Let us take a look at the irrational polyhedron of Figure 1.8,

P= {x1,x2 ∈ R+ |
√

3x1− x2 ≥ 0, x1 ≥ 1}. (1.54)

This helps to understand the importance of rational values for Q∈Rm×n and q∈Rm

in the Definition 1.4 of P= {x ∈ Rn |Qx≥ q}.
Because there is no integer solution that satisfies x1 ≥ 1,x2 ≥ 0,

√
3x1− x2 = 0

(
√

3x1 being irrational while x2 is integer), we can be as close as we want to the line
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conv(P∩Z2
+)

Fig. 1.8: Subset of points of the integer hull of P close to the line x2 =
√

3x1.

x2 =
√

3x1 by choosing a large positive integer x1 and setting x2 = ⌊
√

3x1⌋, but we
never hit this line. It also means that the integer hull of P, that is, conv(P∩Z2

+),
is defined by an infinite number of inequalities and possesses an infinite number of
extreme points. Consequently, conv(P∩Z2

+) is not a polyhedron.

x1 ⌊
√

3x1⌋=x2
√

3x1 slope

1 1 1.7320508
3 5 5.1961524 2

11 19 19.0525589 1.75
41 71 71.0140831 1.733333333

153 265 265.0037736 1.732142857
362 627 627.0023923 1.732057416

1 351 2 340 2 340.0006410 1.732052578
2 131 3 691 3 691.0002709 1.732051282
5 042 8 733 8 733.0001718 1.732050842

18 817 32 592 32 592.0000460 1.732050817
29 681 51 409 51 409.0000195 1.732050810

Table 1.3: A subset of the extreme points of conv(P∩Z2
+).

Apart from the extreme point (1,0), Table 1.3 lists the first 10 extreme points of
the upper part of conv(P∩Z2

+), from (1,1) to (18817,32592). Observe the decrease
in the vertical distance

√
3x1−x2 to the line equation from 0.7320508 to 0.0000195,

and the convergence of the slope to
√

3 ≈ 1.732050808. Note that the last pair of
coordinates (29681,51409) is potentially an extreme point, but only if the next
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selected pair (x1,x2) closer to the line produces a smaller slope than the current one
(otherwise that point is on the edge joining two extreme points).

The impact on the following ILP is also interesting:

z⋆ILP = min
√

3x1 − x2

s.t.
√

3x1 − x2 ≥ 0
x1 ≥ 1, x2 ≥ 0, integer.

(1.55)

The ILP (1.55) is clearly feasible and its objective value
√

3x1−x2 is bounded from
below by 0. However, it has no optimal integer solution. This is indeed a sufficient
reason to only use rational data in the definition of polyhedra and ILPs.

1.7 Reference notes

Introduction At the end of each chapter, we provide some pointers to the literature.
The domain of this book grew so large over the past decades that we did not even try
to be comprehensive in this endeavor. Instead, we primarily list articles and books
that have some personal link to us authors or to the writing process of this book.
That said, don’t be sad if your favorite reference is not listed here, or your own
paper. If you wish to have it included in a future edition of this book, just drop us a
line.

Section 1.1 The reader can find more on the polyhedral theory in Nemhauser and
Wolsey (1988, Part I., FOUNDATIONS 1.4) as well as the proof of the Minkowski
and Weyl theorem (Theorem 4.8, p. 96). See also Ziegler (1995) for 11 chapters on
Lectures on Polytopes.

Sections 1.2–1.3 Linear programming was first introduced by Leonid Kantorovich
in 1939 (see Note 1.9, A mathematical soap opera.) in order to achieve a best pos-
sible organization and planning of production in the Soviet Union. It remained a
secret (to Western eyes) until 1947, when Dantzig published the simplex algorithm,
see the books Dantzig (1963, 1966) and the co-authored ones Dantzig and Thapa
(1997, 2003). Linear programming was also rediscovered and applied to shipping
problems by Koopmans (1942, 1947), an American economist who shared in 1975
with Kantorovich the Nobel Prize for Economics “for their contributions to the the-
ory of optimum allocation of resources.” See MacTutor for a biography.

Our preferred teaching books include Chvátal (1983) as well as Bertsimas and
Tsitsiklis (1997), Griva et al. (2008), and Vanderbei (2020). Note that the sensitivity
analysis results must be interpreted with caution when the optimal primal solution
is degenerate, see for example Koltai and Tatay (2011) and references therein.

Sections 1.4–1.5. These two sections are on Integer Linear Programming and solu-
tion methods. We again suggest Nemhauser and Wolsey (1988) but also Schrijver

https://mathshistory.st-andrews.ac.uk/Biographies/Koopmans/
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(1986), Bertsimas and Weismantel (2005), and Conforti et al. (2014). For a com-
prehensive book on the theory, algorithms, and applications of Network Flows, see
Ahuja et al. (1993).

For various historical aspects on the above subjects, see Dantzig (1963, Chap-
ter 2), Dantzig (1982, 1990), Lenstra et al. (1991), Nemhauser (1994), Bixby (2002,
2012), Jünger et al. (2010), Assad and Gass (2011), and Grötschel (2012). A won-
derful resource is the Subject to podcast, ”a series of informal conversations with
relevant figures in the fields of Operations Research, Combinatorial Optimization
and Logistics, and they are hosted by Anand Subramanian (2023), an Associate
Professor at Universidade Federal da Paraı́ba, Brazil.”

We could not make any practical use of this book, if there wasn’t excellent solvers
for linear and integer programs. Koch et al. (2022) report on the enormous progress
in this area from 2001 to 2020. Let us quote the highlights of this paper:

The article contains a comprehensive performance comparison of the virtual best LP/MILP
solver from 2001 with the best solvers from 2020.

From 2001 to 2020, hard- and software combined, LP solving got about 180× faster for
instances that could be solved using the 2001 solvers.

Solving MILP got about 1000× faster in the same period.

Yet, the above numbers considerably underestimate the progress made, as many instances
deemed unsolvable 20 years ago can now be solved within seconds.

The article presents a deep dive into how LP and MILP solvers can be measured, how to
evaluate without bias, and how to interpret the results.

These speedups from algorithmics and software even multiply with that from hard-
ware (Bixby and Rothberg, 2007). But from the “trick question” by Bixby (2017)
that we paraphrase as

To solve a mixed-integer program, would you rather

1. use today’s solution technology on a machine from 1991, or

2. use the 1991 solution technology on a machine from today?

(the “correct” answer is the first) remember that brain power beats machine power
in this domain. When you proceed in this book, solvers alone will not suffice. One
needs frameworks in which one can also create and modify the algorithms, tailor
the implementation to the problem at hand. While there are several very good ones,
our heart is with the SCIP Optimization Suite (Achterberg, 2009) for Marco and
GENCOL for Jacques, Guy, and Jean Bertrand.

Good to Know A convexity constraint naturally appears in the pricing problem of
the minimum mean-cycle algorithm (Goldberg and Tarjan, 1989) and the improved
primal simplex algorithm (El Hallaoui et al., 2011). This appears to be also true
for the primal simplex algorithm, see the pricing problem (1.50) and Gauthier et al.
(2018).

Finally, other aspects of irrational data can be found in Schrijver (1986).



Exercises 39

Exercises

1.1 George Dantzig
What was the dissertation subject of George Dantzig?

1.2 DDL1x
In the Preface, what is the meaning of [DDL1x], replace x by 5,6, or 7?

1.3 Farkas’ lemma
Give a proof for Proposition 1.4: Given A ∈Rm×n and b ∈Rm, then exactly one of
the following assertions holds:

1: There exists x ∈ Rn such that Ax≥ b, x≥ 0;
2: There exists πππ ∈ Rm such that A⊺πππ ≤ 0, πππ ≥ 0, b⊺πππ > 0.

Hint: Firstly, rewrite Ax ≥ b, x ≥ 0 as Ax− s = b, x,s ≥ 0. Secondly, apply the
Phase I of the primal simplex algorithm.

1.4 Infeasible primal-dual pair of linear programs
We are interested in the relationship between the primal and dual formulations as
expressed in Table 1.2. In particular, we want to conceive an example where both
formulations are simultaneously infeasible.

(a) Show that there exists no such example with a single variable in the primal.
(b) Propose a primal-dual pair of infeasible linear programs.

1.5 Direction in the primal simplex algorithm

Verify that the direction

−āℓ
1
0

 given in (1.28), either for reaching an adjacent ex-

treme point or identifying an extreme ray, satisfies A

−āℓ
1
0

= 0.

1.6 Sensitivity range for an increase of the lower bound
For an increase ∆ℓ j ∈R+ of the lower bound for the non-basic variable x⋆ℓ = 0, show
how to compute the sensitivity range in (1.16).

1.7 Lost in translation?
How do we ensure signed multipliers πππ ≥ 0 for the original dual vector when the
LP (1.2) with inequality constraints is rewritten in standard form (1.17)?

1.8 Primal simplex and strong duality
Let the LP (1.2) with inequality constraints be rewritten in standard form (1.17).
Show that an optimal basic solution given by the primal simplex algorithm satisfies
Proposition 1.6 (Strong duality).
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1.9 Lower bound on the optimum
Given a finite objective value z⋆LP, arbitrary dual values πππ ≥ 0, and minimum re-
duced cost c̄(πππ)≤ 0, show that the optimum z⋆LP in (1.2) is bounded from below as
in (1.36):

πππ
⊺b+κ c̄(πππ)≤ z⋆LP.

1.10 Optimizing πππ for maximizing the smallest reduced cost
Consider the following problem where πππ ∈ Rm is unknown but optimized for maxi-
mizing the smallest reduced cost:

max
πππ

min
j∈{1,...,n}

c̄j = max
πππ

min
j∈{1,...,n}

cj−πππ
⊺a j. (1.56)

(a) Formulate this problem as a linear program.
(b) Formulate the dual of the linear program in (a).

1.11 Integrality property and algorithm selection bias
The integrality property is totally algorithm independent since it is only about hav-
ing an integrality gap of zero (Definition 1.25). When solving the linear relaxation
of an ILP having the integrality property using the primal simplex algorithm, justify
whether or not we always terminate with an optimal integer solution.

1.12 Unbalanced capacitated minimum cost flow problem
Let the CMCFP (1.45) be defined on G = (N,A), where the set of supply nodes
is S = {i ∈ N | bi > 0}, that of the demand nodes is D = {i ∈ N | bi < 0}, and all
lower bounds are set to zero, i.e., ℓi j = 0, ∀(i, j)∈ A. Note that even if the network is
balanced or ∑i∈S bi > ∑i∈D−bi, the total supply from S can be insufficient to satisfy
the total demand at D due to the set of upper bound restrictions {ui j}(i, j)∈A.

For any integer supply/demand values, show that by adding a single extra node,
here denoted 0, and a set of arcs with appropriate cost and upper bound values,
we obtain a balanced and feasible network that can provide a meaningful solution
anyway.

1.13 Totally unimodular matrices with consecutive ones
To determine if a matrix A ∈ Zm×n is totally unimodular, there exist sufficient con-
ditions such as the following set:

(i) ai j ∈ {−1,0,1}, ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n};
(ii)

m
∑

i=1
|ai j| ≤ 2, ∀ j ∈ {1, . . . ,n};

(iii) there exists a partition M1 and M2 of the row indices (M2 can be empty)

such that ∑
i∈M1

ai j = ∑
i∈M2

ai j for any column j ∈ {1, . . . ,n} with
m
∑

i=1
|ai j|= 2.

Consider an m×n binary matrix A for which the 1’s are consecutive in each column,
i.e., if ai j = ak j = 1 for k > i+1, then aℓ j = 1 for all ℓ= i+1, . . . ,k−1.
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(a) Use the sufficient conditions (i)–(iii) to show that the determinant of A is 0, +1,
or −1 when m = n. Hint: Consider the determinant of the matrix obtained by
subtracting from each row of A except its first, its previous row.

(b) Using this result, prove that A is totally unimodular for any dimension m×n.

1.14 Variable fixing at upper bound
Consider the ILP (1.43) with an additional upper bound u j ∈ Z+ on the variable x j.
Let UB be an upper bound on z⋆ILP and (x⋆LP,πππ

⋆) be an optimal primal-dual solution
pair of the linear relaxation, with x⋆j = u j. Determine a sufficient condition on the
reduced cost c̄ j of x j that allows to fix x j to its upper bound u j.

1.15 Formulations for the minimum-weight perfect matching problem
Let G = (N,E) be an undirected graph, where N is its node set and E its edge set.
We assume that there are an even number 2n of nodes in N and that a weight we ∈R
is associated with each edge e∈ E. A perfect matching in G is a subset M of n edges
in E such that every node i ∈ N is incident to exactly one edge in M. The minimum-
weight perfect matching problem consists in finding a perfect matching M in G such
that the sum of its edge weights is minimal.

The minimum-weight perfect matching problem can be formulated as the fol-
lowing ILP. Let xe, e ∈ E, be a binary variable that takes value 1 if edge e is in the
selected matching M and 0 otherwise. Furthermore, we denote by δ (i) the subset of
edges incident to node i ∈ N. The ILP is

min ∑
e∈E

wexe

s.t. ∑
e∈δ (i)

xe = 1 ∀i ∈ N

xe ∈ {0,1} ∀e ∈ E.

(1.57)

The graph G in Figure 1.9 is used as an example for some of the following questions.
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Fig. 1.9: Graph G = (N,E) for exercise 1.15.

(a) For the example in Figure 1.9, find the optimal solutions of model (1.57) and its
linear relaxation, and compute the relative integrality gap.

(b) For any subset of nodes S, let E(S) be the subset of edges in E that have their
two endpoints in S. The blossom inequalities (Edmonds, 1965)
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∑
e∈E(S)

xe ≤
1
2
(|S|−1), ∀S⊂ N such that |S| is odd (1.58)

specify that, for any subset of nodes S of odd cardinality, there are at most
1
2 (|S|−1) edges that have their two endpoints in S. Show that these inequalities
are valid for the feasible domain of (1.57), i.e., they are not violated by any
feasible solution of (1.57).

(c) For the example in Figure 1.9, find a blossom inequality (1.58) that is violated
by its optimal linear relaxation solution.

(d) Denote by P1 and P2 the feasible domains of the linear relaxations of (1.57)
and (1.57)–(1.58), respectively. Show that formulation P2 is stronger than for-
mulation P1.

(e) Because the number of blossom inequalities (1.58) is exponential in the num-
ber of nodes in N, these inequalities cannot be all added a priori and are rather
generated as needed in a branch-and-cut algorithm. Given an optimal linear re-
laxation solution x⋆LP = {x⋆e}e∈E , we can use a separation algorithm that solves
an ILP to determine if x⋆LP violates a blossom inequality. Formulate this separa-
tion ILP.
Hint: A feasible solution to this ILP should identify a subset of nodes S and its
objective function should aim at maximizing the left-hand side of (1.58) minus
its right-hand side.

(f) Polynomial-time separation algorithms for the blossom inequalities also exist
(see, e.g., Grötschel and Holland, 1985). They are based on the following equiv-
alent version of these inequalities:

∑
e∈δ (S)

xe ≥ 1, ∀S⊂ N such that |S| is odd (1.59)

where δ (S) is the subset of edges with an end node in S and the other in N \S.
Show that the inequalities (1.59) are equivalent to the inequalities (1.58).
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Le temps que l’on prend pour dire Je t’aime
C’est le seul qui reste au bout de nos jours.

Gens du pays
Gaston Rochon / Gilles Vigneault

Abstract This chapter describes the classical column generation algorithm used to
solve a linear program with a huge number of variables. Besides its main properties,
we offer several practical hints to be included in any worthwhile implementation
and present a few classical examples of its application.
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Introduction

In mathematical optimization, we often take an algorithmic approach to overcome
modeling hurdles we do not know how to deal with directly. Examples are the in-
tegrality of variables or an exponential number of constraints. A typical procedure
then is to first ignore these hurdles (relax integrality, drop constraints), and itera-
tively work towards respecting what was initially ignored (by branching, separating
cuts) until it can be proven that we have found what we were originally looking for.
Column generation is no different in this philosophy. Our hurdle here is that there
are many—too many—variables in a linear program to cope with. Thus, we first
drop them from the model and dynamically re-insert only a small subset of them
until we can prove that the smaller model we constructed is sufficient to contain an
optimal solution to the original model. For those of us who were not in love with
optimization before, this is a good point to start.

In a linear program with gazillions of variables, the rationale behind needing only
very few of the variables to prove optimality comes from the fact that in an extreme
point solution almost all of the variables are at value zero (or at their bounds, to be
precise). Not in the model or at value zero makes no difference then. The dynamic
addition of variables to the linear program comes with adding column-coefficients
to its constraint matrix, which gives the method its name. In practice, we see that
the fraction of variables actually generated is astoundingly tiny.

Column generation is often mentioned in the context of the Dantzig-Wolfe de-
composition (see Chapter 3) and sometimes even confused with it. However, the
former lives completely independently of the latter and this is why we present the
column generation algorithm first. We bring ourselves in the mood with a quote
from George Nemhauser.

Column generation refers to linear programming (LP) algorithms designed to solve prob-
lems in which there are a huge number of variables compared to the number of constraints
and the simplex algorithm step of determining whether the current basic solution is optimal
or finding a variable to enter the basis is done by solving an optimization problem rather
than by enumeration.

To the best of my knowledge, the idea of using column generation to solve linear programs
was first proposed by Ford and Fulkerson (1958). However, I couldn’t find the term col-
umn generation in that paper or the subsequent two seminal papers by Dantzig and Wolfe
(1960) and Gilmore and Gomory (1961, 1963). The first use of the term that I could find
was in Appelgren (1969), a paper with the title “A column generation algorithm for a ship
scheduling problem”.

Ford and Fulkerson (1956) gave a formulation for a multicommodity maximum flow prob-
lem in which the variables represented path flows for each commodity. The commodities
represent distinct origin-destination pairs and integrality of the flows is not required. This
formulation needs a number of variables exponential in the size of the underlying network
since the number of paths in a graph is exponential in the size of the network. What moti-
vated them to propose this formulation? A more natural and smaller formulation in terms of
the number of constraints plus the numbers of variables is easily obtained by using arc vari-
ables rather than path variables. Ford and Fulkerson observed that even with an exponential
number of variables in the path formulation, the minimum reduced cost for each commod-
ity could be calculated by solving a shortest path problem, which was already known to be
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an easy problem. Moreover the number of constraints in the path formulation is the num-
ber of arcs, while in the arc formulation it is roughly the (number of nodes)×(number of
commodities) + number of arcs. Therefore the size of the basis in the path formulation is
independent of the number of commodities and is significantly smaller when the number of
commodities is large. This advantage in size they claimed might make it possible to solve
instances with a large number of commodities with the simplex method. Modestly, they
stated that they really had no idea whether the method would be practical since they had
only solved a few small instances by hand. – Nemhauser (2012)

With respect to the origins of the method, Dantzig (1963) credits two 1958 works
in his book. Independently of Ford and Fulkerson (1958), Jewell (1958) suggests (in
an unpublished report) a very similar multi-commodity flow algorithm, which can
also be seen as a precursor to column generation. We have also found that Manne
(1958) proposes a large-scale linear programming model that explicitly considers
all possible production schedules for the capacitated lot-sizing problem, and that
Dzielinski and Gomory (1965) use column generation to handle that formulation.

The work of Kantorovich and Zalgaller (1951) has recently resurfaced from the
Saint Petersburg (formerly Leningrad) State University. It contains an entire section
dedicated to industrial cutting problems where the authors rely on dynamic pattern
generation through what we today call dynamic programming. We share the enthu-
siasm of Uchoa and Sadykov (2024) who go as far as calling it work zero (YouTube
for a video presentation hosted by Anand Subramanian).

We make one point clear right from the beginning. Even though the method was
termed generalized linear programming in the early days (Magnanti et al., 1976),
it never became competitive for solving linear programs, except for special cases.
In addition, tailored implementations were designed to exploit matrix structures, but
they did not perform better than the simplex method. By contrast, column generation
is a real winner in the context of integer programs which makes it a must-have in
the computational mixed-integer programming “bag of tricks.”

Fig. 2.1: George Nemhauser (San Pedro de Atacama, Chile, 2013-06-12).

https://youtube.com/watch?v=C5SpAWGn0dE
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2.1 Algorithm

In essence, the column generation algorithm is the primal simplex algorithm with
a small but fundamental difference in the pricing step: Rather than explicitly com-
puting the reduced costs of a usually prohibitively large number of variables, one
solves an auxiliary optimization program that implicitly searches for a variable of
negative reduced cost, or proves that none exists.

Master problem

We would like to solve a linear program, which in our context is called the master
problem MP. It contains a finite but typically huge number of variables indexed by
the set X:

z⋆MP = min ∑
x∈X

cxλx

s.t. ∑
x∈X

axλx ≥ b [πππ]

λx ≥ 0 ∀x ∈ X,

(2.1)

where cx ∈ R, ax,b ∈ Rm, ∀x ∈ X, and m≪ |X| < ∞. We assume that the MP is
feasible and z⋆MP is finite. The non-negative dual vector πππ = [πi]i=1,...,m associated
with the inequality constraints appears as usual within brackets on the right.

Note 2.1 (Mind the bounds.) We underscore the non-negativity restriction on all
λ -variables. Imposing upper bounds on any variable, say λx ≤ ux, can introduce
adverse effects in column generation. We advice to steer clear of upper bounded
variables as long as these effects are not well understood.

Note 2.2 (How about integrality?) In most of the examples in practice and in this
book, a master problem results from the linear relaxation of an integer linear pro-
gram which we actually wish to solve. The latter may come in different forms but
we always call it the integer master problem, or IMP for short. As always, from
solving the linear relaxation MP we obtain a lower bound z⋆MP ≤ z⋆IMP.

Note 2.3 (Our choice of the index set X.) Advanced readers with some knowledge
about the column generation literature may wonder why we write λx, x ∈ X, rather
than, say, λ j, j ∈ J. The reason is in anticipation that each master variable corre-

sponds to a solution of a pricing problem. For example, X=

{[
xp
1

]}
p∈P
∪
{[

xr
0

]}
r∈R

in a Dantzig-Wolfe reformulation (Chapter 3), the first set referring to the extreme
points of a polyhedron whereas to its extreme rays for the second set. With the al-
ternative notation, one requires a mapping to maintain this correspondence. To see
what we mean, try to express that an index j ∈ J is related to a solution x ∈ X, and
vice versa.
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As mentioned, we have no hope to directly solve the MP due to its sheer size.
In practice, we see models with a number of variables no computer on earth could
even store, let alone apply algorithms to optimize them. Therefore, we start working
with a relatively small subset X′ ⊆X. The resulting model is a restriction of the MP
and consequently called the restricted master problem RMP:

zRMP = min ∑
x∈X′

cxλx

s.t. ∑
x∈X′

aixλx ≥ bi [πi] ∀i ∈ {1, . . . ,m}

λx ≥ 0 ∀x ∈ X′ ⊂ X,

(2.2)

where the column-coefficients ax = [aix]i=1,...,m are here written in scalar form. We
assume for the moment that X′ is chosen such that the RMP (2.2) is feasible. We can
therefore solve to optimality the RMP with an algorithm of our choice and obtain
its optimum zRMP and a primal-dual pair (λλλ ,πππ) of optimal solutions. Note that λλλ =
[λx]x∈X′ can be trivially extended to λλλ = [λx]x∈X, where λx = 0, ∀x∈X\X′, and we
obtain a feasible solution to the MP (2.1) as well. How would we know whether this
solution is optimal for the master problem? The primal simplex algorithm would
identify a variable λx, x ∈X\X′, of negative reduced cost or verify that none exists.
Since an explicit search of X (or X\X′ for that matter) is out of the question, this is
where the pricing problem comes to the rescue. It is also known as the subproblem,
oracle, or column generator. We denote it by SP.

Note 2.4 (Lightweight notation.) Again, we do not notationally distinguish between
variables and their values. In addition, as we later iteratively solve the RMP for dif-
ferent subsets X′, one would need to correctly write z⋆RMP(X

′) to denote the optimum
obtained. Similarly, this applies to primal and dual solutions. We choose to omit any
superscript ⋆ or ′ or other reference to optimality or iteration for the RMP or the SP.
However, in the text we sometimes refer to “the current” iteration or solution.

Pricing problem

In order to prove that the RMP solution is optimal for the MP, the pricing problem
needs to verify that the reduced costs c̄x = cx−πππ⊺ax of all λx, x ∈ X, are non-ne-
gative. Recall that πππ is available from solving to optimality the RMP. In place of an
explicit search, which is prohibitive, we rely on an optimization program with the
reduced cost formula in the objective function to implicitly compute c̄(πππ) amongst
all c̄x, ∀x ∈ X:

c̄(πππ) = min
x∈X

cx−
m

∑
i=1

πiaix

s.t. cx = c(x)
aix = ai(x) ∀i ∈ {1, . . . ,m}.

(2.3)
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For the reduced cost computation, we assume that functions c(x) and a(x) =
[ai(x)]i=1,...,m give us, from any x ∈ X, representative cost and column-coefficients
for every variable λx. We will see many specializations of these functions and how
we interpret them later on.

If c̄x ≥ 0, ∀x ∈ X, then c̄(πππ)≥ 0 which proves optimality of the MP. Otherwise,
from a minimizer x∈X\X′ we obtain the variable λx (with a negative reduced cost)
to be added to the RMP, formally by adding x to X′. Figure 2.2 shows the exchange
of information between the (restricted) master problem and the subproblem; note the
similarity to the primal simplex algorithm in Figure 1.5. We have stated the SP (2.3)
very generally, but in Chapter 3, it is a linear program and thereafter almost always
an integer linear program. The latter is actually the most relevant case for the entire
book and we see this already in the examples in this chapter. We therefore often
stress this case of having an integer subproblem by abbreviating it ISP.

MP
(RMP)

SP or
ISP

c̄(πππ)

λx[
cx
ax

]
πππ

z⋆MP, λλλ
⋆
MP, πππ⋆

C
ol

um
n

ge
ne
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tio

n
al

go
ri
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m

Fig. 2.2: Information flow of the column generation algorithm solving the MP (2.1).

Note 2.5 (Pricing known columns! Why not?) Even if the pricing problem aims at
determining if there exists a variable λx, x ∈ X\X′, with a negative reduced cost, it
is defined over the whole set of variables indexed by X. There are two reasons for
this. First, for any optimal πππ to the current RMP, we already have c̄x ≥ 0, ∀x ∈ X′,
which means that the columns in X′ cannot be generated again. Second, excluding
these variables from the subproblem’s feasible domain is often a difficult task.

Iteration

What completes the column generation algorithm now lies right in front of us. If
the SP solution proves optimality of the MP via c̄(πππ)≥ 0, we stop. In this case, the
information of the last iteration gives us z⋆MP = zRMP, a primal solution λλλ

⋆
MP where

λ⋆x = λx, ∀x∈X′, and λ⋆x = 0, ∀x∈X\X′, as well as a dual solution πππ⋆ =πππ . Otherwise
c̄(πππ)< 0, we then re-optimize the RMP with the added column ax of cost cx to obtain
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a new λλλ and in particular a new πππ that is passed to the SP. Algorithm 2.1 summarizes
this iterative process with a loop whose content we refer to as one column generation
iteration.

Algorithm 2.1: The column generation algorithm.
input : RMP with feasible subset X′ ⊂X, SP (or ISP)
output : Optimal primal-dual solutions λλλ

⋆
MP,πππ

⋆ and optimum z⋆MP for the MP
1 loop
2 Solve the RMP to obtain an optimal primal-dual solution λλλ RMP, πππ of cost zRMP
3 Solve the SP to obtain the minimum reduced cost c̄(πππ) with corresponding x ∈X

4 if c̄(πππ)≥ 0
5 break by optimality of the MP

6 Generate the variable λx with encoding
[

cx
ax

]
via X′←X′∪{x}

7 return λλλ RMP, πππ , and zRMP

Note 2.6 (Non-positivity of the minimum reduced cost.) Since c̄(πππ) < 0 as long as
the MP is not solved to optimality, we only have to convince ourselves that the SP
finds c̄(πππ) = 0 at the last column generation iteration. Considering that the MP is
feasible by assumption, there must exist at least one variable λ⋆x > 0, x ∈ X, in any
non-trivial solution. By the complementary slackness conditions (1.8), any positive
λ -variable necessarily has a zero reduced cost such that c̄x = 0 for this particular
column. For an intuitive argument, if we use a simplex type method to optimize the
RMP, any basic λ -variable has a zero reduced cost.

Note 2.7 (They talk to each other, Baby!) The dual values are the means of commu-
nication between the RMP and SP, see Figure 2.2. As the objective function of the
subproblem reflects the reduced cost of a given λx, x ∈ X, i.e., c̄x = cx−∑

m
i=1 πiaix,

we can put the interpretation we have learned in Section 1.2 on Sensitivity analysis
to good use. Specifically, we expect the dual values, depending on their signs and
magnitudes, to give a smaller or larger incentive or penalty to use a certain x. That
is, all else being equal, whether or not and by how much it is attractive to have a
non-zero value aix depends on πi. For example, in a vehicle routing problem where
aix represents the number of times customer i is visited in route x, minimizing the
reduced cost with a large value for πi encourages multiple visits at i.

Note 2.8 (Availability of the algorithm opens up modeling opportunities.) Our pre-
sentation reveals the two ingredients we need to make the column generation algo-
rithm work: A restricted master problem (which is a linear program) and a corre-
sponding subproblem. The two must be compatible in the sense that they refer to
the same X, of course. Some authors call the master problem a column generation
formulation to reflect that they apply the column generation algorithm using the
corresponding RMP and SP. We do not use this terminology in this book, but let us
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stress that having the algorithm available enables us to formulate a problem using
different kinds of models. In this book’s examples, we often see combinatorial con-
cepts like subsets, configurations, sequences, etc., on which the variables of a model
could be defined naturally. Without the column generation algorithm, it would often
be impossible to solve these models.

Note 2.9 (The apple does not fall far from the tree.) Since the column generation
algorithm is a variant of the primal simplex algorithm, it also inherits the flaws of
the latter. We speak in particular of cycling and degeneracy.

• The phenomenon of cycling is a rather theoretical construct, but of course it
could occur when solving the RMP, and it could even additionally occur when
solving the SP. Interestingly, as long as we generate new columns from the
SP, that is, x ∈ X \X′, we cannot cycle in the column generation iterations.
Nevertheless, assuming the “standard” precautions of the simplex algorithm of
Chapter 1, the column generation algorithm is correct, i.e., it finitely terminates
with an optimal solution to the MP. Notable implementation decisions which
can introduce cycling side-effects at the column generation level are to solve
the RMP only heuristically and/or delete “non-used” columns.

• In contrast, degeneracy is a practical concern in the column generation algo-
rithm as it is in the primal simplex algorithm. This is particularly true since the
MPs that we solve are often linear relaxations of combinatorial optimization
problems which can have highly degenerate solutions. Modern solvers handle
degeneracy while solving a linear program. Yet, in the column generation algo-
rithm, we control the iterations ourselves, and it may be us who have to deal
with degeneracy. If the issue occurs, in the sense that significant stalling in the
column generation process happens, soft instead of hard constraints as in Exam-
ple 2.6 (Aircraft routing with schedule synchronization), classical perturbation
of the right-hand side vector b or, more generally, dual variable stabilization
techniques from Chapter 6 (Dual Point of View) can be effective. This antici-
pation of degeneracy potential is also a common background theme to smart
decisions we should do regarding the columns we bring back from the SP:
several subproblems, parallelization, complementary pricing, heuristic pricing,
etc. These items are scattered throughout the rest of this chapter as we find op-
portunity to precise them. For now, we can already say that they highlight yet
another inherited trait: the pricing problem is (often) the bottleneck.

Initialization

ÏAlgorithm 2.1 reflects the assumption that we are given an X′⊆X such that the RMP
is feasible. For particular applications, producing such a set can be very easy as in
Example 2.1. In practice, a feasible solution may be available, e.g., from previously
solving an MP with similar data. Or we have a specifically designed primal heuristic
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for our application. Lagrangian relaxation in Chapter 6 gives us good reasons to call
the SP several times with various dual vectors to obtain initial variables for the RMP.
Since the subproblem is always available, this is rather cheap to implement.

Even if heuristics like the above can often provide us with a feasible solution
to the RMP, we have no guarantee of this. In fact, looking at the bigger picture
where column generation is used within each node of a branch-and-bound tree (see
Chapter 7), branching decisions sooner or later lead to infeasibility at some nodes. It
is therefore useful to have a mechanism that can cope with this systematically. The
classic way is to use artificial variables (y= [y j] j=1,...,m) as in a Phase I of the primal
simplex algorithm, see Section 1.3 (p. 18) and Section 2.3 (p. 66). In Algorithm 2.2,
the RMP is therefore always feasible but we verify in the exit condition whether
there remains any positive artificial variable and return the appropriate certificate of
optimization.

Algorithm 2.2: The column generation algorithm using artificial variables.
input : RMP, SP (or ISP), big-M
output : Certificate of optimization
initialization : X′← /0, m artificial variables y

1 loop
2 zRMP, λλλ RMP, y, πππ ← RMP
3 c̄(πππ), x, cx, ax ← SP
4 if c̄(πππ)≥ 0
5 if ∃ j ∈ {1, . . . ,m} | y j > 0
6 break by infeasibility of the MP

7 else
8 break by optimality of the MP

9 X′←X′∪{x}
10 return λλλ RMP, y, πππ , and zRMP

Such an initialization is used in Example 3.2 where we can witness that the
penalty cost may need some tuning. This is not the case for the following easy
to implement procedure which is based on Farkas’ Lemma, see Proposition 1.4. It
states that either the domain of the RMP in the form of Ax≥ b, x≥ 0, is non-empty
or there is a vector πππ ≥ 0 with πππ⊺A ≤ 0 and πππ⊺b > 0. Such a vector πππ , a ray in
the dual, proves infeasibility of the RMP as πππ⊺Ax ≥ πππ⊺b cannot be fulfilled. The
dual ray πππ is typically provided by the linear programming solver when the RMP is
infeasible. The idea is to add a column ax to A with πππ⊺ax > 0, thus destroying this
proof of infeasibility. We can identify an x ∈ X from which we obtain an ax with
this property by solving

F(πππ) = max
x∈X

m

∑
i=1

πiaix = min
x∈X

−
m

∑
i=1

πiaix

s.t. aix = ai(x) ∀i ∈ {1, . . . ,m}.
(2.4)
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We see that we can mostly re-use the SP (2.3) except for temporarily setting all
cost coefficients cx = 0. If F(πππ) > 0, we have found a variable λx that reduces
infeasibility so we add it to the RMP with its correct cost coefficient cx = c(x).
Otherwise, the MP is proven infeasible. Even though the mathematics is much older,
the method we just described became known as Farkas pricing through the SCIP
branch-price-and-cut framework (Achterberg, 2009). Exercise 2.20 asks the reader
to propose a pseudo-code to initialize the column generation algorithm with Farkas
pricing.

The work on multi-objective programs of Lin et al. (2017) compares these initial-
ization methods. The authors observe that the big-M approach generally produces
initial solutions with smaller objective values in less iterations although it does re-
quire an appropriate guesswork on M.

Let us finally mention that one can relax the RMP when this helps to easier
initialize it. A typical example is to relax a set partitioning model to a set covering
model. In Example 2.3 and Exercise 2.14, solving the relaxed RMP still leads to
a feasible solution for the MP. And even if it does not, we at least obtain a lower
bound on z⋆MP.

As our knowledge in theory and understanding of the applications and contexts
grow, we get a better feeling for advantages and disadvantages of using these meth-
ods in practice. We point in particular to the influence of artificial variables on the
dual, see Section 2.3.

2.2 Good to Know

In addition to the core material, we feel that it is “good to know” some more back-
ground on what is important in actual implementations. In particular, the usefulness
of heuristics cannot be stressed enough.

Objects, representations, and encodings

In the literature, one reads about negative reduced cost columns (even though the
cost is defined on variables), or that the pricing problem returns a pattern or other
things. Our brains easily “translate” between these concepts, and therefore they are
often identified. We briefly discuss this here, because typically, the relations are not
one-to-one. The discussion is not all that important, but it reminds us of how much
we only implicitly convey in our language. If you need a proof of this, try to write a
book on branch-and-price with co-authors!

The basics of mathematical model building apply, of course, also to our situa-
tion. In practical applications we would like to find crew schedules, cutting patterns,
vehicle routes, etc. These are the objects the planner is interested in; we note that
these objects belong to the end-user, they define the rules. It is part of the OR ex-
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pert’s job to create a column generator (SP as a mathematical model) that reflects
the planning situation. What does this mean? An SP model is correct, if every object
is represented by a solution in the model, and every solution of the model has an
interpretation as an object. There can be many representations of the same object
(e.g., in Example 4.1 where the same packing is represented by many paths). Also,
a representation needs not uniquely identify an object (think of parallel machine
scheduling, where an assignment of jobs to machines represents many schedules as
the ordering of jobs on each machine may be unimportant).

We all know that coming up with a mathematical model can be a very creative
task. In our context, the representations of objects need to be given exactly by the
solutions x ∈ X to the SP. In our forthcoming examples, these x can be subsets
of nodes or paths in a network, solutions to linear and integer programs, etc. All of
these can be presented in the form of vectors, so we henceforth assume that elements
x∈X are in fact vectors in an appropriate vector space. There can be infinitely many
objects, but theory later tells us that we can restrict ourselves to finite X in all cases
of interest in this book.

In general, the formulation of the MP does not (and needs not) contain all the
detailed characteristics of an object that is available from its representation x ∈ X.
Thus, typically, the cost cx and in particular the column ax encode only the infor-
mation that is relevant to formulate the objective function and the constraints of the
MP (e.g., the flights operated in a weekly aircraft route but not the many events re-
garding flights, aircraft maintenance, crew schedules). Observe, again, that we index
the λ -variables in the MP by the elements in X, as these are—literally—the central
piece of information.

Figure 2.3 sketches an example of an aircraft routing problem (Examples 2.5
and 2.6). The object we are interested in is an aircraft route together with the de-
parture times of the flights. Its representation in the SP is given by an x ∈ X which
describes a directed path originating and ending at a (virtual) depot. This vector con-
tains the values of the binary flow variables from which we derive the precise order
in which the flights are operated, as well as the departure times. The correspond-
ing encoding in the RMP (formulated as a set partitioning model) is given by the
column-coefficients ax and its cost cx. The column ax typically indicates the set of
operated flights as a binary vector, potentially (as in Example 2.6) also the departure
times. A typical encoding for cx includes the capital, fixed, and operational costs of
an aircraft and revenues.

an object

an aircraft route
and schedule

a representation
x ∈X in the SP

a directed path
in a time-space network

an encoding
[

cx
ax

]
in the RMP

incidence vector of
the flight legs

Fig. 2.3: An object is represented by a solution to a mathematical model in the SP;
its encoding in the MP usually carries less detailed information.
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Note 2.10 (About the encoding functions.) The cost cx and column-coefficients ax
are naturally defined as functions of x ∈ X, that is, cx = c(x) and aix = ai(x),
∀i ∈ {1, . . . ,m}. The general framework of the Dantzig-Wolfe decomposition for
(integer) linear programming (see Chapters 3 and 4) requires these to preserve vec-
tor addition and scalar multiplication. In many real-life applications, the cost c(x)
is indeed non-linear and therefore does not fulfill this requirement. We can think of
very complicated cost functions, e.g., for the airline crew schedules, which are ne-
gotiated by lawyers, not OR practitioners. Non-linear functions also appear for the
computation of some column-coefficients when Chvátal-Gomory cuts are added to
restrict an integer master problem formulation as these make use of ceiling or floor
functions (see Chapter 7). We describe in Section 4.5 some conditions for which
a reformulation using non-linear encoding functions holds. This may increase the
difficulty in solving such non-linear pricing problems but the encoding always ends
up in the RMP with scalars for the cost cx and components of ax.

Note 2.11 (Give me my objects back!) ÏOnce the MP is solved, we need to translate
a λλλ

⋆-solution back to a plan the practitioner understands, i.e., in terms of objects.
Remember that we do not directly work with objects in the MP, not even with the
object’s representation. We work with a potentially simplified encoding. We there-
fore need to first retrieve a representation x ∈ X from an encoding cx and ax. This
decoding can be trivial, e.g., if there is a bijection between representations and en-
codings like in the edge coloring problem (Example 2.3). In general, however, the
decoding can be an expensive task as it amounts to finding a solution x to the SP
given the input c and a, i.e.,

∃x ∈ X such that c(x) = c, ai(x) = ai, ∀i ∈ {1, . . . ,m}. (2.5)

Since the encoding functions are not necessarily injective, the returned representa-
tion needs not be unique which means it could even be different from the one that
was generated in the first place. In an implementation, it is worthwhile to consider
storing the representation x∈X together with the encoding (cx,ax). It may be easier
and faster when retrieving the corresponding objects to show to the end-user.

Note 2.12 (Empty and zero objects.) In almost every application, we have the option
to do nothing. For instance, in machine scheduling we could leave a machine just
idle, i.e., assign it the empty schedule. Likewise, we might not use a vehicle (empty
tour) or do not select any vertex from a graph (empty set). Generally, there exists an
empty object which may have a cost associated with it, say, a fixed cost for provid-
ing the resource even if it is not used. Likewise, it may or may not be represented
by a zero-vector. It is however useful to have a dummy that fulfills a mathematical
interpretation of doing nothing, the zero object with a zero-cost and a zero-vector
representation. We postpone its formal creation to Chapter 4 (Not all blocks are
used, p. 215). We can however already see it in action in Examples 2.1 through 2.4:
One-dimensional cutting stock problem, Cutting stock problem with rolls of differ-
ent widths, Edge coloring problem, and Single depot vehicle scheduling problem.
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Several subproblems

In many applications, we have several (different) column generators which are re-
sponsible for generating several (different) kinds of variables. Such a situation oc-
curs in many classical optimization problems, one of which is the cutting stock
problem with large rolls of different widths (Example 2.2). Another example ap-
pears in the airline industry if a heterogeneous aircraft fleet is used to service the
flight legs: A column encodes a possible route for a specific aircraft type, and we
have a specific column generator for each type. Similarly, we have several column
generators in vehicle routing problems if vehicles have different capacities that may
even influence customers they are allowed to visit.

For a finite set K of column generators, we reflect this in our notation by indexing
k∈K in the finite sets Xk as well as encoding functions ck(xk) and ak(xk). In generic
form, the MP is given by

z⋆MP = min ∑
x1∈X1

cx1λx1 + . . . + ∑
x|K|∈X|K|

cx|K|λx|K|

s.t. ∑
x1∈X1

ax1λx1 + . . . + ∑
x|K|∈X|K|

ax|K|λx|K| ≥ b [πππ]

λx1 ≥ 0 ∀x1 ∈ X1 (2.6)
. . .

...

λx|K| ≥ 0 ∀x|K| ∈ X|K|.

When solving the MP (2.6) with the column generation algorithm, the RMP again
contains only subsets X′k ⊆ Xk for all k ∈ K. A bit more compactly, it reads as

zRMP = min ∑
k∈K

∑
xk∈X′k

cxk λxk

s.t. ∑
k∈K

∑
xk∈X′k

aixk λxk ≥ bi [πi] ∀i ∈ {1, . . . ,m}

λxk ≥ 0 ∀k ∈ K, xk ∈ X′k.

(2.7)

This implies that we must deal with |K| generators identifying the respective
columns to be added to the RMP. These different SPk, k ∈ K, are

c̄k(πππ) = min
xk∈Xk

cxk −
m

∑
i=1

πi aixk

s.t. cxk = ck(xk)

aixk = ak
i (x

k) ∀i ∈ {1, . . . ,m}.

(2.8)

Note, however, that all subproblems use the same vector πππ ≥ 0 of dual values. The
column generation algorithm terminates when c̄k(πππ) ≥ 0 for all k ∈ K. Otherwise,
at least one negative reduced cost variable is identified during the pricing step. In
this case, a minimizer xk from (2.8) is added to X′k, and variable λxk with its cost
cxk and column-coefficients axk , is incorporated in the RMP.
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Note 2.13 (Solving all the subproblems may be useless.) ÏFrom our understanding
of the communication between the RMP and subproblems, see Note 2.7, we may
already anticipate what could go wrong with several column generators: the duals
all communicate the same information to the different subproblems and these in
turn may all react to incentives and penalties in the same way. For example, we
may have different subproblems to produce routes for different types of vehicles.
Presenting them all the same dual vector may lead to routes that all try to visit the
same customers. It is obvious that we may have wasted a lot of time in solving all
subproblems when in fact, only very little diversity in columns is produced. This is
consistent with the findings of Goffin and Vial (2000) who relate the performance
of the analytic center cutting plane method to the variance-covariance matrix of the
selected columns: the performance increases with the selection of non-correlated
columns.

Note 2.14 (Parallelization may not be as effective as you think.) ÏWhen implement-
ing a column generation algorithm with several subproblems, it is an obvious and
advertised idea to solve these in parallel. As mentioned in Note 2.13, solving all
pricing problems may be a waste of time and by solving all of them in parallel we
only reach this conclusion faster. Instead, we might consider parallelizing the solu-
tion of each pricing problem and combine this with techniques we learn throughout
the book.

Pivot rules and column management

In the primal simplex method, Dantzig’s original suggestion is to fully consider all
variables and pick one with most negative reduced cost. This classical rule implies
that we solve the pricing problem to optimality. With regard to a practically efficient
implementation, we cannot overemphasize Ïthat we do not always need to do so.
In principle, any variable of negative reduced cost promises progress. This is all
the more true in column generation where the pricing problem is typically much
more of a computational burden than a simple enumeration, i.e., (2.3) vs. (1.25).
Therefore, this step has received considerable attention in the literature, often the
particular problem structure is exploited.

While a lot of alternative pivot rules were proposed for the primal simplex
method, not many are transferred to the column generation algorithm but this can
certainly be worth a thought. One suggestion is the lambda pricing rule (Bixby et al.,
1992)

l(πππ) = min
x∈X

{
cx

πππ⊺ax

∣∣∣∣ πππ
⊺ax > 0

}
where cx ≥ 0,∀x ∈ X, is assumed. (2.9)

Clearly, the reduced cost cx −πππ⊺ax is non-negative for all x ∈ X if and only if
l(πππ)≥ 1. Yes, this is just a reformulation of the SP (2.3). However, in many applica-
tions where the column-coefficients ax are binary, a small ratio does not only prefer
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smaller cost coefficients but also more non-zero entries in ax. This is reported to be
useful for set partitioning master problems. How would we solve the SP in (2.9)?
We would not. Instead, this rule is used to select a variable in case there are several
available from the SP (see next paragraph). Such a selection could be based on other
pivot rules with good properties, like the positive edge rule (Towhidi et al., 2014)
that almost surely avoids degenerate pivots (p. 128).

Besides these general implementation variants inherited from the primal simplex
method, there are more opportunities in the column generation context. Very im-
portantly, the algorithms for solving the SP or ISP are usually capable of producing
more than one variable of negative reduced cost. This applies to combinatorial al-
gorithms like dynamic programs and also to solving the subproblem by branch-and-
bound. With this possibility, new questions arise: how many variables to generate
per iteration, and which variables to actually use? It is a common mistake to base this
selection solely on reduced cost. Indeed, in the light of Note 2.13, selecting those
with smallest reduced cost is likely to give columns with many similar coefficients.
A common heuristic to counteract this effect is called complementary pricing, see
Example 2.4. It explicitly aims at generating a set of very diverse columns. When
many variables are generated but not all are used, the (most promising of the) ex-
cessive ones can be kept in a column pool for later iterations, especially if these are
computationally expensive to generate (Barnhart et al., 1998). We already know that
we do not need to generate the most negative columns; the column pool even allows
us to keep some variables with positive reduced cost.

The management of columns also pertains to the master problem. The growing
number of variables can indeed slow down the re-optimization of the RMP such that
one can think about removing inactive columns. For example, a simple age crite-
rion can help identify such columns. Does the reader see the potential for column
generation cycling as raised in Note 2.9? For large master problems, with thousands
of rows, there may come a time when even the linear solver struggles to solve the
RMP. In such a situation, we recommend to keep the size of the set X′ under control,
say no more than 3m variables.

Note 2.15 (Restricted master problem solvers.)Ï As a final note concerning the re-
stricted master problem, remember that its role is to provide dual solutions which
guide the generation of columns. There are several options to re-optimize the RMP,
primal and dual simplex methods, barrier methods (a.k.a. interior point methods),
and more. One cannot generally say which one will perform best, but each solver
provides different dual values, and the effect on solving the subproblems should be
tested. It then also becomes obvious that we can even resort to approximations to
solve the RMP, especially if it is computationally costly. Observe that there are two
intertwined topics here: the speed with which we can solve the RMP and the useful-
ness of the dual values we provide to the pricing problem. The streams of research
concerned with the latter topic are abundant and orbit around the fact that the dual
values transferred from the RMP to the SP are critical to achieve stellar performance
in column generation. Chapter 6 on the dual point of view provides significant in-
sights to support this assertion and ultimately brings to light hybrid algorithms for
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column generation. In all cases, avoid imposing an upper bound on any variable, say
λx ≤ ux, as this can introduce adverse effects in column generation. For example,
the upper bounds of 1 on the binary variables of a set partitioning model should re-
main implicit in its linear relaxation. An intuitive explanation is that, in the simplex
method with bounded variables (see complementary slackness conditions 1.8), a
non-basic variable at its upper bound can have a negative reduced cost at optimality
and may therefore be generated again, indefinitely.

Heuristic pricing

The pricing problem is a playground for experimentation and it offers large op-
portunities for speeding up the overall process. Actually, the entire viability of a
column generation approach may depend on this. Indeed, since the pricing prob-
lem is usually solved very often, it had better be fast. As usual in OR, the meaning
of fast cannot be taken at face value but rather in comparison to other components
of the algorithm. A guideline can be to strive for balancing the computation time
spent in the master and subproblems. That is, if the SP solves fast, in the sense that
comparatively meaningful progress is made timely in the RMP, there is no need for
tricks. Ultimately, it is almost certain that so-called heuristic pricing, in which we
can make choices about which subset of variables we select for actually computing
the reduced costs, and how we pick from that subset, should be included. This way,
ideally, one needs to solve the pricing problem to optimality only once, in the last
column generation iteration, to prove optimality of the MP.

The subproblem often exhibits very particular structure; for instance a knapsack
problem or a shortest path problem with resource constraints, in many variants.
We dedicate an important part of Chapter 5 (Vehicle Routing and Crew Scheduling
Problems) to the latter; and entire research projects are devoted to designing, often
heuristic, algorithms to effectively solve specific pricing problems. Such heuristics
can be very elaborate and exploit a lot of problem knowledge and theory.

Generally speaking, one can think of a cascade of heuristics per iteration, starting
with the computationally cheapest (this can be checking the variables in the column
pool), and successively call more computationally expensive ones when previous
heuristics in the cascade fail to deliver (enough) negative reduced cost variables.

When talking about algorithms in operations research, we do not have to decide
between exact and heuristic approaches. An example for a symbiosis is to heuris-
tically solve an integer pricing problem by prematurely terminating branch-and-
bound, e.g., by imposing a time limit or a tolerance on solution quality. Another
example is partial pricing in which one can use an exact algorithm to solve a restric-
tion of it, i.e., to optimize over a well-defined subset of X. Such a restriction could
come from temporarily neglecting some pricing problems as suggested in Note 2.13
or from “user experience” regarding prevalent features we expect to see in optimal
columns. In the former case, if we have many subproblems, one can e.g., cyclically
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walk through them, maybe in batches; or prioritize those which were successful in
previous calls. Or quite the contrary: ask subproblems that have not delivered much.
Partial pricing reduces similarity between generated columns since πππ multipliers are
updated more often. In the latter case, for instance, in an airline crew pairing prob-
lem, the schedule lengths may range, say from one to five days, but most schedules
last at most three days in practice. One could first use a restricted subproblem that
generates schedules spanning at most three days rather than five. We refer to any and
all these ideas as heuristic pricing in contrast to exact pricing for when we solve the
SP to optimality. They are part of the toolbox of acceleration strategies in column
generation (Desaulniers et al., 2002), see also Acceleration techniques.

Note 2.16 (Bury the hatchet.) Being adepts of an exact method in column generation
does not reduce or take away from the importance of heuristics. Let us contribute
once more in breaking the stigma sometimes associated with their usage by quoting
what has been dismissed as lesser mathematics all the way back in 1977.

Heuristic solution methods for integer programming have maintained a noticeably separate
existence from algorithms. Algorithms have long constituted the more respectable side of
the family, assuring an optimal solution in a finite number of steps. Methods that merely
claim to be clever, and do not boast an entourage of supporting theorems and proofs, are
accorded a lower status. Algorithms are conceived in analytic purity in the high citadels
of academic research, heuristics are midwifed by expediency in the dark corners of the
practitioner’s lair.

Recently, however, there has been a growing recognition that the algorithms are not always
successful, and that their heuristic cousins deserve a chance to prove their mettle. Partly
this comes from an emerging awareness that algorithms and heuristics are not as different
as once supposed—algorithms, after all, are merely fastidious heuristics in which epsilons
and deltas abide by the dictates of mathematical etiquette. It may even be said that algo-
rithms exhibit a somewhat compulsive aspect, being denied the freedom that would allow
an occasional inconsistency or an exception to ultimate convergence. (Unfortunately, ulti-
mate convergence sometimes acquires a religious significance; it seems not to happen in
this world.)

The heuristic approach, robust and boisterous, may have special advantages in terrain too
rugged or varied for algorithms. In fact, those who are fond of blurring distinctions suggest
that an algorithm worth its salt is one with “heuristic power.” – Glover (1977)

2.3 More to Know

This section contains more theoretical underpinnings for a practical implementation.
Almost all relate to the dual in one way or another.

Lower bounds

As the RMP is a restriction of the MP, zRMP iteratively approaches z⋆MP from above
(and they finally meet). That is, from each feasible solution to the RMP, we trivially
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obtain an upper bound on the optimum z⋆MP. Additionally having a lower bound
enables us to evaluate solution quality. We establish a variety of such bounds more
or less specialized depending on the structure of the MP.

The assumption regarding finiteness of z⋆MP implies that the variables com-
ing from every subproblem attain finite values in any optimal solution λλλ

⋆ of the
MP (2.6). Specifically,

∃κk such that ∀λλλ⋆ : ∑
xk∈Xk

λ
⋆
xk ≤ κ

k, ∀k ∈ K. (2.10)

We have such κk readily available in several applications, e.g., the number of vehi-
cles at some depot k or rolls of type k to cut.

Proposition 2.1. Given arbitrary dual values πππ ≥ 0 and minimum reduced costs
c̄k(πππ), ∀k ∈ K, then the optimum z⋆MP is bounded from below as

πππ
⊺b+ ∑

k∈K
κ

k c̄k(πππ) ≤ z⋆MP, ∀πππ ≥ 0. (2.11)

Proof. Let λλλ
⋆ denote an optimal solution to (2.6) and let the reduced cost be defined

as usual as c̄xk = cxk −πππ⊺axk , ∀k ∈ K, xk ∈ Xk. We have

z⋆MP = ∑
k∈K

∑
xk∈Xk

cxk λ
⋆
xk = ∑

k∈K
∑

xk∈Xk

(c̄xk +πππ
⊺axk)λ⋆xk . (2.12)

We bound the two resulting double summations separately. First,

∑
k∈K

∑
xk∈Xk

c̄xk λ
⋆
xk ≥ ∑

k∈K
c̄k(πππ) ∑

xk∈Xk

λ
⋆
xk ≥ ∑

k∈K
c̄k(πππ)κk, (2.13)

where the left inequality holds because c̄xk ≥ c̄k(πππ), ∀k ∈ K,xk ∈ Xk, by definition,
and the right inequality uses the non-positivity of the minimum reduced cost and the
bound (2.10). Second,

∑
k∈K

∑
xk∈Xk

πππ
⊺axk λ

⋆
xk = πππ

⊺
∑
k∈K

∑
xk∈Xk

axk λ
⋆
xk ≥ πππ

⊺b, (2.14)

where the inequality is tantamount to the feasibility of λλλ
⋆ in (2.6). ⊓⊔

Of course, the lower bound (2.11) holds in particular for an optimal dual solu-
tion to the RMP, so that by strong duality we have πππ⊺b = zRMP and therefore the
following by-product.

Corollary 2.1. Given optimal dual values πππ with objective value zRMP and minimum
reduced costs c̄k(πππ), ∀k ∈ K, then the optimum z⋆MP is bounded from below and
above as

zRMP + ∑
k∈K

κ
k c̄k(πππ) ≤ z⋆MP ≤ zRMP. (2.15)
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There is an intuitive interpretation. The minimum reduced cost is the largest pos-
sible (potentially not realizable) per unit improvement in the objective function. We
know from (2.10) that we cannot use more units than κk from the sum of all the
variables coming from the pricing problem SPk, k ∈ K. Note that at optimality of
the MP, we have c̄k(πππ) = 0, ∀k ∈ K, thus the lower bound finally reaches the up-
per bound and the interval collapses. The lower bound is, however, not monotonic
over the iterations, see Figure 2.4. Finally, if we have only one subproblem, (2.10)
and (2.15) reduce to

∃κ such that ∀λλλ⋆ : ∑
x∈X

λ
⋆
x ≤ κ (2.16a)

zRMP +κ c̄(πππ) ≤ z⋆MP ≤ zRMP. (2.16b)

Note 2.17 (Lower bounds with heuristic pricing?) Our lower bounds above use the
minimum reduced cost c̄k(πππ) for each k ∈ K. Since c̄k(πππ)≤ 0, all these expressions
also hold for any under-approximation

¯
ck(πππ)≤ c̄k(πππ). In particular, the lower bound

in (2.11) becomes

πππ
⊺b+ ∑

k∈K
κ

k

¯
ck(πππ) ≤ z⋆MP, ∀πππ ≥ 0. (2.17)

Such a value
¯
ck(πππ) can for example come from solving the ISPk with a truncated

branch-and-bound algorithm. In contrast, a lower bound is unavailable if we only
have a primal heuristic solution xk (including exact solutions of a restricted ISPk)
because the inequality c̄xk ≥ c̄k(πππ) is likely strict. Obviously, we also do not have a
lower bound under partial pricing since we have no reduced cost information for at
least one k ∈ K.

We conclude this topic with two more specialized lower bounds.

Corollary 2.2. Let |K| = 1 and cx = 1, ∀x ∈ X. Given arbitrary dual values πππ ≥ 0
and minimum reduced cost c̄(πππ), then z⋆MP is bounded from below as

πππ⊺b
1− c̄(πππ)

≤ z⋆MP, ∀πππ ≥ 0. (2.18)

Proof. Under the assumptions, it holds that ∑x∈X λ⋆x = z⋆MP and the result follows
from fixing κ = z⋆MP in (2.16b). Alternatively, a direct proof (Exercise 2.5) uses the
fact that the vector πππ

1−c̄(πππ) is dual feasible, hence πππ⊺b
1−c̄(πππ) is a lower bound on z⋆MP by

Proposition 1.5 (weak duality). ⊓⊔

Corollary 2.3. (Farley, 1990) Let |K|= 1 and cx ≥ 0, ∀x ∈X. Given arbitrary dual
values πππ ≥ 0 and minimum lambda price l(πππ), then z⋆MP is bounded from below as

l(πππ) ·πππ⊺b≤ z⋆MP, ∀πππ ≥ 0. (2.19)

Proof. We show that the definition of l(πππ) (2.9) implies that l(πππ) ·πππ is dual feasible
for all πππ ≥ 0 so (2.19) holds by weak duality. We have l(πππ)≥ 0 such that l(πππ) ·πππ ≥ 0
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is obviously true. Furthermore, if πππ⊺ax > 0 for a given index x, this is equivalent to
l(πππ)≤ cx

πππ⊺ax
; otherwise, l(πππ) ·πππ⊺ax ≤ 0≤ cx: hence, l(πππ) ·πππ⊺ax ≤ cx, ∀x ∈ X. ⊓⊔

Out of curiosity, compare with the publication date of the lambda pricing rule. Ex-
ercise 2.5 asks the reader to show that the lower bound (2.19) reduces to that of
Corollary 2.2 if cx = 1, ∀x ∈ X.

Convergence

Having a lower bound on z⋆MP available at every iteration t ≥ 1 of the column gener-
ation algorithm, say lbt , we can compute LB, the best known lower bound observed
so far, i.e.,

LB = max
t≥1
{lb1, . . . , lbt}. (2.20)

The column generation algorithm terminates exactly when LB = zRMP. Figure 2.4
illustrates the convergence of the column generation algorithm on an instance of the
classical vehicle routing problem with time windows (VRPTW) formulated as a set
partitioning problem, see Chapter 5. We plot the development of the RMP’s objec-
tive value and of the lower bound from expression (2.16b) over the iterations. The
precise problem definition is unimportant here; let us rather make some observa-
tions about this figure which are rather typical in column generation, and let us try
to offer some first interpretations.

100 200 300 400 500 600 700 800 900

z⋆MP

⋆

zRMP−LB

iteration

z
zRMP

zRMP +κ c̄(πππ)
LB

Fig. 2.4: Lower and upper bounds convergence and tailing-off effect.
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1. The two bounds behave totally differently. The objective values zRMP are non-
increasing and give us a smooth upper bound plot. Concerning the lower bound,
it does not even appear until about iteration 200, because we have restricted the
z-axis plot range. As is the case here, it is not uncommon for the lower bound to
be rather far away from the upper bound until the very last iterations of the col-
umn generation algorithm. The sequence of minimum reduced costs approaches
zero only very late, and the worst case bound κ can be a poor estimate, and thus
be large. In any case, we observe that the lower bound does not develop mono-
tonically.

2. Even though the upper bound is monotone, we observe the initially satisfactory
progress that gets smaller and smaller as we get closer to the optimum. In fact,
there is comparably little progress for the better part of the iterations. This ef-
fect is known as tailing-off. For an empirical explanation attempt, we consult the
raw data from which the plots are produced. We first observe that tailing-off is a
matter of scale. Would we zoom on the beginning of the tail, we would observe
a decrease in the objective value, yet progressively tiny, see Figure 6.17b. Often
enough, the step-length is actually zero, i.e., we have degenerate pivots, a fre-
quent case for the set partitioning formulation of the VRPTW. This manifests in
plateaus, longer sequences of iterations during which the objective value does
not improve at all. We highlight that an optimal solution is reached at iteration
736 (marked by a ⋆), although optimality is only proven at iteration 952. For
a probabilistic explanation of the frequent occurrence of degenerate or small
step-length pivots in the simplex method or the column generation algorithm,
see Exercise 2.19 where we show (via an estimation using the Hypergeometric
distribution) that the probability of such events is increasing with the number of
basic variables modified by the entering variable.

3. Vanderbeck (2005, Chapter 12, p. 349) coins memorable names for other effects
we see besides the plateaus and long tail, and they all relate to the dual solutions
produced from the RMP.

• In the early iterations with good progress on the objective value, the RMP
is rather empty and often initialized with a bunch of artificial variables.
Despite the apparent improvement, the generated variables typically do not
reflect good solutions yet. This is related to the fact that in this phase also
the dual variables are rather far away from their respective optimal values.
This initial, only seemingly productive phase, is called heading-in.

• From there on, the dual values alternate between interesting values (called
the bang-bang phase) which is echoed in the lower bounds that go up and
down erratically, called the yo-yo effect. While we can clearly see the yo-yo
effect, how can we intuitively grasp bang-bang? Indeed, even a single neg-
ative reduced cost column entering a basis AB while solving the RMP can
largely modify the simplex multipliers πππ⊺ = c⊺BA−1

B . This new column has
for consequence that we tend to go overboard in the other direction chang-
ing the dual values accordingly. For those familiar with the Lagrangian re-
laxation method, the same bang-bang phase is observed for the successive
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Langrangian multipliers. An important question is therefore: Can we bet-
ter control the dual values within the column generation algorithm? Several
efficient options are presented in Chapter 6, Dual Point of View.

Note 2.18 (Early termination and integer optimum.) A better theoretical understand-
ing of the effects observed here comes with our discussion about the dual point of
view in Chapter 6. However, this is a perfect place to introduce early termination
as a means to exploit the availability of lower bounds in the light of tailing-off. The
linear programs we solve by column generation are usually relaxations of integer
programs. These are solved for the lower bounds they provide. If we do not wit-
ness enough progress on the objective value, we may stop generating columns, use
LB (2.20) as a valid lower bound, and start cutting and branching, see Chapter 7. A
possible stopping criterion is to have reached a given relative optimality gap γ , i.e.,
to stop column generation when

zRMP−LB
|LB|

≤ γ (2.21)

for LB ̸= 0. If we know that z⋆MP ∈ Z, we can tighten the gap using ⌈LB⌉ in the
previous expression which is true because we terminate exactly when

⌈LB⌉ ≥ zRMP. (2.22)

Limited numeric precision

ÏNumbers processed in a computer are represented with a limited amount of mem-
ory, say, 64 bits in the standard double-precision floating-point format. It is clear
that irrational numbers cannot be stored in finite computer memory. However, even
many rational numbers are not stored accurately. This holds for fractions that are
periodical in binary or where the number of available significant digits is simply too
small. The above referenced double format can hold up to fifteen significant deci-
mal digits only (in total, before and after the decimal point). Computations under
this fixed-precision arithmetic may propagate the small inaccuracies, and in fact the
error accumulation can be dramatic.

It is an immediate consequence that in computer implementations, comparisons
of numbers are usually not done exactly. Instead, for a given small tolerance ε > 0,
two numbers a and b are considered equal when |a−b| ≤ ε . In particular, all proper-
ties of a solution obtained from a mathematical optimization solver, like optimality,
feasibility, and integrality only hold within the tolerances. As an example of par-
ticular importance to us, “negative reduced cost c̄x < 0” translates to c̄x < −ε . In
a sense, a variable must have a considerably negative reduced cost to be consid-
ered attractive. Different solvers may use different tolerances, typical values range
around ε = 10−6, much larger than the actual machine-precision.
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In the column generation algorithm, we alternatively solve the MP and SP. Thus,
we need to ensure a compatibility of tolerances throughout all portions of the imple-
mentation. Effectively, the optimality tolerance ε ≥ 0 used when solving the RMP
should be the same tolerance used to stop pricing in Line 4 of Algorithm 2.1, i.e.,
when c̄(πππ)≥−ε . Failing to do so may result in the generation of “useless” columns
with reduced costs between −ε and 0. This is a prime source for infinite loops.

Also the integrality tolerance can be a pitfall. The tolerance used in the solver
of the ISP must be integrated into the method generating the column-coefficients.
For instance, consider the ISP is subject to cx = 1 and ax = x, receives as input πππ =
[1.001,−0.35], and outputs an optimal integer solution x⋆ = [.999,0.001] because
we accept an integrality tolerance of 10−3. We establish column-coefficients ax for
the MP with respect to the given integrality tolerance of the SP as ax = [1,0]. It
would even be wise to recompute the reduced cost:

c̄(πππ) = 1−
[
1.001,−0.35

][0.999
0.001

]
= 1−0.999649 > 0 ̸= 1−1.001 < 0.

The total error induced by the integrality tolerance depends on the non-zero entries
in x and the size of the corresponding values in πππ . Moreover, it is obviously uncor-
related to the optimality tolerance ε .

Feasibility tolerances, i.e., the small amount by which constraints may be vi-
olated, can be of importance when degeneracy is counteracted by explicitly per-
turbing the right-hand sides by tiny (how tiny?) numbers. Specialized/combinatorial
algorithms to solve the ISP may be a remedy, or libraries for arbitrary-precision
arithmetic. The latter support true rational numbers and therefore guarantee exact
numerical results. This comes with a trade-off of more expensive computations and
pays off presumably only in mission critical applications.

Static and auxiliary variables

There are natural modeling situations, in which the master problem at hand, MP or
IMP, contains variables that are not generated in the column generation process. We
call these static variables. In the following model we denote them by v:

z⋆MP = min ∑
x∈X

cxλx + c⊺vv

s.t. ∑
x∈X

axλx + Avv≥ b [πππ]

Bvv≥ bv [βββ ]

0≤ v≤ uv,

λx ≥ 0, ∀x ∈ X,

(2.23)
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where cv, Av, Bv, bv, and uv are vectors and matrices of appropriate dimensions
for their parameters. Since the static variables are part of the MP, but cannot be
generated by the SP or ISP, they need to be already present in the RMP initially.
Moreover, as the λ -variables play no part in constraints Bvv≥ bv, the dual values βββ

are irrelevant for the SP. Example 2.6 uses static variables tmi in the IMP (2.49).

In formulation (2.23), every feasible solution (λλλ ,v) can be interpreted as a so-
lution to the real problem at hand. The situation is different when we purposefully
introduce static variables in the MP or IMP that must not be part of a feasible or
optimal solution. Such auxiliary variables help us accomplishing several important
technical tasks in the course of this book, so they deserve a separate presentation.
Let us denote an auxiliary variable by y j, j ∈ J. The MP takes the form

z⋆MP = min ∑
x∈X

cxλx + δδδ
⊺y

s.t. ∑
x∈X

axλx + Sy≥ b [πππ]

0≤ y≤ uy,

λx ≥ 0, ∀x ∈ X,

(2.24)

where the auxiliary variables are accounted for in y = [y j] j∈J , δδδ = [δ j] j∈J , S =
[s j] j∈J , and uy = [u j] j∈J . These parameters are not given from the problem descrip-
tion, but defined by the modeler; they can even dynamically change in the solution
process. Of course, we can combine auxiliary variables with other static ones.

Auxiliary variables rightfully feel like they “do not belong” in the model: If any
of them remains with a positive value in an optimal solution, this solution is not
feasible for the problem at hand. So, of what use are they?

A well-known example is given by the artificial variables used in a Phase I
initialization with parameters δ j = M, u j = ∞, and s j = e j, ∀ j ∈ {1, . . . ,m}. We
stress again that we are free to play with the big-M objective coefficients of artificial
variables, and that they are not defined from problem data.

Let us interpret the property, that an optimal solution to the MP with at least one
positive auxiliary variable implies that the solution in λ -variables alone is infeasible
for the original problem. Stated differently, auxiliary variables induce a relaxation
of the MP, such that optimality is achieved if

c̄(πππ)≥ 0 and y j = 0, ∀ j ∈ J. (2.25)

Furthermore, by duality, auxiliary variables imply a restriction on πππ in the dual
formulation, that is,

S⊺πππ ≤ δδδ [y]. (2.26)

For the artificial variables, this becomes

π j ≤M [y j] ∀ j ∈ {1, . . . ,m}. (2.27)
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In other words, the M-penalties impose upper bounds on the dual variables. This
restriction in the dual space is a reason why auxiliary variables may make the RMP
easier to solve. We discuss this in more detail in Chapter 6.

A less obvious application of auxiliary variables arises in the use of a relaxed
pricing problem (see below), where variables appear in the MP, thus relax it, and
therefore constrain its dual in the way indicated above.

Relaxed pricing, relaxed master

When the pricing problem over X is difficult to solve exactly, we may rather solve
a relaxation over a larger index set, say Y⊃ X, when possible. A typical example is
in vehicle routing problems, where each customer needs to be visited exactly once.
This amounts to finding elementary paths in an appropriate network, one for each
vehicle. Customarily, the IMP is formulated as a set partitioning problem, where
binary columns encode whether in a route a customer is visited or not. However, the
elementary shortest path problem to solve in the ISP, moreover constrained by time
windows, vehicle capacity, etc., is strongly NP-hard. Thus researchers rather solve
more or less relaxed pricing problems that allow for the presence of cycles, that is,
some customers are visited more than once in a path. For the non-elementary short-
est path versions, pseudo-polynomial time algorithms are available. The correspond-
ing columns then encode how often a customer is visited, thus column-coefficients
become non-negative integers.

More generally, we replace the MP (2.1) by a relaxed formulation MPY, tem-
porarily allowing for inadmissible columns:

z⋆MPY
= min ∑

x∈X
cxλx + ∑

x∈Y\X
cxλx

s.t. ∑
x∈X

axλx + ∑
x∈Y\X

axλx ≥ b [πππ]

λx≥ 0,∀x ∈ X

λx ≥ 0,∀x ∈ Y\X.

(2.28)

This relaxation can be combined with heuristic strategies on both the master and
pricing problems to support solving the enlarged MPY faster. The price to pay for
the acceleration in solving the relaxed subproblem is a possible deterioration of the
lower bound on z⋆IMP, that is, z⋆MPY

≤ z⋆MP ≤ z⋆IMP. Since our goal is to solve the
original IMP, we ultimately need to get rid of the extra variables λx, x ∈ Y\X, e.g.,
by post-processing, or during the exploration of a branch-and-bound tree.
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Paving the way to a practical implementation

Algorithm 2.1, the textbook column generation algorithm, is to solve to optimality
the pricing problem in every iteration, add one variable to the RMP at a time, and
re-solve the latter to optimality. In practice, however, when implemented this way,
it is almost certain that this does not give satisfactory performance. The heavy-work
and creativity actually begin after we have a functional textbook implementation.

Figure 2.5 compares a textbook implementation to two more practical ones
(“simple” and “advanced”), which in particular make heavy use of heuristic pricing.
The “advanced” one even aims at generating columns that are particularly helpful
for an integer solution. We plot the development of bounds similar to Figure 2.4.
Our comments complement Table 2.1 which lists additional information such as the
number of columns generated, the percentage of time spent solving the ISP, the
optimal objective value of the linear relaxation, and the relative integrality gap.
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(c) 1 063 iterations (105.7 s)

Fig. 2.5: Column generation process at the root node for three implementations.

implementation # iterations # columns time (s) % ISP z⋆MP % IG

textbook 3 898 3 897 2 111.7 98.8 5 705.18 2.61
simple 377 41 334 46.9 57.9 5 705.18 2.61
advanced 1 063 53 119 105.7 55.5 5 858 0

Table 2.1: Computational results at the root node for three implementations.

1. Let us first compare Figures 2.5a and 2.5b, textbook vs. using a few restricted
pricing problems and better column management (“simple”). The z-axes are of
the same scale and are again restricted in plot range. In the latter however, we
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notice that the lower bounds are not always available because we use heuristic
pricing. In fact, consulting the result log signals that LB is not available at all
until iteration 127 (marked with a β ), the first time we use exact pricing. From
then on, we sporadically obtain new lower bounds and update the value of LB
accordingly. The iterations on the t-axes on the other hand differ by one order
of magnitude. What is more, perhaps countering intuition, we generate about 10
times more columns with heuristic pricing (41 334 vs. 3 897). When we addi-
tionally register that this nevertheless makes the whole process about 45 times
faster (2 111.7 / 46.9), there hardly remains any convincing to do that judicious
use of heuristics within the column generation algorithm yields tremendous re-
sults despite momentarily losing track of solution quality until exact pricing is
turned on. Between the computation price per column or per iteration, it is un-
clear which one is better to control. Suffice it to say that aiming for a higher
throughput on either one is a good target.

2. We see that the difference zRMP−LB still reaches 0 very late. We also under-
score that not solving the RMP to optimality would not give an objective value
zRMP. This would cause holes but we would of course nevertheless be able to
compute a non-increasing upper bound.

3. In Figure 2.5c, the “advanced” implementation, we manage to use exact pricing
only nine times (out of 1 063 iterations). This all happens close to optimality
of the MP, where not much can be discerned. The horizontal line marking the
optimal objective value is slightly off compared to the first two figures. This
is because all implementations use the idea of relaxed pricing, relaxed master
but the “advanced” one is stronger, i.e., less inadmissible columns. We reach a
better solution in the MP which is in fact by chance integer optimal for the IMP,
that is, λλλ

⋆
MP is binary, hence z⋆MP = z⋆IMP. We leave the reader to speculate on the

computational cost of using exact pricing at every iteration. Since the solution
process would be completely altered, we can say that even if we expect less
iterations, the stronger pricing problem already warns us of a more expensive
computation time. A rhetorical question that soon enough becomes laughable
for larger instances. Aside from speeding up the process, we see that heuristics
can be sufficient to reach very good solutions. As a case in point, we already
attain the optimum about 500 iterations prior to the first use of exact pricing
and take away that it is the proof of optimality that is a significant burden.
Furthermore, our heuristically generated columns are constructed by keeping
track of the current RMP solution in such a way that they are more likely to favor
integrality when they are optimized in the RMP. There could exist a fractional
solution with the same optimum but since we reach the latter with heuristics that
foster integrality and only perform degenerate pivots from then on, we recall
the words of Louis Pasteur (1822–1895): “le hasard ne favorise que les esprits
préparés.”
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2.4 Examples

In this section we present examples that exhibit several aspects of the column gen-
eration versatility. Our presentation of the MP (or the integer master problem IMP)
usually precedes that of the ISP, the integer subproblem. This ISP is formulated to
find mathematical representations of objects tied to the IMP and also comprises en-
coding functions. In these various examples, our objects are cutting patterns, match-
ings, and vehicle schedules/routes.

In Example 2.1, we start with the classical One-dimensional cutting stock prob-
lem proposed in the ’60s where we cut paper rolls of identical size into smaller
items. Example 2.2 generalizes it to different roll sizes, the Cutting stock problem
with rolls of different widths. Example 2.3 describes the Edge coloring problem for
finding the minimum number of colors such that no incident edges of a graph have
the same color. Example 2.4 is based on a network flow problem: the Single depot
vehicle scheduling problem. A set of trips to service is given, each with a known
starting time and duration, and vehicle routes are generated by solving a shortest
path problem on an acyclic network. It can be extended to the problem with several
depots, and more generally, to a number of Vehicle routing and crew scheduling
problems with various operating rules (Example 2.5). Amongst others, the vehicle
routing problem with time windows has largely driven the research on theoretical
aspects of column generation for integer programs. Finally, Example 2.6 presents an
Aircraft routing with schedule synchronization that occurs in the long-term planning
process of airlines.

Example 2.1 One-dimensional cutting stock problem

� This is the first practical application of column generation, already
done in the early ’50s. There is a single pricing problem but we pro-
pose two formulations one of which uses the zero object.

The one-dimensional cutting stock problem (CSP) is a classical (maybe the clas-
sical) example in column generation. We are given large paper rolls (“raws”) of
width W as well as m small items of width wi < W and demand bi, i ∈ {1, . . . ,m}.
All problem data is positive. Each demand is of course integer and we assume each
width is integer as well. The goal is to minimize the number of rolls to be cut into
items such that the demand for each small item is satisfied.

Integer master problem

A standard formulation as an integer master problem IMP due to Kantorovich and
Zalgaller (1951); Gilmore and Gomory (1961, 1963) is
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z⋆IMP = min ∑
x∈X

λx

s.t. ∑
x∈X

aixλx ≥ bi [πi] ∀i ∈ {1, . . . ,m}

λx ∈ Z+ ∀x ∈ X,

(2.29)

where X represents the set of cutting patterns (all possible ways of cutting a roll
into items). Figure 2.6 illustrates a subset of these for three items of width 3, 4, and
5 cut from a roll of width 11. The non-negative integer variable λx ∈ Z+ determines
how many times cutting pattern x is used so we literally count the rolls we use in
the objective function, i.e., cx = 1, ∀x ∈ X. Regarding ax = [aix]i=1,...,m, the integer
coefficient aix ∈ Z+ specifies how often item i is obtained in cutting pattern x. The
linear relaxation MP of (2.29) is then solved by the column generation algorithm,
using the non-negative vector πππ = [πi]i=1,...,m of dual variables. Finding an initial
subset X′ ⊆ X of cutting patterns to form a feasible RMP is easy in this case. For
instance, X′ could contain all the singleton cutting patterns ei, i ∈ {1, . . . ,m}, where
only item i is cut exactly once.

11

(a) Roll

3 4 5

(b) Three singletons

3

3

3

3

3

3

4

4

. . .

5

5

(c) And the rest

Fig. 2.6: Cutting patterns for three items of width 3, 4, and 5 in a roll of width 11.

Integer pricing problem

Solving the RMP provides us πππ . Finding an improving cutting pattern x (if any)
can then be done by solving the ISP as an integer knapsack problem with the first
formulation we learn about in Martello and Toth (1990):
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c̄(πππ) = min
x∈X

cx−
m

∑
i=1

πiaix ≡ 1+max
m

∑
i=1

πixi

s.t.
m

∑
i=1

wixi ≤W

xi ∈ Z+ ∀i ∈ {1, . . . ,m}.

(2.30)

One can see that our encoding functions for the ISP reflect the understanding of
what a column is for the IMP:

cx = 1 and aix = xi, ∀i ∈ {1, . . . ,m}. (2.31)

This simplicity between the objects and encoding functions is because the objects
X = {x ∈ Zm

+ | ∑m
i=1 wi xi ≤W} are literally defined in the same way as parameter

ax = x. We underscore that this cannot be taken for granted, even for the same
problem. We formulate the knapsack problem in two different ways in Example 4.1
and discuss how that impacts the cutting stock problem in Example 4.2.

Empty vs. zero cutting patterns

The empty cutting pattern xi = 0, ∀i ∈ {1, . . . ,m}, is feasible in (2.30) but it incurs
a cost of 1 in the objective function as (2.31) indicates. It corresponds to a roll that
is not cut, and as such, it should not be counted in the objective function. This is
actually mathematically ensured by the column generation algorithm because its
reduced cost is 1 for any πππ so it cannot ever be generated. Nevertheless, we can
compute the “real” contribution of not using a roll in the IMP using the zero object.
The zero cutting pattern with zero-cost and zero-column-coefficients can easily be
introduced with the use of a supplementary binary variable x0 in the ISP formulated
as

c̄(πππ) = min x0−
m

∑
i=1

πixi

s.t.
m

∑
i=1

wixi ≤Wx0

x0 ∈ {0,1}
xi ∈ Z+ ∀i ∈ {1, . . . ,m}.

(2.32)

As shown in Figure 2.7a, for any solution to the ISP (2.32), the cost encoding func-
tion now depends on x0 whereas the column-coefficients are as before. Figures 2.7b
and 2.7c correspond to solutions of formulation (2.30) where x0 = 1 is implicit. The
introduced zero cutting pattern appears in Figure 2.7d where x0 = 0 forces x = 0.
The empty cutting pattern is dominated by the zero cutting pattern because its re-
duced cost is always 0 < 1 for any πππ , but finding either of them in the ISP results
in the same conclusion: we have reached optimality. The same is also true if we
turn to a situation where several pricing problems exist. We know it is hard to grasp
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its purpose at this stage but we can at least observe that the same problem can be
solved with two different pricing problems. For the advanced reader, the zero object
is not a question of efficiency but rather a mathematical construct we later use in a
Dantzig-Wolfe reformulation to work with a polyhedral cone.

[
cx

[aix]i=1,...,m

]
=

[
x0

[xi]i=1,...,m

]
(a) Encoding functions

[
1
x

]
(b) x ̸= 0

[
1
0

]
(c) Empty

[
0
0

]
(d) Zero

Fig. 2.7: Cutting patterns in a roll.

Example 2.2 Cutting stock problem with rolls of different widths

� We consider two modifications to the one-dimensional cutting stock
problem. We now have rolls of different widths and measure the total
trim loss rather than the number of rolls. We use an index k to differen-
tiate the roll widths in their respective integer subproblems.

The one-dimensional cutting stock problem using different roll widths still aims to
fulfill m demands bi, i ∈ {1, . . . ,m}, for items of width wi but this time we may
use various roll widths W k, k ∈ K. We consider a different objective function that
minimizes the total trim loss because it is a better indicator for the usage of raws.

For k ∈K, let the integer variable λxk ∈Z+ represent the number of times cutting

pattern xk =

[
xk

0
[xk

i ]i=1,...,m

]
is used, where the binary variable xk

0 indicates if a roll of

width W k is cut or not. The IMP becomes

z⋆IMP = min ∑
k∈K

∑
xk∈Xk

cxk λxk

s.t. ∑
k∈K

∑
xk∈Xk

aixk λxk = bi [πi] ∀i ∈ {1, . . . ,m}

λxk ∈ Z+ ∀k ∈ K, xk ∈ Xk,

(2.33)

where Xk denotes the set of (representations of) cutting patterns for the roll width
W k (hence X= ∪k∈KX

k). Observe the usage of equality constraints in (2.33): over-
satisfying the demand would reduce the trim loss. Adapting (2.32) with index k and
a restriction on item production, a formulation for the ISPk becomes

c̄k(πππ) = min cxk −
m

∑
i=1

πiaixk (2.34a)

s.t.
m

∑
i=1

wixk
i ≤W kxk

0 (2.34b)



2.4 Examples 75

xk
i ≤ bi ∀i ∈ {1, . . . ,m} (2.34c)

xk
0 ∈ {0,1} (2.34d)

xk
i ∈ Z+ ∀i ∈ {1, . . . ,m} (2.34e)

cxk =W kxk
0−

m

∑
i=1

wixk
i (2.34f)

aixk = xk
i ∀i ∈ {1, . . . ,m}. (2.34g)

For any solution to (2.34), the cost cxk measures the trim loss of cutting pattern xk

whereas the column-coefficient aixk indicates how many times item i is cut in xk.
Observe that there is a 0-vector of dimension m+1 in every set Xk, k ∈ K. With re-
spect to the empty cutting pattern, a solution xk = 0 and xk

0 = 1 gives a “misleading”
trim loss of W k but nevertheless correctly terminates column generation since this
value also corresponds to a positive reduced cost for any πππ .

Note 2.19 (More than we bargain for.) Whenever it is interesting to take item i, the
nature of optimization dictates that we take this item as much as possible. This is
the notion of maximal cutting pattern which is illustrated in Figure 2.8 along with
the trim loss given by a separated cylinder on the top.

11

(a) Roll

3

8

4

7

. . .

3

3

5

(b) Non-maximal

3

3

3

2

3

4

4

. . .

5

5

1

(c) Maximal

Fig. 2.8: Cutting patterns with trim loss.

Consequently, non-maximal patterns do not appear naturally when we opti-
mize the ISP leading to potential over-packing with respect to the demand. In-
deed, depending on problem data, it is possible that an item can be cut more times
than it is needed, i.e., ∃i | ⌈W k/wi⌉ > bi. In such a case, the constraints xi ≤ bi,
∀i ∈ {1, . . . ,m}, in formulation (2.34) intercept such cutting patterns that are ob-
viously not suitable for an integer solution. We can therefore also point to relaxed
pricing, relaxed master and predict that the absence of these constraints can weaken
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the objective value of the linear relaxation but does not compromise the integer op-
timum. However, since these are only bounds, they do not really make the ISP more
challenging to solve. Exercise 2.16 exposes all of this on a simple instance where
we minimize the number of rolls used.

Example 2.3 Edge coloring problem

� We discuss the notions of objects, representations, and encodings, and
highlight that the modeler ties theory to practice.

The edge coloring problem (ECP) is defined on an undirected graph G = (N,E),
where N denotes the set of nodes and E the set of edges. We want to color the edges
in such a way that no incident edges have the same color. The minimum number
of colors required to color all the edges is called the chromatic index of the graph.
A set of pairwise non-incident edges is called a matching. We observe that an edge
coloring is a set of matchings, each in a separate color, that partitions the edges.

Figure 2.9a shows a planar graph with 16 vertices and 24 edges. We then show
a possible matching (Figure 2.9b) as well as a maximal matching (Figure 2.9c) in
which it is not possible to include an additional edge. Finally, we are able to draw
an edge coloring with four colors by trial-and-error in Figure 2.9d. We have found
the chromatic index of G since there are 7 edges in any maximal matching, hence
an edge coloring requires at least ⌈ 24

7 ⌉= 4 colors.

(a) Planar graph (b) Matching

(c) Maximal matching (d) Four colors

Fig. 2.9: Coloring edges of a planar graph G with 16 vertices and 24 edges.
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Set covering master problem

Nemhauser and Park (1991) and Mehrotra and Trick (1996) tackle the ECP by di-
rectly modeling the partitioning of the edge set into matchings. They observe that,
in the model, the colors of the matchings are irrelevant. In fact, leaving the colors
in the model induces a symmetry: any permutation of the colors in an edge coloring
gives again an edge coloring with the same number of colors. Their set covering
formulation therefore works only with variables for matchings which do not have a
color. The IMP reads as

z⋆IMP = min ∑
x∈X

λx

s.t. ∑
x∈X

axλx ≥ 1 [πππ]

λx binary ∀x ∈ X,

(2.35)

where X denotes the set of incidence vectors x= [xe]e∈E of matchings which specify,
in binary, which edges of E are contained in a matching. The variable λx indicates if
matching x is used or not, so we count the number of colors we use in the objective
function, i.e., cx = 1, ∀x ∈ X. The covering constraints ensure that each edge in the
set E appears in at least one matching and we here have that ax = x, ∀x ∈ X.

Note 2.20 (Covering constraints.) The reader may wonder why we do not write
equality constraints, even though we want to partition the set of edges into match-
ings (or schedule the same number of games for each team). The nonchalant reason
is because we can. Indeed, it is easy to turn a solution to (2.35) into a solution to
the ECP of the same cost by dropping edges from the selected matchings until each
edge is covered exactly once, hence the model is ultimately correct. In fact, the hor-
izontal dotted edge (blue) in the middle of Figure 2.9d could also be solid (gray).
The benefits and concerns regarding such manipulations are postponed to more ad-
vanced portions of the book, see Exercises 2.14–2.17 for an appetizer and Chapter 6
for dual incentives.

Pricing the matchings

Let δ (S) ⊆ E for S ⊆ N denote the edges with one endpoint in S and the other one
in N \S. Such a set is called a cut. Let x = [xe]e∈E . Then the set of matchings can be
defined via

X=

{
x ∈ {0,1}|E|

∣∣∣∣ ∑
e∈δ ({i})

xe ≤ 1, ∀i ∈ N

}
, (2.36)

where xe takes value 1 if edge e is selected in the matching, and 0 otherwise. The set
of constraints ensures that, for each node i∈N, at most one incident edge is selected.
Using πππ = [πe]e∈E , the non-negative dual values for the covering constraints in the
linear relaxation of (2.35), together with the added binary variable x0 to introduce
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the zero matching when x0 = 0, the ISP reads as

c̄(πππ) = min x0−∑
e∈E

πexe

s.t. ∑
e∈δ ({i})

xe ≤ x0 ∀i ∈ N

x0 ∈ {0,1}
xe ∈ {0,1} ∀e ∈ E

cx = x0

aex = xe ∀e ∈ E.

(2.37)

Note 2.21 (Artistic indices.) Observe that the objects, matchings with edges in E,
are represented by binary vectors x = [xe]e∈E of cardinality |E|, which are identi-
cal to their encodings ax = [aex]e∈E . The close relationship between these three is
illustrated when indexing the λ -variables with objects:

λ + λ + λ + . . . + λ .

This makes it even more apparent why we may also understand an expression like
“negative reduced cost matchings.”

Note 2.22 (An object is an object, basta!) What we call an object only depends on
the problem (and solution!) understanding of the end-user: does she want an edge
coloring, or did she realize that a set of matchings suffices which she can color on
her own? An experienced modeler recognizes such degree of freedom and exploits
it when building a model. For example, it is a perfectly realistic situation that an
end-user with a cutting stock problem wishes to obtain a detailed plan, how many
orders to cut from exactly which roll. That is, in the end-user’s perspective, the
objects specify the precise roll. The modeler realizes the symmetry, builds a model
without roll-indices, and thus adopts a perspective in which objects do not specify a
roll. It is fair to say that the modeler introduced another layer of abstraction into our
discussion about objects, representations, and encodings. It goes without saying that
the modeler should not forget to return objects to the end-user in their perspective
and language; when roll-indices are desired, these need to be provided, regardless
of whether the employed mathematical model specifies them or not. As a practical
remark this reminds us of the communication skills demanded from the OR expert
when translating between the real and the model world.

Sports scheduling

An interesting application of the ECP is sports scheduling as described in Januario
et al. (2016) and Ribeiro et al. (2023). For example, a single round-robin tournament
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is a competition in which each team plays against every other team exactly once. It
is also said to be compact if every team plays once per round such that the number of
rounds matches the chromatic index. This situation can be modeled on a complete
graph, where the nodes correspond to the teams, the edges to the games, and the
colors to the rounds in which the games are played.

Suppose we have been mandated to determine a competition schedule where
games must occur every Saturday. Let us use the unusual matchup depicted in Fig-
ure 2.9. The optimal solution we found earlier is reproduced in Figure 2.10a but
it does not mean anything to the sports league. They expect a schedule where ev-
ery game appears on a calendar. In this case, we can associate any two vertices
(teams) connected by a blue/dotted edge (game) with the first Saturday, see Fig-
ure 2.10b. The second Saturday with red/dashed, third with green/wavy, and fourth
with black/solid.

(a) Reproduction (b) First Saturday

Fig. 2.10: Four colors into a schedule.

What if the team represented by the right-most node cannot play on the second
weekend? The right-most node has three adjacent vertices so we just need to reorder
the colors to match the forbidden Saturday, in this case exchange red/dashed with
black/solid.

What if the team represented by the left-most node also cannot play on the sec-
ond weekend? This particular solution is conflicting with the additional constraint
because the edge have different colors but the same date restriction. Figure 2.11a
gives an alternative four color solution that fulfills both restrictions where we sim-
ply change three edge colors around the left-most node. Figure 2.11b confirms that
neither teams associated with left-most and right-most nodes are playing on the sec-
ond Saturday.

It may not always be easy nor even possible to match the chromatic index with
additional restrictions. Manually fiddling with a solution trying to figure this out
can rapidly become an error-prone burden. Can we state a constraint for the IMP
that can handle both restrictions? We can model this as ∑x∈X rxλx = 3, where rx
is a parameter that takes value 1 if matching x includes the left-most or right-most
nodes, 0 otherwise.
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(a) Another four colors (b) Second Saturday

Fig. 2.11: Four colors into a schedule, take two.

Example 2.4 Single depot vehicle scheduling problem

� This example again proposes two formulations for the subproblem, the
second bringing in the zero object. The SP turns out to be a shortest
path problem on an acyclic network, easily solvable by a dynamic pro-
gramming algorithm.

The single depot vehicle scheduling problem (SDVSP) involves a set N of n trips,
each one defined by a pair of start time and location, and a pair of end time and
location, that must be operated by a set of vehicles. The objects in this problem
are vehicle schedules, each consisting in a sequence of trips and deadheads (empty
moves for repositioning) which must start and end at the given depot. We assume
a homogeneous fleet of v vehicles. The cost structure typically includes travel costs
and a fixed cost per vehicle used. The problem consists in determining a set of
schedules such that each trip i ∈ N belongs to exactly one schedule, the vehicles
used are available, and the total operating cost is minimized.

The SDVSP occurs in urban transit bus scheduling where vehicles are buses, trips
are bus trips, and vehicle schedules are bus schedules. The goal is to determine a
least-cost set of bus schedules. Obviously, it can be adapted to other contexts such
as airline management, where vehicles are aircraft, trips are flights, and vehicle
schedules are aircraft schedules.

Set partitioning master problem

Although the SDVSP can be formulated and easily solved as a network flow problem
(see Exercise 2.8), for pedagogical reasons in this chapter on column generation, we
use an alternative formulation for it, a set partitioning type problem (SPP) :

z⋆IMP = min ∑
x∈X

cxλx (2.38a)

s.t. ∑
x∈X

aixλx = 1 [πi] ∀i ∈ N (2.38b)
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∑
x∈X

aoxλx ≤ v [πo] (2.38c)

λx ∈ {0,1} ∀x ∈ X. (2.38d)

where X denotes the set of (representations of) schedules in (2.38), and binary vari-
able λx takes value 1 if and only if schedule x ∈ X is selected. Such a schedule is
encoded by its cost cx and column ax = [aix]i∈N , where the binary column-coefficient
aix takes value 1 if bus trip i is operated in schedule x, and 0 otherwise. Additionally,
we have a constant parameter aox = 1, ∀x ∈ X, where index o represents the depot
from which the vehicles are originating. Given the huge number of schedules in X,
the linear relaxation MP of (2.38) is solved by the column generation algorithm,
where the dual values πππ = [πi]i∈N and πo are used.

Shortest path pricing problem

The SP can be modeled as a shortest path problem in an acyclic directed time-space
network, where there is a node for each timetabled trip and the depot is represented
by two nodes, an origin o and a destination d. We denote by N the set of trip nodes.
The set of arcs is constructed as follows:

• We introduce an arc between trips i and j if and only if it is feasible to travel
from the end of trip i to the start of trip j while satisfying the start/end time
constraints. Such arcs are called inter-trip arcs, denoted by I.

• We need arcs from the origin o to each trip and from each trip to the destina-
tion d (back to the depot).

• Finally, we model the option of an empty schedule that operates no trips at
all with arc (o,d). This arc may incur a cost cod for an available vehicle that
remains parked at the depot. In that case, this cost would be assigned to the
slack variable in (2.38c).

This gives us the network G = (V,A), with the node set V = N ∪{o,d} and the
arc set A = I ∪ ({o}×N)∪ (N×{d})∪{(o,d)}, see Figure 2.12. A schedule is a
binary solution x ∈ X corresponding to an od-path in this network, and vice versa.
Observe that we nonetheless do not need any integrality requirements to obtain such
solutions.

o d. . . I . . ....
...

Depot to trips Inter-trip arcs Trips to depot

Fig. 2.12: Network G = (V,A) with the option to model an empty schedule.
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Let the variable xi j represent whether arc (i, j) ∈ A is used on a path or not. The
path constraints that define X are

∑
j:(o, j)∈A

xo j = 1

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 ∀i ∈ N

∑
i:(i,d)∈A

xid = 1

xi j ≥ 0 ∀(i, j) ∈ A.

(2.39)

A vector x ∈ X in (2.39) is encoded in the IMP (2.38) as

cx = ∑
(i, j)∈A

ci jxi j, aix = ∑
j:(i, j)∈A

xi j, ∀i ∈ N, and aox = ∑
j:(o, j)∈A

xo j = 1. (2.40)

Note 2.23 (A sum to one.) Since there is always one redundant constraint in a net-
work flow problem, we can arbitrarily drop any one we please. This means that we
can also modify said constraint with any transformation that respects flow conser-
vation. Consequently, we can replace the aox expression by adx = ∑i:(i,d)∈A xid = 1.
Another possible replacement is to identify any subset of arc-flow variables that
necessarily sum to one in any path-flow solution. For example, the subset of arcs on
which a vehicle travels at some specified time value is acceptable because exactly
one of these must be taken.

Combining (2.39) and (2.40) together with the dual values πππ = [πi]i∈N and πo
leads us to a formulation for the SP given by

c̄(πππ,πo) = min
x∈X

cx−∑
i∈N

πi aix−πoaox

= min
x∈X ∑

(i, j)∈A
ci jxi j−∑

i∈N
πi( ∑

j:(i, j)∈A
xi j)−πo( ∑

j:(o, j)∈A
xo j)

= min
x∈X ∑

(i, j)∈A
c̃i jxi j,

(2.41)

where grouping the objective coefficients of each xi j-variable in (2.41) leads to an
adjusted cost c̃i j for arc (i, j) ∈ A in the SP (Exercise 2.7).

Note 2.24 (Reducing costs needs not lead to reduced costs.) One sometimes finds in
the literature a misleading notion that c̃i j is the reduced cost c̄i j of arc-flow variable
xi j. It is not and the reason is simple: variable xi j actually belongs to the SP, so
its reduced cost certainly cannot be computed with the dual variables of another
program, namely the MP. The reader can also verify that formulating the SDVSP as
a network flow problem in xi j-variables does not lead to arc reduced costs computed
as in (2.41), see Exercise 2.8.
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Zero schedule

We again introduce the zero schedule by using a supplementary variable, in this case
by adding to A the reverse arc (d,o) at zero-cost to form the network Gdo = (N,Ado),
where Ado = A∪{(d,o)}, depicted in Figure 2.13.

o d. . . I . . ....
...

xdo

Fig. 2.13: Network Gdo with arc (d,o) to model the zero schedule.

A formulation for the SP is given by

c̄(πππ,πo) = min ∑
(i, j)∈A

c̃i jxi j (2.42a)

∑
j:(o, j)∈A

xo j = xdo (2.42b)

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 ∀i ∈ N (2.42c)

∑
j:( j,d)∈A

x jd = xdo (2.42d)

xi j ≥ 0 ∀(i, j) ∈ Ado (2.42e)
xdo ≤ 1. (2.42f)

A (binary) solution to (2.42) either gives a schedule represented by a unit-cycle
composed of an od-path completed by the reverse arc with xdo = 1 or the zero
schedule with xdo = 0 and xi j = 0, ∀(i, j) ∈ A. To account for the zero schedule in
the IMP (2.38), the encoding is slightly modified as

cx = ∑
(i, j)∈A

ci jxi j, aix = ∑
j:(i, j)∈A

xi j, ∀i ∈ N, and aox = ∑
j:(o, j)∈A

xo j = xdo, (2.43)

where only the column-coefficient aox is modified to no longer be the constant
term 1.

Note 2.25 (Complementary/orthogonal columns.) ÏThe solution of a shortest path
problem by dynamic programming provides a tree of shortest paths from the origin
node o to all other nodes, see Ahuja et al. (1993, §4.3). Saving this solution tree
is done via pointers to predecessors. Some implementations may even discard the
destination node d to post-process it after resolution. A posteriori, those ending at a
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trip node can be completed to the depot. In Figure 2.14, there is only one shortest
path of cost 3 which is o24d (in dashed pattern). Because nodes 2 and 3 are not
connected to the destination node d (not end trips), the only additional path we
can deduce is o25d (dotted completion) of cost 3 + 2 = 5. It is common practice
to retrieve several of these od-paths with negative reduced cost. For example, we
can select a shortest one, remove the corresponding trip-nodes from N, and greedily
select another path that covers different trips in a complementary way. This can also
be done in the case of different pricing problems. In this fashion, we in fact produce
orthogonal columns which likely make different improving contributions to the set
partitioning RMP. Such columns can, as an appreciated side effect, even make a
contribution to integer feasible solutions to the set partitioning model (2.38).
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(a) Small network
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(b) Tree of shortest paths

Fig. 2.14: Solving the shortest path problem by dynamic programming.

Example 2.5 Vehicle routing and crew scheduling problems

� The purpose of this example is to shortly introduce a large class gener-
alizing the above routing problem. Indeed, several routing and schedul-
ing applications in the airline and rail industries are designed on time-
space acyclic networks. Many are however on networks containing cy-
cles, in practice much more difficult to solve.

Similarly to (2.38), a large variety of vehicle routing and crew scheduling problems
can be formulated as set partitioning models where the right-hand side imposes
that each task is performed exactly once (e.g., aircraft routing), or as set covering
models where tasks are covered at least once (e.g., pilot schedules, where a pilot
may travel as a passenger for repositioning), or as generalized partitioning/covering
models, where the right-hand side is a positive integer vector asking for covering
each task a certain number of times (e.g., flight attendant schedules and locomotive
itineraries). Binary columns encode vehicle routes or crew schedules, where a unit-
entry represents a task that is performed, see Chapter 5 for an extensive presentation.
Figures 2.15 and 2.16 recollect our experience that the world of vehicle routing and
crew scheduling is not without a certain fascination effect to children of all ages.
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(a) 2-year-old Jacques (b) 7-month-old Jean Bertrand

Fig. 2.15: Initiation to vehicle routing.

Because vehicles and crews are intimately related, these models generalize the
SDVSP in various ways. For example, we can account for heterogeneous fleets
and/or several depots in vehicle routing, discriminate at a workforce level in crew
scheduling where a preferential bidding system is in place, and also include a large
number of operating rules. These relate mostly to maintenance schedules in vehicle
fleet planning and to worker collective agreement regulations in crew scheduling.
In recent years, computers and solution methods have become powerful enough to
think about solving both types of problems simultaneously.

In such models, we can have several pricing problems and the columns are gen-
erated by solving constrained shortest path problems on appropriate networks, for
example, on time-space networks where nodes represent locations at specific times
while arcs represent activities such as trains, flight legs, deadheads, lunch and break
periods, etc. The master problem manages the vehicle routes and/or crew schedules
while a column generator handles constraints specific to a single route or schedule,
for example, the time at which a customer is serviced or an aircraft maintenance is
done, see Desrosiers et al. (1995) and Desaulniers et al. (1998a).

The multiple depot vehicle scheduling problem (MDVSP) is one such immediate
generalization of the SDVSP, see Exercise 2.9. In this problem, we impose that a ve-
hicle returns to its departing depot such that the MDVSP can no longer be formulated
as a network flow problem. In fact, Bertossi et al. (1987) show that it is NP-hard if
it involves more than one depot. This gives rise to one pricing problem per depot,
again formulated as a shortest path problem. The IMP remains a set partitioning
model, with side constraints for the number of vehicles available at each depot. Due
to its simplicity as there are no operating rules to integrate into the implementation,
the MDVSP is often used to easily test acceleration strategies to overcome degener-
acy in problems solved by the column generation algorithm (Oukil et al., 2007).
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Fig. 2.16: Léa’s perception of vehicle routing (Desrosiers et al., 1995) and, later on,
airline crew scheduling.

Example 2.6 Aircraft routing with schedule synchronization

� In this example, we encode three types of information for an aircraft
route: the cost, the operated flights, and the time at which they are
scheduled. These time values are synchronized within an interval from
one day to the other.

This aircraft routing problem with schedule synchronization (ARPSS) occurs in the
long-term planning process of airlines (Ioachim et al., 1999). It involves operating,
at minimum cost, a set of flights which present schedule flexibility on the departure
time. For each flight, the data includes an identifier, the origin and destination air-
ports, a duration, a minimum ground time at the destination and a time window on
the departure. Waiting is permitted before and within the time windows at no cost.
A flight is also characterized by the day of the week when it is operated. For flights
with the same identifier that are flown on different weekdays, the departure has to
be scheduled at the same time every day, thus imposing schedule synchronization.

Let N denote the set of flights to be operated during a week and M the set of group
identifiers for flights that must respect the same departure time. Let mi ∈M denote
the group identifier of flight i ∈ N. Hence, all pairs of flights i, j ∈ N with mi = m j
must have the same departure time. We assume that all time values are integer and
that the departure time windows [ai,bi] and [a j,b j] of two such synchronized flights
i and j satisfy ai = (a j mod 1440) and bi = (b j mod 1440), where 1 440 minutes
correspond to 24 hours.

Let K denote the set of available aircraft which are assumed to be of different
types, i.e., with different operating costs, seating capacities, etc. For each aircraft
k ∈ K, define a network Gk

do = (V k,Ak), where V k is the set of nodes and Ak the set
of arcs (see Figure 2.13 for a similar representation). Let ok and dk denote the source
and sink nodes in Gk

do, while Nk are the nodes representing flights compatible with
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aircraft k (e.g., with an appropriate capacity). To ease the presentation and avoid
vector dimension inconsistencies, flights in N \Nk are also incorporated (as dummy
nodes) in V k. Hence, V k = N ∪{ok,dk}. For i ∈ N, let di and si denote the duration
and minimum ground time, respectively, and assume aok = bok = 0.

The arc set Ak contains three types of arcs: the return arc (dk,ok), the depot arcs,
and the flight connection arcs. The depot arcs are (ok,dk) to account for an unused
aircraft, and the pair (ok, i),(i,dk), for all i ∈ Nk, to link each compatible flight with
the source and sink nodes. A flight connection arc (i, j) for i, j ∈ Nk, corresponds to
a feasible connection between a flight arriving at an airport and one departing from
the same airport; hence ai +di + si ≤ b j. For the sink nodes, let

adk = 0 and bdk = max
i∈Nk

bi +di + si, ∀k ∈ K. (2.44)

Finally, a cost ck
i j, (i, j) ∈ Ak, depends on the objective of the optimization pro-

gram. The capital and fixed costs for aircraft k are assigned to arc (dk,ok) while the
operational cost of a flight i ∈ Nk performed by aircraft k (which may include loss
revenues for not assigning enough seating capacity) is assigned to all arcs with a tail
at node i.

Routes and schedules

A route for aircraft k comprises the selected flights, their departure times, and the
total cost. The k-th pricing problem uses the variables

• xk
i j, (i, j) ∈ Ak: 1 if arc (i, j) is selected, 0 otherwise;

• xk
i , i ∈ N: 1 if flight i is operated by aircraft k, 0 otherwise;

• tk
i , i ∈ N: departure time of flight i if operated by aircraft k, 0 otherwise.

Feasible routes, where xk
dkok = 1, satisfy the following path and time constraints:

∑
j:(ok, j)∈Ak

xk
ok j = ∑

j:( j,dk)∈Ak

xk
jdk = xk

dkok = 1 (2.45a)

∑
j:(i, j)∈Ak

xk
i j− ∑

j:( j,i)∈Ak

xk
ji = 0 ∀i ∈ N (2.45b)

∑
j:(i, j)∈Ak

xk
i j = xk

i ∈ {0,1} ∀i ∈ N (2.45c)

xk
i j(t

k
i +di + si− tk

j )≤ 0 ∀(i, j) ∈ Ak \ (dk,ok) (2.45d)

0≤ tk
i ≤ bixk

dkok ∀i ∈ {ok,dk} (2.45e)

aixk
i ≤ tk

i ≤ bixk
i ∀i ∈ N (2.45f)

xk
i j ∈ {0,1} ∀(i, j) ∈ Ak. (2.45g)
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Flow conservation for the path constraints appear in (2.45a) for the depot nodes ok

and dk, and in (2.45b) for the flight nodes. Constraints (2.45c) indicate if flight i
is operated or not by aircraft k. Time windows at the depot and flight nodes are
given in (2.45e) and (2.45f), respectively. Non-linear constraints (2.45d) model the
compatibility requirements between the flow and time variables: if flight j imme-
diately follows flight i, both operated by aircraft k, then xk

i j = 1 and departure time
tk

j ≥ tk
i +di+si (the sum of arrival and minimum ground times of flight i). A solution

to model (2.45) is in terms of

xk = [xk
i j](i j)∈Ak , tk = [tk

i ]i∈N , and [xk
i ]i∈N . (2.46)

Note that the zero schedule for which the cost is zero reveals itself if xk
dkok = 0,

where not only the flow variables are zero but also the time variables.

Although the objective function of the pricing problem is discussed later, we can
already write the components of the column encoding for aircraft k as

ck(xk, tk) = ∑
(i, j)∈Ak

ck
i jx

k
i j (route cost) (2.47a)

ak
i (x

k, tk) = xk
i = ∑

j:(i, j)∈Ak

xk
i j ∀i ∈ N (selected flights) (2.47b)

bk
i (x

k, tk) = tk
i ∀i ∈ N (flight departure times) (2.47c)

ak
o(x

k, tk) = xk
dkok . (aircraft availability) (2.47d)

Integer master problem

The IMP can be written as a set partitioning type formulation with additional same-
departure-time constraints. Let (xk

p, tk
p), p ∈ Pk, be a specific path-solution to the

k-th pricing problem, where Pk is the set of feasible routes, and let λk
p denote the

associated variable.
Recall that M is the set of group identifiers for flights that must respect the same

departure time and mi ∈ M denotes the group identifier of flight i ∈ N, that is, all
pairs of flights i, j ∈N with mi = m j must have the same departure time. Figure 2.17
shows how we handle the synchronization constraints in the IMP with the help of
translated time variables tmi , for mi ∈M and i ∈ N.

ai bi

∑
k∈K

tk
i = ∑

k∈K
∑

p∈Pk

tk
ipλ

k
p

tmi

Fig. 2.17: Translated time variable tmi , mi ∈M and i ∈ N.



2.4 Examples 89

For a flight i ∈ N, the variable tmi ≥ 0 represents the slack between the beginning
of the flight time window ai and the optimized departure time, that is,

tmi = ∑
k∈K

tk
i −ai, where tk

i = ∑
p∈Pk

tk
ipλ

k
p (= ∑

p∈Pk

bk
ipλ

k
p) (2.48)

is a combination of the various path-solutions. Then the IMP reads as

z⋆IMP = min ∑
k∈K

∑
p∈Pk

ck
pλ

k
p (2.49a)

s.t. ∑
k∈K

∑
p∈Pk

ak
ipλ

k
p = 1 [πi] ∀i ∈ N (2.49b)

∑
k∈K

∑
p∈Pk

bk
ipλ

k
p− tmi = ai [βi] ∀i ∈ N (2.49c)

∑
p∈Pk

ak
opλ

k
p = 1 [πk

o ] ∀k ∈ K (2.49d)

λ
k
p ≥ 0 ∀k ∈ K, p ∈ Pk (2.49e)

∑
p∈Pk

xk
i jpλ

k
p = xk

i j ∈ {0,1} ∀k ∈ K,(i, j) ∈ Ak. (2.49f)

The objective function (2.49a), the partitioning constraints (2.49b), and (2.49d)
describe a minimum cost aircraft assignment problem. The synchronization con-
straints between different aircraft performing flights subject to same-departure-time
constraints are given in (2.49c). We here assume that each flight in N must be syn-
chronized with at least another one. Trivial bounds can be imposed on tmi , that is,
0≤ tmi ≤ bi−ai for any given flight i∈N but since they are redundant with the con-
straints (2.45f) in the pricing problems, they do not appear in the above formulation.

Integer pricing problems

The linear relaxation MP is solved by column generation. Using the dual values
πππ = [πi]i∈N for the partitioning constraints, βββ = [βi]i∈N for the synchronization con-
straints, and πk

o , k ∈ K, for the aircraft availability constraints, the ISPk reads

c̄k(πππ,βββ ,πk
o) = min

(2.45), (2.47)
ck(xk, tk)−∑

i∈N
πiak

i (x
k, tk)−∑

i∈N
βibk

i (x
k, tk)−π

k
oak

o(x
k, tk)

= min
(2.45)

∑
(i, j)∈Ak

ck
i jx

k
i j−∑

i∈N
πixk

i −∑
i∈N

βitk
i −π

k
oxk

dkok , (2.50)

where we substitute the encoding functions (2.47) in the second line. A specialized
dynamic programming algorithm is used to solve the ISPk as a shortest path prob-
lem with time windows and linear node costs, where the time variables are pushed
forward or backward depending on their dis-synchronized values (Ioachim et al.,
1998).
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Practical observations

• The time variables tm, m∈M, are not generated in (2.49) but present in the RMP
at the start. These are static variables, see Section 2.3, p. 66.

• To reduce numerical instability with the simplex software used to re-optimize
the RMP, we redefine the bk

i (xk, tk) function (2.47c) to

bk
i (x

k, tk) = tk
i −aixk

i , ∀i ∈ N (relative departure times of flights). (2.51)

This new function transforms the departure time of a flight into the slack
obtained with respect to the beginning of the time window. The column-
coefficients

bk
ip = tk

ip−aixk
ip, i ∈ N, (2.52)

are reduced to values less than or equal to 1 440 minutes (a day) instead of
values of up to 10 080 minutes (a week). With this new interpretation of bk

ip, the
constraints (2.49c) are replaced by

∑
k∈K

∑
p∈Pk

bk
ipλ

k
p− tmi = 0 [βi] ∀i ∈ N. (2.53)

Ioachim et al. (1999) report an average decrease of 30 % on the computation
time of the MP with this modified formulation.

• To further reduce the computation time, they introduce a tolerance on the right-
hand side of the synchronization constraints (2.49c) or (2.53). Because the time
data in their 12 test problems is given in multiples of 5 minutes, they use a tol-
erance of ±2 minutes implemented with additional upper bounded static vari-
ables, see Exercise 2.18. Combined with a few other strategies (multiple gen-
erated columns and specialized branching rules), the average total computation
time is reduced by 97.6 % when compared to their first implementation.

• The solver used for the ISPk (2.50) can only generate schedules for which at
least one of the time variables is either at its lower or upper bound. This is due to
the positive or negative penalties on the time variables in (2.50). It may happen
that the same path is generated more than once but with different time values.
Convex combinations are then used to achieve synchronization. With respect
to the IMP, the fractional values of the λ -variables are no concern because
integrality is requested on the binary x-variables computed in (2.49f). This is an
announcement of the Dantzig-Wolfe decomposition principle applied to integer
linear programming in Chapter 4.
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2.5 Reference Notes

Introduction Over the last 65 years, there have been many important contributors
to column generation and branch-and-price. Ford and Fulkerson (1958) and Jewell
(1958, 1966) have started the stream of research in the Western world, independently
suggesting a similar multi-commodity flow algorithm considered as a precursor to
column generation. This solution method is used by Paul Gilmore and Ralph Go-
mory for solving cutting stock problems (Gilmore and Gomory, 1961, 1963). At
that time, only the linear relaxation of integer linear programs is solved to optimal-
ity. There were no known tools for obtaining optimal integer solutions yet, a fact
mentioned by Vašek Chvátal in his book (Chvátal, 1983).

Kantorovich (1939) is often cited with respect to the cutting stock problem but
was, until recently, mistakenly associated with a weak formulation. In this seminal
paper, the author considers a pattern formulation but assumes that the number of
such patterns is no concern. Much less known, the subsequent work of Kantorovich
and Zalgaller (1951) tackles this issue. While it only exists in Russian and is still not
readily available, it contains undeniable evidence of a column generation scheme
devised to solve cutting problems of industrial nature by identifying patterns on-
the-fly using “dynamic programming.” Uchoa and Sadykov (2024) finally give due
credit to this and correct the historical perspective.

Column generation is also used in the context of the Dantzig-Wolfe decompo-
sition (Dantzig and Wolfe, 1960, 1961) when the extended reformulation in terms
of the extreme points and extreme rays comprises too many variables, for example,
see Dzielinski and Gomory (1965) to generate production schedules for the capaci-
tated lot-sizing problem and Appelgren (1969, 1971) for a ship scheduling problem
obtained from a Swedish shipowning company: “Problems with about 40 ships and
50 cargoes are solved in about 2.5 minutes on an IBM 7090.”

In these early days, the book “Optimization Theory for Large Systems” by Las-
don (1970) is certainly one of the most important works on column generation, and
more generally, on decomposition methods. Because of its implementation difficul-
ties, slow convergence for obtaining optimal linear solutions, and lack of efficient
methods for handling integrality of the decision variables, column generation is put
aside after about ten years, researchers turning their heads towards Lagrangian re-
laxation and subgradient algorithms for the next decade, and still in use today, see
for example Held and Karp (1970, 1971), Geoffrion (1974), Held et al. (1974),
Shapiro (1979a), Fisher (1981), and Guignard (2003). We come back on some of
these aspects in Chapter 6, Dual Point of View.

David Ryan from New Zealand is one of the major contributors in the 1980s.
Together with Brian Foster, he notably proposes a branching rule for set partitioning
formulations known as Ryan-Foster branching that can be applied together with
the column generation algorithm (Ryan and Foster, 1981). His research includes
urban and airline crew scheduling applications, e.g., Falkner and Ryan (1988), Ryan
(1992), Butchers et al. (2001), and Weide et al. (2010), as well as solution strategies
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for highly degenerate set partitioning models, e.g., Ryan and Falkner (1988) and
Ryan and Osborne (1988).

At the same time, on the other side of the earth, the Montréal French Connec-
tion takes another look at the column generation algorithm: François Soumis and
Jacques Desrosiers, later joined by Pierre Hansen in the ’90s, mainly in the field
of vehicle routing and crew scheduling applications while developing various con-
strained shortest path algorithms as column generators, the first one being “Plus
court chemin avec contraintes d’horaires” (Desrosiers et al., 1983) published in
French, see Chapter 5. During the last forty years, more than two hundreds master
and doctoral students together with skilled programmers have worked on various as-
pects of column generation at the GERAD and CIRRELT research centers, several
of them becoming well-respected university researchers as well. Initiated in 1981 by
François and Jacques, the GENCOL solver developed at GERAD is commercialized
by GIRO for bus driver scheduling and AD OPT for optimizing air transportation
activities.

In the 1990s, Cynthia Barnhart, Ellis Johnson, George Nemhauser, and Martin
Savelsbergh propose the name Branch-and-Price to highlight the integration of col-
umn generation within a branch-and-bound tree (Barnhart et al., 1998). The Georgia
Tech group is well known for its work on various airline problems, see for example
Barnhart et al. (1995), Klabjan et al. (2001), Klabjan et al. (2002), Cohn and Barn-
hart (2003), and especially the survey paper Barnhart et al. (2003) with its large
number of references on the usage of the column generation algorithm.

In an early paper, George Nemhauser also derives cutting planes defined on the
master problem variables (Nemhauser and Park, 1991), which are later generalized,
notably by Vanderbeck (2000, 2011) and Jepsen et al. (2008).

It is impossible to name all the past and current contributors to column generation
and branch-and-price, although several are mentioned here and there in the book as
we cover various subjects. However, let us mention some surveys that appeared over
the years:

• Solomon and Desrosiers (1988), Desrosiers et al. (1995), Desaulniers et al.
(1998a), and Feillet (2010) on constrained vehicle routing and crew schedul-
ing problems;

• Vanderbeck (2005), Vanderbeck and Savelsbergh (2006), and Vanderbeck and
Wolsey (2010) on reformulation and decomposition of integer programs.

Section 2.1 This section more or less follows the lines of Lübbecke and Desrosiers
(2005). The index set X for the λx-variables of the MP is a notation that easily
transfers to the Dantzig-Wolfe decomposition principle for linear and integer lin-
ear programs (Chapters 3–4), where the reformulations are performed either by the
convexification or discretization of the domain of the pricing problem. It is as well
used with the Lagrangian relaxation (Chapter 6). Another introductory text is “A
primer in column generation” (Desrosiers and Lübbecke, 2005), the first chapter of
the book “Column generation” (Desaulniers et al., 2005). Observe in (2.3) that the
functions c(x) and a(x) for respectively the cost and column-coefficients for every
variable λx are always computed in the pricing problem.
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Initializing column generation is often done using artificial variables. Tobias
Achterberg coins an alternative method as Farkas pricing in his PhD dissertation
(Achterberg, 2007), under the supervision of Martin Grötschel at the Technical Uni-
versity of Berlin. He is the creator and first developer of SCIP (scipopt.org), actually
recognized as one of the fastest non-commercial solvers for mixed-integer linear and
non-linear programs. It is also a framework for branch-cut-and-price, regularly used
at the School on Column Generation, e.g., Paris (2018, 2014) and Darmstadt (2010).
The latest documentation update is Bestuzheva et al. (2021).

At the Université de Bordeaux, Sadykov and Vanderbeck (2021) develop BaPCod
(swmath.org/software/9871), a generic branch-and-price code. It solves mixed-
integer linear programs by the application of a Dantzig-Wolfe reformulation on an
original or compact model, a technique that we see in the two forthcoming chapters.
It is actually available under the name Coluna (atoptima.com), an open-source
platform.

Good to Know Notes 2.13–2.14 explain that solving several subproblems in parallel
might not be very efficient because each one is cannibalizing the others with the
same dual information. However, there are several attempts, for example, see Basso
and Ceselli (2022).

More to Know Static and auxiliary variables are widely used for soft constraints, a
nice application in column generation being the Aircraft routing with schedule syn-
chronization (Ioachim et al., 1999). They also come from a priori known or imposed
dual constraints such as dual-optimal inequalities and within stabilized column gen-
eration for highly degenerate problems (Valério de Carvalho, 2005; Ben Amor and
Valério de Carvalho, 2005; Ben Amor et al., 2006b; Ben Amor and Desrosiers,
2006; Oukil et al., 2007; Ben Amor et al., 2009; Gschwind and Irnich, 2016). These
are also used in a crossover method to recover a primal basic optimal solution given
an optimal primal-dual pair obtained via an interior point method (Ben Amor et al.,
2006a): in essence, simply add very small dual boxes around optimal dual values,
discard primal variables that must not be positive in any optimal solution, and re-
solve the primal problem.

The shortest path problem with time windows, for which pseudo-polynomial
time algorithms are available (Desrosiers et al., 1983; Desrochers, 1986; Desrochers
and Soumis, 1988c,b), is an example of a relaxed pricing problem compared to the
strongly NP-hard elementary version (Feillet et al., 2004) as it allows for multi-
ple visits at nodes, hence leading to a relaxed master problem (Desrosiers et al.,
1984) where the undesired columns are eliminated during the branch-and-bound.
The same applies for various elementary resource constrained shortest path prob-
lems, see Chapter 5.

The VRPTW computer code used for the results of Figures 2.4–2.5 and several
subsequent ones has been designed by Stefan Irnich at Johannes Gutenberg Univer-
sity Mainz. The implementation has matured with major contributions from mem-
bers of his team: Claudia Bode, Jean Bertrand Gauthier, Timo Gschwind, Katrin
Heßler, Timo Hintsch, Ann-Kathrin Rothenbächer, David Sayah, Konrad Steiner,
and Christian Tilk.

https://scipopt.org
https://swmath.org/software/9871
https://atoptima.com/about/scientific_background
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Examples
2.1 One-dimensional cutting stock problem and 2.2 Cutting stock problem with
rolls of different widths. Starting with Gilmore and Gomory (1961, 1963), this
problem has been extensively studied in conjunction with the column generation
algorithm, see for example, Farley (1990); Vanderbeck (1999, 2000); Belov and
Scheithauer (2002, 2006); Valério de Carvalho (2002); Ben Amor and Valério de
Carvalho (2005); Vanderbeck (2011); Gondzio et al. (2013); Delorme et al. (2016).
For pseudo-polynomial formulations for the cutting stock problem, see Delorme and
Iori (2020).

2.4 Single depot vehicle scheduling problem. This is a pedagogical alternative to
the cutting stock problem as an application of the column generation algorithm. It
can be formulated as a network flow problem in an acyclic graph (Desrosiers et al.,
1995, §2.1, p. 38) or, as proposed here, a set partitioning model whose path-flow
variables are generated via the simplest label-setting algorithm, see Ahuja et al.
(1993, §4.4 Shortest path problems in acyclic networks).

2.6 Aircraft routing with schedule synchronization. The ±2 minutes tolerance on
the synchronization constraints (Ioachim et al., 1999) for the flight departure times
comes from Nicolas Bélanger, a programmer of the GENCOL team at the GERAD
research center. It results in a drastic decrease of the computation times. Then, there
was a fundamental question Jacques asked: Can we do the same in the dual space?
This was the starting point of the stabilized column generation, with a research paper
a month later (du Merle et al., 1999).

Exercises
2.19 Degenerate or small step-length pivots. The evaluation of the probabilities us-
ing the Hypergeometric distribution is new. These may explain the computational re-
sults obtained with the simplex algorithm applied to network flow problems, where
the ratio of degenerate pivots to total pivots varies between 70 % and 90 %, see
Ahuja et al. (1993, Figure 18.7).

Fig. 2.18: David Ryan (right) and his friend Michael Saunders from Stanford Uni-
versity (Tongariro National Park, New Zealand, 2004-09-12).
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Exercises

2.1 Ralph Gomory
Who is Ralph Gomory, one of the coauthors of the first large-scale application of
column generation (Gilmore and Gomory, 1961)? List a few of his main contribu-
tions to the field of operations research.

2.2 Finiteness of X and z⋆MP
We here consider two aspects of finiteness.
(a) Justify that X in (2.1) must comprise a finite number of indices.
(b) Mathematically express in terms of the λ -variables that z⋆MP is bounded.

2.3 Cutting stock problem with rolls of different width
Consider the cutting stock problem with rolls of different width in Example 2.2.
(a) Show that if W k1 <W k2 , we can add ∑

m
i=1 wix

k2
i ≥W k1 +1 to the ISPk2 .

(b) How to impose nk available rolls of width W k, for all k ∈ K? Do not forget the
impact on the ISPk.

2.4 Cutting stock problem with rolls of different width: a single subproblem
Reconsider the cutting stock problem with rolls of different width in Example 2.2.
We have formulated the MP using one subproblem per roll width. In this exercise,
we consider to formulate the MP using a single subproblem which corresponds to
solving simultaneously all knapsack problems. The IMP reads as

z⋆IMP = min ∑
x∈X

cxλx

s.t. ∑
x∈X

aixλx = bi [πi] ∀i ∈ {1, . . . ,m}

λx ∈ Z+ ∀x ∈ X,

(2.54)

where X=
{

x = [xk]k∈K | ∑m
i=1 wi xk

i ≤W k,∀k ∈ K
}

; cx =∑k∈K W k−∑
m
i=1 wixk

i ; and
aix = ∑k∈K xk

i , ∀i ∈ {1, . . . ,m}. Note that xk
i ∈ Z+, ∀i ∈ {1, . . . ,m},k ∈ K, and

x ∈ Zm|K|
+ .

(a) Formulate the ISP.
(b) Compare the IMP formulations with respect to solution symmetry, column in-

terpretation, difficulty of solving the MP and ISP, fractional λ -variable.

2.5 Farley’s lower bound
We place ourselves under the assumptions of Corollary 2.2, that is, |K| = 1 and
cx = 1, ∀x ∈ X.
(a) Show that given any πππ ≥ 0, the vector π̄ππ = πππ

1−c̄(πππ) is dual feasible.

(b) Show that πππ⊺b
1−c̄(πππ) ≤ z⋆MP is a special case of Farley’s bound l(πππ) ·πππ⊺b≤ z⋆MP.

(c) Show that given optimal dual values πππ ≥ 0 to the current RMP and c̄(πππ) < 0,
the lower bound πππ⊺b

1−c̄(πππ) ≤ z⋆MP is strictly better than zRMP +κ c̄(πππ)≤ z⋆MP.
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2.6 Sufficient optimality condition
Show that the termination condition c̄(πππ)≥ 0 is a sufficient but not necessary opti-
mality condition. (Hint: A counter example is sufficient.)

2.7 Single depot vehicle scheduling problem: adjusted arc costs
For the SDVSP (Example 2.4), grouping the coefficients of each xi j-variable in the
objective function of the SP (2.41) leads to an adjusted arc cost c̃i j, (i, j) ∈ A, com-
puted as

∑
(i, j)∈A

c̃i jxi j = ∑
(i, j)∈A

ci jxi j−∑
i∈N

πi( ∑
j:(i, j)∈A

xi j)−πo( ∑
j:(o, j)∈A

xo j)

Give the mathematical expressions for the adjusted arc cost in

• c̃i j, ∀i ∈ N,(i, j) ∈ A;
• c̃o j, ∀(o, j) ∈ A.

2.8 Single depot vehicle scheduling problem: arc-flow formulation
Let us consider the following network flow formulation for the SDVSP (Exam-
ple 2.4), with non-negative integer variables xod and xdo, binary variables xi j for
arcs (i, j) ∈ I ∪ ({o} × N) ∪ (N × {d}), and variables xi = 1, ∀i ∈ N. Let A =
I∪ ({o}×N)∪ (N×{d})∪{(o,d)} and Ado = A∪{(d,o)}.

z⋆LP = min ∑
(i, j)∈A

ci jxi j

s.t. ∑
j:(i, j)∈A

xi j = xi [αi] ∀i ∈ N

− ∑
j:( j,i)∈A

x ji =−xi [βi] ∀i ∈ N

∑
j:(o, j)∈A

xo j = xdo [βo]

− ∑
i:(i,d)∈A

xid =−xdo [βd ]

xi = 1 ∀i ∈ N

0≤ xdo ≤ v

xi j ≥ 0 ∀(i, j) ∈ A.

(2.55)

The above formulation comprises 2n flow conservation equations for the trips and
two more for the origin and destination depots. There is also a dual variable identi-
fied within bracket for every flow conservation equation.
(a) Draw the network, position the 2n+2 dual variables on the appropriate nodes.

Hint: There are 2n+2 nodes: βo obviously goes on node o, βd on d, αi on . . .
(b) Give the mathematical expressions of the reduced cost for all the arcs:

c̄od ; c̄do; c̄i, ∀i ∈ N; c̄i j, ∀(i, j) ∈ A.
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2.9 Multiple depot vehicle scheduling problem
The MDVSP often occurs in urban transit bus scheduling, as follows. Consider a
bus timetable that specifies a set N of n bus trips to operate, each one defined by a
pair of start time and location, and a pair of end time and location. Consider also
a homogeneous fleet of vehicles that are housed in a set K of depots, where there
are vk vehicles available in depot k ∈ K. The problem consists of determining a set
of bus schedules such that each bus trip i ∈ N belongs to exactly one schedule, the
vehicle availability is met, and the total operating cost is minimized. A schedule
must start and end at the same depot (depot restriction constraints) and can be seen
as a sequence of trips and deadheads. The cost structure includes travel costs and a
fixed cost per bus used.
(a) Formulate the MDVSP using the following notation: the binary variable λxk

takes value 1 if and only if the schedule indexed by xk ∈ Xk is selected. Such a
schedule has a cost cxk and it is represented by axk = [aixk ]i∈N , where the binary
coefficient aixk takes value 1 if trip i is operated in schedule xk, and 0 otherwise.

(b) Associate a commodity to each depot by adapting the network Gdo =(N,Ado) as
seen on Figure 2.13 with an index k, that is, let the network Gk

do = (Nk,Ak
do) for

depot k, where Nk =N∪{ok,dk}, Ak = I∪({ok}×N)∪(N×{dk})∪{(ok,dk)},
Ak

do = Ak ∪{(dk,ok)}, and arc (dk,ok) be utilized to count the number of buses
used and also to model the zero-schedule. Formulate the MDVSP as a multi-
commodity network flow model, with non-negative integer arc-variables based
on Figure 2.19.

ok dk. . . I . . ....
...

xk
do

Fig. 2.19: Network Gk
do = (Nk,Ak

do) with arc (dk,ok) to model the zero schedule.

(c) Show that if we drop the depot restriction constraints, we can model this relaxed
problem as a Single depot vehicle scheduling problem. Draw an appropriate
SDVSP network for a 2-depot MDVSP. Using such a network, show how to find
the minimum number of buses v⋆ for the MDVSP.

2.10 Maximum flow problem: arc-flow and path-flow formulations
Figure 2.20 depicts an instance of the maximum flow problem between the origin
node o and destination node d on the network Gdo = (V,Ado), where V = N∪{o,d}
is the set of nodes, Ado = A∪{(d,o)} is the set of arcs, and each arc (i, j) ∈ A has
an upper bound ui j.
(a) Give an arc-flow formulation.
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G = (N,A)o d

Fig. 2.20: Maximum flow on network Gdo = (V,Ado).

(b) Propose a path-flow formulation solvable by column generation, that is, provide
the MP and SP formulations, both being maximization programs. In the latter,
provide the encoding functions cx and ax, where x = [xi j](i, j)∈A. In the former,
use λx for the master variables and πππ = [πi j](i, j)∈A for the dual variables.

(c) What are the possible values for the dual variables of the RMP?
(d) Show that there is only one possible value for c̄(πππ) > 0, computed here as the

maximum reduced cost?
(e) Given πππ⋆ at the last column generation iteration, give an x-solution for the SP.

2.11 Maximizing the smallest reduced cost within column generation
One desires to solve the following MP (in standard form) by the column generation
algorithm but using a different pivoting rule:

z⋆MP = min ∑
x∈X

cxλx

s.t. ∑
x∈X

axλx = b [πππ]

λx ≥ 0 ∀x ∈ X.

(2.56)

(a) Give a linear programming model that optimizes the dual vector πππ ∈ Rm such
that the smallest reduced cost is as large as possible. In other words, formulate
the following SP as a linear program:

c̄⋆ = max
πππ∈Rm

min
x∈X

c̄x = max
πππ∈Rm

min
x∈X

cx−πππ
⊺ax. (2.57)

(b) Write the dual formulation of the proposed linear program.
(c) Give an interpretation in the context of a network flow problem.

2.12 Tailing-off effect
Column generation is known to suffer from the tailing-off effect, that is, there is
smaller and smaller incremental progress per iteration the closer we get to an opti-
mal solution. Describe ways to lessen this effect in the context of solving an integer
master problem.
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2.13 Transforming a set partitioning problem into a set covering problem
Let the following set partitioning problem (SPP)

z⋆SPP = min
n

∑
j=1

c jx j

s.t.
n

∑
j=1

ai jx j = 1 ∀i ∈ {1, . . . ,m}

x j ∈ {0,1} ∀ j ∈ {1, . . . ,n},

(2.58)

with positive cost values, be feasible and define n j = ∑
m
i=1 ai j as the number of

elements in the column indexed by j. Garfinkel and Nemhauser (1972, Theorem 1,
p. 300) suggest selecting big-M > ∑

n
j=1 c j and prove that the set covering problem

(SCP) defined with costs

C j = c j +Mn j, ∀ j ∈ {1, . . . ,n}, (2.59)

has the same set of optimal solutions as the SPP. The proof goes as follows. Let
[x⋆j ] j=1,...,n be an optimal solution to the SPP, hence feasible for the SCP. Then

n

∑
j=1

C jx⋆j =
n

∑
j=1

c jx⋆j +M
n

∑
j=1

n jx⋆j =
n

∑
j=1

c jx⋆j +Mm < M(m+1). (2.60)

That is, any optimal SPP solution incurs a fixed cost Mm in the SCP formulation.
On the other hand, any feasible solution [x•j ] j=1,...,n to the SCP that over-covers the
right-side cannot be optimal because it incurs a larger cost:

n

∑
j=1

C jx•j =
n

∑
j=1

c jx•j +M
n

∑
j=1

n jx•j ≥
n

∑
j=1

c jx•j +M(m+1) > M(m+1). (2.61)

▶ Assume that (2.58) is rather an integer master problem in column generation.
Since ∑x∈X cx is then unknown, the above suggestion for big-M cannot be used.
Derive a suitable one.

2.14 Set covering vs. set partitioning
In the formulation (2.35) of the edge coloring problem, we use a set covering prob-
lem (SCP) rather than a set partitioning one (SPP):

z⋆SCP=min ∑
x∈X

cxλx

s.t. ∑
x∈X

axλx ≥ 1 [πππ ∈ Rm
+]

λx ∈ {0,1}, ∀x ∈ X

z⋆SPP=min ∑
x∈X

cxλx

s.t. ∑
x∈X

axλx = 1 [πππ ∈ Rm]

λx ∈ {0,1}, ∀x ∈ X.

(2.62)

Indeed, greater-than-or-equal-to-one inequalities are often used rather than equality
constraints. When and why?
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(a) In the SCP and SPP models, let Rx, for x ∈X, be the subset of rows covered by
the binary column ax and let cx = c(Rx) be the smallest cost for covering these
constraints. Show that the SPP can be equivalently replaced by the SCP if for
all subsets of rows R′x ⊆ Rx, we have c(R′x)≤ c(Rx).

(b) What are the primal and dual advantages of such a replacement?

2.15 Cutting stock problem: integer optimum bound
With respect to the One-dimensional cutting stock problem formulated with greater-
than-or-equal constraints as in (2.29), the optimum z⋆IMP takes an integer value for
the number of rolls cut. Given an optimal solution λλλ

⋆
MP of cost z⋆MP to the linear

relaxation, derive a valid upper bound on z⋆IMP.

2.16 Cutting stock problem with equality constraints
Assume in the CSP of Example 2.1 that we want to satisfy the item demands exactly,
that is, the IMP is formulated with equality constraints as

z⋆IMP = min ∑
x∈X

λx

s.t. ∑
x∈X

aixλx = bi [πi ∈ R] ∀i ∈ {1, . . . ,m}
λx ∈ Z+ ∀x ∈ X,

(2.63)

where X=

{
x ∈ Zm

+

∣∣∣∣ ∑
m
i=1 wi xi ≤W

}
is the set of solutions to the ISP as given by

the integer knapsack problem in (2.30). Given a roll of width 11 and a unique item
of width 2 with a demand of 4, answer the following questions:

(a) List all solutions of the ISP, i.e., all patterns x ∈ X.
(b) Express the IMP explicitly.
(c) Provide all optimal solutions to the IMP.
(d) List all the extreme points of conv(X).
(e) Can we find an optimal integer solution to the IMP with these extreme points?
(f) Solve the MP by column generation starting with an artificial variable of cost

big-M.
(g) What happens if we rather use

X=

{
x ∈ Zm

+

∣∣∣∣ m

∑
i=1

wi xi ≤W, xi ≤ bi,∀i ∈ {1, . . . ,m}

}

as the set of solutions to the ISP which thus excludes patterns with excess pro-
duction?

2.17 Edge coloring problem with equality constraints
Assume in the ECP of Example 2.3 that the IMP is formulated with equality con-
straints, that is, each edge is assigned exactly one color:
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z⋆IMP = min ∑
x∈X

λx

s.t. ∑
x∈X

xeλx = 1 [πe ∈ R] ∀e ∈ E

λx ∈ {0,1} ∀x ∈ X,

(2.64)

where X = {x ∈ {0,1}|E| | ∑e∈δ ({i}) xe ≤ 1, ∀i ∈ N} is the set of solutions to the
ISP as given by (2.37). Use the graph with five edges in Figure 2.21 to answer the
following questions:

a

b

c

d

e

Fig. 2.21: Edge coloring on a five-edge graph.

(a) List all solutions of the ISP, i.e., all matchings x ∈ X.
(b) Express the IMP explicitly.
(c) Provide all optimal solutions to the IMP.
(d) List all the extreme points of conv(X).
(e) Can we find an optimal integer solution to the IMP with these extreme points?
(f) Solve the MP by column generation starting with five artificial variables of cost

big-M.

2.18 Tolerance on the schedule synchronization constraints
In Example 2.6, formulate the IMP to allow for a tolerance of ±2 minutes on the
synchronized time values.

2.19 Degenerate or small step-length pivots
The Hypergeometric distribution H(n,K,N) is a discrete probability law describing
the following model: We simultaneously draw n balls from an urn containing K win-
ning balls amongst N, where n<N and K <N. The random variable X ∼H(n,K,N)
counts the number of winning balls drawn. For max(0,n+K−N)≤ k≤min(n,K),
the probability of picking exactly k winning balls is

Pr(X = k) =

(K
k

)(N−K
n−k

)(N
n

) , (2.65)

with an expected value E[X ] = n× K
N .

Assume that the RMP comprises N = 200 basic variables, where B denotes the
basis, out of which 40 are degenerate. If the entering variable λx with column ax
potentially modifies n = 20 basic variables, i.e., āx = B−1ax contains 20 non-zero
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elements, let us calculate the probability of having a degenerate pivot using the dis-
tribution H(20,20,200), where K = 40×50%, that is, we assume that a potentially
modified degenerate variable increases half of the time.

Let the random variable X ∼ H(20,20,200) denote the number of degenerate
variables that are asked to decrease with the selection of λx with E[X ] = 2. A de-
generate pivot occurs if X ≥ 1 which has a probability of

Pr(X ≥ 1) = 1−Pr(X = 0) = 89.1% (2.66)

(a) Compute the probability of a degenerate pivot for n = 5,10, . . . ,50 non-zero
elements in āx using the distribution X ∼ H(n,20,200).

(b) Let X ∼ H(n,20,500), where K = 20 basic variables lead to a degenerate pivot
or a relatively small step-length while N = 500 is the dimension of the basis.
For n = 5,10, . . . ,50 non-zero elements in āx, compute Pr(X ≥ 1).

2.20 Pseudo-code practice
Taking inspiration from the pseudo-code in Algorithm 2.2, write one that uses
Farkas pricing as an initialization method.
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Abstract This chapter describes the Dantzig-Wolfe decomposition principle applied
to linear programming. This decomposition principle is no more and no less than a
mathematical reformulation which uses the Minkowski-Weyl theorem to express
some constraints under an alternative geometric interpretation. As the resulting re-
formulation typically contains a huge number of variables, we carry the essence
of the column generation algorithm by deriving the master and pricing problems.
We then oppose the given linear program to its reformulation and finally explore
different examples.
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Introduction

Given a linear program, a Dantzig-Wolfe decomposition acts on it by grouping the
constraints in two subsets. The Minkowski-Weyl theorem is then used to reformu-
late one of these subsets and perform a substitution in the other and the objective
function. Using this mathematical transformation, the linear program gives way to
an equivalent formulation which is typically expressed with a huge number of vari-
ables. If solving this new formulation looks like a task fitted for the column gener-
ation algorithm, that is because it is one. The reformulation process even identifies
the constraints of the pricing problem.

This chapter serves two purposes. On the one hand, we derive the master and
pricing problems via a direct mathematical reformulation rather than by construction
as we have seen in the examples of Chapter 2. On the other hand, since the linear
program is already given, this is the beginning of an answer to why we should
reformulate at all. Indeed, we plant the idea that there might be a structure to exploit.
Chapter 4 picks up from there and hammers this point home.

3.1 Dantzig-Wolfe Reformulation

We would like to solve the following linear program LP

z⋆LP = min c⊺x
s.t. Ax≥ b [σσσb]

Dx≥ d [σσσd]

x ∈ Rn
+,

(3.1)

with appropriate dimensions for all vectors and matrices. We assume that the LP is
feasible and z⋆LP is finite. The dual variables are denoted by σσσb,σσσd ≥ 0 to differen-
tiate them from those of the forthcoming reformulation πππb,πππd ≥ 0. In the context
of this chapter we call this the original formulation with its original x-variables.
The first step is to group the constraints, say Ax≥ b and Dx≥ d, as listed in (3.1).
Figure 3.1 depicts the domain of the LP (3.1) with respect to the two non-empty sets
A and D that reflect this grouping as
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A= {x ∈ Rn
+ | Ax≥ b} ̸= /0 (3.2a)

D= {x ∈ Rn
+ | Dx≥ d} ̸= /0. (3.2b)

A= {x ∈ R2
+ | Ax≥ b}

D= {x ∈ R2
+ | Dx≥ d}A∩D

Fig. 3.1: Domain A∩D= {x ∈ R2
+ | Ax≥ b, Dx≥ d} of the LP.

The next step is to express D in a different way. We do this by using a geometric
result derived by Minkowski and Weyl. We then perform a substitution accordingly
to obtain an equivalent optimization program. After solving the reformulation, we
finally recover a solution for the original formulation by back substitution.

Minkowski-Weyl theorem

The theorem by Minkowski and Weyl states that there are two equivalent represen-
tations of a polyhedron. In linear programming, we are used to seeing a polyhe-
dron defined by linear constraints, i.e., as the intersection of finitely many closed
half-spaces. This is called the outer description or H-representation. Theorem 3.1
presents the alternative which Figure 3.2 informally illustrates on a 2-dimensional
polytope: it can equivalently be represented using its vertices. This is called the in-
ner description or V -representation. Although presented in Chapter 1, we repeat it
here for convenience.

(a) 48-year-old Marco (b) 8-year-old Emil (c) 3-year-old Thea

Fig. 3.2: Drawing a polytope is child’s play: Marco explains how to draw a polytope
starting with x1+3x2 ≤ 14 but it looks too complicated to Emil and Thea who settle
on an easier idea.
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Theorem 3.1. (Nemhauser and Wolsey, 1988, Theorem 4.8, p. 96) Consider the
polyhedron P = {x ∈ Rn | Qx ≥ q} with full row rank matrix Q ∈ Rm×n, i.e.,
rank(Q) = m≤ n and P ̸= /0. An equivalent description of P using its extreme points
{xp}p∈P and extreme rays {xr}r∈R is

P=


x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣

∑
p∈P

xpλp + ∑
r∈R

xrλr = x

∑
p∈P

λp = 1

λp ≥ 0 ∀p ∈ P
λr ≥ 0 ∀r ∈ R


. (3.3)

Proof. We refer to Nemhauser and Wolsey (1988) for step by step proofs and rather
concentrate on three important ideas.

1. Both sets P and R are finite (true for any polyhedron).
2. Under the assumptions on polyhedron P, the set P always contains at least one

element but the set R could be empty.
3. Both descriptions are equivalent because they describe the same set of solutions:

⇒ Any x ∈ P can be written as a convex combination of the extreme points
{xp}p∈P plus a conic combination of the extreme rays {xr}r∈R, that is, there
exist scalars {λp}p∈P and {λr}r∈R such that (3.3) holds for all x ∈ P.

⇐ Any λλλ that satisfies (3.3) corresponds to an x ∈ Rn by definition but also
necessarily to an x ∈ P. ⊓⊔

Observe that here and in what follows we adopt a simplified notation: for p ∈ P
and r ∈ R, we abbreviate λxp and λxr by λp and λr, respectively. The theorem is
illustrated in Figure 3.3. In (a), we have an (unbounded) polyhedron and x is a
convex combination of the three extreme points plus a conic combination of the
upper ray. In (b), we have a polytope and x is a convex combination of three selected
extreme points. In (c), we have a polyhedral cone and x is a convex combination of
the single extreme point 0 plus a conic combination of the two extreme rays. Finally,
in (d), we have in quadrants I, II, and IV, a polyhedron defined by a matrix that does
not have full row rank so no x appears for substitution.

Note 3.1 (Multiple representations of x.) From (3.3), any vector x ∈ P uniquely re-
constructs from a λ -combination but the converse is not true. This can be seen on
Figure 3.3b where the two-dimensional vector x can be written as a convex combi-
nation of the extreme points {D,F,G} as they form a triangle including x, or as a
convex combination of {C,D,F} for the same reason. Moreover, an infinite number
of convex combinations can be derived from the four extreme points {C,D,F,G}:
we only have to take any convex combination of the first two ways! This is also true
if extreme rays are involved.

Note 3.2 (Polytope and polyhedral cone.) In Theorem 3.1, there are two special
cases for polyhedron P which are of interest to us: a polytope and a polyhedral
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HI

J x

(a) Polyhedron

A

B

C

D

E

F

G

x

(b) Polytope

0

x

(c) Polyhedral cone

0

(d) Not full row rank

Fig. 3.3: Illustration of the Minkowski-Weyl theorem.

cone. If P is a polytope (bounded polyhedron), i.e., R = /0, it is straightforward to
adapt our presentation by simply omitting that component from the substitution as
in set (3.4) left. If P is a polyhedral cone, i.e., q = 0 and x ∈ Rn

+, the only extreme
point is 0 such that the substitution can also be simplified as in set (3.4) right.

∑
p∈P

xpλp = x

∑
p∈P

λp = 1

λp ≥ 0, ∀p ∈ P.

Substitution for a polytope

∑
r∈R

xrλr = x

λr ≥ 0, ∀r ∈ R.

Substitution for a polyhedral cone

(3.4)

Note 3.3 (Nice rays!) Even though we speak of the extreme rays of a polyhedron P,
they are unique only up to scaling. In Note 3.9, for example, we normalize the rays
for the sake of the argument. While in this chapter, the scaling may be a matter of
taste or aesthetics, in the next chapter it becomes important, and in Chapter 7 it may
even become a matter of performance. For this reason, we prefer to scale all extreme
rays in this book to integer rays whose components are relatively prime. That is, we
scale rays to their shortest possible integer representation. Note that scaling a ray
to have integer components is possible because we deal only with rational data. We
prefer American English over the British, but esthetics looks un-aesthetical.

Master problem

We remind the reader that, a priori, an extreme point and an extreme ray could have
the same vector representation, see Figure 1.2. By using Theorem 3.1 on polyhedron
D (3.2b), we consider its finite sets of extreme points {xp}p∈P and extreme rays
{xr}r∈R which we gather into the set

X=

{[
xp
1

]}
p∈P
∪
{[

xr
0

]}
r∈R

(3.5)
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After substitution of x as per (3.3) into the objective function as well as the con-
straints of A, i.e.,

c⊺x = c⊺(∑
p∈P

xpλp + ∑
r∈R

xrλr) and Ax = A(∑
p∈P

xpλp + ∑
r∈R

xrλr)≥ b, (3.6)

we obtain an equivalent linear program expressed with λ -variables associated with
the extreme points and extreme rays:

z⋆LP = min ∑
p∈P

(c⊺xp)λp + ∑
r∈R

(c⊺xr)λr (3.7a)

s.t. ∑
p∈P

(Axp)λp + ∑
r∈R

(Axr)λr ≥ b [πππb] (3.7b)

∑
p∈P

λp = 1 [π0] (3.7c)

λp ≥ 0 ∀p ∈ P (3.7d)
λr≥ 0 ∀r ∈ R (3.7e)

∑
p∈P

xpλp + ∑
r∈R

xrλr = x ∈ Rn
+. (3.7f)

The change of variables as per (3.3) obviously appears as a system of constraints,
that is, (3.7c)–(3.7f). In particular, we refer to ∑p∈P λp = 1 as the convexity con-
straint. Moreover, the last equation containing the original variables x reminds us
of the relation to the original LP. Recall that the non-negativity constraints x ∈ Rn

+

in A are redundant and could be omitted altogether as they already appear in D.
However, with respect to the extreme points and extreme rays of the substitution,
it should be clear from Figure 3.1 that not each of them needs to be feasible for
the MP. Finally, note the different dual variables πππb associated with the substituted
constraints as well as π0 for the additional convexity constraint.

The reformulation (3.7) lives in a higher dimensional space than the original
one (3.1). For this reason, the latter is also referred to as the compact formulation,
even though the number of its variables and constraints need not be polynomial in
the size of the underlying problem instance. In contrast, the former is also called the
extended formulation whereby the cardinalities of sets P and R are indeed typically
exponential in the dimensions of the compact formulation. As the column genera-
tion algorithm appears to be quite suited for solving (3.7), let us call this extended
formulation the Dantzig-Wolfe master problem MP whose optimal objective value
z⋆MP is equal to z⋆LP by construction. As we transition to the column generation ap-
proach, let cx = c⊺x and ax = Ax specialize our generic cost and column-coefficient
encoding functions c(x) and a(x). We obtain the shorthand notationcp = cxp = c⊺xp

ap = axp = Axp
1

, ∀p ∈ P, and

cr = cxr = c⊺xr
ar = axr = Axr

0

, ∀r ∈ R, (3.8)

which allows us to rewrite the MP more concisely as
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z⋆MP = min ∑
p∈P

cpλp + ∑
r∈R

crλr (3.9a)

s.t. ∑
p∈P

apλp + ∑
r∈R

arλr ≥ b [πππb] (3.9b)

∑
p∈P

λp = 1 [π0] (3.9c)

λp≥ 0 ∀p ∈ P (3.9d)
λr ≥ 0 ∀r ∈ R (3.9e)

∑
p∈P

xpλp + ∑
r∈R

xrλr = x. (3.9f)

Observe that the relation between the original x-variables and the λ -variables
of the reformulation is otherwise not involved in any part of the optimization. It is
customary to discard this system altogether while solving the MP so as to not incur
the additional upkeep. The corresponding optimal solution x⋆MP is then computed a
posteriori, only once after the MP is solved.

Note 3.4 (Tracking the zero extreme point.) It often arises that 0 is an extreme point
of D that we refer to explicitly as an index in the set P, i.e., λ0, c0 = 0, and a0 = 0
while keeping (of course) the coefficient of 1 in the convexity constraint.

Note 3.5 (Encoding functions are scalar products.) Consider the LP formulated as

z⋆LP = min 5x1 + 7x2 + 8x3 (3.10a)
s.t. 2x1 + 4x2 + 5x3 ≥ 20 (3.10b)

6x1 + 5x2 + 2x3 ≥ 10 (3.10c)

(x1,x2,x3)∈ X⊂ R3
+. (3.10d)

Suppose that one of the extreme points in X is given by xp = (1,0,2) for some
p ∈ P. The encoding functions for the cost and column-coefficients in the MP are
computed as scalar products by the substitution in the objective function and the two
constraints. Computing those values out, we can observe that this particular extreme
point is infeasible for the MP when taken by itself, i.e., 12 < 20.

[
c⊺xp

Axp

]
λp =

5x1p +7x2p +8x3p

2x1p +4x2p +5x3p
6x1p +5x2p +2x3p

λp =

21

12
10

λp.

Polytope and polyhedral cone

By Note 3.2, if we can recognize that D is a polytope or a polyhedral cone, then we
can specialize the MP (3.9) as
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min ∑
p∈P

cpλp

s.t. ∑
p∈P

apλp ≥ b [πππb]

∑
p∈P

λp = 1 [π0]

λp ≥ 0, ∀p ∈ P

∑
p∈P

xpλp = x

min ∑
r∈R

crλr

s.t. ∑
r∈R

arλr ≥ b [πππb]

λr ≥ 0, ∀r ∈ R

∑
r∈R

xrλr = x.

(3.11)

• On the left, we assume that D is bounded meaning that R = /0.
• On the right, we assume that D= {x ∈Rn

+ |Dx≥ 0} is a polyhedral cone. The
only extreme point 0 is dropped from the reformulation because the convexity
constraint in (3.9) reduces to λ0 = 1, thus allowing for a simplified MP without
this constraint. Indeed, extreme point 0 can be dropped altogether since it has
no contribution anywhere else (c0 = 0 and a0 = 0).
If the only extreme point differs from 0, the reformulation needs to be adjusted
by the respective contributions but it can be dropped just the same. This obvi-
ously also means that we drop the dual variable π0. Accordingly, we can amend
the default input for the forthcoming SP (3.14) as c̄(πππb) = minx∈D(c⊺−πππ

⊺
bA)x.

We remark that if 0 also belongs to A, we then have a trivial feasible solution 0
and z⋆LP ≤ 0.

We reproduce Figure 3.3 using the associated column types in the set X. Fig-
ure 3.4a is the general case with both extreme points and extreme rays. Figure 3.4b
contains only extreme points. Finally, in Figure 3.4c, we have a polyhedral cone
with the 0-vector as the single extreme point.

HI

J x

(a) X=
{[

xp
1

]}
p∈P
∪
{[

xr
0

]}
r∈R

A
B

C

D

E

F

G

x

(b) X=
{[

xp
1

]}
p∈P

0

x

(c) X=
{[

0
1

]}
∪
{[

xr
0

]}
r∈R

Fig. 3.4: Column types in X for a polyhedron, a polytope, and a polyhedral cone.

3.2 Column Generation Approach

Figure 3.5 gives us the opportunity to refresh our memory about the column gen-
eration method for solving the MP. We indeed simply go over the concepts seen
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in Chapter 2 while adapting the notation with respect to the extended formulation.
Most notably, we formalize the SP and derive lower bound formulas, where we

trade the generic dual vector πππ for
[
πππb
π0

]
. In this process, we start to explore how the

choice of the decomposed set D can have an impact on the resulting reformulation
which leads us to two particularly important concepts: post-processing a solution of
the master problem and a so-called block-diagonal structure.

LP
MP

(RMP)

SP
c̄(πππb,π0)

Dantzig-Wolfe reformulation

z⋆LP, x⋆LP,

[
σσσ⋆

b
σσσ⋆

d

]

λpcp
ap
1

 or

λrcr
ar
0

 [
πππb
π0

]

z⋆MP,x⋆MP,λλλ
⋆
MP,

[
πππ⋆

b
π⋆

0

]

C
ol

um
n

ge
ne

ra
tio

n
al

go
ri

th
m

πππ⋆
d

Fig. 3.5: Information flow of the column generation algorithm solving the MP (3.9),
a Dantzig-Wolfe reformulation of the LP (3.1).

Pricing problem

From the MP (3.9), we can derive a restricted master problem RMP expressed with
respect to relatively small subsets P′ ⊂ P and R′ ⊂ R. Solving the RMP provides
a primal solution λλλ of cost zRMP together with dual values (πππb,π0). The latter are
used in the subproblem to determine whether there remain any negative reduced
cost variables. Formally, we therefore have to find

min{min
p∈P

c̄p,min
r∈R

c̄r}, (3.12)

where c̄p and c̄r respectively denote the reduced cost of variables λp and λr, i.e.,

c̄p = cp−πππ
⊺
bap−π0 ∀p ∈ P

c̄r = cr−πππ
⊺
bar ∀r ∈ R.

(3.13)

Yet, what we have available is the set D= {x ∈ Rn
+ | Dx≥ d}. The combination

of the Minkowski-Weyl theorem and simplex-type algorithms is the beauty of the
reformulation. It relies on the existence of an alternative description for the set D
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(Minkowski-Weyl) and our capacity to identify an extreme point or extreme ray of
the latter if needed (simplex-type solution). Accordingly, we define the SP as

c̄(πππb,π0) =−π0 +min
x∈D

(c⊺−πππ
⊺
bA)x, (3.14)

that is, c̄(πππb,π0) = −π0 + min (c⊺−πππ
⊺
bA)x

s.t. Dx≥ d [πππd]

x ∈ Rn
+.

(3.15)

We then ensure to solve it with an algorithm that returns an optimal solution in set
X, e.g., a simplex-type algorithm or an interior point algorithm with a crossover pro-
cedure. In this fashion, the output of the SP almost matches what we want in (3.12):

c̄(πππb,π0) =

{
−∞ if cr−πππ

⊺
bar < 0 for some r ∈ R

cp−πππ
⊺
bap−π0 otherwise for some p ∈ P. (3.16)

If the SP selects an extreme point, then c̄(πππb,π0) matches (3.12). Otherwise,
any extreme ray with a negative reduced cost leads to −∞ which means that one
such extreme ray is picked arbitrarily and, moreover, that its corresponding reduced
cost c̄r is finite but does not necessarily translate to min

r∈R
{cr−πππ

⊺
bar}.

Let us move to handling the generated variables as well as the stopping criterion,
both of which revolve around checking the value of c̄(πππb,π0):

• if c̄(πππb,π0)< 0 and finite, the SP identifies an extreme point xp, p ∈ P\P′, and

column
[

ap
1

]
of cost cp is added to the RMP.

• if c̄(πππb,π0) =−∞, the SP identifies an extreme ray xr, r ∈ R\R′, and a column[
ar
0

]
of cost cr is added to the RMP.

• if c̄(πππb,π0)≥ 0, no negative reduced cost column exists and the column gener-
ation algorithm terminates with optimal solutions λλλ

⋆
MP and x⋆MP for the MP.

The LP, MP, RMP, and SP are all linear programs. By construction, we always
have z⋆MP = z⋆LP but the solutions x⋆MP and x⋆LP may very well differ from one another.
The MP also provides λλλ

⋆
MP whereas optimal dual values are only partially given by

πππ⋆
b, see Figure 3.5. The missing part πππ⋆

d is computed in (3.15) using the forthcoming
Proposition 3.1 that also shows that the dual solutions are equivalent, (πππ⋆

b,πππ
⋆
d) ≡

(σσσ⋆
b,σσσ

⋆
d). Example 3.2 illustrates, however, that the dual variables’ individual values

can be different.

Note 3.6 (Adjusted costs, again.) The interaction between the MP (3.9) and SP (3.15)
means that we compute the reduced cost of any λ -variable from an element of X in
the SP, i.e., c̄p or c̄r (3.13). With respect to variable x j, j∈{1, . . . ,n}, of the LP (3.1),
we echo Note 2.24 and adopt the convention of Dantzig and Thapa (2003, p. 287)
to call an objective coefficient of the SP
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c̃ j = c j−πππ
⊺
bA j (3.17)

an adjusted cost in contrast to a reduced cost computed as

c̄ j = c j−σσσ
⊺
bA j−σσσ

⊺
dD j. (3.18)

Post-processing a solution of the master problem

We remind ourselves that in spite of performing a Dantzig-Wolfe reformulation, our
goal is to solve the original formulation, that is, find an optimal solution in terms

of the original primal and dual variables x and
[
σσσb
σσσd

]
, respectively. To this end, we

assume that the MP is solved to optimality and break down our examination of
solutions for the LP into primal, dual, and basic. In other words, since the extended
and compact formulations are equivalent, an optimal solution to the MP that we
post-process into one for the LP is also optimal.

Primal solution

An optimal solution x⋆LP is obtained directly from the substitution in the Minkowski-
Weyl Theorem 3.1:

∑
p∈P

xpλ
⋆
p + ∑

r∈R
xrλ

⋆
r = x⋆MP ≡ x⋆LP. (3.19)

Dual solution

From an optimal solution to the MP, we also recover optimal dual values πππ⋆
b but still

missing is πππ⋆
d. The following proposition fills this deficiency and finds an optimal

dual solution for the LP.

Proposition 3.1. (Walker, 1969) Let
[
πππ⋆

b
π⋆

0

]
be optimal dual values for the MP (3.9)

and πππ⋆
d be optimal dual values with optimum c̄(πππ⋆

b,π
⋆
0 ) in the SP (3.15). Then

[
πππ⋆

b
πππ⋆

d

]
is an optimal dual solution for the LP (3.1).

Proof. For any dual optimal solution σσσ⋆ =
[
σσσ⋆

b
σσσ⋆

d

]
, we have σσσ⋆⊺

b b+σσσ⋆⊺

d d = z⋆LP =

z⋆MP = πππ⋆⊺

b b+π⋆
0 by strong duality in the LP and MP. We prove the dual feasibility

of
[
πππ⋆

b
πππ⋆

d

]
for the LP and show that π⋆

0 = πππ⋆⊺

d d.

With respect to the SP, whenever c̄(πππb,π0) is finite for some xp, p ∈ P, we have
equal primal-dual objective values −π0 + (c⊺−πππ

⊺
bA)xp = −π0 +πππ

⊺
dd as well as



3.2 Column Generation Approach 115

non-negative reduced costs for all its variables, i.e., c̄⊺ = (c⊺−πππ
⊺
bA)−πππ

⊺
dD ≥ 0⊺.

Exchanging πππ for σσσ , the latter inequalities also corresponds to non-negative reduced
costs in the LP. In particular, when the MP is solved to optimality, this means that[
πππ⋆

b
πππ⋆

d

]
is dual feasible for the LP. Finally, we know from Note 2.6 that this occurs

when c̄(πππ⋆
b,π

⋆
0 ) = 0, that is, −π⋆

0 +πππ⋆⊺

d d = 0. ⊓⊔

Basic solution

There is no reason to assume that the recovered optimal solution x⋆MP (3.19) is a ba-
sic solution for the original LP. We show here how to derive m independent columns
to form a basis out of x⋆MP. Firstly, partition the x-variables of the primal solution
into two subsets, that is, x⋆MP = {x⋆L,x⋆F}, where x⋆L is the vector of variables at their
lower bounds of zero and x⋆F is the vector of positive ones (these are free to move
upward or downward relatively to their actual values). Secondly, solve a linear pro-
gram in which the variables xL = 0 are fixed and xF ≥ 0 is optimized:

z⋆LP = min c⊺F xF + c⊺LxL

s.t. AF xF + ALxL ≥ b
DF xF + DLxL ≥ d

xF≥ 0, xL= 0.

(3.20)

Solving (3.20) by a simplex-type algorithm identifies a combination of the free
variables satisfying the inequalities, some of them possibly taking a zero value. The
basis may also comprise degenerate variables from index set L.

On grouping the constraints

Regardless of how the constraints of the compact formulation are grouped into A

and D, the LP (3.1) and its reformulation MP (3.9) are equivalent by construction,
that is,

z⋆MP = z⋆LP. (3.21)

For example, inverting the role of A and D means we have to manage a different set
of extreme points and extreme rays, i.e., those of polyhedron A, but we still obtain
the same optimal objective value. We have established that we can reformulate the
LP using the Minkowski-Weyl theorem but as the resulting MP gives an equivalent
solution, let us now try to understand why we should under three segments.

• First of all, calling our attention to the several subproblems section of Chapter 2,
we might be able to identify a so-called block-diagonal structure. This allows
for a decentralized optimization strategy and is in fact the historical motivation
of the decomposition (Dantzig, 1963, pp. 448–449). If such a structure exists,
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any grouping that combines blocks into larger ones sacrifices the potential for
decentralization. We come back to the practical relevance of a block-diagonal
structure in Section 4.4.

• Second, we have established that rather than enumerating extreme points and
extreme rays, we can use the set D as is in the SP while being careful of its
output. If we have a specialized algorithm that particularly excels at solving
an optimization program with structure D, the hope is that the huge number
of variables in the MP can be mitigated by the efficiency with which we can
solve the SP. One such notable structure is present in network flow problems
for which integer solutions are easily attainable when solving in x ∈ Rn

+.

• Finally, grouping the constraints of the compact formulation in (3.2) must be
jointly exhaustive but not necessarily mutually exclusive. This means that we
obviously account for all constraints but allow for the possibility that some of
them could be duplicated in both sets. Despite not usually being considered as
“constraints,” this is already the case for the non-negativity requirements. Fur-
thermore, we are also allowed to integrate constraints that are redundant or im-
plied from the problem. In this fashion, we may be able to create a notable struc-
ture in the SP (or ISP) while nonetheless preserving some duplicate constraints
in the MP. While this seems like a lot of work to achieve an equivalent solution,
Chapter 4 on integer linear programming picks up on these so-called structured
constraints and aims to break free from the relation (3.21) by showing that not
all groupings are created equal when we consider integrality requirements.

Block-diagonal structure

In many applications, matrix D has a block-diagonal structure, that is,

D =


D1

D2

. . .
D|K|

 and d =


d1

d2

...
d|K|

 , (3.22)

where Dk and dk are of compatible dimensions, for all k ∈ K. In that case, the LP
writes as



3.2 Column Generation Approach 117

z⋆LP = min c1⊺x1 + c2⊺x2 + . . . + c|K|
⊺
x|K|

s.t. A1x1 + A2x2 + . . . + A|K|x|K| ≥ b [σσσb]

D1x1 ≥ d1 [σσσd1 ]

x1∈ Rn1
+

D2x2 ≥ d2 [σσσd2 ]

x2∈ Rn2
+

. . .
...

...

D|K|x|K| ≥ d|K| [σσσd|K| ]

x|K|∈ Rn|K|
+

(3.23)

which can be concisely rewritten as

z⋆LP = min ∑
k∈K

ck⊺xk

s.t. ∑
k∈K

Akxk ≥ b [σσσb]

Dkxk ≥ dk [σσσdk ] ∀k ∈ K

xk ∈ Rnk

+ ∀k ∈ K.

(3.24)

To take advantage of these blocks, let us group the constraints as

A=

{{
xk ∈ Rnk

+

}
k∈K

∣∣∣∣ ∑
k∈K

Akxk ≥ b

}
(3.25a)

Dk =
{

xk ∈ Rnk

+ | Dkxk ≥ dk
}
, ∀k ∈ K. (3.25b)

The constraints in A are said to be global or linking because, without them, we
would have |K| independent smaller problems. The set Dk is defined by local or
block constraints which only involve the variables xk.

Let the set

X= ∪k∈K Xk, where Xk =

{[
xk

p
1

]}
p∈Pk
∪
{[

xk
r

0

]}
r∈Rk

(3.26)

be given by the union of the finite sets of extreme points and extreme rays, respec-
tively indexed by Pk and Rk. With respect to each subsystem indexed by k, we adjust
the notation in the change of variables (3.3) as

∑
p∈Pk

xk
pλ

k
p + ∑

r∈Rk

xk
rλ

k
r = xk, ∑

p∈Pk

λ
k
p = 1, λ

k
p,λ

k
r ≥ 0, ∀p ∈ Pk,r ∈ Rk, (3.27)
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and define the cost and column parameters

ck
p = ck⊺xk

p, ak
p = Ak xk

p, ∀p ∈ Pk,

ck
r = ck⊺xk

r , ak
r = Ak xk

r , ∀r ∈ Rk.
(3.28)

Similarly to (3.9), the MP then reads more concisely as

z⋆MP = min ∑
k∈K

∑
p∈Pk

ck
pλ

k
p + ∑

k∈K
∑

r∈Rk

ck
rλ

k
r (3.29a)

s.t. ∑
k∈K

∑
p∈Pk

ak
pλ

k
p + ∑

k∈K
∑

r∈Rk

ak
rλ

k
r ≥ b [πππb] (3.29b)

∑
p∈Pk

λ
k
p = 1 [πk

0 ] ∀k ∈ K (3.29c)

λ
k
p ≥ 0 ∀k ∈ K, p ∈ Pk (3.29d)

λ
k
r ≥ 0 ∀k ∈ K,r ∈ Rk (3.29e)

∑
p∈Pk

xk
pλ

k
p + ∑

r∈Rk

xk
rλ

k
r = xk∈ Rnk

+ ∀k ∈ K. (3.29f)

A block-diagonal structure yields several pricing problems, namely, one for each
set Dk, k ∈ K. Each SPk uses the dual variable πk

0 associated with the k-th convexity
constraint in (3.29):

c̄k(πππb,π
k
0) =−π

k
0 + min

xk∈Dk
(ck⊺ −πππ

⊺
bAk)xk, (3.30)

that is,

c̄k(πππb,π
k
0) = −π

k
0 + min (ck⊺ −πππ

⊺
bAk)xk

s.t. Dkxk ≥ dk [πππdk ]

xk ∈ Rnk

+ .

(3.31)

The column generation algorithm terminates when c̄k(πππb,π
k
0)≥ 0, for all k ∈ K.

Otherwise, extreme points and extreme rays identified in (3.30) give rise to new
columns that are added to the RMP in the appropriate block k. Indeed, observe the
presence of index k in every column ak

x. By construction in (3.28), these have all the
same dimension, (m×nk) · (nk×1) = m×1, in the m linking constraints of (3.29b).
With respect to the |K| convexity constraints (3.29c), we have a 1/0 (point/ray) in
the k-th row and 0 elsewhere.

Note 3.7 (Partial pricing for block-diagonal structure.)Ï When we have many pricing
problems, we may decide to call only a (small) fraction of them in each iteration,
that is, follow a partial pricing strategy. Then unavoidably, we have to say how we
select the subproblems to call. One can decide for those which were most success-
ful in previous iterations. Or those that have not been called for many iterations.
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When the pricing problems arise from a Dantzig-Wolfe reformulation, we have an-
other option. The dual variable πk

0 corresponding to the (convexity constraint of)
subproblem SPk indicates, by how much the RMP objective function value could be
(theoretically) improved, if we would increase the convexity constraint’s right hand
side by one unit. In other words, πk

0 is a predictor (admittedly, an optimistic one) for
the usefulness of one more column that comes from SPk. In partial pricing, we can
select the most useful subproblems according to this prediction.

Note 3.8 (Identical subproblems.) In applications, it often happens that the data
across all blocks is the same, i.e., ck = c, Ak = A, Dk = D, and dk = d, ∀k ∈ K.
For example, this is the case for the single depot vehicle routing problem with ho-
mogeneous fleet. By definition of the SPk (3.31), it is immediate that in this case we
deal with identical pricing problems. What is not so immediate is how we can take
advantage of this. We postpone the answer to Section 4.4 (p. 202).

Lower and upper bounds

The following proposition provides lower and upper bounds on z⋆MP. By construc-
tion, they also apply to z⋆LP.

Proposition 3.2. Given optimal dual values (πππb, [π
k
0 ]k∈K) with objective value zRMP

and minimum reduced costs c̄k(πππb,π
k
0), ∀k ∈ K, then the optimum z⋆MP is bounded

from below and above as

zRMP + ∑
k∈K

c̄k(πππb,π
k
0)≤ z⋆MP = z⋆LP ≤ zRMP. (3.32)

Proof. Based on the proof of Corollary 2.1, we mention two additional elements. If
there exists some k ∈ K such that c̄k(πππb,π

k
0) =−∞, the left expression is obviously

a lower bound. Otherwise, ∑p∈P λk
p = 1 implies κk = 1, ∀k ∈ K. ⊓⊔

We adapt Proposition 2.1 for arbitrary dual values πππb ≥ 0 and πk
0 ∈ R, ∀k ∈ K, as

πππ
⊺
bb+ ∑

k∈K
π

k
0 + ∑

k∈K
c̄k(πππb,π

k
0)≤ z⋆MP = z⋆LP, ∀πππb ≥ 0,πk

0 ∈ R,∀k ∈ K. (3.33)

Presented here in the context of the Dantzig-Wolfe decomposition, this lower
bound on z⋆LP historically only appears in the ’70s as the Lagrangian dual bound,
see Chapter 6.

With respect to Note 2.17 on the availability of lower bounds with heuristic
pricing, we can still only compute a lower bound in (3.33) if we have under-
approximations

¯
ck(πππb,π

k
0)≤ c̄k(πππb,π

k
0), ∀k ∈ K.
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3.3 Good to Know

We first derive the set X for a particular domain D and next discuss two extreme
cases for the grouping of the constraints. We then examine the use of static variables
in the MP, as opposed to the generated ones.

A set of extreme points and extreme rays

Figure 3.6 shows an interesting polyhedron for the domain D of the SP. Although it
depicts five 2-dimensional vectors, the set of extreme points comprises (1,1), (0,2),
and (4,3) whereas there is only the single vector (1,1) in the set of extreme rays. As
a technical detail, observe that the latter vector is common to both sets. Therefore,

X=

{[
(1,1)

1

]
,
[
(0,2)

1

]
,
[
(4,3)

1

]
,
[
(1,1)

0

]}
and |X|= 4.

(0,2)

(1,1)

(4,3)
(1,1)

(1,1)

•

•

•

Fig. 3.6: A polyhedron with three extreme points and a single extreme ray.

Extreme cases for the constraints in the reformulated set

There are two extreme cases for the grouping of constraints in which D either con-
tains all or none of the constraints of the LP. The first solves the LP in the SP
whereas the MP is the LP in the second case.

All

The domain of the SP is defined by all the constraints of the LP, that is,

A= {x ∈ Rn
+} (3.34a)

D= {x ∈ Rn
+ | Ax≥ b, Dx≥ d}. (3.34b)
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Then, the MP (3.9) has only the convexity constraint whereas the objective func-
tion of the SP (3.15) is the same as that of the LP, except for −π0, the constant
term. Therefore, we directly find both the primal and dual optimal solutions x⋆ and
(σσσ⋆

b,σσσ
⋆
d), respectively, from solving the SP. Depending on the stopping criterion

used, the column generation algorithm takes one or two iterations (Exercise 3.10).

None

Inverting the roles of A and D seen in the case all gives

A= {x ∈ Rn
+ | Ax≥ b, Dx≥ d} (3.35a)

D= {x ∈ Rn
+}. (3.35b)

The domain of the SP is a polyhedral cone formed by the extreme point 0 and n
extreme rays represented by orthogonal unit-vectors xr = er, ∀r ∈ {1, . . . ,n}, with
a 1 in position r and 0 otherwise. Therefore, any non-negative solution x ∈ D can
be expressed as

x =

x1
...

xn

= 0+ ∑
r∈{1,...,n}

erλr, λr ≥ 0, ∀r ∈ {1, . . . ,n}, (3.36)

or equivalently by xr = λr, ∀r ∈ {1, . . . ,n}. Consequently, there is no need for a
change of variables from x to λλλ . Let us now face an RMP which comprises a subset
R′ ⊂ {1, . . . ,n} of the original x-variables. Assume that we know a dual solution
(πππb,πππd) to that RMP which we use in the SP to find a variable of negative reduced
cost, if any:

c̄(πππb,πππd) = min
x∈Rn

+

c⊺x−πππ
⊺
bAx−πππ

⊺
dDx. (3.37)

As long as there remains an extreme ray with a negative reduced cost, the SP returns
an unbounded optimum c̄(πππb,πππd) =−∞. At every iteration, we therefore add to the
RMP an arbitrary xr amongst all those with a negative reduced cost and proceed
until the column generation algorithm reaches c̄(πππb,πππd)≥ 0.

Note 3.9 (Primal simplex algorithm reloaded.) To overcome the arbitrary choice of
the negative reduced cost entering variables when c̄(πππb,πππd) =−∞ in (3.37), we add
the normalizing constraint 1⊺x = 1 to the SP:

c̄(πππb,πππd) = min (c⊺−πππ
⊺
bA−πππ

⊺
dD)x

s.t. 1⊺x = 1 [µ]

x ∈ Rn
+,

(3.38)
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x1

x2

x3

•(1,0,0)
•
(0,1,0)

•(0,0,1)
{x≥0|x1+x2+x3=1}

where µ ∈ R is the dual variable associated
with this added constraint. In this bounded SP,
an extreme ray xr = er, r ∈ {1, . . . ,n}, is re-
placed by an equivalent extreme point

xp = ep, p ∈ {1, . . . ,n}

in a one-to-one correspondence. The objective
function is (c⊺−πππ

⊺
bA−πππ

⊺
dD)x = c̄⊺x, hence

c̄(πππb,πππd) = min
n

∑
j=1

c̄ jx j

s.t.
n

∑
j=1

x j = 1 [µ]

x j ≥ 0 ∀ j ∈ {1, . . . ,n}.

(3.39)

An extreme point solution to (3.39) selects exactly one variable at value 1. This
strategy effectively reproduces the primal simplex algorithm using Dantzig’s rule
(see Section 1.6, p. 34) with the detour of a Dantzig-Wolfe decomposition.

Static variables

For some applications, we can identify a grouping of constraints such that some
variables are not present in the reformulated set. We also qualify such variables as
static (see Section 2.3) because keeping them as is in the MP is more efficient than
performing an additional reformulation and generating columns for them. Consider
that the set of original variables is partitioned into x- and v-variables and the LP
writes as

z⋆LP = min c⊺x + c⊺vv
s.t. Ax + Avv≥ b [σσσb]

Bvv≥ bv [σσσB]

0≤ v≤ uv
Dx ≥ d [σσσd]

x ≥ 0,

(3.40)

with D = {x ∈ Rn
+ | Dx ≥ d}, Dv = {v ∈ Rnv

+ | Bvv ≥ bv,v ≤ uv}, and appropri-
ate dimensions for vectors and matrices. We could define two subproblems with
domains x ∈ D and v ∈ Dv. This is not necessarily a good idea. For example, if
Bvv ≥ bv is absent, we would replace 2nv (easy) bound constraints 0 ≤ v ≤ uv by
2nv extreme points.

We rather perform a Dantzig-Wolfe reformulation with the grouping
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A= {x ∈ Rn
+,v ∈ Rnv

+ | Ax+Avv≥ b,Bvv≥ bv,v≤ uv} (3.41a)
D= {x ∈ Rn

+ | Dx≥ d}. (3.41b)

The MP is obtained by substituting x in terms of the elements of X, as in (3.5):

z⋆MP = min ∑
p∈P

c⊺xpλp + ∑
r∈R

c⊺xrλr + c⊺vv

s.t. ∑
p∈P

Axpλp + ∑
r∈R

Axrλr + Avv≥ b [πππb]

Bvv≥ bv [σσσB]

0≤ v≤ uv

∑
p∈P

λp = 1 [π0]

λp ≥ 0 ∀p ∈ P

λr≥ 0 ∀r ∈ R

∑
p∈P

xpλp + ∑
r∈R

xrλr = x∈ Rn
+.

(3.42)

The v-variables are unaffected by the substitution. Hence the λ -variables are dy-
namically generated as usual as opposed to these static v-variables in the MP.

Static variables notably arise if we want to exploit a particular structure only
shared by the original x-variables. For example, inventory routing problems can
be modeled using dynamic routing variables and static inventory variables (De-
saulniers et al., 2016b). Another classic example arises in network design problems
with static design variables (Frangioni and Gorgone, 2014).

3.4 More to Know

In this section on advanced topics, we derive a restricted compact formulation
whose purpose is to directly solve the LP by activating its rows and variables in
accordance with solutions of the SP. The exploited structure incidentally appears
in the positive edge rule for the primal simplex algorithm and allows to relate the
Dantzig-Wolfe decomposition method to the improved primal simplex algorithm as
well as the minimum mean cycle-canceling algorithm. We also present the Benders
decomposition for linear programming: it turns out to be equivalent to a Dantzig-
Wolfe reformulation of the dual problem. We finally prove a fundamental theorem
in network flow theory with the help of a Dantzig-Wolfe reformulation, that is, the
decomposition of an arc-flow solution into a combination of directed path-flows and
directed cycle-flows.
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Restricted compact formulation

Assume the standard form with equality constraints (1.17) for the LP, with the pos-
sible addition of slack, surplus, and costly artificial variables for initialization. It
can be a viable strategy to deal with the very large size of a linear program by dy-
namically expanding its formulation as needed. It turns out that the Dantzig-Wolfe
decomposition can help in this context. Let us develop a so-called column activation
approach. The idea is to use a restricted compact formulation, denoted RLP,

zRLP = min ∑
j∈J

c jx j (3.43a)

s.t. ∑
j∈J

a jx j = b [σσσb] (3.43b)

∑
j∈J

d jx j = d [σσσd] (3.43c)

x j ≥ 0 ∀ j ∈ J, (3.43d)

where J is hopefully a small subset of {1, . . . ,n} and the pair (σσσb,σσσd) denotes the
current dual values. We assume given the grouping of the constraints as

A= {x ∈ Rn
+ | Ax = b} (3.44a)

D= {x ∈ Rn
+ | Dx = d}. (3.44b)

In a Dantzig-Wolfe reformulation, we use a solution x = [x j] j=1,...,n from the SP to
generate a λx-variable for the MP. In this approach, there is no reformulation, we
rather use that x-solution to activate all positive x j-variables in the RLP.

Note 3.10 (Is this approach tractable?) The number of variables in the SP remains
very large but should be much easier to solve than the LP since it only contains
the structured constraints (3.43c). Consequently, such a solution approach is only
interesting if the number of activated x-variables is rather small compared to that in
the compact formulation, and additionally, if z⋆LP is a close approximation of z⋆ILP in
the case of an integer linear compact formulation.

Such a technique has been used to solve large-scale linear multi-commodity flow
problems (Löbel, 1998) and the cutting stock problem (Valério de Carvalho, 1999,
2002). In these applications, the LP is written in terms of arc-flow variables and
the SPs are shortest path problems, a well-known structure. When a subproblem
generates a negative reduced cost path, the utilized arc-flow variables are activated in
the RLP as well as the newly active flow conservation equations. This process allows
the implicit combination of arcs into paths, without explicitly having to generate
these paths. Example 3.4 presents an application of this procedure.

More formally, to find an optimal solution for the LP, Algorithm 3.1 outlines that
we can iteratively solve the RLP and SP in which we input πππb =σσσb and π0 =σσσ

⊺
dd,

(see also Figure 3.7). The equality system in D (3.44b) gives us the opportunity to
recall the SP with amended linear relations and parameters:
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c̄(σσσb,σσσ
⊺
dd) =−σσσ

⊺
dd + min (c⊺−σσσ

⊺
bA)x

s.t. Dx = d [πππd]

x ∈ Rn
+.

(3.45)

Algorithm 3.1: The column activation algorithm.
input : RLP with feasible subset J ⊂ {1, . . . ,n}, SP

output : Optimal primal-dual solutions x⋆LP,
[
σσσ⋆

b
σσσ⋆

d

]
and optimum z⋆LP for the LP

1 loop
2 xRLP, σσσb, σσσd, zRLP ← RLP
3 c̄(σσσb,σσσ

⊺
dd), x, πππd ← SP

4 if c̄(σσσb,σσσ
⊺
dd)≥ 0

5 break by optimality of the LP

6 J← J∪{ j ∈ {1, . . . ,n} | x j > 0}

7 return xRLP,
[
σσσb
πππd

]
, and zRLP

We show that the set J changes at every iteration until optimality is proven by
Proposition 3.3. Indeed, by (3.33), we can compute the Lagrangian dual bound
from arbitrary dual values πππb and π0, say σσσb and σσσ

⊺
dd respectively, i.e.,

σσσ
⊺
bb+σσσ

⊺
dd+ c̄(σσσb,σσσ

⊺
dd)≤ z⋆LP. (3.46)

For optimal dual values to the RLP, we always have c̄(σσσb,σσσ
⊺
dd)≤ 0. This is because

the RLP is a restriction of the original formulation which gives us an upper bound

z⋆LP ≤ zRLP = ∑
j∈J

c jx j =σσσ
⊺
bb+σσσ

⊺
dd (3.47)

by strong duality. We also have non-negative reduced costs on the activated vari-
ables, i.e., c̄ j = c j−σσσ

⊺
ba j−σσσ

⊺
dd j ≥ 0, ∀ j ∈ J. Furthermore, since Dx = d, we can

rewrite the objective function of the SP as c̄(σσσb,σσσ
⊺
dd) = (c⊺−σσσ

⊺
bA−σσσ

⊺
dD)x. There-

fore, when its value is negative for a solution x ∈ D, there exists at least one non-
activated variable x j, j /∈ J, that is positive.

Proposition 3.3. Let xRLP and
[
σσσb
σσσd

]
be optimal primal-dual solutions to the cur-

rent RLP (3.43) with objective value zRLP. If πππd is an optimal dual solution to the

SP (3.45) with c̄(σσσb,σσσ
⊺
dd) = 0, then xRLP ∈ R|J|+ (embedded in Rn

+) and
[
σσσb
πππd

]
form

a pair of optimal primal-dual solutions for the LP (3.1).

Proof. If c̄(σσσb,σσσ
⊺
dd) = 0, we have that z⋆LP = zRLP = ∑ j∈J c jx j = σσσ

⊺
bb + σσσ

⊺
dd

by (3.46)–(3.47), where the solution xRLP extended with x j = 0, ∀ j ∈ {1, . . . ,n}\ J,
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LPRLP

SP
c̄(σσσb,σσσ

⊺
dd)

Restricted compact formulation

z⋆LP, x⋆LP,

[
σσσ⋆

b
σσσ⋆

d

]

{ j ∈ {1, . . . ,n} | x j > 0} [
σσσb

σσσ
⊺
dd

]

z⋆RLP,x⋆RLP,

[
σσσ⋆

b
σσσd

]

C
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Fig. 3.7: Information flow of the column activation algorithm solving the
RLP (3.43), a restriction of the LP (1.17) in standard form.

is primal feasible for the LP. In the SP, this condition means that we have equal
primal-dual objective values

−σσσ
⊺
dd+(c⊺−σσσ

⊺
bA)x =−σσσ

⊺
dd+πππ

⊺
dd = 0 (3.48)

and non-negative reduced costs

(c⊺−σσσ
⊺
bA)−πππ

⊺
dD≥ 0⊺. (3.49)

Since these inequalities also correspond to non-negative reduced costs in the LP,
the pair (σσσb,πππd) is dual feasible which implies that z⋆LP = σσσ

⊺
bb+πππ

⊺
dd. There is no

contradiction with the leading value for z⋆LP since σσσ
⊺
dd = πππ

⊺
dd in (3.48). ⊓⊔

Note 3.11 (Surprising dual.) We underscore that, in the column activation algorithm,
only the dual multipliers πππd combined with σσσb are guaranteed to be optimal for the
LP even though σσσd allows us to compute the optimal objective value z⋆LP correctly.
Indeed, whenever we find an optimal degenerate solution for the RLP (3.43c), we re-
mark that the corresponding dual values σσσd may not be optimal for the LP. Consider
the LP given as

min
x≥0

0x1 +0x2 +0x3 −5x4

s.t. x1 = 1 [σ1]
x2 = 2 [σ2]

x3 +x4 = 0 [σ3],

(3.50)

where D = {x ∈ R4
+ | x3 + x4 = 0}. Given J = {1,2,3}, an optimal solution to the

RLP is the primal degenerate basic xRLP = (1,2,0) and dual σσσ⊺ =
[
0 0 0

]
with

c̄4 =−5 < 0. The SP given by c̄(σσσb,σσσ
⊺
dd) reads as
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c̄(
[

σ1
σ2

]
, σ3 ·0) =−0+min

x≥0
0x1 +0x2 +0x3 −5x4 s.t. x3 + x4 = 0 [π3],

where an optimal primal-dual solution xSP = (0,0,0,0), π3 =−5 has cost 0. Hence
xRLP = (1,2,0) embedded in R4

+ is optimal for the LP with appropriate optimal dual
vector

[
σ1 σ2 π3

]
=
[
0 0 −5

]
giving c̄1 = 0, c̄2 = 0, c̄3 = 5, and c̄4 = 0.

Note 3.12 (Homogeneous system.) Assume that d = 0 in the set D (3.44b). Since
πππ
⊺
dd = 0, ∀πππd, we can work out a simplification like in the polyhedral cone case

where we drop the only extreme point 0 and the convexity constraint, see right side
of (3.11). That is, we search for negative cost extreme rays in the SP

c̄(σσσb) = min (c⊺−σσσ
⊺
bA)x

s.t. Dx = 0 [πππd]

x ∈ R+.

(3.51)

Furthermore, the RLP can be solved using all the constraints (3.43b) derived from A

but only those from D that are activated, that is, only those with non-zero coeffi-
cients on the left-hand side of the constraints (3.43c).

Note 3.13 (Row and column management.) The initialization of the RLP for a suit-
able set J can be done with a Phase I. With this in mind, we can generalize the idea
of row activation in D seen in Note 3.12. In this case, we have to process the dual
variables associated with the rows in D to obtain a complete dual vector σσσd. For
each omitted row, we test whether it is satisfied or not and respectively assign 0 or
big-M dual values. The zero-case does not modify the value of the dual objective
function while the other one requires an artificial variable of big-M cost per unit
to penalize primal infeasibility. In the same vein, once we have activated a lot of
variables, it can be reasonable to deactivate some that are no longer used.

Block-diagonal structure

We easily adapt the column activation approach to a block-diagonal structure (3.24)
with the RLP as

zRLP = min ∑
k∈K

∑
j∈Jk

ck
jx

k
j

s.t. ∑
k∈K

∑
j∈Jk

ak
jx

k
j = b [σσσb]

∑
j∈Jk

dk
jx

k
j = dk [σσσdk ] ∀k ∈ K

xk
j ≥ 0 ∀k ∈ K, j ∈ Jk ⊂ {1, . . . ,nk},

(3.52)

and the SPk, k ∈ K, as
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c̄k(σσσb,σσσ
⊺
dk dk) =−σσσ

⊺
dk dk + min (ck⊺ −σσσ

⊺
bAk)xk

s.t. Dkxk = dk [πππdk ]

xk ∈ R+.

(3.53)

The arguments used in the proof of Proposition 3.3 still apply. A lower bound ex-
pression with arbitrary dual values writes as

σσσ
⊺
bb+ ∑

k∈K
σσσ
⊺
dk dk + ∑

k∈K
c̄k(σσσb,σσσ

⊺
dk dk)≤ z⋆LP,

and optimality is achieved when c̄k(σσσb,σσσ
⊺
dk dk) = 0, ∀k ∈ K. At this point, the so-

lution {xk
RLP ∈ R|J

k|
+ }k∈K , in which each vector is embedded in Rnk

+ , is an optimal
primal solution to the LP (3.24) with objective value zRLP whereas an optimal dual
one is given by σσσ⋆

b and πππ⋆
dk , ∀k ∈ K.

Positive edge rule and Improved Primal Simplex algorithm

The structure with right-hand side vector d = 0 in (3.43c) implicitly occurs in the
primal simplex algorithm each time the solution is degenerate. Assume again the
standard form (1.17) for the LP, this time writing it in terms of the basic and non-
basic variables (1.19), and recall the formulation (1.21) after the left-multiplication
of the system of constraints by the basis inverse A−1

B :

z⋆LP = c⊺Bb̄ + min c̄⊺NxN

s.t. xB + ĀNxN = b̄ [σσσ ]

xB≥ 0, xN ≥ 0,
(3.54)

where b̄ = A−1
B b, c̄⊺N = (c⊺N − c⊺BA−1

B AN), and ĀN = A−1
B AN . We can rewrite this

dictionary representation by separating xB = b̄ ≥ 0 into positive and zero parts.

We do this by reorganizing the rows such that xB =

[
x1
x2

]
=

[
b̄1 > 0
b̄2 = 0

]
. We then

rewrite (3.54) by letting every matrix/vector of the system reflect this:

z⋆LP = c⊺1 b̄1 + min 0⊺x1 + 0⊺x2 + c̄⊺NxN

s.t. x1 + Ā1NxN = b̄1 [σσσ1]

x2 + Ā2NxN = 0 [σσσ2]

x1≥ 0, x2≥ 0, xN ≥ 0.

(3.55)

For a non-optimal basic solution xB, we assume that none of the non-basic variables
xN are yet activated. Then the current dual values are σσσ1 = 0 and σσσ2 = 0, and the
SP (3.51) becomes
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c̄(σσσ1) = min c̄⊺NxN

s.t. x2 + Ā2NxN = 0 [πππ2]

x2≥ 0, xN ≥ 0.
(3.56)

With respect to the SP (3.56), let us examine three pricing strategies.

1. Dantzig’s rule in the primal simplex algorithm selects a non-basic variable xℓ,
ℓ ∈ N, with minimum negative reduced cost c̄ℓ < 0, if any. This is independent
of the constraints x2 =−ā2ℓxℓ ≥ 0, where ā2ℓ = A−1

2B aℓ. If any coefficient of ā2ℓ
is positive, we have a degenerate pivot because x2 cannot decrease.

2. The positive edge rule (Raymond et al., 2010a; Towhidi et al., 2014) also selects
a single negative reduced cost non-basic variable xℓ, but with ā2ℓ = 0, hence
ensuring a non-degenerate pivot. Such a variable is called compatible with the
row-partition of (3.55). The selection of xℓ is done without explicitly computing
ā2 j, ∀ j ∈ N. Let v be a random vector for which all components are non-zero.
If ā2 j = 0, then v⊺ā2 j = 0. Otherwise ā2 j ̸= 0 and v⊺ā2 j = 0⇔ v ⊥ ā2 j, that
is, if and only if the two vectors are orthogonal, which has probability zero for
a continuous random vector. Define w⊺ = v⊺A−1

2B . Then for any variable x j, we
have v⊺ā2 j = v⊺A−1

2B a j =w⊺a j, and one can use w⊺a j = 0 for a compatibility-test
using the original vector a j. (This is similar to replacing c⊺B(A

−1
B a j) by (c⊺BA−1

B )a j

in the reduced cost formula of x j, where c⊺BA−1
B = πππ⊺ is computed once and next

used directly on a j, ∀ j ∈ N.)
3. The third strategy involves the incompatible variables (those with ā2ℓ ̸= 0),

amongst which are x2. The Improved Primal Simplex algorithm (IPS) (El Hal-
laoui et al., 2011; Raymond et al., 2010b; Metrane et al., 2010) uses the SP (3.56)

to select a negative reduced cost extreme ray xr =

[
x2r
xNr

]
that satisfies x2 +

Ā2NxN = 0, hence leading to a non-degenerate pivot. To avoid unboundedness,
we can scale the rays in (3.56) with a normalizing constraint, e.g., the sum of the
variables equals 1 (Dantzig and Thapa, 2003, §10.2).

Note 3.14 (Minimum mean cycle-canceling algorithm (MMCC).) We can define the
SP (3.56) not only in terms of the zero-variables x2 and xN but also x1 = b̄1 > 0. It
suffices to make the change of variables

x1 = b̄1 +(y+1 −y−1 ), y+1 ≥ 0, 0≤ y−1 ≤ b̄1, (3.57)

in the LP (3.55), or more cleverly in the original formulation that becomes

z⋆LP = c⊺1 b̄1 + min c⊺1y+1 − c⊺1y−1 + c⊺2x2 + c⊺NxN (3.58a)

s.t. y−1 ≤ b̄1 (3.58b)

A1y+1 − A1y−1 + A2x2 + ANxN = 0 (3.58c)

y+1 ≥ 0, y−1 ≥ 0, x2≥ 0, xN ≥ 0. (3.58d)
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In this fashion, the SP is solved on (3.58c)–(3.58d) with a normalizing constraint
whereas the step size of the non-degenerate pivot is controlled by the upper bound
constraints (3.58b). It is noteworthy that this algorithm does not revolve around ba-
sic solutions. It has originally been developed for network flow problems for which
the solutions of the SP are cycles of minimum average cost (Goldberg and Tar-
jan, 1989). It is known to be strongly polynomial since its inception but tighter
complexity results have been derived in Radzik and Goldberg (1994) and more re-
cently in Gauthier et al. (2015). The algorithm can be ported to arbitrary linear pro-
grams in which case the complexity is shown to be pseudo-polynomial (Gauthier
and Desrosiers, 2022). Finally, Gauthier et al. (2018) present a generic framework
in which the IPS and MMCC algorithms are extreme cases ensuring non-degenerate
pivots. The various cases depend on the number of positive variables for which the
change of variables is performed: none in IPS, all in MMCC.

Benders decomposition of a linear program

“Benders decomposition is Dantzig-Wolfe decomposition applied to the dual. Under this approach,
the number of variables is reduced at the expense of usually adding many new inequalities. Anal-
ogous to generating columns of the D-W master only when needed, the inequalities of the Benders
master are generated only when needed.” – Dantzig and Thapa (2003, §10.3)

Benders decomposition (Benders, 1962) is often used for reformulating a mixed-
integer linear program MILP, for example one with two linked sets of variables
such as

z⋆MILP =min p⊺y+q⊺x
s.t. Py+ Qx≥ b

y ∈ Y

x≥ 0,

(3.59)

where Y⊆Zm
+ is a set of integer points. Indeed, we deal with complicating variables

instead of complicating constraints. For a given feasible y ∈ Y, the resulting linear
program is much easier to solve:

min
x≥0 |y

q⊺x

s.t. Qx≥ b−Py [σσσ ].
(3.60)

We can leverage this “easy” program idea by rewriting formulation (3.59) as a
bi-level optimization program, where the lower-level receives y-values as input:

z⋆MILP = min
y∈Y

{
p⊺y+ min

x≥0|y
{q⊺x |Qx≥ b−Py}

}
(3.61a)
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= min
y∈Y

{
p⊺y+ max

σσσ≥0|y
{(b−Py)⊺σσσ |Q⊺σσσ ≤ q}

}
. (3.61b)

Benders decomposition revolves around the dual passage to (3.61b). We do this
to obtain a fixed polyhedron {σσσ ∈ Rm

+ |Q⊺σσσ ≤ q}, independent of a specific y, and
thus be able to use the Minkowski-Weyl theorem. This leads us to an exact solution
method which iteratively introduces refining cuts in y. That is, we can derive a so-
called Benders master problem from (3.61b) and use a cutting plane algorithm on
its relaxation. Let us give more detailed explanations in the forthcoming comparison
with the Dantzig-Wolfe decomposition.

For the record, we could even have integrality restrictions on x in (3.61a) but
would only be able to dualize the linear relaxation. This in turn implies that we can
adapt Benders decomposition with a branching mechanism to solve a more general
starting formulation. Benders decomposition is now widely used for linear, non-
linear, integer, stochastic, multi-stage, bi-level, and other optimization programs,
see Rahmaniani et al. (2017) for a survey. The L-shaped method (Van Slyke and
Wets, 1969), taking its name from what the program being solved looks like, is to
the Benders decomposition what the column generation algorithm is to the Dantzig-
Wolfe decomposition.

To show the equivalence with the Dantzig-Wolfe decomposition in the context
of maximizing a linear program, we use the simplified primal-dual pair (assumed
feasible)

z⋆LP = max
πππb≥0,πππd≥0

b⊺πππb + d⊺πππd

s.t. A⊺πππb +D⊺πππd ≤ c [x]

z⋆LD = min
x≥0

c⊺x

s.t. Ax≥ b [πππb]

Dx≥ d [πππd],

(3.62)

for which we know that a Dantzig-Wolfe reformulation of the LD gives the MP (3.9).
Using the same grouping of constraints in A and D, the LP can be rewritten as a
bi-level program in which the lower-level receives πππb-values as input:

z⋆LP =max
πππb≥0

{
b⊺πππb + max

πππd≥0|πππb
{d⊺πππd | D⊺πππd ≤ c−A⊺πππb}

}
(3.63a)

=max
πππb≥0

{
b⊺πππb + min

x≥0|πππb
{(c−A⊺πππb)

⊺x | Dx≥ d}
}
. (3.63b)

For any optimal solution πππ⋆
b, there cannot be an extreme ray xr, r ∈ R, of the min-

imization program for which (c⊺ −πππ⋆⊺

b A)xr = cr − a⊺r πππ⋆
b < 0, otherwise the LP

in (3.62) is infeasible. Therefore, the feasibility cuts a⊺r πππb ≤ cr, ∀r ∈ R, are imposed
on πππb and there only remains to consider extreme points of the (inner) minimization
program given πππb as input:
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z⋆LP = max
πππb≥0

{
b⊺πππb + min

{xp}p∈P|πππb
{cp−a⊺pπππb}

}
s.t. a⊺r πππb ≤ cr ∀r ∈ R.

(3.64)

Because min
{xp}p∈P|πππb

{cp− a⊺pπππb} = max
π0∈R

π0 s.t. π0 ≤ cp− a⊺pπππb, ∀p ∈ P, we obtain

the so-called Benders master problem:

z⋆LP = max
πππb≥0,π0∈R

b⊺πππb + π0

s.t. a⊺pπππb + π0 ≤ cp [λp] ∀p ∈ P

a⊺r πππb ≤ cr [λr] ∀r ∈ R,

(3.65)

which indeed corresponds to the dual of the MP (3.9). Moreover, the constraints
indexed by p ∈ P are known as optimality cuts, a name we can better appreciate
upon substituting b⊺πππb +π0 = µ ∈ R:

z⋆LP = max
πππb≥0,µ∈R

µ

s.t. µ ≤ cp− (ap−b)⊺πππb [λp] ∀p ∈ P

0 ≤ cr−a⊺r πππb [λr] ∀r ∈ R.

(3.66)

Relaxed master, subproblem, and initialization

The literature refers to both formulations (3.65) and (3.66) as the Benders master
problem. From our knowledge of the Dantzig-Wolfe decomposition, it is immediate
that we can instantiate a relaxed Benders master problem with subsets P′ ⊂ P and
R′ ⊂ R. Furthermore, initialization is straightforward since we can start with no
constraints at all and some arbitrary πππb ≥ 0. We then generate constraints by solving
(simplex-type) the subproblem, that is, the inner optimization program in (3.63b):

c̄(πππb) = min {(c−A⊺πππb)
⊺x | Dx≥ d,x≥ 0}= min

x∈D
(c−A⊺πππb)

⊺x (3.67)

and converting the output x ∈ {xp}p∈P or x ∈ {xr}r∈R into an appropriate type of
cut with parameters ax and cx. We terminate with an optimal solution to the Benders
master problem when c̄(πππb)≥ 0, the LP (3.62) being a maximization program.

Note 3.15 (What is what?) Observe that the LP rewritten as (3.63b) is now solved
with πππb and x but without πππd variables. At the risk of creating confusion, it is only
fair to put this back in the perspective of the more general model (3.59), i.e., πππb
plays the role of y, πππd that of x, and x that of σσσ .
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Decomposition theorem of a network flow solution

Any network flow solution can be decomposed into a limited number of paths and
cycles. Although the classical constructive proof for the existence of such a decom-
position is very simple (Ahuja et al., 1993, Theorem 3.5), it does not generalize to
solutions of an arbitrary linear program. Gauthier et al. (2014) show that a simi-
lar result indeed does hold with a proof based on a Dantzig-Wolfe reformulation.
We present the edulcorated version of this proof within the scope of the capacitated
minimum cost flow problem (CMCFP) as described in Chapter 1 (Network flow
problem, p. 27). Let us repeat the canonical formulation (1.45) for convenience.

z⋆LP = min ∑
(i, j)∈A

ci jxi j

s.t. ∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = bi ∀i ∈ N

0≤ ℓi j ≤ xi j ≤ ui j ∀(i, j) ∈ A.

(3.68)

Proposition 3.4 (Flow Decomposition Theorem). Any arc-flow solution x0 to the
CMCFP (3.68) can be represented as a combination of directed paths and directed
cycles—though not necessarily uniquely—with the following properties:

(a) Every directed path with positive flow connects a supply node to a demand node.
(b) At most |A|+ |N| directed paths and directed cycles have positive flow amongst

which at most |A| directed cycles.
(c) If bi = 0, ∀i ∈ N, only directed cycles have positive flow on circulation x0.

Proof. We first transform the CMCFP into a circulation problem. We then perform
a Dantzig-Wolfe reformulation on the latter with a pricing problem whose solutions
can be interpreted as paths or cycles of the original problem. The remaining part
uses linear programming arguments to show that any arc-flow solution x0 can be
represented in the master problem with a limited number of variables.

1. We obtain a convenient representation of a circulation problem in two steps. First,
we partition the set of nodes in three subsets:

• the supply nodes S = {i ∈ N | bi > 0};
• the demand nodes D = {i ∈ N | bi < 0};
• the transshipment nodes N \{S∪D}= {i ∈ N | bi = 0}.

Second, Figure 3.8 shows how we augment this partitioned network with nodes
o and d. Transshipment nodes are only visually omitted whereas we count five
supply nodes s1, . . . ,s5 in S and four demand nodes d1, . . . ,d4 in D. Nodes o
and d respectively connect supply and demand nodes with appropriately directed
arcs. We create the loop with arc (d,o). We denote this augmented network by
Gdo = (Ndo,Ado), where Ndo = N∪{o,d} and Ado = A∪{(d,o)}∪{(o, j) j∈S}∪
{(i,d)i∈D}.
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G = (N,A)o s1

s2

s3
s4

s5

dd1

d2

d3
d4

Fig. 3.8: Circulation problem on the network Gdo.

The supply and demand requirements are respectively transferred on the zero-
cost arc sets {(o, j) | j ∈ S} and {(i,d) | i ∈ D}, i.e., ℓo j = uo j = b j, j ∈ S, and
ℓid = uid =−bi, i ∈ D. Lower and upper bounds on xdo are given as ℓdo = udo =

∑ j∈S b j = −∑i∈D bi, that is, both are equal to the total supply or demand. The
circulation problem is given by

z⋆LP = min ∑
(i, j)∈Ado

ci jxi j

s.t. ∑
j:(i, j)∈Ado

xi j− ∑
j:( j,i)∈Ado

x ji = 0 ∀i ∈ Ndo

0≤ ℓi j ≤ xi j ≤ ui j ∀(i, j) ∈ Ado.

(3.69)

2. We then perform a Dantzig-Wolfe reformulation by grouping the constraints as

A= {{xi j ∈ R+}(i, j)∈Ado
| ℓi j ≤ xi j ≤ ui j}

D=

{
{xi j ∈ R+}(i, j)∈Ado

∣∣∣∣ ∑
j:(i, j)∈Ado

xi j− ∑
j:( j,i)∈Ado

x ji = 0, ∀i ∈ Ndo

}
.

The set D describes a flow circulation without upper bounds. It actually forms a
polyhedral cone that can be described in terms of the extreme point 0 and a finite
number of extreme rays, i.e., X=

{[
0
1

]}
∪
{[

xr
0

]}
r∈R

On the one hand, the extreme
point 0 can be discarded from the reformulation as it has no contribution in the
objective function of the MP nor its constraint set. On the other hand, every
extreme ray is associated with a directed cycle in Gdo. These directed cycles
with positive flow can be represented using a unit-flow and are next interpreted
in terms of directed paths and directed cycles in the original network G:

• a Gdo-cycle with xdo = 1: a directed path in G from a supply to a demand node;
• a Gdo-cycle with xdo = 0: a directed cycle in G.

Define P and C to be respectively the sets of paths and cycles in G, where these
are understood to be directed even though we omit the precision.
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Let x = [xi j](i, j)∈A be the flow variables with respectively the lower and upper
bounds ℓℓℓ = [ℓi j](i, j)∈A and u = [ui j](i, j)∈A. Define also xS = [xo j] j∈S and xD =
[xid ]i∈D together with bS = [b j] j∈S and bD = [bi]i∈D.

Any non-zero solution [x,xS,xD,xdo]
⊺ to D can be written as a conic combination

of the extreme rays xr, r ∈ R, on Gdo, that is, equivalently on G in terms of the
supply-demand paths [xp,xSp,xDp,1]⊺, p ∈ P, and cycles [xc,0,0,0]⊺, c ∈ C:

x
xS
xD
xdo

 = ∑
p∈P


xp
xSp
xDp

1

λp + ∑
c∈C


xc
0
0
0

λc, λp,λc ≥ 0, ∀p ∈ P,c ∈ C. (3.71)

Let cp = c⊺xp, p ∈ P, be the cost of a path and cc = c⊺xc, c ∈ C, be the cost of a
cycle. The MP is then given as

z⋆MP = min ∑
p∈P

cpλp + ∑
c∈C

ccλc (3.72a)

s.t. ∑
p∈P

xpλp + ∑
c∈C

xcλc = x (3.72b)

∑
p∈P

xSpλp = xS (= bS) (3.72c)

∑
p∈P

xDpλp = xD (=−bD) (3.72d)

∑
p∈P

λp = xdo (3.72e)

λp ≥ 0 ∀p ∈ P (3.72f)
λc ≥ 0 ∀c ∈ C (3.72g)

x ∈ [ℓℓℓ,u]. (3.72h)

3. In the above reformulation, the constraint (3.72e) is redundant and as such can be
removed. Indeed, xdo = 1⊺bS =−1⊺bD is implied by the flow conservation equa-
tions of the supply nodes (3.72c) or demand nodes (3.72d). Since any solution x0

to the CMCFP (3.68) obviously satisfies the bound constraints, we can describe
this solution with a basis of size |A|+ |S|+ |D| in respectively (3.72b), (3.72c),
and (3.72d), where |S|+ |D| ≤ |N| nodes. Therefore, counting only the positive
λ -variables, there exists a representation for x0 that uses at most |A|+ |N| paths
and cycles, amongst which at most |A| cycles (λc-variables).

In the case of a circulation problem for which bi = 0, ∀i ∈ N, there are no paths
involved, that is, no λp-variables because S = D = /0, and x0 can be written as a
combination of at most |A| cycles. ⊓⊔
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Fig. 3.9: François Soumis, a lead researcher on column generation and Dantzig-
Wolfe decomposition at GERAD in Montréal (Tromsø, Norway, 2010-06-23).

3.5 Examples

Example 3.1 illustrates the mechanics of a reformulation on a two-dimensional pro-
gram. Example 3.2 solves the linear relaxation of a Time constrained shortest path
problem (TCSPP) for which the search for an optimal integer solution is postponed
to Chapters 4 and 7. In Example 3.3, we present two compact formulations of the
Single depot vehicle scheduling problem. The second facilitates the reformulation
in terms of extreme rays. Finally, Example 3.4 uses the SP of a Dantzig-Wolfe re-
formulation to activate rows and variables of the compact formulation.

There is something mechanical in solving a Dantzig-Wolfe reformulation, see
Figure 3.5. Starting with a given compact formulation, we next establish a grouping
of constraints from which we derive an extended formulation. We then usually solve
this reformulation by column generation and finally do a back substitution to obtain
a solution for the compact formulation. We enumerate these elements concisely as

• Compact formulation (LP)
• Grouping of constraints (A and D)
• Extended formulation (MP)
• Column generation approach (RMP and SP)
• Optimal primal-dual solutions for the compact formulation (x⋆LP,σσσ

⋆
b and σσσ⋆

d).
If the MP can be solved directly, we obviously also obtain a primal solution for

the compact formulation. Otherwise, we use column generation with the SP which
also gives us a dual solution for the compact formulation at optimality of the MP.
We follow this pattern in Examples 3.1 and 3.2. From there on, we may skip and/or
blur together some of these elements in our presentation.
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Example 3.1 2D illustration

� This is a visual illustration of a Dantzig-Wolfe reformulation which is
solved directly and again by column generation.

We use a simple 2-dimensional linear program to hone our skills on performing a
Dantzig-Wolfe reformulation. The simplicity of the problem allows us to solve it in
three different ways: the LP and the MP directly as well as by column generation.
We insist that solving the MP directly is only possible if we can conceivably enu-
merate all extreme points and extreme rays. The visual interpretation of this small
problem obviously grants us this.

Compact formulation

Consider the following 2-dimensional linear program with dual variables appearing
within brackets as usual:

z⋆LP = min x1 + x2

s.t. −x1 + 4x2 ≤ 8 [σ1]

3x1 + 4x2 ≥ 24 [σ2]

x1 ≤ 10 [σ3]

x2 ≥ 2 [σ4]

x2 ≤ 6 [σ5]

x1, x2 ≥ 0.

(3.73)

The unique primal optimal solution to the LP is x⋆LP = (4,3) with z⋆LP = 7. This
is easy to verify given the four extreme points {(4,3), (10,4.5), (10,2), (16/3,2)}.
We also have that σσσ⋆⊺=

[
−1/16, 5/16, 0, 0, 0

]
is the unique optimal dual solution.

Grouping of constraints

Figure 3.10 depicts the feasible domain where the sets A and D are given by

A= {x1,x2 ≥ 0 | 3x1 +4x2 ≥ 24, x1 ≤ 10, x2 ≤ 6} (3.74a)
D= {x1,x2 ≥ 0 | −x1 +4x2 ≤ 8, x2 ≥ 2}. (3.74b)

As a simple courtesy, we inform the reader that we ask to redo this example while
inverting the roles of A and D in Exercise 3.6. Likewise in Exercise 3.7 where we
rather want to maximize the objective function.
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x1(0,0)
10
•

x2

zLP

6•

2• (10,2)•

(10,6)•

(10,4.5)•
(4,3)
•

8
•

(16/3,2)
•

A∩D

Fig. 3.10: Domain of the LP (3.73) as the shaded intersection of A and D. A level
curve of the objective function appears as a dotted line.

Extended formulation

The polyhedron D comprises a single extreme point (0,2) and two extreme rays: the
first has a positive slope 1/4 while the second is horizontal, see Figure 3.11(right).
The latter two are represented by the Euclidean vectors (4,1) and (1,0) which corre-
spond to the illustrated vectors (0,2)→ (4,3) and (0,2)→ (1,2) in the unbounded
domain D.

x1

x2

6•
(10,6)
•

8
•(0,0)

10
•

A

x1

x2

(0,0)
1 4

2•
D

Fig. 3.11: Sets A and D for the LP (3.73).

Using the Minkowski-Weyl Theorem 3.1 on D, let λ1 be used for the extreme
point x1 = (0,2) whereas λ2 and λ3 are used for the extreme rays x2 = (4,1) and
x3 = (1,0), respectively. After substitution in the constraints of A and the objective
function, the MP comprises four constraints, where the row indices correspond to
those of the dual variables πππ

⊺
b = [π2,π3,π5], π0 being reserved for the convexity

constraint (here involving only variable λ1):
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x: (0,2) (4,1) (1,0)
z⋆MP = min 2λ1 + 5λ2 + λ3

s.t. 8λ1 + 16λ2 + 3λ3 ≥ 24 [π2]

4λ2 + λ3 ≤ 10 [π3]

2λ1 + λ2 ≤ 6 [π5]

λ1 = 1 [π0]

λ1, λ2, λ3 ≥ 0

(0,2)λ1 + (4,1)λ2 + (1,0)λ3 = (x1,x2).

(3.75)

Because cx = x1 + x2 in (3.73), the costs of the λ -variables are easily computed,
e.g., c(4,1) = 4+ 1 = 5 for λ2. For the column coefficients in the constraints, the
computation is done analogously. For example, for row index 2, a2x = 3x1 + 4x2,
hence a2(0,2) = 8, a2(4,1) = 16, and a2(1,0) = 3.

Optimal primal-dual solutions for the compact formulation

Solving the MP (3.75), we find

• a primal λ -solution: λλλ
⋆
MP = (1,1,0) with objective value z⋆MP = 7 = z⋆LP;

• a primal x-solution: x⋆MP = (0,2)λ ⋆
1 +(4,1)λ ⋆

2 +(1,0)λ ⋆
3 = (4,3) = x⋆LP;

• a partial dual solution: πππ⋆⊺

b = [π⋆
2 ,π

⋆
3 ,π

⋆
5 ] = [5/16,0,0] together with π⋆

0 = −1/2.

To complete the dual solution, we need to define and solve the pricing problem. This

SP, a linear program with the dual vector πππd =

[
π1
π4

]
, writes as

c̄(πππb,π0) =−π0 + min
x∈D

cx−

π2
π3
π5

⊺ ax

s.t. cx = x1 + x2

ax =

3x1 +4x2
x1
x2

 ,
that is,

c̄(πππb,π0) =−π0 + min (1−3π2−π3)x1 +(1−4π2−π5)x2

s.t. −x1 + 4x2 ≤ 8 [π1]

x2 ≥ 2 [π4]

x1≥ 0.

(3.76)
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Note that the objective coefficients (1−3π2−π3) and (1−4π2−π5) in the SP are
adjusted costs of the variables x1 and x2. Their reduced costs can rather be derived
from the LP as c̄1 = (1+σ1−3σ2−σ3) and c̄2 = (1−4σ1−4σ2−σ4−σ5).

Solving the SP (3.76) for πππ⋆
b and π⋆

0 , that is,

c̄(πππ⋆
b,π

⋆
0 ) =

1
2

+ min
1

16
x1 − 4

16
x2

s.t. − x1 + 4x2 ≤ 8 [π1]

x2 ≥ 2 [π4]

x1≥ 0,

(3.77)

we identify the extreme point (0,2), the obvious optimal value c̄(πππ⋆
b,π

⋆
0 ) = 0, and

the requested dual values π⋆
1 = −1/16 and π⋆

4 = 0. We have confirmed in this refor-
mulation that z⋆MP = z⋆LP. Moreover, as both primal and dual optimal solutions of the
LP are unique, we have x⋆MP = x⋆LP and πππ⋆ =σσσ⋆.

Column generation approach

We now solve the MP (3.75) by column generation.

Iteration 1. Let us first discard the last equation in terms of λ - and x-variables
while introducing the surplus variable s2 in the row indexed by 2 and slack
variables s3 and s5 in rows indexed by 3 and 5, respectively. Because the slack
variables can be basic, the initialization requires only two artificial variables,
say y2 and y0 with big-M here equal to 100:

zRMP = min 100y2 + 100y0

s.t. y2 − s2 = 24 [π2]

s3 = 10 [π3]

s5 = 6 [π5]

y0 = 1 [π0]

y2, y0, s2, s3, s5 ≥ 0.

The first basic solution takes the four values (y2,s3,s5,y0) = (24,10,6,1) with
dual vector πππ

⊺
b = [π2,π3,π5,π0] = [100,0,0,100] and zRMP = 2500. Solving

the SP (3.76) with these dual values, that is,

c̄(πππb,π0) =−100 + min − 299x1 − 399x2

s.t. − x1 + 4x2 ≤ 8 [π1]

x2 ≥ 2 [π4]

x1≥ 0,
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returns c̄(πππb,π0) = −∞ with one of the two extreme rays x2 or x3, see Fig-
ure 3.11(right). Indeed, introducing the slack variable s1, surplus s4, and artifi-
cial y4 into the above formulation, the SP writes as

c̄(πππb,π0) =−100 + min −299x1 − 399x2 + 100y4

s.t. −x1 + 4x2 + s1 = 8 [π1]

x2 + y4 − s4 = 2 [π4]

x1, y4, s1, s4 ≥ 0.

Firstly, there are various ways to reach the extreme point x1 =

[
x1
x2

]
=

[
0
2

]
of

cost−198, where the basis
[
−1 4

0 1

]
and its inverse are identical. This provides

the dual vector

πππ
⊺
d = [π1,π4] = [−299,−399]

[
−1 4

0 1

]
= [299,−1695].

Secondly, both variables s1 and s4 then lead to negative cost extreme rays, i.e.,[
x1
x2

]
=

[
0
2

]
−
[
−1 4

0 1

][
1
0

]
s1 =

[
0
2

]
+

[
1
0

]
s1, with c̄s1 =−299;

[
x1
x2

]
=

[
0
2

]
−
[
−1 4

0 1

][
0
−1

]
s4 =

[
0
2

]
+

[
4
1

]
s4, with c̄s4 =−1695.

Let us select the extreme ray x2 identified by (4,1) to add in the RMP as λ2.

Iteration 2. The second RMP to solve, where we omit artificial variable y2 simply
to make room in the presentation, writes as

x: (4,1)
zRMP = min 100y0 + 5λ2

s.t. − s2 + 16λ2 = 24 [π2]

s3 + 4λ2 = 10 [π3]

s5 + λ2 = 6 [π5]

y0 = 1 [π0]

y0, s2, s3, s5, λ2 ≥ 0.

The second basic solution takes the four values (λ2,s3,s5,y0) = (1.5,4,4.5,1)
with dual vector [π2,π3,π5,π0] = [5/16,0,0,100] and zRMP = 107.5.

Solving the SP (3.76) with these dual values, that is,
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c̄(πππb,π0) =−100 + min
1

16
x1 − 5

16
x2

s.t. − x1 + 4x2 ≤ 8 [π1]

x2 ≥ 2 [π4]

x1≥ 0,

returns c̄(πππb,π0) =−100.625 with the extreme point x1 = (0,2).

Iteration 3. Discarding the slack variable s2, the third RMP is given by

x: (4,1) (0,2)
zRMP = min 100y0 + 5λ2 + 2λ1

s.t. 16λ2 + 8λ1 ≥ 24 [π2]

s3 + 4λ2 = 10 [π3]

s5 + λ2 + 2λ1 = 6 [π5]

y0 + λ1 = 1 [π0]

y0, s3, s5, λ2, λ1 ≥ 0.

The third basic solution takes the four values (λ1,λ2,s3,s5) = (1,1,2,3) with
dual vector [π2,π3,π5,π0] = [5/16,0,0,−1/2] and zRMP = 7. The SP is exactly
the one given in (3.77). It returns c̄(πππb,π0) = 0 and proves the optimality of
this solution.

Example 3.2 Time constrained shortest path problem (TCSPP)

� A Dantzig-Wolfe reformulation and the solution process, step by step.

Consider the network G = (N,A) depicted in Figure 3.12, where N is the set of six
nodes and A is the set of ten arcs. Besides a cost ci j attributed to each arc (i, j) ∈
A, there is also a traversal time ti j. The problem is to find a shortest path from
node 1 to node 6 such that its total traversal time does not exceed 14 time units.
This example first appears in Ahuja et al. (1993, p. 599) within a chapter devoted to
Lagrangian relaxation. It is later used in Desrosiers and Lübbecke (2005) where the
Dantzig-Wolfe decomposition principle is applied to decompose an integer linear
programming formulation of it.

Compact formulation

Let xi j be a binary flow variable for (i, j) ∈ A. The integer linear programming
formulation ILP provided in (3.78) for this time constrained shortest path problem
(TCSPP) is as follows: one unit of flow must leave the source node 1 and enter the
sink node 6, while flow conservation must hold at all other nodes. The restriction of
at most 14 time units appears in (3.78e).
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(1,10)
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(10,3)
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(1,2) (10,1)

(2,3)

(5,
7)

Fig. 3.12: Network G = (N,A) with (ci j, ti j) values, ∀(i, j) ∈ A.

z⋆ILP = min ∑
(i, j)∈A

ci jxi j (3.78a)

s.t. ∑
j:(1, j)∈A

x1 j = 1 [σ1] (3.78b)

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 [σi] ∀i ∈ {2, . . . ,5} (3.78c)

− ∑
i:(i,6)∈A

xi6 =−1 [σ6] (3.78d)

∑
(i, j)∈A

ti jxi j ≤ 14 [σ7] (3.78e)

xi j ∈ {0,1} ∀(i, j) ∈ A. (3.78f)

By replacing the binary constraints by xi j ≥ 0, ∀(i, j) ∈ A, we obtain the linear
relaxation with associated dual variables σi, ∀i∈ 1, . . . ,7. One can easily compute an
optimal solution for the LP as z⋆LP = 7 with positive flow variables x⋆12 = 0.8, x⋆13 =
x⋆32 = 0.2, x⋆25 = x⋆56 = 1 and dual vector σσσ⋆⊺ = [0,−21,−16,−24,−29,−35,−2].

Grouping of constraints

Although we see in the next chapter why this is not (only) a good idea, let us select
a grouping of the constraints based on the network flow structure of (3.78):

A= {x ∈ [0,1]|A| | (3.78e)} (3.79a)

D= {x ∈ [0,1]|A| | (3.78b)–(3.78d)}. (3.79b)

The constraints defining D express a path structure from node 1 to node 6. By in-
spection, we find nine paths corresponding to the set {xp}p∈P of extreme points
of D and no extreme rays. An extreme point xp is a vector of dimension 10 (the
number of arcs in A), that is, xp = [xi jp](i, j)∈A, p ∈ P. Hence, we interpret from the
Minkowski-Weyl Theorem 3.1 that any arc-flow solution x ∈D can be represented
as a convex combination of these extreme points, that is,
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∑
p∈P

xpλp = x, ∑
p∈P

λp = 1, λp ≥ 0, ∀p ∈ P, (3.80)

where the first equality written component-wise for the arc-flow variable vector x is
∑p∈P xi jpλp = xi j, ∀(i, j) ∈ A.

Extended formulation

The substitution of (3.80) in the objective function of (3.78) and in the constraints
defining A results in a MP with only two constraints: the traversal time constraint
from A (with an associated dual variable π7) and the convexity constraint (with the
dual variable π0). It is formulated as

z⋆MP = min ∑
p∈P

cpλp

s.t. ∑
p∈P

tpλp ≤ 14 [π7]

∑
p∈P

λp = 1 [π0]

λp ≥ 0 ∀p ∈ P

∑
p∈P

xi jpλp = xi j ∀(i, j) ∈ A,

(3.81)

where cp is the cost of path p whereas tp corresponds to its traversal time. These
coefficients are respectively the contribution of the extreme point (path) xp to the
objective function and the traversal time constraint of A:

cp = ∑
(i, j)∈A

ci jxi jp and tp = ∑
(i, j)∈A

ti jxi jp. (3.82)

Let λ12456 be the variable associated with path 1→ 2→ 4→ 5→ 6, and similarly
for the other eight path variables. Since x⋆i j can be computed a posteriori when the
λ⋆p-variables are known, there is no need to keep the relation between the xi j- and
λp-variables while solving the MP and (3.81) becomes

min 3λ1246+14λ12456+ 5λ1256+13λ13246+24λ132456+15λ13256+16λ1346+27λ13456+24λ1356

s.t.18λ1246+14λ12456+15λ1256+13λ13246+ 9λ132456+10λ13256+17λ1346+13λ13456+ 8λ1356 ≤14
λ1246+ λ12456+ λ1256+ λ13246+ λ132456+ λ13256+ λ1346+ λ13456+ λ1356 = 1
λ1246 , λ12456 , λ1256 , λ13246 , λ132456 , λ13256 , λ1346 , λ13456 , λ1356 ≥ 0.

Optimal primal-dual solutions for the compact formulation

An optimal solution to this MP is λ⋆13256 = 0.2 and λ⋆1256 = 0.8 with z⋆MP = 7. Pro-
jecting back to the original variables with x⋆i j = ∑p∈P xi jpλ⋆p, it corresponds to the
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arc-flows x⋆12 = 0.8, x⋆13 = x⋆32 = 0.2, and x⋆25 = x⋆56 = 1 previously found while solv-
ing the LP. Branching decisions are needed to recover integrality, the subject of
Chapter 7. On Figure 3.13, each arc has a width proportional to its flow value and it
is easy to validate that flow conservation is satisfied.

1

2

3 5

6

0.8

0.2 1

0.2
1

Fig. 3.13: Optimal arc-flow solution as a combination of paths 13256 and 1256.

Moreover, π⋆
7 =−2= σ⋆

7 while π⋆
0 = 35. Our goal is now to find the missing dual

values for π⋆
i , i ∈ {1, . . . ,6}, to obtain an equivalent primal-dual optimal solution to

the LP. To do this, we simply have to solve the SP with input (π⋆
7 ,π

⋆
0 ) = (−2,35):

c̄(−2,35) =−35+min ∑
(i, j)∈A

(ci j +2ti j)xi j

s.t. ∑
j:(1, j)∈A

x1 j = 1 [π1]

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 [πi] ∀i ∈ {2, . . . ,5}

− ∑
i:(i,6)∈A

xi6 =−1 [π6]

xi j ≥ 0 ∀(i, j) ∈ A,

that is, πππ⋆⊺

d = [29,8,13,5,0,−6]. This program is a network flow problem and, as
such, naturally gives integer primal solutions but an infinite number of equivalent
dual solutions. Indeed, by Proposition 1.10, we can translate an optimal dual solu-
tion by any scalar. In this case, πππ⋆

d is a translation by +29 of

σσσ
⋆⊺

d = [0,−21,−16,−24,−29,−35]

found while directly solving the original LP. An alternative optimal dual vector to

σσσ⋆ =

[
σσσ⋆

d
σ⋆

7

]
is therefore given by πππ⋆ =

[
πππ⋆

d
π⋆

7

]
, where π⋆

7 = σ⋆
7 .

Column generation approach

The MP (3.81) comprises nine λ -variables and two constraints with dual variables
π7 and π0. During the column generation algorithm, an iteration consists of:
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• Optimizing the RMP to determine the objective value zRMP as well as the dual
values π7 and π0;

• Finding a variable λp, p ∈ P, with a negative reduced cost c̄p (if any), that is,

c̄p = cp−π7tp−π0 = ∑
(i, j)∈A

ci jxi jp−π7 ∑
(i, j)∈A

ti jxi jp−π0 < 0. (3.83)

This amounts to solving the SP, a shortest path problem with an adjusted cost
(ci j−π7ti j) for every arc (i, j) ∈ A, defined as

c̄(π7,π0) =−π0 +min
x∈D ∑

(i, j)∈A
(ci j−π7ti j)xi j. (3.84)

Table 3.1 gives the five iterations for solving the MP, where we report for the
RMP: a primal solution, the objective value zRMP, as well as dual values π0 and π7,
and regarding the SP: the minimum reduced cost c̄(π7,π0) given by path p of cost cp
and traversal time tp. Finally, the last column shows the lower bound lb on z⋆LP
computed as

lb = zRMP + c̄(π7,π0) = 14π7 +π0 + c̄(π7,π0). (3.85)

Take a look at the sequence of generated paths. We first generate the least cost
path but its duration is too long. From there on, the process adapts by generating a
new path that leverages the cost or time component depending on the opportunity
cost given by π7 and π0.

RMP SP

t primal solution zRMP π0 π7 c̄(π7,π0) p cp tp lb

1 y0 = 1 100.0 100.00 0.00 −97.0 1246 3 18 3.00
2 y0 = 0.22,λ1246 = 0.78 24.6 100.00 −5.39 −32.9 1356 24 8 −8.33
3 λ1246 = 0.6,λ1356 = 0.4 11.4 40.80 −2.10 −4.8 13256 15 10 6.60
4 λ1246 = λ13256 = 0.5 9.0 30.00 −1.50 −2.5 1256 5 15 6.50
5 λ13256 = 0.2,λ1256 = 0.8 7.0 35.00 −2.00 0.0 - - - 7.00

x⋆12 = 0.8, x⋆13 = x⋆32 = 0.2, and x⋆25 = x⋆56 = 1

Table 3.1: Iterations of the column generation algorithm while solving the MP.

Iteration 1. We initialize the column generation algorithm with a Phase I. To do
so, we need only one artificial variable y0 with a relatively large cost, say 100,
for the convexity constraint while an added non-negative slack variable s7 can
be basic for the time constraint. We do not have any path variables yet and the
RMP contains two constraints.

zRMP = min 100y0

s.t. s7 = 14 [π7]
y0 = 1 [π0]
y0, s7 ≥ 0.
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This RMP is solved by inspection: y0 = 1, s7 = 14, zRMP = 100, and the dual
variables are π0 = 100 and π7 = 0. The SP returns path 1246 with a reduced
cost c̄(π7,π0) =−97, cost 3 and duration 18. The lower bound is lb = 3.

Iteration 2. The RMP contains three variables: y0, s7, and λ1246.

zRMP = min 100y0 + 3λ1246

s.t. 18λ1246 + s7 = 14 [π7]
y0 + λ1246 = 1 [π0]
y0, λ1246, s7 ≥ 0.

An optimal solution is zRMP = 24.6 with y0 = 0.22 and λ1246 = 0.78, which is
still infeasible for the RMP as y0 > 0. The dual variables are π0 = 100 and π7 =
−5.39. Solving the SP gives path 1356 with a reduced cost−32.9, cost 24, and
duration 8. The lower bound lb is worse than the previous one as −8.33 < 3.

Iteration 3. The third RMP contains four variables: y0, s7, λ1246, and λ1356.

zRMP = min 100y0 + 3λ1246 + 24λ1356

s.t. 18λ1246 + 8λ1356 + s7 = 14 [π7]
y0 + λ1246 + λ1356 = 1 [π0]
y0, λ1246, λ1356, s7 ≥ 0.

Solving it provides zRMP = 11.4 with λ1246 = 0.6 and λ1356 = 0.4. This is feasi-
ble for the RMP, thus ending the Phase I and the artificial variable is removed.
The dual variables are π0 = 40.80 and π7 = −2.10. Solving the SP generates
path 13256 with a reduced cost −4.8, cost 15, and duration 10. We obtain a
better lower bound lb = 6.6 > 3.

Iteration 4. The RMP writes as

zRMP = min 3λ1246 + 24λ1356 + 15λ13256

s.t. 18λ1246 + 8λ1356 + 10λ13256 + s7 = 14 [π7]
λ1246 + λ1356 + λ13256 = 1 [π0]
λ1246, λ1356, λ13256, s7 ≥ 0.

We find zRMP = 9.0 with λ1246 = λ13256 = 0.5 while π0 = 30.00 and π7 =
−1.50. Solving the SP finds path 1256 with a reduced cost −2.5, cost 5, and
duration 15. The lower bound lb = 6.5 < 6.6 again does not improve on the
best one available.

Iteration 5. The RMP contains four path variables:

zRMP = min 3λ1246 + 24λ1356 + 15λ13256 + 5λ1256

s.t. 18λ1246 + 8λ1356 + 10λ13256 + 15λ1256 + s7 = 14 [π7]
λ1246 + λ1356 + λ13256 + λ1256 = 1 [π0]
λ1246, λ1356, λ13256, λ1256, s7 ≥ 0.

We finally find zRMP = 7.0 with λ13256 = 0.2, λ1256 = 0.8, π0 = 35.00 and
π7 = −2.00. Solving the SP yields c̄(π7,π0) = 0 and, therefore, the current
solution to the RMP is optimal for the MP. Note that lb = 7.0 corresponds to
the current upper bound zRMP.
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Figure 3.14 shows the evolution of the lower and upper bounds on z⋆MP, where the
upper bounds are only depicted when the solutions are also feasible for the RMP,
i.e., starting at iteration 3. The integer optimum z⋆ILP = 13 of the ILP (3.78) appears
for comparison only. Finally, the best known lower bound LB is not depicted but
would be updated at each iteration with the largest available lower bound.

1 2 3 4 5
−10

−5

0

5

10

15

Iteration t

zRMP

lb
z⋆ILP = 13
z⋆LP = 7

Fig. 3.14: Lower and upper bounds evolution in the column generation algorithm.

Note 3.16 (Master solutions: direct vs. column generation.) In total, four path vari-
ables are generated during the column generation process. We land back on the same
primal solution as solving the MP directly. In general, this would be a purely coin-
cidental observation not to mention it is practically irrelevant as we only solve the
MP via column generation. It is however an opportunity to sharpen our intuition.
Indeed, in this case, it is not surprising that we reach an identical master solution
although the answer is not as trivial as one might conclude at first thought. Jumping
to this conclusion based on the fact that the optimal solution of the compact formu-
lation is unique is only half the answer. Indeed, Note 3.1 tells us that there could be
infinitely many equivalent solutions in λ -variables for some x. The other half of the
answer therefore comes from the fact that the optimal solution for the MP uses only
two λ -variables.

Example 3.3 Single depot vehicle scheduling problem: two compact
formulations

� Two linear programming compact formulations leading to the same
MP, obviously with different SPs. Surprisingly, neither of them is the
intuitive pricing problem!

Let us revisit the Single depot vehicle scheduling problem (Example 2.4) where the
given SP (2.41) is a shortest path problem defined from origin node o to destination
node d. This is intuitively interesting but such a pricing problem should be derived
mathematically. We propose two compact formulations for the SDVSP on which
we apply some Dantzig-Wolfe reformulations. They both provide us similar but
different ways to derive the set partitioning model (2.38) introduced in Chapter 2.
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Recall the acyclic network G = (V,A) in Figure 2.12, with node set V = N ∪
{o,d} and arc set A = I ∪ ({o}×N)∪ (N×{d})∪{(o,d)}, where I is the set of
inter-trip arcs and arc (o,d) is used for the unused vehicles remaining at the depot.
The first compact formulation uses the network G whereas the second adds the
reverse arc (d,o), i.e., Gdo = (V,Ado) with Ado = A∪{(d,o)}. Both formulations
are network flow models. Figures 3.15 and 3.16 respectively capture their essence
in the corresponding presentation.

Formulation with origin-to-destination arc

o d
v v

. . . I . . ....
...

Fig. 3.15: Network G with v available vehicles at the depot.

Let the non-negative (integer) variable xi j be the flow through arc (i, j) ∈ A. The
first model uses the variable xod as a slack variable for the unused vehicles remaining
at the depot, with an eventual parking cost, see Figure 3.15. A linear programming
network flow formulation is

z⋆LP = min ∑
(i, j)∈A

ci jxi j (3.86a)

s.t. ∑
j:(i, j)∈A

xi j = 1 [σi] ∀i ∈ N (3.86b)

∑
j:(o, j)∈A

xo j = v [βo] (3.86c)

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 [βi] ∀i ∈ N (3.86d)

− ∑
j:( j,d)∈A

x jd =−v [βd ] (3.86e)

xi j ≥ 0 ∀(i, j) ∈ A. (3.86f)

The constraints (3.86b) ensure that every trip in N is operated once whereas path
constraints (3.86c)–(3.86e) impose that v vehicles are available at the depot to flow
through the network G. Except for arc (o,d), the flow on the arcs is implicitly limited
to one unit due to the first set of constraints. An important observation is that the
model (3.86) corresponds to a network comprising 2|N|+2 nodes, i.e., two for every
trip i ∈ N and two for the depot at nodes o and d. Such a network representation,
different from that of Figure 3.15, is derived in Exercise 2.8; see also forthcoming
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Note 3.18. Our reformulation of the LP (3.86) groups the constraints as

A= {x ∈ R|A|+ | (3.86b)} (3.87a)

D= {x ∈ R|A|+ | (3.86c)–(3.86e)}. (3.87b)

In D, the flow is now implicitly bounded by v units on every arc of the acyclic
network G. In fact, an extreme point of D is an od-path with exactly v units of flow

such that X=

{[
xp
1

]}
p∈P

.

Such a path either uses the single arc (o,d) with xod = v (no trips are operated) or
it comprises at least two arcs and xod = 0 (some trips are operated). The substitution
of the convex combination of the extreme points in the constraints defining A and
the objective function is done as usual. We however reserve λ and π for later use by
writing the MP in terms of primal θ - and dual γ-variables as

z⋆MP = min ∑
p∈P

Cpθp

s.t. ∑
p∈P

vipθp = 1 [γi] ∀i ∈ N

∑
p∈P

θp = 1 [γ0]

θp ≥ 0 ∀p ∈ P

∑
p∈P

xpθp = x,

(3.88)

where Cp is the cost of v units of flow on path xp, and vip = v if xp operates trip
i ∈ N, 0 otherwise. Taking into account the dual values γi, ∀i ∈ N, and γ0, retrieved
from the solution of an RMP, the SP solves a shortest path problem sending v units
from o to d, with the minimum reduced cost value here given by

C̄(πππ,π0) = min Cp−∑
i∈N

γi vip− γ0 (3.89a)

s.t. ∑
j:(o, j)∈A

xo j = v (3.89b)

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 ∀i ∈ N (3.89c)

− ∑
j:( j,d)∈A

x jd =−v (3.89d)

xi j ≥ 0 ∀(i, j) ∈ A (3.89e)

Cp = ∑
(i, j)∈A

ci jxi j (3.89f)

vip = ∑
j:(i, j)∈A

xi j ∀i ∈ N. (3.89g)
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To obtain the linear relaxation of a set partitioning problem from (3.88), we use
the change of variables

λp = vθp, ∀p ∈ P, (3.90)

which leads to the forthcoming MP with

• scaled cost coefficients cp =Cp/v, ∀p ∈ P;
• binary column coefficients aip = vip/v, ∀i ∈ N;
• dual variables πi = γi, ∀i ∈ N, and π0 = γ0/v;
• v available vehicles at the depot:

z⋆MP = min ∑
p∈P

cpλp

s.t. ∑
p∈P

aipλp = 1 [πi] ∀i ∈ N

∑
p∈P

λp = v [π0]

λp ≥ 0 ∀p ∈ P

∑
p∈P

(xp

v

)
λp = x.

(3.91)

If the cost of an unused vehicle is zero (cod = 0), the λ -variable associated with
the empty schedule (xod = v and a zero-flow everywhere else) can be omitted and the
depot constraint becomes a less-than-or-equal constraint (∑p∈P λp ≤ v). Although
mathematically accurate, the above derivation of the MP as the linear relaxation of
a set partitioning-type model (when the last set of constraints is removed) is rather
laborious. The next one is much simpler, obviously derived from a different compact
formulation.

Formulation with destination-to-origin arc

o d. . . I . . .

•

•
•

•

••

•

•
•

•

• •

...
...

0≤ xdo ≤ v

Fig. 3.16: Network Gdo with v available vehicles at the depot.

Let xi j be the flow through arc (i, j) ∈ Ado. The second flow model uses the zero-
cost variable xdo ≤ v and its slack accounts for the unused vehicles (Figure 3.16). A
linear programming network flow formulation is
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z⋆LP = min ∑
(i, j)∈A

ci jxi j (3.92a)

s.t. ∑
j:(i, j)∈A

xi j = 1 [σi] ∀i ∈ N (3.92b)

xdo ≤ v [σdo] (3.92c)

∑
j:(i, j)∈Ado

xi j− ∑
j:( j,i)∈Ado

x ji = 0 [βi] ∀i ∈ N∪{o,d} (3.92d)

xi j ≥ 0 ∀(i, j) ∈ Ado. (3.92e)

Constraints (3.92b) ensure that every trip in N is operated exactly once. The
second set (3.92c) makes at most v vehicles available at the depot whereas (3.92d)
provides the n+2 flow conservation equations at every node i ∈ N ∪{o,d}. Except
for arcs (o,d) and (d,o), the flow on the arcs is implicitly limited to one unit by the
first set of constraints. We group the partitioning constraints and the upper bound on
xdo in A whereas D contains the flow conservation equations:

A= {x ∈ R|Ado|
+ | (3.92b)–(3.92c)} (3.93a)

D= {x ∈ R|Ado|
+ | (3.92d)}. (3.93b)

The set D is a polyhedral cone with the unique extreme point 0 and the set R of
extreme rays. Such a ray is a cycle formed by a path from o to d and arc (d,o). We
represent it with a unit-flow on the selected arcs. The reformulation writes as

z⋆MP = min 0λ0 + ∑
r∈R

crλr (3.94a)

s.t. 0λ0 + ∑
r∈R

airλr = 1 [πi] ∀i ∈ N (3.94b)

∑
r∈R

brλr ≤ v [πdo] (3.94c)

λ0 = 1 [π0] (3.94d)
λr ≥ 0 ∀r ∈ R (3.94e)

∑
r∈R

xrλr = x. (3.94f)

Discarding the extreme point 0 from the reformulation, the MP no longer com-
prises the convexity constraint (3.94d) and gives the linear relaxation of the set
partitioning-type model as

z⋆MP = min ∑
r∈R

crλr (3.95a)

s.t. ∑
r∈R

airλr = 1 [πi] ∀i ∈ N (3.95b)

∑
r∈R

brλr ≤ v [πdo] (3.95c)
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λr ≥ 0 ∀r ∈ R (3.95d)

∑
r∈R

xrλr = x. (3.95e)

Using the dual variables πi, ∀i ∈ N, and πdo retrieved from the MP (3.95), the SP
turns out to be a network flow circulation problem for which an optimal negative
reduced cost cycle, if any, is represented using a unit-flow on xdo, that is,

c̄(πππ,πdo) = min cr−∑
i∈N

πi air−πdo br (3.96a)

s.t. ∑
j:(i, j)∈Aod

xi j− ∑
j:( j,i)∈Ado

x ji = 0 ∀i ∈ N∪{o,d} (3.96b)

xi j ≥ 0 ∀(i, j) ∈ Ado (3.96c)

cr = ∑
(i, j)∈A

ci jxi j (3.96d)

air = ∑
j:(i, j)∈A

xi j ∀i ∈ N (3.96e)

br = xdo. (3.96f)

Solving (3.96), we set xdo = 1 for any negative reduced cost extreme ray xr, r∈R,
while accordingly computing cr and air, ∀i∈N. Otherwise, we find the zero-cost ex-
treme point 0 for which c̄0 = 0, and the algorithm terminates, see Exercise 3.11 (c).

Note 3.17 (Taking advantage of the new interpretation.) In practice, we do not di-
rectly solve the SP (3.96) but rather find a shortest path from o to d and complete
such a path with xdo = 1. This provides a negative reduced cost cycle, if any. Much
more interestingly, we find in this way the true minimum reduced cost c̄r, r ∈ R
(scaled with br = 1). We hence mathematically take advantage of the new inter-
pretation, replacing every extreme point by a corresponding extreme ray, and thus
facilitate the writing of the Dantzig-Wolfe reformulation (3.95).

Note 3.18 (Start and end trip nodes.) The SP (3.96) uses the network Gdo. The arc-
flow formulation (3.92) rather uses a network comprising 2|N|+ 2 nodes, one per
equality constraint in (3.92b) and (3.92d). Indeed, every trip is represented by two
nodes for the start and end of service; these are connected by an arc and the task
is completed when the arc is traversed. For trip i ∈ N, this arc is associated with
variable xi = 1, see Figure 3.17 and Exercise 2.8. The cost of such an arc can be
set to zero or to the fixed cost incurred to cover that trip. Since each trip has to be
covered exactly once, the sum of the costs of all the trips is a constant.

Note 3.19 (Aircraft routing.) The network representation with two nodes for a trip
is in fact natural in the airline industry, for example, a flight Montréal – Frankfurt is
represented by the two city-nodes. Figure 3.18 illustrates such a simplified network
for an airline company that operates 15 daily flights between cities A, B, and C.
In (a), we have the instance data to be read as from:to:departure time:flight duration.
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do

xk = 1

x j = 1

xi = 1

xi j
xoi

xkd

xod

xdo

Fig. 3.17: Network for the arc-flow formulation (3.92) of the SDVSP.

In (b), we present these flights on a time-space network, where a node identifier
indicates a city (A, B, or C), the activity number (1, 2, . . . ) within the airport, and
the type (D for departure, A for arrival). The time is increasing from top to bottom,
with a night arc in each city from the end of a day to the beginning of the next
one. In general, for a set of n flights, the network is polynomial in size, that is, 2n
nodes (two per flight) and 3n arcs (one per flight [solid] plus one for each ground
task [dashed]). Moreover, any solution to this minimum cost flow problem can be
decomposed into a set of directed cycles by Proposition 3.4. The goal is to determine
the minimum number of (identical) aircraft needed by finding appropriate routing,
see Exercises 3.14–3.15.

A:B:8h00:0h50
B:A:8h15:2h13
C:A:8h45:3h17
A:C:9h00:1h55
B:C:9h09:0h32
B:C:9h34:0h32
A:B:10h55:0h50
A:C:11h25:1h55
C:B:11h27:1h33
B:A:12h08:2h13
C:B:12h30:1h33
C:B:15h07:1h33
B:A:15h32:2h13
C:B:16h00:1h33
B:C:16h10:0h32

(a) Raw flight data

A B C
8h00

9h00

10h00

11h00

12h00

13h00

14h00

15h00

16h00

17h00

18h00

A1D

B2A

A4D

B5A

A2D

C4A
A5D

C7A

B1D

A3A

B6D

A7A

B9D

A8A

B3D
C2AB4D
C3A

B10D
C10A

C1D

A6A
C5D

B7A
C6D

B8A

C8D

B11A

C9D

B12A

(b) Time-space network

Fig. 3.18: Instance with 15 daily flights between cities A, B, and C.
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Example 3.4 Solving a sequence of restricted compact formulations

� An example of row and column activation using the restricted compact
formulation theory presented on p. 124.

We consider again the Time constrained shortest path problem (TCSPP) with an
alternative formulation to (3.78) on a network augmented by the no-cost and no-time
arc (d,o) = (6,1), that is, Gdo = (N,Ado), where Ado =A∪{(6,1)}, see Figure 3.19.

1

2

3

4

5

6

(1,10)

(1,1)

(1,7)

(10,3)

(12,3)

(2,2)

(1,2) (10,1)

(2,3)

(5
,7
)

(0,0)

Fig. 3.19: Network Gdo with parameters (ci j, ti j), ∀(i, j) ∈ Ado.

The linear relaxation of this alternative compact formulation is given by

z⋆LP = min ∑
(i, j)∈A

ci jxi j (3.97a)

s.t. ∑
j:(i, j)∈Ado

xi j− ∑
j:( j,i)∈Ado

x ji = 0 [σi] ∀i ∈ {1, . . . ,6} (3.97b)

∑
(i, j)∈A

ti jxi j ≤ 14 [σ7] (3.97c)

x61 = 1 [σ61] (3.97d)
xi j ≥ 0 ∀(i, j) ∈ Ado. (3.97e)

The flow conservation equations in (3.97b) describe a circulation, the second
imposes the traversal time restriction (3.97c) while constraint x61 = 1 (with the as-
sociated dual variable denoted σ61) implicitly asks for a single unit from source
node o = 1 to terminal node d = 6 by the flow conservation equations. We use the
grouping of constraints

A= {x ∈ R|Ado|
+ | (3.97c)–(3.97d)} (3.98a)

D= {x ∈ R|Ado|
+ | (3.97b)}. (3.98b)

The SP derived from D becomes a network flow circulation problem with the
extreme rays encoded using a unit-flow on the associated cycles, and the single
extreme point 0, that is, X=

{[
0
1

]}
∪
{[

xr
0

]}
r∈R

The MP writes as
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z⋆MP = min 0λ0 + ∑
r∈R

crλr

s.t. 0λ0 + ∑
r∈R

trλr ≤ 14 [π7]

∑
r∈R

λr = 1 [π61]

λ0 = 1 [π0]

λr ≥ 0 ∀r ∈ R

∑
r∈R

xi jrλr = xi j ∀(i, j) ∈ Ado,

(3.99)

where cr is the cost of the unit-flow cycle indexed by r ∈ R whereas tr is its traversal
time. Obviously, the convexity constraint λ0 = 1 can be removed. Rather than solv-
ing this MP by column generation, we solve the original LP (3.97) by sequentially
activating in the restricted LP all the positive xi j-variables identified by the pricing
problem defined in terms of the dual variables σ7 and σ61 as

c̄(σ7,σ61) = min
x∈D ∑

(i, j)∈A
(ci j−σ7ti j)xi j−σ61x61. (3.100)

In this example, the SP is solved as a shortest path problem from 1 to 6 after
which arc (6,1) is added, that is, x61 = 1. We reach optimality in four iterations
detailed below. Figure 3.20 highlights that at each iteration, the RLP corresponds to
a subnetwork of Gdo that depends on the nodes and arcs that have been activated.

1 6

(0,0)

(100,0)

(a) Iteration 1

1

2 4

6

(1,10)

(1,1)

(1,7)

(0,0)

(100,0)

(b) Iteration 2

1

2

3

4

5

6

(1,10)

(1,1)

(1,7)

(10,3)

(12,3)

(2,2)
(0,0)

(100,0)

(c) Iteration 3

1

2

3

4

5

6

(1,10)

(1,1)

(1,7)

(10,3)

(12,3)

(2,2)

(1,2)

(2,3)

(0,0)

(d) Iteration 4

Fig. 3.20: Subnetworks of Gdo.
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Iteration 1. The algorithm starts with a RLP comprising the two constraints in A,
that is, 0 ≤ 14 and the single variable x61 = 1. Moreover, because x61 appears in
the flow conservation constraints for nodes 1 and 6, these are activated from D,
and we need an artificial variable, say y16 with cost 100 and zero traversal time,
to satisfy them:

zRLP = min 100y16

s.t. y16 − x61 = 0 [σ1]

−y16 + x61 = 0 [σ6]

0≤ 14 [σ7]

x61 = 1 [σ61]

y16 ≥ 0.

Solving the above RLP gives zRLP = 100 with y16 = x61 = 1, σ61 = 100, and
σ7 = 0 for the inactive constraint. The SP finds c̄(σ7,σ61) = −97 with cycle
12461 of cost 3 and duration 18. The variables x12, x24, and x46 are added to the
RLP and the flow conservation equations at nodes 2 and 4 are activated.

Iteration 2. The RLP contains five variables and writes as

zRLP = min 100y16 +10x12 +x24 +x46
s.t. y16 +x12 −x61 = 0 [σ1]

−x12 +x24 = 0 [σ2]
−x24 +x46 = 0 [σ4]

−y16 −x46 +x61 = 0 [σ6]
10x12 +x24 +7x46 ≤ 14 [σ7]

x61 = 1 [σ61]
y16, x12, x24, x46 ≥ 0.

Solving it gives zRLP = 24.6 with y16 = 0.22, x12 = x24 = x46 = 0.78, and x61 = 1.
This is still infeasible for the LP. The relevant dual values for the SP are σ7 =
−5.39 and σ61 = 100. The SP returns cycle 13561 of reduced cost −32.9, cost
24, and duration 8. The variables x13, x35, and x56 are added to the RLP while the
constraints at nodes 3 and 5 are activated.

Iteration 3. The RLP now contains eight variables and corresponds to

zRLP = min 100y16 +x12 +10x13 +x24 +12x35 +x46 +2x56
s.t. y16 +x12 +x13 −x61 = 0 [σ1]

−x12 +x24 = 0 [σ2]
−x13 +x35 = 0 [σ3]

−x24 +x46 = 0 [σ4]
−x35 +x56 = 0 [σ5]

−y16 −x46 −x56 +x61 = 0 [σ6]
10x12 +3x13 +x24 +3x35 +7x46 +2x56 ≤ 14 [σ7]

x61 = 1 [σ61]
y16, x12, x13, x24, x35, x46, x56 ≥ 0.
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Solving it provides zRLP = 11.4 with x12 = x24 = x46 = 0.6 and x13 = x35 = x56 =
0.4. This is feasible for the LP. Hence it ends the Phase I and we can discard
y16 from the RLP. The dual variables to be forwarded to the SP are σ7 = −2.10
and σ61 = 40.80. The SP finds cycle 132561 of reduced cost −4.8, cost 15, and
duration 10. It identifies two additional variables to add to the RLP: x32 and x25.

Iteration 4. The RLP contains nine flow variables whose formulation is given by

zRLP = min x12 +10x13 +x24 +2x25 +12x32 +12x35 +x46 +2x56
s.t. x12 +x13 −x61 = 0 [σ1]
−x12 +x24 +x25 −x32 = 0 [σ2]

−x13 +x32 +x35 = 0 [σ3]
−x24 +x46 = 0 [σ4]

−x25 −x35 +x56 = 0 [σ5]
−x46 −x56 +x61 = 0 [σ6]

10x12 +3x13 +x24 +3x25 +2x32 +3x35 +7x46 +2x56 ≤ 14 [σ7]
x61 = 1 [σ61]

x12, x13, x24, x25, x32, x35, x46, x56 ≥ 0.

Solving it yields zRLP = 7 with x12 = 0.8, x13 = x32 = 0.2 and x25 = x56 = 1.
The relevant dual values for the SP are σ7 = −2 and σ61 = 35. The SP finds
c̄(−2,35) = 0 and the current solution to the RLP is optimal for the LP. It was
found in four iterations, one less compared to the column generation algorithm
depicted in Table 3.1. The original variables x34 and x45 have not been activated
in the RLP.

3.6 Reference Notes

Section 3.1 Several references (in German, English, and French) to the work of
Minkowski and Weyl are available in Schrijver (1986). See also Charnes and Cooper
(1958). Note again that the Dantzig-Wolfe decomposition principle (Dantzig and
Wolfe, 1960, 1961) is in fact a reformulation of the original formulation LP, not a
solution method.

Section 3.2 We found the middle name of almost all cited authors, sometimes via a
personal exchange. Figure 3.21 is a record of one such communication with Warren
E. Walker, see Proposition 3.1 (Walker, 1969). We welcome any addition or cor-
rection to this unabbreviated bibliography. That being said, we will promptly honor
any wish to suppress such a detail.

We recall that the lower bound (3.33) on z⋆LP using arbitrary dual values, here
developed in the context of the Dantzig-Wolfe decomposition, is better known as
the Lagrangian dual bound (see Section 6.2, Proposition 6.1 and, more generally,
relation (6.18) for a linear program with a block-diagonal structure).
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Von: Warren Walker - LR <w.e.walker@tudelft.nl>
Datum: Donnerstag, 24. Sept. 2020 um 18:37 Uhr
Betreff: RE: middle initial
An: Marco Lübbecke <marco.luebbecke@rwth-aachen.de>
Cc: Jacques Desrosiers <jacques.desrosiers@gerad.ca>,
Warren Walker - LR <w.e.walker@tudelft.nl>

Dear Prof. Lübbecke:

Thank you for your kind e-mail message. I have no problem
sharing my middle name. It is Elliott.

Would it be possible to send me the paper that cites my 1969
letter? I would love to see the citation (that was more than 50
years ago!).

Sincerely,

Warren Elliott Walker

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Professor (Emeritus) of Policy Analysis
Faculty of Technology, Policy and Management
Faculty of Aerospace Engineering
Delft University of Technology
P.O. Box 5015
2600 GA Delft
The Netherlands

2020-09-24 18:12 UTC+01:00 Marco Lübbecke <marco.luebbecke@rwth-aachen.de>

Dear Dr. Walker,

Jacques Desrosiers (Cc) and myself with co-authors write a book on branch-and-price.
We also cite your 1969 letter to the editor of Operations Research. In all our references,
we list all the authors with all their first names, when we can.

Is it too impolite to ask what the middle initial “E.” means? I would appreciate it if you
would reveal this to us, but I fully understand if you prefer not to share.

Stay in good health, all the best, Marco

- -
Prof. Dr. Marco Lübbecke
RWTH Aachen University
Chair of Operations Research
Kackertstrasse 7
D-52072 Aachen
Germany

Fig. 3.21: Warren E? Walker.

Good to Know Static variables are widely used: as artificial variables or for a
known initial feasible solution, for perturbation of the right-hand side vector and
soft constraints, as a support for dual information in dual-optimal inequalities (Sec-
tion 6.3) and stabilization techniques (Section 6.4), for shared variables across
blocks (p. 220), etc.

More to Know Further readings on the solution of the LP by using a series of re-
stricted compact problems can be found in Mamer and McBride (2000) and Sadykov
and Vanderbeck (2013). More generally, pseudo-polynomial arc-flow formulations
allow to develop tighter formulations for mixed-integer programs, see Valério de
Carvalho (2002) and Delorme and Iori (2020). For such a LP, the subproblem solu-
tions are re-expressed in the variables of the arc-flow formulation and added to the
restricted compact along with the newly active constraints.

By separating rows of a linear program before pricing, some of the dual variables
can be optimized rather than take fixed values. Some papers based on this con-
cept are: the positive edge (PE) rule (Raymond et al., 2010a; Towhidi et al., 2014;
Omer et al., 2015b) implemented in COIN-OR’s Clp in 2015 (see Figure 3.22), the
improved primal simplex (IPS) algorithm (Raymond et al., 2010b; Metrane et al.,
2010; El Hallaoui et al., 2011; Omer et al., 2015a; Omer and Soumis, 2015), the
dynamic constraint aggregation (DCA) methods (El Hallaoui et al., 2005, 2008,
2010; Yaakoubi et al., 2020), the integral simplex using decomposition algorithm
(ISUD) (Zaghrouti et al., 2014; Rosat et al., 2017b,a,c), the integral column gener-
ation heuristic that combines ISUD and column generation to solve large-scale set
partitioning problems (Tahir et al., 2019) and its distributed version (Foutlane et al.,
2022), the minimum mean cycle-canceling algorithm for linear programs (Gauthier
and Desrosiers, 2022), and, for a general framework, vector space decomposition
by Gauthier et al. (2018). For the relationships between IPS, DCA, and PE, see
Gauthier et al. (2016).
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De: Jérémy Omer <jeremy.omer@xx.xx>
Objet: Rép : Dual-guided Pivot Rules for Linear Programming (using Clp)
Date: 25 juin 2015 à 13:25:30 UTC-4
À: John Forrest <john.forrest@fastercoin.com>
Cc: Francois Soumis <francois.soumis@gerad.ca>, Mehdi Towhidi <mehdi.towhidi@gerad.ca>,
Jacques Desrosiers <jacques.desrosiers@gerad.ca>

Dear John,

Thank you very much for your feedback. I think that the way you chose to include positive edge in Clp is the right one and I am looking forward to
using the version of Clp that includes positive edge. I personnally do not have any views on how to word the announcement and I trust that you will
find a better wording than I would.

Sincerely,

Jeremy Omer

2015-06-25 4:30 GMT-04:00 John Forrest <john.forrest@fastercoin.com>:

Jeremy,

I have got round to putting Positive Edge coding into Clp (trunk). It does not seem to be worth making it default as Clp is quite cunning on
whether to use dual or primal – based on how degenerate it looks – but it does improve time on many problems.

What I have done is to use “psi” as trigger in stand-alone Clp – so if user sets – psi 0.5 they get Positive Edge. The user can use PE just for dual
or primal, but that is probably only useful when I get round to using in Cbc.

I will be putting code into svn later today and will announce tomorrow (probably). Have you any views on how to word the announcement?
I have added reference in Clp papers.

If user in stand-alone Clp types
psi??
then they get
psi : Two-dimension pricing factor for Positive edge. The Positive Edge criterion has been added to select incoming variables to try and avoid
degenerate moves. Variables not in promising set have their infeasibility weight multiplied by psi so 0.01 would mean that if there were any
promising variables, then they would always be chosen, while 1.0 effectively switches algorithm off. There are two ways of switching on this
feature. One way is to set psi positive and then the Positive Edge criterion will be used for Primal and Dual. The other way is to select pesteep
in dualpivot choice (for example), then the absolute value of psi is used - default 0.5. Until this settles down it is only implemented in clp.

Code donated by Jeremy Omer.
See Towhidi, M., Desrosiers, J., Soumis, F., The positive edge criterion within COIN-OR’s CLP.
and
Omer, J., Towhidi, M., Soumis, F., The positive edge pricing rule for the dual simplex.

John Forrest

Fig. 3.22: Positive edge officially becomes part of COIN-OR’s Clp in 2015.

If the Benders subproblems are integer programs, standard duality theory cannot
be used to derive the cuts. Let us mention a few alternatives, although more can
be found in the survey by Rahmaniani et al. (2017). If the subproblem variables
are binary, Laporte and Louveaux (1993) propose lower-bounding functions instead
of optimality cuts. Such constraints enforce a change to the current master prob-
lem solution, or the acceptance of its associated cost. Sherali and Fraticelli (2002)
apply the reformulation-linearization technique or lift-and-project cuts to solve the
discrete subproblem and show that these cuts can be expressed in terms of the mas-
ter problem variables. Logic-based Benders decomposition (Hooker and Ottosson,
2003) relies on an “inference dual” subproblem to find the tightest bound on the cost
of the current master problem solution, which is then used to derive a cut to be added
to the Benders master problem. This approach allows to handle subproblems of any
type (e.g., with integrality requirements or non-linear constraints, and even cast as
a constraint programming model) but the cuts must be tailored to the problem at
hand. Branch-and-bound procedures can also be devised, a natural choice being to
impose branching decisions on the subproblem variables. As this may yield a very
large search tree because such decisions have a local impact on the model, Ham-
douni et al. (2007) rather impose decisions on the master problem variables, even if
these already take integer values. This is well suited if a few costly binary variables
can be positive in a master problem solution. This has a great impact on the solution
cost which leads to efficient pruning strategies.
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Examples
3.2 Time constrained shortest path problem (TCSPP). Jacques started using this
example from Ahuja et al. (1993) in a Column Generation School held at the Uni-
versity of Buenos Aires (2004), upon the invitation of Irene Loiseau.
3.3 Single depot vehicle scheduling problem: two compact formulations. The Sin-
gle depot vehicle scheduling problem is a good alternative to the cutting stock prob-
lem when teaching the column generation algorithm. It is a network flow problem
for which decomposition is quite natural. By the way, amongst the three networks
presented, only the last one in Figure 3.17 corresponds to the arc-flow formula-
tion (3.92).

Fig. 3.23: Jacques, Gilbert Laporte, and François Soumis at the Pierre Laurin re-
search award ceremony (HEC Montréal, Canada, November 1984).

Exercises

3.1 Philip Wolfe
Everybody knows George B. Dantzig for his numerous contributions to linear pro-
gramming. Who is Philip Wolfe, coauthor in Dantzig and Wolfe (1960, 1961)?
Where did he study? Was he a student of Dantzig? A colleague?

3.2 Column generation vs. Dantzig-Wolfe decomposition
How does column generation relate to the Dantzig-Wolfe decomposition?
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3.3 Bounded variables in the compact formulation
All Dantzig-Wolfe reformulations we have derived naturally respect the warning
present in Note 2.1. That is, none of the λ -variables have explicit upper bounds,
only the implicit ones imposed by the convexity constraints or the structural ones
derived from the set A. This remains true even when the variables of the original
formulation are upper bounded. Let us do the exercise on the LP given as

z⋆LP = min c⊺x
s.t. Ax≥ b [σσσb]

Dx≥ d [σσσd]

ℓℓℓ≤ x≤ u
x ∈ Rn,

(3.101)

where D is of full row rank. Derive a Dantzig-Wolfe reformulation with the grouping
of constraints

A= {x ∈ Rn | Ax≥ b} ̸= /0 (3.102a)
D= {x ∈ Rn | Dx≥ d, ℓℓℓ≤ x≤ u} ̸= /0. (3.102b)

3.4 Duplicated cost and column variables
Functions cx and ax often appear as variables in the formulation of the SP because
they are indeed computed and optimized in the pricing problem. We here present a
mathematical justification for this choice.

Let the LP be formulated as follows, where in addition to the variables x≥ 0, we
have also duplicated ones, cx ∈ R and ax ∈ Rm:

z⋆LP = min cx

s.t. ax ≥ b
Dx≥ d
cx = c⊺x
ax = Ax
x ∈ Rn

+.

(3.103)

Let the grouping of the constraints be

A=


cx

ax
x

 ∈ Rm+1×Rn
+

∣∣∣∣ ax ≥ b

 (3.104a)

D=


cx

ax
x

 ∈ Rm+1×Rn
+

∣∣∣∣ Dx≥ d, cx = c⊺x, ax = Ax

 . (3.104b)

(a) Formulate the MP.
(b) Formulate the SP.
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3.5 Dual formulations for the MP
Dropping the constraint relating the x- and λ -variables, write the dual formulation,
denoted DMP, of
(a) the MP (3.9) using |P|+ |R| constraints (drop ∑p∈P xpλp +∑r∈R xrλr = x).

(b) the MP (3.29) issued from a Dantzig-Wolfe reformulation of the compact for-
mulation (3.24) exhibiting a block-diagonal structure using ∑k∈K(|Pk|+ |Rk|)
constraints (drop ∑p∈Pk xk

pλk
p +∑r∈Rk xk

rλk
r = xk, ∀k ∈ K).

3.6 2D illustration: role inversion
Redo Example 3.1 while inverting the role of A and D, that is,

A= {x1,x2 ≥ 0 | −x1 +4x2 ≤ 8, x2 ≥ 2} (3.105a)
D= {x1,x2 ≥ 0 | 3x1 +4x2 ≥ 24, x1 ≤ 10, x2 ≤ 6}. (3.105b)

x1(0,0)•
10
•

x2

zLP
6•

2• (10,2)•

(10,6)•
(10,4.5)•

(4,3)
•

8
•

( 16
3 ,2)

•
A∩D

z⋆LP = min x1 + x2

s.t. −x1 + 4x2 ≤ 8 [σ1]

3x1 + 4x2 ≥ 24 [σ2]

x1 ≤ 10 [σ3]

x2 ≥ 2 [σ4]

x2 ≤ 6 [σ5]

x1 ≥ 0.

(a) Describe the set X in terms of the extreme points and extreme rays of D.
(b) Give the mathematical expressions of cx and ax.
(c) Perform a Dantzig-Wolfe reformulation of the LP; state the MP and SP.
(d) Solve the MP directly and by column generation.
(e) Verify that λλλ

⋆
MP leads to the optimal primal solution x⋆ = (4,3) and that the MP

together with the SP provide πππ⋆ = (−1/16,5/16,0,0,0) for the LP.

3.7 2D illustration: maximization
Redo Example 3.1 while maximizing the objective function:

x1(0,0)•
10
•

x2

zLP
6•

2• (10,2)•

(10,6)•
(10,4.5)•

(4,3)
•

8
•

( 16
3 ,2)

•
A∩D

z⋆LP = max x1 + x2

s.t. −x1 + 4x2 ≤ 8 [σ1]

3x1 + 4x2 ≥ 24 [σ2]

x1 ≤ 10 [σ3]

x2 ≥ 2 [σ4]

x2 ≤ 6 [σ5]

x1 ≥ 0.

(a) Solve the LP to identify the optimal primal and dual solutions x⋆LP and σσσ⋆ to-
gether with z⋆LP.
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(b) Show that another Dantzig-Wolfe reformulation provides the same results with

A= {x1,x2 ≥ 0 | 3x1 +4x2 ≥ 24, x1 ≤ 10, x2 ≤ 6} (3.106a)
D= {x1,x2 ≥ 0 | −x1 +4x2 ≤ 8, x2 ≥ 2}. (3.106b)

• Write and solve the MP to derive the optimal primal solutions λλλ
⋆
MP and

x⋆MP, and the partial dual vector πππ⋆
b.

• Write the SP. Verify next with the use of the SP the finding of πππ⋆
d.

3.8 Minimum reduced cost of zero at optimality of the MP
At optimality of the MP, show that c̄(πππb,π0) = 0. Recall that the MP needs not be
solved by a simplex-type algorithm.

3.9 The Dantzig-Wolfe lower bound does not depend on π0
Consider a single SP in (3.32). Show that the lower bound zRMP + c̄(πππb,π0) on z⋆MP
is independent of π0.

3.10 All constraints in the pricing problem
Given is D = {x ∈ Rn

+ | Ax ≥ b,Dx ≥ d} whereas A = {x ∈ Rn
+}. Assume a

Dantzig-Wolfe reformulation based on D, as on p. 120.

(a) Formulate the MP.
(b) Formulate the SP.
(c) Describe the column generation process, starting with an artificial solution.

How many times is the RMP solved? The SP?

3.11 Generating variable λ0
Given that 0 belongs to the set of extreme points of Dk, k ∈ K, that is, 0 ∈ {xk

p}p∈Pk ,
show how variable λk

0 can be generated for the RMP, although ck
0 = 0 and ak

0 = 0.

(a) Consider a single pricing problem (|K|= 1).
(b) Consider |K|> 1 pricing problems.
(c) Consider that Dk is a polyhedral cone, for all k ∈ K.

3.12 Time constrained shortest path problem: duality
The MP (3.81) in Example 3.2 is given by

min 3λ1246+14λ12456+ 5λ1256+13λ13246+24λ132456+15λ13256+16λ1346+27λ13456+24λ1356

s.t. 18λ1246+14λ12456+15λ1256+13λ13246+ 9λ132456+10λ13256+17λ1346+13λ13456+ 8λ1356 ≤14
λ1246+ λ12456+ λ1256+ λ13246+ λ132456+ λ13256+ λ1346+ λ13456+ λ1356 = 1
λ1246 , λ12456 , λ1256 , λ13246 , λ132456 , λ13256 , λ1346 , λ13456 , λ1356 ≥ 0.

The dual, written in terms of [π7,π0], is therefore
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max 14π7 + π0

s.t. 18π7 + π0 ≤ 3 [λ1246]
14π7 + π0 ≤ 14 [λ12456]
15π7 + π0 ≤ 5 [λ1256]
13π7 + π0 ≤ 13 [λ13246]

9π7 + π0 ≤ 24 [λ132456]
10π7 + π0 ≤ 15 [λ13256]
17π7 + π0 ≤ 16 [λ1346]
13π7 + π0 ≤ 27 [λ13456]

8π7 + π0 ≤ 24 [λ1356]
π7≤ 0, π0 ∈ R.

(3.107)

(a) Draw the feasible region of the dual, indicate the improving direction for the
objective function, and identify the optimal solution (π⋆

7 ,π
⋆
0 ).

(b) Because of the convexity constraint (∑p∈P λp = 1), the duration constraint can
also be written as ∑p∈P tpλp ≤ 14(∑p∈P λp) and we have an alternative formu-
lation for the MP and the corresponding dual written in terms of π7 and µ:

min ∑
p∈P

cpλp

s.t. ∑
p∈P

(tp−14)λp ≤ 0 [π7]

∑
p∈P

λp = 1 [µ]

λp ≥ 0 ∀p ∈ P

max µ

s.t. 4π7 + µ ≤ 3 [λ1246]
µ ≤ 14 [λ12456]

π7 + µ ≤ 5 [λ1256]
−π7 + µ ≤ 13 [λ13246]
−5π7 + µ ≤ 24 [λ132456]
−4π7 + µ ≤ 15 [λ13256]

3π7 + µ ≤ 16 [λ1346]
−π7 + µ ≤ 27 [λ13456]
−6π7 + µ ≤ 24 [λ1356]

π7≤ 0,µ ∈ R.
(3.108)

Draw the dual region of the alternative MP, indicate the improving direction for
the objective function, and identify the optimal solution (π⋆

7 ,µ
⋆).

3.13 Time constrained shortest path problem: circulation pricing problem
We consider again Example 3.2 with the compact formulation (3.78) which we mod-
ify using a network augmented by arc (d,o) = (6,1), that is, Gdo = (N,Ado), where
Ado = A∪{(6,1)}, as illustrated in Figure 3.19. The linear relaxation of the new
compact formulation (3.97) is

z⋆LP = min ∑
(i, j)∈Ado

ci jxi j (3.109a)

s.t. ∑
j:(i, j)∈Ado

xi j− ∑
j:( j,i)∈Ado

x ji = 0 [σi] ∀i ∈ {1, . . . ,6} (3.109b)
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∑
(i, j)∈Ado

ti jxi j ≤ 14 [σ7] (3.109c)

x61 = 1 [σ61] (3.109d)
xi j ≥ 0 ∀(i, j) ∈ Ado. (3.109e)

The flow conservation equations in (3.109b) describe a circulation, the second
imposes the traversal time restriction (3.109c) while constraint x61 = 1 (with the
associated dual variable denoted σ61) implicitly asks for a single unit from source
node o = 1 to terminal node d = 6 by the flow conservation equations.

We apply a Dantzig-Wolfe reformulation to the above formulation using the
grouping of constraints

A=

{
x ∈ R|Ado|

+

∣∣∣∣ (3.109c)–(3.109d)
}

(3.110a)

D=

{
x ∈ R|Ado|

+

∣∣∣∣ (3.109b)
}
. (3.110b)

(a) Describe the set {xp}p∈P of extreme points of D and {xr}r∈R of extreme rays.
(b) Write the formulations for the MP and SP.

3.14 Aircraft routing
Recall Note 3.19 on the routing of aircraft to operate 15 flight legs, each one being
obviously covered exactly once. Consider the data and network provided in Fig-
ure 3.18. The network G = (N,A) comprises 30 nodes in set N, two per flight leg.
We also find 45 arcs in set A, out of which the 15 flight arcs (diagonal). The other
30 arcs are ground arcs (dashed) at the airports, where aircraft are stationed until
their next flight assignment. There are three special ground arcs, one per city: these
are the night arcs (dashed) going from the end of the day to the beginning of the
next, allowing for a repeated schedule. Let the corresponding three sets of arcs be
denoted Flight, Ground, and Night ⊂ Ground. Finally, let A = Flight ∪Ground.

This aircraft routing problem is similar to the Single depot vehicle scheduling
problem of Examples 2.4 and 3.3, except that there is no depot although some air-
craft are obviously available at the start of the day in each city. The mathematical
formulation of this minimum cost flow problem is composed of the objective func-
tion for counting the number of aircraft, the flow conservation constraints with net
flow equal to zero for all nodes, and the bounds for all flow variables:

z⋆LP = min ∑
(i, j)∈A

ci jxi j

s.t. ∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 ∀i ∈ N

ℓi j ≤ xi j ≤ ui j ∀(i, j) ∈ A.

(3.111)

(a) For all (i, j) ∈ A, provide adequate numerical values for
• the ci j-coefficients in the objective function,
• the lower and upper bounds ℓi j and ui j, respectively.
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(b) Solve the LP (3.111) and describe a solution in terms of cycles.
(c) An optimal solution requires one aircraft at the beginning of the day in city C.

Give the full cycle for this aircraft. How many legs does it operate?
(d) How to handle cities in different time zones? Assume that the time zone asso-

ciated with each city is available, say A:+3, B:+2, C:+2 where the signed
number follows the coordinated universal time format. Moreover, the departure
time in Figure 3.18a should be understood as local departure time.

(e) Show that this aircraft routing problem can be transformed into a Single depot
vehicle scheduling problem by sketching an appropriate network.

(f) For a set of |Flight|= n flights, the proposed network is polynomial in size, that
is, 2n nodes and 3n arcs. Show how to decrease the number of nodes and arcs.

3.15 Aircraft routing: reformulation and column generation
Let the aircraft routing problem of Note 3.19 be formulated as

z⋆LP = min ∑
(i, j)∈Night

xi j

xi j = 1 [σi j] ∀(i, j) ∈ Flight

s.t. ∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 [σi] ∀i ∈ N

xi j ≥ 0 ∀(i, j) ∈ Ground,

(3.112)

and apply a Dantzig-Wolfe reformulation with the grouping of constraints

A=

{
x ∈ R|A|+

∣∣∣∣ xi j = 1, ∀(i, j) ∈ Flight
}

(3.113a)

D=

{
x ∈ R|A|+

∣∣∣∣ ∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0, ∀i ∈ N

}
. (3.113b)

Give the formulations for the MP and SP.

3.16 Linear relaxation of the cutting stock problem
Recall the One-dimensional cutting stock problem seen in Example 2.1. Given is a
large set K of paper rolls of identical width W and m demands bi, i ∈ {1, . . . ,m}, for
small items of width wi. The goal is to satisfy the demand using a minimum number
of rolls. For k ∈ K, let xk

0 be a binary variable indicating if roll k is selected or not
and xk

i be the number of times item i is cut in roll k. Consider the following integer
linear programming formulation, where the dual variables are only used in the LP:

z⋆ILP = min ∑
k∈K

xk
0 (3.114a)

s.t. ∑
k∈K

xk
i ≥ bi [σi ≥ 0] ∀i ∈ {1, . . . ,m} (3.114b)
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m

∑
i=1

wixk
i ≤Wxk

0 [σ k
0 ≤ 0] ∀k ∈ K (3.114c)

xk
i ≥ 0 ∀k ∈ K, i ∈ {0, . . . ,m} (3.114d)

xk
0 ∈ {0,1} ∀k ∈ K (3.114e)

xk
i ∈ Z+ ∀k ∈ K, i ∈ {1, . . . ,m}. (3.114f)

We are interested in solving and analyzing the linear relaxation of (3.114) by drop-
ping the binary and integrality requirements on xk = [xk

i ]i=0,...,m, ∀k ∈ K.

(a) Prove that z⋆LP = ∑
m
i=1 wibi/W . Hint: Firstly show that ∑

m
i=1 wibi/W is a lower

bound; secondly, find appropriate values for all xk, k ∈ K, to reach that bound.

(b) Show that σ⋆
i = wi/W , ∀i ∈ {1, . . . ,m} is part of an optimal dual solution.

(c) We know that performing a Dantzig-Wolfe reformulation using any grouping
of the constraints of a linear program leads to z⋆MP = z⋆LP. Define the following
grouping of the constraints for the LP:

A=

{
{xk ∈ Rm+1

+ }k∈K

∣∣∣∣ ∑
k∈K

xk
i = bi, ∀i ∈ {1, . . . ,m}

}
(3.115a)

Dk =

{
xk ∈ Rm+1

+

∣∣∣∣ m

∑
i=1

wixk
i ≤Wxk

0, xk
0 ≤ 1

}
, ∀k ∈ K. (3.115b)

Give three ways on how to improve on z⋆LP, a lower bound on z⋆ILP.

3.17 PS, IPS, and MMCC: a dual point of view
The primal simplex (PS) as well as the improved primal simplex (IPS) and the min-
imum mean cycle-canceling (MMCC) algorithms can be reproduced with various
pricing strategies used in a Dantzig-Wolfe reformulation, see p. 128. We here exam-
ine a dual point of view. Assume that the LP is given in standard form as

z⋆LP = min c⊺x
s.t. Ax = b [πππ ∈ Rm]

x ∈ Rn
+.

(3.116)

Given any feasible solution x0, we partition the variables indexed by J = {1, . . . ,n}
in two subsets:

• F for positive (or free) variables: F = { j ∈ J | x0
j > 0};

• L for variables at zero (lower bound): L = { j ∈ J | x0
j = 0}.

A variable x j indexed in F can increase or decrease in value relatively to x0
j whereas

one indexed in L can only increase. We use the following change of variables to
transpose this into forward variable y j and backward variables y j+n as seen in Fig-
ure 3.24
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x j = x0
j + y j− y j+n, 0≤ y j ≤ r0

j , 0≤ y j+n ≤ r0
j+n ∀ j ∈ J. (3.117)

−y j+n

0

y j

∞
x0

j

Fig. 3.24: Forward and backward variables for x j as part of a feasible solution x0.

The parameters r0
j and r0

j+n are upper bounds that depend on those of variable x j.
By construction, they are zero for backward variables associated with variables in-
dexed in L, i.e., r j+n = 0, ∀ j ∈ L. We see as much if we specialize (3.117) according
to partition J = F ∪L:

x j =

{
x0

j + y j− y j+n, y j,y j+n ≥ 0, y j+n ≤ x0
j , ∀ j ∈ F

x0
j + y j, y j ≥ 0 ∀ j ∈ L.

(3.118)

This notation is in keeping with (3.57) in which the superscripts +/− indicate
forward and backward possibilities. The contribution of y j to the objective function
is c jy j whereas that of y j+n is −c jy j+n.

{ j+n | j ∈ B}

(backward)
B (basic) N (non-basic)

J = {1, . . . ,n}

(forward)

po
si

tiv
e

de
ge

ne
ra

te

de
ge

ne
ra

te

po
si

tiv
e

L (lower)F (free)

y-variables in the pricing problem of PS

y-variables in the pricing problems of IPS and MMCC

Fig. 3.25: Various subsets of the y-variables for a basic solution x0.

Figure 3.25 relates these sets to those we know when x0 is a basic solution, i.e.,
F ⊆ B and L⊇ N. Both PS and IPS work with a basic solution but MMCC has no
such restriction. Given the feasible primal solution x0, the three algorithms use the
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same stopping rule: µ = 0 in (3.119) but try to verify different optimality conditions
with their respective sets of dual constraints. Each formulation comprises the same
objective function c̄(πππ) maximizing µ over the possible values of πππ but different sets
of dual constraints with appropriate y-variables within brackets. Given x0, variable
µ optimizes the smallest reduced cost and optimality is reached if it equals zero.

c̄(πππ) = max
πππ∈Rm

µ subject to:

PS 0 = c j−πππ
⊺a j [y j ∈ R] ∀ j ∈ B

µ ≤ c j−πππ
⊺a j [y j ≥ 0] ∀ j ∈ N

IPS 0 = c j−πππ
⊺a j [y j ∈ R] ∀ j ∈ F

µ ≤ c j−πππ
⊺a j [y j ≥ 0] ∀ j ∈ L

MMCC µ ≤−(c j−πππ
⊺a j) [y j+n ≥ 0] ∀ j ∈ F

µ ≤ c j−πππ
⊺a j [y j ≥ 0] ∀ j ∈ J.

(3.119)

• On the one hand, PS imposes a zero reduced cost for all basic variables, that
is, the equality constraints 0 = c j −πππ⊺a j, ∀ j ∈ B. The primal formulation in
y-variables then replaces the associated y j ∈ R by y j− y j+n with y j,y j+n ≥ 0,
∀ j ∈ B. On the other hand, when µ = 0, it also verifies the non-negativity of
the reduced cost for non-basic variables (set N). These two sets of constraints
provide sufficient optimality conditions as the backward variables for the degen-
erate variables are not part of any necessary and sufficient optimality conditions
and indeed induce degenerate pivots.

• In conformity with the complementary slackness (necessary and sufficient) op-
timality conditions, IPS imposes a zero reduced cost only for the positive vari-
ables, 0 = c j −πππ⊺a j, ∀ j ∈ F , and when µ = 0, fulfills non-negative reduced
costs for the variables at their lower bound (set L).

• MMCC aims for non-negative reduced costs for all forward variables (set J)
and all backward variables associated to the positive variables (set F). This
follows the necessary and sufficient optimality conditions established on the
residual problem (Gauthier et al., 2014).

By taking the dual formulation for each of the three linear programs in (3.119),
show that this leads to the pricing strategies in y-variables of respectively PS, IPS,
and MMCC.

Note that even though IPS and MMCC use the same y-variables, y j, y j+n ≥ 0,
∀ j ∈ F , and y j ≥ 0, ∀ j ∈ L, or equivalently y j+n ≥ 0, ∀ j ∈ F , and y j ≥ 0, ∀ j ∈ J,
their pricing problems may have different optima. Furthermore, because they are
both centered on necessary and sufficient optimality conditions, the set of solutions
in the pricing problem of MMCC must be a superset of that of IPS. Indeed, MMCC
is less restrictive with the inequality constraints on µ , optimizing all reduced cost
values rather than fixing some at zero.
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Abstract This chapter extends the Dantzig-Wolfe decomposition principle to inte-
ger linear programs. Indeed, we capitalize on the fact that we can request partial
integrality requirements of the compact formulation in the pricing problem. We in-
vestigate two related, but different approaches in deriving the integer master and in-
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that solving the linear relaxation of the integer master problem may provide a better
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Introduction

Almost all the applications using the Dantzig-Wolfe decomposition principle found
in the literature are in fact based on integer programming models. Amongst these,
bin packing and cutting stock, edge coloring, generalized assignment, aircraft rout-
ing and scheduling, crew pairing, traffic assignment in satellite communication sys-
tems, etc. We bring attention to Chapter 2 in which we already have some integer
pricing problems such as the knapsack problem in the cutting stock problem (p. 71).

This chapter differentiates itself from the traditional Dantzig-Wolfe decomposi-
tion by focusing on the integrality conditions present in the compact formulation.
Specifically, we impose that the subproblem produces solutions that respect them.
We describe two approaches to produce a reformulation which differ in how the
subproblem’s domain is represented: convexification and discretization. The former
uses the Minkowski-Weyl theorem seen in Chapter 3 whereas the latter uses a theo-
rem by Hilbert that has been proven in our context by Giles and Pulleyblank.

Either way, given an integer linear program, a Dantzig-Wolfe reformulation pro-
duces an equivalent integer master problem whose linear relaxation is typically
solved by the column generation algorithm. This incidentally means that solving the
reformulation is done by combining branch-and-bound with column generation. The
famous branch-and-price is coined. This chapter focuses on the root node where
we show how and why the linear relaxation of an extended formulation is likely
stronger than that of its compact counterpart. We postpone the branch-and-bound
and technical aspects induced by the usage of column generation to Chapter 7.

We bring the reader in the mood by quoting François Soumis’ evolving analogy
since 1981.

Atoms vs. Molecules
The quality of a Dantzig-Wolfe reformulation can be appreciated, not only in terms of the
optimal objective value of its linear relaxation, but also its feasible region. By considering
complex structural constraints and integrality requirements in the pricing problem, we can
imagine the objects it generates as molecules that are handled by the master problem. Of
course, we can also identify those molecules in any integer solution of the original for-
mulation, but with respect to its linear relaxation, it is like we are dealing with atoms that
combine in any way, including ways that do not even respect chemical bonds.

The pricing problem is a subcontracted chemist who may be costly to call but I hope that it
pays off in the master problem by providing some structure for the type of solutions we are
looking for. This cost can also often be offset because we can split the contract by vehicle,
person, or sub-system.

Moreover, as the objective function does not influence the structure of a molecule, this
interpretation of the reformulated domain applies even if there is no such function.
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4.1 Reformulation by Convexification

We would like to solve the following integer linear program ILP, which we again
call the original or compact formulation in our context:

z⋆ILP = min c⊺x
s.t. Ax≥ b [σσσb]

Dx≥ d [σσσd]

x ∈ Zn
+,

(4.1)

with appropriate dimensions for all vectors and matrices. Our presentation assumes
that all variables are required to be integer but it can be generalized to mixed-integer
linear programs. As before, we assume that (4.1) is feasible and z⋆ILP finite. The dual
vectors σσσb and σσσd are used in the linear relaxation LP. Define the non-empty sets
A and D that group the constraints in two subsets:

A= {x ∈ Zn
+ | Ax≥ b} ̸= /0 (4.2a)

D= {x ∈ Zn
+ | Dx≥ d} ̸= /0. (4.2b)

There are two differences with the previous chapter: integrality requirements in
A and D. Their presence in the former is mandatory since we want to respect the
original restrictions. They are optional in the latter although it is precisely how the
magic happens.

Note 4.1 (Infeasible compact.) Formally, the non-empty nature of A and D in (4.2)
is a consequence of the feasibility of the compact formulation, that is, A∩D ̸= /0. If
the compact formulation is indeed infeasible, then A∩D= /0 which either means at
least one of the sets is empty or they have no common solution. We can detect this
at the SP level if D = /0 and at the MP level otherwise, i.e., A∩D = /0. This logic
holds in practice where we iteratively solve linear relaxations eventually subject to
branching decisions, see Algorithm 2.2, Exercise 2.20, and of course Chapter 7.
That is, we detect infeasibility in linear relaxations and then interpret what it means
for integrality.

Minkowski-Weyl theorem, again

Let us remind ourselves of what happens in Chapter 3. The reformulation lies in a
higher dimensional space where the variables convey the vertex-description of the
polyhedron {x ∈ Rn | Dx≥ d} given by the Minkowski-Weyl Theorem 3.1.

However, we cannot apply this theorem directly to D (4.2b), because the latter
is not a polyhedron but an integer set. Instead, we consider its convexification, that
is, we replace D by conv(D) which is a polyhedron. The set of integer solutions is
not changed, and in particular the vertices of conv(D) are integer. This allows us to
write the Minkowski-Weyl Theorem in a specialized form.
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Theorem 4.1. Consider the polyhedron P = {x ∈ Rn | Qx ≥ q} with full row rank
matrix Q ∈ Rm×n and integer set Q = P∩Zn ̸= /0. An equivalent description of Q
using the extreme points {xp}p∈P and extreme rays {xr}r∈R of conv(Q) is

Q=


x ∈ Zn

∣∣∣∣∣∣∣∣∣∣∣∣

∑
p∈P

xpλp + ∑
r∈R

xrλr = x

∑
p∈P

λp = 1

λp ≥ 0 ∀p ∈ P
λr ≥ 0 ∀r ∈ R


. (4.3)

Proof. The proof of Theorem 3.1 adapts without many difficulties to the polyhedron
conv(Q). We restate both directions for this equivalence.

⇒ Any integer point x ∈ Q can be written as a convex combination of the
finitely many extreme points {xp}p∈P of conv(Q) plus a conic combination
of the finitely many extreme rays {xr}r∈R of conv(Q), that is, there exist
scalars {λp}p∈P and {λr}r∈R such that (4.3) holds for all x ∈ Q.

⇐ Any combination λλλ that satisfies (4.3) corresponds to an x ∈ Zn by definition
but also necessarily to an x ∈ Q. ⊓⊔

Integer master problem

By using Theorem 4.1 on the integer set D, we consider the finite sets of extreme
points {xp}p∈P and extreme rays {xr}r∈R of conv(D) which, again, we gather into
the set

X=

{[
xp
1

]}
p∈P
∪
{[

xr
0

]}
r∈R

(4.4)

We obtain a Dantzig-Wolfe reformulation of the ILP (4.1) by substituting (4.3) into
c⊺x and the constraints of A. The resulting integer linear program typically contains
a huge number of variables and we therefore brace ourselves for column generation
by referring to the following formulation as the integer master problem IMP:

z⋆IMP = min ∑
p∈P

cpλp + ∑
r∈R

crλr

s.t. ∑
p∈P

apλp + ∑
r∈R

arλr ≥ b [πππb]

∑
p∈P

λp = 1 [π0]

λp ≥ 0 ∀p ∈ P
λr ≥ 0 ∀r ∈ R

∑
p∈P

xpλp + ∑
r∈R

xrλr = x ∈ Zn
+,

(4.5)
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where the encoding functions are defined as

cp = cxp = c⊺xp, ap = axp = Axp, ∀p ∈ P

cr = cxr = c⊺xr, ar = axr = Axr, ∀r ∈ R.
(4.6)

As always, the dual variables πππb≥ 0 and π0 ∈R are only used in the linear relaxation
MP. By construction, (4.1) and (4.5) are equivalent integer linear programs, thus
z⋆IMP = z⋆ILP even though x⋆IMP and x⋆ILP may differ. The IMP also finds λλλ

⋆
IMP, a vector

of variables that is not required to be integer. We trivially have z⋆MP ≤ z⋆IMP = z⋆ILP.
Let us state in a formal proposition a more general result which positions z⋆LP among
these optima.

Proposition 4.1. Given the ILP (4.1), let the LP be its linear relaxation and the MP
be the linear relaxation of its reformulation IMP (4.5). Then,

z⋆LP ≤ z⋆MP ≤ z⋆IMP (= z⋆ILP). (4.7)

Proof. In the minimization context, this follows from comparing the feasible do-
mains of the respective programs:

{x ∈ Rn
+ | Ax≥ b, Dx≥ d} ⊇ {x ∈ Rn

+ | Ax≥ b}∩ conv(D)⊇A∩D, (4.8)

where the last inclusion is always proper except in the absurd case in which all
domains reduce to a single solution. ⊓⊔

Note 4.2 (Proper inclusions and equal optima.) We underline that the equality z⋆MP =
z⋆IMP can nonetheless occur despite this proper quality as it depends on where the
objective function leads us. The same can be said for the equality z⋆LP = z⋆MP. Let us
come back to this observation in Section 4.3.

Figure 4.1 illustrates the various sets involved in Proposition 4.1, where the dots
on the domains correspond to 2-dimensional integer points. There are five feasible
integer points for the ILP, the dots in A∩D, and obviously at least one of them is
an optimal solution x⋆ILP (depending on the objective function c⊺x). The remaining
integer points are then all infeasible for the ILP, but we can see that eight respect
the constraints in D. We cannot stress enough that these observations are in general
inaccessible so trying to reduce the number of optimal candidates to four (the point
in the middle certainly cannot be optimal for the ILP) is a misplaced good intention.
Back to the Minkowski-Weyl Theorem 4.1, we can observe that an optimal solution
for the ILP can indeed be expressed using only the extreme points of conv(D) in a
convex combination. Furthermore, the different variable space of the MP compared
to that of the compact formulation is not visible here because we only see the pro-
jection. Nonetheless, it is interesting to note that the extreme points of the linear
relaxation of the ILP (seven of them) lose all meaning compared to those of the MP
(six of them). Ultimately, we can see that the MP’s domain in Figure 4.1d is a super-
set of the ILP’s and a subset of the LP’s which are in this case also both proper. As
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• • ⊙ ⊙ ⊙
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(a) Integer set A= {x ∈ Z2
+ | Ax≥ b}
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(b) Integer set D = {x ∈ Z2
+ | Dx ≥ d} and its

integer hull conv(D)

{x ∈ R2
+ | Ax≥ b}

{x ∈ R2
+ | Dx≥ d}

{x ∈ R2
+ | Ax≥ b, Dx≥ d}

conv(A∩D)

• • • ⊙ •

• ⊙ ⊙ ⊙ •
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(c) Domain {x ∈ R2
+ | Ax≥ b, Dx≥ d} of the LP in light color compared to integer hull

conv(A∩D) of the ILP in dark color

{x ∈ R2
+ | Ax≥ b}∩ conv(D)

conv(A∩D)

• • • ⊙ •

• ⊙ ⊙ ⊙ •

• • ⊙ • •

(d) Domain {x ∈ R2
+ | Ax≥ b}∩ conv(D) of the MP compared to that of the LP in light

color and integer hull conv(A∩D) of the ILP in dark color

Fig. 4.1: Reformulation based on the convexification of the integer set D.

additional food for thought on column generation, the beauty of the reformulation
by convexification is that we find ourselves working with an implicit description of
the integer hull of D. Similar observations are derived if we interchange the role of
A and D, see Exercise 4.2.
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Polytope and polyhedral cone

For future referencing, let us consider two special cases for the domain D for which
the IMP specializes to

min ∑
p∈P

cpλp

s.t. ∑
p∈P

apλp ≥ b [πππb]

∑
p∈P

λp = 1 [π0]

λp ≥ 0, ∀p ∈ P

∑
p∈P

xpλp = x ∈ Zn
+

min ∑
r∈R

crλr

s.t. ∑
r∈R

arλr ≥ b [πππb]

λr ≥ 0, ∀r ∈ R

∑
r∈R

xrλr = x ∈ Zn
+.

(4.9)

• On the left, conv(D) is bounded and hence R = /0 so the λr-variables are simply
removed.

• On the right, conv(D) is a polyhedral cone and, as seen in Section 3.1 (p. 110),
the single extreme point 0 and the convexity constraint λ0 = 1 are removed.

Integer pricing problem

Figure 4.2 summarizes the Dantzig-Wolfe decomposition based on the convexifica-
tion of D, i.e., conv(D), we have performed on the ILP. On the right, optimizing the
latter yields z⋆ILP and x⋆ILP whereas optimizing the LP gives z⋆LP, x⋆LP, σσσ⋆

b and σσσ⋆
d. On

the left, the ILP is reformulated into the equivalent IMP by substitution. The latter
is solved by branch-price-and-cut (Chapter 7), where the root node hosts the MP,
its linear relaxation. In a branch-and-bound/branch-and-cut solver for the ILP (right
side), we already know how to derive branching and cutting decisions that revolve
around the fractional x-values which must be integer. That same logic applies for
the IMP (left side) where we indeed request integrality on the x-variables. We also
point to Exercise 7.3 in which the reader must adapt a branch-and-bound algorithm
to reach integer optimality with sub-optimal solutions for the linear relaxations.

Observe that we again differentiate the dual vectors πππ⋆
b for the MP and σσσ⋆

b for
the LP despite them being associated with the same set of constraints. It is the same
reason as in Chapter 3: they are two different linear programs although it is perhaps
more evident this time around as Proposition 4.1 establishes that they are not even
necessarily equivalent as they may reach different optima. If the MP is solved by
column generation, it is done by coordinating the RMP (a linear program) and the
ISP (an integer linear program), where the absence of a πππd output can be noted.
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Fig. 4.2: Information flow of the column generation algorithm solving the MP, the
linear relaxation of the IMP (4.5), a Dantzig-Wolfe reformulation by convexification
of the ILP (4.1).

Let us formally define the last piece of this picture: the ISP. In principle, we could
determine whether there remains any negative reduced cost variable by solving

min
{

min
p∈P
{cp−πππ

⊺
bap−π0}, min

r∈R
{cr−πππ

⊺
bar}

}
. (4.10)

Since we wish to avoid enumerating the content of X =

{[
xp
1

]}
p∈P
∪
{[

xr
0

]}
r∈R

,

we rather define the integer linear subproblem ISP as

c̄(πππb,π0) = −π0 + min
x∈D

(c⊺−πππ
⊺
bA)x (4.11)

while ensuring that we use an algorithm returning a solution x∈D which is actually
an extreme point (e.g., optimal) or extreme ray (unbounded) of conv(D). Accord-
ingly, we expect the output of the ISP to be

c̄(πππb,π0) =

{
−∞ if cr−a⊺r πππb < 0 for some r ∈ R
cp−πππ

⊺
bap−π0 otherwise for some p ∈ P. (4.12)
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4.2 Reformulation by Discretization

Let us underline once more how convexification lets the λ -variables in the IMP (4.5)
be fractional so that they can be combined to form integrality on x. These variables
correspond to extreme points and extreme rays of conv(D). For example, reconsider
Figure 4.1b where any of the three non-extreme integer points in conv(D) could be
optimal for the IMP. Once again, it is in general irrelevant that we can intersect
with A, as seen in Figure 4.1c, to reduce this number of points from three to two;
otherwise we may as well just enumerate A∩D by brute-force.

Discretization acknowledges non-extreme integer points of conv(D) directly in
the reformulation. We call these extra points interior, even when they may lie on
the boundary, in which case they are interior to the respective face. This implies that
we deal with a larger set of λ -variables, compared to convexification, but we can
impose integrality on them. We do this by using a theorem of Hilbert (1890), proven
in our context by Giles and Pulleyblank (1979), to obtain a representation of D. That
is, even though this is not a polyhedron, the theorem provides a representation for
the points that matter. We also mention that reading the proof is worthwhile as we
reuse its content afterwards. Remember our assumption from Note 3.3 that our rays
are scaled to integers. This is why the theorem assumes rational data.

Hilbert-Giles-Pulleyblank theorem

Theorem 4.2. (Nemhauser and Wolsey, 1988, Theorem 6.1, p. 104) Consider the
rational polyhedron P = {x ∈ Rn | Qx ≥ q} with full row rank matrix Q ∈ Qm×n,
q∈Qm, and integer set Q=P∩Zn ̸= /0. An equivalent description of Q using a finite
subset {xp}p∈P̈ of its integer points and the (integer-scaled) extreme rays {xr}r∈R̈
of conv(Q) is

Q=


x ∈ Zn

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
p∈P̈

xpλp + ∑
r∈R̈

xrλr = x

∑
p∈P̈

λp = 1

λp ∈ {0,1} ∀p ∈ P̈

λr ∈ Z+ ∀r ∈ R̈


. (4.13)

Proof. The proof shows that an appropriate finite subset T = {xp}p∈P̈ ⊆ Q exists so
that (4.13) is indeed equivalent. Since the proof is based on Minkowski-Weyl, we
only prove one direction of the equivalence: Any integer point x ∈ Q can be written
as exactly one element of T plus a non-negative integer combination of the finitely
many extreme rays (scaled to be integer) {xr}r∈R̈ of conv(Q), that is, there exist
integer scalars {λp}p∈P̈ and {λr}r∈R̈ such that (4.13) holds for any x ∈ Q.
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Let {xp}p∈P and {xr}r∈R be the sets of extreme points and extreme rays of
conv(Q), respectively. Had we not assumed our extreme rays to be integer-scaled
anyway, we would have to consider this here at the latest. We use the set {xr}r∈R̈
instead of {xr}r∈R for the (shortest) representatives with integer coordinates. By the
Minkowski-Weyl Theorem 4.1, we can write Q as{

x∈Zn
∣∣∣∣∑

p∈P
xpαp + ∑

r∈R̈

xrβr =x, ∑
p∈P

αp=1,αp≥0,∀p ∈ P,βr≥0,∀r ∈ R̈

}
. (4.14)

We separate the fractional and integral portions of βr, r ∈ R̈, to rewrite (4.14) as

∑
p∈P

xpαp + ∑
r∈R̈

xr(βr−⌊βr⌋) + ∑
r∈R̈

xr⌊βr⌋ = x

∑
p∈P

αp = 1,αp ≥ 0,∀p ∈ P, βr ≥ 0,∀r ∈ R̈︸ ︷︷ ︸
some integer vector xq, q ∈ P̈

βr ≥ 0,∀r ∈ R̈.︸ ︷︷ ︸
integer combination of xr , r ∈ R̈

(4.15)

Remember that we only care for integer solutions x ∈ Zn. It is obvious that the
system within the right underbrace yields integer points. With respect to the system
within the left underbrace, it has a bounded domain because the extreme rays are
limited by

0≤ βr−⌊βr⌋< 1, ∀r ∈ R̈. (4.16)

We can therefore define a finite subset T that contains all these points {xq}q∈P̈, i.e.,

T =


xq ∈ Q

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
p∈P

xpαp + ∑
r∈R̈

xrτr = xq

∑
p∈P

αp = 1

αp ≥ 0 ∀p ∈ P

0≤ τr < 1 ∀r ∈ R̈


. (4.17)

It is irrelevant that (4.17) is not even linear programming material (τr < 1) as it only
serves to show the existence of T = {xp}p∈P̈. By definition of extreme points, we
necessarily have P̈ ⊇ P, where the additional points come from non-trivial linear
combinations. Ultimately, given an integer-scaled description of the extreme rays
{xr}r∈R̈, there indeed exists P̈ ⊇ P such that (4.13) holds by picking exactly one
index q ∈ P̈ and letting λr = ⌊βr⌋, ∀r ∈ R̈. ⊓⊔

While the reformulation by discretization differentiates itself from convexifica-
tion by the possibility that we may have {xp}p∈P ̸= {xp}p∈P̈ for the relevant points,
we have {xr}r∈R = {xr}r∈R̈ by our assumption of (shortest) integer scaling of the
extreme rays, see Note 3.3. We could therefore refrain from the extra notion R̈, but
we keep it in order to remind us later where we come from.
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Note 4.3 (Applied mathematics.) From his experience building the Mars Science
Laboratory at Jet Propulsion Laboratory, Adam Steltzner has this to say on the sub-
ject of engineering versus pure mathematics:

[us engineers] are not paid to do things right, we’re paid to do them just right enough.

Operations research certainly shares some of that philosophy. Indeed, because all
our algorithms run on computer code, any model we use sooner or later must fit into
that scope to be solved. What this means for us is that for all practical purposes,
we could have written the entire book using Q instead of R even though discretiza-
tion is the only substitution which in theory requires data in the rational set. Recall
Note 2.16 or Section Limited numeric precision in Chapter 2 for more proof of this.

Integer master problem

Let us now move on to the formal Dantzig-Wolfe decomposition by discretization
on the given ILP (4.1) as well as the usual grouping of the constraints

A= {x ∈ Zn
+ | Ax≥ b} ̸= /0 (4.18a)

D= {x ∈ Zn
+ | Dx≥ d} ̸= /0. (4.18b)

By using the Hilbert-Giles-Pulleyblank Theorem 4.2 on x ∈ D, we consider an
integer-scaled description of its extreme rays {xr}r∈R̈ and a corresponding finite set
of integer points {xp}p∈P̈, P̈⊇ P, which we gather into the set

X=

{[
xp
1

]}
p∈P̈
∪
{[

xr
0

]}
r∈R̈

. (4.19)

A reformulation of the ILP (4.1) is obtained by substituting (4.13) for x ∈ Zn
+

in its objective function and the constraints of A. This yields an equivalent integer
linear program, denoted IMP̈, which reads as

z⋆IMP̈ = min ∑
p∈P̈

cpλp + ∑
r∈R̈

crλr (4.20a)

s.t. ∑
p∈P̈

apλp + ∑
r∈R̈

arλr ≥ b [πππb] (4.20b)

∑
p∈P̈

λp = 1 [π0] (4.20c)

λp ∈ {0,1} ∀p ∈ P̈ (4.20d)
λr ∈ Z+ ∀r ∈ R̈ (4.20e)

∑
p∈P̈

xpλp + ∑
r∈R̈

xrλr = x ∈ Zn
+, (4.20f)
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where c j = c⊺x j and a j = Ax j, j ∈ P̈∪ R̈. Despite the reformulation IMP̈ (4.20)
being different from the IMP (4.5) because it ensures the integrality of the λλλ IMP̈-
vector in addition to that on the x-vector, solving its linear relaxation MP̈ is not
different from solving the MP because they both have the same RMP.

Proposition 4.2. The linear relaxations of the Dantzig-Wolfe reformulations by dis-
cretization (4.20) or convexification (4.5) of D give the same bound, i.e., z⋆MP̈ = z⋆MP
and x⋆MP̈ = x⋆MP.

Proof. The sets of extreme rays {xr} of conv(D) indexed by R̈ and R are identical
by assumption. Moreover, any point x ∈ {xp}p∈P̈ ⊆ D can be written as a convex
combination of the extreme points {xp}p∈P plus a conic combination of the extreme
rays {xr}r∈R of conv(D). Hence z⋆MP̈ = z⋆MP =min{c⊺x | Ax ≥ b,x∈conv(D)}. Fi-
nally, x⋆MP̈ = x⋆MP = ∑p∈P′ xpλp +∑r∈R′ xrλr in the final RMP. ⊓⊔

Note 4.4 (We are all cut from the same cloth.) It feels strange that different integer
master problems with therefore different relaxations (the master problems) should
lead to the same restricted master problem. In order to understand this, remember
that both use the same ISP and this is only able to produce extreme points and
rays, regardless of whether P̈ ⊃ P or not (and again, {xr}r∈R = {xr}r∈R̈). With this
in mind, the distinction between convexification and discretization rather becomes
a conceptual discussion than a real practical difference. We revisit this thought
in Chapter 7. Of course, this is not to say that three different persons, say from
Montréal, Bordeaux, and Rio, use their machines and favorite solvers for the ISP
and RMP, and reach different optimal solutions x⋆JD, x⋆FV , and x⋆EU , but this is a
different story.

Proposition 4.3. The integrality requirements on x are redundant in the IMP̈ (4.20)
(if the integrality conditions on the variables of D are the same as in A), i.e.,

z⋆IMP̈ = min ∑
p∈P̈

cpλp + ∑
r∈R̈

crλr

s.t. ∑
p∈P̈

apλp + ∑
r∈R̈

arλr ≥ b [πππb]

∑
p∈P̈

λp = 1 [π0]

λp ∈ {0,1} ∀p ∈ P̈

λr ∈ Z+ ∀r ∈ R̈.

(4.21)

Proof. We prove that an optimal integer solution λλλ
⋆
IMP̈ to (4.21) implies integrality

on x, i.e.,
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λλλ
⋆
IMP̈ ∈ Z|P̈|+|R̈|+ ⇒ ∑

p∈P̈

xpλ
⋆
p ∈ Zn

+ and ∑
r∈R̈

xrλ
⋆
r ∈ Zn

+

⇒ ∑
p∈P̈

xpλ
⋆
p + ∑

r∈R̈

xrλ
⋆
r = x ∈ Zn

+.
(4.22)

By assumption, xp, p ∈ P̈, is integer and obviously xpλ⋆p remains so for binary λ⋆p.
This is likewise true for integer-scaled xr, r ∈ R̈, and non-negative integer λ⋆r . ⊓⊔

Note 4.5 (Interior integer points.) We sometimes refer only to the interior integer
points specified by P̈. Let us denote their subset by

Ï = P̈\P. (4.23)

If D is bounded, then Ï contains all interior integer points of conv(D). We thus
expect the cardinality of Ï to be much larger than that of P. If D is unbounded,
then Ï contains a finite subset of interior integer points whose cardinality increases
with the integer-scale of the extreme rays (see the Two-dimensional illustrations on
p. 186).

Note 4.6 (Discretization is not enumeration.) The Hilbert-Giles-Pulleyblank Theo-
rem shows that |T| < ∞ such that the reformulation IMP̈ contains a finite number
of integer variables. Just like in the Minkowski-Weyl Theorem, it only matters that
this alternative representation exists. In particular, discretization is not an explicit
enumeration of all the integer points in the set D, even in the bounded case, see
Illustration 4.1. Indeed, we can use column generation to service the reformulation
thus producing variables as needed. That being said, we should turn to enumeration
if and when it is tractable in which case one would obviously try to find a minimal
subset T ⊆D.

Polytope and polyhedral cone

We can still consider the same two special cases for the domain D (4.18b) that yield
very similar IMP̈ reformulations than in the convexification models (4.9):

min ∑
p∈P̈

cpλp

s.t. ∑
p∈P̈

apλp ≥ b [πππb]

∑
p∈P̈

λp = 1 [π0]

λp ∈ {0,1}, ∀p ∈ P̈

∑
p∈P̈

xpλp = x ∈ Zn
+

min ∑
r∈R̈0

crλr

s.t. ∑
r∈R̈0

arλr ≥ b [πππb]

λr ∈ Z+, ∀r ∈ R̈0

∑
r∈R̈0

xrλr = x ∈ Zn
+ .

(4.24)
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• On the left, we assume that D is bounded, so is conv(D), meaning that R̈ = /0
and T = {xp}p∈P̈ = D. The substitution of ∑p∈P̈ xpλp = x leads to a binary
master problem that selects exactly one of the integer points of D.

• On the right, we assume that conv(D) is a polyhedral cone such that vector 0 is
the unique extreme point as D= {x∈Zn

+ |Dx≥ 0}. From T= {xp}p∈P̈ defined
by (4.17), we have Ï = P̈\{0} which gives us

X=

{[
0
1

]}
∪
{[

xp
1

]}
p∈Ï
∪
{[

xr
0

]}
r∈R̈

. (4.25)

The definition of R̈0 comes from discarding the 0-vector from the reformulation
and then treating every interior integer point in {xp}p∈Ï as a ray. Indeed, for any
integer scalar λp ∈ Z+, p ∈ Ï, we have that xpλp ∈ Zn

+ and D(xpλp)≥ 0, hence
xpλp ∈D as well as ∑p∈Ï xpλp ∈D. Consequently, let

R̈0 = Ï∪ R̈, X=

{[
xr
0

]}
r∈R̈0

, (4.26)

and express the substitution as

∑
r∈R̈0

xrλr = x, λr ∈ Z+, ∀r ∈ R̈0. (4.27)

Note 4.7 (Hilbert basis.) For the friends of interesting mathematical notions, we
remark that there is a smallest set of integer rays whose non-negative integer com-
binations yield all integer points contained in a polyhedral cone. It is unique and it
is called the Hilbert basis.

Two-dimensional illustrations

Using 2-dimensional illustrations, let us examine the set T = {xp}p∈P̈ defined
by (4.17) depending on whether the set D (4.18b) is bounded or not.

• If it is bounded, we realize in Illustration 4.1 that T =D is the only complete
representation.

• In the unbounded case, T contains all the extreme points of conv(D), that is,
{xp}p∈P ⊆ T, and typically some other points. Illustrations 4.2 (polyhedral
cone), 4.3 (polyhedron with a single, non-zero, extreme point), and 4.4 (three
extreme points and two extreme rays) help us underscore that we really only
need T to exist (i.e., it does not have to be minimal) in the proof of Theorem 4.2.

Other illustrations can be found in Nemhauser and Wolsey (1988, p. 105) and
Vanderbeck and Wolsey (2010, Example 2, p. 437).
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Illustration 4.1 Set T for a polytope

If D is bounded, then R̈ = /0 and

T =

{
x ∈D⊂ Zn

+

∣∣∣∣ ∑
p∈P

xpαp = x, ∑
p∈P

αp = 1,αp ≥ 0,∀p ∈ P

}
=D, (4.28)

i.e., T is composed of not only the extreme points {xp}p∈P of conv(D) but all its
integer points, see Figure 4.3.

{x ∈ R2
+ | Dx≥ d}

• • • ⊙ •

• ⊙ ⊙ ⊙ ⊙

• ⊙ ⊙ ⊙ •

(a) Integer set D= {x ∈ Z2
+ | Dx≥ d} ⊂ Z2

+

conv(D)

• • • ⊙ •

• ⊙ ⊙ ⊙ ⊙

• ⊙ ⊙ ⊙ •

(b) T = conv(D)∩Z2
+ =D

Fig. 4.3: Bounded set D⊂ Z2
+: T comprises all its integer points.

Illustration 4.2 Set T for a polyhedral cone

In Figure 4.4, conv(D) = {x1, x2 ≥ 0 | 5x1−2x2 ≥ 0, −x1+3x2 ≥ 0}, with integer-
scaled extreme rays (3,1) and (2,5). The 13 integer points in set T come from the
single extreme point 0 and the 12 interior ones. Using the definition (4.26), we
have |R̈0|= 14 from |̈I|= 12 integer points and |R̈|= 2 extreme rays. Observe that 8
interior points identified by a ⋆, indeed rays in (4.26), are redundant given ray (1,1).
The Hilbert basis is thus {(1,1),(2,1),(1,2),(2,4),(3,1),(2,5)}.

x1

x2

0 2 4 6

2

4

6

(2
,5
)

(3,1)•
⊙ ⊙
⊙ ⋆ ⋆

⋆ ⋆

⊙ ⋆ ⋆

⋆ ⋆

Fig. 4.4: Given the integer-scaled extreme rays {(3,1),(2,5)}, T comprises the ex-
treme point (0,0) and 12 interior integer points.
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Illustration 4.3 Set T for a polyhedron

In Figure 4.5a, the unbounded set

conv(D) = {x1,x2 ≥ 0 | −x1 +4x2 ≤ 8, x2 ≥ 2}

(also used in Figure 3.11) is a polyhedron with extreme point (0,2) and integer ex-
treme rays (1,0) and (4,1). These rays are integer-scaled differently in Figures 4.5b,
that is, multiplied by 2. This has an impact on the number of points in T: on the left,
|T|= 1 whereas |T|= 4 on the right.

x1

x2

0 5 10

(1,0)

(4,1
)

2•

3

4

(a) Integer-scaled rays {(1,0),(4,1)}

x1

x2

0 5 10

(2,0)

(8,2
)

2•

3

4
(9,4)
•

⊙

⊙ ⊙

(b) Integer-scaled rays {(2,0),(8,2)}

Fig. 4.5: Different extreme ray scalings give different discretization sets T for un-
bounded polyhedron conv(D) defined by the extreme point (0,2) and two extreme
rays: T = {(0,2)} in (a), T = {(0,2),(1,2),(4,3),(5,3)} in (b).

Using expression (4.15) on Figure 4.5b, we write (9,4) as the sum of point (1,2)
indexed in P̈ plus the non-negative integer combination 0(2,0)+1(8,2) of the two
integer rays indexed in R̈. To do so, we first decompose (9,4) according to the
Minkowski-Weyl Theorem 3.1, as a convex combination of the single extreme point
(0,2) with α1 = 1 plus a conic combination of the two extreme rays with β1 = 1

2 ,
β2 = 1. Next we separate the fractional and integral portions of β1 =

1
2 +0 and β2 =

0+1 as in Theorem 4.2, finding (1,2)∈ T and the non-negative integer combination
of the rays 0(2,0)+1(8,2).

(9,4) = (0,2)+ 1
2 (2,0)+1(8,2)

= (0,2)+ 1
2 (2,0)+0(8,2)︸ ︷︷ ︸
(1,2) ∈ T

+ 0(2,0) + 1(8,2)︸ ︷︷ ︸
integer combination of xr , r ∈ R̈

= (1,2)+1(8,2).

These observations about the potential number of interior points needed provide
another reason for us to scale rays to the shortest possible integer vector.
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Illustration 4.4 Set T for another polyhedron

Figure 4.6 presents another unbounded case, this time with three extreme points
and two extreme rays for conv(D)⊂ Z2

+. The 43 integer points in set T come from
the three extreme points and the 40 interior ones, including point (3,7) on an edge.
However, many of these interior points, indeed 29 identified by a ⋆, are useless
in T as they can be obtained using the other 14 points and a non-negative integer
combination of the two integer-scaled extreme rays.
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Fig. 4.6: Integer set T⊂ conv(D)⊂Z2
+ derived from the three extreme points (4,0),

(1,1), and (2,5) and the two integer-scaled extreme rays (2,1) and (2,4).

Integer pricing problem

Proposition 4.2 is reflected in the way we handle the pricing problem in discretiza-
tion because we can use the same pricing problem as in convexification, that is,

c̄(πππb,π0) = −π0 + min
x∈D

(c⊺−πππ
⊺
bA)x. (4.29)

Recall that we impose that the ISP gives us a point xp, p ∈ P, with a finite objective
value or a ray xr, r ∈ R, that leads to unboundedness. Let us try to match this to the
set of variables we must formally consider in discretization:

min
{

min
p∈P̈

c̄xp , min
r∈R̈

c̄xr

}
. (4.30)
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With respect to the extreme rays, without our assumption that {xr}r∈R = {xr}r∈R̈,
it could be possible that

min
r∈R̈

c̄xr ̸= min
r∈R

c̄xr (4.31)

because the scale influences the objective value. However, this difference disappears
in (4.29) since the scale is irrelevant for unboundedness, i.e., c̄(πππb,π0) =−∞ for all
negative reduced cost extreme rays. Practically speaking, this is the place where we
have to cast an extreme ray into an appropriate integer scale for the reformulation.

With respect to the extreme points, if c̄(πππb,π0) is finite, then we have a point xp,
p ∈ P ⊆ P̈. Since every interior point of D is dominated with respect to objective
values by at least one extreme point of conv(D), this strategy cannot produce an in-
teger point indexed in Ï. Unfortunately, this also means that we cannot meaningfully
conceive an algorithm that differentiates interior points. For instance, we could drop
the necessity to ensure extreme-type solutions in the pricing problem but this just
arbitrarily trades integer solutions of equal cost with one another. Note 4.8 under-
scores that the integer points we appear to be missing for the reformulation can be
recovered in branching.

Note 4.8 (Structural deficiency.) Whenever Ï ̸= /0, the corresponding interior integer
points possibly needed to reach λ -integer optimality are typically not actively, at
least not by algorithms with simplex-type outputs, generated at the root node. De-
graeve and Jans (2007) refer to this phenomenon as structural deficiency. While the
authors restrict their analysis to binary master problems, it immediately applies to
general IMPs. The thing is, binary master problems is perhaps the setting in which
this disparity between the columns we need and those we get appears just barely out
of reach. An example of such a situation occurs for the capacitated lot-sizing prob-
lem (Manne, 1958) solved by column generation (Dzielinski and Gomory, 1965).
The pricing problem generates only the production plans that satisfy the Wagner-
Whitin property (Wagner and Whitin, 1958), but it is known that an optimal integer
solution does not necessarily satisfy this property. Jans (2010) mentions two other
cases with structural deficiency: the capacitated facility location problem and the
split delivery vehicle routing problem with time windows. With respect to more
general integer master problems, we very intuitively recognize that non-extreme
objects are needed, e.g., the cutting stock problem (see Exercise 2.16). We see in
Chapter 7 how to recover these neglected integer points of D with branching and
cutting decisions.

The conclusion is that there is no difference, at the root node, in the solution pro-
cess of the linear relaxations MP̈ or MP, see Figures 4.7 and 4.2 where the RMP is
the same and x⋆MP̈ = x⋆MP =∑p∈P′ xpλp+∑r∈R′ xrλr. What shows up in this informa-
tion flow is that both x- and λ -variables can be candidates for branching and cutting
decisions. In comparison, we can only branch on the x-variables in the reformulation
by convexification as illustrated for the ILP.
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Fig. 4.7: Information flow of the column generation algorithm solving the MP̈, the
linear relaxation of the IMP̈ (4.20), a Dantzig-Wolfe reformulation by discretization
of the ILP (4.1).

Binary domain

In the important special case D⊆ {0,1}n, there are no extreme rays (R̈ = /0), nor in-
terior integer points (̈I = /0 and P̈ = P). The IMP issued from convexification allows
to impose binary requirements on the λ -variables, as in the IMP̈. Several large-scale
applications belong to this class, in particular, some reformulations that give rise to
set partitioning and set covering models such as the binary cutting stock problem,
the multiple depot vehicle scheduling problem, and the edge coloring problem.

Proposition 4.4. If there is a binary condition on every variable of the pricing prob-
lem (D ⊆ {0,1}n), we can equivalently write the convexification model with inte-
grality on the λ -variables only, i.e.,

z⋆IMP = min ∑
p∈P

cpλp

s.t. ∑
p∈P

apλp ≥ b [πππb]

∑
p∈P

λp = 1 [π0]

λp ∈ {0,1} ∀p ∈ P.

(4.32)

Proof. By assumption, we have that D is bounded so this model is an immediate
adaptation of (4.9) in which we replace ∑p∈P xpλp = x ∈ {0,1}n by λp ∈ {0,1},
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∀p∈ P. This is correct since P = P̈, so it is the same as a discretization model which
ensures integrality on x by Proposition 4.3. The equivalence comes from the fact
that integrality on x also implies that on λλλ . Indeed, binary vector x⋆IMP is an extreme
point of conv(D). Because there are no interior integer points, there do not exist any
integer convex combinations, hence x⋆IMP ∈ {0,1}n⇔ λλλ

⋆
IMP ∈ {0,1}|P|. ⊓⊔

Illustration 4.5 TCSPP: integrality

We reconsider the time constrained shortest path problem as described in Exam-
ple 3.2. Recall that we are looking for a least-cost path on network G = (N,A), as
depicted in Figure 4.8, no longer than 14 time units.

1

2

3

4

5

6

(1,10)

(1,1)

(1,7)

(10,3)

(12,3)

(2,2)

(1,2) (10,1)

(2,3)

(5,
7)

Fig. 4.8: Network G = (N,A) with (ci j, ti j) values, ∀(i, j) ∈ A.

The compact formulation is

z⋆ILP = min ∑
(i, j)∈A

ci jxi j (4.33a)

s.t. ∑
j:(1, j)∈A

x1 j = 1 [σ1] (4.33b)

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 [σi] ∀i ∈ {2, . . . ,5} (4.33c)

− ∑
i:(i,6)∈A

xi6 =−1 [σ6] (4.33d)

∑
(i, j)∈A

ti jxi j ≤ 14 [σ7] (4.33e)

xi j ∈ {0,1} ∀(i, j) ∈ A. (4.33f)

Following the same grouping of constraints but taking into account the integrality
restrictions from the compact formulation in A leads to

A=

{
x ∈ {0,1}|A|

∣∣∣∣ ∑
(i, j)∈A

ti jxi j ≤ 14

}
(4.34a)
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D=

{
x ∈ {0,1}|A|

∣∣∣∣ ∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji =
[
+1 0 0 0 0 −1

]
i,∀i ∈ N

}
. (4.34b)

Because D describes a network flow problem which possesses the integrality
property, we can literally reuse model (3.81) while simply switching to an integer
master problem

z⋆IMP = min ∑
p∈P

cpλp

s.t. ∑
p∈P

tpλp ≤ 14 [π7]

∑
p∈P

λp = 1 [π0]

λp ∈ {0,1} ∀p ∈ P,

(4.35)

where we use convexification notation and λ -integrality because D is on a binary
domain such that there is no difference with discretization by Proposition 4.4. Recall
also that integrality on x is implied from λλλ in discretization so we also drop the
relation.

In Example 4.5 on the Generalized assignment problem, we derive a Dantzig-
Wolfe reformulation of a binary program which simplifies back into the compact
formulation. It is a consequence of Proposition 4.5 extended to a block-diagonal
structure. (See also Exercise 4.21 on Useless Dantzig-Wolfe reformulations for two
additional cases.)

Proposition 4.5. If D = {x ∈ {0,1}n | ∑n
j=1 x j = 1}, then the IMP is no more and

no less than the ILP.

Proof. By the Minkowski-Weyl Theorem 4.1, we reformulate conv(D) = {x ≥ 0 |
∑

n
j=1 x j = 1} which is the convex hull of the n unit vectors in Rn

+. The set of all the
extreme points of conv(D) is therefore {e1, . . . ,en}.

We here observe that |P|= n and express x as

n

∑
j=1

e jλ j = x ∈ {0,1}n,
n

∑
j=1

λ j = 1, λ j ≥ 0, j = 1, . . . ,n. (4.36)

Writing the first equation component-wise, we get λ1 = x1, . . . ,λn = xn, that is, we
simply renamed the x-variables. Finally, the introduced convexity constraint is ex-
actly the original constraint in D. ⊓⊔
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Some observations

Table 4.1 summarizes key elements of the reformulation by discretization. The first
case is the general model whereas others come from the simplifications based on
the nature of the set D = {x ∈ Zn

+ | Dx ≥ d}. We describe the index sets of the
λ -variables with respect to P, Ï, and R̈, give a reference to the reformulation model,
and list their type. We then use it to make some observations and draw a few words
of comparison with convexification.

Nature of D Index sets IMP̈ λp λr

D⊆ Zn
+ p ∈ P∪ Ï, r ∈ R̈ (4.20) ∈ {0,1} ∈ Z+

D bounded p ∈ P∪ Ï (4.24) left ∈ {0,1}
D⊆ {0,1}n p ∈ P (4.32) ∈ {0,1}
conv(D) polyhedral cone r ∈ Ï∪ R̈ (4.24) right ∈ Z+

Table 4.1: Various results for a Dantzig-Wolfe reformulation of the ILP (4.1) based
on the discretization of D= {x ∈ Zn

+ | Dx≥ d}.

1. In the general case (D⊆ Zn
+), the set P̈∪ R̈ is usually larger than P∪R, i.e., R̈ is

the same as R but P̈ = P∪ Ï, where Ï ̸= /0 most of the time. This is particularly
true in the bounded case, where P is only associated with the extreme points of
the polytope conv(D) whereas Ï corresponds to all its interior integer points.

2. A Dantzig-Wolfe reformulation by convexification requires x integer. The dis-
cretization approach shows that there also exists a reformulation with λλλ integer.
The interior integer points are those that allow this. Within a column generation
context, the potentially much larger size of Ï is not worrying since we consider
them implicitly. In fact, we never even have meaningful access to them when we
solve the MP̈. Indeed, recall that the RMP is the same for both the convexifica-
tion and discretization of D (assuming {xr}r∈R = {xr}r∈R̈). The differences in
the approaches therefore materialize in branching and cutting decisions.

3. In this respect, we have no choice but to derive decisions based on what the in-
tegrality requirements are. On xMP, on λλλMP̈, on both? Chapter 7 concentrates
on deriving appropriate decisions while exposing technical challenges. We un-
derscore here that the question of whether we can impose integrality on λλλ is one
with plenty of history. We answer it affirmatively and it implies the discretization
point of view.

4. In writing the MP̈, an upper bound of 1 on the λp-variables appears naturally and
it is thus tempting to impose that in the model. Observe that these bounds are
redundant since they are implied by the convexity constraint. This gives us the
opportunity to echo Note 2.15 and warn against using these upper bounds.
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Post-processing a solution of the master problem

We have already seen in Chapter 3 that the projection back to x is dropped while
solving the RMPs. This of course remains true for a Dantzig-Wolfe reformulation
of an integer linear program, regardless of whether we apply a convexification or
discretization of D. The fact that we are ultimately looking for an integer solution,
however, implies that this projection is done in a post-processing of a solution of
the master problem. We do not only figure out the values for the x-variables but also
test whether integrality on x is fulfilled.

If the solution of the final RMP is integer, i.e.,

∑
p∈P′

xpλ
⋆
p + ∑

r∈R′
xrλ

⋆
r = x⋆MP ∈ Zn

+, (4.37)

we are done as it obviously constitutes an optimal integer solution x⋆IMP ≡ x⋆IMP̈ ≡
x⋆ILP as well. Otherwise, x⋆MP /∈ Zn

+ is fractional despite having integer vectors
xp,xr ∈ Zn

+, for all p ∈ P and r ∈ R. In convexification, a cutting or branching
decision is required to progress in the branch-and-bound algorithm, see Chapter 7.

In discretization, we have seen in Proposition 4.3 that integrality on λλλ implies
that on x. This means that testing whether a solution is integer can be reduced to
checking the values of λλλ . It also means that it is sufficient to derive branching and
cutting decisions on λ -variables. We stress that while we can neglect the relation to x
entirely as in (4.21) (not necessary), it is likely more interesting to keep it in mind
in post-processing because of opportunities for cutting and branching decisions on
x-variables that would otherwise vanish.

4.3 Integrality Property: For or Against Virtue?

Evaluating the success of a reformulation essentially lies in comparing how much it
can be solved faster than the compact formulation. We first observe that a Dantzig-
Wolfe reformulation is a detour if the compact formulation has an integrality gap
of zero. Indeed, we consider that the latter is already simple to solve since little
branch-and-bound “if any” is needed as z⋆ILP = z⋆LP.

Proposition 4.6. If the ILP (4.1) has an integrality gap of zero, then

z⋆LP = z⋆MP = z⋆IMP = z⋆ILP. (4.38)

Proof. Proposition 4.1 establishes z⋆LP ≤ z⋆MP ≤ z⋆IMP = z⋆ILP for any grouping of the
constraints. By assumption, we have that z⋆ILP = z⋆LP which leads to z⋆MP = z⋆IMP. ⊓⊔
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Note 4.9 (Integrality property of the ILP transfers to the IMP.) Furthermore, if the
formulation of the ILP has the integrality property (Definition 1.25 and Proposi-
tion 1.9), the integrality gap of zero in Proposition 4.6 obviously transfers for any
objective coefficients c ∈ Rn. That is to say that the formulation of the IMP, where
the xp and xr are fixed parameters, also possesses the integrality property. For ex-
ample, if we apply a Dantzig-Wolfe reformulation on the capacitated minimum cost
flow problem, the mixed-integer linear programming reformulation also has the in-
tegrality property, despite λ -variables possibly taking fractional values. Indeed, no
matter the way we group the constraints of the compact formulation, the x-domain
of the arc-flow variables in the ILP remains the same in the IMP.

Ultimately, it is fair to assume that the ILP has a non-negligible integrality gap
such that it is likely too difficult to solve with current algorithms/technology. The
possibility to obtain a stronger linear relaxation than that of the compact formulation
is quite interesting because reducing the integrality gap can significantly help our
chances in completing the branch-and-bound search. In general, the quality of the
lower bound z⋆MP with respect to z⋆ILP is influenced by the information available
in D. Figure 4.9 is a good place to start the explanation. Observe that some integer
solutions of D are allowed in the MP despite the fact that they are infeasible for the
IMP. In contrast, fractional solutions in the LP are shaved off in chunks from the
MP. Moreover, we hand-pick an objective function whose level curve shows best-
and worst-case scenarios of a reformulation. In the best-case (level curve moving
to the left), we are very lucky and reach integer optimality at the point marked by
a ⋆, directly in the MP. In the worst-case (level curve moving to the right), we are
rather unlucky and reach a lower bound z⋆MP that is no better than z⋆LP as the level
curve is parallel to the bottom-right edge of the LP’s domain. We underscore that
in practice, we do expect a better linear relaxation from the MP regardless of the
objective coefficients. In this case, there is only one other level curve parallel to the
bottom-left edge of the LP’s domain with improvement going downwards for which
z⋆LP = z⋆MP.

LP

MP

conv(A∩D)

• • • ⊙ •

• ⋆ ⊙ ⊙ •

• • ⊙ • •

level curve

Fig. 4.9: Trade-off of a reformulation with respect to the domains of the LP and MP.
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Since we control D, the pricing problem can be as easy or as difficult as we wish.
In theory, we can solve the ILP in the ISP but we rather look for a grouping of con-
straints A and D with a best trade-off between the quality of the lower bound and the
ease with which the ISP can be solved. This is of course easier said than done since
it is not at all clear how this trade-off looks like. As such, it is hard to turn a blind
eye on the efficiency we can achieve in the bottleneck operation. In particular, we
may be tempted to look for an ISP with a formulation that possesses the integrality
property. Proposition 4.7 warns us that leveraging on this idea defeats the purpose
of trying to capitalize on integrality. In other words, a necessary condition to obtain
a better lower bound than z⋆LP is that the formulation of the ISP must not have the
integrality property.

Proposition 4.7. If the formulation of the ISP (4.11) possesses the integrality prop-
erty, then the linear relaxation of the IMP is no better than that of the ILP, i.e.,

z⋆LP = z⋆MP ≤ z⋆ILP. (4.39)

Proof. By Proposition 1.9, the formulation of the ISP (4.11) possesses the integral-
ity property if conv(D) = {x ∈ Rn

+ | Dx≥ d}, where D= {x ∈ Zn
+ | Dx≥ d}. The

feasible regions of the MP and LP are therefore the same, i.e.,

{x ∈ Rn
+ | Ax≥ b}∩ conv(D) = {x ∈ Rn

+ | Ax≥ b, Dx≥ d},

such that their optimal objective values are equal. ⊓⊔

Note 4.10 (Property means property.) The word property is a little bit ambiguous
because it is charged with the meaning of attribute or quality, the latter being fa-
miliarly understood as a positive trait. Historically, this is exactly what people were
looking for! Make no mistake, the integrality property is first and foremost a math-
ematical characterization of a matrix. It turns out to be fruitful in integer linear
programming when the formulation is solved heads on, but it is not necessarily a
desirable property for the formulation of the ISP.

While these observations can be enlightening, it does not make selecting the sets
A and D any less of a dilemma. On the one hand, we would like the reformula-
tion to be meaningful in that a reduction of the solution space is achieved leading
to a potentially smaller integrality gap z⋆IMP− z⋆MP ≤ z⋆ILP− z⋆LP. On the other hand,
since solving the ISP is a bottleneck operation, we would like it to expose some
structural properties that allow it to be solved in reasonable time in spite of the in-
tegrality requirements. Indeed, the trade-off between the discarded fractional solu-
tions and the difficulty of solving the integer pricing problem appears to be complex
and sometimes impossible to predict. Example 4.3 analyzes the impact of different
reformulations on the master and pricing problems and the resulting lower bounds.

We conclude by playing devil’s advocate on the integrality property for the for-
mulation of the ISP. There are two well-known papers for fundamental problems
where the integrality property is exploited: the traveling salesperson problem (Held
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and Karp, 1970) and the multi-commodity maximum flow problem (Ford and Fulk-
erson, 1958). This allows us to underscore two things:

1. The linear relaxation of the ILP may already be pretty good so the pricing bot-
tleneck may become the only critical issue, see Example 6.4 on the Symmetric
traveling salesperson problem.

2. A block-diagonal structure (Sections 3.2 and 4.4) helps to reduce the bottle-
neck strain because we rather handle |K| smaller independent problems, as in
Example 4.6 on the Multi-commodity maximum flow problem.

4.4 Block-diagonal Structure

The block-diagonal structure of Section 3.2 is extended to the ILP given as

z⋆ILP = min ∑
k∈K

ck⊺xk

s.t. ∑
k∈K

Akxk ≥ b [σσσb]

Dkxk ≥ dk [σσσdk ] ∀k ∈ K

xk ∈ Znk

+ ∀k ∈ K,

(4.40)

the main difference being that Dk = {xk ∈ Znk
+ | Dkxk ≥ dk}, k ∈ K, is defined for

integer vectors xk, i.e., Dk is a discrete set.

Practical relevance

The lightweight notation of a formulation for the ILP with a single block serves
the academic purpose particularly well. In the remainder of this section, we directly
use models obtained by convexification or discretization with a notation that can
become cumbersome. To convince the reader not to be deterred by the mathematics,
we list some large-scale applications from the literature to underscore the practical
relevance of a block-diagonal structure:

a) 3 to 6 time periods in the inventory routing problem (Desaulniers et al., 2016b);
b) 6 and 9 aircraft types for daily schedules of a heterogeneous fleet at European

and American carriers, respectively (Desaulniers et al., 1997d);
c) 14 subproblems, one for each starting day of the week for round-trip crew

schedules at the two Air France crew bases (Desaulniers et al., 1997a);
d) 2 to 20 blocks in the automated Dantzig-Wolfe reformulation computational

study of mixed-integer linear programs (Bergner et al., 2015);
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e) 18 to 108 pilots for the construction of personalized monthly schedules at Air
Canada (Gamache et al., 1998);

f) 26 locomotive types and 171 critical locomotives in the problem of assigning
locomotives to train-segments at CN North America (Ziarati et al., 1997) – see
Example 7.10 Branch-first, Cut-second strategy;

g) 55 to 1131 crew members, each with its own pricing problem due to personal
desiderata for the construction of monthly schedules at Air France (Gamache
et al., 1999). As mentioned in Note 2.13, it is in practice too time consuming to
solve all these (NP-hard) subproblems. Particularly in this application, a partial
pricing strategy is used, that is, only 15 of these are solved at every column
generation iteration with the same set of dual values.

On grouping the constraints

We know that block-diagonal structures like (4.40) very naturally arise from the
definition of an optimization problem, where otherwise independent entities (like
vehicles, warehouses, containers) are linked by coordinating constraints. The latter
are like a conductor who takes care that the individual players in an orchestra sound
well together. An index set K represents the entities and thus induces the blocks.
Variables that appear in the constraints that belong to one block, obviously can-
not appear in constraints of other blocks. In other words, whenever two variables
with different indices in K appear in the same constraint, this constraint must be a
coordinating one. In the Coluna (atoptima.com) branch-and-price solver, the set
K is called the axis. Figure 4.10a shows the form of the corresponding coefficient
matrix of the model. It is called the single-bordered, or more precisely, the single-
row-bordered block-diagonal form. As we have mentioned before, such a model
structure is particularly well suited for a Dantzig-Wolfe reformulation.


A1 A2 · · · A|K|
D1

D2

. . .
D|K|


(a) Single-row-bordered


S1 D1

S2 D2

...
. . .

S|K| D|K|


(b) Single-column-bordered


S A1 A2 · · · A|K|
S1 D1

S2 D2

...
. . .

S|K| D|K|


(c) Double-bordered

Fig. 4.10: Forms of (coefficient) matrices interesting for decompositions

Related block-diagonal forms are with a column-border as in Figure 4.10b, or
double-bordered like in Figure 4.10c. The latter is also known as arrowhead form.
We see such forms in Shared variables across all blocks (p. 220), where it is shown
that they are amenable to a Dantzig-Wolfe reformulation as well. Also, a Benders
decomposition of a linear program may apply (p. 130).

https://atoptima.com/about/scientific_background
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When it comes to grouping the constraints for a decomposition, all we need is the
set K, or in other words, we need to identify the blocks. What at first sounds like little
freedom, can be non-obvious in some models. Think, for instance, of multi-product
lot-sizing problems, in which we decide about production and inventory quantities
over time. One can take the perspective of an individual product and follow it along
the time periods, or take the view of a single time period that sees all products
simultaneously. This gives (at least) two ways, how blocks, i.e., the index set K,
could be defined. One can decompose along the product axis, or along the time axis.

The matrices in Figure 4.11 hint at this freedom of grouping constraints into
blocks. Besides relying on our problem and model knowledge, we can use algo-
rithms to find the blocks for us. The interested reader can learn about the basics of
how this works in Automatic grouping of the constraints for reformulation (p. 230).
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Fig. 4.11: T-shirt logo of the 2012 CG-Workshop (Bromont, Canada).

Integer master problems (convexification and discretization)

In the convexification approach, the substitution for block k is based on

∑
p∈Pk

xk
pλ

k
p + ∑

r∈Rk

xk
rλ

k
r = xk ∈ Znk

+

∑
p∈Pk

λ
k
p = 1

λ
k
p ≥ 0, λ

k
r ≥ 0 ∀p ∈ Pk,r ∈ Rk

(4.41)

where Pk and Rk are the index sets of the extreme points and extreme rays of
conv(Dk). Similarly to (3.29), the reformulation then reads as

z⋆IMP = min ∑
k∈K

∑
p∈Pk

ck
pλ

k
p + ∑

k∈K
∑

r∈Rk

ck
rλ

k
r (4.42a)

s.t. ∑
k∈K

∑
p∈Pk

ak
pλ

k
p + ∑

k∈K
∑

r∈Rk

ak
rλ

k
r ≥ b [πππb] (4.42b)
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∑
p∈Pk

λ
k
p = 1 [πk

0 ] ∀k∈K (4.42c)

λ
k
p ≥ 0 ∀k∈K, p∈Pk (4.42d)

λ
k
r ≥ 0 ∀k∈K,r∈Rk (4.42e)

∑
p∈Pk

xk
pλ

k
p + ∑

r∈Rk

xk
rλ

k
r = xk∈Znk

+ ∀k∈K. (4.42f)

Regarding the discretization approach, the substitution for block k is based on

∑
p∈P̈k

xk
pλ

k
p + ∑

r∈R̈k

xk
rλ

k
r = xk ∈ Znk

+

∑
p∈P̈k

λ
k
p = 1

λ
k
p ∈ {0,1} ∀p ∈ P̈k

λ
k
r ∈ Z+ ∀r ∈ R̈k

,

(4.43)

where P̈k and R̈k are defined as in the Hilbert-Giles-Pulleyblank Theorem 4.2, and
again, we assume {xk

r}r∈R̈k = {xk
r}r∈Rk , ∀k ∈ K. The reformulation then reads as

z⋆IMP̈ = min ∑
k∈K

∑
p∈P̈k

ck
pλ

k
p + ∑

k∈K
∑

r∈R̈k

ck
rλ

k
r (4.44a)

s.t. ∑
k∈K

∑
p∈P̈k

ak
pλ

k
p + ∑

k∈K
∑

r∈R̈k

ak
rλ

k
r ≥ b [πππb] (4.44b)

∑
p∈P̈k

λ
k
p= 1 [πk

0 ] ∀k∈K (4.44c)

λ
k
p∈ {0,1} ∀k∈K, p∈ P̈k (4.44d)

λ
k
r∈ Z+ ∀k∈K,r∈ R̈k (4.44e)

∑
p∈P̈k

xk
pλ

k
p + ∑

r∈R̈k

xk
rλ

k
r = xk∈Znk

+ ∀k∈K, (4.44f)

where the relation (4.44f) can be dropped altogether by Proposition 4.3. In the post-
processing, note that we can also work with ∑p∈P̈k xk

pλk
p ∈Znk

+ and ∑r∈R̈k xk
rλk

r ∈Znk
+ ,

for all k ∈ K.

In either approach, we can derive without much fanfare that, for each block k∈K,
we output extreme points or extreme rays from the ISPk which writes no differently
than (3.30) except for integrality restrictions in Dk, that is,

c̄k(πππb,π
k
0) =−π

k
0 + min

xk∈Dk
(ck⊺ −πππ

⊺
bAk)xk. (4.45)
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Identical subproblems

An important special case of the compact formulation with a block-diagonal struc-
ture (4.40), known as identical subproblems, occurs if the data across all blocks is
identical, i.e.,

ck = c, Ak = A, Dk = D, dk = d, ∀k ∈ K. (4.46)

Several applications are later presented, for example,

• The One-dimensional cutting stock problem where identical rolls are cut (p. 242);
• The Vehicle Routing Problem with Time Windows where identical vehicles are

routed and scheduled (p. 293).

Given the parameters in (4.46), the ILP is formulated as

z⋆ILP = min c⊺(∑
k∈K

xk)

s.t. A(∑
k∈K

xk)≥ b [σσσb]

Dxk ≥ d [σσσdk ] ∀k ∈ K

xk ∈ Zn
+ ∀k ∈ K,

(4.47)

where the cost vector c⊺ and matrix A of the linking constraints factorize outside
the sum. With the obvious grouping

A=

{
{xk ∈ Zn

+}k∈K

∣∣∣∣ A(∑
k∈K

xk)≥ b

}
(4.48a)

Dk = {xk ∈ Zn
+ | Dxk ≥ d}, ∀k ∈ K, (4.48b)

and the resulting ISPk (4.45) that are all the same in objective functions and domains
except for the independent dual value πk

0 , this means that the respective variables of
the |K| subproblems live in isomorphic subspaces and in fact could formally live
in the same subspace. For the identical sets in (4.48b), we therefore choose one
representative

xk ∈D= {x ∈ Zn
+ | Dx≥ d}, ∀k ∈ K, (4.49)

which gives us a single pricing problem later defined in (4.58). In the convex-
ification approach, we use extreme points and extreme rays of conv(D), that is,

X=

{[
xp
1

]}
p∈P
∪
{[

xr
0

]}
r∈R

, to express xk ∈ conv(D) as

∑
p∈P

xpλ
k
p + ∑

r∈R
xrλ

k
r = xk ∈ Zn

+, ∑
p∈P

λ
k
p = 1, λ

k
p,λ

k
r ≥ 0, ∀p ∈ P,r ∈ R. (4.50)
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The discretization approach rather uses

X=

{[
xp
1

]}
p∈P̈
∪
{[

xr
0

]}
r∈R̈

(4.51)

with binary λp-variables and non-negative integer λr-variables. Let us continue with
the former approach, pointing out modifications as needed for the latter. Independent
of index k ∈ K, our shorthand encoding functions cx = c⊺x and ax = Ax, ∀x ∈ X,
are still distinguishable by subscript p or r. The IMP becomes

z⋆IMP = min ∑
p∈P

cp(∑
k∈K

λ
k
p) + ∑

r∈R
cr(∑

k∈K
λ

k
r)

s.t. ∑
p∈P

ap(∑
k∈K

λ
k
p) + ∑

r∈R
ar(∑

k∈K
λ

k
r)≥ b [πππb]

∑
p∈P

λ
k
p = 1 [πk

0 ] ∀k ∈ K

λ
k
p ≥ 0, λ

k
r ≥ 0 ∀k ∈ K, p ∈ P,r ∈ R

∑
p∈P

xpλ
k
p + ∑

r∈R
xrλ

k
r = xk∈Zn

+ ∀k ∈ K.

(4.52)

Aggregation

Since the λk
p-variables for different k refer to the same extreme point xp, we collapse

them into one variable (the same applies to the λk
r-variables, of course). Let

λp = ∑
k∈K

λ
k
p, ∀p ∈ P, and λr = ∑

k∈K
λ

k
r, ∀r ∈ R. (4.53)

The aggregation of the λk-variables implies the aggregated convexity constraint

∑
p∈P

λp = ∑
p∈P

∑
k∈K

λ
k
p = ∑

k∈K
(∑

p∈P
λ

k
p) = ∑

k∈K
(1) = |K|. (4.54)

Adding this redundant constraint with dual variable πagg ∈R+ to the IMP (4.52) and
substituting the aggregated λp,λr-variables, index k disappears from the objective
function and the constraints in A, but remains elsewhere:

z⋆IMP = min ∑
p∈P

cpλp + ∑
r∈R

crλr (4.55a)

s.t. ∑
p∈P

apλp + ∑
r∈R

arλr ≥ b [πππb] (4.55b)

∑
p∈P

λp = |K| [πagg] (4.55c)

λp ≥ 0, λr ≥ 0 ∀p ∈ P, r ∈ R (4.55d)



204 4 Dantzig-Wolfe Decomposition for Integer Linear Programming

λp = ∑
k∈K

λ
k
p, λr = ∑

k∈K
λ

k
r ∀p ∈ P, r ∈ R (4.55e)

∑
p∈P

λ
k
p = 1 ∀k ∈ K (4.55f)

λ
k
p ≥ 0, λ

k
r ≥ 0 ∀k ∈ K, p ∈ P, r ∈ R (4.55g)

∑
p∈P

xpλ
k
p + ∑

r∈R
xrλ

k
r = xk ∈ Zn

+ ∀k ∈ K. (4.55h)

Disaggregation

The next proposition shows that solving the linear relaxation obtained from impos-
ing xk ≥ 0 in (4.55h) rather than xk ∈ Zn

+ can be done on a simplified formulation.

Proposition 4.8. The linear relaxation of the IMP (4.55) can be solved using the
linear program defined by (4.55a)–(4.55d) only.

Proof. Let the MP be defined accordingly as

z⋆MP = min ∑
p∈P

cpλp + ∑
r∈R

crλr (4.56a)

s.t. ∑
p∈P

apλp + ∑
r∈R

arλr ≥ b [πππb] (4.56b)

∑
p∈P

λp = |K| [πagg] (4.56c)

λp ≥ 0, λr ≥ 0 ∀p ∈ P, r ∈ R. (4.56d)

The constraints in (4.55e)–(4.55g) can be fulfilled, without modifying the objective
value, by infinitely many disaggregated values for the λk

p,λ
k
r-variables. In particular,

λ
k
p =

λp
|K| , λ

k
r =

λr
|K| , ∀k ∈ K, p ∈ P, r ∈ R. (4.57)

Then, from ∑p∈P xpλk
p +∑r∈R xrλ

k
r = xk, ∀k ∈ K, in (4.55h), we easily deduce that

xk ≥ 0, ∀k ∈ K. ⊓⊔

If the MP (4.56) is solved by column generation, the pricing problem that also
mutes index k from the aggregated convexity constraint writes as

c̄(πππb,πagg) =−πagg +min
x∈D

(c⊺−πππ
⊺
bA)x. (4.58)

With respect to the linear relaxation, this proof of existence for the disaggregated
values means that our work is done. In reality, disaggregation already reminds us
of the follow-up work: we have to reach integrality. It is therefore part of the post-
processing on solutions in which we compute values for the x-variables and test
whether integrality requirements hold. In this respect, the way we choose to dis-
aggregate values has an obvious influence and it makes sense to consider λk-values
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that match our expectations regarding integrality. For instance, Proposition 4.9 states
that there is no need to deal with |K| fractions for the extreme rays.

Proposition 4.9. In the disaggregation, we can consolidate the use of all extreme
rays into a single block.

Proof. Since λr = ∑k∈K λk
r and λk

r ≥ 0, ∀k ∈ K, r ∈ R, a single index k can be se-
lected, say

λ
k
r =

{
λr, for k = 1
0, for k ̸= 1 ∀r ∈ R, (4.59)

where we arbitrarily pick the first index. ⊓⊔

Discretization offers a tailored alternative disaggregation scheme for the extreme
points as well. The formulation of the IMP̈ with aggregated variables is

z⋆IMP̈ = min ∑
p∈P̈

cpλp + ∑
r∈R̈

crλr (4.60a)

s.t. ∑
p∈P̈

apλp + ∑
r∈R̈

arλr ≥ b (4.60b)

∑
p∈P̈

λp = |K| (4.60c)

λp ∈ Z+, λr ∈ Z+ ∀p ∈ P̈, r ∈ R̈ (4.60d)

λp = ∑
k∈K

λ
k
p, λr = ∑

k∈K
λ

k
r ∀p ∈ P̈, r ∈ R̈ (4.60e)

∑
p∈P̈

λ
k
p = 1 ∀k ∈ K (4.60f)

λ
k
p ∈ {0,1} ∀k ∈ K, p ∈ P̈ (4.60g)

λ
k
r ∈ Z+ ∀k ∈ K, r ∈ R̈ (4.60h)

∑
p∈P̈

xpλ
k
p + ∑

r∈R̈

xrλ
k
r = xk ∈ Zn

+ ∀k ∈ K. (4.60i)

Proposition 4.10. The integrality requirements on xk and λk
p,λ

k
r-variables are re-

dundant in the IMP̈ (4.60) (if the integrality conditions on the variables of D=Dk,
∀k ∈ K, are the same as in A), i.e.,

z⋆IMP̈ = min ∑
p∈P̈

cpλp + ∑
r∈R̈

crλr (4.61a)

s.t. ∑
p∈P̈

apλp + ∑
r∈R̈

arλr ≥ b (4.61b)

∑
p∈P̈

λp = |K| (4.61c)

λp ∈ Z+, λr ∈ Z+ ∀p ∈ P̈, r ∈ R̈. (4.61d)
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Proof. We prove that an optimal integer solution λλλ
⋆
IMP̈ to (4.61) implies integrality

on xk and λk
p,λ

k
r, ∀k ∈ K, p ∈ P̈, r ∈ R̈, i.e.,

λλλ
⋆
IMP̈ ∈ Z|P̈|+|R̈|+ ⇒ ∑

p∈P̈

xpλ
k
p + ∑

r∈R̈

xrλ
k
r ∈ Zn

+, ∀k ∈ K.

By Proposition 4.3, for each k ∈ K, if λk
p, p ∈ P̈, and λk

r, r ∈ R̈, are integers, then
∑p∈P̈ xpλk

p +∑r∈R̈ xrλ
k
r is also integer. By Proposition 4.9 (which also holds in dis-

cretization), λr can be consolidated into a single block such that if λr ∈ Z+, then λk
r

is integer for all k ∈ K.

With respect to λp, the system

λp = ∑
k∈K

λ
k
p ∀p ∈ P̈

∑
p∈P̈

λ
k
p = 1 ∀k ∈ K

λ
k
p ≥ 0 ∀k ∈ K, p ∈ P̈,

(4.62)

is the set of constraints of a zero-cost balanced transportation problem with supply
λp ∈ R+, ∀p ∈ P̈, and a unit demand ∀k ∈ K. The system can be solved by hand,
greedily filling in the demands, one by one. If the λp-variables are already integer,
we trivially obtain a binary solution for the λk

p-variables. ⊓⊔

Proposition 4.10 makes it clear that both aggregated IMP (4.55) and IMP̈ (4.60)
have the same linear relaxation. Furthermore, compared to the disaggregated solu-
tion (4.57), the above proof gives us an alternative disaggregation rule that matches
the integrality requirements on λ -variables in discretization. These values are likely
not all that useful for anticipating the integrality requirements on xk, k ∈ K, in con-
vexification except if Proposition 4.4 regarding binary x-variables holds.

Note 4.11 (Lexicographic ordering of the extreme points.) Because the xp can be
generated in various sequences, and in particular since static disaggregation rules
like (4.57) produce a highly symmetric solution, Vanderbeck (2011) suggests a dy-
namic numbering of the positive λp-variables in the solution to the final RMP based
on the lexicographic order of the corresponding vectors. Exercise 4.9 asks to prove a
mathematical expression for computing λk

p-values in the solution of the transporta-
tion problem (4.62). This alternative disaggregation rule to the simple average (4.57)
can prove useful for branching in Chapter 7.

Some more observations

To complement this analysis on Identical subproblems, we recall in Table 4.2 some
results on the reformulation (4.61) of the ILP (4.47) with identical blocks based on
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the discretization approach. Compared to Table 4.1, we still do not have λk
p- and

λk
r-variables but we also omit the fourth entry on the polyhedral cone. The former

omission comes from Proposition 4.10 whereas the latter comes from the forthcom-
ing Proposition 4.11 which states that, in that case, we would in fact never write the
compact formulation with a block-diagonal structure if it is well-thought. This is
indeed what happens for the Single depot vehicle scheduling problem in (3.92) and
the Network-based compact formulation for the CSP in (4.120).

Nature of D Index sets λp λr

D⊆ Zn
+ p ∈ P∪ Ï, r ∈ R̈ ∈ Z+ ∈ Z+

D bounded p ∈ P∪ Ï ∈ Z+

D⊆ {0,1}n p ∈ P ∈ Z+

Table 4.2: Various results for a Dantzig-Wolfe reformulation (4.61) of the ILP (4.47)
with identical subproblems based on the discretization of D (4.49).

Proposition 4.11. Given identical subproblems, if conv(D) derived from (4.49) is a
polyhedral cone, then the compact formulation can be written without index k.

Proof. The following proof in discretization is valid in convexification, replacing as
needed R̈0 by R, and λr ∈ Z+ by λr ≥ 0.
Because conv(D) is a polyhedral cone and we assume non-negative variables, we

have that D= {x ∈ Zn
+ |Dx≥ 0} which gives us X=

{[
0
1

]}
∪
{[

xr
0

]}
r∈R̈0

. In that

case, the IMP̈ (4.60) becomes

z⋆IMP̈ = min 0λ0 + ∑
r∈R̈0

crλr (4.63a)

s.t. 0λ0 + ∑
r∈R̈0

arλr ≥ b (4.63b)

λ0 = |K| (4.63c)
λr ∈ Z+ ∀r ∈ R̈0 (4.63d)

λ0 = ∑
k∈K

λ
k
0, λr = ∑

k∈K
λ

k
r ∀r ∈ R̈0 (4.63e)

λ
k
0 = 1, λ

k
r ∈ Z+ ∀k ∈ K, r ∈ R̈0 (4.63f)

0λ
k
0 + ∑

r∈R̈0

xrλ
k
r = xk ∈ Zn

+ ∀k ∈ K. (4.63g)

In the above, all convexity constraints are useless (λk
0 = 1, ∀k ∈ K) as well as their

redundant sum (λ0 = ∑k∈K λk
0 and λ0 = |K|) and are thus removed:
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z⋆IMP̈ = min ∑
r∈R̈0

crλr (4.64a)

s.t. ∑
r∈R̈0

arλr ≥ b (4.64b)

λr ∈ Z+ ∀r ∈ R̈0 (4.64c)

λr = ∑
k∈K

λ
k
r ∀r ∈ R̈0 (4.64d)

λ
k
r ∈ Z+ ∀k ∈ K, r ∈ R̈0 (4.64e)

∑
r∈R̈0

xrλ
k
r = xk ∈ Zn

+ ∀k ∈ K. (4.64f)

Moreover, given a λr-solution, we have by Proposition 4.9 that ∀r ∈ R̈0, λk
r = λr for

k = 1 and λk
r = 0 for k ̸= 1. The formulation of the IMP̈ thus simplifies to

z⋆IMP̈ = min ∑
r∈R̈0

crλr (4.65a)

s.t. ∑
r∈R̈0

arλr ≥ b (4.65b)

λr ∈ Z+ ∀r ∈ R̈0 (4.65c)

∑
r∈R̈0

xrλr = x1 ∈ Zn
+. (4.65d)

Because the index of x1 is the only remaining block reference, we can mute it en-
tirely such that the reformulation does not need index k. This is indeed the same
as (4.24) right coming by construction from the compact formulation

z⋆ILP = min c⊺x s.t. Ax≥ b, Dx≥ 0, x ∈ Zn
+, (4.66)

on which a Dantzig-Wolfe reformulation is performed using A= {x∈Zn
+ |Ax≥ b}

and D= {x ∈ Zn
+ | Dx≥ 0}. ⊓⊔

Lower and upper bounds

With respect to lower and upper bounds on z⋆MP, our recognizable expressions resur-
face with a particular attention to optimal objective values of the compact formula-
tion, or lack thereof.

Proposition 4.12. Given optimal dual values (πππb, [π
k
0 ]k∈K) with objective value

zRMP and minimum reduced costs c̄k(πππb,π
k
0), ∀k ∈ K, then the optimum z⋆MP is

bounded from below and above as

zRMP + ∑
k∈K

c̄k(πππb,π
k
0)≤ z⋆MP ≤ zRMP. (4.67)
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The proof of Proposition 3.2 continues to hold in the context of integer linear
programming. Also still valid are the comments regarding relaxed pricing solutions,
i.e,

¯
ck(πππb,π

k
0) ≤ c̄k(πππb,π

k
0), as well as arbitrary dual values πππb ≥ 0 and πk

0 ∈ R,
∀k ∈ K, i.e.,

πππ
⊺
bb+ ∑

k∈K
π

k
0 + ∑

k∈K
c̄k(πππb,π

k
0)≤ z⋆MP, ∀πππb ≥ 0,πk

0 ∈ R,k ∈ K. (4.68)

Observe however that z⋆LP and z⋆ILP are respectively incomparable to the lower and
upper bounds given by (4.67) despite Proposition 4.1 providing z⋆LP ≤ z⋆MP ≤ z⋆ILP.
In fact, an upper bound on the linear relaxation’s optimal objective value zRMP is
incomparable to any integer upper bound, let alone the integer optimum. While
there is little reason to care for z⋆LP, the optimal objective value z⋆ILP is of primary
interest. We bridge the missing information in Chapter 7 when we embed the z⋆MP in
a branch-and-bound algorithm.

Finally, we conclude this section with a generalization of Proposition 4.7 for the
ILP with a block-diagonal structure.

Proposition 4.13. If the formulation of each ISPk (4.45), k ∈ K, possesses the inte-
grality property, then the linear relaxation of the IMP is no better than that of the
ILP, i.e.,

z⋆LP = z⋆MP ≤ z⋆ILP. (4.69)

Proof. By Proposition 1.9, the formulation of the ISPk possesses the integrality
property if conv(Dk) = {xk ∈Rnk

+ |Dkxk ≥ dk}, where Dk = {xk ∈Znk
+ |Dkxk ≥ dk}.

The feasible regions of the MP and LP are therefore the same, i.e.,{
{xk ∈ Rnk}k∈K

∣∣∣∣ ∑
k∈K

Akxk ≥ b

}
∩

{
∏
k∈K

conv(Dk)

}

=

{
{xk ∈ Rnk}k∈K

∣∣∣∣ ∑
k∈K

Akxk ≥ b,Dkxk ≥ dk,∀k ∈ K

}
,

such that their optimal objective values are equal. ⊓⊔

4.5 Good to Know

In this section, we first examine the impact of non-linear functions in the compact
formulation and show that the discretization approach can manage that for bounded
domain in pricing problems. We next propose a way to write a compact formulation
so as to allow unused blocks in (4.40). We also examine a block-diagonal structure
with additional variables that are shared by all the blocks and derive an appropriate
reformulation.
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Non-linear encoding functions

Let us quote what we have said in Note 2.10 regarding our encoding functions:

The cost cx and column-coefficients ax are naturally defined as functions of x ∈X, that is,
cx = c(x) and aix = ai(x), ∀i ∈ {1, . . . ,m}. The general framework of the Dantzig-Wolfe
decomposition for (integer) linear programming (see Chapters 3 and 4) requires these to
preserve vector addition and scalar multiplication. In many real-life applications, the cost
c(x) is indeed non-linear and therefore does not fulfill this requirement. We can think of
very complicated cost functions, e.g., for the airline crew schedules, which are negotiated
by lawyers, not OR practitioners. Non-linear functions also appear for the computation
of some column-coefficients when Chvátal-Gomory cuts are added to restrict an integer
master problem formulation as these make use of ceiling or floor functions (see Chapter 7).
We describe in Section 4.5 some conditions for which a reformulation using non-linear
encoding functions holds. This may increase the difficulty in solving such non-linear pricing
problems but the encoding always ends up in the RMP with scalars for the cost cx and
components of ax.

The encoding functions preserve vector addition and scalar multiplication if we
have ∀x1,x2 ∈ X and α1,α2 ∈ R:

c(α1x1 +α2x2) = c(α1x1)+ c(α2x2)

ai(α1x1 +α2x2) = ai(α1x1)+ ai(α2x2) ∀i ∈ {1, . . . ,m}.
(4.70)

This is generally required because a Dantzig-Wolfe reformulation is rooted by the
Minkowski-Weyl or Hilbert-Giles-Pulleyblank theorems to express D or its sibling
conv(D) in a different but equivalent way: any solution x ∈D can be expressed as a
combination of vectors scaled by λ -variables, and vice versa. Obviously, the linear
functions c(x) = c⊺x and a(x) = Ax satisfy this property.

Without loss of generality, assume non-linearity is present in only c(x) or a(x)
and that we can solve the ISP to optimality regardless. In either case, we consider
a combination of points from the ISP as obtained in the RMP and conclude that
decisions we can make from a solution λRMP (optimal or otherwise) in the branch-
and-bound algorithm are compromised. If c(x) is non-linear, the cost evaluation of
such a combination is likely erroneous. If a(x) is non-linear, the evaluation of the
left-hand side contribution of such a combination is likely erroneous and maybe
even infeasible for the constraints in A.

One exception to this general rule occurs if conv(D) (4.2b) is a polytope, which
means that D is a finite set of integer points since all variables must be integer. In
this case, the discretization approach yields an integer linear reformulation in which
we pick one and only one λp-variable, p ∈ P̈. A careful examination of the proof
of Theorem 4.2 tells us that we do not actually need convexification then because
R = R̈ = /0 such that T directly interprets as the entire set of integer solutions, i.e.,
T = D. Interestingly, this means that non-linear coefficients c(x) or a(x) we com-
pute for the objective function in the ISP are also evaluated correctly in any binary
solution λλλ IMP̈. Under these conditions, our subcontracted chemist can identify the
molecules and even still price them properly for the master problem. Let us state
this formally in Proposition 4.14.
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Proposition 4.14. Let c(x) and a(x), x ∈D, be non-linear functions. If D is a finite
set of integer x-points, then the IMP̈ (4.24) left is an integer linear program that
correctly substitutes the compact formulation.

Proof. We first prove that a binary solution of the extended formulation is also valid
for the compact formulation and then that branch-and-bound terminates exactly.
Finally that it also holds in column generation.

1. For an optimal solution x⋆IMP̈=∑p∈P̈ xpλ⋆p, where ∑p∈P̈ λ⋆p=1, λ⋆p∈{0,1}, ∀p∈P̈,
the following holds for precisely one variable, say λ⋆q = 1:

c(x⋆IMP̈) = c(∑
p∈P̈

xpλ
⋆
p) = c(xqλ

⋆
q) = c(xq) = cq = cqλ

⋆
q = ∑

p∈P̈

cpλ
⋆
p, (4.71)

that is to say that the non-linear cost c(∑p∈P̈ xpλ⋆p) is indeed correctly evaluated
at a single integer point indexed in P̈, the same being obviously true for

a(x⋆IMP̈) = a(∑
p∈P̈

xpλ
⋆
p) = ∑

p∈P̈

apλ
⋆
p. (4.72)

2. Assuming that the IMP̈ is solved by branch-and-bound, there only remains to
recognize that the objective values of the linear relaxations we obtain progress
monotonously throughout child nodes of the tree, i.e., z⋆MP ≤ z⋆IMP̈. We have this
by convexity of the linear objective function ∑p∈P̈ cpλp irrespective of the fact
that the coefficients cp may come from a non-linear expression.

3. Solving the IMP̈ by column generation implies that we must be able to solve
exactly the ISP over D and a non-linear objective function. ⊓⊔

What does not transpire in this proof is that fractional solutions of the extended
formulation can lose all meaning when projected back to the compact formulation.
That is, if we project a fractional λλλ MP̈-solution into an x-solution, it suffices to take
another look at (4.70) to realize that what we have found cannot be interpreted cor-
rectly. Remarkably, this misinterpretation likely remains even if a non-binary com-
bination of λ -variables yields x integer. This means that we have to derive branching
and cutting decisions until we reach a binary λλλ MP̈-solution for which we know the
projection back onto the compact formulation is correct. Furthermore, some no-
tions we have gotten accustomed to may lose their footing. For instance, we cannot
take for granted that the adjusted cost c̃ j, j ∈ {1, . . . ,n}, in the pricing problem
makes sense, see Note 3.6. That is, the non-linearity in encoding functions c(x) or
a(x) may make it impossible to separate the objective coefficients per variable x j,
j ∈ {1, . . . ,n}, in the reduced cost expression of the pricing problem, i.e.,

c̄(πππb,π0) =−π0 +min
x∈D

c(x)−πππ
⊺
ba(x). (4.73)

Proposition 4.14 cannot be generalized to a polyhedron (unbounded domain)
conv(D). Even in this case, the monotonous under-approximation of objective val-
ues in the IMP̈ is still guaranteed. The issue is rather that when we reach an integer
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λ -solution, its projection back onto the compact formulation can still yield an un-
predictable objective value. Indeed, for the ILP with a linear cost function, we have

c⊺x⋆IMP̈ = c⊺(∑
p∈P̈

xpλ
⋆
p + ∑

r∈R̈

xrλ
⋆
r) = ∑

p∈P̈

(c⊺xp)λ
⋆
p + ∑

r∈R̈

(c⊺xr)λ
⋆
r , (4.74)

whereas the cost distribution does not in general hold for a non-linear one c(·)
because

c(x⋆IMP̈) ̸= ∑
p∈P̈

c(xp)λ
⋆
p + ∑

r∈R̈

c(xr)λ
⋆
r . (4.75)

For example, consider Figure 4.5b: as we write (9,4) as the sum of the point
(1,2) indexed in P̈ plus the non-negative integer combination 0(2,0)+1(8,2) of the
two integer rays indexed in R̈, the two-dimensional quadratic cost function c(x,y) =
x2 + y2 results in

(81+16) = 97 ̸= (1+4)+(64+4) = 73.

Moreover, there might not be a unique representation of x⋆IMP̈ as a combination of
the λ -variables because this combination depends on the scaling adopted for the
integer rays.

An unpractical possibility to solve such a model exactly would be to reach either
infeasibility or integrality at every leaf without ever being able to prune based on
linear relaxations. The idea may become relevant if we can bound the error on the
real objective value, e.g., through Taylor series or similar tools, which would give
us back pruning capabilities. Specifically, can we find ε such that the difference
between the original objective value and the one computed in the MP̈ is bounded
from above in

c( ∑
p∈P′

xpλp)− ∑
p∈P′

cpλp
?
≤ ε. (4.76)

Note 4.12 (A perspective with non-linear constraints.) One could of course also see
the encoding functions c(x) and a(x) as constraints of the pricing problem in which
case it is the domain that is non-linear. As long as we can solve this non-linearity
exactly, the conclusion obviously remains the same regarding discretization. This
implies that we may be able to handle non-linear constraints of the compact formu-
lation by confining them to the pricing problem. Figure 4.12 sketches an arbitrary
non-linear domain for the pricing problem, say x ∈ X, and the consequence this
has on the extended formulation. In that case, we do not respect the Minkowski-
Weyl conditions required to apply Theorems 3.1, 4.1, and 4.2, so we do not have
an equivalent description of the substituted set, i.e., A∩ conv(X) ̸= A∩X, where
A= {x ∈ Zn | Ax≥ b}. Convexification introduces “feasible” solutions (integer or
fractional) in the master problem that are actually infeasible in X even if they are
integer. A Dantzig-Wolfe reformulation by convexification therefore cannot treat
these problematic solutions whereas one by discretization rejects them correctly
upon branching as we are only allowed to pick one point in X.



4.5 Good to Know 213

• •

• •

• •

• •

• •

• •

• • • •

•

• •

• •

•

• • • •

(a) Finite set of integer solutions X

{x ∈ R2
+ | Ax≥ b}

• •

• •

• •

• •

• •

• •

• • • •

•

• •

• •

•

• • • •
◦◦
◦

◦ ◦◦
◦◦ ◦◦
◦ ◦

(b) Minkowski-Weyl conditions are not met

Fig. 4.12: A set X⊂Z2
+ whose convexification creates undesirable points in the MP̈.

Note 4.13 (More non-linear cases.) The proof also holds for a maximization in
which case monotonous progress is guaranteed by concavity of the linear objective
function. It immediately generalizes to a block-diagonal structure where we pick
one and only one λk

p-variable per block k ∈ K, p ∈ P̈k. The same is true for identical
subproblems where λp = ∑k∈K λk

p in the reformulation (4.60) takes integer values.

Note 4.14 (Non-linear mixed-integer conjecture.) The extent to which non-linear
encoding functions hold in a Dantzig-Wolfe reformulation by discretization on a
mixed-integer compact formulation is an open question. In other words, a poly-
tope conv(D) defined from a mixed-integer compact formulation is not necessarily
synonymous with a finite set of integer points. A conjecture is that all variables in-
fluenced by non-linearity must take finite values. We point back to Example 2.6 in
which we allow convex combinations of λp-variables under non-linear timing re-
strictions. Formally, only combinations with the same routing but a different sched-
ule are considered integer feasible, that is, the t-variables are continuous but have no
impact on routing cost or feasibility, e.g., 0.25(9h) + 0.75(14h) = 12h45. If the time
variables had an influence on cost or traveling patterns, the story would be much
different.

An integer program with a quadratic objective function is given in Example 4.8.
It has a block-diagonal structure with identical data in some blocks such that we use
aggregation to get two integer pricing problems. In the mean time, let us prepare the
ground with Illustration 4.6.

Illustration 4.6 TCSPP: non-linear costs

To spice things up, let us pick up on Illustration 4.5 and introduce non-linear ele-
ments, in the objective function of the compact formulation, in two different ways:

(a) The cost on each arc (i, j) ∈ A is given by cos(c2
i j) instead;

(b) The objective function is given by sin(∑(i, j)∈A ci jxi j) instead.

The specific cosine and sine functions we use are not important as one would
be hard-pressed to find any real-world meaning for them in a routing context. Let
us rather concentrate on whether or not we can handle this non-linearity. Should
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the reader attempt to work out the solutions before seeing the answers, the idea is
to write the compact formulation, confirm that we can perform a Dantzig-Wolfe
reformulation using D, and if so solve the extended formulation to see how the
linear relaxation behaves.

(a) For each arc (i, j) ∈ A, we simply apply the non-linear function cos(c2
i j) to the

listed arc costs ci j which gives cos(102)≈ 0.8623 for arc (1,3).

(i, j) ∈ A (1,2) (1,3) (2,4) (3,2) (2,5) (3,4) (3,5) (5,6) (4,5) (4,6)

ci j 1 10 1 1 2 5 12 2 10 1
cos(c2

i j) 0.5403 0.8623 0.5403 0.5403 -0.6536 0.9912 0.8711 -0.6536 0.8623 0.5403

Each coefficient comes from a non-linear expression but the compact formula-
tion remains entirely linear, i.e.,

z⋆ILP = min ∑
(i, j)∈A

cos(c2
i j)xi j s.t. x ∈A∩D. (4.77)

Computing the cost of a path is no different than we are use to, e.g., the cost of
path 1246 is c1246 = 0.5403+0.5403+0.5403 = 1.6209 as listed in Table 4.3.

p ∈ P 1246 1256 12456 13246 13256 132456 1346 13456 1356

cp 3 5 14 13 15 24 16 27 24 original
cp 1.6209 -0.7670 1.2893 2.4832 0.0953 2.1516 2.3938 2.0622 1.0798 non-linear
tp 18 15 14 13 10 9 17 13 8

Table 4.3: Path parameters cp and tp using a non-linear function on arc costs.

It is thus immediate that we can use the extended formulation we already know.
The optimal integer solution is λ⋆

13256 = 1 at cost z⋆IMP̈ = 0.0953. The linear
relaxation is λ1256 = 0.8 and λ13256 = 0.2 at cost z⋆MP =−0.5945. Furthermore,
this value means the same in the compact formulation, i.e., x12 = 0.8, x25 =
x56 = 1, x13 = 0.2, and x32 = 0.2 which can be evaluated indifferently as

.8(.5403− .6536− .6536)+ .2(.8623+ .5403− .6536− .6536)
= .8(.5403)− .6536− .6536+ .2(.8623)+ .2(.5403) =−.5945.

(b) The compact formulation now contains a non-linear objective function but re-
mains subject to the usual constraints, i.e.,

z⋆NLP = min sin( ∑
(i, j)∈A

ci jxi j ) s.t. x ∈A∩D. (4.78)
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The domain conv(D) is a polytope that contains only binary solutions so we can
perform a Dantzig-Wolfe reformulation by Proposition 4.14. This also results
in the extended formulation we already know but it is worth to write out the
pricing problem that takes over the non-linear objective function, i.e.,

c̄(π7,π0) =−π0 +min
x∈D

sin( ∑
(i, j)∈A

ci jxi j)−π7 ∑
(i, j)∈A

ti jxi j

=−π0 +min
p∈P

cp−π7tp.

We can observe that it no longer makes sense to speak of the adjusted cost c̃i j
of an arc (i, j) ∈ A. The cost of each path is computed in Table 4.4 with the cost
of path 1246 now calculated as sin(1+1+1) = 0.1411.

p ∈ P 1246 1256 12456 13246 13256 132456 1346 13456 1356

cp 3 5 14 13 15 24 16 27 24 original
cp 0.1411 -0.9589 0.9906 0.4202 0.6503 -0.9056 -0.2879 0.9564 -0.9056 non-linear
tp 18 15 14 13 10 9 17 13 8

Table 4.4: Path parameters cp and tp using a non-linear function on path costs.

An optimal integer solution is λ⋆
1356 = 1 at cost z⋆IMP̈ =−0.9056. The linear re-

laxation is λ1256 = 0.8571 and λ1356 = 0.1429 at cost z⋆MP =−0.9513. Convert-
ing this solution to the compact formulation yields x12 = x25 = 0.8571, x56 = 1,
and x13 = x35 = 0.1429. We observe that the real objective value is not equal to
what we establish with the extended formulation, i.e.,

.8571(−.9589)+ .1429(−.9056) =−.9513
̸= sin[1(.8571)+2(.8571)+2(1)+10(.1429)+12(.1429)] = .9903.

In this case, it is even largely greater than the integer optimum. What is im-
portant to remember is that, since we are minimizing, linear relaxations of the
extended formulation always provide a lower bound on integer optimality, e.g.,
−0.9513≤−0.9056.

Not all blocks are used

We have seen in Chapter 2 that we can do column generation without any reference
to a Dantzig-Wolfe reformulation. All we need is a master problem and a suitable
pricing problem that is able to generate master variables of negative reduced cost, if
there are any. With the material in the present chapter, we understand that a Dantzig-
Wolfe reformulation is the theoretical link between the IMP and ISP, the link that
explains what suitable means. When we discuss branching decisions and cutting
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planes in Chapter 7, this link proves to be useful again, and we may need a compact
formulation from which we derive, by an appropriate reformulation, the master and
pricing problems. Since we know (almost) all the constraints, reversing a Dantzig-
Wolfe reformulation is not so difficult. Think about how you would do it! We return
to this in Section 4.6 More to Know.

There is a small twist, however, in the very common context of block-diagonal
models, i.e., the presence of several ISPs. In many applications, not all pricing prob-
lems necessarily contribute to the final master problem solution. When we formulate
the ISPs, and the ILP as well, we must therefore actively construct this possibility.
The intuition is right: we must introduce a binary variable that enables/disables
a pricing problem. This relates to the zero-object we have briefly discussed in
Note 2.12. Indeed, we have already done this by incorporating to the ISP

• x0 in (2.32) for the One-dimensional cutting stock problem;
• xk

0 in (2.34) for the Cutting stock problem with rolls of different widths;
• x0 in (2.37) for the Edge coloring problem.

Bounded domains

Assume that we need to write a compact formulation ILP given the following infor-
mation:

• |K| blocks with bounded domains

Dk =

{
xk ∈ Znk

+

∣∣∣∣ Dkxk ≥ dk
}

∀k ∈ K (4.79)

• a set of linking constraints

A=

{{
xk ∈ Znk

+

}
k∈K

∣∣∣∣ ∑
k∈K

Akxk ≥ b

}
(4.80)

• two cost components per block k: the linear portion ck⊺xk and a fixed cost ck
0 ≥ 0

for using the block (xk ̸= 0);

As expected, we use a binary variable in each block, say xk
0 taking value 1 if

block k is used, otherwise 0. We do however need one more trick: since every block k
has a bounded domain Dk, we can trivially introduce adequate upper bounds xk ≤ uk

that do not modify the feasible region. An appropriate compact formulation is then
given by

z⋆ILP = min ∑
k∈K

ck
0xk

0 + ck⊺xk (4.81a)

s.t. ∑
k∈K

Akxk ≥ b (4.81b)
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Dkxk ≥ dkxk
0 ∀k ∈ K (4.81c)

xk ≤ ukxk
0 ∀k ∈ K (4.81d)

xk
0 ∈ {0,1} ∀k ∈ K (4.81e)

xk ∈ Znk

+ ∀k ∈ K, (4.81f)

where xk
0 ∈ {0,1} implies that (4.81c)–(4.81f) either results in xk = 0 or corresponds

to Dk (4.79).

Note 4.15 (000, and nothing to do with James Bond.) We note the following small
technicality although it is not restrictive by any means. If 0 /∈ Dk, any integer so-
lution xk ̸= 0 implies xk

0 = 1 and vice versa. If 0 ∈Dk, the solution xk
0 = 1, xk = 0

co-exists with the solution xk
0 = 0, xk = 0 but the latter is always preferred since it

yields a cost 0≤ ck
0. We can therefore see that if ck

0 = 0 and 0 ∈Dk, there is no need
to construct an artificial zero-object although we can do so anyway.

Let us now take a look at the two Dantzig-Wolfe reformulations IMP and IMP̈
using the grouping of constraints

A0 =

{{[
xk

0
xk

]
∈ {0,1}×Znk

+

}
k∈K

∣∣∣∣ ∑
k∈K

Akxk ≥ b

}
(4.82a)

Dk
0 =

{[
xk

0
xk

]
∈ {0,1}×Znk

+

∣∣∣∣ Dkxk ≥ dkxk
0, xk ≤ ukxk

0

}
, ∀k ∈ K. (4.82b)

[
xk

0 = 1
xk

]
conv(Dk)

[
xk

0 = 0
0

]

Fig. 4.13: Illustration of conv(Dk
0).

Block k is illustrated in Figure 4.13: the polytope conv(Dk) derived from (4.79) is

replaced by conv(Dk
0) that includes one additional extreme point,

[
xk

0
xk

]
=
[

0
0

]
. Let us

first examine the reformulation based on convexification. The set of extreme points
of conv(Dk

0), here denoted Xk
0, is

Xk
0 =

{[
0
0

]}
∪
{[

1
xk

p

]}
p∈Pk

, (4.83)
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where Pk is the index-set of the extreme points of conv(Dk). For the λk-variables of
the reformulation, let the lower-index be 0 for the zero-extreme point and p∈ Pk for
the others. The IMP becomes

z⋆IMP=min ∑
k∈K

[
ck

0 ck⊺
][0

0

]
λ

k
0 +∑

k∈K
∑

p∈Pk

[
ck

0 ck⊺
][ 1

xk
p

]
λ

k
p

s.t. ∑
k∈K

[
0 Ak

][0
0

]
λ

k
0 + ∑

k∈K
∑

p∈Pk

[
0 Ak

][ 1
xk

p

]
λ

k
p ≥ b

λ
k
0 + ∑

p∈Pk

λ
k
p = 1 ∀k∈K

λ
k
0≥ 0, λ

k
p ≥ 0 ∀k∈K, p∈Pk[

0
0

]
λ

k
0 + ∑

p∈Pk

[
1
xk

p

]
λ

k
p =

[
xk

0
xk

]
∀k∈K

[
xk

0
xk

]
∈ {0,1}×Znk

+ ∀k∈K.

Because ∑p∈Pk λk
p = xk

0, we obtain a simplified program by treating λk
0 as a binary

slack variable in the convexity constraint of block k, i.e., 1−λk
0 =∑p∈Pk λk

p ∈ {0,1}.
The IMP, where we compute the vector product for the coefficients of the λk

p-
variables, is

z⋆IMP = min ∑
k∈K

∑
p∈Pk

(ck
0 + ck

p)λ
k
p (4.84a)

s.t. ∑
k∈K

∑
p∈Pk

ak
pλ

k
p ≥ b (4.84b)

∑
p∈Pk

λ
k
p ≤ 1 ∀k ∈ K (4.84c)

λ
k
p ≥ 0 ∀k ∈ K, p ∈ Pk (4.84d)

∑
p∈Pk

λ
k
p = xk

0 ∈ {0,1} ∀k ∈ K (4.84e)

∑
p∈Pk

xk
pλ

k
p = xk ∈ Znk

+ ∀k ∈ K. (4.84f)

Observe that in an optimal integer solution, an activated block k has a binding
convexity constraint in conv(Dk), i.e., ∑p∈Pk λk

p = 1 in (4.84e), otherwise 0 if it is
deactivated. This also implies that the fixed cost ck

0 is adequately measured by the
objective function even if xk = 0 in which case the model ignores ck

0≥ 0 using the kth

less-than-or-equal convexity constraint. Interestingly, solving the linear relaxation
of (4.84) means that a block k can be used but still be non-binding in the convexity
constraint, that is, 0 < ∑p∈Pk λk

p < 1.
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In the discretization approach, the constraints (4.84e)–(4.84f) can be removed
altogether because the binary condition on λk

p ensures those on xk
0 and xk by Propo-

sition 4.10. We do note that variable xk
0 is completely useless even in the post-

processing because any binary decision can be analogously done on ∑p∈P̈k λk
p:

z⋆IMP̈ = min ∑
k∈K

∑
p∈P̈k

(ck
0 + ck

p)λ
k
p

s.t. ∑
k∈K

∑
p∈P̈k

ak
pλ

k
p ≥ b

∑
p∈P̈k

λ
k
p ≤ 1 ∀k ∈ K

λ
k
p ∈ {0,1} ∀k ∈ K, p ∈ P̈k

.

(4.85)

Identical subproblems

Let us again focus on the discretization case and assume that we also have |K| iden-
tical bounded subproblems from the ILP (4.81), i.e., Ak =A, Dk =D, dk = d, ck = c,
and non-negative fixed cost ck

0 = c0, ∀k ∈ K. Then we perform aggregation in the
IMP̈ (4.85), or equivalently adapt (4.61), as

z⋆IMP̈ = min ∑
p∈P̈

(c0 + cp)λp (4.86a)

s.t. ∑
p∈P̈

apλp ≥ b [πππb] (4.86b)

∑
p∈P̈

λp ≤ |K| [πagg] (4.86c)

λp ∈ Z+ ∀p ∈ P̈. (4.86d)

Note 4.16 (Got enough blocks?) Since z⋆IMP̈ is finite, there exists κ such that
1⊺λλλ⋆IMP̈ ≤ κ , for any optimal solution λλλ

⋆
IMP̈. This matches the definition of κ

in (2.16a). If |K| ≥ κ , the aggregated convexity constraint (4.86c) is redundant such
that we can drop it from the model and assume that πagg = 0 until further notice. This
is the case in many applications if for example the number of vehicles to schedule or
rolls to cut is a priori known to be sufficiently large. However, it often comes back
in the RMP with branching decisions of the form

∑
p∈P̈

λp ≤ ⌊1⊺λλλ⋆MP̈⌋ and ∑
p∈P̈

λp ≥ ⌊1⊺λλλ⋆MP̈⌋+1. (4.87)

In fact, dropping the aggregated convexity constraint does not serve the implemen-
tation since it eventually requires two constraints to be expressed.
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What we can rather do is dynamically modify the bounds of a static variable

v ∈ [0,κ] in ∑
p∈P̈

λp− v = 0. (4.88)

Note 4.17 (A long way. . . ) Observe that we have come a long way from the aggre-
gated discretization model (4.60) even after omitting extreme rays. We have seen
some such simplified models and even created them intuitively for instance in Ex-
ample 2.2, Cutting stock problem with rolls of different widths. In retrospective, it
is a good place to underscore that these intuitive column generation models often
rely on discretization whether knowingly or not, that is, we must be careful as to
what is the meaning of X in the extended formulation.

Unbounded domains

Because z⋆IMP is finite, we can always argue that Dk, hence conv(Dk) and conv(Dk
0)

as well, is bounded by an appropriate large hyperbox with big-M values, that is,
uk = 1M, ∀k ∈ K. Therefore, the above development can be applied by imposing
these bounds in the compact formulation and deriving a Dantzig-Wolfe reformula-
tion where only extreme points are present.

The alternative scenario in which we would interpret a solution xk ∈ Dk, for
which xk < uk is not fulfilled, as an extreme ray of conv(Dk) is not easy to conceive
because we need two points to define a ray. This can however be done if conv(Dk)
is a polyhedral cone where the zero-extreme point is implicitly given. In that case
the set Xk

0 becomes

Xk
0 =

{[
0
0

]}
∪
{[

1
0

]}
∪
{[

1
xk

r

]}
r∈Rk

, (4.89)

and the fixed cost ck
0 is only meaningful for xk

r ̸= 0.

Shared variables across all blocks

Consider the following ILP with a block-diagonal structure plus an extra component
called the shared (or linking) variables y ∈ Zn

+:

z⋆ILP = min s⊺y + ∑
k∈K

ck⊺xk

s.t. Sy + ∑
k∈K

Akxk ≥ b

Sky + Dkxk ≥ dk ∀k ∈ K

y ∈ Zn
+, xk ∈ Znk

+ ∀k ∈ K.

(4.90)



4.5 Good to Know 221

We recognize that we can treat the y-variables as static by adding the constraints
y=yk, ∀k∈K, to (4.90) in anticipation of a reformulation over |K| pricing problems:

z⋆ILP = min s⊺y + ∑
k∈K

ck⊺xk (4.91a)

s.t. Sy + ∑
k∈K

Akxk ≥ b (4.91b)

y − yk = 0 ∀k ∈ K (4.91c)
y∈ Zn

+ (4.91d)

Skyk + Dkxk ≥ dk ∀k ∈ K (4.91e)

yk ∈ Zn
+, xk ∈ Znk

+ ∀k ∈ K. (4.91f)

Let the grouping of the constraints be

A=

{
y∈Zn

+,

{[
yk

xk

]
∈Zn

+×Znk

+

}
k∈K

∣∣∣∣ Sy+∑
k∈K

Akxk ≥ b,y = yk,∀k∈K

}
(4.92a)

Dk =

{[
yk

xk

]
∈Zn

+×Znk

+

∣∣∣∣ Skyk +Dkxk ≥ dk
}
, ∀k ∈ K. (4.92b)

For the ease of presentation, assume that Dk is bounded, ∀k ∈ K. We then express[
yk

xk

]
as a convex combination of the extreme points of conv(Dk):

[
yk

xk

]
= ∑

p∈Pk

[
yk

p
xk

p

]
λ

k
p, ∑

p∈Pk

λ
k
p = 1, λ

k
p ≥ 0, ∀p ∈ Pk. (4.93)

The Dantzig-Wolfe reformulation becomes

z⋆IMP = min s⊺y + ∑
k∈K

∑
p∈Pk

ck
pλ

k
p (4.94a)

s.t. Sy + ∑
k∈K

∑
p∈Pk

ak
pλ

k
p ≥ b [πππb] (4.94b)

y − ∑
p∈Pk

yk
pλ

k
p = 0 [πππk

y] ∀k ∈ K (4.94c)

∑
p∈Pk

λ
k
p = 1 [πk

0 ] ∀k ∈ K (4.94d)

y ∈ Zn
+ (4.94e)

λ
k
p ≥ 0 ∀k ∈ K, p ∈ Pk (4.94f)

∑
p∈Pk

yk
pλ

k
p = yk ∈ Znk

+ ∀k ∈ K (4.94g)
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∑
p∈Pk

xk
pλ

k
p = xk ∈ Znk

+ ∀k ∈ K, (4.94h)

with the ISPk written as

c̄(πππb,πππ
k
y,π

k
0) = −π

k
0 + min ck

x−πππ
⊺
bak

x +πππ
k⊺
y yk

s.t.
[

yk

xk

]
∈Dk

ck
x = ck⊺xk, ak

x = Akxk.

(4.95)

Handling the linking variables in this way is similar to what is known as La-
grangian decomposition (Guignard and Kim, 1987).

4.6 More to Know

In Chapter 7, we assume that we can branch on the x- or λ -variables as we wish.
In this section we justify the assumption that we can always work with a compact
formulation in x-variables even though we may be given an extended formulation
only in λ -variables. We call this reverse engineering a compact formulation or re-
verse Dantzig-Wolfe decomposition. There may be different ILP formulations to
start from, and we remark that a reformulation can capitalize on this. We conclude
by showing how to algorithmically group the constraints for a reformulation.

Reverse engineering a compact formulation

We have drawn several parallels and pointed to sometimes subtle differences be-
tween intuitive models we constructed in Chapter 2 and those we derived via a
Dantzig-Wolfe reformulation. Let us formally describe the process of deriving a
compact formulation if and when it is apparently not given. We consider both con-
vexification and discretization models.

Convexification

Given an extended formulation and the pricing problem, all we have to realize is that
any information we need to rewrite an equivalent compact formulation is readily
available. In particular, it is useful to remind ourselves that cp = c⊺xp, ap = Axp,
∀p ∈ P, and likewise for extreme rays. The relationship given by (4.96) could have
been presented much earlier and reminds us that both of these formulations always
co-exist.
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z⋆IMP = min ∑
p∈P

cpλp + ∑
r∈R

crλr

s.t. ∑
p∈P

apλp + ∑
r∈R

arλr ≥ b

∑
p∈P

λp = 1

λp ≥ 0, λr ≥ 0 ∀p ∈ P, r ∈ R

∑
p∈P

xpλp + ∑
r∈R

xrλr = x ∈ Zn
+

with {xp}p∈P and {xr}r∈R derived from D= {x ∈ Zn
+ | Dx≥ d}

z⋆ILP = min c⊺x

s.t. Ax≥ b

Dx≥ d

x ∈ Zn
+

(4.96)

It is not really more difficult to reverse a convexification model where a block-
diagonal structure is present, see the ILP (4.40) and IMP (4.42). Now that the reader
understands what we mean by reverse Dantzig-Wolfe, let us tackle the discretization
case.

Discretization

Let us assume for the rest of the presentation that the given IMP̈ comprises only one
pricing problem defined over D = {x ∈ Zn

+ | Dx ≥ d}. Moreover, cp = c⊺xp and
ap = Axp, ∀p ∈ P̈, and likewise for rays when used. The case of discretization is
at first sight slightly more subtle to reverse because it may happen that some con-
straints have been simplified away (whether knowingly or not). For instance, from
the compact formulation (4.81) with a block-diagonal structure, we have derived
the very concise and yet equivalent discretization model (4.86) which assumes |K|
identical subproblems, i.e., Ak = A, Dk = D, dk = d, ck = c, and non-negative fixed
cost ck

0 = c0, ∀k ∈ K. Using Note 4.16 to also get rid of the aggregated convexity
constraint, we put these side-by-side in Proposition 4.15.

Observe that the number of blocks |K| that is assumed to be large enough is
optimized by design in the extended formulation IMP̈ (via a static variable with
dynamic bounds in [0,κ]) whereas expressing the compact formulation ILP forces
us to explicitly decide how many blocks we want to deal with.

Proposition 4.15. (Villeneuve et al., 2005) Consider an extended formulation by
discretization (4.97) left in λ -variables without a convexity constraint as well as a
single pricing problem in x-variables. Then, the compact formulation (4.97) right
that uses xk-variables in a block-diagonal structure with identical data across all
blocks which need not all be used is equivalent.
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z⋆ILP = min ∑
k∈K

c0xk
0 + c⊺xk

s.t. ∑
k∈K

Axk ≥ b

Dxk ≥ dxk
0 ∀k ∈ K

xk ≤ ukxk
0 ∀k ∈ K

xk
0 ∈ {0,1} ∀k ∈ K

xk ∈ Zn
+ ∀k ∈ K

z⋆IMP̈ = min ∑
p∈P̈

(c0 + cp)λp

s.t. ∑
p∈P̈

apλp ≥ b

λp ∈ Z+ ∀p ∈ P̈

with {xp}p∈P̈ derived from D= {x ∈ Zn
+ | Dx≥ d}

(4.97)

What is important to understand here is that whenever we have an extended for-
mulation IMP̈ where (part of) the substitution system does not appear, it remains
easy to recover a compact formulation. This is the result of Villeneuve et al. (2005)
that proves the existence of an ILP. Their proof in fact is restricted to a bounded do-
main D to allow reversing non-linear functions c(x) and a(x) as we have considered
in Proposition 4.14 in which case we could for instance read ∑k∈K c0xk

0 + c(xk) in
the compact formulation. In particular, our point is that it is sufficient to implicitly
recover the substitution system simply by accepting that we know a Dantzig-Wolfe
reformulation on the compact formulation which indeed leads to the given extended
formulation. Let us underline that this existence neither implies that the compact
formulation we propose is unique, nor that it is even the most ‘compact’ one.

Propositions 4.16 and 4.17 are evidence of this since they provide, under their
respective assumptions, alternative compact formulations that do not even have a
block-diagonal structure. The first is based on the polyhedral cone whereas the sec-
ond is based on the integrality property. These are in fact generalizations of what
we have seen in Example 3.3 on the Single depot vehicle scheduling problem: two
compact formulations. Using Proposition 4.15, we can derive a compact formula-
tion with |K| identical vehicles, yielding one pricing problem per vehicle k ∈ K.
Yet there is no such index k in the ILP (3.92), a network flow circulation problem
(Figure 3.16 is reproduced in Figure 4.14).

o d. . . I . . .

•

•
•

•

••

•

•
•

•

• •

...
...

0≤ xdo ≤ v

Fig. 4.14: Network Gdo with v identical vehicles available at the depot.

With respect to the former proposition, the od-shortest path problem has been
transformed into a circulation problem on the network Gdo and the extreme rays
scaled to one unit. For the latter proposition, the formulation we use to solve the
circulation problem does have the integrality property and we also obtain a compact
formulation without index k where x0 plays the same role as xdo.
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Proposition 4.16. Consider an extended formulation by discretization (4.98) left in
λ -variables without a convexity constraint as well as a single pricing problem in
x-variables with a domain D = {x ∈ Zn

+ | Dx ≥ 0} whose convex hull conv(D)
is a polyhedral cone. Then, the compact formulation (4.98) right that also uses x-
variables and does not have a block-diagonal structure is equivalent.

z⋆IMP̈ = min ∑
r∈R̈0

crλr

s.t. ∑
r∈R̈0

arλr ≥ b

λr ∈ Z+ ∀r ∈ R̈0

with {xr}r∈R̈0
derived from D= {x ∈ Zn

+ | Dx≥ 0}

z⋆ILP = min c⊺x

s.t. Ax≥ b

Dx≥ 0

x ∈ Zn
+

(4.98)

Proof. Recall the definition of R̈0 = Ï ∪ R̈ in (4.26) where the 0-vector is removed
from the IMP̈. The result then follows from Proposition 4.9. ⊓⊔

Proposition 4.17. Consider an extended formulation by discretization (4.99) left in
λ -variables without a convexity constraint as well as a single pricing problem in x-
variables. Then, the compact formulation (4.99) right that also uses x-variables and
does not have a block-diagonal structure is equivalent if and only if the following
conditions are satisfied:

1. The ISP formulation in x∈D= {x∈Zn
+ |Dx≥ d} has the integrality property;

2. 0 /∈A= {x ∈ Zn
+ | Ax≥ b} or z⋆IMP̈ ≤ 0.

z⋆ILP = min c0x0 + c⊺x
s.t. Ax≥ b

Dx≥ dx0

x≤ ux0

x0 ∈ Z+

x ∈ Zn
+

z⋆IMP̈ = min ∑
p∈P̈

(c0 + cp)λp

s.t. ∑
p∈P̈

apλp ≥ b

λp ∈ Z+ ∀p ∈ P̈

with {xp}p∈P̈ derived from D= {x ∈ Zn
+ | Dx≥ d},

the ISP formulation having the integrality property

(4.99)

Proof. Observe first that the given IMP̈ is formulated with variables λp, ∀p ∈ P̈.
Hence the set D contains a finite number of integer points such that the values of
x are implicitly upper bounded, say by u. We start by deriving a Dantzig-Wolfe
reformulation of the ILP using the grouping of constraints

A(x0) =

{[
x0
x

]
∈ Zn+1

+

∣∣∣∣ Ax≥ b
}

(4.100a)
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D(x0) =

{[
x0
x

]
∈ Zn+1

+

∣∣∣∣ Dx≥ dx0, x≤ ux0

}
. (4.100b)

We then show that it can be simplified into the IMP̈ if and only if the two conditions
are satisfied.

By Theorem 4.2, every point of D(x0) can be expressed using a finite set
{[

x0r
xr

]}
r∈R̈0

of integer-scaled rays of the polyhedral cone conv(D(x0)), see (4.24) right. A
Dantzig-Wolfe reformulation based on the discretization of D(x0) is therefore

min 0λ[0
0

] + ∑
r∈R̈0

crλr

s.t. 0λ[0
0

] + ∑
r∈R̈0

arλr ≥ b

λ[0
0

] = 1, λr ∈ Z+ ∀r ∈ R̈0[
0
0

]
λ[0

0

] + ∑
r∈R̈0

[
x0r
xr

]
λr =

[
x0
x

]
∈ Zn+1

+ ,

(4.101)

where the encoding functions are cr = c0x0 +c⊺xr, ar = Axr, ∀r ∈ R̈0. Note that we
explicitly keep the convexity constraint λ[0

0

] = 1 for future reference to the unique

zero-extreme point of the polyhedral cone but the constraints in x0 and x can be
dropped.
⇐ We start with Condition 1. By assumption, we have D =D(1) since the upper
bounds u are implicit. Figure 4.15 depicts the polyhedral cone conv(D(x0)) and
makes the previous statement obvious.

[
x0 = 1

x

] [
x0 = 2

x

][
x0 = 0

0

]

Fig. 4.15: Polyhedral cone conv(D(x0)).

By the integrality property of the ISP formulation defined on Dx≥ d, the extreme
points of the polytope

{x ∈ Rn
+ | Dx≥ d, x≤ u}= conv(D) (4.102)
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are integer just like those of conv(D(1)). Thus, the set
{[

1
xp

]}
p∈P̈

of integer points

of D(1) is in a one-to-one correspondence with the set {xp}p∈P̈ of the λp-variables
in the IMP̈.

We need to show that any integer-scaled ray in the reformulation (4.101) can be
written using the points of D(1). In fact, apart from the single extreme point, all
integer points of conv(D(x0)) are rays, those indexed in R̈0 being a subset. Hence it
is sufficient to show that all points of D(x0), x0 ≥ 2, write in terms of D(1).

This is true for the extreme points of
{[

x0
x

]
∈ Rn+1

+

∣∣∣∣ Dx≥ dx0, x≤ ux0

}
given by{

x0

[
1
xp

]}
p∈P

, hence integer for x0 ∈ Z+. Let P̈adj ⊂ P̈× P̈ denote the set of indices

(p, p′) of two adjacent integer points of D(1).

• The points of D(2) are either twice a point of D(1), i.e., 2
[

1
xp

]
, ∀p∈ P̈, or twice

a fractional point halfway between two adjacent integer points of D(1):

2×
(

1
2

[
1
xp

]
+ 1

2

[
1

xp′

])
=
[

1
xp

]
+
[

1
xp′

]
∈D(2), ∀(p, p′) ∈ P̈adj.

• Similarly,
[

3
x

]
writes as three times a point of D(1), or three times a fractional

point either at 1/3 or at 2/3 in between two adjacent integer points of D(1):

3×
(

2
3

[
1
xp

]
+ 1

3

[
1

xp′

])
= 2

[
1
xp

]
+

[
1

xp′

]
∈D(3), ∀(p, p′) ∈ P̈adj;

3×
(

1
3

[
1
xp

]
+ 2

3

[
1

xp′

])
=

[
1
xp

]
+2

[
1

xp′

]
∈D(3), ∀(p, p′) ∈ P̈adj.

• More generally, the points of D(x0), x0 ≥ 2, are of two types:

[
x0
x

]
=


x0

[
1
xp

]
∀p ∈ P̈

(x0−α)
[

1
xp

]
+α

[
1

xp′

]
∀(p, p′) ∈ P̈adj, α ∈ {1, . . . ,x0−1}.

As P̈adj ⊂ P̈× P̈, it is therefore sufficient to know the points indexed by P̈ to
write every point of D(x0), x0 ≥ 2.

Condition 2 comprises two expressions, each one independently showing that the
introduced zero-vector can be removed from the reformulation (4.101).

• If 0 /∈ A, then an optimal solution to (4.101) writes in terms of positive λr-
variables and λ[0

0

] is useless.

• The second condition z⋆IMP̈ ≤ 0 in (4.99) left is treated in two parts. If z⋆IMP̈ < 0,
the zero-vector cannot be optimal in the reformulation (4.101). If z⋆IMP̈ = 0, there
exists an optimal solution λλλ

⋆
IMP̈ ≥ 0, the same being in (4.101) in terms of the

λr-variables, r ∈ R̈0 = P̈, and the zero-vector can be removed.
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Conditions 1 and 2 being sufficient, the zero-vector can be removed from the refor-
mulation (4.101) and the index-set R̈0 replaced by P̈: this is the IMP̈.

⇒ The proof is done by contradiction on either Condition 1 or Condition 2.

1. Assume that the ISP does not possess the integrality property.
Then there exists at least one rational point x• ∈ {x ∈ Rn

+ | Dx≥ d} that is not
in conv(D), hence cannot be written neither as a convex combination of the
extreme points of {xp}p∈P. nor using the larger set {xp}p∈P̈. Multiplying x• by

a sufficiently large positive integer number x0,
[

x0r
xr

]
=

[
x0

x0x•

]
is an integer-

scaled ray indexed by r ∈ R̈0, but it cannot be written using the points of D(1).
We can then modify the objective coefficients c so that x0x• is integer optimal
for the pricing problem defined on D(x0).
To sum up, the absence of the integrality property invalidates the one-to-one
correspondence between P̈ and R̈0.

2. Assume that 0 ∈A and z⋆IMP̈ > 0.

By construction, the zero-vector
[

0
0

]
belongs to D(x0) and it is also feasible in

A(x0) as 0 is in A. As such, the minimum objective value in the reformula-
tion (4.101) is less than or equal to 0, obviously in contradiction with z⋆IMP̈ > 0.

In both cases of contradiction, the reformulation (4.101) of the ILP is not equivalent
to the given IMP̈, hence these two conditions are also necessary. ⊓⊔

Note 4.18 (Lost in reduction.) In finding a compact formulation without index k from
Propositions 4.16 or 4.17, it may be that we lose track of the essence of the problem.
This is notably the case if the x-variables can be simplified from the ILP model thus
giving no way to recover an actual solution for the real problem. This surprisingly
happens in Example 4.10 (Edge coloring problem: two compact formulations) for
which the second ILP is useless except for its objective value.

Extended compact and subproblem formulations

Imagination, creativity, thinking outside the box, knowledge may help in choosing
a compact formulation ILP to start with. For example, any finite set D= {x ∈ Rn

+ |
Dx ≥ d} ∩Zn

+ can be represented by an acyclic state-space network, say GD, in
which each solution corresponds to a path from the source node to the destination
node, and vice versa, see Nemhauser and Wolsey (1988, p. 312) and Vanderbeck
(2000, p. 117). This might be interesting since an ISP formulation based on the
network GD possesses the integrality property. It should be noted that the number
of nodes grows exponentially with the row size of D and linearly with the L1-norm
of the right-hand side d.
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While the alternative to solve over D by branch-and-bound is always there, we
consider here the possible advantage of using the network GD which has the in-
tegrality property. A full description of GD means that every path it contains is
feasible so the graph size may rapidly become a burden to treat. If enumeration is
tractable, we can imagine that this may indeed be a decent alternative. Otherwise,
dynamic programming (Bellman, 1957) may also be a worthy option. A major factor
for this potential superiority is that dynamic programming typically does not need
to explore the entire state-space. In fact, one often embeds some portions of that
state-space onto the arcs of a much smaller network. The algorithm then filters out
(partial) paths based on infeasibility or dominance conditions. This is illustrated in
Example 4.1, where we present an alternative formulation for the knapsack problem
which has the integrality property (Gilmore and Gomory, 1966).

Putting this in the perspective of a Dantzig-Wolfe reformulation and more specif-
ically for the formulation of the integer pricing problem, we can compare the linear
relaxations of different compact ILPs and their corresponding integer master re-
formulations. Furthermore, we now have different algorithms to solve the various
formulations of the ISPs. This is illustrated in Example 4.2 (Integrality property in
the cutting stock problem), where two compact formulations are compared. The first
has a block-diagonal structure with identical subproblems, the second has no block-
index. Given their integer master reformulation (the same IMP̈ for both ILPs) and
their subproblem formulations and properties (c0 = 1 in the first, c0 = 0 and polyhe-
dral cone in the second), the reader can easily find back the two original ILPs, rather
different, in terms of the x-variables of their respective ISPs. Early applications of
this extended ISP formulation can be found in Eppen and Martin (1987) to reformu-
late multi-item capacitated lot-sizing problems and Lavoie et al. (1988) for the crew
pairing problem at Air France.

We can also use an ILP formulation based on the flow variables of GD and,
without any reformulation, apply the column activation algorithm we have devised
in Section 3.4 (Restricted compact formulation) to solve the LP by iteratively filling
a restricted model (RLP). That is, one generates paths with the ISP based on network
GD and activates the corresponding arc-variables as well as the newly active flow
conservation constraints. As mentioned previously in Section 3.4, such a technique
has been used to solve the cutting stock problem (Valério de Carvalho, 2002).

Dynamic programming may also be able to handle non-linearity and continuous
variables. In such cases, we cannot speak of a one-to-one correspondence between
paths and solutions. The VRPTW where we consider continuous time variables fits
this bill in Chapter 5 and Section 5.4 describes the state-space network whose so-
lutions corresponds to what we find by dynamic programming. By construction,
we find earliest-visit even though any other visiting time ti feasible with respect to
time windows on a path is indeed feasible in the ISP. In general, we can summarize
that a dynamic programming algorithm starts with a trivial strategy and recursively
considers a more complex one until the problem is solved. One can describe this
recursion on a state-space network in which every path from the start node to the
destination node corresponds to a solution to the problem.
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Automatic grouping of the constraints for reformulation

Throughout the preceding two chapters, we cared about describing the grouping
of the ILP constraints into (the definition of) the sets A and D. This grouping of
constraints itself is sometimes also called a decomposition (with an overload of the
notion). So far, we took the grouping for granted. However, it is not always given or
even only known. The ILP model may not be formally stated on paper, but a specific
instance could be presented only as a file, e.g., in LP or MPS format. Variables
and constraints may be only generically numbered, without any explanation of their
meaning, just the “flat” model. Actually, this is the standard situation in which a
solver “sees” the ILP.

Figure 4.16a shows the coefficient matrix of instance ns1778858, which is a
general MILP taken from the publicly available benchmark library MIPLIB (Koch
et al., 2011). Each black dot represents a non-zero entry in the matrix, reminding us
again of how sparse practical optimization models are. The model is listed as “un-
known application,” it is anonymously donated to the collection. In Figure 4.16b, we
see “the same” matrix, only with rows and columns re-arranged. Here, very clearly,
a structure becomes apparent, a small border and 16 blocks, shaded to support vis-
ibility. With this information, and of course, cost coefficients and right-hand sides
re-arranged accordingly, we can apply a Dantzig-Wolfe reformulation to this model.
Note that re-ordering the matrix does not change the model, nor its feasible region.

(a) Original matrix (b) Permuted matrix

Fig. 4.16: Permuting the constraint matrix of MIPLIB instance ns1778858.

Permuting the rows and columns of a matrix such that a “model structure be-
comes visible” is called structure detection. It is not as well-defined as it sounds.
There are different forms into which one and the same matrix could be permuted,
see Figures 4.10 and 4.17. Even when the form is given, the number of blocks is
not “clear,” as different constraints can go to the border or to the blocks, see Fig-
ure 4.19. Usually, we “don’t know” what the modeler had in mind. Even though this
knowledge can be helpful, the following shows that we can also do without it.
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(a) Original matrix (b) Single-bordered form (c) Double-bordered form

Fig. 4.17: Coefficient matrix of b2c1s1 permuted into two different forms.

Graph-based methods

It is natural to represent a matrix A = [ai j]i∈{1,...,m}, j∈{1,...,n} as a bipartite graph.
We introduce a set of nodes I = {r1, . . . ,rm}, one for each row, and a set of nodes
J = {c1, . . . ,cn}, one for each column. There is an edge between two nodes ri ∈ I
and c j ∈ J for every non-zero element ai j ̸= 0 of A, see Figure 4.18. Let us restrict
attention to single-bordered block-diagonal forms which are the most relevant for a
Dantzig-Wolfe reformulation. It is important to see that for a given such form, if we
would remove all nodes from I that correspond to the border, we would be left with
a number of connected components, each of which represents one block.



c1 c2 c3 c4 c5 c6

r1 1 1 1
r2 1 1 1 1
r3 1
r4 1 1
r5 1 1
r6 1 1 1


(a) A matrix . . .

r1 r2 r3 r4 r5 r6

c1 c2 c3 c4 c5 c6

(b) . . . and its representation

Fig. 4.18: Bipartite graph representation of a matrix.

This gives the following idea, based on graph partitioning: First decide about a
number |K| of blocks we want to see. Then delete as few nodes from I as possible
(and the incident edges) such that the remaining graph partitions into |K| connected
components. This effectively minimizes the number of constraints in A, the border.
In this basic vertex |K|-separator problem, nothing is said about whether all nodes
are equally important or how large the resulting connected components are. Variants
that use node weights or impose balancing constraints exist, e.g., for preferring cer-
tain types of constraints over others (see below). Note that we could remove nodes
corresponding to either rows or columns or both, depending on whether we are look-
ing for linking constraints, linking variables, or both. An alternative representation
of a matrix is via a hypergraph, in which nodes represent the non-zero elements,
and all the entries in a row (or a column) are represented by a hyperedge. This leads
to hypergraph partitioning problems, but we do not follow up on this here. All the
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above problems are NP-hard. However, the problem of identifying a block-diagonal
matrix structure is generally interesting, e.g., in numerical linear algebra for paral-
lelizing the solution of linear equation systems. Also because of this, several good
heuristic graph partitioning implementations are publicly available.

(a) Original matrix (b) Permuted to 5 blocks (c) Permuted to 8 blocks

Fig. 4.19: Permuting the matrix of 10teams into different numbers of blocks.

A drawback of the above is that one has to specify the number |K| of blocks up-
front. When one assumes that blocks are all identical, one can come up with good
guesses based on the content of constraints (Wang and Ralphs, 2013), but this is not
satisfactory in general. Khaniyev et al. (2018) suggest a graph clustering approach
that borrows ideas from community detection. Intuitively speaking, a graph has a
community structure when there are subgraphs, the communities, in which the graph
density is (much) higher than in between the communities. In the graph clustering
language, there should be many intra-cluster edges and few inter-cluster edges. A
classical measure to quantify the quality of a clustering is modularity. In order to
remove edges that run between clusters altogether, one can eliminate nodes (from I,
and the incident edges). The removed nodes correspond to rows in the border, the
clusters correspond to blocks. Since the clustering is driven by maximizing, e.g., the
modularity, the number of resulting blocks is part of the output.

Let us mention that using the graph representation, one can even identify identi-
cal blocks: whenever the two subgraphs representing two blocks are isomorphic, the
blocks are identical (given that the respective cost coefficients and right-hand sides
coincide as well). Also other forms can be detected with graph based methods, e.g.,
staircase forms, see Figure 4.20.

Methods based on constraint classes

When you compare how we extracted a structure from a coefficient matrix to the
way the structure gets into the model, there is a mismatch. It is unlikely that a hu-
man modeler would think of incidences between variables and constraints when
creating a model. Instead, they express the semantic elements of a problem, casted
in linear constraints. Typically, these constraints come in groups of similar mean-
ing, e.g., one group for assigning items, one for capacities, one for implications,
etc. Modelers give names to constraints which belong together. Look at any model
in this book and you see these groups. The constraints in one semantic group are
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(a) Original matrix (b) Permuted matrix

Fig. 4.20: Coefficient matrix of ic97 potential permuted to a staircase form.

typically generated from the elements in some index set, but more importantly, all
constraints in a group are of the same type, i.e., of knapsack type, set packing type,
variable upper bound type, etc. We refer to the MIPLIB (Gleixner et al., 2021) for a
description of the various types of linear constraints, of which there are not so many.
Such a classification into types happens in standard MILP solvers usually already at
the preprocessing stage. However, we can classify constraints not only according to
their type, but also based on other attributes like the number (and type) of variables
they contain, coefficients and right-hand sides, their names (if given), etc. Note that
one could similarly classify the variables.

Assume that we have identified a number of classes I1, . . . , Iℓ ⊆ I of constraints
which together partition I, that is, every constraint is part of exactly one class. In
the models in this book, then two cases occur for a class: either, all constraints in
the class go to the master problem, that is, are included in A. Or, the constraints
(perfectly) distribute over the blocks in D1, . . . ,D|K|. You may ask yourself, well,
how else? But again, we “see” this because we have the model on paper. If we
wouldn’t have this information, in particular no information about an index set K,
we needed to extract it. Based on the previous observations, here is one way how.

Since we do not know which of the classes are entirely assigned to A, we may try
every subset of {I1, . . . , Iℓ}, of which there are 2ℓ many. When ℓ is not too large, and
in this book we often have a rather small one-digit number of ℓ constraint classes,
this number is manageable. We tentatively assign a subset IA ⊆ {I1, . . . , Iℓ} of en-
tire constraint classes “to the border” A and check whether the constraints in the
remaining classes ID = {I1, . . . , Iℓ} \ IA can be distributed to more than one block.
We already know how to accomplish the latter. We consider the bipartite graph rep-
resenting the submatrix corresponding to the constraints (and variables) in ID and
check its number of connected components. This is an easy problem and can be done
via a quick graph search. The components reveal the blocks and their number, poten-
tially only one. The entire procedure gives us many candidates for a decomposition
and we have to choose one. This is discussed below. For the record: The structure
in Figure 4.16 was detected using the method just described, and we produced the
t-shirt logo in Figure 4.11 with a hypergraph partitioning algorithm.
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Let us remark that it usually does not make sense to test every subset of constraint
classes. Maybe one is looking for particular decompositions, or problem knowledge
is available, or theoretical considerations from below apply, and the number of can-
didates can be reduced. One can also classify variables. And a better grouping of
constraints could be done by taking the different classes of variables into account as
well. Such an approach is taken in a different context by Salvagnin (2016), applying
a partition refinement algorithm. Its potential for structure detection for reformula-
tions is not fully exploited to date.

Finally note that things would be much easier if we had access to the index sets
from which variables and constraints are generated. When a model is formulated us-
ing, e.g., an algebraic modeling language, this information is available. Annotations
in models could help, too. It is the ever recurring theme: the more information you
have, the more you can exploit.

Evaluating a decomposition

Looking for different matrix forms, asking for different numbers of blocks, selecting
different groups of constraints to go into the master problem, one can easily produce
hundreds or thousands of candidate decompositions for a given ILP. Not all of them
are suited for a successful Dantzig-Wolfe reformulation, but how would we know?
What does it even mean, “suited,” because in theory they all “work.” We are in need
of a quality measure for decompositions, a score.

The first that comes to mind is the dual bound. While for linear programs, literally
every decomposition leads to an equivalent reformulation, c.f. z⋆MP = z⋆LP in (3.21),
the situation is different for integer programs. From the proof of Proposition 4.1, in
particular (4.8), it is clear that the definition of D (or D1, . . . ,D|K| for that matter)
can make a difference in terms of the dual bound obtained from the reformulation.
However, the best dual bound is not a reasonable goal because we can always obtain
it by reformulating all constraints. We also need to take the computational resources
into account that have to be invested to compute that bound.

Estimating the runtime it needs to solve a given ILP is a difficult undertaking,
however, and this is no easier for an IMP. From experience and also from experi-
ments, some proxy measures were suggested that are considered beneficial for the
performance of the column generation algorithm. These include the following.

• Properties of the border.
Intuitively, fewer constraints in the border (that is, in the definition of A) may
speed-up the re-optimization of the RMP and may give a better dual bound be-
cause more constraints go into the definition of the blocks. Bergner et al. (2015)
give a penalty linear in the size of the border. Khaniyev et al. (2018) experiment
with exponential decay: The penalty for adding ever more constraints to the bor-
der is diminishing with a larger border size.
Observe that for some classical models, the decomposition from the literature uses
relatively large borders, see e.g., Figure 4.21.
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• Properties of the blocks.
For computational reasons, one rather wants to have a larger number of smaller
blocks instead of a few large ones. Whether or not having many blocks counteracts
the quality of the dual bound is not clear. Intuitively, a large integrality gap in
the blocks may hint at a good dual bound obtained from the reformulation, but
computing the gap is expensive and cannot be directly used as an objective in, e.g.,
the graph-based methods. At the same time, a large integrality gap is detrimental
to computation time for the blocks.
Khaniyev et al. (2018) aim for as many blocks as possible, a balanced size is
preferred, and ideally, blocks should be identical. Their main evaluation measure
for the quality of the blocks is modularity.

(a) Original matrix (b) “Permuted” matrix

Fig. 4.21: A textbook example (bin packing) in which a large border is “correct.”

Combining these goals, small border and many blocks, gives visually appealing
decompositions (Bergner et al., 2015), like in Figure 4.16. But don’t be deluded by
the beauty. It is certainly fascinating that we can discover (or rather “enforce”) a pre-
viously unknown structure in general MILPs. However, only because we have nice
pictures, it does not mean that there is a structure in the sense of this book: the sub-
problems may just also be general MILPs, only smaller; nothing “special” to exploit.
We call these models “unstructured,” and the graph-based methods may be a good
way to deal with them. Yet, this book is almost exclusively about “structured” mod-
els, those which contain subproblems for which we have a good oiled machinery
ready to go. In this case, the methods based on constraint (and variable) classes may
work best. We may look specifically for model structure like knapsacks or networks
that should go into the subproblem(s). On the other hand, e.g., semi-assignment con-
straints should go into the border (and if possible, nothing else), because this leads
to set partitioning master problems for which we have, e.g., special branching rules
at hand (see the Ryan-Foster rule, p. 474). In fact, Proposition 4.5 says that, in terms
of the dual bound, it never pays off to reformulate semi-assignment constraints. We
may want to put constraints in the blocks that destroy the integrality property in the
pricing, see Section 4.3. Identical blocks are a winner because we can perform an
aggregation (p. 203).



236 4 Dantzig-Wolfe Decomposition for Integer Linear Programming

Some remarks at the close: We cannot speak of “the” decomposition of an ILP—
there are many. Seemingly small changes to a decomposition may lead to very dif-
ferent behavior in the subsequent column generation process, both in terms of dual
bound quality and running time (Bergner et al., 2015). Bastubbe et al. (2018) have
computational results that suggest that randomly grouping constraints does not yield
a good quality in terms of dual bound. And almost unavoidably these days, one can
learn a good structure (Basso and Ceselli, 2023) and whether (or not) to use it in a
Dantzig-Wolfe reformulation (Kruber et al., 2017).

Fig. 4.22: Fabio Furini and Alberto Ceselli (Montréal, Canada, 2023-05-17).

Most structure detection concepts described here (and others) are implemented
in the generic branch-and-price solver GCG (Gamrath and Lübbecke, 2010) which
is based on SCIP (scipopt.org) and available from the same web site.

We would like to emphasize that the thoughts in this subsection significantly
expand the applicability of the methods presented in this book. Once the grouping
of (variables and) constraints is decided, all reformulations, column generation, later
cutting and branching, all “tricks,” can be generically implemented. This does not
imply that tailoring the approach to a particular application would not help, quite
to the contrary. However, this reminds us that, in principle, branch-and-price is a
general method to solve general MILPs. Whether it is successful or not hinges, in
particular, on the question whether we find a good decomposition or not.

4.7 Examples

This section presents a selection of examples. In Example 4.1, we formulate the
knapsack problem in two different ways, the first having the integrality property
whereas the second not. Example 4.2 examines two different models of the cutting
stock problem. The first features an ISP formulation that does not possess the in-
tegrality property whereas the second one does. Both are derived from alternative

https://scipopt.org
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formulations of the knapsack problem. Example 4.3 presents nine reformulations for
the time constrained shortest path problem in which an upper bound on the arrival
time is imposed on every node in Example 4.4. This is followed by Example 4.5
where we study the generalized assignment problem and then the multi-commodity
maximum flow problem in Example 4.6. In Examples 4.7 to 4.9, we exploit prop-
erties of the knapsack problem formulations for three applications. Finally, Exam-
ple 4.10 revisits the edge coloring problem with two compact formulations.

Example 4.1 Integrality property in the knapsack problem

� This example underscores that the integrality property is associated
with the formulation or model used, not with the problem statement.

We analyze the knapsack problem starting with the binary version. To appreciate
how the integrality property plays out, we use two integer linear programming for-
mulations one of which being based on network flows.

Generically, we are given a set of m items and a knapsack of capacity W . Let ui
be the utility coefficient for item i and let wi be its size. We also assume that the
sizes and the knapsack capacity are integer numbers. We use a small instance whose
data is listed in Table 4.5.

item i 1 2 3 4

utility ui 45 18 20 8
size wi 5 3 2 1

capacity W 7

Table 4.5: Knapsack capacity and potential items to pack.

Binary knapsack problem

The binary knapsack problem (BKP) consists of selecting a subset of items to put
in the knapsack, i.e., ∑

m
i=1 wi >W , so as to maximize the total utility of the selected

items.

Binary linear programming formulation. For i ∈ {1, . . . ,m}, let the binary vari-
able xi take value 1 if item i is selected, 0 otherwise:

z⋆ILP = max
m

∑
i=1

uixi

s.t.
m

∑
i=1

wixi ≤W

xi ∈ {0, 1} ∀i ∈ {1, . . . ,m}.

(4.103)
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This integer linear program appears as the pricing problem in the One-dimensional
cutting stock problem (Example 2.1). The formulation (4.103) for the BKP does
not possess the integrality property because z⋆LP > z⋆ILP for various instances, see
Exercise 4.11.

Network arc-flow formulation. The BKP can also be formulated as a longest path
problem on an acyclic network whose node set depends on the capacity W of the
knapsack. In this construction, any arc-flow solution inherently fulfills the capacity
restriction which therefore only leaves us to interpret what we take in the knapsack.
Figure 4.23 presents such a network for the data in Table 4.5.
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Fig. 4.23: Network for a binary knapsack problem (capacity of 7 and 4 items).

In general, such an acyclic network can be drawn with several columns of nodes.
It has one column corresponding to each item as well as two extra columns for a
source node o and a sink node d. The column of item i has W + 1 level-nodes:
i0, i1, . . . , iW , where node iℓ indicates that the selected items amongst 1,2, . . . , i have
consumed ℓ≤W units of the available capacity. For each item i ∈ {1, . . . ,m−1}, a
node iℓ has at most two outgoing arcs:

• (iℓ,(i+1)ℓ) with utility ciℓ,(i+1)ℓ = 0 and item (i+1) is not selected;

• (iℓ,(i+1)ℓ+wi+1) with utility ciℓ,(i+1)ℓ+wi+1 = ui+1 and item (i+1) is selected.

For the last item i = m, we connect all the level-nodes mℓ to the sink node d with
arcs of zero-utility. The source node o has exactly two incident arcs, (o,10) of zero-
utility and (o,1w1) of utility u1. The network is reduced by removing all the nodes
(and their incident arcs) without predecessors. Let it be denoted by G = (V,A) with
nodes in V = N ∪{o,d}, where the set N of appropriate level-nodes are connected
by arcs in A. The longest path model of the BKP reads as
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z⋆ILP = max ∑
(i, j)∈A

ci jxi j

s.t. ∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji =

 1 i = o
0 ∀i ∈ N
−1 i = d

xi j ∈ {0,1} ∀(i, j) ∈ A.

(4.104)

Formulation (4.104) possesses the integrality property because z⋆LP = z⋆ILP for any
cost coefficients. The binary value xi, used to determine if item i is selected or not,
is computed afterwards and is expressed in terms of the arc-flow variables:

xi = ∑
ℓ∈{1,...,W}:((i−1)ℓ−wi ,iℓ)∈A

x(i−1)ℓ−wi ,iℓ , ∀i ∈ {1, . . . ,m}, (4.105)

that is, xi = 1 if one of the diagonal arcs from the preceding item (i−1) is used in
the od-path.

Knapsack problem

The above can be generalized to the knapsack problem (KP) in which we can place
multiple copies of an item in the knapsack. In the following formulation, the integer
variable xi represents the number of times item i is selected:

z⋆ILP = max
m

∑
i=1

uixi

s.t.
m

∑
i=1

wixi ≤W

xi ∈ Z+ ∀i ∈ {1, . . . ,m}.

(4.106)

The formulation (4.106) for the KP does not possess the integrality property, a
special case being the binary version in (4.103). An alternative linear programming
formulation is to use a longest path problem. There are several ways to construct
more or less dense networks. Figure 4.24 depicts one such way using the data from
Table 4.5. Observe that any od-path still provides a capacity feasible knapsack so-
lution.

Given this relatively low-density acyclic network G = (V,A), where V = N ∪
{o,d} with the appropriate sets of level-nodes N and arc set A. The longest path
formulation of the knapsack problem reads as
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Fig. 4.24: Low-density network for a knapsack problem (capacity of 7 and 4 items).

z⋆ILP = max ∑
(i, j)∈A

ci jxi j

s.t. ∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji =

 1 i = o
0 ∀i ∈ N
−1 i = d

xi j ∈ {0,1} ∀(i, j) ∈ A.

(4.107)

This formulation possesses the integrality property because z⋆LP = z⋆ILP, for any set
of cost coefficients. As before, the number of times item i is selected in a pattern is
computed a posteriori, in this case as

xi = ∑
ℓ:(iℓ,iℓ+wi )∈A

xiℓ,iℓ+wi , ∀i ∈ {1, . . . ,m}. (4.108)

There is more to say about these two formulations. Because the first formula-
tion (4.106) does not possess the integrality property while the second (4.107) does,
we may think that, in a Dantzig-Wolfe reformulation, the lower bound z⋆MP on z⋆IMP
achieved by formulating the ISP with the first will be better than the second one.
This is not true because both ISPs are equivalent integer formulations.

Note 4.19 (High-density network.) Contrary to the BKP and Figure 4.23, we can
take advantage of the fact that we are allowed to pack the same item several times
by discarding the packing ordering implied in Figure 4.24. We can thus define the
KP by a longest path problem on a much denser multi-arc acyclic network. We see
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this in Figure 4.25 where we have only one dimension for the knapsack capacity.
For each item, we use arcs starting at each capacity consumption which remains
feasible. For example, item 2 takes w2 = 3 units and grants utility u2 = 18 until
level 4 inclusively. Trivial dominance can then be applied to significantly reduce the
number of arcs. This gives the type of networks used by Valério de Carvalho (1999).
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0

0 0 0 0 0 0 0

0

8 8 8 8 8 8 8

20 20 20 20 20 20

18 18 18 18 18

45 45 45

Fig. 4.25: High-density network for a knapsack problem (capacity of 7 and 4 items).

Fig. 4.26: José Manuel Valério de Carvalho (Montréal, Canada, 2023-05-18).
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Example 4.2 Integrality property in the cutting stock problem

� We here compare the reformulations of two compact formulations for
the cutting stock problem (CSP). In the first, the ISP formulation does
not possess the integrality property while it does in the second. They
both nevertheless provide the same lower bound on z⋆ILP.

We establish in Proposition 4.1 that we hope to exploit integrality in the pricing
problem by reaching a better bound than z⋆LP. We then establish in Proposition 4.7
that an ISP whose formulation has the integrality property only reaches z⋆MP = z⋆LP.
With this in mind, we consider the CSP in which the ISP is a knapsack problem.
With our new found understanding from Example 4.1 of how the integrality property
plays out in the latter, we consider two different compact formulations for the CSP.
We then perform a Dantzig-Wolfe reformulation on both of them and realize that
they reach the same bound. Let us make sense of what appears contradictory. To
this end, we recall the formulation seen in Example 2.1:

z⋆IMP = min ∑
x∈X

λx

s.t. ∑
x∈X

aixλx ≥ bi ∀i ∈ {1, . . . ,m}

λx ∈ Z+ ∀x ∈ X,

(4.109)

where X = {x ∈ Zm
+ | ∑m

i=1 wi xi ≤W} denotes the set of cutting patterns, λx de-
termines how many times pattern x is used in a solution, and parameter aix ∈ Z+

denotes how many times item i is obtained from cutting pattern x.

Weak compact formulation

Let b = [bi]i=1,...,m and consider now an alternative formulation for the CSP which
uses indexed commodities in set K, one per roll. For k ∈ K, define xk

0 as a binary
variable taking value 1 if roll k is used and 0 otherwise, let xk = [xk

i ]i=1,...,m, where
xk

i denotes the number of times item i is cut in roll k. This formulation, denoted
ILPK , reads as

z⋆ILPK
= min ∑

k∈K
xk

0

s.t. ∑
k∈K

xk ≥ b

∑
i∈{1,...,m}

wixk
i ≤Wxk

0 ∀k ∈ K

xk
0 ∈ {0,1} ∀k ∈ K

xk
i ∈ Z+ ∀k ∈ K, i ∈ {1, . . . ,m}.

(4.110)
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We say that this formulation is weak because its linear relaxation gives very poor
information on integer optimality. That is, the optimal number of rolls utilized is
trivially equal to the total item demand divided by the width of a roll, see Exer-
cise 3.16:

z⋆LPK
=

1
W ∑

i∈{1,...,m}
wibi. (4.111)

This lower bound on the number of rolls can be improved in a trivial way to ⌈z⋆LPK
⌉

but also by applying on the ILPK a Dantzig-Wolfe reformulation with an ISP for-
mulation that does not possess the integrality property.

We start by observing that the ILPK has a block-diagonal structure isomorphic in
K which we rewrite as

z⋆ILPK
= min ∑

k∈K
xk

0

s.t. ∑
k∈K

xk ≥ b[
xk

0
xk

]
∈DK ∀k ∈ K,

(4.112)

where

DK =

{[
x0
x

]
∈ {0,1}×Zm

+

∣∣∣∣ m

∑
i=1

wixi ≤Wx0

}
. (4.113)

DK is a polytope such that X= {xp}p∈P is only defined by the set of extreme points.

The set P denotes the index-set of cutting patterns
[

x0p
xp

]
p∈P

, with x0p ∈ {0,1} and

xp = [xip]i=1,...,m, where xip is the number of times item i is cut in pattern p. For

k ∈ K, express
[

xk
0

xk

]
∈DK as

∑
p∈P

x0pλ
k
p

∑
p∈P

xp λ
k
p

=

[
xk

0

xk

]
, ∑

p∈P
λ

k
p = 1, λ

k
p ≥ 0, ∀p ∈ P, (4.114)

and substitute in the objective function and demand constraints of (4.112) to obtain
the IMPK :

z⋆IMPK
= min ∑

k∈K
∑
p∈P

x0pλ
k
p (4.115a)

s.t. ∑
k∈K

∑
p∈P

xpλ
k
p ≥ b (4.115b)

∑
p∈P

λ
k
p = 1 ∀k ∈ K (4.115c)

λ
k
p ≥ 0 ∀k ∈ K, p ∈ P (4.115d)
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∑
p∈P

x0pλ
k
p = xk

0 ∈ {0,1} ∀k ∈ K (4.115e)

∑
p∈P

xpλ
k
p = xk ∈ Zm

+ ∀k ∈ K. (4.115f)

To eliminate the symmetry due to the identical subproblems, we use the aggregation
procedure described on p. 202, where λp = ∑k∈K λk

p:

z⋆MPK
= min ∑

p∈P
x0pλp

s.t. ∑
p∈P

xpλp ≥ b

∑
p∈P

λp = |K|

λp ≥ 0 ∀p ∈ P .

(4.116)

The ISP based on DK (4.113) is the one already seen in (2.32) where we con-
structed the zero-cutting pattern by design, see also Not all blocks are used p. 215.
The aggregated convexity constraint is redundant because we can always use the
zero-cutting pattern (index by p = 0) at cost 0 as a slack variable. Furthermore, if at
any point we come to generate this pattern, we also know that optimality of the MP
is reached because c−πππ⊺0 ≥ 0, ∀c ≥ 0. This means that correctly representing its
cost x0p = 0 ̸= 1 is irrelevant. These comments lead to this simplified formulation
identical to the MP derived from (4.109)

z⋆MPK
= min ∑

p∈P
λp

s.t. ∑
p∈P

xpλp ≥ b

λp ≥ 0 ∀p ∈ P.

(4.117)

Finally, because DK does not possess the integrality property, one expects a po-
tentially better lower bound z⋆MPK

than the one evaluated by z⋆LPK
, i.e.,

z⋆LPK
≤ z⋆MPK

≤ z⋆ILPK
. (4.118)

Network-based compact formulation

We next examine an integer linear programming compact formulation for the CSP
with a network flow structure, denoted ILPNF . Additionally, the cutting patterns are
associated with extreme rays rather than extreme points. In this case, a Dantzig-
Wolfe reformulation also leads to the linear relaxation of the IMP (4.109), thus
obtained in a simpler way compared to the reformulation we have derived starting
with the weak compact formulation (4.110).



4.7 Examples 245

Consider the network in Figure 4.24, where V = N ∪{o,d} with the appropriate
sets of level nodes N and the arc set A used for the longest path model of the knap-
sack problem (4.107). We add arc (d,o) to A to form a circulation network denoted
Gdo = (V,Ado), where Ado = A∪{(d,o)}, see Figure 4.27.
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Fig. 4.27: Network Gdo for the formulation ILPNF (capacity of 7 and 4 items).

Let x = [xi j](i, j)∈Ado
be a vector of non-negative integer flow variables. The

network-based formulation of the CSP is composed of the objective function count-
ing the total number of patterns used on arc (d,o), the requested demands bi,
i∈{1, . . . ,m}, and the flow conservation constraints on all nodes of V . From (4.108),
we have

xi = ∑
ℓ:(iℓ,iℓ+wi )∈Ado

xiℓ,iℓ+wi (4.119)

and the compact formulation ILPNF of the integer linear program is

z⋆ILPNF
= min xdo

s.t. ∑
ℓ:(iℓ,iℓ+wi )∈Ado

xiℓ,iℓ+wi ≥ bi ∀i ∈ {1, . . . ,m}

∑
j:(i, j)∈Ado

xi j− ∑
j:( j,i)∈Ado

x ji = 0 ∀i ∈V

xi j ∈ Z+ ∀(i, j) ∈ Ado.

(4.120)
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To replicate the network-based knapsack subproblem, we use the grouping

ANF =

x ∈ Z|Ado|
+

∣∣∣∣ ∑
ℓ:(iℓ,iℓ+wi )∈Ado

xiℓ,iℓ+wi ≥ bi, ∀i ∈ {1, . . . ,m}

 (4.121a)

DNF =

{
x ∈ Z|Ado|

+

∣∣∣∣ ∑
j:(i, j)∈Ado

xi j− ∑
j:( j,i)∈Ado

x ji = 0, ∀i ∈V

}
. (4.121b)

Observe that x ∈ Z|Ado|
+ in (4.121b) defines an integer cutting pattern. Given the

dual values πi ≥ 0, i ∈ {1, . . . ,m}, for the m constraints in ANF , the formulation of
the ISP is given by

min
x∈DNF

c(x)−
m

∑
i=1

πiai(x)

c(x) = xdo

ai(x) = ∑
ℓ:(iℓ,iℓ+wi )∈A

xiℓ,iℓ+wi ∀i ∈ {1, . . . ,m}.

(4.122)

Because the formulation of the ISP (4.122) is a circulation problem, it possesses the
integrality property. A Dantzig-Wolfe reformulation IMPNF of the ILPNF (4.120)
is constructed as follows. Any x ∈DNF can be expressed as a convex combination
of the unique extreme point x0 = 0 and a conic combination of the extreme rays xr,
r∈R. Therefore, the convexity constraint λ0 = 1 is discarded from the reformulation
of the IMPNF and as λ0 does not contribute to the objective function nor the demand
constraints, we have

∑
r∈R

xrλr = x, λr ≥ 0,∀r ∈ R. (4.123)

The representation of an extreme ray xr, indeed a cutting pattern, can be done with a
single unit of flow in the circulation network Gdo, yielding by the flow conservation
constraints, cr = xdo,r = 1 for all r ∈ R. The substitution results in

z⋆IMPNF
= min ∑

r∈R
λr (4.124a)

s.t. ∑
r∈R

airλr ≥ bi ∀i ∈ {1, . . . ,m} (4.124b)

λr ≥ 0 ∀r ∈ R (4.124c)

∑
r∈R

xi j,rλr = xi j ∈ Z+ ∀(i, j) ∈ Ado, (4.124d)

where
air = ∑

ℓ:(iℓ,iℓ+wi )∈A

xiℓ,iℓ+wi ,r (4.125)
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encodes the number of times item i is obtained in pattern r. Taking the linear relax-
ation while relaxing the last constraints involving both the x- and λ -variables that
are no longer needed leads to the linear relaxation of the IMP (4.109), where the
zero-cutting pattern is explicitly excluded, i.e., R≡ P\{0}.

z⋆MPNF
= min ∑

r∈R
λr

s.t. ∑
r∈R

airλr ≥ bi ∀i ∈ {1, . . . ,m}

λr ≥ 0 ∀r ∈ R.

(4.126)

Comparison of the four linear relaxations

The linear programs MPK (4.117) and MPNF (4.126) being exactly the same, we
arrive at the inevitable conclusion that they reach the same lower bound on the
optimal number of cutting patterns, i.e.,

z⋆LPK
≤ z⋆MPK

= z⋆MPNF
= z⋆LPNF

, (4.127)

where the last equality comes from the integrality property in the formulation of
the ISP (4.122) defined on DNF while the inequality comes from the general result
of Proposition 4.1 for a Dantzig-Wolfe reformulation. In fact, one typically expects
z⋆LPK

≪ z⋆MPK
as per the weakness of the information provided by the linear relax-

ation. For example, consider an instance with an integer demand b for a single item
of width w = W

2 +ε such that no two items can be cut in a roll. The optimal number
of rolls is z⋆ILPK

= b while we have from (4.111)

z⋆LPK
= (

W
2
+ ε)

b
W

=
b
2
+

εb
W
≈ b

2
=

z⋆ILPK

2
(4.128)

for a small ε > 0. That is an integrality gap of 50 % in strong contrast with that of
zero for the linear relaxation of the extended formulations (IMPK and IMPNF ) which
is even integer optimal. The cutting stock problem is one of the few for which the
following definition is applicable.

Definition 4.1. (Baum, 1977; Baum and Trotter, 1982) Given A∈Zm×n
+ and b∈Zm

+,
an integer linear program of the form min{1⊺x |Ax≥ b, x ∈ Zn

+} is said to have the
integer round-up property if the integrality gap is smaller than one, i.e., z⋆ILP = ⌈z⋆LP⌉.

Although the integer round-up property is often observed for the presented ex-
tended formulations of this problem, it is not always the case. However, Scheithauer
and Terno (1995) conjecture that the modified integer round-up property, in which
the integrality gap difference is smaller than two (z⋆ILP ≤ ⌈z⋆LP⌉+ 1), always holds.
Rietz et al. (2002) present various families of instances and construct an instance
with the largest known gap of 7/6. Figure 4.28 summarizes these results.
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•0

•z⋆LPK

•z⋆MPK • z⋆MPNF
= z⋆LPNF

•z⋆IMPK
= z⋆ILPK • z⋆IMPNF

= z⋆ILPNF

Fig. 4.28: Lower bounds on the minimum number of rolls.

Reverse Dantzig-Wolfe

Performing a Dantzig-Wolfe reformulation on the ILPK (4.112) with |K| identical
blocks leads us back to the IMP (4.109). This should be no surprise considering
we can also reverse the latter using Proposition 4.15. The alternative network-based
compact formulation ILPNF (4.120) which also yields the same IMP (4.109) allows
us to recall Proposition 4.16.

Furthermore, if we are given the classical formulation IMP and the domain of the
pricing problem is formulated as an od-path on G (rather than a circulation on Gdo),
that is, the grouping in (4.121) is defined on arc set A as

A=

x ∈ Z|A|+

∣∣∣∣ ∑
ℓ:(iℓ,iℓ+wi )∈A

xiℓ,iℓ+wi ≥ bi, ∀i ∈ {1, . . . ,m}

 (4.129a)

D=

x ∈ Z|A|+

∣∣∣∣ ∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji =

 1 for i = o
0 ∀i ∈ N
−1 for i = d

 , (4.129b)

then, Proposition 4.17 can be used because

• the ISP formulation possesses the integrality property and
• the zero-vector is not a solution to the covering constraints (i.e., 0 /∈A).

Finally, observe that variable x0 is the flow variable xdo, that is,

D(xdo) =


[

xdo
x

]
∈ Zn+1

+

∣∣∣∣ ∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji =

 xdo for i = o
0 ∀i ∈ N

−xdo for i = d

 (4.130)

and any upper bounding constraint such as x ≤ 1xdo is absent from (4.130) as
xdo = 0⇒ x = 0. Indeed, we once again derive back the network-based compact
formulation ILPNF (4.120).
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Example 4.3 TCSPP: nine reformulations

� Given the original ILP, we examine different subproblems that give
various lower bounds ⌈z⋆MP⌉ on z⋆ILP.

Let us observe the impact of various groupings for A and D on the optimal ob-
jective value of the MP. To achieve this, we base ourselves on the TCSPP seen in
Example 3.2. Recall the formulation of the ILP as

z⋆ILP = min ∑
(i, j)∈A

ci jxi j (4.131a)

s.t. ∑
j:(1, j)∈A

x1 j = 1 [σ1] (4.131b)

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 [σi] ∀i ∈ {2, . . . ,5} (4.131c)

− ∑
i:(i,6)∈A

xi6 =−1 [σ6] (4.131d)

∑
(i, j)∈A

ti jxi j ≤ 14 [σ7] (4.131e)

xi j ∈ {0,1} ∀(i, j) ∈ A. (4.131f)
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Fig. 4.29: Network G = (N,A) with (ci j, ti j) values, ∀(i, j) ∈ A.

We already know that our initial choice of D in Example 3.2, here denoted D1,
expresses a path structure from node 1 to 6 on the network G of Figure 4.29:

A1 = {x ∈ {0,1}|A| | (4.131e)} (4.132a)

D1 = {x ∈ {0,1}|A| | (4.131b)–(4.131d)}. (4.132b)

The corresponding lower bound on z⋆ILP = 13 only reaches z⋆MP = z⋆LP = 7 because
the associated ISP formulation is the shortest path network flow formulation (3.84)
which possesses the integrality property.
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We propose the following eight alternatives for D, where we use different sub-
sets of constraints and sometimes combine them with constraints implied from the
original ILP (Exercise 4.13 asks for the corresponding sets for A):

D2 =D1∩{3≤∑
(i, j)∈A

xi j ≤ 5} D3 = {x∈{0,1}|A| | ∑
(i, j)∈A

ti jxi j ≤ 14}

D4 =D3∩{3≤∑
(i, j)∈A

xi j ≤ 5} D5 =D3∩{
3

∑
j=2

x1 j =
5

∑
i=4

xi6 = 1}

D6 =D4∩D5 D7 =D6∩{∑
i:(i, j)∈A

xi j ≤ 1,∀ j ∈ {2, . . . ,5}}

D8 =D6∩{∑
j:(i, j)∈A

xi j ≤ 1,∀i ∈ {2, . . . ,5}} D9 = {x∈{0,1}|A| | (4.131b)–(4.131e)}.

• D2 is a restriction of D1 obtained by forcing the total number of selected arcs
to be between three and five.

• D3 is defined by the duration constraint over binary variables.
• D4 is a restriction of D3 obtained by again limiting the number of selected arcs.
• D5 is another restriction of D3 this time obtained by imposing the selection of

one arc from the source node and one to the sink node.
• D6 combines the two previous conditions with the intersection of D4 and D5.
• D7 and D8 are two different restrictions of D6: for D7, an additional constraint

for every node 2 to 5 enforces a limit of one unit on its inflows; D8 is defined
similarly using the outflows.

• D9 corresponds to the extreme case where all constraints appear in the ISP.

Table 4.6 presents the size of the MP in terms of the number of rows times the
number of columns, the optimal objective value z⋆MP, and its rounded up value for
these nine variations of D (see also Figure 4.30).

D MP size z⋆MP ⌈z⋆MP⌉

D1 2×9 7 7
D2 2×9 7 7

D3 7×278 9 9
D4 7×217 9 9

D5 5×55 9 9
D6 5×47 9 9
D7 5×32 13 13
D8 5×31 11.25 12

D9 1×6 13 13

Table 4.6: Lower bounds z⋆MP and ⌈z⋆MP⌉ on z⋆ILP for nine variations of D.
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For D1, we have already seen that the MP (3.81) comprises 2 rows and 9 path-
variables (or 9 extreme points satisfying the path-flow constraints) with z⋆MP = 7.
The set D2 has identical measures as its sibling D1. This could have been predicted
since the added constraints 3 ≤ ∑(i, j)∈A xi j ≤ 5 are redundant with respect to the
network structure, that is, all 9 paths are in this range.

For D3, the ISP uses a formulation for solving a binary knapsack problem that
does not possess the integrality property (see p. 237): the lower bound increases
from 7 to 9. There are 278 extreme points (again, 10-dimensional vectors): solv-
ing the 7×278 MP (one convexity constraint and six flow conservation equations)
results in an optimal fractional solution with an objective value z⋆MP = 9. For D4,
the number of selected arcs indeed has an influence on the feasible set. Despite the
reduction of the feasible space, the lower bound unfortunately remains at 9.

For the sets D5 and D6, an optimal fractional solution is found for both MPs,
also with z⋆MP = 9. The sets D7 and D8 respectively yield lower bounds of 13 and
11.25 which is integer optimal for the former and rounds up to one unit below the
optimal objective value for the latter.

0

2

4

6

8

10

12

14

z⋆MP

D1 D2 D3 D4 D5 D6 D7 D8 D9

z⋆ILP = 13

z⋆LP = 7

Fig. 4.30: Lower bound z⋆MP on z⋆ILP for various definitions of the set D.

It is a good place to remind the reader of what we discussed on grouping the
constraints (p. 115). The constraints 3≤ ∑(i, j)∈A xi j ≤ 5 are redundant with respect
to the original ILP. Adding them in the set D2 has no influence yet it does reduce
the number of extreme points in D4. Unfortunately, this does not translate in an
improved bound. In contrast, the inflow bound constraint in D7 allows us to reach
the optimal integer bound using only five constraints in the MP, that is, (4.131c)
plus the convexity constraint.

Finally, what if we restrict solutions in D to satisfy 4 ≤ ∑(i, j)∈A xi j ≤ 4. In-
tuitively, this amounts to discarding short paths (arc-length 3) that are likely too
expensive (as expressways with tolls) to be optimal and long paths (arc-length 5)
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that are likely unable to meet the time restriction. Whether such a guess compro-
mises the IMP or not is of course hard to predict in general which reminds us of the
heuristic pricing section seen in column generation.

As a case in point, observe that we are lucky in discarding path 1-2-4-6 of length
3, cost 3, and time 18 since it is being discarded for the “wrong” reason. In contrast,
we are unlucky with path 1-2-5-6 of length 3, cost 5, and time 15 because it is
needed to reach optimality for the MP. However, since the integer optimal path is
correctly kept, we nonetheless terminate with a correct solution. To sum up, any
rule of thumb should efficiently filter out objects and, if it is never turned off, must
empirically observe no false negatives with respect to integrality. Table 4.7 classifies
the nine paths according to this rule from the point of view of the MP and IMP. We
have four indicators ‘N’, ‘P’, ‘FN’, and ‘FP’ which respectively express that a path
is correctly discarded, correctly kept, mistakenly discarded, and mistakenly kept.

path length cost time MP IMP

1246 3 3 18 N N
1256 3 5 15 FN N

12456 4 14 14 FP FP
13246 4 13 13 FP P
13256 4 15 10 P FP

132456 5 24 9 N N
1346 3 16 17 N N

13456 4 27 13 FP FP
1356 3 24 8 N N

Table 4.7: False negatives and false positives from a rule of thumb.

Example 4.4 TCSPP: time bounding

� If you don’t manage the important constraints in the ISP, here the time
component, the reformulation is useless.

Consider again the TCSPP from Example 3.2. We already have an upper bound of
14 units of time on node 6 within an optimal path from the origin to the destination.
We now also impose an upper bound on all other nodes. These bounds, denoted ui,
i ∈ {1, . . . ,6}, are respectively 0, 9, 3, 5, 12, and 14 (see Figure 4.31).

Note 4.20 exposes simple ideas to filter out obvious portions of the input that can-
not be part of an optimal integer solution. For pedagogical reasons, we later assume
not to perform such a preprocessing step and examine some compact formulations
and reformulations.

Note 4.20 (Preprocessing.)Ï Looking at arc (1,2), we see that the travel time (t12 =
10) is larger than the upper bound at the arrival node (u2 = 9): this arc cannot be
used in any feasible integer solution. Indeed, every arc (i, j) for which ti j > u j can
be discarded, so is the case for (3,4). We can also eliminate every node for which
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Fig. 4.31: Network with (ci j, ti j) values, ∀(i, j) ∈ A, and upper bounds [ui], ∀i ∈ N.

the earliest arrival time exceeds its upper bound: node 4 is discarded. This can be
seen by computing the earliest arrival times by solving a shortest time path tree from
node 1. After this preprocessing is performed, we get the simplified network seen in
Figure 4.32 which contains only two paths, the optimal one being 13256 with a cost
of 15.
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Fig. 4.32: Remaining network after preprocessing.

A non-linear program NLP has been proposed by Desrosiers et al. (1983). It
involves the usual arc-flow variables x= [xi j](i, j)∈A and the time variables t= [ti]i∈N :

z⋆NLP = min ∑
(i, j)∈A

ci jxi j (4.133a)

s.t. ∑
j:(1, j)∈A

x1 j = 1 (4.133b)

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 ∀i ∈ {2, . . . ,5} (4.133c)

∑
i:(i,6)∈A

xi6 = 1 (4.133d)

xi j ∈ {0,1} ∀(i, j) ∈ A (4.133e)
t1 = 0 (4.133f)
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0≤ ti ≤ ui( ∑
j:( j,i)∈A

x ji) ∀i ∈ {2, . . . ,6} (4.133g)

xi j(ti + ti j− t j)≤ 0 ∀(i, j) ∈ A. (4.133h)

A formulation of the shortest path problem appears in (4.133a)–(4.133e), where the
flow variables are requested binary due to the additional constraints in the model.
The time variables computing the arrival time at the nodes follow in (4.133f)–
(4.133g), where a node i that is not visited (binary in-flow ∑ j:( j,i)∈A x ji = 0) is
assigned a zero value (ti = 0). Finally, we find in (4.133h) the precedence con-
straints on each arc, a non-linear representation of xi j = 1 ⇒ ti + ti j ≤ t j (otherwise
xi j = 0 and the non-linear expression is trivially satisfied). Dynamic programming
algorithms are in practice used for solving such time window constrained shortest
path problems using 2-dimensional labels, that is, time and cost. More about this is
presented in Chapter 5 (Vehicle Routing and Crew Scheduling Problems).

To apply a Dantzig-Wolfe reformulation based on (4.133), constraints (4.133h)
are linearized as

ti + ti j ≤ t j +M(1− xi j), ∀(i, j) ∈ A, (4.134)

where M is a large constant. Let the ILP be given by (4.133a)–(4.133g) and (4.134).
As expected from using a big-M model, even the tightest value typically leads to
a poor linear relaxation which only gets even poorer with larger values. Table 4.8
presents some increasing relatively large values for M: we observe that z⋆LP decreases
as more flow goes on path 1246 of attractive cost 3 but infeasible duration 18.

z⋆LP 3.900 3.422 3.205 3.040 3.020
big-M 25 50 100 500 1000

Table 4.8: Optimal objective value z⋆LP as a function of big-M.

That is to say that with the grouping of constraints as

A=

{[
x
t

]
∈ {0,1}|A|×R|N|+

∣∣∣∣ (4.133f)–(4.133g) and (4.134)
}

(4.135a)

D=

{[
x
t

]
∈ {0,1}|A|×R|N|+

∣∣∣∣ (4.133b)–(4.133d)
}
, (4.135b)

the ISP formulation on set D is a shortest path problem without time constraints, as
such it possesses the integrality property but the quality of z⋆MP = z⋆LP in the reformu-
lation decreases as M increases. Although we know that this grouping is certainly
not the best one, let us take a look at the IMP and ISP.

For convenience, we first re-write constraints (4.133g) and (4.134) as
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ti−ui( ∑
j:( j,i)∈A

x ji)≤ 0 ∀i ∈ {2, . . . ,6} (4.136)

ti− t j +Mxi j ≤M− ti j ∀(i, j) ∈ A. (4.137)

Secondly, because the time variables are not reformulated in D, they appear as static
ones in the IMP together with the nine path-variables λp, p∈ P, where P is the index
set of the extreme points of conv(D):

z⋆IMP = min ∑
p∈P

cpλp

s.t. t1 = 0

ti + ∑
p∈P

aipλp ≤ 0 [αi ≤ 0] ∀i ∈ {2, . . . ,6}

ti− t j + ∑
p∈P

bi jpλp ≤M− ti j [βi j ≤ 0] ∀(i, j) ∈ A

∑
p∈P

λp = 1 [π0 ∈ R]

λp ≥ 0 ∀p ∈ P

∑
p∈P

xi jpλp = xi j ∈ {0,1} ∀(i, j) ∈ A.

(4.138)

The dual variables ααα = [αi]i=2,...,6, βββ = [βi j](i, j)∈A, and π0 are involved in the ISP
given as

c̄(ααα,βββ ,π0) =−π0 +min
x∈D

cx +
6

∑
i=2

αiaix + ∑
(i, j)∈A

βi jbi jx (4.139a)

s.t. cx = ∑
(i, j)∈A

ci jxi j (4.139b)

aix =−ui( ∑
j:( j,i)∈A

x ji) ∀i ∈ {2, . . . ,6} (4.139c)

bi jx = Mxi j ∀(i, j) ∈ A. (4.139d)

Even if the travel times are integer, there is no guarantee that optimal time variables
take integer values. These can be computed a posteriori for the optimal path 13256
using the precedence relations, e.g., the earliest arrival times, or a small cost can be
imposed in the objective function as in min 0.01∑i∈N ti +∑(i, j)∈A ci jxi j.

In a second attempt, we rather use the compact formulation

z⋆ILP = min ∑
(i, j)∈A

ci jxi j (4.140a)

s.t. ∑
j:(1, j)∈A

x1 j = 1 (4.140b)
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∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 ∀i ∈ {2, . . . ,5} (4.140c)

∑
i:(i,6)∈A

xi6 = 1 (4.140d)

xi j ∈ {0,1} ∀(i, j) ∈ A (4.140e)
t1 = 0 (4.140f)

0≤ ti ≤M( ∑
j:( j,i)∈A

x ji) ∀i ∈ {2, . . . ,6} (4.140g)

ti + ti j ≤ t j +M(1− xi j) ∀(i, j) ∈ A (4.140h)
ti ≤ ui ∀i ∈ {2, . . . ,6}, (4.140i)

where (4.140g) is later used in the ISP to impose a zero time value on nodes that
are not visited while (4.140i) appears in the IMP as upper bounds. The impact of
M ≥ 25 on the objective value of the linear relaxation is similar to that of the first
model, see Table 4.9:

z⋆LP 3.800 3.400 3.200 3.040 3.020
big-M 25 50 100 500 1000

Table 4.9: Optimal objective value z⋆LP as a function of big-M (version 2).

With the grouping given as

A=

{[
x
t

]
∈ {0,1}|A|×R|N|+

∣∣∣∣ (4.140i)
}

(4.141a)

D=

{[
x
t

]
∈ {0,1}|A|×R|N|+

∣∣∣∣ (4.140b)–(4.140d), (4.140f)–(4.140h)
}
, (4.141b)

the IMP reads as

z⋆IMP = min ∑
p∈P

cpλp (4.142a)

s.t. ∑
p∈P

tipλp ≤ ui [πi ≤ 0] ∀i ∈ {2, . . . ,6} (4.142b)

∑
p∈P

λp = 1 [π0 ∈ R] (4.142c)

λp ≥ 0 ∀p ∈ P (4.142d)

∑
p∈P

xi jpλp = xi j ∈ {0,1} ∀(i, j) ∈ A, (4.142e)

where cp = ∑(i, j)∈A ci jxi jp is the cost of path p and tip is the arrival time at node i
along that path. The chosen values for big-M are here so large that all possible paths
are valid in the ISP. Dropping integrality, the MP reads as
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min 3λ1246 +14λ12456 + 5λ1256 +13λ13246 +24λ132456 +15λ13256 +16λ1346 +27λ13456 +24λ1356
s.t. 10λ1246 +10λ12456 +10λ1256 + 5λ13246 + 5λ132456 + 5λ13256 ≤ 9

3λ13246 + 3λ132456 + 3λ13256 + 3λ1346 + 3λ13456 + 3λ1356 ≤ 3
11λ1246 +11λ12456 + 6λ13246 + 6λ132456 +10λ1346 +10λ13456 ≤ 5

12λ12456 +13λ1256 + 7λ132456 + 8λ13256 +11λ13456 + 6λ1356 ≤12
18λ1246 +14λ12456 +15λ1256 +13λ13246 + 9λ132456 +10λ13256 +17λ1346 +13λ13456 + 8λ1356 ≤14

λ1246 + λ12456 + λ1256 + λ13246 + λ132456 + λ13256 + λ1346 + λ13456 + λ1356 = 1
λ1246 , λ12456 , λ1256 , λ13246 , λ132456 , λ13256 , λ1346 , λ13456 , λ1356 ≥ 0 .

Interestingly, the ISP defined in terms of πππ = [πi]i=2,...,6 and π0 as

c̄(πππ,π0) = min cx−
6

∑
i=2

πitix

s.t.
[

x
t

]
∈D

cx = ∑
(i, j)∈A

ci jxi j

tix = ti ∀i ∈ {2, . . . ,6},

(4.143)

naturally computes the earliest arrival time at the visited nodes because of the posi-
tive penalties −πi ≥ 0, ∀i ∈ {2, . . . ,6}, on the time variables. The solution given in
Example 3.2 is again optimal for the MP: λ⋆1256 = 0.8 and λ⋆13256 = 0.2 with the lower
bound z⋆MP = 7 on z⋆ILP = z⋆IMP = 15. This is an improvement on the objective values
z⋆LP of Table 4.9 but, as the time upper bounds (4.140i) only appear in A (4.141a),
once again, these are not at all used during the solution of the ISP, an important lack
of information in a time constrained shortest path problem!

Example 4.5 Generalized assignment problem

� Two block-diagonal structures appear in the ILP. The classical choice
of blocks results in what we expect from a Dantzig-Wolfe reformulation
where each subproblem builds specialized binary patterns that are as-
sembled by the master problem. Surprisingly, using the other structure
leads back to the compact formulation.

The generalized assignment problem (GAP) seeks a least-cost assignment of n tasks
to a set K of machines such that each task is assigned exactly once, subject to ca-
pacity restrictions on the machines (Savelsbergh, 1997). A compact formulation is

z⋆ILP = min ∑
k∈K

n

∑
i=1

ck
i xk

i (4.144a)

s.t. ∑
k∈K

xk
i = 1 [σi] ∀i ∈ {1, . . . ,n} (4.144b)
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n

∑
i=1

bk
i xk

i ≤ bk [β k] ∀k ∈ K (4.144c)

xk
i ∈ {0, 1} ∀k ∈ K, i ∈ {1, . . . ,n}, (4.144d)

where ck
i is the cost of assigning task i to machine k, bk

i is the capacity used when
task i is assigned to machine k, and bk is the capacity of machine k. The binary
variable xk

i takes value 1 if and only if task i is assigned to machine k. This formu-
lation has a block-diagonal structure over the machines which are all linked by the
semi-assignment constraints (4.144b), see Figure 4.33.
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1∑
k∈K

xk
1 = 1

2∑
k∈K
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2 = 1

...

i∑
k∈K
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i = 1
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n∑
k∈K

xk
n = 1

MACHINES

1
n

∑
i=1

b1
i x1

i ≤ b1

2
n

∑
i=1

b2
i x2

i ≤ b2

...

k
n

∑
i=1

bk
i xk

i ≤ bk

...

|K|
n

∑
i=1

b|K|i x|K|i ≤ b|K|

(ck
i ,bk

i )

Fig. 4.33: Network representation of the GAP.

Fig. 4.34: Martin Savelsbergh (Bertinoro, Italy, 2005-06-23), the one who coined
the tag-name Branch-and-Price with his colleagues (Barnhart et al., 1998).
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Binary tasks-to-machine (many-to-one) patterns

Let x = [xk]k∈K , where

xk = [xk
i ]i=1,...,n =

xk
1
...

xk
n

 (4.145)

and group the constraints as

A=

{{
xk ∈ {0,1}n

}
k∈K

∣∣∣∣ ∑
k∈K

xk
i = 1, ∀i ∈ {1, . . . ,n}

}
(4.146a)

Dk =

{
xk ∈ {0,1}n

∣∣∣∣ n

∑
i=1

bk
i xk

i ≤ bk

}
, ∀k ∈ K. (4.146b)
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Fig. 4.35: Network representation of the binary tasks-to-machine patterns in Dk.

For k ∈ K, the binary tasks-to-machine patterns xk
p = [xk

ip]i=1,...,n, p ∈ Pk, illus-
trated in Figure 4.35, are used to reformulate (4.144) into the IMP

z⋆IMP = min ∑
k∈K

∑
p∈Pk

ck
pλ

k
p

s.t. ∑
k∈K

∑
p∈Pk

ak
ipλ

k
p = 1 [πi] ∀i ∈ {1, . . . ,n}

∑
p∈Pk

λ
k
p = 1 [πk

0 ] ∀k ∈ K

λ
k
p ≥ 0 ∀k ∈ K, p ∈ Pk

∑
p∈Pk

xk
pλ

k
p = xk ∈ {0,1}n ∀k ∈ K,

(4.147)

where ck
p =∑

n
i=1 ck

i xk
ip is the cost of pattern p on machine k whereas ak

ip = xk
ip is equal

to 1 if and only if task i is assigned to machine k in pattern p. Relaxing the binary
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requirements on xk in (4.147), ∀k ∈ K, the MP is solved by the column generation
algorithm, where an ISPk turns out to be a binary knapsack problem:

c̄k(πππ,πk
0) = −π

k
0 + min

x∈Dk
ck

x−
n

∑
i=1

πiak
ix

s.t. ck
x =

n

∑
i=1

ck
i xk

i

ak
ix = xk

i ∀i ∈ {1, . . . ,n},

that is, c̄k(πππ,πk
0) = −π

k
0 + min

n

∑
i=1

(ck
i −πi)xk

i

s.t.
n

∑
i=1

bk
i xk

i ≤ bk

xk
i ∈ {0, 1} ∀i ∈ {1, . . . ,n}.

(4.148)

Because formulation (4.148) does not possess the integrality property, z⋆MP is greater-
than-or-equal to z⋆LP in (4.144), i.e., z⋆LP ≤ z⋆MP ≤ z⋆ILP.

Binary task-to-machines (one-to-many) patterns

In the following, we rather write the vector of variables as x = [xi]i=1,...,n, where

xi = [xk
i ]k∈K =

[
x1

i · · · x|K|i

]
. (4.149)

Consider the Dantzig-Wolfe reformulation where we group the constraints as

A=

{{
xi ∈ {0,1}|K|

}
i∈{1,...,n}

∣∣∣∣ n

∑
i=1

bk
i xk

i ≤ bk, ∀k ∈ K

}
(4.150a)

Di = {xi ∈ {0,1}|K| | ∑
k∈K

xk
i = 1}, ∀i ∈ {1, . . . ,n}, (4.150b)

that is, the domain Di of the ISPi contains exactly one of the semi-assignment
constraints (4.144b), see Figure 4.36. Solutions to Di are the extreme points of
conv(Di) = {xi ≥ 0 |∑k∈K xk

i = 1}, the convex hull of the |P|= |K| unit row-vectors
in R|K|+ . These are {e⊺1 , . . . ,e

⊺
|K|} and the ISPi has the integrality property (select ma-

chine k for task i (xk
i = 1) with the smallest adjusted cost). Therefore, z⋆MP = z⋆LP and

the literature never considers this decomposition scheme compared to the previous
one that provides in general a much better lower bound.

However, Proposition 4.5 extended to a block-diagonal structure tells us much
more: the IMP is the original ILP. For the sake of completeness of this example, let
us derive the reformulation. The index set P being the same as K, the Minkowski-
Weyl substitution on conv(Di) writes as



4.7 Examples 261

i∑
k∈K

xk
i = 1

TASK

MACHINES

1

2

...

k

...

|K|

(ck
i ,bk

i )

Fig. 4.36: Network representation of the binary task-to-machines patterns in Di.

∑
k∈K

e⊺k λik = xi =
[
x1

i · · · x|K|i

]
∀i ∈ {1, . . . ,n} (4.151a)

∑
k∈K

λik = 1 ∀i ∈ {1, . . . ,n} (4.151b)

λik ≥ 0 ∀i ∈ {1, . . . ,n}, k ∈ K. (4.151c)

Writing the first equations component-wise, we get λik = xk
i , ∀i ∈ {1, . . . ,n}, k ∈ K.

The reformulation becomes

z⋆IMP = min ∑
k∈K

n

∑
i=1

ck
i λik (4.152a)

s.t.
n

∑
i=1

bk
i λik ≤ bk ∀k ∈ K (4.152b)

∑
k∈K

λik = 1 ∀i ∈ {1, . . . ,n} (4.152c)

λik = xk
i ∈ {0, 1} ∀i ∈ {1, . . . ,n}, k ∈ K, (4.152d)

where the convexity constraints (4.151b) become the semi-assignment constraints.
Et voilà, this is the ILP model from which we started! Obviously, we again have
z⋆MP = z⋆LP.

Since we used only properties of the semi-assignment constraints, we conclude
that it never pays to reformulate these. This applies, e.g., to the textbook models of
bin packing, facility location, p-median, parallel machine scheduling, vertex color-
ing, vehicle routing, etc.
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Example 4.6 Multi-commodity maximum flow problem

� In this problem, the capacity constraints on the arcs link the flow of the
various commodities whereas the flow conservation constraints display
an obvious block-diagonal structure. The number of constraints of the
latter type is several orders of magnitude larger than that of the former
which makes a Dantzig-Wolfe reformulation based on this observation
an ideal choice.

The multi-commodity maximum flow problem (MCMFP) is defined on a directed
network G= (N,A). The commodities are each ruled by their own flow conservation
constraints but they share the same network. Each commodity k ∈ K is defined by
its own origin and its own destination in N, that is, K = {(o,d)∈N×N,o ̸= d}. For
example, in an internet network, a message between a given pair of nodes defines a
specific commodity. The goal is to send the maximum flow from all the origins to
all destinations while satisfying the shared capacity ui j on each arc (i, j) ∈ A.

Let xod
i j denote the integer flow of commodity (o,d) on arc (i, j) ∈ A and let the

unbounded integer variable xod
0 ≥ 0 measure the total flow from o to d. An integer

linear programming formulation is

z⋆ILP = max ∑
(o,d)∈K

xod
0 (4.153a)

s.t. ∑
(o,d)∈K

xod
i j ≤ ui j ∀(i, j) ∈ A (4.153b)

∑
j:(i, j)∈A

xod
i j − ∑

j:( j,i)∈A
xod

ji =

{
xod

0 for i = o
0 ∀i ∈ N, i ̸= o,d

−xod
0 for i = d

∀(o,d) ∈ K (4.153c)

xod
0 ,xod

i j ∈ Z+ ∀(o,d) ∈ K, (i, j) ∈ A. (4.153d)

The MCMFP is known to be NP-hard for |K| ≥ 2 (Even et al., 1976), where
the reduction is shown for the feasibility version, thus independent of the objec-
tive function. The proposed grouping keeps the capacity constraints in the IMP and
moves the |K|-block structure into the pricing. Let xod = [xod

i j ](i, j)∈A, ∀(o,d) ∈ K.

A=

{{[
xod

0
xod

]
∈ Z|A|+1

+

}
(o,d)∈K

∣∣∣∣ (4.153b)

}
(4.154a)

Dod =

{[
xod

0
xod

]
∈ Z|A|+1

+

∣∣∣∣ (4.153c)od
}
, ∀(o,d) ∈ K. (4.154b)

This example is presented in the form of an exercise, answering one by one a series
of questions. Assume that G has |N| = 1 000 nodes and |A| = 10 000 arcs and we
want to send flow from every node to every other, i.e., |K|= |N|(|N|−1) = 999 000.

(a) The ILP formulation (4.153) comprises how many constraints and variables?
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G = (N,A)

o

d

xod
0

Fig. 4.37: Network structure of Dod for commodity (o,d) ∈ K.

▶ Capacity constraints in (4.153b) comprise one constraint per arc in A (10 000).
Constraints in (4.153c) comprise one constraint per node in N (1 000) times the
number of commodities |K| (999 000), that is, 999 000 000. The total number
of constraints is therefore 999 010 000.
The number of variables is given by the number of arcs in A (10 000) times the
number of commodities |K| (999 000), plus the 999 000 variables xod

0 , that is, a
total of 9 990 999 000 variables.

(b) Give the set Xod of extreme points and extreme rays of conv(Dod).

▶ On the one hand, Dod describes a network circulation structure. On the second
hand, conv(Dod) is a polyhedral cone and, here omitting the binary identifier,

Xod =

{[
0
0

]}
∪
{[

xod
0,r

xod
r

]}
r∈Rod

, (4.155)

where xod
0,r can be scaled to 1 for any extreme ray indexed by r ∈ Rod . By flow

conservation, this is also the case for the positive components of xod
r , that is,

xod
i j,r = 1 if arc (i, j) belongs to the od-path, 0 otherwise.

(c) Formulate the IMP and give the row-size and column-size of the MP.

▶ Discarding the zero extreme points and the convexity constraints for all com-
modities, we use the variables λod

r ≥ 0, ∀(o,d) ∈ K, r ∈ Rod , for the Dantzig-
Wolfe reformulation:

xod
i j = ∑

r∈Rod

xod
i j,r λ

od
r and xod

0 = ∑
r∈Rod

xod
0,r λ

od
r = ∑

r∈Rod

λ
od
r , (4.156)

also given as
[

1
xod

]
= ∑r∈Rod

[
1

xod
r

]
λod

r in vector form.

The IMP writes as
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z⋆IMP = max ∑
(o,d)∈K

∑
r∈Rod

λ
od
r

s.t. ∑
(o,d)∈K

∑
r∈Rod

xod
i j,r λ

od
r ≤ ui j [πi j] ∀(i, j)∈A

λ
od
r ≥ 0 ∀(o,d)∈K,r∈Rod

∑
r∈Rod

[
1
xod

r

]
λ

od
r =

[
xod

0
xod

]
∈Z|A|+1

+ ∀(o,d)∈K.

(4.157)

Discarding the integrality constraints on the 9 990 999 000 x-variables, the MP
comprises only |A| capacity constraints, that is, 10 000 constraints. This is less
than 0.001 % of the number of constraints of the original ILP (4.153).

The precise number of λ -variables is unknown but huge, that is, the number of
extreme rays of Dod times the number of commodities |K|. Therefore, the MP
is solved by column generation.

(d) Formulate the pricing problems. How would you solve them? Give the stopping
criterion for the column generation algorithm.
▶ Let πππ = [πi j](i, j)∈A. Because xod

0,r = 1 for all rays indexed by r ∈ Rod , every
pricing problem is an od-shortest path problem:

c̄od(πππ) = max (1− ∑
(i, j)∈A

πi jxod
i j ) = 1−min ∑

(i, j)∈A
πi jxod

i j (4.158a)

s.t. ∑
j:(i, j)∈A

xod
i j − ∑

j:( j,i)∈A
xod

ji =

 1 for i = o
0 ∀i ∈ N, i ̸= o,d
−1 for i = d

(4.158b)

xod
i j ≥ 0 ∀(i, j) ∈ A. (4.158c)

The column generation algorithm stops when c̄od(πππ) ≤ 0, ∀(o,d) ∈ K. While
we can solve (4.158) with any linear programming solver, there is an abundance
of literature on the shortest path problem. In our case, we have a directed graph
on which there can be no negative cycles since all objective coefficients are
non-negative, i.e., πππ ≥ 0.
The all-pairs shortest path problem can be solved by the Floyd-Warshall algo-
rithm (Floyd, 1962) that runs in O(|N|3) time, see Ahuja et al. (1993, §5.6).
This effectively means that we obtain c̄od(πππ), ∀(o,d) ∈ K, but this might not be
a good strategy. Indeed, we have seen in Note 2.13 that pricing problems gen-
erate columns that compete with each other such that this may not be the most
efficient use of computing resources.
An alternative is to solve the single-source shortest path problem using Di-
jkstra’s algorithm (Dijkstra, 1959) that runs in O(|N|2) time, see Ahuja et al.
(1993, §4.5). The resulting tree of shortest paths contains solutions between a
node and every other. This means that we are de facto solving |N|− 1 pricing
problems in one go, i.e., finding c̄o j(πππ), ∀ j ̸= o ∈ N. We can eventually analyze
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these paths to keep a diversified subset for the RMP. Despite Note 2.14 warning
us about parallelization ineffectiveness, this alternative seems like a promising
compromise because there is barely any overhead compared to solving for only
(o,d). We have also yet to mention Dial’s implementation (Ahuja et al., 1993,
§4.6) which can improve the bottleneck of Dijkstra’s algorithm in practice.
A more recent complexity result for the all-pairs variant, we deal with is
O(|A||N|+ |N|2 log log |N|) from Pettie (2004) whereas for the single-source
variant, that of O(|A|+ |N| log |N|) by Fredman and Tarjan (1984, 1987) still
stands. It is unlikely that the outcome of this discussion changes with theoretical
complexity improvements on the shortest path problem unless one can derive a
factor much smaller than |N| between both variants. These results do however
suggest that we should pay closer attention to the number of arcs in the graph.
One should obviously carry out some experiments especially for instances with
a smaller number of commodities, i.e., |K| ≪ |N|(|N|−1).

(e) How does z⋆MP compare to z⋆LP?
▶ Because the shortest path formulation in (4.158) possesses the integrality prop-

erty, we have z⋆LP = z⋆MP.

Example 4.7 Scene selection problem

� Exploiting the structure helps a lot! Tightening the ILP with additional
constraints to avoid symmetry difficulties is much less efficient than
reformulating the original problem with an ISP whose formulation does
not possess the integrality property.

This scene selection problem (SSP) is taken from Van Hentenryck (2002) for
which various symmetry breaking formulations are evaluated in Jans and Desrosiers
(2010). Given a cast of actors forming the set A and various scenes to shoot forming
the set N, a movie producer must decide when shootings occur. We know that

• Each scene requires the presence of a specific subset of actors: the parameter
ai j = 1 indicates if actor j ∈ A is needed for scene i ∈ N, 0 otherwise;

• There can be at most W scenes shot each day during up to m days of shootings;
• Actor j is paid c j for each day of presence.

Let the binary variables xk
i = 1 if scene i is shot on day k ∈ K = {1, . . . ,m} and

yk
j = 1 if actor j appears on day k. The objective is to minimize the total cost:

z⋆ILP = min ∑
k∈K

∑
j∈A

c jyk
j (4.159a)

s.t. ∑
k∈K

xk
i = 1 ∀i ∈ N (4.159b)

∑
i∈N

xk
i ≤W ∀k ∈ K (4.159c)

ai jxk
i ≤ yk

j ∀k ∈ K, i ∈ N, j ∈ A (4.159d)
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xk
i ∈ {0,1} ∀k ∈ K, i ∈ N (4.159e)

yk
j ∈ {0,1} ∀k ∈ K, j ∈ A. (4.159f)

In model (4.159),

• each scene i is shot on one day: assignment constraints (4.159b);
• at most W scenes are shot on each day k: capacity constraints (4.159c);
• if scene i is shot on day k, then xk

i = 1 and the required actors are present: actor
constraints (4.159d).

Technically, it is sufficient to impose the binary restrictions on the x-variables. The
following analysis and results are based on |A|= 11, |N|= 19, W = 5, and m = 5.

Symmetry breaking constraints

In Exercise 4.14, the reader is asked to show that the objective value z⋆LP of the linear
relaxation of (4.159) is equal to ∑ j∈A c j, a weak lower bound on the optimal objec-
tive value z⋆ILP. This formulation contains a lot of symmetry. For any solution, we
can obtain an equivalent one by permuting the days. We can decrease the symmetry
using a variable reduction technique (VRT):

• Take one scene at random, say scene one, and impose that it is shot on day 1.
• For scene two, if it is not shot on day one, then it is on day two, hence impose

x3
2 = x4

2 = x5
2 = 0 and x1

2 + x2
2 = 1. We continue this for scenes 3 and 4.

• The remainder of the scenes can be shot on any day, hence for scene 5 and the
following ones, we cannot reduce the number of variables.

For VRT , let us consider three different orders of the scenes. The first keeps the
original numbering. Next, for each scene, we evaluated the total cost for the actors
needed in it. In the LowHigh order, the scenes are numbered from the lowest total
cost to the highest, whereas the numbering is reversed in the HighLow order.

Dantzig-Wolfe reformulation

For k ∈ K, let xk = [xk
i ]i=1,...,|N| and yk = [yk

j] j=1,...,|A|. We group the constraints as

A=

{{[
xk

yk

]
∈ {0,1}|N|+|A|

}
k∈K

∣∣∣∣ (4.159b)
}

(4.160a)

Dk =

{[
xk

yk

]
∈ {0,1}|N|+|A|

∣∣∣∣ (4.159c)–(4.159d)
}
, ∀k ∈ K, (4.160b)

where the domain of the ISPk defines binary scene selection patterns which can be
enumerated exhaustively for the chosen numbers of scenes, actors, and days.



4.7 Examples 267

Quality of the lower bounds

In Table 4.10 and Figure 4.38, we report some results for the linear relaxation of
the various compact formulations, that is, for the ILP alone and for the ILP + VRT
strategies, as well as for the IMP based on (4.160). We report the computation time
in seconds to calculate the linear programming solution with the default setting for
symmetry breaking in CPLEX 11.2 and the integrality gap (IP gap (%)) compared
to the optimal objective value z⋆ILP = 334144.

time (s) Linear relaxation IP gap (%)

ILP 4.00 137 739.00 58.8
ILP + VRT (Original) 5.79 177 075.57 47.0
ILP + VRT (LowHigh) 8.53 157 388.55 52.9
ILP + VRT (HighLow) 2.75 219 013.83 34.5
IMP 1.34 330 405.41 1.1

Table 4.10: Results for the SSP, where z⋆ILP = 334144.

0

10

20

30

×
10

00
0

z⋆LP

ILP ILP + VRT ILP + VRT ILP + VRT IMP
(Original) (LowHigh) (HighLow)

z⋆ILP = 334144

z⋆MP = 330 405.41

Fig. 4.38: Quality of various linear programming relaxations for the SSP.

The results bring to light three important considerations.

1. This is an example of a formulation where the various linear relaxation values
of ILP + VRT improve on that of ILP. In fact, the integrality gap improves from
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52.9 % for VRT (LowHigh) to 47.0 % for VRT (Original) and 34.5 % for VRT
(HighLow) compared to 58.8 % for the ILP alone.

2. The linear relaxation values of ILP + VRT depend on the order of the input
data. This can partially be explained as follows. In VRT , we fix the first vari-
able: x1

1 = 1. This forces the actors needed for that first scene to be present and
we are fully charged for the cost of that scene. For the second scene, there are
two possibilities: either it is in the first day or in the second, so we induce less
fractional values for the decision variables. We see indeed that the order High-
Low performs substantially better in terms of z⋆LP value compared to LowHigh.

3. For the IMP (or IMP̈ based on discretization), the order of the input data has no
impact on the linear relaxation z⋆MP, and the integrality gap falls to only 1.1 %.
More importantly, there are no more symmetry issues due to the permutation of
the days while solving the MP.

Example 4.8 Design of balanced student teams

� We start with an integer quadratic program with symmetry issues as
well as fractional solutions almost systematically when the integrality
requirements are relaxed. The reformulation turns out to be a set parti-
tioning model, much easier to manage.

Students of a same class must be partitioned into teams in such a way that each team
provides a good representation of the class composition. In general, when facing this
kind of problem, we can fall back upon descriptive statistical measures where the
goal is to reproduce statistics observed for the population in each sample. From
the school administration, we are given, for each student, a list of attributes such
as age, gender, highest grade, field of studies, country of origin, etc. We may even
be given relative importance for these attributes. This gives us a way to score each
partition with a weighted sum of squared deviations. This particular measure leads
to an integer quadratic program (IQP).

Quadratic transportation problem

Assume the presence of 26 students within a group of a Branch-and-Price Course,
namely Amièle, Bob, Charlotte, Dominic, . . . , Xavier, Yolaine, and Zoe. Each team
must comprise 4 or 5 students. Each student being assigned to a single team, we
face the supply-demand constraints of the classical transportation problem (see Fig-
ure 4.39).

Let n denote the number of students, K the set of teams, and nk the number of
students in team k ∈ K. Let xik be a binary variable that takes value 1 if student i ∈
{1, . . . ,n} is assigned to team k, 0 otherwise.
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Fig. 4.39: Supply-demand for the design of balanced student teams.

Following Figure 4.39, the set of transportation constraints is

∑
k∈K

xik = 1 ∀i ∈ {1, . . . ,n}

n

∑
i=1

xik = nk ∀k ∈ K

xik ∈ {0,1} ∀k ∈ K, i ∈ {1, . . . ,n}.

(4.161)

This is an easy structure but the difficulties arise from scoring the possible assign-
ments while optimizing the objective function. For every attribute q ∈ Q, we have

• the personal statistic of student i denoted by siq, for all i ∈ {1, . . . ,n};
• the target value tq, a parameter computed a priori by some well-defined rule

such as the average or percentage taken over the class, that is, ∑
n
i=1 siq/n;

• the weight factor wq.

The contribution of each statistic q to the objective function of students present
in team k is calculated by averaging their scores as

tkq =
n

∑
i=1

siqxik

nk
(4.162)

Using vector notation, we have the target-vector t = [tq]q∈Q and the score-vector
tk = [tkq]q∈Q of team k. Let A be the set of arcs in the transportation problem struc-
ture (4.161). Incorporating the objective function in (4.163), the goal is to partition
the students into teams such that the corresponding weighted sum of squared devia-
tions between the scores and targets reaches its minimum:

z⋆IQP = min ∑
k∈K

∑
q∈Q

wq(
n

∑
i=1

siqxik

nk
− tq)2 (4.163a)
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s.t. ∑
k∈K

xik = 1 ∀i ∈ {1, . . . ,n} (4.163b)

n

∑
i=1

xik = nk ∀k ∈ K (4.163c)

xik ∈ {0,1} ∀(i,k) ∈ A. (4.163d)

Solving this quadratic transportation problem while relaxing the binary require-
ments on the x-variables is, in most cases, useless because we proportionally adjust
the “presence” xik of team members in computing the score-vector tk (4.162). For
example, if the number of men in the class is 17 out of 26 (65.4 %), this amounts
to a target of 2.6155 in a team of 4, or 3.2692 in a team of 5. These target values
are impossible to reach in any binary solution but easy in a fractional one. Hence,
a solution to the relaxation of (4.163) is in general so fractional that even finding a
single integer solution by branch-and-bound in a reasonable amount of time is hard.
Moreover, the model suffers from symmetry induced by the identifiers of the teams
with the same size.

Set partitioning reformulation

The proposed Dantzig-Wolfe reformulation by discretization of this compact for-
mulation allows us to overcome these difficulties by capitalizing on the following
observation: If we know all team members Tk for some team k, it is easy to compute
the contribution to the objective function of any attribute q. We see this clearly in
any integer solution where we have Tk = {i | xik = 1} such that

tkq =
n

∑
i=1

siqxik

nk
=

∑i∈Tk
siq

|Tk|
. (4.164)

Figure 4.40 displays four out of the six teams in a 2-dimensional attribute space,
where Amièle, Bob, Dominic, and Zoe belong to the first team. Assignments for
teams 3 and 5 have been omitted to lighten the content. The score-vector t1 ∈R2 for
team 1 is here computed as the average of statistic-vectors s1,s2,s4, and s26 whereas
the target-vector for the class is computed as t = ∑

26
i=1 si/26.

We use the grouping of the constraints

A=

{
x ∈ {0,1}|A|

∣∣∣∣ ∑
k∈K

xik = 1, ∀i ∈ {1, . . . ,n}

}
(4.165a)

Dk =

{
x ∈ {0,1}|A|

∣∣∣∣ n

∑
i=1

xik = nk

}
∀k ∈ K, (4.165b)

and the convexification and discretization approaches are equivalent by Proposi-
tion 4.4. As Dk is bounded for all k, Proposition 4.14 applies and allows us to use
the quadratic cost function. We then rely on the enumeration of all solutions.
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t

Fig. 4.40: Partition of 17 students (out of 26) vs. target-vector t.

Figure 4.41 illustrates the binary students-to-team patterns in Dk. Note that it
is identical to the tasks-to-machine decomposition already used for the Generalized
assignment problem, the alternative teams-to-student patterns giving back the com-
pact formulation by Proposition 4.5 extended to a block-diagonal structure.

STUDENTS

Amièle (1)1

Bob (2)1

Charlotte (3)1

Dominic (4)1

...

Zoe (n)1

TEAM

k
n

∑
i=1

xik = nk

s1
s2

s3

s4

sn

Fig. 4.41: Illustration of the binary students-to-team patterns in Dk, where the
statistic-vectors si, i ∈ {1, . . . ,n}, of the selected students are used to compute the
score-vector tk for team k and then the non-linear values (tkq− tq)2, q ∈ Q.

Since all subproblems with the same team size nk are isomorphic, we use aggrega-
tion. Let ℓ ∈ L denote the distinct team sizes. The total number of teams is

|P|= ∑
ℓ∈L
|Pℓ|, where |Pℓ|=

(
n
ℓ

)
. (4.166)
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Then, one needs to select a number of teams amongst |P| that partition the n students
such that the sum of the weighted distances between their team-vector scores and
the target-vector score is minimal. For a team p ∈ Pℓ of size ℓ, we denote by

• λℓ
p ∈ {0,1}: 1 if the team is chosen, 0 otherwise;

• aℓip ∈ {0,1}: 1 if student i belongs to the team, 0 otherwise (∑n
i=1 aℓip = ℓ);

• cℓp = ∑q∈Q wq(tℓpq− tq)2, where tℓpq = ∑
n
i=1 siq aℓip/ℓ is the score for attribute q.

The quadratic program (4.163) is reformulated as a set partitioning model:

z⋆IMP = min ∑
ℓ∈L

∑
p∈Pℓ

cℓpλ
ℓ
p (4.167a)

s.t. ∑
ℓ∈L

∑
p∈Pℓ

aℓipλ
ℓ
p = 1 ∀i ∈ {1, . . . ,n} (4.167b)

∑
p∈Pℓ

λ
ℓ
p ≤ mℓ ∀ℓ ∈ L (4.167c)

λ
ℓ
p ∈ {0,1} ∀ℓ ∈ L, p ∈ Pℓ, (4.167d)

where ∑p∈Pℓ λℓ
p is the number of selected teams of size ℓ, and the parameter mℓ is

either given or derived from the data. As a result of the aggregation process on iden-
tical subproblems (see p. 202), model (4.167) does not suffer from the duplication
of teams of the same type.

In our instance involving 26 students, we have teams of sizes 4 and 5, hence L =
{4,5} such that |P|4 = 14 950, |P|5 = 65 780, for a total of |P|= 80 730, a relatively
small number for modern set partitioning solvers. We also derive m4 = ⌊26/4⌋= 6
and m5 = ⌊26/5⌋ = 5. In this particular instance, we can use equality constraints
with m4 = 4 and m5 = 2 in (4.167c) if we realize that the only integer partition is
four teams of 4 students and two of 5. Assume given the enumerated teams of 4 and
5 students, here indexed by p ∈ P4 and p′ ∈ P5, respectively. The set partitioning
model writes as

z⋆IMP = min ∑
p∈P4

cpλp + ∑
p′∈P5

cp′λp′ (4.168a)

s.t. ∑
p∈P4

apλp + ∑
p′∈P5

ap′λp′ = 1 (4.168b)

∑
p∈P4

λp = 4, ∑
p′∈P5

λp′ = 2 (4.168c)

λp, λp′ ∈ {0,1} ∀p ∈ P4, p′ ∈ P5, (4.168d)

where, for all p ∈ P4 and p′ ∈ P5, ap and ap′ are binary vectors of dimension 26,
the number of non-zero entries in ap is 4, that of ap′ is 5. Every student is assigned
exactly once in (4.168b); four teams of 4 students are selected and two of size 5
in (4.168c). An optimal solution to the IMP (4.168) is composed of 6 teams.
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The number of admissible teams can be reduced by discarding any that does not
satisfy certain practical rules. For example, as the number of men in our class is 17
out of 26 (65.4 %), this amounts to a target of 2.6155 in a team of 4, so we can decide
to only accept teams with 2 or 3 men and this reduces the number of admissible
teams of size 4 to 11 016. We do the same for a team of 5, accepting only teams with
3 or 4 men: the number decreases to 45 900. Full enumeration is tractable and the
IMP (4.168) can be solved directly with any modern solver: it involves 56 916 team-
variables and 26+ 2 constraints. Note that using methods to heuristically reduce
the number of variables treated leads to potentially suboptimal solutions. In the
realm of practical rules, this comment becomes a gray area. Imagine that an integer
solution with only 1 man in a team exists and that it even has a better objective
value than what we have found with respect to our practical rule regarding restricted
gender distribution. What do we conclude about optimality then? If such a team
composition would be rejected anyway to avoid giving rise to what is ultimately an
“unwarranted” sentiment of injustice, then said practical rule is really a constraint
of the problem.

Finally, in a 2-semester academic program, assume the teams are broken after
the first semester as in Exercise 4.15. How would you deal with such a situation?

Example 4.9 Can you decode a secret vote?

� In this problem, we have no objective function but a Dantzig-Wolfe
reformulation can still be of service. Recall the analogy atoms vs.
molecules on p. 174.

Twenty shareholders are voting to elect the president of a strategic working group
within six external candidates (k ∈ K = {a, . . . , f}). Each shareholder (or voter)
owns a share percentage pi, i ∈ N = {1, . . . ,20}. The rules stipulate that each share-
holder i casts one vote, with weight pi, towards a particular candidate k. Moreover, a
round system provision is established if no candidate receives at least 50 % of votes.
Table 4.11 details the ownership distribution of the shareholders and the outcome of
the vote. Amongst other things, no candidate has received more than 50 %, candi-
date f received the highest score 35.9 % while candidate a received only 4.5 %.

Can you decode the results, that is, finding fully or partially who voted for who?

Stated otherwise and putting the moral high ground aside, is there an efficient way
to put persuasion talent to service for the second round?

We are looking for an integer programming formulation, where there is no ob-
jective function. One such set of constraints that comes to mind is based on the flow
formulation of the generalized assignment problem (4.144), see Figure 4.42 and
system (4.169), where xk

i is a binary variable taking value 1 if shareholder i votes
for candidate k, 0 otherwise, whereas bk is the total percentage of votes obtained by
candidate k:
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Shareholder i 1 2 3 4 5 6 7 8 9 10
% Shares (pi) 14.3 13.2 12.4 8.4 7.8 6.2 5.7 5.5 4.5 4.2

Shareholder i 11 12 13 14 15 16 17 18 19 20
% Shares (pi) 3.6 3.1 2.7 2.4 1.5 1.4 1.3 1.1 0.4 0.3

Candidate k a b c d e f
Total % Votes (bk) 4.5 11.1 13.8 17.3 17.4 35.9

Table 4.11: Percentage shares of every shareholder and first round election results.

SHAREHOLDERS

1∑
k∈K

xk
1 = 1

2∑
k∈K

xk
2 = 1

...

i∑
k∈K

xk
i = 1

...

20∑
k∈K

xk
20 = 1

a
20

∑
i=1

pixa
i = 4.5%

b
20

∑
i=1

pixb
i = 11.1%

c 13.8%

d 17.3%

e 17.4%

f
20

∑
i=1

pix
f
i = 35.9%

CANDIDATES
14.3%

14.3%

14.3%
pi

0.3%

Fig. 4.42: Illustration of the secret vote formulation.

∑
k∈K

xk
i = 1 ∀i ∈ N

∑
i∈N

pixk
i = bk ∀k ∈ K

xk
i ∈ {0, 1} ∀k ∈ K, i ∈ N.

(4.169)

Although valid, this set of constraints is indeed rather weak in the sense that,
while solving the linear relaxation, there is nothing to account for the voting rule
imposed by the binary requirements within the knapsack constraints ∑

20
i=1 pixk

i = bk,
∀k ∈ K. Let us take a look at Figure 4.43, the solution obtained from the linear
relaxation of (4.169).

Obviously, voter 3 with 12.4 % shares, for which this solution splits his vote
between candidate a (0.11290) and c (0.88710), cannot vote for candidate a in any
integer solution because he or she received only 4.5 % of the votes. This means that
some x-variables can a priori be set to zero, indeed the first 8 shareholders for a, the
first 3 for b, and the first for c. However, much more can be done.



4.7 Examples 275

Candidates

Voters Shares (%) a b c d e f Row sum

1 14.3 1 1
2 13.2 1 1
3 12.4 0.11290 0.88710 1
4 8.4 1 1
5 7.8 0.17940 0.43590 0.38462 1
6 6.2 1 1
7 5.7 1 1
8 5.5 1 1
9 4.5 1 1

10 4.2 1 1
11 3.6 1 1
12 3.1 0.29032 0.70968 1
13 2.7 1 1
14 2.4 0.62500 0.37500 1
15 1.5 1 1
16 1.4 1 1
17 1.3 1 1
18 1.1 1 1
19 0.4 1 1
20 0.3 1 1

Results (%) 4.5 11.1 13.8 17.3 17.4 35.9 100

Fig. 4.43: Fractional solution to the secret vote formulation.

Binary vote patterns

A Dantzig-Wolfe reformulation of (4.169) can help. For k ∈ K, let xk = [xk
i ]i=1,...,20

and group the constraints as

A=

{{
xk ∈ {0,1}20

}
k∈K

∣∣∣∣ ∑
k∈K

xk
i = 1, ∀i ∈ {1, . . . ,20}

}
(4.170a)

Dk =

{
xk ∈ {0,1}20

∣∣∣∣ 20

∑
i=1

pixk
i = bk

}
, ∀k ∈ K. (4.170b)

For k ∈ K, the vote patterns in Dk, i.e., the binary vectors

xk
p = [xk

ip]i=1,...,20, p ∈ P̈k
,

are used to reformulate (4.169) by substituting for all i ∈ {1, . . . ,20},

∑
p∈P̈k

xk
ipλ

k
p = xk

i

∑
p∈P̈k

λ
k
p = 1

λ
k
p ∈ {0,1} ∀p ∈ P̈k

.

(4.171)
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For example, for candidate a who received 4.5 % of the percentage of votes,
there are only |Da|= 10 possible binary patterns, and the associated 20-dimensional
points appear in Table 4.12, with zero-entries for the first 8 voters (with more than
4.5 % of the shares).

Voters Shares (%)

9 4.5 1
10 4.2 1
11 3.6
12 3.1 1 1
13 2.7 1 1 1
14 2.4 1
15 1.5 1 1
16 1.4 1 1 1 1 1
17 1.3 1 1
18 1.1 1 1 1
19 0.4 1 1 1 1
20 0.3 1 1 1 1 1 1 1

Table 4.12: The ten binary vote patterns in Da.

The reformulation of (4.169) only contains the constraints of a relatively small-
sized set partitioning problem with 20+6 rows and ∑k∈K |P̈

k| columns:

∑
k∈K

∑
p∈P̈k

xk
ipλ

k
p = 1 ∀i ∈ {1, . . . ,20}

∑
p∈P̈k

λ
k
p = 1 ∀k ∈ K

λ
k
p ∈ {0,1} ∀k ∈ K, p ∈ P̈k

.

(4.172)

In the above model, every shareholder i is voting exactly once and one pattern in-
dexed in P̈k is selected for each candidate k. In a full enumeration model, we imme-
diately see that a 0-1 branching decision on a fractional λk

p is natural. In a column
generation context, this is a more complex matter.

An integer solution to such a set of constraints (4.172) provides one possible
way to vote, but this might not be the actual one. Hence an enumeration process is
required, preferably with a statistical analysis performed on all feasible solutions.

In the above example, it is not possible to decode the vote, even partially, with
the actual information. In Exercise 4.16, we examine additional information that
might help decoding such a vote. For example, the six candidates are not external
but rather amongst the twenty shareholders, or as in the technical paper by Jaumard
and Soumis (1986) at the origin of this application, we are also given the number of
shareholders who voted for each candidate.
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Example 4.10 Edge coloring problem: two compact formulations

� One extended set covering formulation, two compacts.

Recall the Edge coloring problem, Example 2.3, which is defined on an undirected
graph G = (N,E), where N denotes the set of nodes and E the set of edges. Let
δ ({i})⊆ E denote the subset of edges incident to i∈N, and E(S)⊆ E for S⊆N the
edges with both endpoints in S. Moreover, we say that S⊆ N is an odd set if |S| ≥ 3
and is odd.

First compact. We are given the IMP̈ (2.35) (a set covering formulation) and the
binary ISP (2.37) that finds matchings of minimum reduced cost. We design, with
the help of Proposition 4.15, a compact formulation ILP with several blocks, not
all of them being used. We also propose a grouping of the constraints such that the
Dantzig-Wolfe reformulation leads to this IMP̈.

Second compact. We next provide an alternative “compact” model, this time with-
out a block-index. We use a linear description of the matching polytope and Propo-
sition 4.17 that benefits from the integrality property of the pricing problem.

First compact, with an identical block-diagonal structure

Let κ denote an upper bound on the chromatic index, that is, the minimum number
of colors required to color all the edges such that no incident edges have the same
color. Vizing’s theorem states that the edges of any graph with maximum degree ∆

can be colored with at most ∆ +1 colors (Vizing, 1964). For k ∈ {1, . . . ,∆ +1}, let
xk

0 = 1 if color k is selected, 0 otherwise. Let the binary variable xk
e take value 1 if

edge e is colored by color k, 0 otherwise.

Starting with the structure of the ISP (2.37) reproduced below, where πππ ≥ 0 is
the dual vector of the linear relaxation of the set covering formulation (2.35),

c̄(πππ) = min x0−∑
e∈E

πexe (4.173a)

s.t. ∑
e∈δ ({i})

xe ≤ x0 ∀i ∈ N (4.173b)

x0, xe ∈ {0,1} ∀e ∈ E (4.173c)
cx = x0, aex = xe ∀e ∈ E. (4.173d)

a compact formulation with κ = ∆ +1 blocks (Proposition 4.15) is given by
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z⋆ILP = min
κ

∑
k=1

xk
0

s.t.
κ

∑
k=1

xk
e ≥ 1 ∀e ∈ E

∑
e∈δ ({i})

xk
e ≤ xk

0 ∀k ∈ {1, . . . ,κ}, i ∈ N

xk
0 ∈ {0,1} ∀k ∈ {1, . . . ,κ}

xk
e ∈ {0,1} ∀k ∈ {1, . . . ,κ}, e ∈ E.

(4.174)

To derive the IMP̈ (2.35) from the above compact formulation, let xk = [xk
e]e∈E ,

∀k ∈ {1, . . . ,κ}, and group the constraints as

A=

{{[
xk

0
xk

]
∈ {0,1}|E|+1

}
k∈K

∣∣∣∣ κ

∑
k=1

xk
e ≥ 1, ∀e ∈ E

}
(4.175a)

Dk =

{[
xk

0
xk

]
∈ {0,1}|E|+1

∣∣∣∣ ∑
e∈δ ({i})

xk
e ≤ xk

0, ∀i ∈ N

}
, ∀k ∈ {1, . . . ,κ}. (4.175b)

Here we face κ identical binary domains Dk, one per possible color, where, for
x = [xe]e∈E ,

[
xk

0
xk

]
∈D=

{[
x0
x

]
∈ {0,1}|E|+1

∣∣∣∣ ∑
e∈δ ({i})

xe ≤ x0, ∀i ∈ N

}
, ∀k ∈ {1, . . . ,κ}. (4.176)

Let P̈(= P) be the index set of extreme points of conv(D). The zero-vector
[

0
0

]
(in-

dexed by p = 0) can be removed from X=

{[
x0p
xp

]}
p∈P̈

, where xp = [xep]e∈E . This

results in less-than-or-equal-to-1 inequalities for the κ convexity constraints. Aggre-
gation of the λk

p-variables into λp = ∑
κ
k=1 λk

p leads to ∑p∈P̈\{0}λp ≤ κ , a redundant
constraint according to the definition of κ . The (aggregated) IMP̈ reads as

z⋆IMP̈ = min ∑
p∈P̈\{0}

λp

s.t. ∑
p∈P̈\{0}

xepλp ≥ 1 ∀e ∈ E

λp binary ∀p ∈ P̈\{0}.

Note that the λp-variables should be in Z+ by Proposition 4.10 but they are restricted
to binary values as it is useless to over cover the edges while minimizing the number
of matchings.
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Second compact, without a block-index

Edmonds (1965) observes that for any matching, the induced subgraph on any odd
cardinality vertex subset S has at most (|S|−1)/2 edges. In fact, this observation is
already all that is needed to fully describe the matching polytope, that is, the convex
hull of incidence vectors of matchings

conv

({
x ∈ {0,1}|E|

∣∣∣∣ ∑
e∈δ ({i})

xe ≤ 1

})
, (4.177)

see Nemhauser and Wolsey (1988, Part III.2 Matching) for a comprehensive study.
A linear description of the matching polytope is therefore

∑
e∈δ ({i})

xe ≤ 1 ∀i ∈ N (4.178a)

∑
e∈E(S)

xe ≤
1
2
(|S|−1) for all odd sets S⊆ N, (4.178b)

0≤ xe ≤ 1 ∀e ∈ E, (4.178c)

where the constraints (4.178b) are called the odd set or blossom constraints and the
bounds 0≤ xe ≤ 1 replace the binary condition xe ∈ {0,1} because of the integrality
property. Let (4.178) describe the ISP’s domain D such that its formulation fulfills
Condition 1 of Proposition 4.17. Deriving

A= {x ∈ {0,1}|E| | xe ≥ 1, ∀e ∈ E} (4.179)

from the IMP̈ formulation, obviously 0 /∈A such that Condition 2 is also satisfied. A
natural upper bound on any edge variable is obviously xe ≤ 1. Therefore, using c0 =
1, c= 0, A= I (i.e., ax = x), and u= 1, the following “compact” formulation (4.180)
in integer x-variables with an exponential number of constraints is derived from
Proposition 4.17:

z⋆ILP = min x0 (4.180a)
s.t. xe ≥ 1 ∀e ∈ E (4.180b)

∑
e∈δ ({i})

xe ≤ x0 ∀i ∈ N (4.180c)

∑
e∈E(S)

xe ≤
1
2
(|S|−1)x0 ∀S⊆ N : |S| ≥ 3, odd (4.180d)

xe ≤ x0 ∀e ∈ E (4.180e)
x0,xe ∈ Z+ ∀e ∈ E. (4.180f)

It gives back the set covering formulation (2.35) in a Dantzig-Wolfe reformulation
using the grouping of constraints
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A(x0) =

{[
x0
x

]
∈ Zn+1

+

∣∣∣∣ (4.180b)
}

(4.181a)

D(x0) =

{[
x0
x

]
∈ Zn+1

+

∣∣∣∣ (4.180c)–(4.180e)
}
. (4.181b)

Compact formulations are not created equal

Recall Note 4.18 where we express concerns about a compact formulation without
index k derived from Proposition 4.17: we may lose track of the essence of the
problem. This actually is the case with the above compact (4.180). Although its
reformulation with a scaling using x0 = 1 for the extreme rays of D(x0) results in
the set covering formulation (2.35), where the matchings are well identified, none
are available in this ILP.

If we pay attention to the xe-variables in (4.180b), we realize they all necessarily
take value 1. Moreover, Vizing’s theorem tells us that x⋆0 is either ∆ or ∆ +1, which
means that (4.180c) is tantamount to ∆ ≤ x0 ≤ ∆ +1. Finally, the left-hand side of
the odd set constraints in (4.180d) simply counts the number of edges in E(S). We
can rewrite another model, simplified, with these observations as

z⋆ILP = min x0 (4.182a)

x0 ≥
2|E(S)|
|S|−1

∀S⊆ N : |S| ≥ 3, odd (4.182b)

x0 ∈ {∆ ,∆ +1}. (4.182c)

This (third) compact formulation (4.182) has a single variable. An optimal solu-
tion does establish the chromatic index but does not give an actual edge coloring. In-
tuitively, if any constraint in (4.182b) is violated by x0 =∆ , we trivially establish that
an optimal solution is x⋆0 = ∆ +1. We can then even derive an edge coloring in poly-
nomial time (Vizing, 1964). The entire difficulty therefore lies in deciding whether
x0 = ∆ is feasible which requires the verification of all constraints in (4.182b). If
the optimum is indeed x⋆0 = ∆ , this knowledge does not make it any easier to assign
colors to edges. In finding the second compact formulation without block-index, we
just threw the baby out with the bath water because we lost track of the essence of
the real problem.

4.8 Reference Notes

This chapter is the bridge between two algorithms: Column Generation (Chapter 2)
and Branch-Price-and-Cut (Chapter 7) in which we see how to deal with solutions
that come from linear relaxations until integrality is fulfilled.
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Introduction The analogy atomes vs. molécules developed by François Soumis
originally started as grains de sable vs. briques. The former better reflecting that
the objects we generate with the pricing problem are ‘complex/structured’ and of
various ‘shapes.’

Section 4.1 The convexification of the reformulated domain D naturally extends
the Dantzig-Wolfe decomposition principle to integer linear programs, see for ex-
ample Barnhart et al. (1998), Desrosiers and Lübbecke (2005), and Lübbecke and
Desrosiers (2005).

Section 4.2 The discretization approach ensures that branching decisions can also be
done on the λ -variables, in addition to the x-variables already present in the compact
formulation. Discretization is generalized to mixed-integer linear programs in that
one applies convexification to the continuous part (Vanderbeck and Savelsbergh,
2006). Johnson (1989) has an early paper on the subject. See also the PhD disserta-
tion by Vanderbeck (1994).

Section 4.3 The integrality property of an ILP formulation is first defined in Geof-
frion (1974). For years, the quality of the lower bound induced by it is essentially in-
vestigated in conjunction with the Lagrangian relaxation method (see Fisher (1981)
and Guignard (2003) amongst others), a decomposition approach that can be seen
as the dual point of view of the Dantzig-Wolfe decomposition. We come back on
this aspect in Chapter 6.

Section 4.4 Most of the industrial applications involve block-diagonal structures,
that is, several (and different) pricing problems to build up columns of various types.
Examples reported on p. 198 range from two to more than a thousand such blocks.
Other applications are listed in Lübbecke and Desrosiers (2005), notably in vehicle
routing and crew scheduling, see Desrosiers et al. (1995) and Desaulniers et al.
(1998a). Proposition 4.11 is new, exploiting the fact that conv(D) is a polyhedral
cone. In that case, a set of identical subproblems allows for a compact formulation
written without block indices.

Good to Know The material in Not all blocks are used is new and largely used in
the so-called reverse Dantzig-Wolfe decomposition (see More to Know). Clausen
et al. (2022) inspired the formulations on the Shared variables across all blocks.

More to Know There are three main results in this section that are devoted to the
reverse Dantzig-Wolfe decomposition. Proposition 4.15 is due to Daniel Villeneuve
(1999), later published in Villeneuve et al. (2005). Together with Éric Gélinas and
Norbert Lingaya, Daniel is one of the architects of the GENCOL solver used by the
Montréal companies AD OPT for solving routing and scheduling airline problems
and GIRO for optimizing bus driver schedules. This proposition regarding the exis-
tence of a compact formulation with a set of identical blocks was derived the same
day as the block-diagonal structure used in the Unified framework for deterministic
time constrained vehicle routing and crew scheduling problems (Desaulniers et al.,
1998a). The two other results, Propositions 4.16 and 4.17, are new and show that
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compact formulations without block-index are also possible, depending on the prop-
erties of the pricing problem. These are two late answers to François Vanderbeck
asking/waiting/hoping for such results.

Finding structures in matrices is an old topic. The graph-based methods go back
to Ferris and Horn (1998) and to Aykanat et al. (2004) (using hypergraphs). Bergner
et al. (2015) pioneered the graph partitioning ideas in the context of (automatic)
Dantzig-Wolfe reformulation of general MILPs. Khaniyev et al. (2018) describe
graph clustering for structure detection and suggest several quality scores, in par-
ticular modularity. The methods based on constraint and variable classes are docu-
mented in code (only): they are part of the general decomposition solver GCG (Gam-
rath and Lübbecke, 2010). GCG is also used for the machine learning based methods
for detecting and exploiting decompositions (Basso and Ceselli, 2023; Kruber et al.,
2017).

Examples
4.1 Integrality property in the knapsack problem. The book Knapsack Problems:
Algorithms and Computer Implementations (Martello and Toth, 1990) is a must.

4.2 Integrality property in the cutting stock problem. As already mentioned in the
previous chapter, flow-based formulations allow to develop tight formulations for
mixed-integer programs, see Valério de Carvalho (2002), Delorme et al. (2016),
Delorme and Iori (2020) and de Lima et al. (2022). The reverse Dantzig-Wolfe para-
graphs shows that there are alternatives to the compact formulation with a block-
diagonal structure. Here we used Proposition 4.15 on the one hand and Proposi-
tion 4.16 exploiting the property of a polyhedral cone on the other hand.

4.3 TCSPP: nine reformulations. The more the reformulated domain D contains
constraints information, the better is the lower bound z⋆MP on z⋆ILP. The trade-off
analysis of this problem originally designed in Ahuja et al. (1993, p. 599) explores
the impact of a few constraints up to all, the last being irrelevant as it solves the ILP
within the ISP.

4.5 Generalized assignment problem. The reformulation of the semi-assignment
constraints giving back the compact formulation is an observation due to Krunal
Kishor Patel (fall 2021), a PhD student at Polytechnique Montréal. We wrote Propo-
sition 4.5 accordingly.

4.6 Multi-commodity maximum flow problem. Ford and Fulkerson (1958), “A sug-
gested computation for maximal multicommodity network flows,” is a seminal paper
on the Dantzig-Wolfe decomposition approach, without the name. Wang (2018a,b)
are complementary papers on applications, mathematical formulations, and solution
methods for various multi-commodity network flow problems.

(Reinventing the wheel, several times.) The Floyd-Warshall algorithm is an example of dy-
namic programming, and was published in its currently recognized form by Robert Floyd
in 1962. However, it is essentially the same as algorithms previously published by Bernard
Roy in 1959 and also by Stephen Warshall in 1962 for finding the transitive closure of a
graph, and is closely related to Kleene’s algorithm (published in 1956) for converting a
deterministic finite automaton into a regular expression. The modern formulation of the
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algorithm as three nested for-loops was first described by Peter Ingerman, also in 1962.
– Wikipedia

(Robert W Floyd.) [P]eople often assume that my books are in error or incomplete when I
refer to Bob as “Robert W Floyd,” since the indexes to my books give a full middle name
for almost everybody else. The truth is that he was indeed born with another middle name
[“Willoughby”], but he had it legally changed to “W”—just as President Truman’s middle
name was simply “S”. Bob liked to point out that “W.” is a valid abbreviation for “W”.

– Knuth (2003)

4.8 Design of balanced student teams. The material of this section is inspired by
Desrosiers et al. (2005). The difficulties arising from a quadratic objective function
are bypassed by the reformulation approach resulting in a set partitioning model.

4.9 Can you decode a secret vote? Work on this problem began in 1985, following a
confidential (and deciphered) request. The main results of the mathematical analysis
are available in Jaumard and Soumis (1986).

4.10 Edge coloring problem: two compact formulations. To our knowledge, the sec-
ond compact formulation based on the polyhedral description of the matching poly-
tope by Edmonds (1965) is new. This is an application of Proposition 4.17 requiring
the integrality property of the ISP formulation. In theory, the convex hull of any
integer linear problem can be described by a set of linear constraints, possibly an
exponential number, hence there should be an original formulation without a block-
index. However, it does not ensure the presence of relevant information to build a
viable solution.

Exercises
4.9 Identical subproblems: lexicographic ordering of the extreme points. For-
mula (4.184) for the computation of the disaggregated λk

p-values is due to Van-
derbeck and Wolsey (2010, eq. (13.51)).

Exercises

4.1 Hermann Minkowski
When and where did Hermann Minkowski live? List a few of his scientific contri-
butions.

4.2 Alternative decomposition of the 2D illustration
In Figure 4.1, the Dantzig-Wolfe reformulation of the illustrated 2-dimensional ILP
is based on the convexification of D. The domain of the MP is therefore given by
{x ∈ R2

+ | Ax≥ b}∩ conv(D).
Assume that the reformulation is rather based on the convexification of A. Compare
the domain {x∈R2

+ |Dx≥ d}∩conv(A) of the reformulated MP to the integer hull
conv(A∩D) of the ILP.

https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm
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4.3 2D convexification practice
Given below are the respective integer sets A and D, where the outer border de-
scribes the linear relaxation. Complete the exercise by plotting

(a) the complete integer linear program and its linear relaxation.
(b) the convex hull of D and the feasible region of the MP for a Dantzig-Wolfe

reformulation based on conv(D).
(c) the convex hull of A and the feasible region of the MP for a Dantzig-Wolfe

reformulation based on conv(A).

• • • • •

• ⊙ ⊙ ⊙ •

• • ⊙ • •

(a) Integer set A= {x ∈ Z2
+ | Ax≥ b}

• ⊙ ⊙ • •

• ⊙ ⊙ • •

• • ⊙ ⊙ •

(b) Integer set D= {x ∈ Z2
+ | Dx≥ d}

Fig. 4.44: Integer sets for Exercise 4.3.

4.4 Reformulation by discretization
(a) In Figure 4.45a, we use the integer scaled rays (1,0) and (4,1). Write points

(17,5) and (9,4) according to the Giles-Pulleyblank expression (4.15).
(b) In Figure 4.45b we use the integer scaled rays (2,0) and (8,2). Write points

(6,3) and (7,3) according to the Giles-Pulleyblank expression (4.15).

4.5 Trick question
Both reformulations of the compact formulation by Theorems 4.1 (Minkowski-
Weyl) and 4.2 (Hilbert-Giles-Pulleyblank) make use of the convexification of D,
the domain of the ISP. In practice, do we really perform such a convexification?

4.6 Alternative expression for the Dantzig-Wolfe lower bound
Show that the Dantzig-Wolfe lower bound zRMP +∑k∈K c̄k(πππb,π

k
0)≤ z⋆MP in Propo-

sition 4.12 is independent of all dual values πk
0 , k ∈ K.

4.7 Optimality test for the compact formulation
Given dual values πππb ≥ 0 and π0 ∈ R with respect to the linear relaxation of the
IMP (4.5), let an optimal solution xp, p ∈ P, to the ISP (4.11) be feasible for the
single block compact formulation ILP (4.1). Show that xp is optimal for the ILP if
πππ
⊺
b(b−ap) = 0.
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x1

x2

0 5 10

(1,0)

(4,1
)

2•

3

4
(9,4)
•

(a) Integer-scaled rays {(1,0),(4,1)}

x1

x2

0 5 10

(2,0)

(8,2
)

2•

3

4

⊙

⊙ ⊙
(6,3)
• (7,3)•

(b) Integer-scaled rays {(2,0),(8,2)}

Fig. 4.45: Different extreme ray scalings give different discretization sets.

4.8 Identical subproblems: solving an aggregated compact formulation
Let the block constraints Dxk ≥ d, ∀k ∈ K, in the compact formulation (4.47) be
summed to D(∑k∈K xk)≥ |K|d and let y=∑k∈K xk. Show that solving the MP (4.56)
in Proposition 4.8 is equivalent to solving the MP of a Dantzig-Wolfe reformulation
of the following ILP

z⋆ILP = min c⊺y
s.t. Ay≥ b

Dy≥ |K|d
y ∈ Zn

+,

(4.183)

using the grouping Ay = {y ∈ Zn
+ | Ay≥ b} and Dy = {y ∈ Zn

+ | Dy≥ |K|d}.

4.9 Identical subproblems: lexicographic ordering of the extreme points.
Assume that the numbering of the positive aggregated λp-variables in the solution
to the final RMP is given by the lexicographic order of the xp-vectors, say from 1 to
m. Show that a solution to the transportation problem (4.62) of dimension m×|K|
is given by recursively computing for p = 1, . . . ,m :

λ
k
p = min

{
1, λp−

k−1

∑
j=1

λ
j
p, (k−

p−1

∑
i=1

λi)
+

}
, for k = 1, . . . , |K|. (4.184)

4.10 Not all blocks are used
From Section 4.5, let the ILP (4.81) be reproduced below

z⋆ILP = min ∑
k∈K

ck
0xk

0 + ck⊺xk (4.185a)

s.t. ∑
k∈K

Akxk ≥ b (4.185b)
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Dkxk ≥ dkxk
0 ∀k ∈ K (4.185c)

xk ≤ ukxk
0 ∀k ∈ K (4.185d)

xk
0 ∈ {0,1} ∀k ∈ K (4.185e)

xk ∈ Znk

+ ∀k ∈ K, (4.185f)

and rather consider the following grouping of the constraints:

A0 =

{{[
xk

0
xk

]
∈ {0,1}×Znk

+

}
k∈K

∣∣∣∣ ∑
k∈K

Akxk ≥ b

}
(4.186a)

Dk
0 =

{[
xk

0
xk

]
∈ R+×Znk

+

∣∣∣∣ Dkxk ≥ dkxk
0, xk ≤ ukxk

0

}
, ∀k ∈ K. (4.186b)

Compared to the grouping in (4.82), observe that xk
0 ∈ {0,1} in Dk

0 is replaced by
xk

0 ≥ 0. Indeed, we have replaced the polytope conv(Dk) by a polyhedral cone with
the newly created zero-vector as the single extreme point, see Figure 4.46. Show that
the resulting Dantzig-Wolfe reformulation leads to an IMP formulation identical to
that of (4.84).

[
xk

0 = 1
xk

]
conv(Dk)

[
xk

0 = 0
0

]
Fig. 4.46: Illustration of conv(Dk

0).

4.11 Binary knapsack problem
Show that the formulation (4.103) of the binary knapsack problem does not possess
the integrality property using the data in Table 4.13.

i 1 2 3 4

ui 20 36 18 4
wi 2 4 3 1

W = 7

Table 4.13: Knapsack capacity and potential items to pack.
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4.12 Cutting stock problem: λ -integrality
The reformulation IMP (4.109) requests λ -integrality whereas the reformulations
IMPK (4.115) and IMPNF (4.124) do not. How can we validate the λ -integrality of
the Gilmore-Gomory formulation using a Dantzig-Wolfe reformulation?

4.13 Time constrained shortest path problem: nine reformulations
(a) For the grouping of the constraints of the TCSPP in Example 4.3, write the sets

A1 to A9, the counterparts of D1 to D9.
(b) For the reformulation based on the extreme case set D9 for which all constraints

appear in the ISP, write the IMP.

4.14 Reformulation of the scene selection problem
(a) In the ILP (4.159) of Example 4.7, show that z⋆LP = ∑ j∈A c j.
(b) Describe the set of extreme points arising from the proposed grouping (4.160).

Give an interpretation/description of a possible day-pattern. Recall that this
Dantzig-Wolfe reformulation does not suffer from any symmetry due to the
permutation of the days (p. 268).

(c) Formulate the IMP̈ based on discretization.
(d) Formulate the ISP.
(e) How would you enumerate all the patterns of Example 4.7?
(f) How does z⋆MP compare to z⋆LP?

4.15 Design of balanced student teams
Consider Example 4.8 in which an optimal solution to the IMP (4.168) is composed
of 6 teams. Let the corresponding column-vectors be denoted b1, . . . ,b6.

(a) Assume that in a 2-semester academic program, the teams are broken at the end
of the first semester such that no members of a team are together during the
second semester. Given the six column-vectors, propose a model to build the
new teams.

(b) For our instance, can you provide a model that computes simultaneously the
teams for the two semesters?

4.16 Secret ballot
In the following, we examine situations where additional knowledge might help
decode the vote in Example 4.9. For each, enumerate the set of patterns in Da.
Assume that we know a more precise share distribution with two decimal digits
given in Table 4.14.

Shareholder i 1 2 3 4 5 6 7 8 9 10
Shares (pi %) 14.33 13.24 12.42 8.43 7.77 6.21 5.66 5.51 4.51 4.24
Shareholder i 11 12 13 14 15 16 17 18 19 20
Shares (pi %) 3.61 3.07 2.66 2.37 1.49 1.41 1.32 1.13 0.36 0.26

Table 4.14: Percentage shares (two decimal digits).
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(a) Table 4.15 gives the first round election results with either two decimal digits
or rounded to one decimal place (using a half-up rounding rule, i.e., a decimal
number 0.05 ≤ x < 0.15 is rounded to x = 0.1). Modify the model (4.169) to
account for these situations.

Candidate k a b c d e f
Votes (bk

2 %) 4.48 11.14 13.76 17.29 17.44 35.89 (Two decimal digits)
Votes (bk %) 4.5 11.1 13.8 17.3 17.4 35.9 (Rounded)

Table 4.15: First round results.

(b) Every candidate is a shareholder whom voted for him or herself. From candidate
a to f, the respective shareholders are 16, 11, 15, 3, 8, and 13.

(c) We know the number of shareholders who voted for each candidate. From can-
didate a to f, the respective numbers are 2, 3, 4, 3, 4, and 4.

4.17 Cutting stock with rolls of different widths: compact formulation
For the Cutting stock problem with rolls of different widths, Example 2.2:
(a) Give a compact formulation ILP.
(b) Propose a grouping of the constraints such that the Dantzig-Wolfe reformulation

leads to the IMP (2.33), where the λ -variables take non-negative integer values.

4.18 Aircraft routing with schedule synchronization: compact formulation
Given the domain Dk in (2.45) for the ISPk, the master problem (2.49) as well as
the parameters and encoding functions defined in (2.46)–(2.48), propose a compact
formulation for the Aircraft routing with schedule synchronization, Example 2.6.

4.19 Single depot vehicle scheduling problem: compact formulations
Given are:
(1) the Single depot vehicle scheduling problem of Example 2.4 formulated as the
following IMP, a set partitioning model,

z⋆IMP = min ∑
x∈X

cxλx (4.187a)

s.t. ∑
x∈X

aixλx = 1 [πi] ∀i ∈ N (4.187b)

∑
x∈X

bxλx ≤ v [πv] (4.187c)

λx ∈ {0,1} ∀x ∈ X, (4.187d)

where v identical vehicles are available at the depot and X is the index set of the
extreme points of the pricing problem (4.188);
(2) the ISP formulated as a unit-flow shortest path problem from o to d given the
dual values πππ = [πi]i∈N and πv,
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c̄(πππ,πv) = min cx−∑
i∈N

πi aix−πv bx (4.188a)

s.t. ∑
j:(o, j)∈A

xo j = 1 (4.188b)

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 ∀i ∈ N (4.188c)

− ∑
i:(i,d)∈A

xid =−1 (4.188d)

xi j ≥ 0 ∀(i, j) ∈ A (4.188e)

cx = ∑
(i, j)∈A

ci jxi j (4.188f)

aix = ∑
j:(i, j)∈A

xi j ∀i ∈ N (4.188g)

bx = ∑
j:(o, j)∈A

xo j (4.188h)

on the network G = (N,A) depicted in Figure 4.47, where arc (o,d) is used if some
vehicles remain at the depot, with a possible parking cost.

o d
1 1

. . . I . . ....
...

Fig. 4.47: Network G = (N,A) for the od-shortest path pricing problem.

(a) Using Proposition 4.15, propose a compact formulation with a block-diagonal
structure with identical data across all blocks which need not all be used.

(b) Using Proposition 4.17, give a compact formulation without a block-index.
It is known that this ILP, a network flow problem, possesses the integrality
property. Does the IMP reformulation, a set partitioning model, also has the
integrality property?

4.20 Multiple depot vehicle scheduling problem
A multi-commodity network flow model for the MDVSP (Ribeiro and Soumis,
1994), where commodity k is associated with depot k, is

z⋆ILP = min ∑
k∈K

∑
(i, j)∈Ak

do

ck
i jx

k
i j (4.189a)

s.t. ∑
k∈K

∑
j:(i, j)∈Ak

xk
i j = 1 ∀i ∈ N (4.189b)

xk
do ≤ vk ∀k ∈ K (4.189c)
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∑
j:(i, j)∈Ak

do

xk
i j− ∑

j:( j,i)∈Ak
do

xk
ji = 0 ∀k ∈ K, i ∈ Nk (4.189d)

xk
i j ∈ Z+ ∀k ∈ K,(i, j) ∈ Ak

do, (4.189e)

where the network Gk
do = (Nk,Ak

do) for depot k is represented as in Figure 4.48, with

• Nk = N∪{ok,dk},
• Ak = I∪ ({ok}×N)∪ (N×{dk})∪{(ok,dk)},
• Ak

do = Ak ∪{(dk,ok)}, and
• arc (dk,ok) is utilized to count the number of buses used.

Note that xk
i j ∈ {0,1}, ∀k ∈ K,(i, j) ∈ Ak \{(dk,ok)}, by constraints (4.189b).

ok dk. . . I . . ....
...

xk
od

xk
do

Fig. 4.48: Network Gk
do = (Nk,Ak

do).

(a) What is the row-size of the ILP?
(b) Propose a grouping of the constraints in the form A and D.
(c) Describe the set X of extreme points and extreme rays of conv(D).
(d) Formulate the IMP. Give the row-size of the MP.
(e) Formulate the ISP.
(f) How would you solve the ISP?
(g) How does z⋆MP compare to z⋆LP?
(h) Assume that there is a vehicle cost cv, large compared to the traveling costs.

How would you initialize the column generation algorithm for solving the MP?
Suggestion: Aggregate all depots into one and solve a Single depot vehicle
scheduling problem (SDVSP). Formulate this network flow problem. How is
an optimal solution used in the IMP? – Strategy used in Oukil et al. (2007).

4.21 Useless Dantzig-Wolfe reformulations
Proposition 4.5 shows that if we reformulate D= {x ∈ {0,1}n | ∑n

j=1 x j = 1}, then
the IMP is no more, no less than the ILP. Are there other situations where a Dantzig-
Wolfe reformulation gives back the original formulation?
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Vehicle Routing and Crew

Scheduling Problems

Not everything that counts can be counted,
and not everything that can be counted counts.

Informal Sociology: A Casual Introduction to Sociological Thinking
William Bruce Cameron

Abstract In this chapter we illustrate the application of column generation to a
variety of vehicle routing and crew scheduling problems, starting with the classical
vehicle routing problem with time windows. In particular, we describe dynamic pro-
gramming algorithms for solving shortest path problems with resource constraints.
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Introduction

Vehicle routing problems are amongst the most studied problems in operations re-
search and their most common variants (the traveling salesperson problem, the ca-
pacitated vehicle routing problem, and the vehicle routing problem with time win-
dows) have served for decades as guinea pigs for testing several new algorithmic
ideas (such as branch-and-bound and cutting planes) that are now widely used in
numerous mathematical programming algorithms. In particular, a school bus rout-
ing problem was the first problem modeled as an integer program and solved by
an exact column-generation-based algorithm (see Desrosiers et al., 1984), i.e., a
branch-and-price algorithm. Soon after, the development of such algorithms follow-
ing this framework spread to crew scheduling problems, namely, public transit bus
driver scheduling and aircrew scheduling. Nowadays, state-of-the-art branch-and-
price algorithms have been designed for a wide variety of vehicle routing and crew
scheduling problems. These problems can often be formulated using set partition-
ing, set covering, or generalized set covering models where the set partitioning or
covering constraints impose that the tasks (flights, customers, trains, etc.) be covered
adequately by a set of columns encoding, e.g., vehicle routes, bus itineraries, crew
schedules, or ship routes (see Desrosiers et al., 1995; Desaulniers et al., 1998a).
These problems share a common feature: they possess an underlying network struc-
ture such that, in a column generation context, the pricing problem is often a shortest
path problem with resource constraints (SPPRC).

The main goal of this chapter is to illustrate the application of column generation
to vehicle and crew scheduling problems, by presenting a variety of examples, for-
mulating them, and discussing how column generation can be applied to solve their
linear relaxations. In particular, we describe dynamic programming algorithms for
solving the SPPRC and the elementary SPPRC (ESPPRC). The discussion about
how integer solutions can be computed is postponed to Chapter 7, where branch-
price-and-cut is presented.

5.1 Vehicle Routing Problem with Time Windows

The vehicle routing problem with time windows (VRPTW) is one of the first prob-
lems for which a branch-and-price algorithm was developed at the beginning of
the 1990s. Since then, numerous papers describing improved algorithms have been
published, see Desaulniers et al. (2014); Costa et al. (2019).
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Problem statement

The VRPTW can be stated as follows. Consider a sufficient number of identical
vehicles, each with a capacity Q, that are housed in a single depot. These vehicles
are used to deliver merchandise to a set of customers C. With each customer i ∈C,
we associate a demand qi ≤ Q that must be satisfied by a vehicle in a single visit,
and a start of service time window [ai,bi]. Time windows are said to be hard in
the following sense. On the one hand, a vehicle can arrive at a customer i earlier
than ai because it can wait to start service. On the other hand, it cannot arrive later
than bi. With the depot, we also associate a time window [ā, b̄] representing the
planning horizon (ā < b̄). Let ci j ≥ 0 be the travel cost between locations i and
j, and ti j ≥ 0 the corresponding travel time, where i and j are either the depot or
a customer. Without loss of generality, we assume that if i is a customer, then ti j
includes the service time at i. The objective of the VRPTW consists in determining
a set of feasible vehicle routes such that each customer is visited exactly once and
the total travel cost is minimized. A route is feasible if it starts and ends at the
depot, visits each customer at most once (i.e., the route is elementary), the sum of
the demands of the visited customers does not exceed Q, and their time windows
are respected.

To reflect practice, we assume that

• all parameters Q, qi, ai, bi, and ti j are integers;
• the total travel time (including some service time) of any cycle through a subset

of at least two locations is positive;
• the travel times ti j satisfy the triangle inequality.

Definition 5.1. We say that the travel times satisfy the triangle inequality if

tik + tk j ≥ ti j, ∀(i,k, j) ∈Λ ,

where Λ is the set of all triplets of distinct locations (customers or depot). That is, it
is at least as fast to travel directly from i to j than have an in-between stop at k. For
travel times proportional to Euclidean distances, this is always true.

Network structure

We model the VRPTW using the following network G = (N,A). The node set
N = C ∪ {o,d} contains a node for each customer in C and two nodes o and d
representing the depot at the beginning and the end of the routes, respectively. With
nodes o and d, we associate the fictitious demands qo = qd = 0 and the time win-
dows [ao,bo] = [ad ,bd ] = [ā, b̄]. Furthermore, we set cod = tod = 0 on arc (o,d). The
arc set A contains all arcs (i, j) ∈ (N \ {d})× (N \ {o}) such that qi + q j ≤ Q and
ai + ti j ≤ b j, i.e., those that can possibly be part of a feasible route.
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Illustration 5.1 A network with four customers

Figure 5.1 provides an example of a network G. In this example, C = {1,2,3,4},
the time windows [ai,bi] are given beside the nodes, and the travel costs and times
(ci j, ti j) are specified beside the arcs. We assume that Q = 5, q1 = q3 = 1, and q2 =
q4 = 2. Note that arc (4,2) ̸∈ A because t42 is such that a4 + t42 > b2. Other arcs are
discarded for similar reasons. A feasible route corresponds to a path from o to d.
However, not all o-d paths in G are feasible. For instance, path o234d is not feasible
even if all arcs (o,2),(2,3),(3,4), (4,d)∈A. Indeed, following this path, the earliest
start of service time at customer 3 is 8 + 5 = 13, which makes it impossible to
reach customer 4 before b4 = 18 (i.e., 13+ 6 ̸≤ 18). Observe that G is not acyclic.
Indeed, both arcs (2,3) and (3,2) exist and form a cycle. Moreover, there exist non-
elementary paths (for example, path o1343d) that respect the time windows and
the capacity constraint. Obviously, this path cannot be part of a feasible VRPTW
solution given that each customer must be visited exactly once.

o

[0,40]

2

[a2,b2] = [8,18]

3

[10,25]

4

[16,18]

1

[2,6]

d

[0,40]

(3,2)

(15,8)

(12,10)

(20,12)

(0,0)

(19,10)

(16,9)

(21,12)

(20,10)

(4,5)
(11,9)

(15,12)

(c32, t32) = (3,4) (9,6)

(18,14)

(8,2)

(20,18)

Fig. 5.1: A network G = (N,A) for the VRPTW.

The optimal solution to this example is formed of the two feasible routes o32d
and o14d with respective costs 30 and 44, for a total cost of 74. The total demand
of route o32d is 3 and that of route o14d is 3, both respecting the vehicle capacity
Q = 5.

Furthermore, using the earliest service start times, a feasible schedule for the first
route indicates to start service at times 10 and 14 at customers 3 and 2, respectively,
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after leaving the depot o at time 0 and before returning to the depot d at time 26.
Similarly, the earliest times 0, 2, 16 and 34 at nodes o, 1, 4 and d, respectively,
define a schedule that respects the time windows along the second route. Observe
that, with the latter schedule, the vehicle needs to wait two units of time between
customers 1 and 4.

Mathematical formulations

Various formulations can be proposed for the VRPTW. In the following, we present
a compact fromulation and an extended one.

Compact arc-flow formulation

Let K be a set of vehicles that is sufficiently large to be unconstraining. With each
arc (i, j) ∈ A and each vehicle k ∈ K, we associate the binary variable xk

i j that takes
value 1 if arc (i, j) is traversed by vehicle k and 0 otherwise. Furthermore, with each
node i ∈ N and each vehicle k ∈ K, we define a continuous variable tk

i that indicates
the start of service time at node i if this node is visited by vehicle k or takes value
0 otherwise. This start of service time corresponds to the departure time from the
depot for i = o and to the arrival time at the depot for i = d.

The VRPTW can be formulated as the following mixed-ILP:

z⋆ILP= min ∑
k∈K

∑
(i, j)∈A

ci jxk
i j (5.1a)

s.t. ∑
k∈K

∑
j:(i, j)∈A

xk
i j = 1 ∀i ∈C (5.1b)

∑
j:(i, j)∈A

xk
i j− ∑

j:( j,i)∈A
xk

ji =

 1 for i = o
0 ∀i ∈C
−1 for i = d

∀k ∈ K (5.1c)

∑
i∈C

∑
j:(i, j)∈A

qi xk
i j ≤ Q ∀k ∈ K (5.1d)

ai ≤ tk
i ≤ bi ∀k ∈ K, i ∈ {o,d} (5.1e)

ai( ∑
j:(i, j)∈A

xk
i j)≤ tk

i ≤ bi( ∑
j:(i, j)∈A

xk
i j) ∀k ∈ K, i ∈C (5.1f)

xk
i j(t

k
i + ti j− tk

j )≤ 0 ∀k ∈ K,(i, j) ∈ A (5.1g)

xk
i j ∈ {0,1} ∀k ∈ K,(i, j) ∈ A. (5.1h)

Constraints (5.1b) ensure that each customer is visited exactly once. Constraint
set (5.1c) defines the structure of a path from o to d for each vehicle k ∈ K. We im-
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pose vehicle capacity for each vehicle through constraints (5.1d), and express time
windows at the depots and the customers through (5.1e) and (5.1f), respectively. Fi-
nally, constraints (5.1g) link the arc-flow variables with the time variables. Such a
constraint states that if xk

i j = 1, then tk
j ≥ tk

i + ti j; otherwise xk
i j = 0 and it is trivially

satisfied. These constraints prevent the formation of cycles because the time along
a cycle is assumed to increase.

As presented, constraints (5.1g) are non-linear but they can be linearized as fol-
lows: tk

i +ti j ≤ tk
j +M(1−xk

i j), ∀k∈K,(i, j)∈A, where M is a large constant that can
be set to b j−ai. Moreover, we can discard all the constraints for which bi+ ti j ≤ a j,
(i, j) ∈ A, as they are always satisfied.

Extended set-partitioning formulation

Model (5.1) has a block-diagonal structure (see Section 4.4), where the set Dk is de-
fined by the constraints (5.1c)–(5.1h) for each vehicle k ∈ K. To derive an extended
formulation, we apply a Dantzig-Wolfe reformulation using the convexification of
the ISPk domain. Let

A=

{{
xk ∈ {0,1}|A|

}
k∈K

∣∣∣∣ ∑
k∈K

∑
j:(i, j)∈A

xk
i j = 1, ∀i ∈C

}
(5.2a)

Dk =

{[
xk

tk

]
∈ {0,1}|A|×R|C|+2

∣∣∣∣ Dk
[

xk

tk

]
≥ dk

}
, ∀k ∈ K, (5.2b)

where the set of constraints Dk
[

xk

tk

]
≥ dk denotes the constraints (5.1c)–(5.1g) asso-

ciated with vehicle k. Observing that all domains Dk are identical, we can aggregate
them into a single one as discussed in Section 4.4 and omit index k. The resulting
domain D is defined by the following constraints:

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji =

 1 for i = o
0 ∀i ∈C
−1 for i = d

(5.3a)

∑
i∈C

∑
j:(i, j)∈A

qi xi j ≤ Q (5.3b)

ai ≤ ti ≤ bi ∀i ∈ {o,d} (5.3c)

ai( ∑
j:(i, j)∈A

xi j)≤ ti ≤ bi( ∑
j:(i, j)∈A

xi j) ∀i ∈C (5.3d)

xi j(ti + ti j− t j)≤ 0 ∀(i, j) ∈ A (5.3e)
xi j ∈ {0,1} ∀(i, j) ∈ A. (5.3f)

This domain is bounded and, thus, its convex hull can be described using only ex-
treme points. As in the previous chapter, we denote by P, the index set of these
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extreme points. The extreme point indexed by p ∈ P is denoted (xp, tp). It specifies
a route and a schedule, i.e., a start of service time at every visited node along this
route (the service start time at every other node is set to zero).

Note 5.1 (The nature of the extreme points.) An extreme point (xp, tp), p∈ P, is such
that the subvector xp defines a single path (i0 = o, i1, . . . , im, im+1 = d) in network
G visiting m customer nodes. For all i ∈ C \ {i1, . . . , im}, tip = 0. The other time
components tip, i ∈ {i1, . . . , im}, represent an extreme point of the domain defined
by

ai ≤ ti ≤ bi ∀i ∈ {i0, i1, . . . , im, im+1} (5.4a)
ti j + ti j ,i j+1 ≤ ti j+1 ∀ j ∈ {0,1, . . . ,m}. (5.4b)

Therefore, each route can induce multiple extreme points that differ by their sched-
ule. One such schedule is given by the earliest start of service time at each node
according to the chosen route. Another is obtained by considering the latest service
start times. Several others derived from a mix of earliest and latest start times may
also yield an extreme point.

For an extreme point (xp, tp), p ∈ P, let

cp = c(xp, tp) = ∑
(i, j)∈A

ci jxi j (5.5)

be its cost and
aip = ai(xp, tp) = ∑

j:(i, j)∈A
xi j (5.6)

be a binary parameter defined for each customer i ∈ C that indicates if the route
associated with (xp, tp) visits or not customer i.

Convexifying D to apply a Dantzig-Wolfe reformulation to model (5.1) yields
the following IMP, see formulation (4.55) adapted to the bounded case:

z⋆IMP = min ∑
p∈P

cpλp (5.7a)

s.t. ∑
p∈P

aipλp = 1 ∀i ∈C (5.7b)

∑
p∈P

λp = |K| (5.7c)

λp ≥ 0 ∀p ∈ P (5.7d)

λp = ∑
k∈K

λ
k
p ∀p ∈ P (5.7e)

∑
k∈K

λ
k
p = 1 ∀k ∈ K (5.7f)

λ
k
p ≥ 0 ∀k ∈ K, p ∈ P (5.7g)



5.1 Vehicle Routing Problem with Time Windows 299

∑
p∈P

xpλ
k
p = xk ∈ {0,1} ∀k ∈ K, (5.7h)

where the variables λk
p, p ∈ P, k ∈ K, are the weights associated with the extreme

points (xp, tp) in the convex combination for vehicle k and the variables λp, p ∈ P,
are the sums of these weights per vehicle. Constraints (5.7b) impose a single visit
to each customer, whereas constraints (5.7c) ensure that each vehicle is assigned to
a route-schedule, possibly the empty one represented by arc (o,d).

Note 5.2 (The time components are not encoded.) The encoding (cp,ap) of every
extreme point (xp, tp) does not depend on the time components. Therefore, instead
of considering the complete set of extreme points (xp, tp), p ∈ P, it is sufficient
to consider a subset of it, indexed by P̂ ⊆ P, that contains a single extreme point
(xp̂, t p̂) representing all extreme points (xp, tp), p ∈ P, such that xp = xp̂. For in-
stance, tp̂ may be the schedule formed of all the earliest start of service times for
the route represented by x p̂. Furthermore, given that all x variables are binary, con-
straints (5.7d)–(5.7h) imply that all variables λp, p ∈ P̂, are also binary by Propo-
sition 4.4. Finally, since |K| is assumed unrestrictive and there is a zero-cost empty
route-schedule, constraint (5.7c) can be omitted. However, they are usually kept and
used in the branching tree, see Note 4.16.

These observations yield the following equivalent IMP:

z⋆IMP = min ∑
p∈P̂

cpλp (5.8a)

s.t. ∑
p∈P̂

aipλp = 1 [πi] ∀i ∈C (5.8b)

∑
p∈P

λp = |K| [πo] (5.8c)

λp ∈ {0,1} ∀p ∈ P̂, (5.8d)

where the dual variables πi ∈ R, ∀i ∈ C, and πo appear in the linear relaxation.
For ease of notation, the dual variable associated with the aggregated convexity
constraint (5.8c) is here denoted πo as we count the number of vehicles used as
those exiting the origin depot.

Note 5.3 (How about encoding the time components?) This simplification of the
IMP to binary λ -variables is possible because the time components tp of the orig-
inal extreme points (xp, tp), p ∈ P, do not play a direct role in the IMP. They are
only useful to ensure that every route associated with an extreme point indexed in
P̂ respects the time windows. This simplification is not possible when the column
encodings involve time components, for example, in vehicle routing applications
with vehicle synchronization constraints (Example 2.6) or with time-dependent de-
livery costs. For the sake of conciseness, we consider in the following that each
extreme point (xp, tp), p ∈ P̂, is only associated with a route (and not a schedule).
We also call P̂ the set of feasible routes and designate a route by the index p ∈ P̂ of
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its corresponding extreme point, i.e., we sometimes say route p instead of the route
represented by the extreme point (xp, tp) or associated with the λp-variable.

The linear relaxation of model (5.8) is known to be much tighter, in general,
than the linear relaxation of model (5.1), see Proposition 4.1. Because of this ad-
vantage, the state-of-the-art is to solve this extended formulation of the VRPTW by
branch-price-and-cut, see Chapter 7. Below, we discuss how to solve the MP issued
from (5.8) by column generation.

Column generation

In practice, the MP contains a very large number of variables, namely, one per feasi-
ble route or, equivalently, one per extreme point of the convex hull of the domain D

defined by constraints (5.3). Column generation must, thus, be applied to solve it.
In this case, the ISP is an elementary shortest path problem with time windows and
capacity (ESPPTWC). This ISP is typically solved using a dynamic programming
algorithm, more specifically, a labeling algorithm. Given that solving elementary
shortest path problems can be highly time-consuming, relaxations of the ISP are of-
ten used to ease the route generation process. Below, we define the ISP, describe a
labeling algorithm for solving it, and discuss two ISP relaxations.

Elementary shortest path problem with time windows and capacity

Given a vector πππ = [πi]i∈C of dual values associated with constraint set (5.8b) and
πo = 0 because the aggregated convexity constraint is obviously not binding (see
Note 4.16), the ISP consists of finding a feasible route, i.e., its associated extreme
point (xp, tp), p∈ P̂, with a negative reduced cost. The reduced cost of a route p∈ P̂
is given by

c̄p =−πo + cp−∑
i∈C

πiaip, (5.9)

or, equivalently,

c̄p =− ∑
j:(o, j)∈A

πoxo jp + ∑
(i, j)∈A

ci jxi jp−∑
i∈C

∑
j:(i, j)∈A

πixi jp = ∑
(i, j)∈A

(ci j−πi)xi jp.

(5.10)
We denote by c̃i j = ci j−πi the adjusted cost of arc (i, j) ∈ A and write the objective
function of the ISP as

min ∑
(i, j)∈A

c̃i jxi j. (5.11)

Note that, for each vehicle k ∈ K, the capacity constraint (5.1d) can be written
similarly to the time window constraints (5.1e)–(5.1g). Indeed, dropping index k
as well as introducing a variable t load

i for each node i ∈ N that indicates the load
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accumulated up to node i, vehicle capacity can be modeled using the following
constraints:

0≤ t load
i ≤ Q ∀i ∈ {o,d} (5.12a)

0≤ t load
i ≤ Q( ∑

j:(i, j)∈A
xi j) ∀i ∈C (5.12b)

xi j(t load
i +q j− t load

j )≤ 0 ∀(i, j) ∈ A. (5.12c)

Consequently, the ISP can be formulated as

c̄(πππ) = min ∑
(i, j)∈A

c̃i jxi j (5.13a)

s.t. ∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji =

 1 for i = o
0 ∀i ∈C
−1 for i = d

(5.13b)

0≤ t load
i ≤ Q ∀i ∈ {o,d} (5.13c)

0≤ t load
i ≤ Q( ∑

j:(i, j)∈A
xi j) ∀i ∈C (5.13d)

xi j(t load
i +q j− t load

j )≤ 0 ∀(i, j) ∈ A (5.13e)

ai ≤ ttime
i ≤ bi ∀i ∈ {o,d} (5.13f)

ai( ∑
j:(i, j)∈A

xi j)≤ ttime
i ≤ bi( ∑

j:(i, j)∈A
xi j) ∀i ∈C (5.13g)

xi j(ttime
i + ti j− ttime

j )≤ 0 ∀(i, j) ∈ A (5.13h)

xi j ∈ {0,1} ∀(i, j) ∈ A, (5.13i)

where we now denote by ttime
i the time variable at node i ∈ N. In this formulation,

the objective function (5.13a) aims at minimizing the reduced cost of the selected
path-variable in the MP. Constraints (5.13b), (5.13f)–(5.13i) are equivalent to (5.1c),
(5.1e)–(5.1h) for a given vehicle k, whereas constraints (5.13c)–(5.13e) enforce ve-
hicle capacity. Note that, compared to (5.3), the domain of this ISP formulation
contains additional load variables. Therefore, its extreme points involve additional
components which express a loading schedule. As for the time components, these
load components are not involved in the column encoding of the VRPTW.

Note 5.4 (Cycle elimination.) Observe that model (5.13) does not allow cycles in
a feasible path because all time variables ttime

i , i ∈ N, must take a unique value
and all cycles in G are assumed to have a positive duration. We purposely model
the capacity constraint similarly to the time window constraints to highlight their
common structure. They are generally called resource constraints (see Section 5.2)
and the ISP is, thus, an ESPPRC, more precisely, an ESPPTWC in this case.
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The ISP is typically not solved using an algorithm based on model (5.13). It is
rather solved using a labeling algorithm applied on the underlying network G as
discussed next.

Labeling algorithm for the ESPPTWC

As previously stated, the ESPPTWC consists of finding a least-cost o-d path in net-
work G amongst those respecting the time windows, the vehicle capacity, and the
elementary requirements. The cost of a path is computed as the sum of the adjusted
costs c̃i j of its arcs (i, j) and is, thus, equal to the reduced cost of the corresponding
route variable with respect to the current dual solution πππ . Given that the adjusted
costs c̃i j, (i, j) ∈ A, can be negative, the cycles in G can have a negative cost and
be attractive. Consequently, the labeling algorithm for solving the ESPPTWC must
include an explicit mechanism to forbid them.

A labeling algorithm is a dynamic programming algorithm where a partial path
from o to a node j ∈ N and its attributes are represented by a multi-dimensional
vector, called a label, associated with node j. Starting from an initial label at source
node o, the algorithm creates iteratively partial paths by extending through the net-
work the partial paths previously created using resource extension functions (REFs).
After every extension, the feasibility of the newly created partial path is checked
against so-called resource windows and, when deemed infeasible, its corresponding
label is discarded from the extension process. To avoid enumerating all feasible o-d
paths, a dominance rule can be applied to keep only Pareto-optimal labels, ensuring
that all prefixes of at least one optimal o-d path are preserved. Before providing
the pseudo-code of a labeling algorithm, we discuss in detail these concepts for the
ESPPTWC.

Each partial path p = (i0 = o, i1, . . . , im = j) from o up to a node j ∈ N is repre-
sented by a label

Ep =
(
T rCost

p ,T time
p ,T load

p , [T custi
p ]i∈C

)
(5.14)

at node j. Its components are defined as follows:

T rCost
p = ∑

m
ℓ=1 c̃iℓ−1,iℓ is the reduced cost;

T time
p = T time

pm is the earliest feasible time computed recursively as

T time
p0 = ai0

T time
pℓ = max{aiℓ ,T

time
p,ℓ−1 + tiℓ−1,iℓ}, ℓ= 1, . . . ,m;

T load
p = ∑

m
ℓ=1 qiℓ is the accumulated load;

T custi
p , i ∈ C, is an indicator equal to 1 if customer i is visited, i.e., if there exists
ℓ ∈ {1, . . . ,m} such that iℓ = i, and 0 otherwise.

All components beside the cost component are needed to check the feasibility of
path p. They are associated with so-called resources (time, load, number of visits



5.1 Vehicle Routing Problem with Time Windows 303

to each customer) which are consumed along the arcs and must respect constraints
expressed as resource windows at each visited node. The resource window at node
j ∈N is given by the corresponding time window [a j,b j] for the time resource, [0,Q]
for the load resource, and [0,1] for each customer resource. The above partial path p
represented by label Ep =

(
T rCost

p ,T time
p ,T load

p , [T custi
p ]i∈C

)
is feasible if and only if

T time
p ∈ [a j,b j] (5.15a)

T load
p ∈ [0,Q] (5.15b)

T custi
p ∈ [0,1], ∀i ∈C. (5.15c)

For convenience, the reduced cost is also considered as a resource without windows
except at the depot node d, where a zero upper bound can be imposed. We denote
by R the set of all resources, i.e.,

R= {rCost, time, load, [custi]i∈C}. (5.16)

The initial label E0 at node o represents the single-node partial path p0 = (o) and is
set to

E0 =
(
0,ao,0, [0]i∈C

)
. (5.17)

To create new partial path p′=(i0 = o, i1, . . . , im = j,h) from path p=(i0, i1, . . . , im),
label Ep is extended along arc ( j,h) ∈ A. This extension yields a new label

Ep′ =
(
T rCost

p′ ,T time
p′ ,T load

p′ , [T custi
p′ ]i∈C

)
,

where

T rCost
p′ = f rCost

jh (T rCost
p ) = T rCost

p + c̃ jh (5.18a)

T time
p′ = f time

jh (T time
p ) = max{ah,T time

p + t jh} (5.18b)

T load
p′ = f load

jh (T load
p ) = T load

p +qh (5.18c)

T custi
p′ = f custi

jh (T custi
p ) =

{
T custi

p +1 if h = i
T custi

p otherwise
∀i ∈C, (5.18d)

and the functions f r
jh(·), r ∈ R, ( j,h) ∈ A, are the REFs. Label Ep′ is discarded if

deemed infeasible according to (5.15).

When applied iteratively on network G, the extension process presented above
can generate all feasible o-d paths. In practice, this might not be possible because
there may exist a very large number of feasible paths. To avoid enumerating all of
them, a dominance rule is applied. Such a rule, typically, compares pairs of labels
associated with the same node and is based on a dominance definition. Before pre-
senting it, let us define what is a feasible extension of a path.
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Definition 5.2. Let p = (i0 = o, i1, . . . , im) be a feasible partial path starting at
node o. A feasible extension of p is a path χ = ( j1, j2, . . . , jℓ) such that im = j1
and the path p′ = (i0 = o, i1, . . . , im = j1, j2, . . . , jℓ) obtained by concatenating p and
χ is feasible.

The ⊕ symbol is used to denote the concatenation of two paths, i.e., p′ = p⊕ χ

in Definition 5.2. When searching for a feasible shortest o-d path, a partial path p
starting in node o can be discarded from the search if it can be proven that every path
p⊕ χ resulting from any of its feasible extensions χ is not a shortest path amongst
all feasible paths reaching the end node of p⊕ χ , or at least not a unique one. In
general, the following more restrictive dominance definition is adopted.

Definition 5.3. Let p and p′ be two feasible partial paths from o to j ∈ N. Label
Ep (resp., path p) is said to dominate label Ep′ (resp., path p′) if, for every feasible
(single- or multiple-arc) extension χ ′ of p′, p⊕χ ′ is feasible and c̄p⊕χ ′ ≤ c̄p′⊕χ ′ .

Clearly, if Ep dominates Ep′ but not the opposite, label Ep′ can be safely dis-
carded because no feasible extension of p′ can yield a better path than the best path
resulting from an extension of p. On the other hand, if both labels Ep and Ep′ dom-
inate each other, then one of them must be kept while the other can be discarded.

Because Definition 5.3 cannot be used in practice (finding all feasible exten-
sions of p′ is often intractable), we rather rely on sufficient conditions to identify
dominated labels. Given that all REFs f r

jh(·) defined in (5.18) are non-decreasing
functions, the following conditions are sufficient:

T rCost
p ≤ T rCost

p′ (5.19a)

T time
p ≤ T time

p′ (5.19b)

T load
p ≤ T load

p′ (5.19c)

T custi
p ≤ T custi

p′ , ∀i ∈C. (5.19d)

The dominance rule is then stated as:

If conditions (5.19) hold, then label Ep dominates label Ep′ .

When not all conditions (5.19) are satisfied, we say that label Ep does not dominate
label Ep′ because we cannot prove the opposite with these conditions.

The number of feasible paths enumerated by the labeling process depends on the
capability of the dominance rule to identify dominated labels. As proposed by Feillet
et al. (2004), this rule can be strengthened by introducing the notion of unreacha-
bility and revising the definition of the customer resources. This notion is motivated
by the fact that, in practice, the time windows of the customers are, typically, spread
throughout the planning horizon. Therefore, when the time component T time

p of a
label Ep representing a path p is relatively large, it becomes infeasible to extend
this path to the customer nodes with relatively early time windows, which are then
deemed unreachable. In this case, the customer components T custi

p associated with
these unreachable customers i are set to 1 to ease dominance.
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Illustration 5.2 Improved dominance

Consider the network of Figure 5.1 and the two paths p = (o,1,3) and p′ = (o,2,3)
which both end at node 3. Let us assume that π2 = 20 and π3 = 32. Therefore,
c̃o1 = 3, c̃o2 = 15, c̃13 =−6, and c̃23 =−16. The labels representing p and p′ are

Ep = (−3,11,2, [1,0,1,0]) and Ep′ = (−1,13,3, [0,1,1,0]).

According to the dominance rule (5.19), Ep does not dominate Ep′ because the con-
dition T cust1

p ≤ T cust1
p′ is violated. In fact, this is the only violated condition, which

is part of the dominance rule to ensure that customer 1 can be visited in a feasible
extension of path p if this is possible for path p′. However, we can observe that
no feasible extension of p′ visits customer 1. Given that all travel times are non-
negative, this can be deduced from the inequality T time

p′ = 13 > b1 = 6. In this case,
we say that customer 1 is unreachable from path p′ and, therefore, Ep dominates Ep′ .

For the VRPTW, we define the notion of unreachability as follows.

Definition 5.4. Let p be a feasible partial path from o to j that is represented by
label Ep =

(
T rCost

p ,T time
p ,T load

p , [T custi
p ]i∈C

)
. Under the assumption previously made

that the travel times satisfy the triangle inequality, customer i ∈C is said to be un-
reachable from p if and only if at least one of the four following conditions does not
hold:
T custi

p = 1; ( j, i) ̸∈ A; T time
p + t ji > bi; T load

p +qi > Q.

Note that the assumption on the travel times is necessary for the second and third
conditions to be valid. Indeed, if the triangle inequality on the travel times does not
hold then it might be possible to use a multiple-arc subpath to reach node i from
node j even if ( j, i) ̸∈ A or to reach node i from node j in less than t ji time units.

To strengthen the dominance rule (5.19), we replace the set of customer resources
by a set of unreachable customer resources, i.e., the resource set becomes

R= {rCost, time, load, [uCusti]i∈C}, (5.20)

where uCusti denotes the unreachability resource for customer i. A partial path p is
then represented by a label

Ep =
(
T rCost

p ,T time
p ,T load

p , [T uCusti
p ]i∈C

)
, (5.21)

where the component T uCusti
p , i ∈ C, takes value 1 if customer i is unreachable

from p, and 0 otherwise. These new resources are treated as follows in the labeling
algorithm. First, their resource windows are all equal to [0,1] at every node j ∈ N.
The label feasibility conditions (5.15c) are thus replaced by

T uCusti
p ∈ [0,1], ∀i ∈C. (5.22)
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Second, in the initial label E0, all components T uCusti
0 , i ∈ C, are set to 0. Third,

when extending a label Ep along an arc ( j,h) ∈ A to create a new label Ep′ , the
computation of the customer resource components (5.18d) is replaced by

T uCusti
p′ = f uCusti

jh (T time
p ,T load

p ,T uCusti
p )

=

{
T uCusti

p +1 if h = i
max{T uCusti

p ,U i
jh(T

time
p ,T load

p )} otherwise
∀i ∈C, (5.23)

where the function U i
jh(·) returns 1 if customer i is unreachable from p′ because of

the time windows or the capacity constraint, and 0 otherwise, i.e.,

U i
jh(T

time
p ,T load

p ) =

{
1 if f time

jh (T time
p )+ thi > bi or f load

jh (T load
p )+qi > Q

0 otherwise.
(5.24)

Finally, the conditions (5.19d) in the dominance rule are replaced by

T uCusti
p ≤ T uCusti

p′ , ∀i ∈C. (5.25)

Illustration 5.3 Improved dominance (cont.)

Returning to the example presented above with paths p = (o,1,3) and p′ = (o,2,3),
label Ep = (−3,11,2, [1,0,1,0]) remains unchanged whereas the label Ep′ becomes
Ep′ = (−1,13,3, [1,1,1,0]) because customer 1 cannot be reached from node 3. The
updated dominance rule indicates that label Ep dominates label Ep′ , which can then
be discarded.

In Algorithm 5.1, we provide the pseudo-code of a labeling algorithm for the
ESPPTWC that uses the ingredients discussed above. We assume that ti j > 0 for all
arcs (i, j) ∈ A such that i ∈ C (which is the case if all service times are positive).
Under this assumption and despite the fact that the adjusted costs can be negative,
Algorithm 5.1 is a label-setting algorithm because it extends the labels in increasing
order of their time component, ensuring that only permanent labels are extended.
Note that this order guarantees a minimum number of label extensions.

Let us describe this pseudo-code. At each node i ∈ N, the labels are stored in
two disjoint sets: Pi contains the labels that have been processed (i.e., extended)
along the arcs leaving node i and Ui those that are unprocessed. The initialization
creates empty sets putting only the initial label E0 in the set of unprocessed labels
at node o. The main while loop (Steps 1 to 10) is executed until there are no more
labels to extend. At each iteration, it selects an unprocessed label with a minimum
time component in Step 2. This label is denoted Ep and is associated with node j.
This label is then extended in Step 4 along each arc leaving node j before being
transferred to the set of processed labels P j in Step 10. For every extension of Ep
along an arc ( j,h), the new label Ep′ is first checked for feasibility in Step 5. If fea-
sible, it is compared to the labels in Uh∪Ph to determine if it is dominated (Step 6).
If so, Ep′ is discarded and the algorithm moves on to the next extension. Otherwise,
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we add Ep′ to the set Uh and filter out dominated labels D, if any (Steps 8 and 9).
Finally, once the main loop is completed, a shortest feasible o-d path is returned in
Step 12 if one exists, i.e., if Pd ̸= /0, as tested in Step 11. In the next subsection, we
present an application of this algorithm to a relaxation of the ESPPTWC.

Algorithm 5.1: A labeling algorithm for the ESPPTWC.
input : G = (N,A)
output : Least reduced cost path p ∈ P̂
initialization : Uo←{E0}, Ui← /0, ∀i ∈ N \{o}, Pi← /0, ∀i ∈ N

1 while
⋃

i∈N Ui ̸= /0
2 j,Ep← Pick unprocessed label // min. time argmin

i∈N,Eq∈Ui

{T time
q }

3 for ( j,h) ∈ A
4 Ep′ ← Extend label Ep to node h // e.g. (5.18a)--(5.18c) and (5.23)
5 if Ep′ is feasible // e.g. (5.15a), (5.15b) and (5.22)
6 D← Check dominance between labels {Ep′} and Uh∪Ph // optional
7 if D = /0
8 D← Check dominance between labels Uh and {Ep′} // optional
9 Uh← (Uh \D)∪{Ep′}

10 P j ←P j ∪{Ep}, U j ←U j \{Ep}
11 if Pd ̸= /0
12 return path p such that Ep ∈ argmin

Eq∈Pd

T rCost
q

Other variants of Algorithm 5.1 can be devised by changing, for example, the or-
der in which the labels are extended (Lines 2 or 3), when dominance is executed, or
between which pairs of labels it is applied (Lines 6/8). For hard-to-solve ESPPTWC
instances, many feasible labels are generated, yielding a large number of compar-
isons to perform in the dominance procedure which, then, becomes a highly critical
bottleneck operation. Indeed, consider Algorithm 5.2 in which we perform a pair-
wise dominance check with labels from each set. Observe that one of the sets always
contains only one label Ep′ and that an obvious overlap in the work effort appears
with respect to Uh. Furthermore, the computational burden increases exponentially
with the number of generated labels. A more intricate dominance check procedure
along with well-thought-out data structures (see, e.g., Sadykov et al., 2021) can
therefore impact significantly the efficiency of the labeling algorithm. Such techni-
cal details are, however, out of the scope of this book. We can nonetheless observe
an obvious trade-off from such a tactical decision: during the time that dominance
is postponed we have to manage more labels, in particular generate extensions that
would otherwise be dominated.

Note 5.5 (Unreachability and feasibility check.) When unreachability resources are
used to impose path elementarity, their values can be exploited to avoid performing
extensions that would yield infeasible labels. Indeed, in Step 3, all arcs ( j,h) such
that h ∈C and T uCusth

p = 1 can be skipped. In this case, there is no need to perform
the feasibility check in Step 5 if h ∈C as it is equivalent to testing if T uCusth

p = 1.
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Algorithm 5.2: Dominance check.
input : Ld , Lc
output : Set of labels in Ld that are dominated by at least one label in Lc
initialization : D← /0

1 for ld ∈Ld
2 for lc ∈Lc
3 if ld is dominated by lc // e.g. (5.19a)--(5.19c), (5.25)
4 D← D∪{ld}
5 break

6 return D

Note 5.6 (More acceleration tricks.) As surveyed in Costa et al. (2019), several
other acceleration strategies have been developed to solve the ESPPTWC (and its
variants) and generate columns more rapidly. Among others, we highlight bounded
bidirectional labeling (see, e.g., Righini and Salani, 2006; Tilk et al., 2017, and Exer-
cise 5.12), decremental state-space relaxation (see, e.g., Boland et al., 2006; Righini
and Salani, 2008; Martinelli et al., 2014; Contardo et al., 2015), completion bounds
(see, e.g., Lübbecke, 2005; Baldacci et al., 2008; Martinelli et al., 2014), and heuris-
tic pricing (see, e.g., Fukasawa et al., 2006; Desaulniers et al., 2008; Contardo et al.,
2015). For details, the interested readers are invited to consult the above references.

Subproblem relaxations

When the time windows are wide and the vehicle capacity loose, the ESPPTWC can
be highly time-consuming and using it as an ISP may become impractical despite
the strong bounds it might yield. To overcome this difficulty, the ESPPTWC is often
replaced by an easier-to-solve relaxation. The most popular ISP relaxations (see
Desaulniers et al., 2014) in the context of the VRPTW allow the presence of cycles
in the paths, i.e., a customer can be visited more than once in a feasible path. These
relaxations differ by the rules defining the allowed cycles. In this section, we present
two such relaxations, namely, the shortest path problem with time windows and a
capacity constraint (SPPTWC) and the shortest ng-path problem with time windows
and a capacity constraint (ng-SPPTWC).

When the ISP can generate paths with cycles, the IMP obtained from a Dantzig-
Wolfe reformulation differs from formulation (5.8) in two ways.

• First, the set of feasible routes P̂ is augmented to include paths with the al-
lowed cycles. However, these additional paths must satisfy the time windows
and vehicle capacity. In this respect, multiple visits to the same customer in-
duce multiple start of service times at this customer (one for each visit) as well
as multiple deliveries of the customer demand. Note that it is not possible to
cycle infinitely because of the time windows and vehicle capacity.
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• Second, parameter aip, i ∈C, p ∈ P̂, is redefined to count the number of visits
(possibly more than one) to customer i in route p. Observe that routes with
cycles cannot be part of a feasible solution to (5.8). Indeed, when a route p ∈
P̂ visits a customer i ∈ C more than once, aip ≥ 2 and the constraint (5.8b)
associated with i ensures that λp = 0 in any integer solution. Nevertheless, when
generated, such a variable can take a positive value (not larger than 1/aip) in an
MP solution, possibly weakening the lower bound z⋆MP.

Note 5.7 (Reduced cost of a path variable.) Even when aip can be larger than one
for a customer i ∈C, the reduced cost of variable λp still writes as

c̄p = cp−∑
i∈C

πiaip. (5.26)

Consequently, when solving the ISP, the dual value πi must be subtracted each time
that customer i is visited to correctly compute the reduced cost of a path-variable
with cycles.

SPPTWC relaxation

The first ISP relaxation that has been proposed for the VRPTW is called the
SPPTWC. It simply allows all cycles. For instance, in the example network of Fig-
ure 5.1, the path (o,1,3,2,3,d), which contains the cycle (3,2,3), becomes feasi-
ble. Its earliest service start times are 0, 2, 11, 15, 20, and 34, indicating that service
starts twice at customer 3, namely, at times 11 and 20. The total load of this path
is 5, including the demand of customer 3 twice. Using the SPPTWC as the ISP in-
stead of the ESPPTWC drastically reduces the complexity of the ISP. Indeed, there
exist pseudo-polynomial labeling algorithms for solving the SPPTWC such as the
one discussed below.

To solve the SPPTWC, the labeling Algorithm 5.1 is modified as follows:

• no unreachable customer resources are considered in the label definition;
• REF (5.23) is omitted from the label extension function in Step 4;
• condition (5.22) is removed from the feasibility check in Step 5;
• condition (5.25) is removed from the dominance rule in Steps 6 and 8.

Illustration 5.4 Generated labels for the SPPTWC

The application of this modified algorithm to the SPPTWC example of Figure 5.1
yields the labels given in Table 5.1 assuming that π1 = 22, π2 = 20, π3 = 32, and
π4 = 25. In this table, each line corresponds to the extension of a label Ep ∈ U j, the
one listed in the first column (xLbl), along each arc ( j,h)∈ A leaving the node j ∈N
associated with this label. The first line reports the labels created by extending the
initial label E0 ∈ Uo. Each new label Ep′ resulting from an extension along an arc
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( j,h) is given in the column nLbl under Node h. For example, label E1 = (3,2,1)
in column nLbl under Node 1 is obtained by extending E0 along arc (o,1). The
next column F/I indicates if Ep′ is feasible (F) or infeasible (I). Finally, if this label
turns out to be dominated later, the last column dLbl under the same node specifies
a label that dominates it. Otherwise, a dash (-) appears in this column. The other
lines provide the same information for the extensions of each non-dominated label,
except those associated with the sink node d (no arcs leave node d). These lines
follow the order in which the labels are extended, i.e., the labels with the smallest
time component first.

Table 5.1 indicates that a total of 51 labels are generated, excluding label E0.
Fifteen of them are associated with infeasible partial paths either because of the time
windows, the capacity constraint or both. Not many labels are dominated except at
node d. This is not unusual for such a small example when the travel times satisfy the
triangle inequality. Nevertheless, dominance helps to avoid the enumeration of a few
feasible o-d paths. At node d, 7 of the 17 created labels are shown to be dominated.
It shows that if network G is enlarged with additional nodes and arcs and d is not
the sink node, the dominance rule would be effective at eliminating feasible paths
passing through this node. Note that applying dominance at the sink node is not
helpful as the labels at this node do not have to be extended. On the other hand,
keeping several negative reduced cost labels may be of interest to generate more
than one path per column generation iteration.

An optimal path is associated with a least-cost feasible label at node d, namely,
label E51 (in bold) with reduced cost −62 in this example. To retrieve the corre-
sponding path, we must find the predecessor labels and their associated nodes, until
reaching source node o. Thus, every label must also store a pointer to its predecessor
label. For label E51, the sequence of predecessor labels (also in bold) is E25 (at node
3), E16 (at node 2), E7 (at node 3 again), E1 (at node 1), and E0 (at node o). Revers-
ing the order of these nodes yields path (o,1,3,2,3,d) with the earliest service start
times 0, 2, 11, 15, 20, and 34 (according to the label time components) and a total
load of 5.

ng-SPPTWC relaxation

Introduced by Baldacci et al. (2012), the current state-of-the-art ISP relaxation in
the context of the VRPTW is the ng-SPPTWC relaxation which allows the presence
of certain cycles in the generated routes.

Let NGi ⊆C, i ∈C, be a subset of customers called the neighborhood of node i.
Such a subset contains i and typically its ρ closest customers, where ρ is a prede-
fined parameter. A feasible o-d ng-path respects the time windows and the capacity
constraint, and may contain a cycle ( j1, j2, . . . , jm = j1) if and only if there exists
a node jh, h ∈ {2, . . . ,m−1}, such that j1 ̸∈ NG jh . Indeed, such a cycle is allowed
because j1 is not in the neighborhood of jh, which means that travel from j1 to jh,
and back to j1 induces a relatively long detour. Therefore, any path containing this
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Table 5.1: Labels generated for the SPPTWC.
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cycle is probably costly and has less chance to be selected in an optimal solution of
the MP.

Note 5.8 (A compromise.) The ng-SPPTWC is identical to the SPPTWC if NGi = {i}
for all i ∈ C and to the ESPPTWC if NGi = C for all i ∈ C. Consequently, when
2 ≤ ρ ≤ |C|− 1, the ng-SPPTWC offers a compromise between the SPPTWC and
the ESPPTWC.

To solve the ng-SPPTWC, the labeling Algorithm 5.1 is modified as follows.

• First, all unreachable customer resources are replaced by new customer re-
sources that enforce the ng-restrictions. In a label, we denote by T ngCusti , i ∈C,
the corresponding resource components which is equal to 0 if the label can be
extended directly to node i and to 1 if it cannot because this extension would
result in a forbidden cycle. The resource windows associated with all these
resources are set to [0,1] at each node in N and the label feasibility condi-
tions (5.22) in Step 5 are replaced by

T ngCusti
p ∈ [0,1], ∀i ∈C. (5.27)

• Furthermore, when extending a label Ep along an arc ( j,h) ∈ A in Step 4, the
computation of the customer resource components (5.18d) for the new label Ep′

is replaced by

T ngCusti
p′ = f ngCusti

jh (T ngCusti
p ) =


0 if i ̸∈ NGh

T ngCusti
p +1 if h = i

T ngCusti
p otherwise

∀i ∈C, (5.28)

where NGd = /0.
• Finally, the conditions (5.25) are replaced by

T ngCusti
p ≤ T ngCusti

p′ , ∀i ∈C∩NGh, (5.29)

in the dominance rule applied in Steps 6 and 8.

Observe that, according to (5.28), T ngCusti
p′ = 0 if i ̸∈ NGh for every label Ep′

associated with a node h ∈ C. Consequently, the comparisons for the customers
i ̸∈ NGh can be omitted from the conditions (5.29). This highlights the advantage
in terms of computational efficiency that can result from using the ng-SPPTWC as
an ISP instead of the ESPPTWC. Indeed, if ρ ≪ |C|, then there are much higher
chances to find dominated labels for the ng-SPPTWC because the dominance rule
involves ρ +3 comparisons instead of |C|+3.

Note 5.9 (Memory leaks.) Instead of using binary customer resources to enforce
the ng-requirements, we can also use a subset of visited customers that cannot be
the next one to be visited. For a path p and its associated label Ep (with customer
components T ngCusti

p , i ∈C), this subset, which is called the memory of path p and
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denoted Mp, is defined as Mp = {i ∈C |T ngCusti
p = 1}. In a memory-based labeling

algorithm, the customer components are not needed because the memory of a path
can be directly built as follows in the label extension process. Let Ep be a label
associated with a node j ∈ N and having a memory Mp. When extending Ep along
an arc ( j,h) ∈ A to create a new path p′, memory Mp′ is obtained by adding h to Mp
and forgetting all customers that are not in NGh, i.e.,

Mp′ = (Mp∪{h})∩NGh. (5.30)

This set, thus, contains the customers where path p′ cannot be directly extended
without violating the ng-restrictions. With this memory representation, the domi-
nance condition (5.29) is replaced by

Mp ⊆Mp′ , (5.31)

clearly specifying that all direct extensions of path p that are forbidden due to the
ng-restrictions must also be forbidden for path p′.

Illustration 5.5 Generated labels for the ng-SPPTWC

Consider again the network of Figure 5.1 to define a ng-SPPTWC with π1 = 22,
π2 = 20, π3 = 32, π4 = 25 (i.e., the same dual values as above), NG1 = {1,3},
NG2 = {2,3}, NG3 = {3,4}, and NG4 = {3,4} (thus, ρ = 1). Given these neighbor-
hoods, the cycles (3,2,3) and (3,4,3) are infeasible, whereas cycle (2,3,2) is fea-
sible because 2 ̸∈ NG3. Therefore, the SPPTWC optimal solution computed above,
namely path (o,1,3,2,3,d), is infeasible for this ng-SPPTWC. Indeed, the memories
of its first subpaths are Mo = /0, Mo1 = {1}, Mo13 = {3}, Mo132 = {2,3}, indicating
that subpath (o,1,3,2) cannot be extended to node 3 without creating a forbidden
cycle. The ng-SPPTWC optimal path is (o,1,3,2,d) with a reduced cost of−37 (see
Exercise 5.14).

Illustration 5.6 Comparative results

To conclude this section on the ISP relaxations, we present some computational
results to assess the quality of the lower bounds that can be obtained using different
relaxations and the time required to compute them. We have selected a small subset
of six representative VRPTW instances from the well-known benchmark data sets
of Solomon (1987).

All these instances contain 100 customers which are randomly located around
the depot. The instances in class R1 have relatively narrow time windows, whereas
those in class R2 have larger time windows, offering many options to cycle. For each
of these six instances, we solved by column generation the MP obtained using five
different ISPs, namely, the SPPTWC, the ng-SPPTWC with ρ = 5,10,15, and the
ESPPTWC. In fact, the SPPTWC and ng-SPPTWC are enhanced with 2-cycle elim-
ination constraints which forbid cycles of the type ( j,h, j) and can yield improved
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lower bounds. The column generation algorithm applies several state-of-the-art ac-
celeration techniques such as tabu search heuristic pricing and bidirectional labeling
(see Desaulniers et al., 2014). All tests were run on an Intel Core i7-4770
processor clocked at 3.40GHz running the Linux x86-64 operating system. The
RMPs were solved using IBM CPLEX version 12.6.

SPPTWC ng-SPPTWC ng-SPPTWC ng-SPPTWC ESPPTWC
(ρ= 5) (ρ= 10) (ρ= 15)

Instance z⋆IMP T(s) z⋆MP T(s) z⋆MP GP(%) T(s) z⋆MP GP(%) T(s) z⋆MP GP(%) T(s) z⋆MP GP(%)

R104 971.5 7 949.1 8 955.2 27.2 9 956.1 31.3 11 956.2 31.7 11 956.9 34.8
R108 932.1 8 907.2 11 911.9 16.1 12 912.8 22.5 12 912.9 22.9 15 913.5 25.3
R110 1068.0 8 1048.5 8 1055.2 34.4 7 1055.6 36.4 8 1055.6 36.4 9 1055.6 36.4
R202 1029.6 66 1009.8 86 1016.9 35.9 68 1021.7 60.1 69 1022.2 62.6 139 1022.2 62.6
R203 870.8 87 846.5 193 857.4 44.9 264 861.8 63.0 156 864.4 73.7 3650 866.9 84.0
R205 949.8 63 916.6 89 935.2 56.0 85 938.1 64.8 76 938.9 67.2 232 938.9 67.2

Table 5.2: Comparative results for different ISP relaxations.

Table 5.2 reports the results of these experiments. For each instance, it provides
the optimal value of the instance z⋆IMP and, for each algorithm (identified by the ISP
used), the time T in seconds required to solve the MP, and the lower bound achieved
z⋆MP. For the last four algorithms, we also indicate the integrality gap closed GP in
percentage obtained by using a stronger ISP. For an ISP A, this gap is computed as

GP(A) =
z⋆MP(A)− z⋆MP(SPPTWC)

z⋆IMP− z⋆MP(SPPTWC)
. (5.32)

To further highlight the impact of allowing cycles on the lower bound achieved,
Figure 5.2 specifies, for each ISP A other than ESPPTWC and each instance, the
ratio of the lower bound achieved using A to that obtained using ESPPTWC, i.e.,
z⋆MP(A)/z⋆MP(ESPPTWC).

These results clearly show that the lower bounds provided by the SPPTWC can
be quite weak compared to those derived with the ESPPTWC. Using the latter ISP
can, however, yield much larger computation times for the instances with large time
windows (R2 instances). For the R1 instances where cycles are often not possible,
using this ISP does not have a major impact on the computation times. For the R2
instances, the ng-SPPTWC with ρ = 15 offers a good compromise between lower
bound quality and computation time. Observe, however, that, for the R203 instance,
a much better lower bound can be achieved with the ESPPTWC but at the expense
of a very large computation time.
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Fig. 5.2: Quality of the lower bounds achieved compared to the ESPPTWC.

5.2 Elementary Shortest Path Problem with Resource Constraints

Besides the VRPTW, many vehicle routing and crew scheduling problems are solved
by branch-price-and-cut algorithms nowadays (for a survey on vehicle routing ap-
plications, see Costa et al., 2019). For most of them, the underlying ISP is modeled
as a SPPRC or a ESPPRC. In this section, we start by describing these shortest path
problems and labeling algorithms that can be used to solve them.

The ESPPTWC is a special case of the ESPPRC, where the set of resources is
R = {rCost, time, load, [custi]i∈C}, their consumption is limited by resource win-
dows (5.15) at every node of the network, and their REFs are defined by (5.18).
These REFs are relatively simple: each one depends on a single resource value.
More complex REFs that depend on more than one resource value can be devised
such as those defined in (5.23) which allow to extend the unreachable customer re-
sources uCusti, i ∈ C, using both time and load resources, and as discussed later,
those used to extend the reduced cost resource in certain personnel scheduling ap-
plications where the cost is a complex function defined by a collective agreement.
Such general resources and corresponding REFs have led to the following definition
of the ESPPRC.

Let G = (N,A) be a network with node set N and arc set A. Set N contains a
source node o and a sink node d. Let R be a set of resources, including a reduced
cost resource denoted rCost. For each resource r∈R and each node i∈N, a resource
window [ar

i ,b
r
i ] (possibly unrestrictive) specifies the values that can be taken by

resource r at node i. In particular, [arCost
o ,brCost

o ] = [0,0] imposes that the cost of
a path containing only the source node o is equal to 0. Furthermore, for each arc
(i, j) ∈ A and resource r ∈R, a REF f r

i j(ti) provides a lower bound on the value that
resource r can take when extended along arc (i, j) in function of the values of all
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the resources at node i, i.e., of the vector ti =
[
tr′
i
]

r′∈R, where tr′
i denotes the value

taken by resource r′ at node i. The ESPPRC consists of finding an elementary o-d
path in G that respects the resource windows at each visited node and minimizes
trCost
d , i.e., the value of its rCost resource at the sink node.

As it is common in practice, we assume that along any cycle W in G, there exists
a resource r+ whose consumption is positive and has bounded resource windows
[ar+

i ,br+
i ] at every node i ∈W . These conditions ensure that a path cannot cycle

indefinitely when the elementarity requirements are relaxed. For the VRPTW, the
time resource satisfies these conditions, that is, ti j > 0, ∀(i, j) ∈ A, and 0 ≤ ai ≤
bi < ∞, ∀i ∈ N.

Mathematical formulation

The ESPPRC can be formulated as a non-linear mixed-integer program that involves
two types of variables. For each arc (i, j)∈ A, there is a binary arc-flow variable that
is equal to 1 if (i, j) belongs to the solution, and 0 otherwise. For each resource
r ∈R and each node i ∈ N, a continuous variable tr

i indicates the value of resource r
at node i if the computed path visits node i (otherwise tr

i is meaningless and simply
set to 0).

With this notation, the ESPPRC can be expressed as

min trCost
d (5.33a)

s.t. ∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji =

 1 for i = o
0 ∀i ∈ N \{o,d}
−1 for i = d

(5.33b)

ar
i ≤ tr

i ≤ br
i ∀i ∈ {o,d},r ∈ R (5.33c)

ar
i ( ∑

j:(i, j)∈A
xi j)≤ tr

i ≤ br
i ( ∑

j:(i, j)∈A
xi j) ∀i ∈ N \{o,d},r ∈ R (5.33d)

xi j( f r
i j(ti)− tr

j)≤ 0 ∀(i, j) ∈ A,r ∈ R (5.33e)

xi j ∈ {0,1} ∀(i, j) ∈ A. (5.33f)

The objective function (5.33a) minimizes the total path cost, or more precisely, the
path reduced cost assuming that an appropriate adjusted cost c̃i j is given for all
(i, j) ∈ A. Flow conservation constraints (5.33b) ensure a path structure from o to d.
The resource windows are expressed through constraints (5.33c)–(5.33d), whereas
non-linear inequalities (5.33e) guarantee that the values taken by the resources at
every visited node respect the lower bounds provided by the REFs. Binary require-
ments (5.33f) complete this formulation. The assumption on the r+ resource men-
tioned above ensures that any node i ∈ N can be visited at most once because tr+

i
can take a single value in a feasible solution.
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The SPPRC is obtained by omitting the elementarity requirements from the def-
inition of the ESPPRC, yielding a relaxation that allows feasible paths with cycles.
However, when cycles are possible, model (5.33) is not valid because each variable
tr+
i , i ∈ N, can take a single value. Instead, in this case, it is possible to devise an

arc-flow model based on a time-discretized network, where each node in N \{o,d}
is represented by a set of nodes, namely, one for each feasible service start time
at this node (see Section Good to Know). On the other hand, when cycles are not
possible, for example, if network G is acyclic like in the air crew pairing problem
discussed later in this chapter, the SPPRC is equivalent to the ESPPRC. In this case,
model (5.33) is valid for the SPPRC.

Note 5.10 (Falling short of a resource window lower bound.) Constraints (5.33e)
indicate that each REF f r

i j(ti) provides only a lower bound on the resource value tr
j

whenever arc (i, j) is used. Therefore, it does not mean that the solution is infeasible
if f r

i j(ti) < ar
j as tr

j can still take a value in [ar
j,b

r
j] and satisfy the corresponding

constraint (5.33e). To avoid falling short of the resource window lower bound, the
REF f r

i j(ti) can always be replaced by max{ar
j, f r

i j(ti)} as done in (5.18b).

Labeling algorithm

Under the assumption that all REFs f r
i j, r ∈ R, (i, j) ∈ A, are non-decreasing with

respect to each of their components, the ESPPRC can be solved by a labeling algo-
rithm obtained by generalizing Algorithm 5.1. In fact, two modifications are needed.

• First, the resource set R can be arbitrary, yielding the following label definition.
A label Ep representing a partial path p = (i0 = o, i1, . . . , im = j) from source
node o to a node j ∈ N contains |R| components, one for each resource in R.
It writes as Ep =

(
T r

p
)

r∈R, where T r
p specifies the consumption of resource r

along path p which is computed recursively using REFs. Typically, R contains a
reduced cost resource, one unreachable node resource for each node that cannot
be traversed twice in the same path, and possibly additional resources.

• Second, in Step 2, the next label to extend is selected according to a given re-
source component. If the consumption of this resource is always non-decreasing
along any path, then the algorithm remains a label-setting algorithm. Otherwise,
it is rather a label-correcting algorithm as extended labels may be dominated
subsequently.

In this algorithm, we set the initial label E0 at node o to E0 =
(
ar

o
)

r∈R. A label
Ep =

(
T r

p
)

r∈R residing at node j ∈ N that is extended along an arc ( j,h) ∈ A yields
a label Ep′ =

(
T r

p′
)

r∈R, where

T r
p′ = f r

jh(Ep), ∀r ∈ R. (5.34)
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It is assumed that, for all r ∈ R, the function f r
jh guarantees the satisfaction of the

window lower bound ar
h for resource r like the REF f time

jh in (5.18b). Label Ep′ is
considered feasible if T r

p′ ≤ br
h, ∀r ∈R. Otherwise, it is discarded. Finally, given two

labels Ep =
(
T r

p
)

r∈R and Ep′ =
(
T r

p′
)

r∈R associated with two partial paths ending
at the same node, sufficient conditions for label Ep to dominate label Ep′ according
to Definition 5.3 are

T r
p ≤ T r

p′ , ∀r ∈ R. (5.35)

For solving the SPPRC, the same labeling algorithm can be applied. However,
no resources are needed to ensure path elementarity.

Illustration 5.7 Common resource extension functions

The above dominance rule in (5.35) is valid only under the assumption that the REFs
are non-decreasing with respect to each of their components. Such REFs are very
common in practical applications. As illustrated in Figure 5.3, the following four
functions f1 to f4 of a variable t are non-decreasing, where a ≥ 0 and b are real
numbers:

f1(t) = t +a f2(t) = t−a

f3(t) = max{b, t +a} f4(t) = b.

t

f1(t)

0

2

4

2 4

(a) f1(t) = t +a for a = 2

t

f2(t)

0

2

-2

2 4

(b) f2(t) = t−a for a = 2

t

f3(t)

0

2

4

2 4

(c) f3(t) = max{b, t +a} for a = 2 and b = 3

t

f4(t)

0

2

4

2 4

(d) f4(t) = b for b = 3

Fig. 5.3: Examples of non-decreasing functions f1, f2, f3, and f4.
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• Function f1 can be used to cumulate a quantity such as the load onboard a
vehicle, see REF (5.18c).

• Function f2, although non-decreasing with a slope equal to 1, can model the
decrease of a quantity like the residual capacity of the battery of an electric
vehicle when the vehicle is moving or the residual loading capacity of a vehicle
when picking up some freight at a customer.

• As for function f3, it can be applied to enforce satisfying the lower bound of a
resource window whenever the resource consumption is not sufficient to reach
it, as proposed for the start of service time in the VRPTW, see REF (5.18b).

• Finally, function f4 can be used as a reset function where a quantity is set to
a predetermined value, for example, the residual capacity of a battery may be
set to its full capacity after a full recharge. Other applications occur in crew
scheduling, for example in the airline industry, where the number of flights
performed, the working time, and the flying time must be reset to zero at the
beginning of each day.

Note 5.11 (Composition of non-decreasing functions.) The function resulting from
a composition of non-decreasing functions is always non-decreasing, see Exer-
cise 5.16. For example, function f3(t) = max{b, t +a} is a composition of the non-
decreasing functions g(t) = b, h(t) = t + a and max{x,y} and is, therefore, non-
decreasing. Observe also that the function min{x,y} is also non-decreasing. This
property allows defining non-decreasing REFs to accommodate almost every real-
life situation.

Fig. 5.4: Marius Solomon (Banff, Canada, 2004-05-16).
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5.3 Examples

To illustrate different ways of modeling with resource constraints, we present three
additional examples of vehicle routing and crew scheduling problems, namely,

• the simultaneous pickup and delivery problem (SPDP),
• the pickup and delivery problem with time windows (PDPTW),
• the air crew pairing problem with base constraints (CPPBC).

Each of these problems can be modeled using a compact arc-flow formulation which
can be reformulated by applying a Dantzig-Wolfe decomposition. By the sake of
conciseness, we only present the reformulation (the IMP) for each problem and we
focus on the ISP by describing its underlying network structure and the resources
considered.

Example 5.1 Simultaneous pickup and delivery problem

� We present an application where the value of a resource depends on the
value taken by another one.

In the SPDP, least-cost routes for an unlimited fleet of identical capacitated vehicles
housed in a single depot must be determined to service a set C of customers exactly
once each. As opposed to the VRPTW, the set C is divided in two disjoint subsets:

• CP contains the so-called pickup customers, where pickups of merchandise des-
tined to the depot must be performed;

• CD contains the delivery customers, where deliveries of merchandise from the
depot must be made.

The quantity delivered or picked up at customer i ∈ C is denoted qi. Note that, in
practice, a customer can request both a delivery and a pickup, but it is considered
here as two separate customers. A travel cost ci j is incurred when traveling from
location i to location j.

Let P be the set of feasible routes. A feasible route p ∈ P starts and ends at the
depot, is elementary, and can visit pickup and delivery customers in any order as
long as the vehicle capacity Q is respected. Let CP

p and CD
p be the (possibly empty)

subsets of pickup and delivery customers visited in route p, respectively. The vehicle
assigned to this route leaves the depot with a load of ∑i∈CD

p
qi ≤ Q and returns to it

with a load of ∑i∈CP
p

qi ≤ Q. When visiting a customer i ∈ CD
p , its load decreases;

when visiting a customer i ∈CP
p , its load increases and must not exceed Q.

Network structure

The feasible routes in the SPDP can be modeled as paths in a network G = (N,A)
similar to the one presented for the VRPTW (see Figure 5.1). Node set N =C∪{o,d}
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contains a source node o, a destination node d, and one node for each customer in C.
Arc set A contains all arcs (i, j) ∈ (N \{d})× (N \{o}) except those that cannot be
traversed in any feasible route due to vehicle capacity, i.e., the arcs (i, j) that satisfy
one of the following conditions:

1. i, j ∈CP and qi +q j > Q;
2. i, j ∈CD and qi +q j > Q;
3. i ∈CP, j ∈CD and qi +q j > Q.

The last case is infeasible because any quantity delivered after a pickup is onboard
the vehicle when the pickup occurs.

Extended formulation

Like the VRPTW, the SPDP can be modeled using a compact arc-flow formula-
tion with a block-diagonal structure. Applying a Dantzig-Wolfe reformulation to
this formulation and aggregating the identical ISPs yield the following extended set
partitioning formulation of the SPDP:

z⋆IMP = min ∑
p∈P̂

cpλp (5.36a)

s.t. ∑
p∈P̂

aipλp = 1 [πi] ∀i ∈C (5.36b)

λp ∈ {0,1} ∀p ∈ P̂, (5.36c)

where P̂ is the set of feasible routes (each with arbitrary feasible time and load
schedules), cp is the cost of route p ∈ P̂, aip, i ∈ C, p ∈ P̂, is a binary parameter
indicating whether or not customer i is visited in route p, and λp, p ∈ P̂, is a binary
variable equal to 1 if route p is selected and 0 otherwise. This model is indeed
identical to model (5.8). However, set P̂ does not contain the same routes in both
models because the route feasibility rules in the VRPTW and in the SPDP differ.

Pricing problem

There is a single ISP which is an ESPPRC defined on network G. Setting πo = 0 for
notational convenience, the reduced cost c̄p of a route p ∈ P is given by

c̄p = cp−∑
i∈C

aipπi = ∑
(i, j)∈A

(ci j−πi)xi jp, (5.37)

where xi jp = 1 if arc (i, j)∈ A is traversed by path p and 0 otherwise. Consequently,
the adjusted cost of an arc (i, j) ∈ A is equal to c̃i j = ci j−πi.

To ensure route feasibility and compute the route reduced cost, we use resources.
The resource set is defined as
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R= {rCost, loadP,maxL, [custi]i∈C}. (5.38)

Because the resources rCost and custi, i ∈ C, are the same as for the VRPTW, we
focus on the two resources loadP and maxL that are used to impose the vehicle
capacity constraint. The meaning of these resources is:

• loadP: the load collected at the pickup customers;
• maxL: the maximum load on board the vehicle since the start of the route.

The resource windows for these two resources are [0,Q] on all nodes in N. Their
REFs along any arc ( j,h) ∈ A are as follows:

f loadP
jh (t j) =

{
t loadP

j +qh if h ∈CP

t loadP
j otherwise

(5.39)

f maxL
jh (t j) =


max{tmaxL

j , t loadP
j +qh} if h ∈CP

tmaxL
j +qh if h ∈CD

tmaxL
j otherwise,

(5.40)

where t j =
[
tr

j
]

r∈R is the vector of the resource values at node j. REF (5.39) is
straightforward. However, REF (5.40) is more complex and ensues from the follow-
ing reasoning.

• On the one hand, if h ∈CP, then the maximum load on board up to node h was
either achieved before node h (tmaxL

j ) or it is achieved at node h in which case it
corresponds to the total load picked up so far (t loadP

j +qh).

• On the other hand, if h ∈CD, then this maximum load is the maximum load at
node j, increased by the quantity delivered because this quantity comes from
the depot and was, therefore, on board when the maximum load was achieved.

Unlike several relatively simple REFs, the REF (5.40) for resource maxL does
not only depend on the resource variable tmaxL

j but also on t loadP
j . Nevertheless,

the REFs for all resources in R, including (5.39)–(5.40), are non-decreasing with
respect to each of their components. Therefore, the ESPPRC labeling algorithm de-
scribed above can be used to solve this ISP.

Example 5.2 Pickup and delivery problem with time windows

� In addition to the standard time and capacity constraints, this routing
problem imposes pairing and precedence constraints for route feasi-
bility, i.e., a pair of pickup and delivery nodes must be serviced by the
same vehicle and a delivery can only be performed after its correspond-
ing pickup.

In the PDPTW, an unlimited fleet of vehicles must be routed to service a set U =
{1,2, . . . ,n} of n transportation requests, where each request u ∈ U is defined by
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a pickup location u+, a pickup time window [au+ ,bu+ ], a delivery location u−, a
delivery time window [au− ,bu− ], and a quantity qu to transport from u+ to u−. All
vehicles are identical: they have the same capacity Q and are associated with a single
depot. Departures and arrivals at the depot are restricted by a time window [ā, b̄]. The
travel cost and time between two locations i and j (pickup points, delivery points,
or depot) are denoted ci j and ti j, respectively, where any service time at i is assumed
to be included in ti j.

The goal of the PDPTW is to build a set of feasible vehicle routes such that each
request is serviced in exactly one route and the total travel cost is minimized. A
route is said to be feasible if it starts and ends at the depot, services each request
at most once, meets the time windows at the visited locations, respects the vehicle
capacity at all times, and, for each serviced request, performs its pickup before its
delivery. Note that several requests can be onboard a vehicle at the same time as
long as vehicle capacity is respected, i.e., a route can visit a second pickup location
u+2 between a first pickup location u+1 and its corresponding delivery location u−1 .

The pickup and delivery structure in the PDPTW differs from that of the SPDP.
In the latter, the delivery locations receive merchandise from the depot and the mer-
chandise collected at the pickup locations is destined to the depot. In the PDPTW,
the pickup and delivery locations are paired and the vehicles leave and return to the
depot empty.

As for the VRPTW, assume that

• all parameters Q, qi, ai, bi, and ti j are integer;
• the total travel time of any cycle is positive;
• the matrix of the travel times ti j satisfy the triangle inequality. Under this last

assumption, a PDPTW instance can be feasible only if, for each request u ∈U ,
au+ + tu+u− ≤ bu− .

Network structure

For the PDPTW, the feasible routes correspond to paths in the following network
G = (N,A). The node set N =U+∪U−∪{o,d} contains a pair of source and sink
nodes o and d to represent the depot at the start and the end of a route, respectively.
For both nodes, define [ā, b̄] as their time window. Furthermore, node sets U+ and
U− contain the request pickup and delivery locations, respectively.

The arc set A contains all arcs (i, j)∈ (N\{d})×(N\{o}) except those for which
we can show that they cannot be traversed in any feasible route due to the pickup
and delivery precedence constraints (conditions 1–3 below), the vehicle capacity
(conditions 4 and 5), or the time windows (conditions 6–10), i.e., the arcs (i, j) that
satisfy one of the following conditions:

1. i = u− and j = u+ for a given u ∈U ;
2. i = o and j = u− for a given u ∈U ;
3. i = u+ and j = d for a given u ∈U ;
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4. i = u+, j = v+ for u,v ∈U , and qu +qv > Q;
5. i = u−, j = v− for u,v ∈U , and qu +qv > Q;
6. ai + ti j > b j;
7. i = u+, j ∈ {v+,v−} for u,v ∈U with u ̸= v, and max{ai + ti j,a j}+ t ju− > bu− ;
8. i ∈ {u+,u−}, j = v+ for u,v ∈U with u ̸= v, and ai + ti j + t jv− > bv− ;
9. i ∈ {u+,u−}, j = v− for u,v ∈U with u ̸= v, and max{av+ + tv+i,ai}+ ti j > b j;

10. i = u−, j ∈ {v+,v−} for u,v ∈U with u ̸= v, and au+ + tu+i + ti j > b j.

Case 7 is infeasible because there is not enough time to perform delivery u− when
the corresponding pickup u+ is immediately followed by the pickup or delivery j.
Similarly, case 8 is infeasible because there is not enough time to reach the delivery
location v− when the corresponding pickup location v+ is visited immediately after
performing pickup or delivery j. Note that this case can only occur if ai + ti j > a j
(otherwise, a j + t jv− > bv− and the problem would be infeasible). Cases 9 and 10
are deduced similarly, but taken into account that the pickup location u+ (case 9) or
v+ (case 10) must be visited prior to u− or v−, respectively.

Illustration 5.8 A network for the PDPTW

An example of a network G is presented in Figure 5.5, where time windows are pro-
vided beside the nodes and travel times beside the arcs. The travel times between
two request nodes are assumed to be symmetric, i.e., ti j = t ji for request nodes
i, j ∈ N. Note that arcs may be bidirectional (with arrows at both ends) or monodi-
rectional. The arcs in A are represented by solid lines. The dotted arcs do not be-
long to A because they meet at least one of the five time-related conditions 6–10
stated above. For instance, the arcs (3+,2+), (2+,3+) and (1+,2−) satisfy condi-
tion 6 (70+ 35 > 60), condition 7 (max {40+ 35,70}+ 20 > 90), and condition 9
(max {40+ 25,30}+ 35 > 90), respectively. Observe that, in a feasible route, the
requests can be intertwined in various ways: for example, the routes o1+1−3+3−d,
o1+3+3−1−d, and o1+3+1−3−d are all feasible if q1 +q3 ≤ Q.

Extended formulation

The PDPTW can also be formulated using an extended set partitioning model. Let

• P̂ be the set of feasible routes, each associated with a feasible time schedule and
a feasible loading schedule;

• cp the cost of route p ∈ P̂;
• aup, u ∈U , p ∈ P̂, a binary parameter equal to 1 if route p performs request u

and 0 otherwise;
• λp, p ∈ P̂, a binary variable equal to 1 if route p is selected and 0 otherwise.

The set partitioning IMP is given by

z⋆IMP = min ∑
p∈P̂

cpλp (5.41a)
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Fig. 5.5: A network G = (N,A) for the PDPTW.

s.t. ∑
p∈P̂

aupλp = 1 [πu] ∀u ∈U (5.41b)

λp ∈ {0,1} ∀p ∈ P̂. (5.41c)

This model differs from the set partitioning model (5.8) of the VRPTW by the set of
feasible routes P̂ but also by the fact that the set partitioning constraints are defined
for each request in U and not for each node in U+∪U−.

Pricing problem

Because there is a single depot and the vehicles are all identical, there is a single
ISP which is an ESPPRC defined on network G. To define the adjusted arc costs,
consider the reduced cost c̄p of a route p ∈ P̂:

c̄p = cp− ∑
u∈U

aupπu = ∑
(i, j)∈A

(ci j−0.5πu(i))xi jp, (5.42)

where xi jp is equal to 1 if arc (i, j) ∈ A is included in path p and 0 otherwise, u(i)
is the request associated with node i and πu(i) = 0 if i = o. The adjusted cost of arc
(i, j) ∈ A is, thus, c̃i j = ci j−0.5πu(i). Remark that the dual variable πu, u ∈U , may
have been subtracted, for example, only on the arcs with tail node u+ or only on the
arcs with head node u−.

To enforce route feasibility and compute the route reduced cost, we use the fol-
lowing resource set:
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R= {rCost, time, load, [requ]u∈U , [onu]u∈U , [notOnu]u∈U}. (5.43)

These resources are respectively

rCost: Reduced cost;
time: Earliest service start time at the current node;
load: Load onboard the vehicle;
requ: Number of times (0 or 1) that request u ∈U has been performed;
onu: Equal to 1 if request u ∈U is onboard and 0 otherwise;
notOnu: Equal to 1 if request u ∈U is not onboard and 0 otherwise.

The last two resources are used to ensure that 1) any picked up item is delivered
afterwards, 2) a delivery cannot be performed unless the corresponding pickup has,
and 3) a delivery cannot be realized more than once. Because the rCost and time re-
sources are identical to those in the VRPTW, we concentrate on the other resources.
The resource windows per node type for these resources are given in Table 5.3. The
columns onv and notOnv indicate the windows when v ̸= u.

Node type load requ onu onv notOnu notOnv

source o [0,Q] [0,1] [0,0] [0,0] [1,1] [1,1]
sink d [0,Q] [0,1] [0,0] [0,0] [1,1] [1,1]

pickup u+ [0,Q] [0,1] [1,1] [0,1] [0,0] [0,1]
delivery u− [0,Q] [0,1] [0,0] [0,1] [1,1] [0,1]

Table 5.3: Resource windows for the PDPTW.

Given that ti =
[
tr
i
]

r∈R denotes the vector of the resource values at node i, the
REFs for these resources are given by

f load
i j (ti) =


t load
i +qu( j) if j ∈U+

t load
i −qu( j) if j ∈U−

t load
i otherwise

(5.44)

f requ
i j (ti) =

{
trequ
i +1 if j = u+

trequ
i otherwise

∀u ∈U (5.45)

f onu
i j (ti) =


tonu
i +1 if j = u+

tonu
i −1 if j = u−

tonu
i otherwise

∀u ∈U (5.46)

f notOnu
i j (ti) =


tnotOnu
i +1 if j = u−

tnotOnu
i −1 if j = u+

tnotOnu
i otherwise

∀u ∈U. (5.47)
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Because all REFs are non-decreasing, the ISP can be solved using the ESPPRC
labeling algorithm described above (p. 317). It can be proven that the conditions on
the resources onu and notOnu, u ∈U , in the dominance rule (5.35) are equivalent to
the relation

Op = Op′ , (5.48)

where Oℓ denotes the set of onboard requests at the end node of a path ℓ.

Easier-to-solve pricing problem

When solving the ISP, dominance is rather limited as defined above because con-
dition (5.48) is difficult to satisfy. This condition is necessary to ensure that every
feasible extension of path p′ is also feasible for path p as imposed by the dominance
Definition 5.3. Indeed, if there exists a request u ∈U such that u ∈ Op \Op′ , then
any feasible extension of p′ visiting u− must visit u+ beforehand which makes it
infeasible for p. Furthermore, if there exists u ∈U such that u ∈ Op′ \Op, then any
feasible extension of p′ must visit u− without visiting u+, which again yields an
infeasible extension of p.

It is possible to increase label elimination by relaxing Definition 5.3 (i.e., by
considering a less restrictive dominance condition) as follows.

Definition 5.5. Let p and p′ be two feasible partial paths between node o and a node
j ∈ N which are represented by labels Ep and Ep′ , respectively. Label Ep is said to
dominate label Ep′ if, for every feasible extension χ ′ of p′, there exists a feasible
extension χ of p such that c̄p⊕χ ≤ c̄p′⊕χ ′ .

Compared to Definition 5.3, Definition 5.5 allows to use an extension χ of p that
differs from χ ′ to find a path p⊕ χ that dominates p′⊕ χ ′. Nevertheless, like Def-
inition 5.3, this new definition cannot be directly applied in practice as it is often
impossible to enumerate all feasible extensions of p′. However, for the PDPTW,
Røpke and Cordeau (2009) define sufficient conditions for identifying dominated
labels according to Definition 5.5. To do so, they slightly modify the ISP cost struc-
ture as follows such that it satisfies the triangle inequality on the adjusted costs at
the delivery nodes. For each request u ∈U , let

δu = max
(i, j)∈Au−

{0, c̃i j− (c̃iu− + c̃u− j)} (5.49)

be the maximum violation of the triangle inequality at node u−, where

Au− = {(i, j) ∈ A | (i,u−),(u−, j) ∈ A}. (5.50)

Given that, in any feasible route, pickup node u+ must be visited if delivery node
u− is, it is possible to increase by δu the costs of the arcs leaving u− and decrease
those of the arcs leaving u+ without changing the total reduced cost of a route. This
operation yields the following adjusted costs:
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c̃i j =


c̃i j +δu(i) if i ∈U−

c̃i j−δu(i) if i ∈U+

c̃i j otherwise.
(5.51)

After this transformation, one can easily verify that c̃iu−+ c̃u− j ≥ c̃i j for each request
u∈U and arc (i, j)∈Au− . Note that this transformation must be recomputed at every
column generation iteration because the adjusted arc costs depend on the dual values
of the MP constraints.

Now, let us consider two paths p and p′, both ending at a node j ∈ N, and a
feasible extension χ ′ of p′ that contains a single delivery node u− ∈U− (preceded
by node i and succeeded by node j) such that u ∈ Op′ \Op. Then, the extension χ

obtained from χ ′ by replacing the arcs (i,u−) and (u−, j) by the single arc (i, j)
might be considered as a feasible extension of p (if all resource constraints are
verified) whose cost does not exceed that of χ ′. When χ ′ contains several delivery
nodes u− ∈ U− such that u ∈ Op′ \Op, then this arc replacement process can be
performed several times to obtain a feasible extension χ .

Consequently, with the dominance Definition 5.5, the condition (5.48) of the
dominance rule (5.35) can be replaced by

Op ⊆ Op′ . (5.52)

This condition is equivalent to omitting the condition on the resource notOn from
the dominance rule (5.35). Note that this resource still needs to be considered in the
labels as its resource windows are required to filter out infeasible paths.

Finally, remark that, to apply the technique proposed in this section, all arcs that
can be part of a feasible path must be in set A. This condition must be met at all
times when searching for an integer solution to the compact formulation.

Example 5.3 Crew pairing problem with base constraints

� This problem introduces multiple resources to properly compute the
reduced cost of a pairing.

The CPPBC is an optimization problem solved while planning the operations of a
major airline. Given a weekly flight schedule to be repeated over several consecu-
tive weeks, it consists of finding least-cost crew pairings such that each scheduled
flight is covered by an anonymous crew and the work is relatively well distributed
amongst different crew bases to which the crew members are assigned. The com-
puted pairings are subsequently assigned to individual crew members in a monthly
crew rostering step.

The definition of the CPPBC varies from one airline to another as it depends on
various rules imposed by the airline, the aviation authorities, and the employees’
collective agreement. We present one relatively simple variant of this problem. The
flight schedule is composed of a set of flights F to be operated during a generic
week by aircraft of the same type. Each flight f ∈ F is defined by an origin and a
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Fig. 5.6: Alexane and Charlotte training at OSL to become pilots or flight attendants.

destination airport, and a schedule indicating the departure day and time as well as
the arrival day and time (from which the flight duration l f can be deduced). Each
flight must be covered by one crew. The crew members are typically assigned to
different crew bases (airports). The set of these bases is denoted by B.

To cover the flights in F , crew pairings must be determined. A pairing is a se-
quence of one or several duties that starts and ends at the same crew base. A duty
is a sequence of flights separated by connections and corresponds to a work day
for a crew. A duty can start and end at different airports. When a pairing contains
several duties, they are separated by rest periods. A rest period cannot occur at the
base to which a crew is assigned. A pairing is feasible if it satisfies the following
constraints:

• It spans a maximum of n̄D days (e.g., n̄D = 4) with n̄D ≤ 7;
• The duration (span) of a duty falls in the interval [

¯
tDTY , t̄DTY ];

• The duration of a connection between two consecutive flights in a duty falls in
the interval [

¯
tCNX , t̄CNX ];

• The duration of a rest period between two consecutive duties falls in the interval
[
¯
tRST , t̄RST ].

Denote by P̂ the set of feasible pairings. Note that crews can also be repositioned
from one airport to another by deadheading (i.e., travel as passengers) on certain
flights. We omit this possibility in the considered CPPBC variant.

A solution to the CPPBC is composed of a set of feasible pairings that covers
each flight in F exactly once. Because the flight schedule is repeated weekly for a
certain period of time, this solution must be reproducible one week after the other.
Hence, a pairing can start before the end of the week (e.g., on Saturday if the week
is from Monday to Sunday) and end after (e.g., on Tuesday).

The cost of a solution is given by the sum of the costs of the selected pairings.
Let Fp be the subset of flights covered in a pairing p ∈ P̂. Denote by lp = ∑ f∈Fp l f
its total flying time and by sp its total span, i.e., the difference between the arrival
time of the last flight in pairing p and the departure time of its first flight. The cost
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cp of pairing p is equal to:
cp = max{lp,α sp}, (5.53)

where 0 < α < 1 is a parameter value (e.g., α = 1/4) dictated by the collective
agreement to ensure a fair pay if the pairing contains too long inactivity periods
(connections and rests).

Finally, given that the number of available crew members varies at each base
b ∈ B (typically, it depends on the number of flights incident to airport b), the dis-
tribution of the total flying time amongst the bases should be aligned as much as
possible with the crew availability at each base. To model this, let Lb be a soft max-
imum on the total flying time in the pairings assigned to base b ∈ B. This maximum
can be violated at the following costs: any excess of at most µb units is penalized at
a rate of ω1

b per unit, whereas any additional excess is penalized at a larger rate of
ω2

b > ω1
b , yielding a piecewise-linear penalty function.

Network structure

Let W be the set of days in the week. The feasible pairings that start on day w ∈W
from base b ∈ B can be represented as paths in the following acyclic time-space
network Gwb = (Nwb,Awb), where Nwb and Awb denote its node and arc sets. In
a time-space network, each node (except possibly the source and sink nodes) is
associated with a time and a location, and each arc models, in general, a movement
in time, in space, or in both dimensions. For simplicity, assume that there are no
overnight flights in F . Thus, each flight operates on a single day.

Let Ww be the subset of days that can be spanned by a pairing starting on day w.
For example, if w = Saturday and n̄D = 3, then Ww = {Saturday,Sunday,Monday}.
The set Nwb contains a source node and a sink node that represent the start and the
end of a pairing, respectively. Furthermore, for each flight f ∈ F operated on a day
in Ww, there are up to three nodes in set Nwb:

• a departure node,
• an arrival node,
• a to-flight node.

The first two nodes always exist and their meaning is obvious. Their associated lo-
cations are the flight departure and arrival airports, respectively. The time associated
with the departure node is the flight departure time, but that associated with the ar-
rival node is its arrival time plus the minimal connection time

¯
tCNX . The to-flight

node is an auxiliary node that offers the opportunity to end a rest period by starting
a duty with the corresponding flight or to extend this period. It is associated with
the flight departure airport and time, and exists only if this airport is not the base b.
Figure 5.7 depicts the nodes and arcs associated with a single non-base airport.

The arc set Awb = {AFLY ,ARST ,ASOD,ACNX ,AWT ,ASOP,AEOP} contains seven
disjoint subsets of arc types given respectively as
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Time

day w

day w+1

Legend for Nodes

Arrival Departure To-flight

Legend for Arcs

Flight Wait Connection Rest Start-of-duty

Fig. 5.7: Subnetwork of Gwb describing the nodes and arcs of a non-base airport.
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• Each flight operated on a day in Ww is represented by a flight arc that links its
departure and arrival nodes.

• For each flight that does not end at base b, there is a rest arc connecting its
arrival node to the earliest to-flight node associated with the flight arrival airport
such that the minimum and maximum rest period durations

¯
tRST and t̄RST are

satisfied. This arc may not exist if there is no such to-flight node.
• For each flight that does not start at base b, there is a sod (start-of-duty) arc

between its to-flight and departure nodes.
• The departure and arrival nodes associated with each airport are linked together

in chronological order by a chain of connection arcs. These arcs allow the ex-
tension of a connection over the minimum connection duration.

• The to-flight nodes associated with each airport other than base b are linked
together in chronological order by a chain of wait arcs. These arcs allow the
extension of a rest period over the minimum rest duration.

• There is a sop (start-of-pairing) arc between the source node and each departure
node at base b on day w.

• There is an eop (end-of-pairing) arc between each arrival node at base b (on any
day in Ww) and the sink node.

Three parameters are associated with each arc (i, j) ∈ Awb:

• Ei j: elapsed time (difference between the times associated with nodes j and i);
• Fi j: flying time;
• f (i, j): associated flight.

The elapsed time of sop and eop arcs is equal to zero. The flying time of every arc
except the flight arcs is equal to zero. The associated flight is relevant only for the
flight arcs.

Extended formulation

In this section, an extended formulation (an IMP) is directly proposed for the
CPPBC. For each flight f ∈ F and each pairing p ∈ P̂, let a f p be a binary parameter
indicating whether pairing p covers or not flight f . For each day w ∈W and base
b ∈ B, we denote by P̂wb ⊂ P̂ the subset of pairings starting on day w from base b.
For each pairing p ∈ P̂wb, we define a binary variable λwb

p that is equal to 1 if p is
selected in the solution and 0 otherwise. Furthermore, for each base b∈ B, we define
two non-negative integer static variables y1

b and y2
b that indicate the amount of flying

time assigned to base b in excess of Lb and Lb +µb, respectively.
Given this notation, the proposed IMP is the following set partitioning model

with side constraints:

z⋆IMP = min ∑
w∈W

∑
b∈B

∑
p∈P̂wb

cpλ
wb
p + ∑

b∈B

(
ω

1
b y1

b +ω
2
b y2

b
)

(5.54a)
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s.t. ∑
w∈W

∑
b∈B

∑
p∈P̂wb

a f pλ
wb
p = 1 [π f ] ∀ f ∈ F (5.54b)

∑
w∈W

∑
p∈P̂wb

lpλ
wb
p − y1

b− y2
b ≤ Lb [πb] ∀b ∈ B (5.54c)

λ
wb
p ∈ {0,1} ∀w ∈W,b ∈ B, p ∈ P̂wb (5.54d)

0≤ y1
b ≤ µb ∀b ∈ B (5.54e)

y2
b ≥ 0 ∀b ∈ B. (5.54f)

The objective function (5.54a) minimizes the sum of the pairing costs and the penal-
ties incurred for not respecting the maximum flying time at each base. The set parti-
tioning constraints (5.54b) ensure that each flight is included in exactly one pairing.
The soft base constraints (5.54c) allow the computation of the excess flying time
assigned to each base and its breakdown in the y1

b and y2
b variables. The variable

domains are expressed by (5.54d)–(5.54f).

Pricing problems

There is one integer subproblem ISPwb for each day w ∈W and each base b ∈ B that
allows the generation of pairings in P̂wb, i.e., starting on day w from base b. It is a
SPPRC defined on the time-space network Gwb described above. It aims at finding
feasible pairings with a negative reduced cost, where the reduced cost c̄p of a pairing
p ∈ P̂wb is given by

c̄p = cp− ∑
f∈F

a f pπ f − lpπb

= max{lp,αsp}− ∑
f∈Fp

π f − ∑
f∈Fp

l f πb

= max{ ∑
f∈Fp

(
l f (1−πb)−π f

)
,αsp− ∑

f∈Fp

(
π f + l f πb

)
}. (5.55)

To ensure feasibility of all source-to-sink paths in network Gwb, we impose re-
source constraints. Unconstrained resources are also used to correctly compute the
pairing reduced cost. Seven resources are defined in

R= {rCost, rCostF, rCostS, dtyMin, dtyMax, cnxMin, rstMax}, (5.56)

where

rCost: Reduced cost;
rCostF : Total flying time minus cumulated duals; first component in (5.55);
rCostS: Span minus cumulated duals; second component in (5.55);
dtyMin: Time remaining to reach the minimum duty duration

¯
tDTY ;

dtyMax: Current duty duration;
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cnxMax: Current connection duration;
rstMax: Current rest duration.

The two resources rCostF and rCostS compute the reduced cost of the partial pair-
ing according to each component in (5.55) as if the other component was irrelevant.
Its true reduced cost is given by the resource rCost whose value is obtained by taking
the maximum value of these two resources.

The resource windows for the rCost, rCostF and rCostS resources are set to [0,0]
at the source node; they are unconstraining (neither lower nor upper bound) at all
other nodes. The resource windows associated with the other resources are given in
Table 5.4. Observe that the windows for resource dtyMin at the to-flight and sink
nodes are [0,0] because these nodes can only be reached after completing a duty and,
in this case, there should be no time remaining to reach the minimum duty duration.
Furthermore, for resource dtyMax, the window upper bound at all nodes except the
source node accounts for the minimum connection time

¯
tCNX that is automatically

added to the last flight arc of a duty.

Node type dtyMin dtyMax cnxMax rstMax

source [0,0] [0,0] [0,0] [0,0]
sink [0,0] [0, t̄DTY +

¯
tCNX ] [0, t̄CNX ] [0, t̄RST ]

departure [0,
¯
tDTY ] [0, t̄DTY +

¯
tCNX ] [0, t̄CNX ] [0, t̄RST ]

arrival [0,
¯
tDTY ] [0, t̄DTY +

¯
tCNX ] [0, t̄CNX ] [0, t̄RST ]

to-flight [0,0] [0, t̄DTY +
¯
tCNX ] [0, t̄CNX ] [0, t̄RST ]

Table 5.4: Resource windows for an ISP of the CPPBC.

The REFs of the resources in R for each arc (i, j) ∈ Awb are defined as

f rCost
i j (ti) = max{ f costF

i j (ti), f costS
i j (ti)} (5.57a)

f costF
i j (ti) =

{
tcostF
i +Fi j(1−πb)−π f (i, j) if (i, j) ∈ AFLY

tcostF
i otherwise

(5.57b)

f costS
i j (ti) =

{
tcostS
i +α Ei j−π f (i, j)−Fi jπb if (i, j) ∈ AFLY

tcostS
i +α Ei j otherwise

(5.57c)

f dtyMin
i j (ti) =

¯
tDTY if (i, j) ∈ ASOP∪ASOD

max{tdtyMin
i −Ei j,0} if (i, j) ∈ AFLY ∪ACNX

tdtyMin
i otherwise

(5.57d)

f dtyMax
i j (ti) =

{
tdtyMax
i +Ei j if (i, j) ∈ AFLY ∪ACNX

0 otherwise
(5.57e)
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f cnxMax
i j (ti) =

¯
tCNX if (i, j) ∈ AFLY

tcnxMax
i +Ei j if (i, j) ∈ ACNX

0 otherwise
(5.57f)

f rstMax
i j (ti) =

¯
tCNX +Ei j if (i, j) ∈ ARST

trstMax
i +Ei j if (i, j) ∈ AWT

0 otherwise,
(5.57g)

where ti =
[
tr
i
]

r∈R is the vector of the resource values at node i. Let us comment on
these resource extension functions. REFs (5.57b)–(5.57c) ensure that both compo-
nents in (5.55) are well computed, whereas REF (5.57a) computes the maximum.
Observe that the latter REF does not depend on trCost

i but rather on tcostF
i and tcostS

i .
Next, REFs (5.57e)–(5.57g) are straightforward: each allows the computation of the
consumption of the corresponding resource along the arcs and resets the resource
value to 0,

¯
tCNX or

¯
tRST when a duty, a connection or a rest starts, respectively. Fi-

nally, REFs (5.57d) are used to compute the time remaining to reach the minimum
duty time

¯
tDTY . Traversing a rest or an eop arc (indicating the end of a duty) when

this time is positive is not feasible because of the resource windows [0,0] for dtyMin
on the destination node of such an arc (either a to-flight node or the sink node).

Notice that all REFs (5.57) are non-decreasing functions with respect to each of
their components. Therefore, the ISPwb for each base b ∈ B and day w ∈W can be
formulated using the SPPRC model (5.33) (recall that the ESPPRC is equivalent to
a SPPRC when the underlying network is acyclic) and, thus, the labeling algorithm
described above for the SPPRC can be used to solve it.

5.4 Good to Know

In this final section, we show how it is possible to derive a compact linear arc-flow
formulation for the VRPTW by embedding the time information in the structure of
the network.

Compact linear formulation for the VRPTW

To do so, we replace the network G = (N,A) described before (p. 294) by a time-
expanded network G∆ = (N∆ ,A∆ ) where each node i ∈ N \ {o} is represented by
bi−ai +1 copy nodes in N∆ , one for each integer time unit in time window [ai,bi].
For node o, a single copy associated with time ao is required. This origin node is
denoted ō. For each node ℓ ∈ N∆ , we denote by νℓ and τℓ its corresponding node in
N and its associated time, respectively, and we write ℓ= ⟨νℓ,τℓ⟩.
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Let N∆
i = {ℓ ∈ N∆ | νℓ = i} be the set of nodes in N∆ representing node i ∈ N.

This allows us to internalize the time information on the arc connection, that is,
tνh,νℓ = τℓ− τh, (h, ℓ) ∈ N∆

i ×N∆
j . In the arc set A∆ , every arc (i, j) ∈ A is replaced

by the set of arcs

A∆
i j = {(h, ℓ) ∈ N∆

i ×N∆
j | tνh,νℓ = ti j ∨ (tνh,νℓ > ti j ∧ τℓ = a j)}, (5.58)

which means we only keep arc (h, ℓ) if tνh,νℓ = ti j or tνh,νℓ > ti j ∧ τℓ = a j, that is,
each arc echoes the original travel time plus a waiting time but only if the latter is
necessary and minimal. All arcs in A∆

i j have the same cost ci j. By construction, every
path from the source node ō to any sink node ℓ ∈ N∆

d satisfies the time windows at
the visited nodes.

Figure 5.8 illustrates such a subset derived from arc (1,4) in the example net-
work G of Figure 5.1. Recall that [a1,b1] = [2,6], [a4,b4] = [16,18] and t14 = 12.
Therefore, if service starts at customer 1 at time 2 (node ⟨1,2⟩), then the vehicle has
to wait two time units before the time window lower bound at customer 4, yielding
the arc (h̄, ℓ̄) ∈ A∆

14 with h̄ = ⟨1,2⟩ and ℓ̄= ⟨4,16⟩. Similarly, one time unit of wait-
ing must occur if service starts at time 3, yielding the arc (h̄, ℓ̄)∈ A∆

14 with h̄ = ⟨1,3⟩
and ℓ̄= ⟨4,16⟩. For the other arcs (h, ℓ) ∈ A∆

14, no waiting occurs, i.e., τh + t14 = τℓ.
Note that some nodes and their adjacent arcs may be removed from the sets N∆

and A∆ because they cannot be reached from the source node ō. For instance, node
⟨1,3⟩ and arc (⟨1,3⟩,⟨4,16⟩) can be discarded in the example. We do note that in
general, the difficulty of identifying such nodes and arcs increases with the size of
the network and the width of the time windows.

⟨1,2⟩ ⟨1,3⟩ ⟨1,4⟩ ⟨1,5⟩ ⟨1,6⟩

⟨4,16⟩ ⟨4,17⟩ ⟨4,18⟩

Fig. 5.8: Node subsets N∆
1 and N∆

4 , and arc subset A∆
14.

Observe also that G∆ is an acyclic network. However, a path in G∆ may visit
more than one node representing the same customer if the travel time and the time
windows allow it. For instance, in the example of Figure 5.1, the path o343d with
associated start of service times 0, 10, 16, 18, and 32 is represented in the corre-
sponding network G∆ by the path going through the nodes ō, ⟨3,10⟩, ⟨4,16⟩, ⟨3,18⟩
and ⟨d,32⟩. Such a path is non-elementary as it visits more than once the same
customer and is thus infeasible for the VRPTW.
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Using the binary arc-flow variables xk
hℓ, (h, ℓ)∈A∆ , k∈K, the VRPTW is formulated

in a compact form, without any time variables nor time-related constraints, as

z⋆ILP = min ∑
k∈K

∑
(h,ℓ)∈A∆

cνhνℓ
xk

hℓ (5.59a)

s.t. ∑
k∈K

∑
h∈N∆

i

∑
ℓ:(h,ℓ)∈A∆

xk
hℓ = 1 ∀i ∈C (5.59b)

∑
ℓ:(ō,ℓ)∈A∆

xk
ōℓ = 1 ∀k ∈ K (5.59c)

∑
ℓ:(h,ℓ)∈A∆

xk
hℓ− ∑

ℓ:(ℓ,h)∈A∆

xk
ℓh = 0 ∀k ∈ K, i ∈C,h ∈ N∆

i (5.59d)

∑
h∈N∆

d

∑
ℓ:(ℓ,h)∈A∆

xk
ℓh = 1 ∀k ∈ K (5.59e)

∑
(h,ℓ)∈A∆

qνh xk
hℓ ≤ Q ∀k ∈ K (5.59f)

xk
hℓ ∈ {0,1} ∀k ∈ K,(h, ℓ) ∈ A∆ . (5.59g)

Constraints (5.59b) impose that each customer i ∈C be visited exactly once and
that its start of service time be within its time window. Consequently, they ensure
that all selected paths are elementary. For each vehicle k ∈ K, constraints (5.59c)–
(5.59e) define a path structure from the source node ō to any destination node in
N∆

d . They also ensure that any path respects the time windows of the visited cus-
tomers. Finally, the capacity constraints for each vehicle k are expressed through
inequalities (5.59f).

Note that, like for the Binary knapsack problem (p. 237), the capacity constraints
can also be modeled directly in the network structure by using three-dimensional
nodes ℓ = ⟨νℓ,τℓ,ζℓ⟩, where ζℓ ∈ {0,1, . . . ,Q} represents the load accumulated up
to node νℓ. In this augmented network, nodes h and ℓ are linked by an arc if and only
if (⟨νh,τh⟩,⟨νℓ,τℓ⟩) belongs to the arc set A∆ defined above and ζh +qνℓ

= ζℓ. This
alternative modeling is useful to better understand the labeling algorithms presented
earlier. However, because it is not required to derive such a linear arc-flow model,
we continue our discussion with model (5.59) which is based on the time-expanded
network G∆ .

Observe that constraints (5.59c)–(5.59g) are separable by vehicle k ∈ K. There-
fore, model (5.59) has a block-diagonal structure. Unlike model (5.1), these con-
straints are linear (except for the integrality requirements) and, thus, permit to derive
an extended formulation via a Dantzig-Wolfe reformulation.
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Extended set partitioning formulation

To apply a Dantzig-Wolfe reformulation to model (5.59), we exploit the block-
diagonal structure in index k. We define Dk = {xk ∈ {0,1}|A∆ | | Dkxk ≥ dk}, where
Dkxk ≥ dk represents the constraints (5.59c)–(5.59f) associated with vehicle k, and
the following elementarity constraints

∑
(h,ℓ)∈A∆ :νh=i

xk
hl ≤ 1 ∀i ∈C. (5.60)

These additional constraints are not necessary in model (5.59) because they are
redundant with constraints (5.59b) but they are needed here to guarantee that the
feasible solutions in Dk correspond to elementary routes. Observing that all domains
Dk are identical, we can aggregate them into a single one and omit index k. The
resulting domain D is defined by the following constraints:

∑
ℓ:(ō,ℓ)∈A∆

xōℓ = 1 (5.61a)

∑
ℓ:(h,ℓ)∈A∆

xhℓ− ∑
ℓ:(ℓ,h)∈A∆

xℓh = 0 ∀i ∈C,h ∈ N∆
i (5.61b)

∑
h∈N∆

d

∑
ℓ:(ℓ,h)∈A∆

xℓh = 1 (5.61c)

∑
(h,ℓ)∈A∆

qνh xhℓ ≤ Q (5.61d)

∑
(h,ℓ)∈A∆ :νh=i

xhℓ ≤ 1 ∀i ∈C (5.61e)

xhℓ ∈ {0,1} ∀(h, ℓ) ∈ A∆ . (5.61f)

This domain is bounded and, thus, its convex hull can be described using only ex-
treme points. We can show that every solution in D is an extreme point of conv(D)
and, thus, there is a bijection between the set of extreme points of conv(D) and the
set of feasible routes. Consequently, reformulating the compact formulation (5.59)
by convexification or by discretization yields the same IMP. As in the previous
chapter, we denote by P the index set of these extreme points.

For a feasible route (an extreme point) xp, p∈ P, let cp = cxp = ∑(h,ℓ)∈A∆ cνhνℓ
xhℓ

be its cost and aip = aixp = ∑(h,ℓ)∈A∆ :νh=i xhℓ, i ∈C, be a binary parameter indicat-
ing if it visits or not customer i. Using the Dantzig-Wolfe decomposition principle,
model (5.59) can be reformulated as the following set partitioning model:

z⋆IMP = min ∑
p∈P

cpλp (5.62a)

s.t. ∑
p∈P

aipλp = 1 [πi] ∀i ∈C (5.62b)

λp ∈ {0,1} ∀p ∈ P, (5.62c)
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where, for each route p∈ P, the binary variable λp indicates whether or not it is part
of the solution, and the dual variables πi ∈R, ∀i ∈C, appear in the linear relaxation.
Note that this reformulation should include constraint ∑p∈P λp ≤ |K| but it is not
necessary given that the number of vehicles |K| is assumed to be sufficiently large.

5.5 Reference Notes

Section 5.1 The first column generation algorithm for the multiple traveling sales-
person problem with time windows was devised by Desrosiers et al. (1984) for a
school bus application. In that paper, the columns are generated by solving a short-
est path problem with time windows on nodes (SPPTW), using a label-correcting
algorithm (Desrosiers et al., 1983). It led the way to the resource constrained short-
est path problem (Desrochers, 1988) as we know it today. Many algorithms have
been developed to tackle this particular pricing problem at the core of numerous
vehicle routing problem variants as surveyed by Costa et al. (2019).

As one of the simplest variants, the VRPTW turned out to play a central role in
testing new ideas (around twenty papers proposing different column generation al-
gorithms for this problem have been published so far). The first is due to Desrochers
et al. (1992a), who exploited the possibility to use a subproblem relaxation, namely,
the SPPTWC instead of the ESPPTWC. By introducing the notion of customer un-
reachability, Feillet et al. (2004) have succeeded to design the first efficient algo-
rithm that relies on the ESPPTWC to yield strong lower bounds.

Nevertheless, this ISP remains too difficult to solve when the time windows and
vehicle capacity are not enough constraining to sufficiently limit the possibility to
cycle. At the beginning of the 2010s, the ng-SPPTWC was introduced by Baldacci
et al. (2011, 2012) as an ISP that offers a good compromise between lower bound
quality and computational effort to solve it.

Fig. 5.9: Stefan Røpke announcing the solution of Solomon’s instance R208.

Research on the VRPTW has benefited from a common playground, namely, the
well-known benchmark instances introduced by Solomon (1987). This dataset in-
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cludes 56 varied 100-customer instances that differ by how the customers are geo-
graphically distributed in a squared region (randomly, in clusters, or a mix of both)
and how wide are the time windows. Desrochers et al. (1992a) were able to solve
only 7 of these 56 instances. It took 25 years before all 56 instances were solved
to optimality by Pecin et al. (2017a). Note that, at the 2012 Column Generation
workshop (Bromont, Quebec), Stefan Røpke reported solving instance R208, fa-
mous for being the only remaining open one at the time, but he never published this
result. Since then, researchers have started to tackle the instances of Gehring and
Homberger which have a structure similar to those of Solomon but with 200 to 1000
customers (see Gehring and Homberger, 1999; Pecin et al., 2017a; Sadykov et al.,
2021).

Section 5.2 Desrochers and Soumis (1988c) developed the first label-setting algo-
rithm for the SPPTW. This study was immediately followed by another one on the
SPPRC by Desrochers (1988). This seminal work was, however, rejected for publi-
cation (see Figure 5.10). For a survey on the SPPRCs, the reader is referred to Irnich
and Desaulniers (2005). There are thereafter plenty of noteworthy contributions to
the canon of knowledge on the ESPPRC such as the first bi-directional algorithm of
Righini and Salani (2006).

Fig. 5.10: A few steps into the SPPRC (Desrochers, 1988).

Examples
5.1 Simultaneous pickup and delivery problem. This example is inspired by De-
saulniers et al. (1998a, §3).

5.2 Pickup and delivery problem with time windows. Dumas et al. (1991) proposed
the first algorithm for the PDPTW. This paper contains the main results of Yvan’s
master thesis (1983–1985) under the supervision of Jacques Desrosiers: Confection
de routes de véhicules pour le transport de plusieurs origines à plusieurs desti-
nations, Université de Montréal. The improved dominance rule was, much later,
devised by Røpke and Cordeau (2009).

5.3 Crew pairing problem with base constraints. Crew scheduling in air transporta-
tion has also been a fertile ground for the development of cutting-edge branch-and-
price algorithms. Lavoie et al. (1988) were the first to devise one for the crew pairing
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problem. Several more were developed including those of Desaulniers et al. (1997a)
and Vance et al. (1997). Recently, Quesnel et al. (2017) presented a study focus-
ing on the crew pairing problem with base constraints. Finally, Desaulniers et al.
(2020c) solve the largest published industrial monthly crew pairing instance with
46 588 flights. Embedded in a rolling-horizon procedure with relatively large time
periods, their algorithm combines column generation with the dynamic constraint
aggregation algorithm for set partitioning problems (El Hallaoui et al., 2005, 2008)
that efficiently manages degeneracy of the RMP.

Early surveys on Dantzig-Wolfe decomposition applied to vehicle routing and
crew scheduling problems include Solomon and Desrosiers (1988), Desrosiers et al.
(1995), and Desaulniers et al. (1998a).

Exercises

5.1 Martin Desrochers
Who is Martin Desrochers? List a few of his scientific contributions.

5.2 Zero-objects for the VRPTW
Consider the compact arc-flow formulation (5.1) for the Vehicle Routing Problem
with Time Windows and the actual grouping of the constraints (5.2), where the |K|
available vehicles are all used.

(a) Propose a compact formulation in which we require the possibility of not using
all of them.

(b) Write an appropriate grouping of the constraints.
(c) Give the MP resulting from a Dantzig-Wolfe reformulation.

5.3 Two-index arc-flow formulation for the VRPTW
Propose a two-index arc-flow model for the VRPTW. See the description of the
network structure on p. 294.

5.4 Tightness of the linear relaxations for the VRPTW
The linear relaxation of the IMP (5.8) can be tighter than that of the compact formu-
lation ILP (5.1) (considering the linearized version of constraints (5.1g)). To illus-
trate this, compute an optimal solution to the linear relaxation of both models (5.8)
and (5.1) for the following small example and compare their values. Set C = {1,2,3}
contains three customers with qi = 10 for all i ∈C. Assume that the time windows
are not constraining at all, Q = 15 and |K|= 3. Furthermore, let ci j = 1 for all arcs
(i, j) ∈ A except arc (o,d) for which cod = 0.

5.5 Dominance rule for the ESPPTWC
Under the assumption that all REFs f r

jh(·) defined in (5.18) are non-decreasing with
respect to each of their variables, show that (5.19) are sufficient dominance condi-
tions.
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5.6 Dominance of labels by a dominated label
Prove that, if the newly created label Ep′ associated with a node h ̸= d is dominated
in Step 6 of Algorithm 5.1, then it cannot dominate any label Ep′′ ∈ Uh∪Ph, unless
Ep′ = Ep′′ .

5.7 Dominance of processed labels by a non-dominated label
Under the assumption that tuv > 0 for all arcs (u,v) ∈ A such that v ∈C, prove that,
in Step 8 of Algorithm 5.1, the newly created label Ep′ associated with a node h ̸= d
cannot dominate any processed label Ep′′ ∈ Ph.

5.8 Omitting the load resource in the SPPTWC
In some VRPTW instances, the time windows are much more constraining than the
vehicle capacity. Therefore, to speed up the solution of the ISP, one possibility is
to omit the load resource and add infeasible path cuts when load-infeasible routes
are part of a MP solution. If this resource was not considered in the SPPTWC of
Illustration 5.4, which labels listed in Table 5.1 would be additionally dominated or
not generated?

5.9 Revisiting the time-constrained shortest path problem
(a) Formulate the time-constrained shortest path problem of Example 3.2 as a

SPPRC by defining the resource set, the resource windows, and the REFs.
(b) Solve this example using a labeling algorithm.

5.10 Two-cycle elimination
How would you modify the labeling algorithm proposed for solving the SPPTWC
if 2-cycles were not allowed? A 2-cycle is a sequence of three nodes (i, j, i) starting
and ending at the same node i.

5.11 Backward labeling for the ESPPTWC
Algorithm 5.1 for the ESPPTWC is qualified as a forward labeling algorithm be-
cause it extends partial paths from the source node o towards the destination node d
in network G. A backward labeling algorithm works in the opposite direction: it
extends partial paths from node d towards node o using backward REFs. Define
the main components (label definition, resource windows, initial label, REFs, dom-
inance rule) of a backward labeling algorithm.

5.12 Bidirectional labeling for the ESPPTWC
When feasible od-paths can contain a relatively large number of nodes, it may be
advantageous to use a bidirectional labeling algorithm. In such an algorithm, la-
beling is performed in both forward and backward directions. Labels are extended
forwardly from node o until reaching the halfway point of a monotonic resource
such as the time. Labels are also extended backwardly from node d until reaching
the same halfway point for the corresponding backward resource. When all labels
have been extended, forward and backward labels associated with the same node are
merged to form complete od-paths. Given a forward label

Ep =
(
T rCost

p ,T time
p ,T load

p , [T custi
p ]i∈C

)
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and a backward label (as defined in the solution to Exercise 5.11)

Ebw
p =

(
T bw rCost

p ,T bw time
p ,T bw rCap

p , [T bw custi
p ]i∈C

)
associated with the same node j ∈ C, specify the conditions that must be met to
ensure that the od-path p⊕ p′ is feasible.

5.13 Unreachable customers in the ng-SPPTWC
How can we integrate the usage of unreachable customers in the labeling algorithm
proposed for solving the ng-SPPTWC?

5.14 Applying the ng-SPPTWC labeling algorithm
Apply the ng-SPPTWC labeling algorithm to solve the ng-SPPTWC instance de-
fined in Illustration 5.5. Consider the unreachability definition and the dominance
rule proposed in the solution to Exercise 5.13.

5.15 Non-decreasing REFs assumption for the ESPPRC
The proposed generalized labeling Algorithm 5.1 for the ESPPRC relies on the as-
sumption that the REFs f r

i j, r ∈ R, (i, j)∈ A, are non-decreasing with respect to each
of their variables. Why would this algorithm be invalid if some of these REFs were
not non-decreasing?

5.16 Composition and addition of non-decreasing functions
Let f (x),g(x) : Rn 7→ Rn be non-decreasing functions with respect to each of their
variables.

(a) Show that the composition f ◦g(x) = f (g(x)) is a non-decreasing function.
(b) Show that the sum ( f +g)(x) = f (x)+g(x) is a non-decreasing function.

5.17 Customers with both a pickup and a delivery
In the SPDP, assume that a customer i requests both a pickup of qP

i and a delivery
of qD

i . Would it be valid to use a single node for this customer which is a pickup
node with demand qP

i − qD
i if qP

i ≥ qD
i and a delivery node with demand qD

i − qP
i

otherwise?

5.18 Unreachable customers for the SPDP
To speed up the labeling algorithm for solving the pricing problem of the SPDP, we
can replace the customer resources by unreachable customer resources. What would
be the conditions to declare a customer unreachable?

5.19 SPDP is a special case of the PDP
Model the SPDP as a pickup and delivery problem (PDP), i.e., a PDPTW without
time windows.

5.20 The vehicle routing problem with backhauls
In the vehicle routing problem with backhauls (VRPB), the set of customers C is
partitioned in two disjoint subsets: subset CD contains customers requesting a de-
livery and subset CP, those requesting a pickup. All delivered items originate from
a single depot and all picked up items must be transported to this depot. A route is
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feasible if all visited delivery customers are serviced before all visited pickup cus-
tomers, and the capacity of the vehicle is satisfied all along the route. Each customer
must be visited exactly once. The VRPB can be formulated as the IMP (5.8) (with
the appropriate set of routes P̂) and solved by a branch-and-price algorithm. How
would you model the ISP? Describe the underlying network, the adjusted arc costs,
and the resources used. Use the following notation: customer demand qi, vehicle
capacity Q, arc cost ci j, and dual variable πi.

5.21 Resource validity for the PDPTW
The ISP defined for the PDPTW involves the subset of resources

{load, [requ]u∈U , [on]u∈U , [notOn]u∈U}

that are constrained by the resource windows described in Table 5.3 and extended
using the REFs (5.44)–(5.47). Show that the resources requ, onu, and notOnu for
u ∈U ensure that each request u is picked up at most once, delivered at most once,
and, when picked up, it is delivered afterwards.

5.22 Unreachable requests for the PDPTW
To speed up the labeling algorithm for solving the pricing problem of the PDPTW,
we can replace the request resources by unreachable request resources. What would
be the conditions to declare a request unreachable?

5.23 Dominance only for same onboard requests in the PDPTW
Show the equivalence between (5.48) and the conditions on the resources onu and
notOnu, u ∈U , in the dominance rule (5.35).

5.24 Pairing feasibility constraints
In the proposed CPPBC model, which pairing feasibility constraints are directly
taken into account by the structure of the networks Gwb, w ∈W , b ∈ B?

5.25 Minimum and maximum resource constraints for the CPPBC
In the proposed ISP for the CPPBC, two distinct resources dtyMin and dtyMax are
used to impose that the duration of a duty falls in the interval [

¯
tDTY , t̄DTY ].

(a) Why is it not sufficient to only use resource dtyMax (that tracks the current duty
duration) to handle both minimum and maximum duty duration constraints?

(b) In the labeling algorithm for solving an ISP, consider two labels Ep and Ep′

associated with the same node such that T dtyMax
p <

¯
tDTY and T dtyMax

p′ <
¯
tDTY .

Show that, according to the dominance conditions (5.35), Ep cannot dominate
Ep′ unless T dtyMax

p = T dtyMax
p′ <

¯
tDTY or

¯
tDTY ≤ T dtyMax

p ≤ T dtyMax
p′ .

5.26 New pairing constraints for the CPPBC
How would you model the following constraints in the ISP for the CPPBC?

(a) The total flying time in each duty should not exceed a maximum time t̄FLY .
(b) The duration of a rest before the last duty of a pairing can be less than

¯
tRST but

not less than
¯̄
tRST , where

¯̄
tRST <

¯
tRST . Hint: A new type of arcs can be useful.
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Dual Point of View

There is a crack in everything
That’s how the light gets in.

Anthem
Leonard Cohen

Abstract In this chapter, we dive into the dual space: row generation rather than
column generation, the Lagrangian relaxation method and its strong relationship
with the Dantzig-Wolfe decomposition, and ways we borrow from the dual point of
view in accelerating the column generation algorithm.
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Introduction

Several topics that we have seen in this book relate in some form to duality, for
instance, optimality criteria in linear programming, or the communication between
the master and subproblem(s) in the column generation algorithm. We interpret the
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material of previous chapters in the light of duality and see that this opens new
doors. The Lagrangian relaxation method for computing lower bounds for an integer
linear program is important in this context. It is said to be dual to the Dantzig-Wolfe
decomposition, and we clarify this statement. Most importantly, embracing this dual
perspective enables us to improve the column generation algorithm in practice. Most
ideas have a geometric interpretation and are thus very visual, so we work with many
illustrations.

 
 
 
Overheard conversation between two professors at the NorFa Summer Course i Narvik.
  

Anything you can do I can do better 

 

 
A: Any path you can find, I can find shorter. 

 Less iterations and closer to goal. 

 Any partition you set to your problem 

 all my partitions will cover yours too. 

 

B: No you can’t 

A: Yes I can 

B: No you can’t 

A: Yes I can 

B:  No you can’t 

A: Yes I can, yes I can 

 

B: My travel salesmen will meet their sales quota. 

 Yours will be lost in your branching K-tree. 

 All of my airplane arrive right on schedule. 

 Yours all be circling around JFK. 

 

A: No they won’t 

B: Yes they will 

A: No they won’t 

B: Yes they will 

A: No they won’t 

B: Yes they will, yes they will 

 

A+B: Now I see the reason, why you are attending. 

 You are not the master, you can stop pretending 

 when your minds clouded you can’t see the light. 

 It’s hard to admit, but I am right. 

 

 

B: All of your pickups, I have delivered. 

 All of your subscripts, I can make post. 

 Even if problems are NP-complete 

 I still can solve them with multiple fleets. 

 

A: No you can’t 

B: Yes I can 

A: No you can’t 

B: Yes I can 

A:  No you can’t 

B: Yes I can, yes I can 

 

A: No polyhedron will close my time windows 

 all my vehicles return to depot. 

 All of my networks are filled up to max 

 I do my splitting, while you just relax. 

 

B: No you can’t 

A: Yes I can 

B: No you can’t 

A: Yes I can 

B:  No you can’t 

A: Yes I can, yes I can 

 

A+B: Now I see the reason, why you are attending. 

 You are not the master, you can stop pretending 

 when your minds clouded you can’t see the light. 

 It’s hard to admit, but I am right. 

 

 
Per Hultenberger and Merete Mogensen (June 24, 1993) 
Melody: “Anything you can do I can do better” from “Annie get your gun” 

Fig. 6.1: Overheard conversation between two professors.

Figure 6.1 reports in an artistic way on a conversation between professors Oli
Madsen and Jacques Desrosiers at the NorFa Summer Course i Narvik in 1993. The
first favors the dual methods, the second the primal ones. If all you have is a hammer,
everything looks like a nail, and these two researchers have different hammers. Just
in the Montréal spirit, the spirit of collaboration, we write this chapter hoping that
together they have an even stronger hammer.
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6.1 Row Generation

We are (still!) interested in solving the ILP given by the compact formulation

z⋆ILP = min c⊺x
s.t. Ax≥ b [σσσb]

Dx≥ d [σσσd]

x ∈ Zn
+.

(6.1)

We assume that (6.1) is feasible and z⋆ILP is finite. Again, the dual vectors σσσb
and σσσd are only meaningful in the linear relaxation. We recall that in conducting
a Dantzig-Wolfe reformulation, we divide the constraints in two parts, reflected by
the non-empty sets

A= {x ∈ Zn
+ | Ax≥ b} (6.2a)

D= {x ∈ Zn
+ | Dx≥ d}. (6.2b)

Using the convexification of D, we derive the IMP (4.5), whose linear relaxation
gives us the MP:

z⋆MP = min ∑
p∈P

cpλp + ∑
r∈R

crλr

s.t. ∑
p∈P

apλp + ∑
r∈R

arλr ≥ b [πππb]

∑
p∈P

λp = 1 [π0]

λp ≥ 0 ∀p ∈ P

λr ≥ 0 ∀r ∈ R.

(6.3)

For later reference, we also state its dual and refer to it as the DMP:

z⋆DMP = max b⊺πππb + π0

s.t. a⊺pπππb + π0 ≤ cp [λp] ∀p ∈ P

a⊺r πππb ≤ cr [λr] ∀r ∈ R

πππb≥ 0, π0 ∈ R.

(6.4)

We ask a question which is central to this chapter: While solving the MP by
column generation, a primal algorithm, what happens in the dual space? The RMP
is a restriction of the MP, with variables missing. The dual of the RMP therefore
misses constraints, and is thus a relaxation of the DMP. As the column generation
algorithm iteratively refines an inner approximation of the MP’s feasible region, it
iteratively refines an outer approximation of the DMP’s feasible region at the same
time. The column generation algorithm in the primal is a cutting plane algorithm in
the dual (Cheney and Goldstein, 1959; Kelley, 1960).
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Note 6.1 (Separation problem.) The subproblem finds a master variable of negative
reduced cost, if there is any. That is, cp−a⊺pπππb−π0 < 0 must hold for a λp-variable,
similarly for the λr-variables, cr− a⊺r πππb < 0. This is equivalent to a⊺pπππb +π0 > cp
or a⊺r πππb > cr, that is, a constraint in the dual which is violated by (πππb,π0). In our
interpretation, the ISP thus acts as a separation problem in the dual: to identify a
constraint that is violated by the current dual solution, or to prove that none exists.

Illustration 6.1 TCSPP

We illustrate the dual cutting plane algorithm using our long standing Time con-
strained shortest path problem (TCSPP). The problem is to find a shortest path from
node 1 to 6 such that its total traversal time does not exceed 14 time units, see
Figure 6.2.

1

2

3

4

5

6

(1,10)

(1,1)

(1,7)

(10,3)

(12,3)

(2,2)

(1,2) (10,1)

(2,3)

(5,
7)

Fig. 6.2: Network G = (N,A) with (ci j, ti j) values, ∀(i, j) ∈ A.

Table 6.1 shows again the five column generation iterations to solve the MP. The
subproblem’s domain is bounded, so only extreme points can be generated.

RMP ISP

t RMP solution zRMP π0 π7 c̄(π7,π0) p cp tp lbt

1 y0 = 1 100.0 100.00 0.00 −97.0 1246 3 18 3.0
2 y0 = 0.22,λ1246 = 0.78 24.6 100.00 −5.39 −32.9 1356 24 8 −8.3
3 λ1246 = 0.6,λ1356 = 0.4 11.4 40.80 −2.10 −4.8 13256 15 10 6.6
4 λ1246 = λ13256 = 0.5 9.0 30.00 −1.50 −2.5 1256 5 15 6.5
5 λ13256 = 0.2,λ1256 = 0.8 7.0 35.00 −2.00 0.0 - - - 7.0

Table 6.1: Column generation iterations: solving the MP.

We mirror these iterations by following the generated sequence and observe what
simultaneously happens in the dual space. As per Note 6.1, at every column gener-
ation iteration in the primal, the variable generated by the ISP corresponds to a
violated constraint in the dual of the RMP, i.e., the relaxed DMP. Therefore, an op-
timal path p with cost cp and column coefficient tp translates into a cut expressed
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by tpπ7 +π0 ≤ cp. We can see in Figure 6.3 how accumulating these cuts iteratively
outer approximates the DMP’s feasible region. The dots indicate the extreme points
of the current dual feasible region (unbounded on the left and bottom). We mark
the respective optimal dual solution in each iteration with a white dot. Let us stress
again that these are a by-product of solving the RMP, and explicitly solving the
relaxed DMP is not necessary.

(a) We initially present both, the RMP and relaxed DMP:
zRMP = min 100y0 max 14π7 + π0

s.t. s7 = 14 [π7] s.t. π0 ≤ 100 [y0]
y0 = 1 [π0] π7 ≤ 0 [s7]
y0, s7 ≥ 0 π7∈ R, π0 ∈ R.

Observe that π7 ≤ 0 whereas π0 ≤ 100 is due to the big-M cost of the artificial
variable y0 in the convexity constraint of the primal formulation. The optimal
dual solution (π7,π0) = (0,100) gives zRMP = 100. From path p = 1246, we
add constraint 18π7 +π0 ≤ 3 to the relaxed DMP.

(b) In the second iteration, the relaxed DMP thus reads as
zRMP = max 14π7 + π0

s.t. π0 ≤ 100 [y0]
18π7 + π0 ≤ 3 [λ1246]

π7≤ 0, π0 ∈ R.

The optimal objective value decreases to zRMP = 221/9 at (−97/18,100). The pri-
mal solution using y0 = 0.22 is still infeasible for the original problem. This is
reflected by π0 being at its upper bound value 100. From path p = 1356, we add
the dual constraint 8π7 +π0 ≤ 24.

(c) This leads to the next dual problem:
zRMP = max 14π7 + π0

s.t. π0 ≤ 100 [y0]
18π7 + π0 ≤ 3 [λ1246]

8π7 + π0 ≤ 24 [λ1356]
π7≤ 0, π0 ∈ R.

The optimal objective value falls again, to zRMP = 11.4 at (−2.1,40.8). From
path p = 13256, we add constraint 10π7 +π0 ≤ 15 to the dual.

(d) The fourth dual problem, more and more constrained, is
zRMP = max 14π7 + π0

s.t. π0 ≤ 100 [y0]
18π7 + π0 ≤ 3 [λ1246]

8π7 + π0 ≤ 24 [λ1356]
10π7 + π0 ≤ 15 [λ13256]

π7≤ 0, π0 ∈ R.

The maximum objective value again decreases to zRMP = 9 at (−1.5,30). From
path p = 1256, we add constraint 15π7 +π0 ≤ 5.
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(b) Iter. 2. zRMP = 221/9 at (−97/18,100)
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(c) Iter. 3. zRMP = 11.4 at (−2.1,40.8)
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(d) Iter. 4. zRMP = 9 at (−1.5,30)
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(e) Iter. 5. z⋆MP = 7 at (−2,35)
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π0 ≤ cp− tpπ7,
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(−2,35)

π7
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(f) All of the nine constraints

Fig. 6.3: Outer approximating the DMP’s feasible region.
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(e) The fifth and final dual problem in this illustration is
zRMP = max 14π7 + π0

s.t. π0 ≤ 100 [y0]
18π7 + π0 ≤ 3 [λ1246]

8π7 + π0 ≤ 24 [λ1356]
10π7 + π0 ≤ 15 [λ13256]
15π7 + π0 ≤ 5 [λ1256]

π7≤ 0, π0 ∈ R,

where zRMP = 7 at (−2,35). There is no more column of negative reduced cost,
thus no violated constraint in the dual, and z⋆DMP = z⋆MP = 7.

(f) The last sub-figure (f) shows all the nine dual constraints. The five ones that
were not generated are labeled and appear as dashed lines. Observe that all of
them are, as expected by the fact that the MP is solved to optimality, redundant
for the feasible region of the DMP.

Note 6.2 (Hold on copycat.) We could have produced this illustration by directly
solving the DMP using the ISP as a separation algorithm to find violated dual con-
straints. In fact, we would find exactly the same sequence of iterations and dual so-
lutions as when solving the MP by the column generation algorithm. This is purely
coincidental since we have such a small example. In general, equivalent optimal so-
lutions in the master and/or subproblems, limited numeric precision, and runtime
behavior can all influence unpredictably independent solving of the MP and DMP.
While there is no trivial answer as to which one would be faster to solve, the pres-
ence of degeneracy may give incentive to solve the DMP. The primal is indeed often
very degenerate, in particular for the set partitioning/covering master problems we
see in practice. Degeneracy in the dual appears when there are many primal solu-
tions of the same cost, in particular many optimal solutions. This can for instance
happen when primal variables have identical cost, which is usually not the case in
practice. On the flip side, as the number of constraints grows in the relaxed DMP, it
becomes increasingly difficult to solve, proportionally more so than with the grow-
ing number of generated columns in the RMP.

Alternative master problem

We next present a slightly different MP. A reason for this mathematical develop-
ment is that the forthcoming Lagrangian function has strong ties to the dual of this
alternative master problem. In the DMP (6.4), let us use the change of variables

µ = b⊺πππb +π0 (6.5)

in both the objective function and the constraints indexed by p∈ P. Hence, the value
of the objective function is now expressed as the single dual variable µ:
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max µ

s.t. (ap−b)⊺πππb + µ ≤ cp [λp] ∀p ∈ P

a⊺r πππb ≤ cr [λr] ∀r ∈ R

πππb≥ 0, µ ∈ R.

(6.6)

Dualizing, we obtain an alternative primal formulation for the MP, denoted by AMP:

z⋆AMP = min ∑
p∈P

cpλp + ∑
r∈R

crλr (6.7a)

s.t. ∑
p∈P

(ap−b)λp + ∑
r∈R

arλr ≥ 0 [πππb] (6.7b)

∑
p∈P

λp = 1 [µ] (6.7c)

λp≥ 0, λr ≥ 0 ∀p ∈ P,r ∈ R. (6.7d)

A careful examination of the two primal formulations in (6.3) and (6.7) shows that
we can derive the latter from the former by using the convexity constraint in order
to move the right-hand side vector b to the left of the constraints as −b(∑p∈P λp).

The introduced change of variables (6.5) results in an affine transformation be-
tween the two dual domains. Thus, there is a one-to-one correspondence between
their extreme points. Since we accordingly transform the objective function, this
correspondence also holds for their respective objective values and, obviously,
z⋆AMP = z⋆MP.

Note 6.3 (Consequences of a finite optimal objective value.) There are a few techni-
cal implications of a finite z⋆ILP: in the ILP, the sum of the x-variables is bounded,
or equivalently, x ≤ u for a sufficiently large upper bound vector u. Moreover, in
the MP and AMP (with finite z⋆MP and z⋆AMP, respectively), ∑r∈R λ⋆r has to be finite in
any optimal solution λλλ

⋆ (note that ∑p∈P λ⋆p is already equal to 1). Therefore, from a
dual point of view, for any optimal dual solution πππ⋆

b, there cannot be an extreme ray
r ∈ R, for which the corresponding λ⋆r has negative reduced cost:

∀πππ⋆
b, cr−a⊺r πππ

⋆
b ≥ 0, ∀r ∈ R. (6.8)

Illustration 6.2 TCSPP (cont.)

Figure 6.4 presents side-by-side the dual domains for the two Dantzig-Wolfe master
problems, together with their respective objective functions in dashed lines.

• For the MP on the left, we draw the constraints π0≤ cp−a⊺pπππb, ∀p∈P, see (6.4)
with objective function z⋆MP = max b⊺πππb +π0.

• For the AMP on the right, we use µ ≤ cp +(b− ap)
⊺πππb, ∀p ∈ P, from (6.6),

where the objective function is z⋆AMP = max µ .
• In both cases, we obtain π⋆

7 =−2 and z⋆MP = z⋆AMP = 7.
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Fig. 6.4: Dual domains of the two equivalent Dantzig-Wolfe master problems.

6.2 Lagrangian Relaxation

A Lagrangian relaxation of an integer linear program is a common approach to
calculate a lower bound on z⋆ILP, usually better and never worse than the one derived
from the linear relaxation z⋆LP. As in a Dantzig-Wolfe reformulation, a Lagrangian
relaxation relies on observing two different roles in the constraints of the ILP. On
the one hand, structured constraints can be exploited, say, because they describe a
problem formulation for which we have a tailored algorithm available. On the other
hand, complicating constraints which may prevent the direct application of such an
algorithm.

Lagrangian subproblem

In order to perform a Lagrangian relaxation of the ILP (6.1), we first appropriately
divide its constraints into the complicating ones, say in

A= {x ∈ Zn
+ | Ax≥ b}, (6.9)

and the structured ones, say in

D= {x ∈ Zn
+ | Dx≥ d}. (6.10)

We could completely relax Ax≥ b, but instead we penalize their violation (b−Ax)
in the objective function via so-called Lagrangian multipliers πππb ≥ 0. This yields
the Lagrangian subproblem, an integer linear program we denote by ISP and present
in concise and expanded form:
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LR(πππb) = min
x∈D

c⊺x + πππ
⊺
b(b−Ax)

= πππ
⊺
bb + min (c⊺−πππ

⊺
bA)x

s.t. Dx≥ d
x ∈ Zn

+.

(6.11)

Since this is a common misconception, let us repeat that Lagrangian relaxation is
precisely that, a relaxation of the ILP, and not an equivalent reformulation. The no-
tion of relaxation is justified because the ISP (6.11) not only drops some constraints
from the ILP, but also underestimates z⋆ILP.

Proposition 6.1 (Weak Lagrangian duality). Solving the ISP (6.11) for any πππb≥ 0
yields a lower bound LR(πππb) on z⋆ILP, called a Lagrangian bound, that is,

LR(πππb)≤ z⋆ILP, ∀πππb ≥ 0. (6.12)

Proof. Obviously, if πππb = 0, LR(0)≤ z⋆ILP because the set Ax≥ b is discarded from
the ILP (6.1). We show that this remains true for all πππb ≥ 0 by definition of the ISP:

LR(πππb)
def
= min {c⊺x+πππ

⊺
b(b−Ax) | x ∈D}

≤ min {c⊺x+πππ
⊺
b(b−Ax) | Ax≥ b, x ∈D} ≤ z⋆ILP.

(6.13)

The first inequality comes from adding Ax ≥ b to the set of constraints while the
second is from the term πππ

⊺
b(b−Ax)≤ 0 added to the objective function in (6.1). ⊓⊔

In our presentation, we use non-negative Lagrangian multipliers. Regarding their
sign, however, standard duality concepts apply: For equality constraints, the multi-
pliers are unrestricted in sign; and for less-than-or-equal constraints, they are non-
positive. After all, the term πππ

⊺
b(b−Ax) should be a penalty term.

Note 6.4 (Are we French, or what?) Several major publications on Lagrangian relax-
ation stick closer to the namesake and use Lagrangean relaxation instead. Google,
however, reveals that the majority of scientific literature is not francophone, and we
do not start a revolution here. (See Exercise 6.1 on the nationality of Joseph-Louis
Lagrange.)

Lagrangian function and Lagrangian dual problem

The Lagrangian subproblem’s optimal objective value LR(πππb), and thus the quality
of the lower bound on z⋆ILP, clearly depends on the choice of πππb. We call

LR : Rm
+→ R, πππb 7→ LR(πππb), (6.14)

the Lagrangian function. Because we are interested in the best possible Lagrangian
bound, we need to maximize the Lagrangian function over πππb ≥ 0. This master
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optimization program in πππb is called the Lagrangian dual problem of the ILP with
respect to the set of constraints Ax≥ b. We denote it by LDP:

z⋆LDP = max
πππb≥ 0

LR(πππb) = max
πππb≥ 0

{
πππ
⊺
bb+min

x∈D
(c⊺−πππ

⊺
bA)x

}
. (6.15)

Block-diagonal structure

As several times before, the case of a single subproblem can be generalized for an
integer linear program with a block-diagonal structure. Let the ILP be given as

z⋆ILP = min ∑
k∈K

ck⊺xk

s.t. ∑
k∈K

Akxk ≥ b [σσσb]

xk ∈Dk = {xk ∈ Znk

+ | Dkxk ≥ dk} ∀k ∈ K,

(6.16)

where the dual vector σσσb ≥ 0 is only meaningful in the linear relaxation. We relax
the inequalities ∑k∈K Akxk ≥ b and penalize their violation in the objective function
with the vector of Lagrangian multipliers πππb ≥ 0; so the ISP becomes

LR(πππb) = min ∑
k∈K

ck⊺xk + πππ
⊺
b(b− ∑

k∈K
Akxk)

s.t. xk ∈Dk, ∀k ∈ K.

(6.17)

Setting aside πππ
⊺
bb, we see that LR(πππb) is separable in index k. The Lagrangian

bound from Proposition 6.1 can therefore be computed as

LR(πππb) = πππ
⊺
bb+ ∑

k∈K
min

xk∈Dk
(ck⊺ −πππ

⊺
bAk)xk ≤ z⋆ILP, ∀πππb ≥ 0. (6.18)

We ultimately arrive at the LDP given by

z⋆LDP = max
πππb≥ 0

LR(πππb) = max
πππb≥ 0

{
πππ
⊺
bb+ ∑

k∈K
min

xk∈Dk
(ck⊺ −πππ

⊺
bAk)xk

}
. (6.19)

Illustration 6.3 TCSPP (cont.)

Let us apply the Lagrangian relaxation method on the time constrained shortest path
problem and take a look at the Lagrangian bounds.

z⋆ILP = min ∑
(i, j)∈A

ci jxi j (6.20a)
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s.t. ∑
j:(1, j)∈A

x1 j = 1 [σ1] (6.20b)

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 [σi] ∀i ∈ {2, . . . ,5} (6.20c)

− ∑
i:(i,6)∈A

xi6 =−1 [σ6] (6.20d)

∑
(i, j)∈A

ti jxi j ≤ 14 [σ7] (6.20e)

xi j ∈ {0,1} ∀(i, j) ∈ A. (6.20f)

Recall that an optimal integer solution to (6.20) is given by path 13246 of duration
13 and cost z⋆ILP = 13, whereas the linear relaxation gives a lower bound of z⋆LP = 7.

We replicate the grouping (3.79) seen in our Dantzig-Wolfe reformulation by
keeping the path structure from node 1 to 6 in

D= {x ∈ {0,1}|A| | (6.20b)–(6.20d)}. (6.21)

We then relax the duration constraint ∑(i, j)∈A ti jxi j ≤ 14 and penalize its violation in
the objective function with the Lagrangian multiplier π7 ≤ 0:

LR(π7) = min
x∈D ∑

(i, j)∈A
ci jxi j +π7(14− ∑

(i, j)∈A
ti jxi j). (6.22)

By Proposition 6.1, formulation (6.22) is a relaxation of (6.20). This is obvious
when π7 = 0, since this amounts to removing the duration constraint from (6.20).
Computing LR(0) = 3, we obtain the shortest path 1246 of duration 18 > 14, indeed
infeasible for (6.20).

When π7≪ 0, say π7 =−100, the penalized time component π7(14−∑(i, j)∈A ti jxi j)
in (6.22) dominates the cost component ∑(i, j)∈A ci jxi j and solving the ISP with π7 =
−100 yields path 1356 with the large cost 24 compared to z⋆ILP = 13. In that case, the
lower bound becomes the poor LR(−100) = 24+(−100)(14−8) =−576≪ 13.

In order to gain some intuition on the largest Lagrangian bound, let us plot
LR(π7) for values of π7 in a region where we expect the maximum, say−5≤ π7≤ 0,
for values {−5,−4.5,−4, . . . ,−0.5,0}. We observe in Figure 6.5 what appears to be
a concave curve, with the maximum obtained at coordinates (−2,7) for our selec-
tion of π7-values.

Note 6.5 (Duals, duals, duals.) We have seen variables (or multipliers) that corre-
spond to the same constraints several times, dual variables for the original LP, dual
variables for the MP, Lagrangian multipliers in the Lagrangian subproblem. The lat-
ter are also called dual variables in the literature, and penalizing violated constraints
in the objective function is sometimes referred to as dualizing them. Even though
the variables all have similar roles, and e.g., their sign is derived via arguments
common to all of them, they usually do not have identical values in the different
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Fig. 6.5: Several values of LR(π7).

contexts, and should thus not be confused. We reflect this in our notation so the
reason we use πππb interchangeably is because of our leading claim that Lagrangian
relaxation and Dantzig-Wolfe decomposition are dual from one another.

Dantzig-Wolfe reformulation vs. Lagrangian relaxation

Our development of the Lagrangian relaxation method is in large analogy to our
presentation of the Dantzig-Wolfe decomposition. We make identical assumptions
on the original ILP, and use an identical grouping of its constraints. We purposefully
denote the Lagrangian multipliers πππb like the dual variables of the Dantzig-Wolfe
master problem, see (6.3) and (6.7). Figure 6.6 gives the big picture of what is
coming, assuming a single bounded subproblem. We are already familiar with the
left part of it, and we now establish the right part, justifying our choices above. We
show the following:

• the formulations of the Dantzig-Wolfe and Lagrangian subproblems, respec-
tively given by (4.11) and (6.11), are equivalent;

• the LDP (6.15) and MP (6.3) (or the alternative formulation AMP (6.7)) give an
identical lower bound on z⋆ILP, i.e., z⋆LDP = z⋆MP (= z⋆AMP).

To begin with, the Lagrangian bound (6.18) looks familiar since we derived it, in
a slightly different way, as (3.33) for linear programs and (4.68) for integer linear
programs. For all πππb ≥ 0 and πk

0 ∈ R, ∀k ∈ K, recall the ISPk in a Dantzig-Wolfe
reformulation

c̄k(πππb,π
k
0) =−π

k
0 + min

xk∈Dk
(ck⊺ −πππ

⊺
bAk)xk, k ∈ K. (6.23)

Contrasting this with the Lagrangian subproblem (6.17), we see
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Fig. 6.6: Information flow of a Dantzig-Wolfe reformulation vs. a Lagrangian relax-
ation of the ILP with classical solution methods. Domain D is assumed bounded.

LR(πππb) = πππ
⊺
bb+ ∑

k∈K
min

xk∈Dk
(ck⊺ −πππ

⊺
bAk)xk

= πππ
⊺
bb+ ∑

k∈K

(
c̄k(πππb,π

k
0)+π

k
0

) (6.24)

In other words, minxk∈Dk(ck⊺ −πππ
⊺
bAk)xk = c̄k(πππb,π

k
0)+πk

0 is computed in the La-
grangian subproblem ISPk whereas it is c̄k(πππb,π

k
0) in the Dantzig-Wolfe one. These

optimization programs are obviously equivalent: they have an identical domain Dk

and only differ in the objective function by the constant term πk
0 .

Concerning lower bounds, let us consider a single subproblem (see Exercises 6.4
and 6.5 for several pricing problems). We rewrite the Lagrangian subproblem (6.11)
using a convexification of D, that is, we replace D by conv(D). This does not change
its set of integer solutions. As introduced for a Dantzig-Wolfe reformulation of the
ILP, let P and R be the index sets of extreme points and extreme rays of conv(D),

respectively, and X=

{[
xp
1

]}
p∈P
∪
{[

xr
0

]}
r∈R

. We also reuse the concise notation

cp = c⊺xp, ap = Axp ∀p ∈ P

cr = c⊺xr, ar = Axr ∀r ∈ R.
(6.25)

For a given πππb, solving the ISP (6.11) with an algorithm that returns an optimal
solution x that is either an extreme point or an extreme ray of conv(D), the obtained
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Lagrangian bound is

LR(πππb) =

{
−∞ if cr−a⊺r πππb < 0 for some r ∈ R
cp +(b−ap)

⊺πππb otherwise for some p ∈ P. (6.26)

Proposition 6.2. Given that z⋆ILP is finite, the largest Lagrangian bound is equal to
the optimal objective value of the MP, that is, z⋆LDP = z⋆MP.

Proof. The LDP is a linear max-min problem. We prove the equality z⋆LDP = z⋆MP by
rewriting the LDP as a linear program and showing that the latter is the dual of the
AMP, that is, the alternative MP.

For a given πππb ≥ 0, a lower bound LR(πππb) on z⋆ILP is either infinite (−∞) or
finite by (6.26). Looking for a better bound than the useless −∞, we further restrain
πππb with cr− a⊺r πππb ≥ 0, ∀r ∈ R, which we know must hold for any optimal πππ⋆

b, see
Note 6.3. The LDP is thus restated as

z⋆LDP = max
πππb≥0

min
p∈P

cp +(b−ap)
⊺
πππb

s.t. cr−a⊺r πππb ≥ 0 ∀r ∈ R.
(6.27)

We reformulate the inner optimization minp∈P cp +(b−ap)
⊺πππb as

max µ

s.t. µ ≤ cp +(b−ap)
⊺
πππb ∀p ∈ P.

(6.28)

Combining (6.27) and (6.28), we arrive at a reformulation of the LDP as a linear
program in µ ∈R and πππb ≥ 0, where the corresponding dual λ -variables associated
with the constraints appear in brackets:

z⋆LDP = max µ

s.t. (ap−b)⊺πππb + µ ≤ cp [λp] ∀p ∈ P

a⊺r πππb ≤ cr [λr] ∀r ∈ R

πππb≥ 0, µ ∈ R.

(6.29)

We here recognize (6.6), the dual formulation of the alternative Dantzig-Wolfe mas-
ter problem (6.7), and hence, z⋆LDP = z⋆AMP = z⋆MP. ⊓⊔

Note 6.6 (Another proof.) Instead of using (6.28), we formulate the inner optimiza-
tion minp∈P cp +(b−ap)

⊺πππb as a different linear program. This time we keep the
constant term b⊺πππb as an offset outside the optimization program:

b⊺πππb +min
p∈P

cp−a⊺pπππb = b⊺πππb +max π0

s.t. π0 ≤ cp−a⊺pπππb ∀p ∈ P.
(6.30)

Combining (6.27) and (6.30), the LDP is rewritten as
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z⋆LDP = max b⊺πππb + π0

s.t. a⊺pπππb + π0 ≤ cp [λp] ∀p ∈ P

a⊺r πππb ≤ cr [λr] ∀r ∈ R

πππb≥ 0, π0 ∈ R.

(6.31)

We recognize (6.4), the dual formulation of the MP (6.3), hence z⋆LDP = z⋆MP. ⊓⊔

The MP and LDP compute equivalent vectors πππ⋆
b, a consequence of which we

would like to state explicitly:

Proposition 6.3. An optimal dual solution (πππ⋆
b, [π

⋆k
0 ]k∈K) to the MP in a Dantzig-

Wolfe reformulation solves the LDP, i.e., LR(πππ⋆
b) = z⋆LDP. Conversely, optimal La-

grangian multipliers πππ⋆
b to the LDP are dual optimal for the MP although we are

missing πππ⋆k
0 , ∀k ∈ K.

Proof. Both directions are proven from our knowledge that z⋆LDP = z⋆MP in Proposi-
tion 6.2 and their relationship in (6.24).
⇒ By assumption, c̄k(πππ⋆

b,π
⋆k
0 ) = 0, ∀k ∈ K, and z⋆MP = πππ⋆⊺

b b+∑k∈K π⋆k
0 . We then

have LR(πππ⋆
b) = z⋆LDP = z⋆MP.

⇐ By assumption, LR(πππ⋆
b) = z⋆LDP. We see from the independent terms in z⋆LDP =

z⋆MP = πππ⋆⊺

b b+∑k∈K π⋆k
0 that there exist some dual values πk

0 , ∀k ∈ K, such that πππ⋆
b

is indeed optimal. ⊓⊔

Corollary 6.1. If we have |K| identical subproblems or if |K| = 1, we can deduce
optimal dual values π⋆k

0 , ∀k ∈ K, from πππ⋆
b.

Proof. For |K|= 1, we have LR(πππ⋆
b) = z⋆LDP = z⋆MP = b⊺πππ⋆

b+π⋆
0 from which we de-

duce π⋆
0 = LR(πππ⋆

b)−b⊺πππ⋆
b. For identical subproblems, we rather deduce aggregated

πagg = LR(πππ⋆
b)−b⊺πππ⋆

b or, as we do for the primal λ -variables in Proposition 4.8,

disaggregated values πk⋆
0 =

LR(πππ⋆
b)−b⊺πππ⋆

b
|K| , ∀k ∈ K. ⊓⊔

At face value, solving a Lagrangian relaxation provides incomplete dual informa-
tion and no primal information at all when compared to a Dantzig-Wolfe reformula-
tion. More specifically, what we find is an optimizer πππ⋆

b but we do not get values for
πk

0 , k ∈ K, nor a solution x. Indeed, the solutions xk, k ∈ K, that we find for LR(πππ⋆
b)

are very likely meaningless on their own for the compact formulation as they do not
need to satisfy the complicating constraints in A.

Some questions that come to mind in light of this observation are:

• How useful is it to only have optimal Lagrangian multipliers πππ⋆
b?

• How important are the dual values πk
0 , k ∈ K?

• Is a Lagrangian relaxation easier to solve than a Dantzig-Wolfe reformulation?
• Can we easily find a primal solution x (even if only fractional) for the compact

formulation in a Lagrangian relaxation?
• Can we leverage optimal Lagrangian multipliers πππ⋆

b in a Dantzig-Wolfe refor-
mulation?
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The reader can find answers to these questions in the rest of the chapter. In
particular, an intuitive primal construction is presented in Section Primal solutions
(fractional and integer) whereas Note 6.18 uses column generation to reproduce the
columns we need. Let us continue with our comparison for now.

In a Dantzig-Wolfe reformulation, Propositions 4.1 and 4.7 express the relations
between the lower bound z⋆MP and optimal objective values of the ILP and its linear
relaxation LP, respectively given by z⋆ILP and z⋆LP. Obviously, we have the same
relations regarding z⋆LDP.

Corollary 6.2. Let the LP be the linear relaxation of the ILP (6.1). Then

(a) The lower bound z⋆LDP may improve on z⋆LP, that is, z⋆LP ≤ z⋆LDP ≤ z⋆ILP.
(b) If the Lagrangian subproblem formulation (6.11) has the integrality property,

then z⋆LP = z⋆LDP.

Note again that (b) only states a sufficient condition. It may happen that the ISP
formulation does not have the integrality property and the bound obtained from a
Lagrangian relaxation (or Dantzig-Wolfe reformulation) is still not better than z⋆LP.
This nicely completes our knowledge about bounds as

z⋆LP ≤ z⋆LDP = z⋆MP ≤ z⋆IMP = z⋆ILP, (6.32)

see also Figure 6.6. Note that LR(πππb) ≥ z⋆LP does not need to hold in general, see
e.g., Illustration 6.3 where LR(0) = 3 < z⋆LP = 7, or LR(−100) =−576.

Note 6.7 (Together forever.) By Proposition 6.2, we cannot help it: Dantzig-Wolfe
reformulating an integer linear program, and solving to optimality the resulting
master problem by the column generation algorithm, we always also compute the
best Lagrangian bound. Even better, by Proposition 6.1 we implicitly compute La-
grangian bounds in every iteration, which is very useful for early termination, see
Note 2.18.

Note 6.8 (How to decompose?) We have no general theory yet concerning how to
split the set of constraints of an ILP to obtain a good decomposition in the Dantzig-
Wolfe reformulation. We do not even know what “good” in this context generally
means. Yet, this is a natural question, and we discussed some practical considera-
tions in Chapter 4 in Automatic grouping of the constraints for reformulation. With
the relation to Lagrangian relaxation in place, we have another source of informa-
tion and experience at hand: The motivation for identifying complicating, or master
constraints, is exactly the same in both worlds.

Note 6.9 (I can see clearly now.) Some students have trouble deriving/memorizing
the adjusted costs formula c̃ (cf. Note 3.6) of the subproblem’s x-variables in the
Dantzig-Wolfe ISP. As a playful meaning on the song words of Johnny Nash (1972),
the objective function of the Lagrangian ISP (6.11) comes to help here as

c⊺x+πππ
⊺
b(b−Ax) = πππ

⊺
bb+(c⊺−πππ

⊺
bA)x = πππ

⊺
bb+ c̃x (6.33)
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produces the expression c̃ = c⊺−πππ
⊺
bA very naturally. This is particularly true when

adding further constraints to the original ILP what we do in Chapter 7: There is one
dual variable associated with each new constraint in A.

Properties of the Lagrangian function

Let us recollect a few notions from calculus that allow us to describe the essential
properties of the Lagrangian function in the forthcoming propositions. Let f : I→R
denote a continuous real-valued function defined on a convex open set I ⊆ Rn.

Definition 6.1. A function f is concave if, for all vectors x1,x2 ∈ I and any scalar
α ∈ [0,1],

f (αx1 +(1−α)x2)≥ α f (x1)+(1−α) f (x2). (6.34)

Definition 6.2. The partial derivatives of f , denoted by ∂ f/∂xi, are derivatives with
respect to one variable xi, i ∈ {1, . . . ,n}, where all others are kept constant. The
gradient of f , denoted by ∇ f , evaluated at x, is the column vector

∇ f (x) =
(

∂ f (x)
∂x1

,
∂ f (x)
∂x2

, . . . ,
∂ f (x)
∂xn

)⊺
. (6.35)

Proposition 6.4. Given a concave function f , differentiable at x1 ∈ I, the first-order
approximation f (x1)+(x−x1)

⊺∇ f (x1) (the first term of the Taylor series at x1) is
an overestimation of f (x), that is,

f (x)≤ f (x1)+(x−x1)
⊺
∇ f (x1), ∀x ∈ I. (6.36)

Definition 6.3. Given a concave function f , a subgradient at x1 ∈ I is a vector s∈Rn

that replaces the gradient while also satisfying this overestimation, that is,

f (x)≤ f (x1) + (x−x1)
⊺ s, ∀x ∈ I. (6.37)

Definition 6.4. The subdifferential ∂ f (x1) of f at x1 ∈ I is the set of all subgradients
at x1. Given a concave function f , if the subdifferential ∂ f (x1) contains a single
element, f is differentiable in x1 and that element is the gradient ∇ f (x1). Otherwise,
f is subdifferentiable in x1.

In Figure 6.7, we illustrate these notions on one-dimensional functions f and g.
The function f on the left is differentiable everywhere and the gradient is just the
derivative f ′. Any value f (x) is overestimated by the first-order approximation at x1.
The function g on the right is not differentiable at x1, but subdifferentiable. A sub-
gradient s at x1 is the slope of a tangent to g at x1. The subdifferential is given by
the interval [sa,sb], where sa and sb are the one-sided limits
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x1

f (x1)
f ′(x1)

(a) Gradient of f : tangent sloped by f ′(x1)

x1

g(x1)

sb

s1

s2 s3sa

(b) Subgradients of g: tangents sloped by s ∈ [sa,sb]

Fig. 6.7: Differentiable and subdifferentiable functions with their tangents at x1.

sa = lim
x→x+1

g(x)−g(x1)

x− x1
, sb = lim

x→x−1

g(x)−g(x1)

x− x1
. (6.38)

Proposition 6.5. On the domain over which it is finite, the Lagrangian function LR
is piecewise linear, continuous, concave, and subdifferentiable.

Proof. LR(πππb) is finite if πππb ∈ {πππb ≥ 0 | cr−πππ
⊺
bar ≥ 0, ∀r ∈ R}. Hence, there exists

a finite set of extreme points {xp}p∈P such that LR(πππb) = minp∈P cp +πππ
⊺
b(b−ap).

Thus, LR is the pointwise minimum of a finite family of affine functions in πππb,
and as such it is piecewise linear, continuous, and concave. From the latter two,
sudifferentiability follows, cf. Figure 6.8. ⊓⊔

π

c+ sπ

Fig. 6.8: Illustrating the proof of Proposition 6.5: the graph of the function resulting
from a pointwise minimum of a finite family of affine functions. It also shows the
coordinates where this function is not differentiable.

Definition 6.5. The hypograph of a function f : S→ R, S ⊆ Rn, is the set of points
lying on or below its graph: hyp( f ) = {(x,y)∈ S×R | y≤ f (x)} ⊆Rn+1. Similarly,
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the set of points on or above the function’s graph is its epigraph, denoted epi( f ).
The intersection hyp( f )∩ epi( f ) = {(x,y) ∈ S×R | y = f (x)} is the graph of f .

Note 6.10 (Polyhedral function.) We have presented the traditional way of deriving
the properties of the Lagrangian function. If you look back, alternatively, we can see
that we can maximize the Lagrangian function by solving a linear program, the dual
of the AMP, see Proposition 6.2 and Figure 6.4b. The domain of this linear program
is a polyhedron, actually, the hypograph of the Lagrangian function LR, so the graph
of LR is exactly the boundary of that hypograph. As such it is continuous, piecewise
linear, concave, and subdifferentiable. (Optimizing the ILP in maximization form
would result in “the graph of LR is the boundary of the corresponding epigraph.”)

Given the remarkable structure of the Lagrangian function, we also note that
solving the ISP to optimality trivially identifies a subgradient.

Proposition 6.6. Let x1 be an optimal solution to the ISP (6.11) for a given πππb,1 > 0,
i.e., LR(πππb,1) = c1 +πππ

⊺
b,1(b−a1). Then, (b−a1) is a subgradient of LR at πππb,1.

Proof. We show that (b−a1) satisfies Definition 6.3. For any vector of multipliers
πππb ≥ 0, we have:

LR(πππb) = cp +πππ
⊺
b(b−ap) for some optimal extreme point xp, p ∈ P

≤ c1 +πππ
⊺
b(b−a1)

= c1 +πππ
⊺
b,1(b−a1)−πππ

⊺
b,1(b−a1)+πππ

⊺
b(b−a1)

= LR(πππb,1) + (πππb−πππb,1)
⊺(b−a1).

Given πππb, the proof starts with an optimal extreme point xp of conv(D) which leads
to an inequality when compared with x1. Adding πππ

⊺
b,1(b−a1)−πππ

⊺
b,1(b−a1) = 0 to

the right-hand side maintains the equality that is written in terms of LR(πππb,1) in the
last equation. ⊓⊔

Illustration 6.4 TCSPP (cont.)

Given any π7 ≤ 0, formulation (6.22) models a network flow problem for which the
value LR(π7) is attained at one of the nine extreme points xp = [xi jp](i, j)∈A, p ∈ P,
which correspond to the nine possible paths from node 1 to 6. Therefore, we can
reformulate (6.22) as

LR(π7) = min
p∈P ∑

(i, j)∈A
ci jxi jp +π7(14− ∑

(i, j)∈A
ti jxi jp). (6.39)

Recall that cp = ∑(i, j)∈A ci jxi jp is the cost of the incidence vector xp of path p,
whereas its duration is given by tp = ∑(i, j)∈A ti jxi jp. With this notation, we write the
Lagrangian function (6.39) as
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LR(π7) = min
p∈P

cp +(14− tp)π7, (6.40)

where we denote the affine function (or just “line”) with intercept cp and slope
(14− tp) by

µp(π7) = cp +(14− tp)π7. (6.41)

Table 6.2 exhibits the nine line equations. The reader can easily verify the values
obtained previously for LR(0) = 3 and LR(−100) = −576. Indeed, for π7 = 0, the
Lagrangian function (6.40) reaches its minimum with path 1246 whereas path 1356
is used for π7 =−100.

p 1246 1256 12456 13246 13256 132456 1346 13456 1356

cp 3 5 14 13 15 24 16 27 24
tp 18 15 14 13 10 9 17 13 8

µp(π7) 3−4π7 5−π7 14 13+π7 15+4π7 24+5π7 16−3π7 27+π7 24+6π7

µp(0) 3 5 14 13 15 24 16 27 24
µp(−100) 403 105 14 −87 −385 −476 316 −73 −576

Table 6.2: Line equations µp(π7) = cp +(14− tp)π7, ∀p ∈ P.

As shown in Figure 6.9, finding an optimal extreme point xp for a given π7 ≤ 0
is easy if we can draw these lines. Amongst them moreover materializes the La-
grangian function LR as the pointwise minimum of this family of functions that are
affine in π7. As expected from Proposition 6.5, it is piecewise linear, continuous,
concave, and subdifferentiable. In particular, we see that it is composed of the four
line segments determined by the paths 1246, 1256, 13256, and 1356:

LR(π7) =


3−4π7 −2/3≤ π7 ≤ 0
5− π7 −2 ≤ π7 ≤−2/3

15+4π7 −4.5≤ π7 ≤−2
24+6π7 π7 ≤−4.5.

(6.42)

Some examples of what we can compute: Not only is path 1246 the optimizer for
π7 = 0 but on the whole interval [−2/3,0]; for π7 =−1 it is path 1256, for π7 =−4
we find path 13256. We have a boundary point at π7 = 0 and three breakpoints
π7 ∈ {−4.5,−2,−2/3}. For instance, the breakpoint π7 = −4.5 is obtained from
intersecting lines µ13256(π7) = 15+ 4π7 and µ1356(π7) = 24+ 6π7. Evidently, for
π7 = −4.5 both paths 13256 and 1356 are optimal. The subdifferentials [sa,sb] for
the three breakpoints are

breakpoint −4.5 −2 −2/3

subdifferential [4,6] [−1,4] [−4,−1]
.
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Fig. 6.9: The Lagrangian function LR, π7 ≤ 0.

We can even read off the optimal Lagrangian multiplier π⋆
7 = −2 which yields

z⋆LDP = LR(−2) = 7 = z⋆MP, in line with Proposition 6.2. Its proof in fact already
alerted us of what we would observe here: Figures 6.4b and 6.9 both reveal exactly
the same Lagrangian functions. We could have even constructed it in Illustration 6.1
had we solved the (dual of the) AMP instead of the (dual of the) MP. That the paths
generated by column generation define the entire Lagrangian function is of course
neither desired nor does it generally happen; it is just a coincidence due to our small
TCSPP example.

Note 6.11 (Heuristic vs. relaxed pricing.) In practice, we may choose not to solve the
Lagrangian subproblem to optimality, but only heuristically, or a relaxation instead.
In the first case, we may not attain (we stay above) the pointwise minimum of the
affine functions and only obtain an outer approximation of the Lagrangian function.
In the second case, we may go below the pointwise minimum and cut away parts
of the Lagrangian function. Therefore, while both variants may help solving the
subproblem faster, using the former we do not obtain a valid lower bound on z⋆ILP,
but for the latter we do. All is well, we arrive at the same conclusion for column
generation respectively in Note 2.17 and Section Relaxed pricing, relaxed master.

Note 6.12 (Row generation, again.) Kelley (1960) suggests to maximize a concave
function using an outer approximation by linear inequalities. In this context, the sug-
gestion of Cheney and Goldstein (1959) is fundamentally no different. Maximizing
the Lagrangian function is an application case for this algorithm which is why in
the literature Kelley-Cheney-Goldstein’s cutting plane method is sometimes related
to column generation. Note the years these papers were published: around the same
time as column generation was designed by Dantzig and Wolfe (1960). It is unsur-
prising then that the algorithm we see in Section Subgradient algorithm faces the
same hurdles:
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Although one can concoct more complicated criteria for terminating the process, such com-
plications are probably not worth the effort. A more difficult problem is to obtain accuracy
near the termination of the process [at which point] the successive cutting planes generally
tend to become more and more parallel to one another. As this occurs, the determination
of successive tk becomes more and more difficult due to the limited precision with which
the computations must be performed. Thus, there is a point where continued computation
would cause the process to degenerate completely, oscillate or converge on the wrong solu-
tion. – Kelley (1960)

Optimality conditions

We first state a necessary and sufficient optimality condition for the LDP. We then
observe that it is possible that we solve the ILP by chance.

Proposition 6.7. A vector of Lagrangian multipliers πππb ≥ 0 is optimal for the
LDP (6.15) if and only if the subdifferential at πππb contains a zero-subgradient.

Proof. Trivial by the properties of the Lagrangian function established in Proposi-
tion 6.5. ⊓⊔

Proposition 6.8. Given an arbitrary vector of Lagrangian multipliers πππb≥ 0 and an
optimizer x̂ for LR(πππb) (6.11), if x̂ is feasible for the ILP (6.1) and πππ

⊺
b(b−Ax̂) = 0,

then x̂ is an optimal solution to the ILP.

Proof. The integer solution x̂ provides an upper bound, z⋆ILP ≤ c⊺x̂. By Proposi-
tion 6.1, we also have a lower bound LR(πππb) = c⊺x̂+πππ

⊺
b(b−Ax̂) ≤ z⋆LDP ≤ z⋆ILP,

where πππ
⊺
b(b−Ax̂) = 0 holds. Hence, z⋆LDP = z⋆ILP = c⊺x̂ and x⋆ILP = x̂. ⊓⊔

There is a very important difference between the relaxation of equality and in-
equality constraints in Proposition 6.8. In the former case, a successful feasibility
test for the ILP, i.e., Ax̂ = b implies that the second test condition πππ

⊺
b(b−Ax̂) = 0

holds as well. In the latter case, we simply cannot shortcut the second condition. We
also remind the reader that the above result was already derived in the context of
Dantzig-Wolfe, see Exercise 4.7.

Illustration 6.5 Optimality check

Consider the following integer linear program:

z⋆ILP = min −2x1 − 3x2

s.t. x1 + 4x2 ≤ 5
x1, x2 ∈ {0,1},

(6.43)

whose optimal solution is given by x⋆1 = x⋆2 = 1 with z⋆ILP = −5. The Lagrangian
relaxation of the redundant constraint x1 + 4x2 ≤ 5 with the multiplier π ≤ 0 gives
the Lagrangian subproblem
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LR(π) = min
x1,x2∈{0,1}

−2x1−3x2 +π(5− x1−4x2). (6.44)

For π=−1, we get LR(−1)=−6 at (1, 0). This is a lower bound on z⋆ILP, point (1,0)
satisfies the relaxed constraint but is not an optimal solution for the ILP. Indeed, the
slack variable for x1+4x2≤ 5 takes value 4, hence π(5−x1−4x2)= π(4)=−4 ̸= 0.

Note 6.13 (Once in a blue moon.) Proposition 6.7 fortunately agrees with intuitive
first order condition and concavity. Although we can have a zero-subgradient in the
ISP (if the Lagrangian function is flat on top), it is however very rarely observed in
practice. The primal perspective adds to this intuition. Indeed, we know from the
Dantzig-Wolfe decomposition that an optimal solution to the MP is typically a non-
trivial convex combination of extreme points, or for set partitioning formulations,
complementary columns from one or several subproblems. This implies that opti-
mality of the LDP is typically attained at a breakpoint for which one would have to
compute the subdifferential.

If Proposition 6.8 establishes optimality of the ILP for given πππb and optimizer x̂
for LR(πππb), then Proposition 6.7 also re-establishes optimality of the LDP for
said πππb but not vice versa. Finding that the subdifferential at πππb contains a zero-
subgradient gives the lower bound z⋆LDP ≤ z⋆ILP, most of the time with a strict in-
equality. Although the corresponding optimizer x̂ is integer in the ISP, we could
also check its feasibility for the ILP and if πππ

⊺
b(b−Ax̂) = 0 holds. Typically, we do

not bother with this test as we assume an optimal solution to the ILP is found with
the exploration of a branch-and-price tree, see the forthcoming Chapter 7.

Illustration 6.6 TCSPP (cont.)

Figure 6.10 plots the Lagrangian function of the TCSPP. We display the best upper
bound obtained from one of the four paths defining LR(π7), i.e., the feasible path
13256 of duration 10 gives UB = c13256 = 15. We also display the optimal objec-
tive values of the ILP and LDP, z⋆ILP = 13 and z⋆LDP = 7. Observe that none of the
non-dominated extreme points yield a zero-subgradient. However, all subgradients
contained in a subdifferential are obtained via convex combinations. In particular,
for the breakpoint π7 =−2, we have

α(14− t13256)+(1−α)(14− t1256) = 5α−1 ∈ [−1,4], ∀α ∈ [0,1],

where t13256 = 10 and t1256 = 15 (see Table 6.2). Solving this expression to zero
yields the fractional combination of paths 13256 and 1256 with α⋆ = 0.2, already
seen in Figure 3.13. The integrality gap is z⋆ILP−z⋆LDP = 6 and it is obvious we should
not hold our breath to close the relative optimality gap (UB− LB)/UB = 53.3%
using only the LDP. The branch-and-bound search tree is the forthcoming step in
Chapter 7.
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Fig. 6.10: Optimality observations on the Lagrangian function LR, π7 ≤ 0.

Subgradient algorithm

A Dantzig-Wolfe reformulation and a Lagrangian relaxation share common ground,
but they are not identical. Traditionally, two completely different algorithms are
used for their solution. In particular, even though both approaches arrive at the same
lower bound on z⋆ILP, the sequences of values for the dual variables and Lagrangian
multipliers, respectively, may be different. In order to find out whether this is actu-
ally the case, as well as whether and how we can make use of this, we move on to
get acquainted with the subgradient algorithm, the traditional method to solve the
LDP. It is one of the easiest (also to implement) and thus, one of the most popular
methods to obtain (near-)optimal Lagrangian multipliers.

The basic idea is almost a gradient ascent method for maximizing a differentiable
function f . There, in order to move from one solution x1 to a new one x1+θy using
the direction y and step size θ > 0, we use the first-order Taylor approximation

f (x1 +θy)≈ f (x1)+θ∇ f (x1)
⊺y. (6.45)

Taking y = ∇ f (x1) of steepest ascent, we obtain

f (x1 +θy)≈ f (x1)+θ∥∇ f (x1)∥2, (6.46)

where ∥y∥2 = y⊺y = ∑
n
i=1 y2

i denotes the square of the Euclidean norm. For a small
step size θ > 0 in the direction given by the gradient, f (x1 + θy) increases by
approximately the positive amount θ∥∇ f (x1)∥2. A canonical choice to determine an
appropriate step size goes by the name of line search whereby we optimize the step
size in the selected direction, i.e., argmaxθ f (x1 +θy). Mathematically, we see that
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both the direction (y) and step size (θ ) contribute to the convergence of the process.
Of course, if f is concave, we know we have a global optimum whenever we find
a local one. Figure 6.11 sketches a concave quadratic function (−x2) for which one
could, from any initial point x0, compute exactly both the gradient (−2x0) and step
size (maxθ −(x0 +θ(−2x0))

2) to land on x⋆ = 0 in one iteration.
In practice, it is often unreasonable to solve for θ exactly. Two notable com-

plicating factors are that f has no closed-form expression or that optimization is
subject to constraints. Instead, we use a parameterized value θ that decreases grad-
ually towards zero at which point we terminate the process with the best objective
value identified. What is a good initial value and how fast should we decrease it? For
the sake of convergence, a lot of ink has been spilled on this subject, e.g., Armijo
(1966); Wolfe (1969); Bertsekas (1995). In a nutshell, the step size should be nei-
ther too small, nor too large. In the first case, the algorithm essentially remains at the
same point and therefore makes no progress. In the second case, it might overshoot
over a local optimum and oscillate back and forth from there on. The idea is there-
fore to find a compromise for the step size that allows us to “carefully approach a
(local) optimum.” The precise definition of this compromise is open to experimental
trials because the nature of the function can largely exacerbate convergence issues
in the sense that even with the same step sizes, some regions behave much more
nicely than others.

On our example, for any fixed step size (e.g., θ = 0.25), following the gradient
towards the maximum attained at x⋆ = 0 from the right at x0 = 1 impacts the function
value much more significantly than from the left at x0 =−0.5, that is,

∇ f (1) =−2(1) =−2 and f (1+0.25(−2))− f (1) = 0.75;
∇ f (−0.5) =−2(−0.5) = 1 and f (−0.5+0.25(1))− f (−0.5) = 0.1875.

−2 −1 0 1 2

−2

−1

0

1

−x2

(0,0)

−2x+1

(1,−1)x+ .25

(−.5,−.25)

x

f (x)

Fig. 6.11: Gradient ascent on function f (x) =−x2 with first derivative f ′(x) =−2x.
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We now apply this to the Lagrangian function LR. A classical assumption is
that the domain D of the Lagrangian subproblem is bounded in order to ensure
LR(πππb) > −∞. In theory, this can always be achieved by imposing (sufficiently
large) upper bounds u on x in the ISP since we assume z⋆ILP to be finite, see Note 6.3.
Recall by Proposition 6.6 that any extreme point xp identified by the ISP gives us
a subgradient and therefore the direction (b− ap). Following the latter with some
step size θ , the next Lagrangian value is overestimated by

LR(πππb +θ(b−ap))≤ LR(πππb)+θ∥b−ap∥2. (6.47)

The subgradient algorithm starts with a given πππb,1 ≥ 0 and iteratively determines
πππb,t+1 for t ≥ 1. Let xt denote an optimal solution to LR(πππb,t) and θt denote the step
size. Then πππb,t+1 = [πππb,t +θt(b−at)]

+, that is,

∀i ∈ {1, . . . ,m}, πi,t+1 = max{0,πi,t +θt(bi−ai,t)}. (6.48)

There only remains to determine an appropriate step size. This discussion follows
the same theme as in non-linear optimization for which we simply recall the afore-
mentioned line search. Let us frame the discussion of the step size with respect to
the subgradient algorithm. In the first case (too small), it essentially finds the same
extreme point and does not converge. In the second case (too large), it might over-
shoot an optimal dual vector, and then oscillate. For so-called diminishing step size
rules that satisfy θt → 0 and ∑

t
j=1 θ j → ∞ as t tends to infinity, Shapiro (1979a,b)

proves convergence to an optimal solution. We list the Polyak step (Polyak, 1967) as
a more practical alternative to the basic first one while bringing attention to Monique
Guignard’s assessment:

Practical convergence of the subgradient method is unpredictable. For some problems, con-
vergence is quick and fairly reliable, while other problems tend to produce erratic behavior
of the multiplier sequence, or of the Lagrangean value, or both. In a “good” case, one will
usually observe a saw-tooth pattern in the Lagrangean value for the first iterations, followed
by a roughly monotonic improvement and asymptotic convergence to a value that is hope-
fully the optimal Lagrangean bound. In “bad” cases, the saw-tooth pattern continues, or,
worse, the Lagrangean value keeps deteriorating. – Guignard (2003)

1. We can choose θt = 1/t, t ≥ 1, that satisfies the above conditions.
2. A more involved alternative is the Polyak step. Assume that LR(πππb) is given by

the hyperplane induced by LR(πππb,1), i.e.,

LR(πππb) = c1 +πππ
⊺
b(b−a1). (6.49)

Given the next iterate πππb,2 = πππb,1 + θ1(b− a1) and the overestimation of the
Lagrangian function with

LR(πππb,1 +θ1(b−a1))≤ LR(πππb,1)+(θ1(b−a1))
⊺(b−a1) (6.50)

from Proposition 6.6, an upper limit on θ that makes sense comes from consid-
ering that we should in principle never exceed z⋆LDP:
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Fig. 6.12: Monique Guignard (San Pedro de Atacama, Chile, 2013-06-12).

LR(πππb,1)+(θ1(b−a1))
⊺(b−a1)≤ z⋆LDP ⇔ θ ≤

z⋆LDP−LR(πππb,1)

∥b−a1∥2 . (6.51)

We see that the step size tends to increase with the distance to optimality in
the numerator but is mitigated by the steepness of the subgradient in the de-
nominator. Moreover, there is no issue with a division by zero because such a
subgradient implies optimality has been reached, see Proposition 6.7. In prac-
tice, of course, we do not know z⋆LDP but rather use an upper bound UB on z⋆ILP
which is updated each time an improving integer solution x• is found, that is,
UB = c⊺x•. These values are such that z⋆LDP ≤ z⋆ILP ≤UB. Hopefully, the quality
of the lower bound induced by set D is such that UB is not too far from z⋆LDP,
otherwise UB may largely overestimate z⋆LDP = z⋆MP and thus induce large step
sizes when we would perhaps already be close to the linear relaxation optimal-
ity. The final expression for the step size is

θt = εt
UB−LR(πππb,t)

∥b−at∥2 , t ≥ 1, (6.52)

where εt is a parameter that hopefully handles convergence issues by influenc-
ing the size of θt . For instance, an initial value is received as input and it is
divided by 2 each time the best known Lagrangian bound does not improve
sufficiently in a certain number of consecutive iterations. In Illustration 6.7, we
derive this initial value analytically. It is however usually the fruit of trial and
error in which ε = 2 is a common default value.
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Obviously, if LB=UB, we reach optimality of the LDP which in turn even means
that x• is integer optimal for the ILP. We can also reach optimality of the LDP by
finding an optimal solution xt to the ISP with a subgradient of zero (Proposition 6.7),
i.e., b− at = 0. In that case, z⋆LDP ≤ z⋆ILP. Since these are unlikely to happen and
we otherwise have no alternative optimality criterion to verify, we instead resort to
terminate the algorithm with respect to parameters such as a limit T on the number
of iterations and/or a tolerance on θ , see Algorithm 6.1. This makes the subgradient
algorithm a heuristic which typically does not find the maximum of the Lagrangian
function but rather a good lower approximation of z⋆LDP. Take notice that there is
no primal solution output. Indeed, the solution xt associated with the best (known)
lower bound is in all likelihood meaningless on its own for the compact formulation,
see Figure 6.10 and Note 6.13.

Algorithm 6.1: The subgradient algorithm with the Polyak step.
input : LDP (6.15), ISP (6.11); maximum number of iterations T , ε , π̂ππb, UB
output : Approximation of z⋆LDP with associated πππb
initialization : t← 1, LB←−∞, πππb,t ← π̂ππb

1 loop
2 xt ,LR(πππb,t)← ISP
3 if xt feasible for the ILP and c⊺xt < UB
4 UB← c⊺xt

5 if LR(πππb,t)> LB
6 LB← LR(πππb,t), πππb← πππb,t

7 if LB = UB
8 break by optimality of the ILP

9 if b−at = 0
10 break by optimality of the LDP

11 if t = T
12 break by stopping rule

13 if LB constant over 3 consecutive iterations
14 ε ← ε/2

15 θ ← ε
UB−LR(πππb,t )

∥b−at∥2

16 πππb,t+1← [πππb,t +θ(b−at)]
+

17 t← t +1

18 return LB and πππb

Illustration 6.7 TCSPP (cont.)

Let us run the subgradient algorithm with the Polyak step of θt = εt
UB−LR(π7)

∥14−tp∥2
. We

analyze what happens in the first couple of iterations and derive an appropriate initial
value for ε in the process. Initializing at UB = maxp∈P cp = 27 and π7 = 0,
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• The first iteration yields LR(0) = 3 for p = 1246, see Figure 6.9, with cp = 3
and tp = 18 infeasible for the ILP. We obtain

θ = ε
27−3

(14−18)2 and π7 = 0+θ · (14−18) =−6ε.

• For any ε > 0.75, we allow π7 < −4.5 (see Figure 6.9) for which the optimal
path identified in the ISP is p = 1356 with cp = 24 and tp = 8 at LR(π7) =
24+6π7. As that path is feasible for the ILP, we update UB = 24 and compute
the step size and next iterate. We obtain

θ = ε
24− (24−36ε)

(14−8)2 = ε
2 and π7 =−6ε +6ε

2.

• Since π7 ≤ 0, we avoid cycling with −6ε + 6ε2 < 0 which solves to ε < 1. A
decent initial parameter value for this instance is therefore ε ∈ (0.75,1) with
larger values theoretically providing smoother convergence.

Table 6.3 reports the results with ε = 0.9. The plots in Figure 6.13 show the
evolution of the Lagrangian multiplier π7 as well as the upper and lower bounds
over the 80 iterations. We can associate what we see in (a) with bang-bang and (b)
with the yo-yo effect. Putting numerical precision aside, we see that the relations
in (6.32) are fulfilled by z⋆LP = 7≤ z⋆LDP = z⋆MP = 7≤ z⋆ILP = 13≤ UB = 15, which
reminds us that we have not solved the original problem.

t π7 14− tp LR(π7) LB UB ε θ

1 0.000000 −4 3.000000 3.000000 27 0.900000 1.350000
2 −5.400000 6 −8.400000 3.000000 24 0.900000 0.810000
3 −0.540000 −4 5.160000 5.160000 24 0.900000 1.059750
4 −4.779000 6 −4.674000 5.160000 24 0.900000 0.716850
5 −0.477900 −4 4.911600 5.160000 24 0.900000 1.073723
6 −4.772790 6 −4.636740 5.160000 24 0.900000 0.715919
7 −0.477279 −4 4.909116 5.160000 24 0.450000 0.536931
8 −2.625003 4 4.499986 5.160000 15 0.450000 0.295313
9 −1.443752 −1 6.443752 6.443752 15 0.450000 3.850312

10 −5.294064 6 −7.764381 6.443752 15 0.450000 0.284555
11 −3.586735 4 0.653060 6.443752 15 0.450000 0.403508
12 −1.972704 −1 6.972704 6.972704 15 0.450000 3.612283
13 −5.584987 6 −9.509924 6.972704 15 0.450000 0.306374
14 −3.746743 4 0.013028 6.972704 15 0.450000 0.421509
15 −2.060709 4 6.757165 6.972704 15 0.450000 0.231830
16 −1.133390 −1 6.133390 6.972704 15 0.225000 1.994987
17 −3.128377 4 2.486492 6.972704 15 0.225000 0.175971
18 −2.424492 4 5.302031 6.972704 15 0.225000 0.136378
19 −1.878981 −1 6.878981 6.972704 15 0.225000 1.827229
20 −3.706211 4 0.175157 6.972704 15 0.112500 0.104237

· · ·
70 −2.000651 4 6.997395 6.999992 15 0.000110 0.000055

· · ·
80 −2.000102 4 6.999593 6.999992 15 0.000014 0.000007

Table 6.3: Subgradient iterations initialized at UB= 27, π7 = 0, and ε = 0.9 which is
halved every 3 consecutive iterations without improvement; stopping rule θ < 10−5.
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Fig. 6.13: Selection of plots for the evolution in Table 6.3.

Note 6.14 (Pedagogical example.) We may not have mentioned it enough but our
TCSPP is pedagogical from the start. In practice, extreme points most likely cannot
be enumerated nor can we describe the piecewise linear Lagrangian function explic-
itly. The specific initial value for ε = 0.9 is not as important as understanding that
this parameter should have a pertinent scale for the problem at hand. The fact that we
are unable to reach precise optimality despite being able to describe the optimized
function analytically shows an obvious limitation of the subgradient algorithm.

Primal solutions (fractional and integer)

Apart from convergence issues, one of the main objections against the subgradient
algorithm is that it exploits only local information to update πππb, that is, only the one
last extreme point found by solving the Lagrangian subproblem. This is canonical
to the expression of the Lagrangian dual problem (6.15)

z⋆LDP = max
πππb≥ 0

LR(πππb) = max
πππb≥ 0

{
πππ
⊺
bb+min

x∈D
(c⊺−πππ

⊺
bA)x

}
,

whose optimizers are a vector πππ⋆
b and a corresponding integer extreme point xp of

conv(D), for some p∈P, the latter being almost certainly infeasible for the compact
formulation. Since we ultimately rather want to find an integer solution x⋆ILP for the
primal, a legitimate question is what can we really do with only a set of optimal dual
multipliers πππ⋆

b and this extreme point?

The truth is not much for obtaining an optimal integer solution. Interestingly
however, for some applications, it is possible to compute, in a reasonable time, a
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heuristic but feasible integer solution for the ILP by transforming an integer solution
of the ISP or using information gathered while solving it. This is the case for the
VRPTW where, at every column generation iteration, a greedy algorithm can easily
find from the computed ISP shortest path tree a set of disjoint paths partitioning
the customers to service. See also Examples 6.4 Symmetric traveling salesperson
problem and 6.5 Balancing printed circuit board assembly line systems.

Alternatively, Figure 6.14 shows that collecting the computed subgradients (b−
ap) and their costs cp can give us access to a primal solution, namely, x⋆MP, by solv-
ing the corresponding linear program (a restricted master problem). To efficiently
solve this program, the optimal multiplier vector πππ⋆

b or a good approximation of it
π̂ππb can be exploited in a dual stabilization method, as described next in various ways
in Good to Know and More to Know. Since solving the Lagrangian dual problem
is equivalent to solving the dual of the MP or AMP of a Dantzig-Wolfe reformula-
tion, the solution x⋆MP might not be integer. Therefore, to obtain an integer optimizer
x⋆ILP, some additional work is required, that is, branching and cutting on the x- or
λ -variables must be performed, as discussed in Chapter 7 (Branch-Price-and-Cut).

AMP
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Fig. 6.14: AMP vs. LDP, where domain D is assumed bounded.

This makes it clear that, by contrast, the column generation algorithm uses a
more elaborate update strategy for the dual values. It makes use of all extreme points
gathered during the solution process by solving a linear program at every iteration.
A reason for preferring a Lagrangian relaxation over a Dantzig-Wolfe reformulation
was the sheer size of the linear programs that need to be solved, which was out of
the question until some thirty years ago. With modern linear programming solvers
this drawback is gone, and the lower bound obtained is the same. That is, in princi-
ple, the entire master problem class/implementation is not needed in a Lagrangian
relaxation. However, in anticipation of wanting to find an (integer) solution for the
compact formulation, one could say that it is unreasonable to simply discard all the
pricing problem solutions we have found along the way. The only question that re-
mains is whether or not we routinely solve a restricted master problem to update our
multipliers. At the end of the day, we are left with a different sequence of multipliers
and perhaps, most importantly, our understanding of the Lagrangian function.
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6.3 Good to Know

We have established strong ties between the Lagrangian dual problem (6.15) and
the Dantzig-Wolfe master problem (6.3). Not only do both provide the same lower
bound on z⋆ILP, also algorithmically, we solve both by iteratively updating the values
of dual variables/Lagrangian multipliers. However, our initial interpretation of the
column generation algorithm as being a cutting plane algorithm in the dual and
our ensuing observations only rely on having a master and (integer) subproblem
given. In the following, we thus abstract from the Dantzig-Wolfe decomposition
and investigate what we can learn from duality for the column generation algorithm
in general. Actually, this could have been an alternative title for this section.

Free from any mention of the sets A and D, we recall the master problem from
Chapter 2 and its dual for handy reference. In our further presentation, we assume
equality constraints in the primal which implies that the dual variables are unre-
stricted in sign:

z⋆MP = min ∑
x∈X

cxλx

s.t. ∑
x∈X

axλx = b [πππ]

λx ≥ 0 ∀x ∈ X

max b⊺πππ

s.t. a⊺xπππ ≤ cx [λx] ∀x ∈ X

πππ ∈ Rm.

(6.53)

Solving the MP by the column generation algorithm involves repeatedly solving
the ISP

c̄(πππ) = min
x∈X

cx−πππ
⊺ax

s.t. cx = c(x)
ax = a(x).

(6.54)

The dual variables are the secret stars in the column generation algorithm. They
determine which columns are generated and when we stop. In a Lagrangian relax-
ation, we explicitly work on these dual variables. In the remainder of this chapter, we
thus concentrate on this dual perspective, in particular by more carefully choosing
which dual variable values we work with in the column generation algorithm.

Dual-optimal inequalities

With our interpretation of column generation as iteratively constraining the dual, it
immediately comes to mind that further constraining the dual can help in practice.
A prominent and simple example is the set partitioning problem that can rather be
solved as a set covering problem, often without compromising optimality: Replac-
ing equality with inequality constraints in the primal, we restrain the dual vector πππ ,
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which is unrestricted in sign, to non-negative values πππ ≥ 0. Intuitively, as in any cut-
ting plane algorithm, we wish to faster arrive at a description of the relevant portion
of the Lagrangian function. This desire motivates the following general concept.

A dual-optimal inequality (DOI) cuts off part of the dual space by imposing a
restriction on the dual variables that is satisfied by all optimal dual solutions. Such
a constraint, indexed by j in a set J and expressed by

s⊺jπππ ≤ δ j, [y j], (6.55)

appears in the RMP as a non-negative auxiliary variable y j:

zRMP = min ∑
x∈X′

cxλx + ∑
j∈J

δ jy j

s.t. ∑
x∈X′

axλx + ∑
j∈J

s jy j = b [πππ]

y j ≥ 0 ∀ j ∈ J

λx ≥ 0, ∀x ∈ X′.

(6.56)

A deep dual-optimal inequality (DDOI) is even more restrictive in the sense that
it only has to be satisfied by at least one optimal dual solution. Obviously, adding
several DOIs in the formulation can be done without reservation, but one has to
be careful not to cut away optimality when mixing DDOIs: these need to share
at least one common dual optimal solution. Otherwise, the dual formulation is too
constrained and, thus, yields a weaker primal lower bound.

Note 6.15 (Primal recovery procedure.) We may find a primal solution with positive
y-variables that are absent from the original MP, and thus actually infeasible. To re-
solve this situation, one needs to implement a primal recovery procedure (Gschwind
and Irnich, 2016) to swap these out for λ -variables. In a first step, a heuristic is ap-
plied in the hope of finding an alternative same-cost solution with y = 0. In the case
of DOIs or compatible DDOIs, this first step is always sufficient. For incompatible
DDOIs or by extension arbitrary dual inequalities (a kind of over-stabilization), a
second step is required to restore primal feasibility.

Illustration 6.8 Cutting stock problem

We present, without proof, three sets of DOIs for the linear relaxation of the cutting
stock master problem (CSP, Example 2.1). Recall that the dual value π⋆

i represents
the marginal impact on z⋆MP, the objective value in the linear relaxation of (2.29), of
an augmentation of the demand bi for item i ∈ {1, . . . ,m} by one unit.

• There always is a non-negative optimal dual solution, that is, πππ ≥ 0. Therefore,
the demand constraints can be written with greater-than-or-equal inequalities.
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• Instead of cutting item i∈ {1, . . . ,m} from a roll, we can cut a set S⊂{1, . . . ,m}
of smaller items, as long as their total widths do not exceed the width of i.
This does not increase the number of rolls (the objective value), which can be
expressed as a DOI. Any optimal dual solution to the MP satisfies

wi ≥∑
ℓ∈S

wℓ ⇒ πi ≥∑
ℓ∈S

πℓ. (6.57)

• As there are exponentially many constraints of the type (6.57), one may restrict
to small cardinalities of S. In particular, for |S|= 1, we obtain the ranking con-
straints

w1 ≥ w2 ≥ . . .≥ wm ⇒ π1 ≥ π2 ≥ . . .≥ πm. (6.58)

Using m−1 successive ranking inequalities,

πi+1−πi ≤ 0, [yi] ∀i ∈ {1,2, . . . ,m−1}, (6.59)

the MP derived from the formulation (2.29) becomes:

z⋆MP = min ∑
x∈X

λx

s.t. ∑
x∈X

a1xλx −y1 ≥ b1 [π1]

∑
x∈X

a2xλx +y1 −y2 ≥ b2 [π2]

∑
x∈X

a3xλx +y2 −y3 ≥ b3 [π3]

...
...

∑
x∈X

amxλx −ym−1 ≥ bm [πm]

λx≥ 0 ∀x ∈ X

y1, y2, . . . ym−1 ≥ 0.

(6.60)

Note 6.16 (Exchange vectors.) We notice in the primal MP (6.60) a remarkable
structure in the column coefficients of the added zero-cost y-variables. Setting one of
these variables to value one can be interpreted as replacing an item i by the smaller
or equal width item i+ 1 in any cutting pattern containing i. As an effect in the
column generation algorithm, for any generated cutting pattern that uses item i, we
implicitly generate another feasible pattern without extra work. Such y-variables,
respectively, their coefficient columns, are called exchange vectors. They are also
explicitly used in a straightforward way to get rid of the basic y-variables so as to
reconstruct an optimal primal solution for the MP, see Valério de Carvalho (2005);
Ben Amor et al. (2006b).



382 6 Dual Point of View

Dual-optimal boxes

While dual-optimal inequalities impose structural constraints on the dual, we now
aim at explicitly prescribing values to the dual variables. Ultimately, we would like
to constrain their values to the vicinity of an optimal solution. To this end, a dual box
[δ1i,δ2i] imposes an interval on a dual variable πi, i ∈ {1, . . . ,m}, or more concisely
in vector form for all π-variables,

δδδ 1 ≤ πππ ≤ δδδ 2. (6.61)

Let us denote the dual formulation of the master problem (6.53) in which these
constraints are added by DMPδδδ :

z⋆DMPδδδ
= max b⊺πππ

s.t. a⊺xπππ ≤ cx [λx] ∀x ∈ X

−πππ ≤−δδδ 1 [y1]

πππ ≤ δδδ 2 [y2].

(6.62)

Dualizing, we obtain 2m auxiliary variables as surplus (y1) and slack (y2) vari-
ables in the primal formulation

z⋆MPδδδ
= min ∑

x∈X
cxλx − δδδ

⊺
1y1 + δδδ

⊺
2y2

s.t. ∑
x∈X

axλx − y1 + y2 = b [πππ]

y1≥ 0, y2≥ 0
λx ≥ 0, ∀x ∈ X ,

(6.63)

where we likewise denote the dual-boxed master problem as MPδδδ . Given the above,
four linear programming programs have been identified:

• the MP and DMP with respective primal and dual solutions denoted λλλ
⋆ and πππ⋆;

• the MPδδδ and DMPδδδ with respective solutions denoted (λλλ⋆δδδ ,y⋆1,y
⋆
2) and πππ⋆

δδδ
.

The primal vector λλλ
⋆
δδδ is an optimal solution for the MP if y⋆1 = y⋆2 = 0, a condition

easily verifiable by inspection. Our goal is to establish a priori conditions on [δδδ 1,δδδ 2]
for which solving the MPδδδ also solves the MP. There are three cases based on the
possible values of πππ⋆:
1. Obviously, if [δδδ 1,δδδ 2] does not include any optimal vector πππ⋆, then πππ⋆

δδδ
is not

feasible for the DMP as the dual boxes are too restrictive in the DMPδδδ , nor
does the MPδδδ correspond to the MP as it is too relaxed.

2. If [δδδ 1,δδδ 2] contains an optimal solution πππ⋆, in which case we call [δδδ 1,δδδ 2] a dual-
optimal box, then πππ⋆

δδδ
solves the DMP, but unfortunately there is no guarantee

that λλλ
⋆
δδδ is an optimal solution for the MP, see Proposition 6.9 and Note 6.17.
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3. If there exists a dual vector πππ⋆ in the interior of [δδδ 1,δδδ 2], that is, δδδ 1 < πππ⋆ < δδδ 2,
then πππ⋆

δδδ
still solves the DMP and λλλ

⋆
δδδ additionally solves the MP, see Proposi-

tion 6.10.

Proposition 6.9. If there exists an optimal solution πππ⋆ for the DMP such that πππ⋆ ∈
[δδδ 1,δδδ 2], then πππ⋆

δδδ
is optimal for the DMP and z⋆MPδδδ

= z⋆DMPδδδ
= z⋆DMP = z⋆MP.

Proof. By construction, πππ⋆
δδδ

is feasible for the DMP, hence b⊺πππ⋆
δδδ
≤ b⊺πππ⋆. The con-

verse is also true as πππ⋆ is feasible for the DMPδδδ , hence b⊺πππ⋆ ≤ b⊺πππ⋆
δδδ

. Their optimal
objective values are therefore equal to one another and, moreover, equal to those of
their respective primal formulation by strong duality. ⊓⊔

Note 6.17 (Boundary issues.) Writing out mathematically the primal objective func-
tions gives some indication on the boundary issues:

∑
x∈X

cxλ
⋆
δx−δδδ

⊺
1y⋆1 +δδδ

⊺
2y⋆2 = ∑

x∈X
cxλ

⋆
x. (6.64)

Comparing the left term to the right one, we can see that in the MPδδδ , the objective
value can be achieved using y-variables that are otherwise not existing in the MP,
hence (y⋆1,y

⋆
2) may differ from (0,0). For example, this is the case if the slack vari-

ables y⋆2 = b for a positive right-hand side vector b, together with λλλ
⋆
δδδ = 0, y⋆1 = 0,

and πππ⋆
δδδ
= δδδ 2.

It is quite unfortunate that imposing dual-optimal boxes in the MPδδδ is only guar-
anteed to produce an optimal solution πππ⋆ for the DMP. The following proposition
is stronger in its implication since it provides a sufficient condition on [δδδ 1,δδδ 2] to
ensure that solving the MPδδδ also solves the MP.

Proposition 6.10. If there exists an optimal dual solution πππ⋆ for the DMP such that
δδδ 1 < πππ⋆ < δδδ 2, then λλλ

⋆
δδδ is optimal for the MP as well.

Proof. It suffices to show that y⋆1 = y⋆2 = 0. Firstly, note that πππ⋆ is also optimal for
the DMPδδδ and that any optimal solution for the DMPδδδ is optimal for the DMP.
Secondly, by Proposition 1.7, every primal optimal solution for the MPδδδ satisfies
the complementary slackness conditions with every dual optimal solution for the
DMPδδδ ; therefore, consider the pair of primal and dual optimal solutions (λλλ⋆δδδ ,y⋆1,y

⋆
2)

and πππ⋆. Because δδδ 1 <πππ⋆ < δδδ 2, we must have y⋆1 = y⋆2 = 0 by complementary slack-
ness in (6.62), and consequently, λλλ

⋆
δδδ is optimal for the MP. ⊓⊔

Note 6.18 (Primal complement to Proposition 6.3.) Optimal Lagrangian multipliers
πππ⋆

b to the LDP (6.15) are also dual optimal for the MP by Proposition 6.3. Proposi-
tion 6.10 furnishes us with a bulletproof way to obtain a primal solution λλλ

⋆ and even
complete the missing dual information π⋆k

0 , k ∈ K. That is, we solve the MPδδδ with
relatively small dual-optimal boxes around πππ⋆

b. Observe that we can easily initialize
the RMPδδδ with X′ = /0 as the y-variables ensure feasibility which then gives dual
values πππ at either end of the dual box.
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Exercises 6.9 and 6.11 are in the spirit of Note 6.18. The first considers whether it
is interesting to use the pricing problem c̄k(πππ⋆

b,π
k
0) to generate the pertinent columns

in an empty RMP instead. The second is a crossover method to recover a basic
solution to a linear program from an optimal dual solution, say coming from an
interior-point algorithm.

How helpful can the dual information be?

Dual boxes theoretically enable us to constrain the DMP around any, in particular
optimal, solution. Intuitively, such information should help the column generation
process, especially since we are solving a relaxed primal formulation. However, the
proof of the pudding is in the eating. In the three upcoming illustrations, we set dual
boxes around some optimal πππ⋆ in a symmetric and uniform manner, that is,

πππ
⋆−δδδ ≤ πππ ≤ πππ

⋆+δδδ , δδδ > 0. (6.65)

However, everything that follows immediately generalizes to individual boxes on
dual variables. Whether we should possess such perfect dual information prior to
solving anything is an obvious and pressing question. We postpone an answer to the
next section when we are convinced that it is worth the effort.

Illustration 6.9 Cutting stock problem (cont.)

The CSP is an example in which we have perfect dual information if there is no loss.
In that case, z⋆IMP = z⋆MP =

∑
m
i=1 wibi

W , and for the linear relaxation of (2.29),

π
⋆
i =

wi

W
, ∀i ∈ {1, . . . ,m}. (6.66)

This happens in the triplet instances for which each roll is cut into exactly three
items. Table 6.4 reports the computational results of Ben Amor et al. (2006b) on
ten randomly generated instances with m = 501. We compare four formulations: the
standard one with a unit-demand for each of the 501 items; the classical one where
items of identical width are aggregated, leading to fewer constraints (on average
194.3); formulation (6.60) with the added ranking constraints; and that with dual-
optimal boxes of radius δ = 10−2.

The number of constraints in the MP is given by m′. The computation time in
seconds is followed by the percent reduction over the previous formulation. We then
list the proportion taken by the RMP and ISP, e.g., 522.4 (90 % of 579.4) seconds
are spent solving the RMP in Unit-demand. The last column indicates the number
of column generation iterations. All numbers are averages over the test set.

As expected, the classical aggregation of the demand for identical items is by
far preferable to the formulation with unit-demands. The added ranking inequali-
ties have only a small impact on the resolution of the MP while the dual-optimal
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time Reduction RMP/ISP #
Formulation m′ (s) (%) (%) iterations

Unit-demand 501 579.6 - 90 / 10 465.2
Aggregation of identical items 194.3 20.7 96.4 12 / 88 124.2
Ranking inequalities 194.3 19.8 5.8 11 / 89 113.3
Dual-optimal boxes 194.3 7.9 59.5 6 / 94 12.2

Table 6.4: Average results for 10 randomly generated 501-triplet instances.

boxes reduce the number of column generation iterations by an order of magnitude
compared to the classical formulation (at the expense of a larger per-iteration com-
putation time).

Illustration 6.10 TCSPP (cont.)

Reconsider our Dantzig-Wolfe reformulation of the time constrained shortest path
problem, see Illustration 6.1 on p. 350. Before we solve the MP by the column
generation algorithm, we impose the dual-optimal box −2.1 ≤ π7 ≤ −1.9. That is,
initially, the RMP contains the artificial variable y0 in the convexity constraint, sur-
plus variable y1 with cost coefficient 2.1, and slack variable y2 with cost coefficient
−1.9, both in the duration constraint:

zRMPδδδ
= min 100y0 + 2.1y1 − 1.9y2

s.t. − y1 + y2 ≤ 14 [π7]

y0 = 1 [π0]

y0 ≥ 0, y1 ≥ 0, y2 ≥ 0,

(6.67)

1. In the first iteration, the artificial variable y0 = 1 and the slack variable y2 = 14
constitute a solution with zRMPδδδ

= 73.4. The corresponding dual solution is
π7 =−1.9 and π0 = 100, at the boundary of the dual box. Path 1256 is generated
(at cost 5 with duration 15) and the lower bound already reaches lb = 6.9.

2. In the second iteration,

zRMPδδδ
= min 100y0 + 5λ1256 + 2.1y1 − 1.9y2

s.t. 15λ1256 − y1 + y2 ≤ 14 [π7]

y0 = 1 [π0]

y0 ≥ 0, λ1256 ≥ 0, y1 ≥ 0, y2 ≥ 0,

(6.68)

and λ1256 = 1 and surplus variable y1 = 1 define an optimal primal solution (yet
infeasible for the original problem). It provides an upper bound of zRMPδδδ

= 7.1
on z⋆MP = 7 and the dual optimal solution is π7 =−2.1 and π0 = 36.5, again at
the boundary of the box. The subproblem generates path 13256 (at cost 15 with
duration 10) and the lower bound decreases to lb = 6.6.
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3. Solving the third RMPδδδ ,

zRMPδδδ
= min 100y0 + 5λ1256 + 15λ13256 + 2.1y1 − 1.9y2

s.t. 15λ1256 + 10λ13256 − y1 + y2 ≤ 14 [π7]

y0 = 1 [π0]

y0 ≥ 0, λ1256 ≥ 0, λ13256 ≥ 0, y1 ≥ 0, y2 ≥ 0,

(6.69)

gives λ1325 = 0.2, λ1256 = 0.8, and zRMPδδδ
= 7. This is an optimal solution for

the MPδδδ because the reduced cost provided by the solution of the subproblem
is zero. Since y⋆1 = y⋆2 = 0, we also have in hand an optimal solution for the
MP, an expected conclusion as per Proposition 6.10 and the fact that a dual
optimal value π⋆

7 = −2 for the MP indeed lies in the interior of the dual box.
The column generation algorithm terminates in three iterations rather than five,
see Table 6.5.

RMP ISP

t RMPδδδ solution zRMPδδδ
π0 π7 c̄(π7,π0) p cp tp lb

1 y0 = 1,y2 = 14 73.4 100.0 −1.9 −66.5 1256 5 15 6.9
2 λ1256 = 1,y1 = 1 7.1 36.5 −2.1 −0.5 13256 15 10 6.6
3 λ13256 = 0.2,λ1256 = 0.8 7.0 35.0 −2.0 0.0 7.0

Table 6.5: Dual-optimal interval −2.1≤ π7 ≤−1.9.

The dual point of view explains the faster convergence of this dual box method.
By enforcing π7 ∈ [−2.1,−1.9] around a dual optimal value π⋆

7 = −2, we focus
on the relevant portion of the Lagrangian function LR in Figure 6.15. Fed with
dual values in the vicinity of the optimal dual solution, the ISP (when solved to
optimality) can no longer generate certain dual cutting planes (here corresponding to
paths 1246 and 1356) that describe the Lagrangian function in an irrelevant region.

Out of curiosity, let us also impose a dual box on π⋆
0 = 35. If we add such dual

information rather than using the artificial variable y0 in the convexity constraint,
for example π0 ∈ [34.99,35.01], the first RMPδδδ reads as

zRMPδδδ
= min + 2.1y1 − 1.9y2 − 34.99y3 + 35.01y4

s.t. − y1 + y2 ≤ 14 [π7]

− y3 + y4 = 1 [π0]

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0.

(6.70)

This does not change the number of column generation iterations as there are again
the same two path-variables to generate, but the first solution gives y2 = 14, y4 = 1,
and zRMPδδδ

= 8.41 much closer to the optimal objective value z⋆MP = 7 than 73.4.
Here is an interesting observation that may have gone unnoticed regarding ini-

tializing the RMPδδδ with good dual information: the smaller the dual boxes around
πππ⋆, the closer the initial objective value zRMPδδδ

is to b⊺πππ⋆.
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Fig. 6.15: The Lagrangian function LR, −2.1≤ π7 ≤−1.9.

Proposition 6.11. Trivial feasibility of the RMPδδδ for (6.63) can be achieved by set-
ting the slack variable yi2 = bi if bi ≥ 0 or the surplus variable yi1 =−bi if bi < 0,
∀i∈{1, . . . ,m}. Assuming symmetric dual-optimal boxes, the objective value of such
a solution is zRMPδδδ

= b⊺πππ⋆+∑
m
i=1 δi|bi|.

Proof. We have zRMPδδδ
= ∑

m
i=1 (−δiyi1 +δiyi2).

For each i ∈ {1, . . . ,m}, the contribution in the objective depends on the sign of bi.
If bi = 0, both products evaluate to zero.
If bi > 0, we have (π⋆

i +δi)bi = π⋆
i bi +δi bi.

If bi < 0, we have −(π⋆
i −δi)(−bi) = π⋆

i bi +δi(−bi).
Summing the m terms, zRMPδδδ

= b⊺πππ⋆+∑
m
i=1 δi|bi|. ⊓⊔

Illustration 6.11 Multi-depot vehicle scheduling problem

� It’s easier to find an optimal solution when you know where it hides. (JD)

In this illustration, we repeat the experiment of imposing a dual box around op-
timal dual values on a much larger problem. The multi-depot vehicle scheduling
problem (MDVSP) is a natural extension of the single depot version (Example 2.4),
where each vehicle is allowed to depart from any depot but must return to it at
the end of the route. For this application, we use a multi-commodity network flow
model as the compact formulation, where each depot has its own set of flow conser-
vation constraints thus duplicating the number of inter-customer arcs for each depot
whereas the customer visits are fulfilled by assignment constraints, see Exercises 2.9
and 4.20.

Assume that the network Gk
do =(Nk,Ak

do) for depot k is represented in Figure 6.16
similarly to that of Figure 2.13, where Nk = N∪{ok,dk}, Ak

do = Ak∪{(dk,ok)}, and
arc (dk,ok) is utilized to count the number of buses used.
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ok dk. . . I . . ....
...

Fig. 6.16: Network Gk
do = (Nk,Ak

do).

A multi-commodity formulation (Ribeiro and Soumis, 1994), the commodity k
being associated with depot k, is

z⋆ILP = min ∑
k∈K

∑
(i, j)∈Ak

do

ck
i jx

k
i j (6.71a)

s.t. ∑
k∈K

∑
j:(i, j)∈Ak

xk
i j = 1 [σi] ∀i ∈ N (6.71b)

∑
j:(i, j)∈Ak

do

xk
i j− ∑

j:( j,i)∈Ak
do

xk
ji = 0 [σ k

i ] ∀k ∈ K, i ∈ Nk (6.71c)

0≤ xk
dkok ≤ vk [σ k

0 ] ∀k ∈ K (6.71d)

xk
i j ∈ {0,1} ∀k ∈ K,(i, j) ∈ Ak. (6.71e)

The MDVSP has been shown to be NP-hard for |K| ≥ 2 (Bertossi et al., 1987). For
|K|= 1, the MDVSP simplifies to the SDVSP, formulated as a network flow problem
and solvable in polynomial time. This is also the case for |K| ≥ 2 when the objective
function corresponds to the minimization of the number of vehicles used to perform
the n trips, that is, min∑k∈K xk

dkok . Integrality of xk
dkok , ∀k ∈ K, follows from the

binary requirements on xk
i j, ∀(i, j) ∈ Ak.

From the compact formulation (6.71), we see a block-diagonal structure giving
subproblems separable per depot (structural constraints) and the partitioning con-
straints (complicating ones). Let xk = [xk

i j](i, j)∈Ak , ∀k ∈ K. Grouping the constraints
as

A=

{{[
xk

dkok

xk

]
∈ Z+×{0,1}|A

k|

}
k∈K

∣∣∣∣ (6.71b) and (6.71d)

}
(6.72a)

Dk =

{ [
xk

dkok

xk

]
∈ Z+×{0,1}|A

k|
∣∣∣∣ (6.71c)

}
, ∀k ∈ K, (6.72b)

the zero-vector is discarded from the kth set of indices, the extreme rays are integer-

scaled with xk
dkok = 1, and we have Xk =

{[
1
xk

r

]}
r∈Rk

, ∀k ∈K. The IMP formulation

is therefore given as
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z⋆IMP = min ∑
k∈K

∑
xk∈Xk

cxk λxk (6.73a)

s.t. ∑
k∈K

∑
xk∈Xk

aixk λxk = 1 [πi] ∀i ∈ N (6.73b)

∑
xk∈Xk

λxk ≤ vk [πk
0 ] ∀k ∈ K (6.73c)

λxk ∈ {0,1} ∀k ∈ K, xk ∈ Xk. (6.73d)

The binary variable λxk takes value 1 if and only if schedule xk ∈ Xk is selected.
Such a schedule has a cost cxk and is represented by vector axk = [aixk ]i∈N , where
binary coefficient aixk takes value 1 if trip i is operated in schedule xk, 0 otherwise.
The coefficient of one for the λxk -variables in (6.73c) comes from xk

dkok = 1. For
all intents and purposes, these are aggregated convexity constraints per depot k ∈ K
which we indeed find if we derive a Dantzig-Wolfe reformulation using extreme
points instead.

The first row of Table 6.6 reports computational results on an instance compris-
ing 4 depots and 800 bus trips to service (Ben Amor et al., 2009). With a dual box of
radius ∞, this reference row corresponds to the original MP solved by column gener-
ation. The optimal objective value of 1 915 589.5 is obtained after 4 178 seconds of
computing time. The algorithm called the pricing step 509 times from which 37 579
columns are generated. The last column indicates that almost one million simplex
iterations (pivots) are performed in the successive RMPs. Finally, the initial solution
is obtained via artificial variables with a million-cost each.

Dual boxes z⋆MPδδδ
Initial time # # #

of radius δ objective value (s) iterations columns pivots

∞ 1 915 589.5 800 000 000.0 4 178 509 37 579 926 161

100 1 915 589.5 2 035 590.5 836 119 9 368 279 155
10 1 915 589.5 1 927 590.5 118 35 2 789 40 599
1 1 915 589.5 1 916 790.5 52 20 1 430 8 744

0.1 1 915 589.5 1 915 710.5 48 19 1 333 8 630
0.01 1 915 589.1 1 915 602.5 37 17 1 145 6 288

Table 6.6: Dual-optimal boxes on an instance with 800 trips and 4 depots.

Figure 6.17 shows the convergence to optimality of the objective value. On the
left, we underline that the order of magnitude difference in the objective value is
correct. We therefore have a steady rapid decline in the first 50 iterations followed
by more moderate improvements in the following 150, and finally a tail seems to
appear for some 300 iterations. On the right, a closer inspection of this tail rather
shows sustained decrease in the objective values albeit at an obvious much slower
rate. To put these plots into perspective, the optimal objective value is 3 % of what
is attained at iteration 109 whereas it is 61 % at iteration 209. By iteration 309,
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we stand at 96 % and the objective value continues to slowly decrease towards the
optimal value.
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(a) Complete process
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(b) Zoom on tail

Fig. 6.17: The root node of an instance with 800 trips and 4 depots solved by the
column generation algorithm; 509 iterations.

The second line of Table 6.6 reports the results obtained with a radius of 100 units
around the optimal set of dual values obtained from the above reference run and ev-
ery line that follows divides the allocated radius by 10. The impacts on the solution
process are numerous. For one, we clearly identify initial objective values that are
much closer to optimality, the small difference with Proposition 6.11 coming from
the fact that there is no dual box associated with the four depot constraints. The com-
putation time also decreases consistently as a result of cumulative economy in the
various components of the column generation algorithm. Each RMP is re-optimized
faster which can be explained by having identified fewer yet more relevant columns
from the subproblems. This transfers to the number of column generation iterations
since we improve towards optimality faster.

Figure 6.18 illustrates the convergence of the column generation algorithm on
these various dual-boxed RMPs. The dual boxes of radius δ = 10 are used as a
yardstick to compare the scale of the convergence rate.

Finally, we have to underscore the last line with δ = 0.01 which takes 17 itera-
tions and is more than 100 times faster than the reference run. We find a solution of
cost 1 915 589.1, indeed 0.4 units less than the optimal objective value of the MP.
This means that the dual boxes are too restrictive, hence some positive y-variables
appear in the solution of the MPδδδ . Interestingly, this serves as additional warning
regarding Note 6.17. Not only can we theoretically not use a closed interval but in
practice, issues with numerical precision forbid too tiny intervals. In Illustration 6.9,
we are able to reach optimality with 2 significant digits. It however proved to be too
much to ask for this time around because of the much larger absolute objective val-
ues here. Fortunately, the silver lining is twofold. First, we already achieve very
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Fig. 6.18: The root node of an instance with 800 trips and 4 depots solved by column
generation and dual-optimal boxes (yardstick radius δ = 10; 35 iterations).

acceptable performance at δ = 1. Second, a method that allows us to dynamically
refine the radius and center of the dual boxes is in the making.

Fig. 6.19: Celso Ribeiro and Jacques (Angra dos Reis, Brazil, 2009-10-26).

Note 6.19 (What helps the integer program needs not help the linear program.) It
may happen that initializing the RMP with the columns representing an integer so-
lution can be worse than starting from scratch. We now know that every column
can be interpreted as putting a bound on a linear combination on the dual variables;
and this can be simply irrelevant/confusing and may lead the column generation
algorithm astray. Moreover, a primal (optimal) integer solution usually forms only
a small part of an initial basis AB that needs to be completed with the columns
of some artificial variables having a large cost. Since the simplex multipliers are
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computed as πππ⊺ = c⊺BA−1
B , the initial dual vector contains rather irrelevant penalty

information which does not help. The column generation algorithm still spends its
time searching for the columns producing the adequate dual values such that the
solution process stops on the non-negative reduced cost optimality criterion.

6.4 More to Know

We have raised the fact that several algorithms are similar in spirit in that they fol-
low a sequence of multipliers to achieve (near-)optimality. In particular, consider
Figure 6.14 where vectors (b− ap), p ∈ P, are collected with respect to various
multipliers. The co-existence of these methods does not end here; we hope that our
exposé makes it natural to think of hybridization.

In fact, we have already established one such hybrid. Recall that in general the
Lagrangian relaxation neither solves the ILP, nor does it even provide a primal so-
lution. The dual point of view however gives us a simple mechanism to establish a
primal solution using dual-optimal boxes in the Dantzig-Wolfe master problem.

In this section, we present more advanced hybridization ideas starting with sta-
bilization of the dual values and move on to miscellaneous topics that may benefit
from hybrid thinking.

Stabilized column generation

We have made at least two observations that motivate to explicitly control the update
of the dual values in the column generation algorithm. One is the subgradient algo-
rithm overshooting an optimal dual solution, and the resulting oscillation of dual
variable values over the iterations, see Figure 6.13. It is quite understandable that
we may see a similarly unstable behavior of the dual variable values in the column
generation algorithm. This is particularly true when we work with (very) degenerate
RMPs, modifying the basis with columns useless in the primal solution but some-
times largely modifying the dual values. Our other observation is the computational
effectiveness of putting a dual box around a good dual solution, or in other words,
to try to keep or steer away from unimportant dual regions.

Propositions 6.9 and 6.10 already hint at how we could proceed if we encounter
instability of the dual values:

• Put a box around some dual solution and solve the boxed master problem.
• If the optimal dual solution is in the interior of the box, stop.
• Otherwise, relocate the box, and repeat.
This is indeed stabilization in a nutshell although we have yet to establish how to

relocate the box. Marsten (1975) and Marsten et al. (1975) lay some ground rules for
this relocation but their pioneering boxstep method lacks some of the self-adjusting
flexibility we present in the sequel.
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We define stabilized column generation as solving the MP (6.53) with a series of
stabilized problems.

• Each one is defined as a linear programming approximation of the MP, indeed a
relaxation, and it is solved by column generation. Such a formulation, denoted
MPstab, revolves around a stability center π̂ππ which acts as a guess (eventually
very educated) for an optimal dual solution πππ⋆.

• Around π̂ππ , we define in a way similar to that of the DMPδδδ some relatively small
dual boxes [δδδ 1,δδδ 2] such that δδδ 1 < π̂ππ < δδδ 2. These boxes define the trust region,
hereafter denoted Ψ .

• By Proposition 6.10, we know that if there exists some πππ⋆ ∈ int(Ψ), then the
MPδδδ solves the MP. We design the MPstab with a penalty function in such a way
that it honors this at zero penalty whenever there exists some πππ⋆ ∈ int(Ψ) but
otherwise allows to move outside the box at a certain penalty cost.

• The optimal dual solution of the current MPstab becomes the stability center of
the next.

An example of a penalty function for variable πi is illustrated in Figure 6.20, with
a 3-piece linear concave function. Globally, this is formulated in the dual space as

δδδ 1−w1 ≤ πππ ≤ δδδ 2 +w2, w1,w2 ≥ 0, (6.74)

with the penalty terms −εεε
⊺
1w1−εεε

⊺
2w2 in the objective function, where parameters

εεε1,εεε2 > 0 by design. Observe that the trust region is not penalized:

− (εεε1)
⊺w1 − (εεε2)

⊺w2

{
< 0 ⇔ πππ /∈Ψ

= 0 ⇔ πππ ∈Ψ
. (6.75)

Stabilization therefore comes from the fact that we are requesting substantial evi-
dence that taking a value outside the trust region is beneficial.
The dual of the MPstab, denoted DMPstab, reads as

zDMPstab = max b⊺πππ − εεε
⊺
1w1 − εεε

⊺
2w2 (6.76a)

s.t. a⊺xπππ ≤ cx [λx] ∀x ∈ X (6.76b)
− πππ − w1 ≤−δδδ 1 [y1] (6.76c)

πππ − w2 ≤ δδδ 2 [y2] (6.76d)
w1≥ 0, w2≥ 0, (6.76e)

and the primal formulation MPstab is

zMPstab = min ∑
x∈X

cxλx − δδδ
⊺
1y1 + δδδ

⊺
2y2 (6.77a)

s.t. ∑
x∈X

axλx − y1 + y2 = b [πππ] (6.77b)

λx ≥ 0 ∀x ∈ X (6.77c)
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Fig. 6.20: Dual εi-penalties on values outside the dual box δi1 ≤ πi ≤ δi2.

y1 ≤ εεε1 [−w1 ≤ 0] (6.77d)
y2 ≤ εεε2 [−w2 ≤ 0] (6.77e)

y1≥ 0, y2 ≥ 0. (6.77f)

Note 6.20 (Classes of primal variables.)Ï Observe how auxiliary slack/surplus vari-
ables are structurally no different than the ε-bounded ones used for perturbation
of the right-hand side vector b or the artificial variables used in a Phase I. In an
implementation which uses the latter to ensure feasibility of the RMP, incorporat-
ing dual boxes should not be a hassle granted variable classes are well organized.
This is a good time to make sure one uses object-oriented programming for their
implementation.

Let us confirm that if the interior of the trust region contains an optimal solution
for the DMP, then the stabilized problem solves the MP.

Corollary 6.3. If there exists an optimal dual solution πππ⋆ for the DMP such that
δδδ 1 < πππ⋆ < δδδ 2, then, with respect to solving the MPstab, λλλ

⋆
stab and πππ⋆

stab are respec-
tively primal and dual optimal solutions for the MP as well, for any εεε1,εεε2 > 0.

Proof. By assumption, int(Ψ) corresponds to open dual-optimal boxes so we know
from Proposition 6.10 that the MPδδδ solves the MP, i.e., it finds optimal primal-dual
solutions λλλ

⋆
δδδ and πππ⋆

δδδ
∈ int(Ψ) for the MP. Since these are primal-dual feasible for the

MPstab, we know they must also be optimal because this already gives us z⋆MP = b⊺πππ
for λλλ

⋆
stab ≡ λλλ

⋆
δδδ and πππ⋆

stab ≡ πππ⋆
δδδ

along with the non-positive penalty term of zero as
expected from (6.75), i.e., w⋆

1 = w⋆
2 = 0 in −εεε1w1−εεε2w2 = 0, ∀εεε1,εεε2 > 0. ⊓⊔

Note 6.21 (Smooth penalty function.) Proposition 6.10 requires an open interval for
the dual boxes to ensure we terminate with primal and dual solutions for the MP.
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Since stabilization is based on dual optimal boxes, it means that we mathematically
require the penalty function to be ‘smooth’ at πππ i ∈ (δi1,δi2), ∀i ∈ {1, . . . ,m}, i.e.,
the trust region cannot reduce to a single point for any dual value.

As described above, the objective function in the DMPstab penalizes the compo-
nents of πππ when they lie outside the trust region [δδδ 1,δδδ 2]. In the primal formulation
MPstab, these δδδ -bounds appear in the objective function as the coefficients of the
surplus (y1) and slack (y2) variables while the dual penalties εεε1 and εεε2 act as per-
turbation parameters on vector b. Perturbation is known to be beneficial for coping
with degeneracy in practice, see Dantzig (1963, §10-2, p. 231). We ultimately want
the sequence of stabilized master problems to be solved faster than the original
MP. In Illustrations 6.9–6.11, we have seen convincingly quicker solution processes
when initialized with relatively small dual-optimal boxes. Otherwise, when the trust
region does not contain an optimal dual solution, we solve an MPstab, a relaxation
of the MP, with a primary focus on the given trust region, at the same time being
guided as to how to move away from the current dual boxes.

Let s ≥ 0 index the sequence of stabilized master problems MPs
stab solved. For

each of them, we have as input

• the stability center π̂ππs,
• the penalties εεεs

1 and εεεs
2,

• the trust region Ψ s = [δδδ s
1,δδδ

s
2], where δδδ

s
1 < π̂ππs < δδδ

s
2;

and as output

• a primal-dual pair (λλλs,ys
1,y

s
2) and (πππs,ws

1,w
s
2),

• with objective value zs.

Formulation MPs
stab is equivalent to the MP if and only if ys

1 = ys
2 = 0 so the

(partly hidden) stopping criterion of the stabilized column generation algorithm is

c̄(πππs) = 0 and ys
1 = ys

2 = 0. (6.78)

Algorithm 6.2 outlines the mechanics of the stabilization process which terminates
upon optimality of the MP. At every so-called stabilized iteration, we solve the
MPs

stab by column generation and thus reach c̄(πππs) = 0. We then check whether
ys

1 = ys
2 = 0 holds true. Otherwise, we iterate with updated stabilization inputs.

In Algorithm 6.2, the trust region and penalty parameters are updated dynami-
cally. We select the trust region to contain the current dual solution (in the beginning,
an estimate), and solve the MPs

stab. Component wise, if πππs lies in the trust region,
reduce its width and augment the ε-penalties. Otherwise, relocate the stability cen-
ter, recenter and enlarge the trust region, and decrease the penalties. Alternatively,
the update (also called a serious step) can be performed each time a dual solution πππ

improves upon the previously best known lower bound b⊺πππ + c̄(πππ)> LB, or when a
number of iterations confirms that some dual boxes need to be changed. Finally note
that, as y1 = y2 = 0 at the last stabilized iteration, the constraints (6.76c)–(6.76e)
with the final parameters in the DMPstab are in fact deep dual-optimal inequalities.
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Algorithm 6.2: The stabilized column generation algorithm.
input : MPstab (6.77), ISP (6.54), π̂ππ , εεε1, εεε2, δδδ 1, δδδ 2
output : Optimal primal-dual solutions λλλ

⋆
MP and πππ⋆ for the MP, and optimum z⋆MP

initialization : s← 0
1 loop
2 zs, (λλλs,ys

1,y
s
2), (πππ

s,ws
1,w

s
2)← MPs

stab
3 if ys

1 = ys
2 = 0

4 break by optimality of the MP

5 else
6 εεε1, εεε2, δδδ 1, δδδ 2 ← Update penalties and radii according to πππs

7 π̂ππ ← πππs

8 s← s+1

9 return primal-dual pair λλλ
s and πππs with objective value zs

Illustration 6.12 Multi-depot vehicle scheduling problem (cont.)

Let us illustrate this stabilization process on the multi-depot vehicle scheduling
problem. As before, the instance comprises 4 depots and 800 trips to service and
the dual estimates are computed by solving a network flow problem using an aggre-
gation of the four depots into a single one (see Exercise 4.20).

As reported in Table 6.7, a standard implementation of the column generation
algorithm requires 509 iterations, generates 37 579 columns, and runs in 4 178 sec-
onds, where 3149/4178 = 75% of the computation time is devoted to solving the RMP.
The stabilized column generation is about 10 times faster, taking only 112 iterations,
generating 4 749 columns in 439 seconds. Moreover, the total computation time
splits half and half between solving the RMP and the pricing problems, respectively
in 216 and 223 seconds.

time (s) Column generation
Total RMP SP # iterations # columns

Standard 4 178 3 149 1 029 509 37 579
75 % 25 %

Stabilized 439 216 223 112 4 749
49 % 51 %

Reduction 89 % 93 % 78 % 78 % 87 %

Table 6.7: Standard and stabilized results of the column generation algorithm.

In Figure 6.21(a), we see that every stabilized linear program, each one being a
relaxation of the MP, takes only a few column generation iterations: 29, 18, 8, 8, 10,
4, 5, 4, 4, 5, etc. Visually, we discern six updates of the parameters when zRMPstab
clearly jumps, but there are actually eleven such updates when we consult the data.
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In Figure 6.21(b), we find that the first approximate problem solved after an update
is in general more difficult than the following ones.
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Fig. 6.21: Stabilization process.

Properties

Propositions 6.12–6.14 prove that stabilized column generation ultimately solves
the MP. We can support the purpose of each proposition with what we see (and do
not see) in Figure 6.21a:

6.12 Every MPs
stab is a relaxation of the MP and, as such, it provides a lower bound

zs on z⋆MP. This is the last objective value at the end of each column generation
process. However, neglecting the penalty terms from the dual objective value
may yield a better lower bound as b⊺πππs;

6.13 Every (except maybe last) MPs
stab strictly improves the lower bound b⊺πππs of

its predecessor. It is easy to confuse this with the strict increase we see in the
sequence zs;

6.14 The sequence of MPs
stab reaches z⋆MP in a finite number of stabilized iterations.

Proposition 6.12. Solving the MPs
stab, lower bounds on z⋆MP are

zs ≤ b⊺πππs ≤ z⋆MP. (6.79)
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Proof. The vector πππs is feasible for the DMP and hence it supplies the lower
bound b⊺πππs on z⋆MP by Proposition 1.5 (weak duality), disregarding the non-positive
penalty computed in zs = b⊺πππs− (εεεs

1)
⊺ws

1− (εεεs
2)
⊺ws

2. ⊓⊔

The next proposition states that if the MPs
stab does not find an optimal dual solu-

tion to the MP, then b⊺πππs+1 strictly improves the lower bound on z⋆MP.

Proposition 6.13. For s≥ 0, if πππs is not optimal for the DMP, then

b⊺πππs+1 > b⊺πππs. (6.80)

Proof. With respect to the MPs+1
stab , the dual vector πππs = π̂ππs+1 ∈Ψ s+1 always gives a

penalty (6.75) evaluation of zero. Hence, we have by optimality of πππs+1 that

b⊺πππs+1− (εεεs+1
1 )⊺ws+1

1 − (εεεs+1
2 )⊺ws+1

2 ≥ b⊺πππs, (6.81)

where the penalty is either negative or zero.

• If it is negative, we have πππs+1 /∈Ψ s+1 and b⊺πππs+1 > b⊺πππs.
• If it is zero, we have πππs+1 ∈Ψ s+1 and b⊺πππs+1 ≥ b⊺πππs. We show that the strict

inequality holds by considering 1) πππs+1 ∈ int(Ψ s+1) and 2) πππs+1 /∈ int(Ψ s+1):

1) By complementary slackness, ys
1 = ys

2 = 0 and πππs+1 is optimal for the DMP. As
such, b⊺πππs+1 > b⊺πππs because πππs is not optimal for the DMP by assumption.

2) Assume that b⊺πππs+1 = b⊺πππs, then πππs is also optimal for the MPs+1
stab . By Corol-

lary 6.3 πππs = π̂ππs+1 ∈ int(Ψ s+1) is also optimal for the DMP, a contradiction
to the suboptimality assumption of πππs. Since at least one component of πππs+1

is at the boundary of Ψ s+1, we have πππs+1 ̸= πππs = π̂ππs+1 and b⊺πππs+1 > b⊺πππs as
requested. ⊓⊔

Note 6.22 (Only one more to go.) This last particular case reminds us of Proposi-
tion 6.9 and Note 6.17 in which solving the MPδδδ with dual-optimal boxes yields an
optimal solution for the DMP but not for the MP. By design, if πππs is optimal for
the DMP but λλλs is not optimal for the MP, then only one more stabilized iteration is
required.

Proposition 6.14. The strictly increasing sequence {b⊺πππs}s≥0 reaches z⋆MP in a fi-
nite number of stabilized iterations.

Proof. Consider the strictly increasing sequence {b⊺πππs}s≥0 bounded from above by
z⋆MP and converging to b⊺πππ⋆

stab ≤ z⋆MP. By contradiction, we show that the equality
holds. Let Lstab = {πππ | b⊺πππ = b⊺πππ⋆

stab} be the level set of value b⊺πππ⋆
stab. For s large

enough, πππ⋆
stab ∈ Lstab∩ int(Ψ s), and by optimality of πππs, we have b⊺πππ⋆

stab ≤ b⊺πππs.

Assuming b⊺πππ⋆
stab < z⋆MP means that πππ⋆

stab is not optimal for the DMP. If πππs is
optimal for the DMP, then b⊺πππ⋆

stab < b⊺πππs, a contradiction on the limit of the se-
quence. Otherwise, πππs is not optimal for the DMP and b⊺πππ⋆

stab ≤ b⊺πππs < b⊺πππs+1 by
Proposition 6.13, contradicting again the limit of the sequence. ⊓⊔
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Alternative/complementary stabilization methods

Alternative/complementary stabilization methods exist, let us mention a few.

• Bundle methods
There are more elaborate proposals for penalty functions, e.g., piecewise linear
functions with five pieces. These penalize even more, the further one moves away
from the stability center. Readers coming from non-linear optimization recognize
this as an approximation to a quadratic penalty function that is regularly used
there. For instance, the bundle methods (Lemaréchal, 1978; Lemaréchal et al.,
1995; Kiwiel, 1999; Frangioni, 2002) are therefore interesting alternatives to
solve the MP as they have built-in stabilizing mechanism. While piecewise linear
functions only require linear programming solvers, quadratic ones obviously must
use quadratic solvers. The interested reader can consult the various mathematical
programming solvers of Gurobi Optimization (gurobi.com). For an analysis of
alternative stabilizing functions and performance evaluation on large-scale multi-
depot vehicle scheduling problems and simultaneous vehicle and crew scheduling
problems, see Ben Amor et al. (2009). Comparisons are also presented for five
applications in Briant et al. (2008): cutting stock (which includes bin packing),
vertex coloring, capacitated vehicle routing, multi-item lot sizing, and traveling
salesperson.

• Over-stabilization
Gschwind and Irnich (2016) use dual inequalities that are not necessarily (deep)
DOIs (see Note 6.15). Their point is that almost any dual guess helps. After a
recovery procedure on the primal variables, if any y-variable remains positive, the
corresponding dual-inequality is removed from the RMPstab and another stabilized
iteration occurs. Otherwise, the current solution λλλ

⋆
stab is optimal for the MP.

• Dual variable smoothing
If we want to avoid large jumps in dual variable values from one iteration to the
next, we may dampen the oscillation effect by shortening the step length. More
precisely, at iteration t of the column generation algorithm, the dual vector π̂ππ t

used in the ISP instead of πππ t retrieved from the solution of the RMPt is computed
using previous or even all the previous dual vectors. In particular, Wentges (1997)
proposes the smoothing rule

π̂ππ
t = απ̂ππ +(1−α)πππ t = π̂ππ +(1−α)(πππ t − π̂ππ), t ≥ 1, (6.82)

where α ∈ [0,1) and π̂ππ is the current stability center: this amounts to taking a step
size 1−α away from π̂ππ in the direction of πππ t . Neame (1999) rather uses

π̂ππ
t = απ̂ππ

t−1 +(1−α)πππ t , t ≥ 1, (6.83)

that weighs in the previous dual values, see Pessoa et al. (2013). Solving the ISP
may produce columns that are already present in the RMPt , hence introducing
a kind of noise in the column generation algorithm. In practice, this is easily

https://gurobi.com
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manageable. However, optimizing c̄(π̂ππ t) might not yield a negative reduced cost
column, even if one exists for πππ t . This is called a mis-price. In that case, we can
confirm convergence to optimality by verifying that c̄(πππ t) is also equal to zero.
Pessoa et al. (2018) suggest a parameter-free dual variable stabilization scheme
that combines subgradient ideas with dual variable smoothing.

• Interior-point algorithms
A way to get dual values that are not associated with primal degenerate basic
solutions is to use the analytic center cutting plane method (ACCPM) initiated
by Goffin and Vial (1990)–not to be confused with Anaesthesia Critical Care
& Pain Medicine in a Google search. Goffin et al. (1992), Goffin et al. (1993),
and Goffin and Vial (2002) make additional theoretical developments. At every
iteration of the column generation algorithm, the method computes the analytic
center (or an approximation of it) of the polyhedron defined by a lower bound
constraint on the value of the objective function and the set of dual constraints
(see the solution of Exercise 3.5 for dual formulations of the MP with a single
subproblem and a block-diagonal structure). This polyhedron is called the local-
ization set. Optimality cuts are derived from extreme point solutions of the ISP;
feasibility cuts correspond to extreme rays (see Note 6.3). Dual boxes can also
be added to restrain the dual domain. Note that a finite lower bound is obtained
in (6.18) only when all pricing problems produce extreme point solutions for a
given dual vector. It also means that they all have to be solved. For more, see
Gondzio et al. (1996), the brief tutorial of Péton and Vial (2001), and the website
www.maths.ed.ac.uk/∼gondzio/software/accpm.

Another way to achieve the centralization of the dual values is to generate several
extreme points of the dual polyhedron and compute a convex combination of
these (Rousseau et al., 2007). Alternatively, we can directly solve the RMP with
an interior-point algorithm: by relaxing the optimality tolerance, it can be solved
rather quickly, see Gondzio et al. (2013); Munari and Gondzio (2013). Let us
quote the beginning of Gondzio et al. (2016)’s abstract:

The primal-dual column generation method (PDCGM) is a general-purpose column gen-
eration technique that relies on the primal-dual interior point method to solve the re-
stricted master problems. The use of this interior point method variant allows to obtain
suboptimal and well-centered dual solutions which naturally stabilizes the column gen-
eration process.

• Dynamic separation of aggregated rows
To conclude, let us mention a recent stream of research. Costa et al. (2022) pro-
pose a new stabilization framework which relies on the dynamic generation of
aggregated rows from the MP. Huge computation time reductions are observed
with respect to a standard column generation algorithm on three applications,
namely, the vehicle routing problem with time windows, the bin packing problem
with conflicts, and the multi-person pose estimation problem.

https://www.maths.ed.ac.uk/~gondzio/software/accpm
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Learning more from the dual point of view

When writing this book we were tempted several times to forward reference to this
chapter. This was the case for statements that acquire a different quality or can be
better motivated when viewed through the dual lens. We encourage the reader to go
back through the chapters with the new knowledge in mind. We close this chapter
with three more topics that allude to where the dual point of view can lead us.

Initialization

Even in the initialization phase, we have good reasons to use the Lagrangian relax-
ation to create a subset of initial columns. Looking back at Figure 6.14, we can use
it to collect (b−ap) vectors, ∀p ∈ P′, and reuse these to optimize the RMP.

• In the initial phase, the subgradient algorithm for solving the LDP (6.15) does
not suffer from degeneracy difficulties encountered in the standard column gen-
eration. Moreover, solving the Lagrangian subproblem ISP may be on average
faster than solving it in a Dantzig-Wolfe reformulation. This is the case for
some VRPTW instances, where initializing πππb to 0 and slowly increasing its
values in the subgradient algorithm keeps the adjusted costs at positive values
and prevents the presence of cycles within the generated paths as opposed to
the big-M initial values in the column generation algorithm which favors these
cycles, hence largely increasing the number of labels in dynamic programming
algorithms (Kohl, 1995). (This was indeed the first incentive to start the research
at the GERAD center on controlling the values of the dual variables.)

• In the final phase, construct a relevant dual box-constrained or stabilized master
problem, and proceed to find both primal and dual solutions to the MP (6.3).

Dual estimates

In very special cases like Illustration 6.9 on the cutting stock problem, we may have
perfect dual information available, but this is unlikely in general. Next best, sta-
bilized column generation makes successively improving guesses of trustworthy
dual values. Regardless of which column generation variant we use, starting with
good dual information helps generating good columns early, see Illustrations 6.10
and 6.11. It is therefore natural to ask for dual heuristics that produce good dual
estimates.

The literature here is clearly insufficient. One option is to solve the linear re-
laxation of the ILP, or that of an approximation as seen for the MDVSP in Illus-
tration 6.12. However, problem specific methods are probably more effective. Here
is a suggestion for vehicle routing problems, given a feasible integer solution. An
estimate of πi for customer i in a set partitioning MP formulation is calculated by re-
moving that customer from the set of routes and then calculating the savings of such
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a removal. A complementary estimate considers visiting this customer once more,
this time computing how much it costs to insert it in an existing route, if possible,
and otherwise the price of a new vehicle. These two estimates provide a dual box.

Finally, we should be aware of dual estimates that come as a side-effect. For
example, when we have artificial or slack and surplus variables in the MP, their
cost coefficients induce bounds on dual variables and should thus be chosen wisely,
see (6.61)–(6.63). If applicable in the respective context, the penalty of an artificial
variable should approximate the dual value in the corresponding primal constraint
(as in the MDVSP example before). We can turn this knowledge into an advantage
by replacing the usually large big-M penalties by better estimates. In any case, a
smaller penalty for artificial variables usually tighter constrains the dual space.

Anticipation

The dual point of view brings to light alternative algorithms to compute dual solu-
tions to the MP. But this co-existence of algorithms is not the end; actually, as we
may see different dual values from different methods, a combination of approaches
seems natural. Such a hybrid idea may be useful in a Dantzig-Wolfe reformulation
when the RMP is difficult or time consuming to solve relatively to the ISP. One can
experiment with obtaining a new dual solution from a few iterations of the subgra-
dient algorithm instead of re-optimizing a degenerate RMP. When we have several
pricing problems, we may modify the dual values slightly in between calling two
different pricing problems, so as to increase the chance that more diverse columns
are generated.

Consider for example a vehicle routing problem with 6 customers and assume
that path p found by the ISP visits customers 1, 4, and 5. In a subgradient step with
direction

b−ap =


1
1
1
1
1
1

−


1
0
0
1
1
0

=


0
1
1
0
0
1

,

we modify the incentives (dual values) to visit customers in the next iteration
by (6.48). The new dual values are unchanged for customers 1, 4, and 5 whereas
they are increased for customers 2, 3, and 6. In a Dantzig-Wolfe reformulation, it
means that we can anticipate without solving the MP which customers would be
favored in the next pricing iteration. This can be simulated in the ISP by simply
removing from the network customers 1, 4, and 5 and reusing the same dual values.

More on such a complementary column generation strategy for set partitioning
formulations can be found in Ghoniem and Sherali (2009).
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6.5 Examples

In Examples 6.1 (Generalized assignment problem), 6.2 (Capacitated p-median
problem), and 6.3 (Various Lagrangian subproblems), we convince ourselves that
decomposition choices have the same theoretical foundations in a Lagrangian relax-
ation and in a Dantzig-Wolfe reformulation.

In Examples 6.4 (Symmetric traveling salesperson problem) and 6.5 (Balancing
printed circuit board assembly line systems) we illustrate that, in some applications,
integer solutions can be recovered rather easily from the linear relaxation such that
we may be quite near integer optimality without the need for a master problem.

Finally, Example 6.6 (Hybrid algorithm for a 2-dimensional problem) presents a
hybrid algorithm that combines Lagrangian relaxation information with a Dantzig-
Wolfe master problem.

Example 6.1 Generalized assignment problem

� A classical example where we compare the impact of two groupings of
the constraints of the compact formulation.

Recall that the generalized assignment problem (GAP) seeks the assignment at min-
imum cost of n tasks to a set K of machines such that each task is assigned exactly
once, subject to capacity restrictions on the machines. The compact integer linear
programming formulation seen in Example 4.5 is

z⋆ILP = min ∑
k∈K

n

∑
i=1

ck
i xk

i

s.t. ∑
k∈K

xk
i = 1 ∀i ∈ {1, . . . ,n}

n

∑
i=1

bk
i xk

i ≤ bk ∀k ∈ K

xk
i ∈ {0,1} ∀k ∈ K, i ∈ {1, . . . ,n},

(6.84)

where ck
i is the cost of assigning task i to machine k ∈ K, bk

i is the capacity used
when task i is assigned to machine k, and bk is the capacity of machine k. The
binary variable xk

i takes value 1 if and only if task i is assigned to machine k. Let
us examine a Lagrangian relaxation of either the semi-assignment constraints or the
capacity restrictions on the machines. Feel free to compare these with both Dantzig-
Wolfe reformulations we have previously derived.

Relaxation of the semi-assignment constraints

Consider now the option where the n semi-assignment constraints are relaxed in
the objective function with the vector of Lagrangian multipliers πππ , where πi ∈ R,
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∀i ∈ {1, . . . ,n}. The new objective function writes as

∑
k∈K

n

∑
i=1

ck
i xk

i +
n

∑
i=1

πi(1− ∑
k∈K

xk
i ) =

n

∑
i=1

πi + ∑
k∈K

n

∑
i=1

(ck
i −πi)xk

i .

The Lagrangian subproblem becomes

LR(πππ) =
n

∑
i=1

πi + ∑
k∈K

min
n

∑
i=1

(ck
i −πi)xk

i

s.t.
n

∑
i=1

bk
i xk

i ≤ bk ∀k ∈ K

xk
i ∈ {0,1} ∀k ∈ K, i ∈ {1, . . . ,n}.

(6.85)

It has a block-diagonal structure separable per machine k ∈ K, where the kth

optimization problem turns out to be a binary knapsack problem. Figure 6.22 depicts
a network representation of the information we need for such a pricing problem,
namely adjusted costs and capacity consumption with respect to machine k. This
formulation does not possess the integrality property and the best lower bound can
be better than that of the linear relaxation of (6.84), that is, z⋆LP ≤ z⋆LDP ≤ z⋆ILP.

1

2
...

i

...

n

k
n

∑
i=1

bk
i xk

i ≤ bk

(ck
i −πi,bk

i )

Fig. 6.22: Lagrangian relaxation of the semi-assignment constraints.

Relaxation of the capacity restrictions on the machines

Let ωωω be a |K|-dimensional vector of Lagrangian multipliers associated with the
relaxed capacity constraints on the machines, where ωk ≤ 0, ∀k ∈ K. The new ob-
jective function writes as

∑
k∈K

n

∑
i=1

ck
i xk

i + ∑
k∈K

ω
k(bk−

n

∑
i=1

bk
i xk

i ) = ∑
k∈K

ω
kbk +

n

∑
i=1

∑
k∈K

(ck
i −ω

kbk
i )x

k
i . (6.86)
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Reversing the summation order, the Lagrangian subproblem derived from (6.84)
becomes

LR(ωωω) = ∑
k∈K

ω
kbk +

n

∑
i=1

min ∑
k∈K

(ck
i −ω

kbk
i )x

k
i

s.t. ∑
k∈K

xk
i = 1 ∀i ∈ {1, . . . ,n}

xk
i ∈ {0,1} ∀i ∈ {1, . . . ,n}, k ∈ K.

(6.87)

The Lagrangian subproblem (6.87) is easily solvable by hand as it is separable per
item i. Once again, we depict the required information for the pricing problem in
Figure 6.23 using a network representation. For each item, select machine k ∈ K
with the least assignment cost, without considering the capacity of the machines,
i.e., xk

i = 1 for the selected machine k:

LR(ωωω) = ∑
k∈K

ω
kbk +

n

∑
i=1

min
k∈K

(ck
i −ω

kbk
i ). (6.88)

The formulation of the ISP (6.87) possesses the integrality property such that the
best lower bound is equal to that of the linear relaxation of (6.84), that is, z⋆LP =
z⋆LDP ≤ z⋆ILP.

i∑
k∈K

xk
i = 1

1

2

...

k
...
|K|

ck
i −ω kbk

i

Fig. 6.23: Lagrangian relaxation of the capacity restrictions on the machines.

Example 6.2 Capacitated p-median problem

� Another classic problem for which we present both the Lagrangian and
Dantzig-Wolfe approaches.

The p-median problem consists in partitioning a set of nodes N = {1, . . . ,n} into p
clusters and choosing, amongst a predefined subset K ⊆ N, a median node in each
one while minimizing the sum of the distances between each node and the median
of its cluster (Figure 6.24). If the medians provide a service and each node repre-
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senting a customer requires that service, we introduce capacity constraints, that is,
the total demand of a cluster must not exceed the capacity of its median node. This
yields the capacitated p-median problem (CpMP), an important topic within distri-
bution logistics and supply chain applications. As a generalization of the p-median
problem, the CpMP is NP-hard (Kariv and Hakimi, 1979).

Fig. 6.24: Partition of 32 nodes into 6 clusters.

The presentation of the Lagrangian relaxation and Dantzig-Wolfe reformulation is
inspired by Ceselli and Righini (2005). The notation is

N : set of customers to be served; di, integer demand of customer i ∈ N;
K ⊆ N : set of potential medians; Dk, integer capacity of median k ∈ K;

yk, binary variable taking value 1 if median k is selected, 0 otherwise;
ck

i ≥ 0 : cost for customer i when served from median k, with ck
k = 0,∀k;

xk
i , binary variable taking value 1 if i is served from k, 0 otherwise.

z⋆ILP = min ∑
k∈K

∑
i∈N

ck
i xk

i (6.89a)

s.t. ∑
k∈K

xk
i = 1 ∀i ∈ N (6.89b)

∑
k∈K

yk = p (6.89c)

∑
i∈N

dixk
i − Dkyk ≤ 0 ∀k ∈ K (6.89d)

xk
i ∈ {0,1} ∀k ∈ K, i ∈ N (6.89e)

yk ∈ {0,1} ∀k ∈ K. (6.89f)

The objective function (6.89a) minimizes the sum of the assignment costs. Partition-
ing of the customers into p clusters appears in (6.89b)–(6.89c). The set of constraints
(6.89d) imposes that the capacity of every selected median is not exceeded and also
forbids the assignment of customers to unselected medians.
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Lagrangian relaxation

To perform a Lagrangian relaxation of the ILP, we divide its constraints into the
linking ones (A) and the structured ones (Dk, ∀k ∈ K). Let xk = [xk

i ]i∈N be the
assignment vector for median k. The grouping we use is therefore

A=

{{[
xk

yk

]
∈ {0,1}n+1

}
k∈K

∣∣∣∣ ∑
k∈K

xk
i = 1,∀i ∈ N; ∑

k∈K
yk = p

}
(6.90a)

Dk =

{[
xk

yk

]
∈ {0,1}n+1

∣∣∣∣ ∑
i∈N

dixk
i ≤ Dkyk

}
, ∀k ∈ K. (6.90b)

Relaxing the constraints in A with multipliers πππ = [πi ∈ R]i∈N for (6.89b) and
γ ∈ R for (6.89c), the Lagrangian subproblem is separable per index k:

LR(πππ,γ) = min ∑
k∈K

∑
i∈N

ck
i xk

i + ∑
i∈N

πi(1− ∑
k∈K

xk
i )+ γ(p− ∑

k∈K
yk)

s.t.
[

xk

yk

]
∈Dk, ∀k ∈ K

= ∑
i∈N

πi + γ p+ ∑
k∈K

min[
xk

yk

]
∈Dk

∑
i∈N

(ck
i −πi)xk

i − γyk.

(6.91)

The ISPk over Dk is a binary knapsack problem for yk = 1, otherwise xk = 0. As
such, it does not possess the integrality property and z⋆LP ≤ z⋆LDP ≤ z⋆ILP, with strict
inequalities in practice.

Dantzig-Wolfe reformulation

The same lower bound can be obtained via a Dantzig-Wolfe reformulation, that is,

z⋆MP = z⋆LDP. Let Xk =

{[
xk

p
yk

p

]}
p∈Pk

denote the set of extreme points of conv(Dk),

a polytope. Adapting formulation (4.42) with ck
p = ∑i∈N ck

i xk
ip, ∀k ∈ K, p ∈ Pk, the

IMP writes as

z⋆IMP = min ∑
k∈K

∑
p∈Pk

ck
pλ

k
p (6.92a)

s.t. ∑
k∈K

∑
p∈Pk

xk
pλ

k
p = 1 [πππ] (6.92b)

∑
k∈K

∑
p∈Pk

yk
pλ

k
p = p [γ] (6.92c)
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∑
p∈Pk

λ
k
p = 1 [πk

0 ] ∀k ∈ K (6.92d)

λ
k
p ≥ 0 ∀k ∈ K, p ∈ Pk (6.92e)

∑
p∈Pk

[
xk

p
yk

p

]
λ

k
p =

[
xk

yk

]
∈ {0,1}n+1 ∀k ∈ K. (6.92f)

For all k ∈ K, the following pricing problem c̄k(πππ,γ,πk
0) is obviously equivalent to

min[xk

yk

]
∈Dk ∑i∈N(ck

i −πi)xk
i − γyk in (6.91), that is, adapted from (4.45),

c̄k(πππ,γ,πk
0) =−π

k
0 + min[

xk

yk

]
∈Dk

∑
i∈N

(ck
i −πi)xk

i − γyk. (6.93)

Finally, let us mention that all the equations of the IMP (6.92) can be transformed
into inequalities: the partitioning constraints become covering ones (≥ 1) given the
assumed non-negative costs; because of the existence of the extreme point

[
0
1

]
for ev-

ery k, the associated λ -variables can be seen as slack variables and hence discarded,
resulting in ≤ p in (6.92c) and ≤ 1 in (6.92d). This implies restricted dual values in
both Lagrangian and Dantzig-Wolfe approaches: πππ ≥ 0, γ ≤ 0, and πk

0 ≤ 0, ∀k ∈ K.

Example 6.3 Various Lagrangian subproblems

� On the easiness of formulating the Lagrangian subproblem.

Vehicle routing problem with time windows

Consider the compact formulation (5.1) of the VRPTW, for which is given a set of
|K| identical vehicles. As in Kohl and Madsen (1997), let us relax with multipliers
πππb ∈R|C| the constraints (5.1b) ensuring that each customer is visited exactly once,
that is, ∑k∈K ∑ j:(i, j)∈A xk

i j = 1, ∀i ∈C. The Lagrangian subproblem then reads as

LR(πππb) = min ∑
k∈K

∑
(i, j)∈A

ci jxk
i j +∑

i∈C
πi(1− ∑

k∈K
∑

j:(i, j)∈A
xk

i j)

s.t. xk ∈Dk, ∀k ∈ K,

(6.94)

where Dk denotes the set of path, capacity, and time constraints (5.1c)–(5.1g) asso-
ciated with vehicle k. Because all domains are identical, we can use a single one,
say D (5.3), and rearrange the terms:

LR(πππb) = ∑
i∈C

πi + |K|

(
min
x∈D ∑

(i, j)∈A
ci jxi j−∑

i∈C
∑

j:(i, j)∈A
πixi j.

)
(6.95)
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Because ∑ j:(o, j)∈A xo j = 1 is ensured by design of the od-path in D, set C can be
extended to C∪{o} with dual value πo = 0. The Lagrangian subproblem becomes

LR(πππb) = ∑
i∈C

πi + |K|

(
min
x∈D ∑

(i, j)∈A
(ci j−πi)xi j

)
. (6.96)

In their implementation, Kohl and Madsen (1997) solve the shortest path problem
with time windows and a capacity constraint (SPPTWC), a relaxation of the elemen-
tary version. They find optimal Lagrangian multipliers using a bundle method (see
various references on p. 399).

Cutting stock problem

We first consider the formulation (4.112) for the CSP which uses indexed commodi-
ties in the set K, one per roll:

z⋆ILPK
= min ∑

k∈K
xk

0

s.t. ∑
k∈K

xk
i ≥ bi ∀i ∈ {1, . . . ,m}[

xk
0

xk

]
∈DK ∀k ∈ K,

(6.97)

where

DK =

{[
x0
x

]
∈ {0,1}×Zm

+

∣∣∣∣ m

∑
i=1

wixi ≤Wx0

}
. (6.98)

Let us relax with multipliers πππb ∈Rm
+ the demand constraints ∑k∈K xk ≥ b. Simi-

larly to what we have seen above for the VRPTW in presence of |K| identical blocks,
the Lagrangian subproblem reads as

LR(πππb) = min ∑
k∈K

xk
0 +

m

∑
i=1

πi(bi− ∑
k∈K

xk
i )

s.t.
[

xk
0

xk

]
∈DK , ∀k ∈ K,

=
m

∑
i=1

πibi + |K|

(
min

x∈DK
x0−

m

∑
i=1

πixi

)
.

(6.99)

For x0 = 0, all x-variables take value 0. Otherwise, LR(πππb) is an integer knapsack
problem that writes as

LR(πππb)|x0=1 =
m

∑
i=1

πibi + |K|

(
1− max

∑
m
i=1 wixi ≤W

m

∑
i=1

πixi

)
. (6.100)
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This Lagrangian subproblem does not possess the integrality property and the best
lower bound is greater-than-or-equal to the optimal value of the linear relaxation of
(6.97), that is, maxπππb LR(πππb) = z⋆LDPK

≥ z⋆LPK
.

We next consider the network-based formulation (4.120):

z⋆ILPNF
= min xdo (6.101a)

s.t. ∑
ℓ:(iℓ,iℓ+wi )∈Ado

xiℓ,iℓ+wi ≥ bi ∀i ∈ {1, . . . ,m} (6.101b)

∑
j:(i, j)∈Ado

xi j− ∑
j:( j,i)∈Ado

x ji = 0 ∀i ∈V (6.101c)

xi j ∈ Z+ ∀(i, j) ∈ Ado. (6.101d)

Relaxing the demand constraints (6.101b) with non-negative multipliers πππb, the La-
grangian subproblem defined on the single block DNF = {x ∈ Z|Ado|

+ | (6.101c)}
becomes

LR(πππb) = min
x∈DNF

xdo +
m

∑
i=1

πi(bi− ∑
ℓ:(iℓ,iℓ+wi )∈Ado

xiℓ,iℓ+wi )

=
m

∑
i=1

πibi + min
x∈DNF

xdo−
m

∑
i=1

∑
ℓ:(iℓ,iℓ+wi )∈Ado

πixiℓ,iℓ+wi .

(6.102)

This Lagrangian subproblem is defined on a polyhedral cone whose extreme rays
can a priori be scaled to one unit (xdo = 1): it then becomes an easy shortest path
problem on an acyclic network (illustrated in Figure 4.27). The best lower bound
is equal to the optimal objective value of the linear relaxation of (6.101), that is,
z⋆LDPNF

= z⋆LPNF
.

As seen in Example 4.2 Integrality property in the cutting stock problem (see Fig-
ure 4.28), both lower bounds are equal (z⋆LDPK

= z⋆LDPNF
) but obtained in a different

way.

Edge coloring problem

We consider two compact formulations for which we derive the Lagrangian sub-
problems. From Examples 2.3 and 4.10, we recall the description and notation used.
The ECP is defined on an undirected graph G = (N,E), where N denotes the set
of nodes and E the set of edges. We want to color the edges in such a way that no
incident edges have the same color. Let δ ({i})⊆ E be the subset of edges incident
to i ∈ N, and E(S) ⊆ E for S ⊆ N the edges with both endpoints in S. We say that
S⊆ N is an odd set if |S| ≥ 3 and odd.

First compact. Vizing’s theorem states that the edges of any graph with maximum
degree ∆ can be colored with at most ∆ + 1 colors (Vizing, 1964). The compact
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formulation (4.174) with κ = ∆ +1 blocks is given by

z⋆ILP = min
κ

∑
k=1

xk
0

s.t.
κ

∑
k=1

xk
e ≥ 1 ∀e ∈ E

∑
e∈δ ({i})

xk
e ≤ xk

0 ∀k ∈ {1, . . . ,κ}, i ∈ N

xk
0 ∈ {0,1} ∀k ∈ {1, . . . ,κ}

xk
e ∈ {0,1} ∀k ∈ {1, . . . ,κ}, e ∈ E.

(6.103)

Let xk = [xk
e]e∈E , ∀k ∈ {1, . . . ,κ}. Relaxing in the objective function the |E| edge-

covering constraints with non-negative multipliers πππ = [πe]e∈E , we obtain

LR(πππ) = min
κ

∑
k=1

xk
0+ ∑

e∈E
πe(1−

κ

∑
k=1

xk
e)

s.t.
[

xk
0

xk

]
∈D, ∀k ∈ {1, . . . ,κ},

(6.104)

where D=

{[
x0
x

]
∈ {0,1}|E|+1

∣∣∣∣ ∑
e∈δ ({i})

xe ≤ x0, ∀i ∈ N

}
as in (4.176). Rearranging

the terms and noting the κ identical blocks, we get the Lagrangian subproblem

LR(πππ) = ∑
e∈E

πe +κ

 min[
x0
x

]
∈D

x0−∑
e∈E

πexe

 . (6.105)

The best lower bound z⋆LDP is either equal to ∆ or greater than ∆ . In the latter case,
we can easily find a set of ∆ + 1 colors; in the former, one way to determine the
number of colors (and matchings) is to solve the set covering formulation (2.35).

Second compact. We here use the linear description (4.178) of the matching poly-
tope (Edmonds, 1965) and recall the ILP (4.180):

z⋆ILP = min x0 (6.106a)
s.t. xe ≥ 1 ∀e ∈ E (6.106b)

∑
e∈δ ({i})

xe ≤ x0 ∀i ∈ N (6.106c)

∑
e∈E(S)

xe ≤
1
2
(|S|−1)x0 ∀S⊆ N : |S| ≥ 3, odd (6.106d)

xe ≤ x0 ∀e ∈ E (6.106e)
x0, xe ∈ Z+ ∀e ∈ E, (6.106f)
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where x0 is a non-negative integer variable. Relaxing again the |E| edge-covering
constraints with non-negative multipliers πππ = [πe]e∈E , we obtain

LR(πππ) = min[
x0
x

]
∈D

x0 + ∑
e∈E

πe(1− xe) = ∑
e∈E

πe + min[
x0
x

]
∈D

x0−∑
e∈E

πexe, (6.107)

where

D=

{[
x0
x

]
∈ Z|E|+1

+

∣∣∣∣ (6.106c)–(6.106e)
}
. (6.108)

In that case, conv(D) is a polyhedral cone with the integrality property. For any
πππ ≥ 0, (x0 = 0,x= 0) is feasible for the minimization problem over D with objective
value zero; the minimum is therefore less-than-or-equal to zero. If negative, it comes
from an optimal extreme ray with objective value−∞ which also transfers to LR(πππ).
Otherwise we reach the optimal lower bound z⋆LDP = ∑e∈E π⋆

e , the one given by the
linear relaxation of the set covering model (4.180). This might be quite difficult
to obtain with the subgradient algorithm that is stopped after a given number of
iterations.

Can we find finite lower bounds as in (6.105)? The answer is positive but requires
two steps. In the first, we apply a Dantzig-Wolfe reformulation using the grouping

D (6.108) and A =

{[
x0
x

]
∈ Z|E|+1

+ | xe ≥ 1, ∀e ∈ E
}

. The IMP is the set covering

model (2.35), where a column comes from an extreme ray solution of conv(D)
scaled to one unit, i.e., with x0 = 1. At that point, no finite lower bound is avail-
able. In the second step, we turn ourselves to the column generation algorithm and
the way to derive a lower bound on z⋆MP. Proposition 2.1 used with a single block
together with the condition ∑r∈R λr ≤ κ on the number of colors results in

∑
e∈E

πe +κ

 min[
x0 = 1

x

]
∈D

1−∑
e∈E

πexe

 ≤ z⋆MP, (6.109)

with x0 a priori fixed to 1 in D (6.108). For any non-negative πππ , this is the lower
bound (6.105) derived from the first compact formulation.

Example 6.4 Symmetric traveling salesperson problem

� Lagrangian relaxation and Dantzig-Wolfe reformulation in hiding.

The traveling salesperson problem (TSP) is a cornerstone combinatorial problem
in which one must visit in a tour a set N = {1, . . . ,n} of nodes (or cities) exactly
once at minimal cost. In the asymmetric variant (ATSP), we are given a directed
network G = (N,A), where A = {(i, j) | i ̸= j ∈ N} denotes the set of arcs. In the
symmetric variant (STSP), we are given an undirected network G = (N,E), where
E = {(i, j) | i < j ∈ N} denotes the set of edges. The cost ci j is defined either on A
or E as needed.
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Formulations

We consider first the Dantzig-Fulkerson-Johnson formulation (Dantzig et al., 1954)
for the asymmetric case and refer the reader to Öncan et al. (2009) for an analysis
and comparison of 24 different models. Let xi j be a binary variable taking value 1 if
arc (i, j) ∈ A is taken in the tour and 0 otherwise. Assuming n≥ 3, we have

z⋆ATSP = min ∑
(i, j)∈A

ci jxi j (6.110a)

s.t. ∑
j:(k, j)∈A

xk j = 1 ∀k ∈ N (6.110b)

∑
i:(i,k)∈A

xik = 1 ∀k ∈ N (6.110c)

xi j ∈ {0,1} ∀(i, j) ∈ A (6.110d)

∑
(i, j)∈A:i, j∈S

xi j ≤ |S|−1 ∀S⊂ N : |S| ≥ 2. (6.110e)

The assignment constraints (6.110b)–(6.110c) ensure that each node k ∈N is visited
exactly once while (6.110e) are the O(2n) subtour elimination constraints (SEC).

In the symmetric variant, the cost between two nodes is the same in each direc-
tion. Let the degree of a node be the number of edges incident to it and xi j a binary
variable taking value 1 if edge (i, j) ∈ E is taken, 0 otherwise. Assuming n≥ 4, the
formulation includes the two-degree constraints (6.111b) in an undirected tour as
well as the SEC (6.111d):

z⋆STSP = min ∑
(i, j)∈E

ci jxi j (6.111a)

s.t. ∑
i:(i,k)∈E

xik + ∑
j:(k, j)∈E

xk j = 2 ∀k ∈ N (6.111b)

xi j ∈ {0,1} ∀(i, j) ∈ E (6.111c)

∑
(i, j)∈E:i, j∈S

xi j ≤ |S|−1 ∀S⊂ N : |S| ≥ 3. (6.111d)

Aside from dividing the number of variables by two, this formulation also dras-
tically reduces solution symmetry because it naturally imposes the n(n−1)/2 SEC
of cardinality 2, i.e., any undirected tour in (6.111) has two equivalent directed rep-
resentations in (6.110). Figure 6.25 illustrates this statement with a significantly
better lower bound (3800 vs. 3418) for the edge formulation while relaxing the SEC
in both (6.110) and (6.111). Observe also the number of subtours of cardinality 2
in the arc-flow formulation. An edge one is therefore to be preferred when dealing
with a symmetric TSP.

Note 6.23 (Redundant SEC.) Wolsey (1998) shows that the SEC on S̄ = N \ S are
redundant such that we can reduce (6.111d) by half as
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(a) Arc-flow: cost 3418, 105 subtours (b) Edge-flow: cost 3800, 25 subtours

Fig. 6.25: Lower bounds using arc-flow and edge-flow formulations without SEC
for the symmetric instance tsp225.

∑
(i, j)∈E:i, j∈S

xi j ≤ |S|−1 ∀S⊂ N : 3≤ |S| ≤ ⌊n/2⌋.

In any solution (fractional or integer), the sum of the two-degree constraints over
the elements of S, split by end point sets, writes as

2|S|= ∑
k∈S

(
∑

i:(i,k)∈E
xik + ∑

j:(k, j)∈E
xk j

)

= ∑
k∈S

 ∑
i∈S:(i,k)∈E

xik + ∑
i∈S̄:(i,k)∈E

xik + ∑
j∈S:(k, j)∈E

xk j + ∑
j∈S̄:(k, j)∈E

xk j

 .

(6.112)

Similarly, we have

2∑
(i, j)∈E:i, j∈S

xi j = ∑
k∈S

(
∑

i∈S:(i,k)∈E
xik + ∑

j∈S:(k, j)∈E
xk j

)
.

Taking the difference and interchanging the roles of S and S̄ in the split sum yields

2|S|−2∑
(i, j)∈E:i, j∈S

xi j = ∑
k∈S

 ∑
i∈S̄:(i,k)∈E

xik + ∑
j∈S̄:(k, j)∈E

xk j


= ∑

k∈S̄

(
∑

i∈S:(i,k)∈E
xik + ∑

j∈S:(k, j)∈E
xk j

)

= 2|S̄|−2∑
(i, j)∈E:i, j∈S̄

xi j.

(6.113)
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Since ∑(i, j)∈E:i, j∈S xi j ≤ |S|−1 ⇔ |S|−∑(i, j)∈E:i, j∈S xi j ≥ 1, we indeed have

|S|− ∑
(i, j)∈E:i, j∈S

xi j ≥ 1 ⇔ |S̄|− ∑
(i, j)∈E:i, j∈S̄

xi j ≥ 1.

While halving the number of constraints sounds impressive, remember that 2n−1

does not change the order of magnitude. The floor function intervenes if n is odd
in which case |S| = (n−1)/2 implies |S̄| = (n+1)/2. Note that the reduction also
applies to the ATSP.

With exponentially many SEC, formulation (6.111) is never solved heads on even
for medium-sized instances. Interestingly, we observe in practice that we only need
“few” of them to reach a strong lower bound on integer optimality but we typically
close the gap using a variety of alternative cut types, see Section 6.6 (Reference
Notes).

According to Applegate et al. (2003), branch-and-cut is the only exact method
tractable for instances larger than 100 vertices. At the time of writing, their imple-
mentation called Concorde is deserving its name since it is the fastest TSP solver
in existence (math.uwaterloo.ca/tsp/concorde). It has been used to obtain the op-
timal solutions to the full set of 110 TSPLIB instances, the largest having 85 900
cities.

Note 6.24 (BC and AD.) A historical record of the pioneering work of Dantzig
et al. (1954) can still be found online (math.uwaterloo.ca/tsp/methods/dfj). Inter-
estingly, we read there that the authors use a computer to solve a linear relaxation
and then manually identify violated cuts for integer solutions. The repercussions
of this groundbreaking idea extend nowadays far beyond the confines of the TSP.
Laporte (2006) reminds us of this era with the idioms Before Computers and After
Dantzig in A Short History of the Traveling Salesman Problem.

Held and Karp lower bounds

Picking up on the symmetric TSP solved by branch-and-cut using the formulation
with SEC (6.111), we take a look at Held and Karp (1970, 1971) which derive a
sharp lower bound on the optimum. The method exploits basic graph theory proper-
ties, so let us recall some definitions.

Given an undirected graph G = (N,E), a tree T is a subgraph of G in which
any two nodes are connected by exactly one path. T is connected and acyclic. It
becomes disconnected if any edge is removed whereas a (simple) cycle is formed if
any edge is added. If T has n nodes, then it contains n−1 edges. A spanning tree is
a tree covering all nodes of N. Given weighted edges, a minimum spanning tree is a
spanning tree with minimal cost.

A 1-tree is a slight variant of a spanning tree on G which allows a single cycle at a
given node of N, say η . Let Nη = N \{η} and Eη ⊂ E denote the set of edges where

http://math.uwaterloo.ca/tsp/concorde/
https://math.uwaterloo.ca/tsp/methods/dfj
http://neumann.hec.ca/chairedistributique/common/laporte-short.pdf
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neither endpoints are η . A 1-tree Tη is obtained by building a spanning tree (formed
of n− 2 edges) in the subgraph Gη = (Nη ,Eη) and then adjoining any two edges
incident to η . It therefore contains n edges of E. Given weighted edges, a minimum
1-tree is a 1-tree with minimal cost. Since any TSP tour is a 1-tree in which each
node has degree 2, the following proposition gives us access to an infinite amount
of lower bounds.

Proposition 6.15. (Held and Karp, 1970, §1) The cost of a minimum 1-tree is a
lower bound on the optimal objective value z⋆STSP of the TSP. This bound is tight if
such a minimum 1-tree is a tour, i.e., we have an optimal TSP tour.

Proof. For any πππ = [πk ∈R]k∈N , the transformation on edge cost Ci j = ci j−πi−π j,
∀(i, j) ∈ E, is invariant for the TSP because all tours have their cost modified by
−2∑k∈N πk. It does however potentially modify the minimum 1-tree we can extract
from G. With respect to the transformed costs, the value of an optimal tour is then
greater-than-or-equal to the cost of a minimum 1-tree, that is,

z⋆STSP−2 ∑
k∈N

πk ≥min
Tη

∑
(i, j)∈Tη

Ci j = min
Tη

∑
(i, j)∈Tη

ci j− ∑
k∈N

πkdkTη
, (6.114)

where Tη indexes the minimum 1-trees with respect to an arbitrary node say η ∈ N,
∑(i, j)∈Tη

Ci j is the transformed cost of Tη , and dkTη
is the degree of node k in said

1-tree. Reorganizing the terms, we have

min
Tη

∑
(i, j)∈Tη

ci j + ∑
k∈N

πk(2−dkTη
) ≤ z⋆STSP. (6.115)

If Tη is a tour, then dkTη
= 2, ∀k ∈ N, such that the bound is tight. ⊓⊔

Let the Held-and-Karp function be defined as

HK : R|N| 7→ R, πππ 7→min
Tη

∑
(i, j)∈Tη

ci j + ∑
k∈N

πk(2−dkTη
). (6.116)

Compared to (6.14)–(6.15), the similarities with the Lagrangian function are strik-
ing. We want to maximize HK(πππ) whose every point is a lower bound on the optimal
objective value z⋆STSP, that is,

z⋆HK = max
πππ∈Rn

HK(πππ) = max
πππ∈Rn

min
Tη

∑
(i, j)∈Tη

ci j + ∑
k∈N

πk(2−dkTη
)

 . (6.117)

We show next that (6.117) can indeed be derived from a Lagrangian relaxation
applied to an ILP with an appropriate grouping of constraints. Moreover, the combi-
natorial subproblem we solve in πππ can be solved efficiently. There are indeed a lot of
algorithmic options nowadays to solve the minimum spanning tree problem (MSTP).
One of the very accessible ones is the Jarnı́k-Prim-Dijkstra algorithm developed
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concurrently by Jarnı́k (1930); Prim (1957); Dijkstra (1959). Kruskal (1956)’s al-
gorithm is another popular choice. Interestingly, Bader and Cong (2006) show that
the most ancient suggestion by Borůvka (1926) lends itself particularly well to par-
allelization. Their algorithm therefore easily solves the minimum spanning forest
problem that consists of several disjoint spanning trees.

Lagrangian lower bounds

Assuming symmetric cost, the following is an integer linear programming formula-
tion for the MSTP. Let it take place on subgraph Gη = (Nη ,Eη) for some arbitrary
node η ∈ N such that we have |Nη |= n−1:

min ∑
(i, j)∈Eη

ci jxi j

s.t. ∑
(i, j)∈Eη

xi j = n−2

∑
(i, j)∈Eη :i, j∈S

xi j ≤ |S|−1 ∀S⊂ Nη : |S| ≥ 3

xi j ∈ {0,1} ∀(i, j) ∈ Eη ,

(6.118)

which we can show possesses the integrality property (Edmonds, 1971), see also
Ahuja et al. (1993, §13.8 Minimum spanning trees and linear programming). We
can then derive a compact formulation for the symmetric TSP by encapsulating the
MSTP into tour solutions:

z⋆ILP = min ∑
(i, j)∈Eη

ci jxi j + ∑
i:(i,η)∈E

ciη xiη + ∑
j:(η , j)∈E

cη jxη j (6.119a)

s.t. ∑
i:(i,η)∈E

xiη + ∑
j:(η , j)∈E

xη j = 2 (6.119b)

∑
(i, j)∈Eη

xi j = n−2 (6.119c)

∑
(i, j)∈Eη :i, j∈S

xi j ≤ |S|−1 ∀S⊂ Nη : |S| ≥ 3 (6.119d)

xi j ∈ {0,1} ∀(i, j) ∈ E (6.119e)

∑
i:(i,k)∈E

xik + ∑
j:(k, j)∈E

xk j = 2 ∀k ∈ N. (6.119f)

In the above formulation, we have

• constraints (6.119c)–(6.119d) forcing the identification of a spanning tree in
subgraph Gη = (Nη ,Eη);

• constraint (6.119b) creating a 1-tree at node η out of the latter;
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• constraints (6.119f) imposing the 1-tree to have degree 2 on all nodes of N
(conveniently including redundant node η);

• the objective function (6.119a) ensuring that both the spanning tree and 1-tree
are minimal, hence a minimum cost traveling salesperson tour.

Note 6.25 (No missing SEC.) Formulations (6.111) and (6.119) are slightly different
but they are indeed equivalent with respect to integrality. That is, constraint (6.119c)
is redundant and the SEC (6.119d) over strict subsets of Nη are sufficient. Whether
or not they also reach the same objective values for their respective linear relaxations
is unclear. Finally, we cannot use the halving observation in Note 6.23 because
formulation (6.118) on the MSTP does not have the degree constraints. In fact, it
also does not work in (6.119) where the degree constraints and the SEC are not on
the same arc set.

By relaxing the degree constraints (6.119f) into the objective function with La-
grangian multipliers πππ = [πk]k∈N , where πη = 0, we get a pricing problem whose
domain

D= {x ∈ {0,1}|E| | (6.119b)–(6.119d)} (6.120)

is the set of 1-trees. We take notice that the subproblem domain features a block-
diagonal structure in Nη and η , one for identifying a spanning tree on subgrah Gη ,
the other for adding two edges incident to η . The Lagrangian subproblem reads as

LR(πππ) =min
x∈D ∑

(i, j)∈Eη

ci jxi j + ∑
i:(i,η)∈E

ciη xiη + ∑
j:(η , j)∈E

cη jxη j+∑
k∈N

πk(2− ∑
i:(i,k)∈E

xik− ∑
j:(k, j)∈E

xk j)

=2 ∑
k∈N

πk +min
x∈D ∑

(i, j)∈E
(ci j−πi−π j)xi j.

(6.121)

We see here that the adjusted costs in (i, j)∈ E are the same as those in the trans-
formation used in the proof of Proposition 6.15 such that Held and Karp’s function
is a Lagrangian relaxation, i.e., LR(πππ) = HK(πππ).

We are here reminded that the ISP (6.121) does not need to be solved by linear
programming as long as the outputs are extreme points of conv(D). We also take
note that the STSP belongs to the NP-complete class whereas the MSTP is solvable
in polynomial time. Because the Lagrangian subproblem in (6.121) possesses the
integrality property, the best lower bound z⋆LDP is equal to z⋆LP, the value of the linear
relaxation of the ILP (6.119).

We obtain an optimality certificate if, at any point, we find πππ for which the iden-
tified minimum 1-tree has degree 2. Otherwise, we terminate when the multiplier
sequence cannot be modified meaningfully, i.e., at any iteration t ≥ 1, we iterate by
πππ t+1 = πππ t +θt(b−at), θt being a step size applied to the degree vector

(b−at) = [(2−dk,t)]k∈N , (6.122)

where dk,t = ∑k:(i,k)∈E xik,t +∑k:(k, j)∈E xk j,t is the degree at node k in the current
1-tree solution.
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Figure 6.26 plots the solution process of this procedure which terminates with a
lower bound of LB = 3876.25 eventually as good as z⋆LDP = z⋆LP. Furthermore, the
closer (b−at) is to 0, the easier it is to patch up the corresponding 1-tree into a tour
by reconnecting the nodes according to, e.g., a depth-first sequence of the edges.
We can even further post-process that tour with heuristic neighborhood operators
like 2-opt, see Kindervater and Savelsbergh (1997). The objective value of such a
tour then gives us UB in (6.52). The ordinate also shows the optimum as well as
the SEC relaxations. Figure 6.27 compares the solution we get as upper bound to
an optimal one. The integrality gap is less than 1 % whereas the optimality gap is
around 5.7 %. The former gap supports the claim of a ‘sharp lower bound’, that is,
LB is actually not that far off from z⋆ILP which suggests that we expect (b−at) to flirt
with 0 as t increases. A reasonable explanation is that the pricing problem always
satisfies almost all SEC constraints.

0 100 200 300 400

z⋆ATSP(w/o SEC) = 3418

z⋆STSP(w/o SEC) = 3800

z⋆ILP = 3916

UB = 4111

LB = 3876.85≤ z⋆LDP = z⋆LP

Iteration

LR

Fig. 6.26: Held and Karp lower bounds for the symmetric instance tsp225.

(a) UB = 4111, LB = 3876.85 (b) z⋆ILP = 3916

Fig. 6.27: Integer solutions for the symmetric instance tsp225.
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Dantzig-Wolfe reformulation

Held and Karp (1970, §3) also suggest to solve the linear relaxation of a Dantzig-
Wolfe reformulation by “A column-generation technique”. They group the con-
straints in (6.119) as

A= {x ∈ {0,1}|E| | (6.119f)} (6.123a)

D= {x ∈ {0,1}|E| | (6.119b)–(6.119d)} (6.123b)

and we know that z⋆MP = z⋆LP by the integrality property of the ISP defined over the
1-tree domain D. Indeed, the authors describe in their linear program (2), p. 1141,
the alternative MP derived from

z⋆IMP = min ∑
p∈P

cpλp

s.t. ∑
p∈P

(ap−b)λp = 0 [πππb]

∑
p∈P

λp = 1 [µ]

λp ∈ {0,1} ∀p ∈ P,

(6.124)

where (ap−b) = [(dkp−2)]k∈N , and dkp = ∑k:(i,k)∈E xikp +∑k:(k, j)∈E xk jp is the de-
gree at node k in the extreme point xp ∈ conv(D), p ∈ P (see Figure 6.14). Because
many nodes have degree 2 in such a 1-tree solution, this results in low density for
the coefficient matrix.

This column-generation procedure was programmed for the IBM/360 using standard means
of avoiding error propagation: i.e., double-precision floating-point arithmetic, periodic basis
reinversion, and checks for zero. The program was able to solve most problems with n = 12
and some problems with 13 ≤ n ≤ 20. On larger problems, convergence was always too
slow to permit optimal solutions to be reached. This slow convergence is consistent with the
behavior of other column-generation techniques, which in practice yield good approximate
solutions, rather than strictly optimum ones [Gilmore and Gomory (1963)].

– Held and Karp (1970, p. 1146)

As in the Concorde implementation, various cuts in the x-variables can be
added as needed to the linear relaxation of (6.124), always keeping the ISP a min-
imum 1-tree problem. A huge and predictable drawback is degeneracy of the basic
solutions during the column generation process as the final integer solution is a sin-
gle column (an optimal 1-tree). There are many questions not yet answered as never
tested. Amongst these are:

• Can we benefit from a hybrid algorithm, for example, subgradient followed by
a linear programming algorithm?

• Is one of the stabilization techniques a viable approach?
• Would constraints aggregation help?
• Should the dual master rather be solved?
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Example 6.5 Balancing printed circuit board assembly line systems

� We here face a single block ISP formulation for which a feasible integer
solution for the ILP is easily derived. We examine both the Dantzig-
Wolfe and Lagrangian solution approaches.

Computerized machines are used to produce printed circuit boards (PCBs). We
present an integer linear model inspired by Lapierre et al. (2000) for such a pro-
duction on an assembly line made up of consecutive non-identical machines. This
ILP optimizes the total cycle time while considering different assembly time val-
ues if the components are located at different slot positions on the machines. The
following notation is used:

N : set of PCB types; pi, proportion of PCBs of type i ∈ N;
Ji, set of components needed by type i; J = ∪i∈NJi;

K : set of machines; Sk, set of slots on machine k ∈ K; S = ∪k∈KSk;

t js : time required to insert component j when located at slot s;

x js : binary variable taking value 1 if component j is assigned to slot s, 0 otherwise;

ti : assembly time for a PCB of type i, where

ti = max
k∈K

∑
j∈Ji

∑
s∈Sk

t jsx js, ∀i ∈ N. (6.125)

We assume that the total number of components |J| is equal to |S|, the total num-
ber of slots on the machines; this may require dummy variables. The ILP minimizing
the total cycle time to produce all PCB types writes as

z⋆ILP = min ∑
i∈N

piti (6.126a)

s.t. ti−∑
j∈Ji

∑
s∈Sk

t jsx js ≥ 0 ∀i ∈ N,k ∈ K. (6.126b)

∑
s∈S

x js = 1 ∀ j ∈ J (6.126c)

∑
j∈J

x js = 1 ∀s ∈ S (6.126d)

x js ∈ {0,1} ∀ j ∈ J,s ∈ S. (6.126e)

Every constraint (6.126b) computes the assembly time for a PCB of type i on ma-
chine k. These constraints are the linear version of (6.125) in a minimization con-
text. Constraints (6.126c) ensure that every component j is located on a slot s while
(6.126d) prevents such a slot from having more than one component.

Dantzig-Wolfe reformulation

Consider the grouping of the constraints
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A= {x ∈ {0,1}|J|×|S| | (6.126b)} (6.127a)

D= {x ∈ {0,1}|J|×|S| | (6.126c)–(6.126d)} (6.127b)

and observe that the time variables are not involved in these two sets, both being
defined on x ∈ {0,1}|J|×|S|. In fact, ti, ∀i ∈ N, appear as static variables in the re-
formulation. Let us express x as a convex combination of the extreme points of
conv(D).

The IMP becomes

z⋆IMP = min ∑
i∈N

piti (6.128a)

s.t. ti−∑
j∈Ji

∑
s∈Sk

t js(∑
p∈P

x js,pλp)≥ 0 [πk
i ] ∀i ∈ N,k ∈ K (6.128b)

∑
p∈P

λp = 1 [π0] (6.128c)

λp ≥ 0 ∀p ∈ P (6.128d)

∑
p∈P

x js,pλp = x js ∈ {0,1} ∀ j ∈ J,s ∈ S, (6.128e)

where the dual vector πππ = [πk
i ]i∈N,k∈K takes non-negative values whereas π0 ∈ R.

The pricing problem writes as

c̄(πππ,π0) =−π0 +min
x∈D ∑

i∈N
∑
k∈K

π
k
i (∑

j∈Ji

∑
s∈Sk

t jsx js). (6.129)

The set D contains the constraints of an assignment problem, the ISP (6.129) pos-
sesses the integrality property, and z⋆MP = z⋆LP. For any πππ ≥ 0 obtained from the
solution of the RMP, we compute a lower bound, indeed the Lagrangian dual bound
given by

LR(πππ) =min
x∈D ∑

i∈N
∑
k∈K

π
k
i (∑

j∈Ji

∑
s∈Sk

t jsx js)≤ z⋆ILP. (6.130)

An interesting observation about πππ comes from the time variables. Because ti is
obviously positive, its reduced cost is zero in every solution for the RMP, that is,

∑
k∈K

π
k
i = pi, ∀i ∈ N. (6.131)

Even more interesting, for any solution xp, p ∈ P, to (6.129), the time variables
are computed using (6.125) so as to satisfy a posteriori the time constraints (6.126b).
Incidentally, this provides a feasible solution for the ILP, hence an upper bound UB
at every iteration of the column generation algorithm.
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Lagrangian relaxation

Lapierre et al. (2000) rather propose the Lagrangian relaxation approach, combined
with the subgradient algorithm. Given πππ ≥ 0 for the relaxation of the time con-
straints (6.126b), the ISP reads as

LR(πππ) = min
x∈D ∑

i∈N
piti + ∑

i∈N
∑
k∈K

π
k
i (∑

j∈Ji

∑
s∈Sk

t jsx js− ti)

= min
x∈D ∑

i∈N
(pi− ∑

k∈K
π

k
i )ti + ∑

i∈N
∑
k∈K

π
k
i (∑

j∈Ji

∑
s∈Sk

t jsx js).
(6.132)

The variables ti, ∀i ∈ N, are not restricted in any way by the assignment constraints
in D and they are optimized independently of each other. If (pi−∑k∈K πk

i ) is neg-
ative, ti = ∞; if positive, ti = −∞. Consequently, we must have pi−∑k∈K πk

i = 0,
∀i ∈ N, in any optimal solution, as already found in (6.131) from solving the RMP.
Under this condition, all the time variables disappear from the Lagrangian subprob-
lem:

LR(πππ) = min
x∈D ∑

i∈N
∑
k∈K

π
k
i (∑

j∈Ji

∑
s∈Sk

t jsx js)

s.t. ∑
k∈K

π
k
i = pi ∀i ∈ N.

(6.133)

Hence, the lower bounds LR(πππ) computed from (6.129) and (6.133) are the same.
To complete the theoretical part, let us verify that the LDP is the dual of the MP, the
linear relaxation of the IMP (6.128).

z⋆LDP = max
πππ≥ 0

{
min
p∈P ∑

i∈N
∑
k∈K

π
k
i (∑

j∈Ji

∑
s∈Sk

t jsx js,p)

∣∣∣∣ ∑
k∈K

π
k
i = pi, ∀i ∈ N

}
= max

πππ≥ 0
π0

s.t. π0 ≤ ∑
i∈N

∑
k∈K

π
k
i (∑

j∈Ji

∑
s∈Sk

t jsx js,p) [λp ≥ 0] ∀p ∈ P

∑
k∈K

π
k
i = pi [ti ∈ R] ∀i ∈ N

= max
πππ≥ 0

π0

s.t. π0−∑
i∈N

∑
k∈K

π
k
i (∑

j∈Ji

∑
s∈Sk

t jsx js,p)≤ 0 [λp ≥ 0] ∀p ∈ P

∑
k∈K

π
k
i = pi [ti ∈ R] ∀i ∈ N .

(6.134)

Dualizing formulation (6.134), with λp≥ 0,∀p∈P, and ti ∈R,∀i∈N, we recognize
the objective function min∑i∈N piti, the convexity constraint ∑p∈P λp = 1 derived
from π0, and the optimality conditions on the reduced costs of the πk

i -variables, i.e.,
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∑
p∈P

(∑
j∈Ji

∑
s∈Sk

t jsx js,p)λp− ti)≤ 0, ∀i ∈ N,k ∈ K.

Some computational results

The experimentation is conducted with four types of PCBs (|N|= 4) involving more
than a hundred components and up to five machines (1≤ |K| ≤ 5). The manufacturer
provided detailed information on each component, e.g., its size and which machines
can handle it (Lapierre et al., 2000).

Vector πππ1 is initialized to πk
i,1 = pi/|K|, ∀i ∈ N, k ∈ K, which gives equal multipli-

ers to each machine, and the subgradient direction is computed as

−at =

[
∑
j∈Ji

∑
s∈Sk

t jsx js,t

]
i∈N,k∈K

at iteration t. The parameter εt in the step-size expression (6.52), that is,

θt = εt
UB−LR(πππ t)

∥at∥2 , t ≥ 1,

starts at 2 and is divided by 2 when the lower bound is not improved during five itera-
tions. The algorithm is stopped when the lower and upper bounds have not improved
for 15 iterations. In Exercise 6.14, the reader is asked to compute the π-values from
one iteration to the next while satisfying the normalizing constraints (6.131) and to
show that they always remain positive in this implementation.

The solution approach is first tested on a 3-machine assembly line and the results
appear in Figure 6.28. A cycle time solution of 58.46 hours is obtained at iteration 7
but the stopping criterion is only reached at iteration 30. The gap between the best
solution and the lower bound (57.26 hours) is only 2.10 %. The computation time
is 8.63 minutes on an IBM PC 286, a computer that can now only be found in a
museum. Current computers would only require a few seconds.

The authors also examined various configurations and allocation of the PCB
components to the machines. We present in Table 6.8 the results for an assembly
line with 3 to 5 machines, where obviously the cycle time decreases with the added
machines. They also report that “in the worst case, the machine is busy 97.18 % of
the time and, on average, the machines are busy more than 99 % of the time.”

Number of cycle time # Gap CPU time
machines (hours) iterations (%) (min)

3 58.46 30 2.10 8.63
4 44.74 24 2.01 6.70
5 36.04 16 2.49 4.62

Table 6.8: Best cycle time solutions for 3 to 5 machines.
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Fig. 6.28: Lower and upper bounds for a 3-machine assembly line.

A few comments

1. At optimality of the RMP, it is very likely that, for some combination of PCB-
type and machine indexes, the time constraint (6.128b) is not binding, that is,

∃i ∈ N,k ∈ K : ∑
j∈Ji

∑
s∈Sk

t js(∑
p∈P

x js,pλp)< ti, (6.135)

with the associated dual variable πk
i = 0. Such a zero-value for a Lagrangian

multiplier cannot occur in the implemented subgradient algorithm because they
always remain positive, see the solution of Exercise 6.14.

2. At some point in the iterative process, the πππ-vector should be re-initialized ac-
cording to the x, t-variable values giving the best upper bound.
For i ∈ N, let K=

i and K>
i denote the sets of machines with binding and non-

binding time constraints (6.128b), respectively. Then πk
i = 0, ∀k ∈ K>

i , and use
an equal distribution for the machines in binding ones, i.e., πk

i = pi
|K=

i |
, ∀k ∈ K=

i .

3. Subgradient iterations are here similar to solving the RMP with a single column,
determining the time values and an upper bound, but not retrieving the dual
values. It would be simpler to solve the RMP; its row-dimension is less-than-
or-equal to 4×5+1 and the column-dimension is the number of iterations.
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Example 6.6 Hybrid algorithm for a 2-dimensional problem

� A sequence of subgradient iterations followed by column generation.

This example finds a primal solution in the x-variables of the compact formulation
in addition to the dual values. It starts with a Lagrangian relaxation and ends with a
Dantzig-Wolfe reformulation. Figure 6.29 depicts the domain of the ILP formulated
in (6.136) with the signed dual variables within brackets for the LP:

z⋆ILP = min x1 + x2

s.t. −x1 + 4x2 ≤ 8 [σ1 ≤ 0]
3x1 + 4x2 ≥ 24 [σ2 ≥ 0]

x1 ≤ 10 [σ3 ≤ 0]
x2 ≥ 2 [σ4 ≥ 0]
x2 ≤ 6 [σ5 ≤ 0]

x1, x2 ∈ Z+.

(6.136)

Apart from the integrality requirements, this is the system (3.73) considered in
Example 3.1. The optimal solution to the ILP is (x⋆1,x

⋆
2) = (4,3) with z⋆ILP = z⋆LP = 7.

x1(0,0)
10

x2

zLP

6

2 (10,2)•

(10,6)

(10,4.5)
(4,3)
•

8

( 16
3 ,2)

• • • • • •
• • • •

•••

Fig. 6.29: The domain of (6.136). The objective function appears as a dotted line.

Let us relax the constraints −x1 +4x2 ≤ 8 and x2 ≥ 2 in the objective function:

x1 + x2 +π1(8+ x1−4x2)+π4(2− x2),

where π1 ≤ 0 and π4 ≥ 0 are Lagrangian multipliers. The Lagrangian subproblem
reads as

LR(π1,π4) = 8π1 +2π4 +min (1+π1)x1 +(1−4π1−π4)x2

s.t. (x1,x2) ∈D,
(6.137)

where D= {x1,x2 ∈ Z+ | 3x1 +4x2 ≥ 24, x1 ≤ 10, x2 ≤ 6}.
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Observe on the right side that the ISP formula-
tion (6.137) possesses the integrality property,
the four extreme points of conv(D) having in-
teger coordinates. These are the only possible
optimal solutions to LR(π1,π4), all being in-
feasible for the ILP. In that case, it is impossi-
ble to derive an upper bound on z⋆ILP by solv-
ing the Lagrangian subproblem.

x1

x2

(0,6)• (10,6)•

(8,0)
•(0,0)

(10,0)
•

conv(D)

Let us start the solution process with the zero-valued Lagrangian multipliers such
that the first lower bound on z⋆ILP is

LR(0,0) = min
x∈D

x1 + x2 = 6

obtained at (0,6). We next compute the direction given by the subgradient

(8+ x1−4x2,2− x2)
∣∣∣
(0,6)

= (−16,−4).

Using the arbitrary step size θ = 1/16, we get (π1,π4) = (−1,0) by modifying (0,0)
by 1/16(−16,−4) while respecting the signed multipliers (π1 ≤ 0 and π4 ≥ 0). The
Lagrangian subproblem (6.137) becomes

LR(−1,0) =−8+min
x∈D

5x2,

and by inspection of the extreme points, the lower bound LR(−1,0) = −8 is ob-
tained using either (8,0) or (10,0). With the first, the subgradient is (16,2) and asks
for a movement to the right. Let us use θ = 1/32 on both multipliers which yields the
next vector (π1,π4) = (−1,0)+ 1/32(16,2) = (−1/2,1/16). The Lagrangian subprob-
lem becomes

LR(−1/2,1/16) =−31/8+min
x∈D

1/2 · x1 + 47/16 · x2

which solves to −31/8+4 = 1/8 at the extreme point (8,0). The subgradient (16,2)
is the same as before and we again move both multipliers to the right using θ = 1/32:
(π1,π4) = (−1/2,1/16)+ 1/32 (16,2) = (0,1/8), such that

LR(0,1/8) = 1/4+min
x∈D

x1 + 7/8 · x2 = 1/4+ 42/8 = 5.5

is optimized at point (0,6). The subgradient is (−16,−4) and we reduce the step
size to θ = 1/64: (π1,π4) = (0,1/8)+ 1/64 (−16,−4) = (−1/4,1/16), such that

LR(−1/4,1/16) =−15/8+min
x∈D

3/4 · x1 + 31/16 · x2 =−15/8+6 = 4.125

is optimized at (8,0). This is where we stop with this strategy, for which the se-
quence of lower bounds is 6,−8, 0.125, 5.5, 4.125≤ z⋆LP = 7. We complete the so-
lution process with the Dantzig-Wolfe decomposition. The domain of the MP is



428 6 Dual Point of View

composed of the two relaxed constraints −x1 +4x2 ≤ 8 and x2 ≥ 2 and the convex-
ity one. We already found the extreme points (0,6) and (8,0) and, in this example,
these are sufficient to initialize the set of columns of the RMP:

Extreme points: (0,6) (8,0)

z⋆RMP = min 6λ1 + 8λ2

s.t. 24λ1 − 8λ2 ≤ 8 [π1]

6λ1 ≥ 2 [π4]

λ1 + λ2 = 1 [π0]

λ1, λ2 ≥ 0,

(6.138)

where the coefficients in the objective function and the constraints are computed by

cx = x1 + x2 and ax =

−x1 +4x2
x2
1

. (6.139)

The ISP writes as

c̄(π1,π4,π0) = min
x∈D

cx− [π1,π4,π0]ax

= −π0 + min
x∈D

(1+π1)x1 + (1−4π1−π4)x2.
(6.140)

Solving the RMP (6.138) results in zRMP = 7 obtained from (λ1,λ2) = (0.5,0.5) and
(π1,π4,π0) = (−1/16, 0, 7.5). For this dual vector, the ISP becomes

c̄(−1/16, 0, 7.5) =−7.5 + min
x∈D

15/16 x1 + 5/4 x2 = 0

at both extreme points (0,6) and (8,0). The column generation algorithm is ter-
minated with the MP solved at optimality. It provides the dual values (π1,π4) =
(−1/16, 0) and the primal solution (x1,x2) = 0.5(0,6)+ 0.5(8,0) = (4,3) that hap-
pens to be integer, hence also optimal for the ILP.

6.6 Reference Notes
Introduction Per Olov Lindberg invited Oli Madsen and Jacques Desrosiers to
teach at the first column generation school, 1993 (at the NorFa Summer Course i
Narvik). As Oli, P.O. was (and still is) an adept of the dual side (Google Scholar).

Section 6.1 The close relationship between the dual of the Alternative Dantzig-
Wolfe Master Problem (6.6) and the Lagrangian function (6.29) is revealed in Fig-
ures 6.4b and 6.9. Such a relation is exploited by Held and Karp (1970), see Exam-
ple 6.4 (Symmetric traveling salesperson problem).

https://scholar.google.se/citations?user=BZTnpI4AAAAJ&hl=sv
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Section 6.2 Lagrangian relaxation is a classical method for the optimization of
integer linear programs, e.g., Geoffrion (1974), Shapiro (1979a), Nemhauser and
Wolsey (1988), and Guignard (2003). Fisher (1981) surveys various solution ap-
proaches that have used one way or another the Lagrangian relaxation/subgradient
approach. It includes a historical narrative and points at some practical aspects
to deal with in solving the original problem. Magnanti et al. (1976) establish the
equivalence between the Lagrangian dual problem (LDP) and Dantzig-Wolfe mas-
ter problem (MP) both having been derived from a compact formulation.

On a similar note, Barahona and Anbil (2000) present the volume algorithm,
a more elaborate subgradient method that is able to produce a primal solution in
addition to a dual one; small infeasibilities may remain, though. In that respect, it
almost matches the capabilities of the Dantzig-Wolfe master problem.

Good to Know Dual-optimal inequalities (DOIs) for column generation have been
introduced by Valério de Carvalho (2005) while early use of dual boxes in the
Boxstep method is due to Marsten (1975) and Marsten et al. (1975). DOIs are
application-specific constraints which reduce the dual solution space that column
generation searches over. Because they do not remove any optimal dual solutions,
we are assured to terminate with a ‘correct’ optimal dual solution but we may even-
tually have to perform a primal recovery procedure to flush out any positive column
associated with the DOIs (Valério de Carvalho, 2005; Ben Amor et al., 2006b).
Additional results appear in Gschwind and Irnich (2016); Yarkony et al. (2020);
Haghani et al. (2022).

More to Know The stabilized column generation algorithm follows the lines of
du Merle et al. (1999) and Ben Amor et al. (2006b). Extensive computational ex-
periments can be found in Oukil et al. (2007), Ben Amor et al. (2009), and Pessoa
et al. (2013, 2018). Relations (6.82) and (6.83) are basically statistical smoothing,
as used for example in time series forecasting, market analysis, image processing,
etc., see Simonoff (1996).

For a linear program with degenerate solutions, either we provide good dual in-
formation to the stabilized column generation algorithm, or we can modify in the
primal the representation of these solutions, from a basic one to a unique one by
only considering the columns associated to the positive variables. Algorithms is-
sued from that stream of research are the dynamic constraint aggregation for set
partitioning problems (El Hallaoui et al., 2005, 2008, 2010) and the improved pri-
mal simplex (Metrane et al., 2010; El Hallaoui et al., 2011; Omer et al., 2015a), or
more generally, Gauthier et al. (2016, 2018).

Exploiting the knowledge of integer solutions is a current area of research. The
integral simplex using decomposition is a method that efficiently solves set partition-
ing problems: it iteratively moves through a sequence of integer solutions, decreas-
ing the cost at each iteration, see the early work of Rönnberg and Larsson (2009,
2014), and more recently, Rosat et al. (2017b,a,c); Zaghrouti et al. (2018), and, in
the context of column generation, Tahir et al. (2019).

Examples
6.3 Vehicle routing problem with time windows. Additional usage of Lagrangian
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duality for this problem is available in Kallehauge et al. (2006). The authors use
a stabilized cutting-plane algorithm for solving the Lagrangian problem. This is
embedded within a branch-and-bound search, where strong valid inequalities are
used at the master problem level. The result is a Lagrangian Branch-Price-and-Cut
algorithm for the VRPTW.

6.4 Symmetric traveling salesperson problem. The SEC are facet defining for a com-
plete graph (Lawler et al., 1985). In fact, non-negativity, upper bounds, subtours,
2-matchings, combs, clique trees, envelopes, path/star, path trees, and crowns are
all facet-inducing, see the survey of facial results for the traveling salesman poly-
tope by Ruland and Rodin (1998). Further readings include Nemhauser and Wolsey
(1988, Part II.2.3 Valid Inequalities for the Symmetric Traveling Salesman Polytope
and Part II.6.3 The Symmetric Traveling Salesman Problem).

Finally, we must once again point out that Held and Karp (1970) present within
the same paper the Lagrangian relaxation/subgradient approach applied to the STSP,
but also, much less known, the Dantzig-Wolfe reformulation/column generation
counterpart.

Exercises
6.11 A crossover method for finding a basic x⋆LP. This is taken from Ben Amor
et al. (2006a), where fixing variables to zero allows to accelerate the recovery of an
optimal linear programming basis when we are only given an optimal dual solution.
This incidentally occurs when solving linear programs by interior point algorithms.

Fixing arc-variables in routing and scheduling problems solved using the column
generation algorithm can be found in Irnich et al. (2010).

6.15 Warehouse location problem is inspired by Ahuja et al. (1993, Exercise
16.9 Facility location), indeed derived from Erlenkotter (1978).

6.16 Dual inequalities for a two-echelon vehicle routing problem is derived from
Mhamedi et al. (2022) who introduced these so-called transfer inequalities. This
exercise highlights how they are implemented and how they can be interpreted.

Fig. 6.30: Maria Grazia Speranza and Oli Madsen (Izmir, Turkey, 2009-05-27).
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Exercises

6.1 Joseph-Louis Lagrange
Is Lagrange French or Italian? Where was he born?

6.2 Nature of the LDP
Is the LDP (6.15) an integer or a linear program?

6.3 About the AMP
Let the ILP (6.1) be formulated with a bounded domain D in (6.2b). Assume ob-
tained a dual vector πππb, optimal or not, while solving by column generation the
restricted version of the alternative master problem

z⋆AMP = min ∑
p∈P

cpλp (6.141a)

s.t. ∑
p∈P

(ap−b)λp ≥ 0 [πππb] (6.141b)

∑
p∈P

λp = 1 [µ] (6.141c)

λp ≥ 0 ∀p ∈ P, (6.141d)

whose dual formulation is

z⋆AMP = max µ

s.t. (ap−b)⊺πππb + µ ≤ cp [λp] ∀p ∈ P

πππb≥ 0, µ ∈ R.
(6.142)

Although πππb is associated with a right-side given by a 0-vector, show that it plays
the same role as in the MP in the computation of
(a) the reduced cost of a λp-variable;
(b) the lower bound result: πππ

⊺
bb+min

x∈D
c⊺x−πππ

⊺
bAx≤ z⋆MP.

6.4 AMP formulations for a block-diagonal structure
For the ILP with a block-diagonal structure (6.16), provide the primal and dual
formulations of the AMP.

6.5 Dantzig-Wolfe vs. Lagrange for a block-diagonal structure
For the ILP with a block-diagonal structure (6.16), prove Proposition 6.2: Given that
z⋆ILP is finite in (6.16), the largest Lagrangian bound is equal to the optimal objective
value of the MP, that is, z⋆LDP = z⋆MP. Provide a proof relying on the (a) MP, (b) AMP.

6.6 VRPTW: Dantzig-Wolfe vs. Lagrange
It has been observed that at the beginning of the solution process of the VRPTW us-
ing column generation for the MP or subgradient for the LDP, the latter is faster on
average per iteration for the solution of their respective subproblems, i.e., c̄(πππb,π0)
and LR(πππb). Both subproblems are solving a constrained shortest path problem with
customer time windows and vehicle capacity. Explain such a behavior.
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6.7 Yes or No? And why?
For each question, provide a justification for the answer. As needed, you may refer
to Figure 6.6, where equivalent problems appear at the same level.

(a) Can the primal simplex algorithm solve a bounded integer linear program?
(b) Can the column generation algorithm solve an integer linear program?
(c) Can a Dantzig-Wolfe reformulation solve an integer linear program? a linear

program?
(d) Can a Lagrangian relaxation solve an integer linear program? a linear program?

6.8 Ready to answer?
(a) How useful is it to only have optimal Lagrangian multipliers πππ⋆

b?
(b) How important are the dual values πk

0 , k ∈ K?
(c) Is a Lagrangian relaxation easier to solve than a Dantzig-Wolfe reformulation?
(d) Can we easily find a primal solution for the compact formulation in a La-

grangian relaxation?
(e) Can we leverage optimal Lagrangian multipliers πππ⋆

b in a Dantzig-Wolfe refor-
mulation?

6.9 Using optimal Lagrangian multipliers with dual boxes
Given optimal Lagrangian multipliers πππ⋆

b for the LDP, can we easily derive a primal
solution for the MP using the RMP initialized with X′ = /0 and the pricing problem
c̄k(πππ⋆

b,π
k
0), where πk

0 may take any appropriate value?

6.10 Stabilization parameters: initialization and update
The MPstab is constructed in such a way that we respect the properties of the MPδδδ

whenever π̂ππ = πππ⋆. The formulation we propose in (6.77) uses the dual box (6.74)
and the penalty function (6.75). How does it work out when we initialize the RMPstab
with yet no generated columns (X′ = /0) and dual values π̂ππ = πππ⋆, i.e.,

zRMP0
stab

= min ∑
x∈X′

cxλx − δδδ
0⊺
1 y1 + δδδ

0⊺
2 y2

s.t. ∑
x∈X′

axλx − y1 + y2 = b [πππ]

λx ≥ 0 ∀x ∈ X′

y1 ≤ εεε0
1 [−w1 ≤ 0]

y2 ≤ εεε
0
2 [−w2 ≤ 0]

y1≥ 0, y2 ≥ 0.

(a) Discuss with respect to the parameter values δδδ and εεε .
(b) By design, we ensure convergence by updating δδδ in a way that it always reflects

an optimal dual solution of the MPstab. Suggest a self-adjustable rule to update
δδδ and εεε by also considering that π̂ππ may not be that good of an approximation of
an optimal dual solution πππ⋆.
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6.11 A crossover method for finding a basic x⋆LP
Let the vector δδδ > 0 ∈ Rm restrict the vector πππ to lie within the dual-optimal box
[πππ⋆−δδδ ,πππ⋆+δδδ ] for the LP

z⋆LP = min c⊺x
s.t. Ax = b [πππ]

x≥ 0
(6.143)

and let the relaxed primal problem and restricted dual problem be given as

min c⊺x− (πππ⋆−δδδ )⊺y1 +(πππ⋆+δδδ )⊺y2

s.t. Ax− y1 + y2 = b [πππ]

x ≥ 0, y1 ≥ 0, y2 ≥ 0

max b⊺πππ
s.t. A⊺πππ ≤ c [ x ]

−πππ ≤−(πππ⋆−δδδ ) [y1]

πππ ≤ (πππ⋆+δδδ ) [y2] .

Show that x j can be fixed to zero if its reduced cost computed with respect to πππ⋆ is
large enough, that is, if c j−∑

m
i=1 π⋆

i ai j > ∑
m
i=1 δi|ai j|.

6.12 Symmetric TSP: a compact formulation without block-index k
Given are:

• the ISP constraints (6.119b)–(6.119e) for the 1-tree problem;
• the two-degree constraints (6.119f) derived from the IMP (6.124).

Justify that, in the proposed ILP (6.119), there is neither the set of variables xk
0 nor

the block-index k as in Proposition 4.15.

6.13 Asymmetric and symmetric TSP: flow conservation constraints
Show that the flow conservation constraints are satisfied in the ATSP formula-
tion (6.110) but not in the STSP ones, neither (6.111) nor (6.119).

6.14 Printed circuit boards: Lagrangian multipliers
In the column generation algorithm for solving the RMP, πππ ≥ 0 satisfies the normal-
izing constraints (6.131) as the result of the complementary slackness conditions.
This is not guaranteed in the subgradient algorithm from one iteration to the next.

(a) Show how to compute the vector πππ t+1 derived from the usual expression
πππ t+1 = πππ t + θt(−at), where −at =

[
∑ j∈Ji ∑s∈Sk

t jsx js,t
]

i∈N,k∈K is the subgra-
dient direction.

(b) For all t ≥ 1, the subgradient direction −at only contains non-negative values
and θt > 0. Explain how some π-values may decrease.

(c) Show that the π-multipliers always remain positive in the implementation of the
subgradient algorithm of Lapierre et al. (2000).

6.15 Warehouse location problem
Consider a mixed-integer linear program formulation (MILP) for determining the
location of a number of warehouses, a variation of the Capacitated p-median prob-
lem, where a fixed cost is incurred for opening a warehouse. The notation used is:
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N : set of customers to be served; di, demand of customer i ∈ N;
K : set of warehouses; Dk and Fk, capacity and fixed cost for warehouse k∈K;

yk, binary variable taking value 1 if warehouse k is selected, 0 otherwise;
ck

i ≥ 0 : cost for customer i when served from warehouse k;
xk

i , fraction of the demand of customer i served from warehouse k.

z⋆MILP = min ∑
k∈K

∑
i∈N

ck
i xk

i + ∑
k∈K

Fkyk (6.144a)

s.t. ∑
k∈K

xk
i = 1 ∀i ∈ N (6.144b)

∑
i∈N

dixk
i − Dkyk ≤ 0 ∀k ∈ K (6.144c)

0≤ xk
i ≤ 1 ∀k ∈ K, i ∈ N (6.144d)

yk ∈ {0,1} ∀k ∈ K. (6.144e)

The first set of constraints (6.144b) states that the full demand of customer i has to
be served by the warehouses. If yk = 1 in (6.144c), then warehouse k is selected and
its capacity Dk is available for serving the demand di of the assigned customers; oth-
erwise yk = 0 such that no customers can be served by this warehouse. Figure 6.31
illustrates the formulation, indeed very similar to the GAP structure.

1∑
k∈K

xk
1 = 1

2∑
k∈K

xk
2 = 1

...
i∑

k∈K
xk

i = 1

...
|N|∑

k∈K
xk
|N| = 1

1 ∑
i∈N

dix1
i ≤ D1y1

2 ∑
i∈N

dix2
i ≤ D2y2

...

j ∑
i∈N

dixk
i ≤ Dkyk

...

|K| ∑
i∈N

dix
|K|
i ≤ D|K|y|K|

(ck
i ,di)

Fig. 6.31: Illustration of the warehouse location problem.

(a) Formulate the Lagrangian subproblem obtained by relaxing the first set of con-
straints (6.144b) with Lagrangian multipliers πππ = [πi ∈ R]i∈N . Does it possess
the integrality property?

(b) Formulate the Lagrangian subproblem obtained by relaxing the second set of
constraints (6.144c) with Lagrangian multipliers ωωω = [ωk ≤ 0]k∈K . Does it pos-
sess the integrality property?
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(c) Assume now that xk
i ∈ {0,1}, ∀i∈N, k ∈K. These binary variables indicate that

every customer i must be served from a single warehouse in the resulting ILP.
What is the impact on LR(πππ) and LR(ωωω)?

6.16 Dual inequalities for a two-echelon vehicle routing problem
Consider a two-echelon vehicle routing problem with time windows that consists
in determining first-echelon routes (from depots to satellites) for large vehicles and
second-echelon routes (from satellites to customers) operated by smaller vehicles.
All the freight to be delivered by a second-echelon route must be supplied by a single
first-echelon route in time, i.e., before it starts from the satellite. The objective is to
minimize the total routing cost of both echelons.

We model this problem using an extended formulation that relies on the following
notation:

N : set of customers to be served;
K : set of feasible first-echelon routes of capacity Q1; Ck > 0, cost of route k ∈ K;

yk, binary variable taking value 1 if route k is selected, 0 otherwise;
R : set of feasible second-echelon routes; cr > 0, cost of route r ∈ R; dr, total

demand delivered by route r ∈ R; air, binary parameter equal to 1 if route
r ∈ R visits customer i ∈ N;

Rk : subset of second-echelon routes that can be supplied by first-echelon route
k∈K; λk

r, binary variable taking value 1 if route r ∈Rk is selected and supplied
by route k ∈ K, 0 otherwise.

The integer master problem is

z⋆IMP = min ∑
k∈K

Ckyk + ∑
k∈K

∑
r∈Rk

crλ
k
r (6.145a)

s.t. ∑
k∈K

∑
r∈Rk

airλ
k
r = 1 [ψi ∈ R] ∀i ∈ N (6.145b)

∑
r∈Rk

drλ
k
r ≤ Q1yk [πk ≤ 0] ∀k ∈ K (6.145c)

yk ∈ {0,1} ∀k ∈ K (6.145d)

λ
k
r ∈ {0,1} ∀k ∈ K,r ∈ Rk.

(6.145e)

Constraints (6.145b) ensure that each customer is visited by exactly one second-
echelon route, whereas constraints (6.145c) link the first- and second-echelon route
variables. Indeed, the demand delivered by a second-echelon route can only be sup-
plied by a first-echelon route if this route is selected and the total demand delivered
by the second-echelon routes assigned to a first-echelon route cannot exceed capac-
ity Q1.

In practice, the set K is not very large so we assume that all first-echelon routes
are enumerated a priori. This is not the case for the second-level routes in the sets
Rk, ∀k ∈ K, that need to be generated as needed by column generation.
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In the following questions, we focus on the linear relaxation of (6.145), i.e., on
the MP whose dual variables are listed in brackets.

(a) Let k1,k2 ∈ K, k1 ̸= k2, be two distinct first-echelon routes such that Rk1 ⊆ Rk2 .
Mhamedi et al. (2022) prove that

π
k2 ≤ π

k1 (6.146)

is a deep dual-optimal inequality (DDOI), i.e., it preserves at least one opti-
mal dual solution. Provide an informal explanation for this by looking at con-
straints (6.145c).

(b) Denoting by uk1k2 ≥ 0 a static primal variable associated with dual inequal-
ity (6.146), how would you modify the MP to impose this inequality?

(c) Give a practical interpretation of uk1k2 . How can this variable help to speed up
column generation?

(d) Let F = {(k1,k2) ∈ K2 | k1 ̸= k2,Rk1 ⊆ Rk2}. Then, the inequalities

π
k2 ≤ π

k1 , ∀(k1,k2) ∈ F, (6.147)

form a set of DDOIs (Mhamedi et al., 2022). Considering their associated
non-negative primal variables uk1k2 , ∀(k1,k2) ∈ F , write the modified con-
straints (6.145c) that take these dual inequalities into account.

(e) Assume that we solve model (6.145) augmented with the set of DDOIs (6.147),
in their primal version (d), and get an integer solution (λ̃λλ , ỹ, ũ). What can you
say about the existence of an equivalent feasible integer solution obtained by
transferring load between first-echelon routes according to the values of the u-
variables

• if none of them take a positive value?
• if a single one takes a positive value?
• if two or more take a positive value?
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In theory there is no difference between theory and practice,
while in practice there is.

The Yale Literary Magazine
Benjamin Brewster (1882)

Abstract Our aim from the very beginning is to solve an integer linear program. Yet,
all that we have algorithmically accomplished so far is to solve the linear relaxation
of a Dantzig-Wolfe reformulation. When the solution is fractional, we need to cut
it, or branch. From a bird’s eye view, all that remains to do is to use the column
generation algorithm to solve the relaxation, and possibly strengthen it by additional
valid inequalities, in every node of the branch-and-bound tree. Zooming in, we see
that some subtleties have to be respected or can even be exploited.
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Introduction

We are almost at the end of our book on branch-and-price. What is left is this
chapter which, incidentally, has almost the same title. Some hundred pages ago, we
set out to solve integer programs, and what we have accomplished so far is solving
a relaxation by column generation. In other words, we have solved the root node
of a branch-and-bound tree. When we do this in every node of the tree, we obtain
branch-and-price.

Note 7.1 (What’s in a name?) The name of branch-and-price is well-accepted in the
literature (it somehow “won” against IP column generation). There is less unanimity
when cutting planes come into play. One finds branch-and-cut-and-price, branch-
cut-and-price, and branch-price-and-cut. We can only guess that the former two are
motivated by integrating the established branch-and-cut with pricing. In our view,
doing column generation or not changes so fundamentally, e.g., an implementation
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that we think of rather complementing branch-and-price by cutting. This is why, the
reader has figured it from this chapter’s title, we stick to branch-price-and-cut.

One could continue the discussion whether this enumeration should be comma
separated, like branch, price, and cut, and whether or not one likes the Oxford
comma. But this is a maths book and not one about language.

We wish to (finally!) solve the compact formulation ILP which we repeat as

z⋆ILP = min c⊺x
s.t. Ax≥ b [σσσb]

Dx≥ d [σσσd]

x ∈ Zn
+.

(7.1)

We assume this ILP to be feasible with finite optimum z⋆ILP, as before. In Chapter 4
(Dantzig-Wolfe Decomposition for Integer Linear Programming), we learned about
two reformulations of model (7.1) using the grouping of constraints

A= {x ∈ Zn
+ | Ax≥ b} ̸= /0 (7.2a)

D= {x ∈ Zn
+ | Dx≥ d} ̸= /0. (7.2b)

The first reformulation is by convexification of D, and we arrive at the following
equivalent integer linear program IMP (7.3):

z⋆IMP = min ∑
p∈P

cp p + ∑
r∈R

cr r

s.t. ∑
p∈P

ap p + ∑
r∈R

ar r ≥ b [ b]

∑
p∈P

p = 1 [ 0]

p ≥ 0 ∀p ∈ P

r ≥ 0 ∀r ∈ R

∑
p∈P

xp p + ∑
r∈R

xr r = x ∈ Zn
+,

(7.3)

where P and R denote the finite index sets for the extreme points and extreme rays of
conv(D), respectively. The integrality requirements are imposed on the x-variables
of the ILP, hence we can define cutting planes and branching decisions using the
values of x⋆MP, see Figure 4.2. The above formulation reproduces the T-shirt adver-
tisement for the 2018 School on Column Generation held in Paris, where the primal
variables are represented by a Tour Eiffel. The dual ones for the linear relaxation,
represented by an Arc de Triomphe, were subsequently incorporated.

The second reformulation, given by discretization of D, gives us another equiv-
alent integer linear program, denoted IMP̈, which reads as
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z⋆IMP̈ = min ∑
p∈P̈

cpλp + ∑
r∈R̈

crλr

s.t. ∑
p∈P̈

apλp + ∑
r∈R̈

arλr ≥ b [πππb]

∑
p∈P̈

λp = 1 [π0]

λp ∈ {0,1} ∀p ∈ P̈

λr ∈ Z+ ∀r ∈ R̈

∑
p∈P̈

xpλp + ∑
r∈R̈

xrλr = x ∈ Zn
+,

(7.4)

where P̈ ⊇ P and R̈ denote the finite index sets of integer points and integer-scaled
extreme rays of conv(D), respectively. Even though the IMP̈ (7.4) is different from
the IMP (7.3), solving its linear relaxation MP̈ is not different from solving the MP
by Proposition 4.2. However, with more variables required to be integer, we have
additional options to impose cutting and branching decisions, also on the variable
values λλλ

⋆
MP̈, see Figure 4.7.

A word on the icon:
the first node is the root,

followed by a cut, and next,
a 2-side branching decision.

7.1 Integrality Test

It may be an obvious statement, but it has to be said: When we have optimally solved
the master problem in the root node, a relaxation, and hold an integer solution in our
hands, we are done. But what does it even mean, to have an integer solution?

Consider some node of the branch-and-price tree. The easiest is that the solution
of the final RMP is integer. We denote this solution by λλλ

⋆
RMP ∈R|P

′|+|R′|
+ as it covers

both cases, convexification and discretization. That is, with λλλ
⋆
RMP ∈ Z|P

′|+|R′|
+ we

imply λλλ
⋆
MP ∈Z

|P|+|R|
+ or λλλ

⋆
MP̈ ∈Z

|P̈|+|R̈|
+ , respectively, in which case also the solution

in x⋆MP is integer (see Propositions 4.2 and 4.3). The converse is not generally true:
the vector

x⋆MP = ∑
p∈P′

xpλ
⋆
p + ∑

r∈R′
xrλ

⋆
r (7.5)

can still be integer even when λλλ
⋆
RMP is fractional. Therefore, both options should be

checked, integrality of master and original variables, and maybe in this order:

1. If λλλ
⋆
RMP is integer, so is x⋆MP.

2. Otherwise, test if x⋆MP is integer.
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There is a nasty case which is practically very relevant: when the master problem
uses aggregated λ -variables in presence of |K| identical subproblems, integrality of
x⋆MP in (7.5) needs not imply integrality of the disaggregated variables

xk⋆
MP = ∑

p∈Pk ′

xpλ
k⋆
p + ∑

r∈Rk ′

xrλ
k⋆
r , ∀k ∈ K, (7.6)

we are really interested in. If this happens, we have to perform a disaggregation
from λλλ

⋆
RMP to {λλλk⋆

RMP}k∈K first, e.g., by solving a zero-cost balanced transportation
problem as in (4.62), and then project back to the original variable values {xk⋆

MP}k∈K
(see Disaggregation in Chapter 4). Only then do we perform the integrality test:

1. Perform a disaggregation of λλλ
⋆
RMP into {λλλk⋆

RMP}k∈K and derive {xk⋆
MP}k∈K .

2a. If λλλ
⋆
RMP is integer, the solution {λλλk⋆

RMP}k∈K to (4.62) is integer; so is {xk⋆
MP}k∈K .

2b. Otherwise, test if the solution {xk⋆
MP}k∈K is integer.

In case the integrality tests fail, you need to read this chapter on cutting and
branching decisions on original and master variables. And also when the integrality
tests do not fail, it is just very nice to read this chapter.

Note 7.2 (Integer only at second glance.) Integrality of a solution can also be a matter
of implementation or luck. Consider the polyhedron in Figure 7.1. It is described us-
ing two extreme points in set {(1,1),(2,1)} and two extreme rays, again in the same
set {(1,1),(2,1)}. In the convex combination of the extreme points with respective
weights 0.4 and 0.6 plus 1.6 times the first extreme ray and 0.4 times the second,
we reach the coordinates (4,3) = 0.4(1,1)+0.6(2,1)+1.6(1,1)+0.4(2,1), which
is a fractional λ -representation. However, it need not be. We could as well use the
second extreme point and the first extreme ray with respective weights 1 and 2, that
is, 1(2,1)+2(1,1) = (4,3), which is an integer solution in the λ -variables.

(1,1) (2,1)

(4,3)

(1,1) (2,1)

• •

•

Fig. 7.1: A polyhedron with two extreme points and two extreme rays.

Referring back to Illustration 4.3, we also see that the integrality of a master
solution may depend on the scaling of the rays. Avoiding unnecessary fractional
solutions is our true motivation for scaling rays to their shortest possible integer
representative.
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7.2 Cutting Planes

Both Dantzig-Wolfe reformulations provide us with effectively the same master re-
laxation. It is potentially stronger than the standard linear relaxation of ILP (7.1).
Cutting planes, or simply cuts, are a way to strengthen a relaxation even further.

Definition 7.1. Given an integer program min{c⊺x |Qx≥ q, x ∈ Zn
+} and its linear

relaxation min{c⊺x |Qx≥ q, x ∈ Rn
+},

1. an inequality a⊺x≥ a0 is valid for Q := {x ∈ Zn
+ |Qx≥ q} if

a⊺x̄≥ a0, ∀x̄ ∈ Q,

that is, every integer point is feasible; and

2. a valid inequality a⊺x≥ a0 for Q is a cutting plane if

a⊺x∗ < a0, for some x∗ ∈ {x ∈ Rn
+ |Qx≥ q},

that is, at least one fractional point becomes infeasible.

Most likely, when you formulate an ILP like (7.1), the literature knows several
cutting planes for (a variant of) this model, and they are naturally formulated in the
original x-variables. We explore this case first.

Cutting planes on the original variables

We start from the compact formulation (7.1) and assume that we know a set of
cutting planes for it, say Fx ≥ f. With these additional inequalities, we associate a
dual vector σσσ f ≥ 0 in the LP. The strengthened ILP formulation reads as

z⋆ILP = min c⊺x (7.7a)
s.t. Ax≥ b [σσσb] (7.7b)

Dx≥ d [σσσd] (7.7c)
Fx≥ f [σσσ f] (7.7d)

x ∈ Zn
+. (7.7e)

We consider two cases for the Dantzig-Wolfe reformulation: the integration of
Fx≥ f either in A or in D, that is, in the master or the subproblem constraints.
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Integration into the master constraints

In the first case, the grouping of the constraints becomes

A= {x ∈ Zn
+ | Ax≥ b, Fx≥ f} (7.8a)

D= {x ∈ Zn
+ | Dx≥ d}. (7.8b)

The cuts Fx≥ f are reformulated in the same way as those of Ax≥ b, that is, as

∑
p∈P

Fxpλp + ∑
r∈R

Fxrλr ≥ f (7.9)

with dual vector πππ f. Using the transformations fp = Fxp for all p ∈ P and fr = Fxr
for all r ∈ R, the MP reads as

z⋆MP = min ∑
p∈P

cpλp + ∑
r∈R

crλr (7.10a)

s.t. ∑
p∈P

apλp + ∑
r∈R

arλr ≥ b [πππb] (7.10b)

∑
p∈P

fpλp + ∑
r∈R

frλr ≥ f [πππ f] (7.10c)

∑
p∈P

λp = 1 [π0] (7.10d)

λp≥ 0 ∀p ∈ P (7.10e)
λr≥ 0 ∀r ∈ R (7.10f)

∑
p∈P

xpλp + ∑
r∈R

xrλr = x ∈ Rn
+. (7.10g)

This can be adapted for special cases such as bounded D (in which case R = /0) and
conv(D) a polyhedral cone (zero-extreme point removed and r ∈ R). Given dual
values πππb,πππ f ≥ 0 and π0 ∈ R, the reduced cost of a λ -variable is computed with a
“slightly longer” column vector now. The adapted ISP reads as

c̄(πππb,πππ f,π0) =−π0 + min
x∈D

cx−πππ
⊺
bax−πππ

⊺
f fx

s.t. cx = c⊺x, ax = Ax, fx = Fx,
(7.11)

c̄(πππb,πππ f,π0)=−π0 + min
x∈D

(c⊺−πππ
⊺
bA−πππ

⊺
f F)x. (7.12)

Comparing this ISP (7.12) to the standard subproblem formulation (4.11), we ob-
serve that the subproblem’s domain D formally does not change. Having cutting
(and later branching) decisions on the original variables, integrated into the refor-
mulation in this way, is sometimes called robust or compatible. This is attractive
because a (possibly combinatorial, or otherwise specialized) pricing algorithm that
works for the ISP (4.11) can still be applied to solve the ISP (7.12). While this is
formally true, read the following note where the devil is in the details.
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Note 7.3 (A misinterpretation.) It is an advantage that formally “only the objective
function of the pricing problem changes” when cutting (or branching) decisions are
formulated on original variables, and reformulated as master constraints. However,
in practice, this may introduce new variables in the objective function of the pricing
problem. Consider a cutting plane that is (also) defined on original variables that
have no cost associated with them in the compact formulation. In the reduced cost
objective function of the ISP, these variables may have a non-zero adjusted cost
coefficient, and thus variables may suddenly “appear.” When the ISP is not solved
as an MILP anyway, this does potentially change its character.

The VRPTW serves as an example, where the subproblem can be solved using
a dynamic program that works on the arcs of the underlying network, that is, on
the xi j-variables. Formulating a cutting plane in terms of the time variables, say
∑i∈C fiti ≥ T with dual value denoted πT ≥ 0 in (7.10c), introduces the time vari-
ables in the objective function of the ISP (5.13)

min[
x
t

]
∈D

∑
(i, j)∈A

(ci j−πi)xi j−πT ∑
i∈C

fiti (7.13)

and, depending on the sign of the f -coefficients, the ISP may require an alternative
dynamic programming algorithm for solving the constrained shortest path problem
with linear penalties on nodes (Ioachim et al., 1998).

Note 7.4 (Changes to the column generation algorithm.) One does not add cutting
planes to an integer program all at once. Instead, separation algorithms are used
to either find one (or several) inequalities that are violated by the current fractional
solution, or to prove that no such inequality exists. Often in the literature, such an
algorithm is described together with the valid inequalities Fx≥ f, and it is naturally
called on a fractional solution x⋆MP. Algorithm 7.1 describes how this very harmon-
ically combines with the column generation algorithm.

Algorithm 7.1: Column generation algorithm with separation of cutting
planes on the original variables

1 initialize the RMP as usual
2 loop
3 solve the MP to optimality via column generation to obtain λλλ

⋆
MP and x⋆MP;

4 call separation algorithms on x⋆MP;
5 if this produces a cut f⊺x≥ f0
6 add ∑

p∈P′
fpλp + ∑

r∈R′
frλr ≥ f0 to the RMP with dual variable π f0 ;

7 incorporate π f0 in the objective function of the ISP (7.12);
8 else
9 break;
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Integration into the subproblem constraints

In the second case, the grouping of the constraints is

A= {x ∈ Zn
+ | Ax≥ b} (7.14a)

D= {x ∈ Zn
+ | Dx≥ d, Fx≥ f}. (7.14b)

Formally, D is modified (it may remain unchanged), and also conv(D) may change,
with different extreme points and extreme rays. We still index them by p ∈ P and
r ∈ R. With this, the ISP writes as before, i.e.,

c̄(πππb,π0) =−π0 +min
x∈D

c⊺x−πππ
⊺
bAx, (7.15)

where πππb and π0 come from solving the linear relaxation of the IMP (7.3). However,
this notation hides that the pricing algorithm may change.

On the positive side, we have no need to use any reformulation of cutting planes,
and no extra dual variables to respect in the pricing problem. Also, if we solve the
ISP as an integer program anyway, this may even help speeding up its solution.
Note, however, that when the current fractional master solution should be cut off,
all master variables λ j, j ∈ P′∪ R′, that are incompatible with the cuts, i.e., Fx j ̸≥ f,
must be eliminated from the RMP.

Illustration 7.1 Clique cuts for the vertex coloring problem

Similar to the edge coloring problem seen in Example 2.3, consider the vertex color-
ing problem in which we are given an undirected graph G=(N,E), where N denotes
the set of nodes (or vertices) and E the set of edges. We wish to assign a color (from
a set K, in Anlehnung an den berühmten Kodak Kodacolor Fotofilm, or as in The
Kolors, an Italian rock band) to every node such that no two neighbors receive the
same color. The total number of colors should be minimized (the minimum is the
so-called chromatic number of the graph). A textbook model for this problem uses
assignment variables xk

i ∈ {0,1} to represent whether node i ∈ N is colored in color
k ∈ K or not. For the counting of colors, we use the binary variable xk

0 for color k.

z⋆ILP = min ∑
k∈K

xk
0 (7.16a)

s.t. ∑
k∈K

xk
i = 1 ∀i ∈ N (7.16b)

xk
i + xk

j ≤ xk
0 ∀k ∈ K, (i, j) ∈ E (7.16c)

xk
0, xk

i ∈ {0,1} ∀k ∈ K, i ∈ N. (7.16d)

The conflict inequalities (7.16c) have a block-diagonal form, one block for every
color. This suggests to Dantzig-Wolfe reformulate these constraints. For k ∈ K, let
xk = [xk

i ]i=0,1,...,|N|. Define the non-empty sets A and Dk that group the constraints as
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A=

{{
xk ∈ {0,1}|N|+1

}
k∈K

∣∣∣∣ ∑
k∈K

xk
i = 1, ∀i ∈ N

}
(7.17a)

Dk =

{
xk ∈ {0,1}|N|+1

∣∣∣∣ xk
i + xk

j ≤ xk
0, ∀(i, j) ∈ E

}
, ∀k ∈ K. (7.17b)

For every color k ∈ K that is used (xk
0 = 1), every extreme point of conv(Dk) is an

incidence vector of a subset of nodes, all of which are pairwise not neighbors, that
is, an independent set in color k. We index these extreme points by p ∈ Pk (and
eliminate the zero solution with xk

0 = 0) to obtain the MP written as

z⋆MP = min ∑
k∈K

∑
p∈Pk

λ
k
p (7.18a)

s.t. ∑
k∈K

∑
p∈Pk

ak
ipλ

k
p = 1 [πi] ∀i ∈ N (7.18b)

∑
p∈Pk

λ
k
p ≤ 1 [πk

0 ] ∀k ∈ K (7.18c)

λ
k
p ≥ 0 ∀k ∈ K, p ∈ Pk. (7.18d)

Here ak
ip = xk

ip is a binary parameter representing whether node i∈N is contained in
the independent set represented by the extreme point xk

p = [xk
ip]i=0,1,...,|N| or not. The

model selects at most one independent set per color such that every node appears in
exactly one of them.

We observe that the linear relaxation of the compact formulation (7.16) is very
weak: we can, e.g., color every node half in color k = 1 and half in k = 2, i.e.,
x1

i = x2
i = 0.5 for all i ∈ N. This implies x1

0 = x2
0 = 1 (and all other xk

0-variables
at zero, for k /∈ {1,2}), and an optimal objective function value of z⋆LP = 2. The
information we obtain from this is: we need at least two colors to color all the
nodes, which is completely useless for any graph that contains at least one edge.

A natural strengthening of the ILP model (7.16) uses cliques in G. These are
subsets Q⊆ N of nodes, all of which are pairwise neighbors. In an integer solution,
every color can be used at most once for the nodes in Q. A fractional solution,
however, can color half of the nodes of Q in this color. A clique inequality forbids
this defect:

∑
i∈Q

xk
i ≤ 1 for every clique Q⊆ N, and every color k ∈ K. (7.19)

As before, if we express the original x-variables as convex combination of inci-
dence vectors of independent sets, we obtain in the master problem the reformulated
cutting planes

∑
i∈Q

∑
p∈Pk

ak
ipλ

k
p ≤ 1 for every clique Q⊆ N, and every color k ∈ K. (7.20)
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We read in this clique inequality for Q that we cannot (fractionally) select more
than one independent set p that shares a vertex with Q. Since every independent set
can share at most one vertex with Q anyway, this inequality is always fulfilled by ev-
ery λ -solution. All our efforts were correct but in vain! Note that for a given color k,
we also could have added the cutting plane (7.19) to Dk. This may help speeding
up the solution of the ISPk. However, this does not strengthen the reformulation ei-
ther because these inequalities are, of course, fulfilled in any binary solution to the
pricing problem.

Note 7.5 (Too strong for you.) This illustration points to a general weakness of
adding classical cutting planes in the original variables. A Dantzig-Wolfe reformu-
lation IMP can be so strong already that adding further inequalities (in the original
variables) does not strengthen the MP relaxation any further. Experiments by Witt
(2019) support this intuition. At the same time, this is a reminder of the poten-
tially substantial gain in strength when we apply a Dantzig-Wolfe reformulation: all
cutting planes known for the independent set problem—and these are many!—are
automatically satisfied via the reformulation.

Illustration 7.2 Capacity cuts for the VRPTW

Consider the following two-index arc-flow formulation of the VRPTW (illustrated
in Figure 7.2), similar to that of the solution of Exercise 5.3. Let C be the set of
customers to be served and define N = C∪ {o,d} as the set of nodes and Ado =
A∪{(d,o)} as the set of arcs in the network Gdo = (N,Ado). Let the set of resources
be R= {time, load}. For r = time, set atime

i = ai, btime
i = bi, ∀i ∈ N, and ttime

i j = ti j,
∀(i, j)∈ A. For r = load, set aload

i = 0, bload
i = Q, ∀i∈N, and t load

i j = q j, ∀(i, j)∈ A.
We also assume that all cost, time, and load parameters are integer and κ is the
number of available identical vehicles. The mixed-ILP writes as

z⋆ILP = min ∑
(i, j)∈Ado

ci jxi j (7.21a)

s.t. ∑
j:(i, j)∈A

xi j = 1 ∀i ∈C (7.21b)

xdo ≤ κ (7.21c)

∑
j:(i, j)∈A

xi j−∑
j:( j,i)∈A

x ji =

 xdo for i = o
0 ∀i ∈C

−xdo for i = d
(7.21d)

ar
i ( ∑

j:(i, j)∈A
xi j)≤ tr

i ≤ br
i ( ∑

j:(i, j)∈A
xi j) ∀r ∈ R, i ∈ N (7.21e)

xi j(tr
i + tr

i j− tr
j)≤ 0 ∀r ∈ R,(i, j) ∈ A (7.21f)

xi j ∈ {0,1} ∀(i, j) ∈ A (7.21g)
xdo ≥ 0, integer. (7.21h)
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o d...
...

Fig. 7.2: Network structure of the VRPTW, where xdo ≤ κ .

Using the grouping of the constraints

A=

{[
x

xdo

]
∈ {0,1}|A|×Z+

∣∣∣∣ (7.21b) –(7.21c)
}

(7.22a)

D=


 x

xdo
t

 ∈ {0,1}|A|×Z+×R|R||N|
∣∣∣∣ (7.21d) –(7.21f)

 , (7.22b)

we obtain the linear relaxation of the classical set partitioning model as the MP:

z⋆MP = min ∑
r∈R

crλr (7.23a)

s.t. ∑
r∈R

airλr = 1 [πi] ∀i ∈C (7.23b)

∑
r∈R

λr ≤ κ [πκ ] (7.23c)

λr ≥ 0 ∀r ∈ R, (7.23d)

with dual variables πi ∈ R, ∀i ∈ C, and πκ ≤ 0. Note that the generated columns
correspond to extreme rays of conv(D).

If z⋆MP is fractional and we know that z⋆ILP ∈ Z, then we can add c⊺x≥ z′ (where
z′ = ⌈z⋆MP⌉) as a cut to the ILP. In the MP (7.23), this translates to

∑
r∈R

crλr ≥ z′ [πz] (7.24)

where, after reoptimizing the RMP, the associated dual πz takes value 1 whereas
πi = 0, ∀i ∈C, and πκ = 0. This is not of great dual value! However, when such a
cut c⊺x≥⌈z⋆MP⌉ can be applied to dynamically restrict the domain of the ISP, it turns
out to be extremely powerful, see Illustration 7.3 (z-cuts within the ISP) and Exam-
ple 7.9 (Preferential bidding system). Nevertheless, the mathematical expression of
this cut in the ILP, ∑(i, j)∈Ado

ci jxi j ≥ c, is the same as any cut in the x-variables writ-
ten as ∑(i, j)∈Ado

fi jxi j ≥ f . If we can correctly implement the former, we can also
for the latter.

If the number of vehicles xdo is optimized on arc (d,o), say using a large cost cdo,
then xdo ≥ ⌈x⋆do⌉ is a valid cut for an optimal fractional value x⋆do. In the IMP, this
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translates as ∑r∈R λr ≥⌈x⋆do⌉. Otherwise, branching decisions on xdo can be imposed
in the search tree.

One of the most commonly used family of cuts for vehicle routing problems is the
rounded capacity cuts that were initially proposed for the capacitated vehicle routing
problem (Laporte et al., 1985). They are defined as follows. Let S ⊆C be a subset
of customers such that |S| ≥ 2 and denote by δ−(S) = {(i, j) ∈ A | i ̸∈ S, j ∈ S} the
subset of arcs entering S. A lower bound LB(S) on the number of vehicles required
to service the customers in S is given by LB(S) = ⌈∑i∈S qi/Q⌉. Consequently, in a
feasible solution to the VRPTW, the total vehicle flow entering subset S must be at
least equal to LB(S). This yields the following rounded capacity cuts:

∑
(i, j)∈δ−(S)

xi j ≥ LB(S) ∀S⊆C such that |S| ≥ 2, (7.25)

that can be rewritten in terms of the λ -variables as follows:

∑
r∈R

nSrλr ≥ LB(S) [πS] ∀S⊆C such that |S| ≥ 2, (7.26)

where nSr indicates the number of times that route r ∈ R enters subset S and πS is the
associated dual variable. In the ISP, the adjusted cost c̃i j of arc (i, j) ∈ Ado becomes

c̃i j =


ci j−πκ for (i, j) = (d,o)

ci j−∑S∈Si j πS ∀(i, j) ∈ A such that i = o
ci j−πi−∑S∈Si j πS ∀(i, j) ∈ A such that i ̸= o,

(7.27)

where Si j is the set of subsets S such that (i, j) ∈ δ−(S) (i.e., (i, j) enters set S).
Obviously, only the subsets S for which a capacity cut has been generated need to
be considered.

To illustrate the potential impact of the rounded capacity cuts, we use the VRPTW
example presented in Illustration 5.1 with C = {1,2,3,4}, q1 = q3 = 1, q2 = q4 = 2,
and Q = 5. Applying column generation to solve the MP (with an ESPPRC pricing
problem), we obtain the optimal solution

λ
⋆
132 = λ

⋆
134 = λ

⋆
24 = 0.5 and λ

⋆
r = 0 for all other routes r ∈ R,

with a cost z⋆MP = 65.5. In terms of the x-variables, this solution writes as:

x⋆do = 1.5,x⋆o1 = x⋆13 = x⋆4d = 1,x⋆o2 = x⋆24 = x⋆32 = x⋆34 = x⋆2d = 0.5,
x⋆i j = 0 for all other arcs (i, j) ∈ Ado.

For the set S = C, we compute that ∑(i, j)∈δ−(S) x⋆i j = ∑r∈R nSrλ
⋆
r = 1.5 and

LB(S) = ⌈ 6
5⌉ = 2. Therefore, the corresponding rounded capacity inequality (7.26)

is violated (1.5 ̸≥ 2). Adding this cut to the MP and re-optimizing, it produces an
improved dual bound z⋆MP = 73.5 attained at solution:



7.2 Cutting Planes 451

λ
⋆
1 = λ

⋆
132 = λ

⋆
24 = λ

⋆
34 = 0.5 and λ

⋆
r = 0 for all other routes r ∈ R.

Given that the optimal value z⋆IMP = 74, we observe that this single cut closes 94.1%
(= (73.5− 65.5)/(74− 65.5)) of the integrality gap. Furthermore, adding the cut
c⊺x≥ ⌈z⋆MP⌉ on the objective function fully closes the gap.

This result is impressive but adding rounded capacity cuts is not always so ef-
fective. Indeed, it depends on the tightness of the capacity constraint with respect
to other route feasibility constraints. For instance, very narrow time windows in the
VRPTW may heavily restrict route feasibility and increase the number of vehicles
required. In this case, because the average number of customers per route is small,
the capacity constraint is not very tight and the rounded capacity cuts are typically
not violated by an optimal MP solution. At the opposite, wide time windows suggest
that vehicle capacity might play a major role and, thus, rounded capacity cuts may
help to tighten the linear relaxation. Given that there is an exponential number of
rounded capacity inequalities, they should be generated dynamically using one or
several separation algorithms (see Lysgaard et al., 2004). Nevertheless, it seems a
good practice to always add a priori to the MP the inequality (7.26) for S =C.

To conclude this illustration, let us highlight two weaknesses of the rounded ca-
pacity cuts. First, the right-hand side LB(S) is only a lower bound on the number of
vehicles required to serve the customers in S, even if we only consider the vehicle
capacity constraint. In fact, computing this number exactly amounts to solving an
NP-hard bin packing problem, which is too time-consuming to be solved in prac-
tice. On the other hand, LB(S) can easily be computed and taken into account in
the cut separation algorithms. Second, the rounded capacity cuts are robust cutting
planes because they are defined on the x-variables of the two-index compact for-
mulation of the VRPTW and do not change the nature of ISP. However, the notion
of paths is not explicit in this formulation and the left-hand side of (7.25) does not
count the number of vehicles used to serve the customers in S but rather the number
of times that a vehicle enters into S, counting a vehicle multiple times if it enters
set S more than once. This translates into coefficients nSr in (7.26) that may take a
value greater than 1 even if the corresponding variable λr is clearly associated with
a single vehicle. In Example 7.7, we present a non-robust version of the rounded
capacity cuts where these coefficients are replaced by binary coefficients indicating
whether route r enters subset S at least once or not.

Illustration 7.3 z-cuts within the ISP

The First Cut is the Deepest.

Song by Cat Stevens (1967)

Assume we impose within the pricing problem the additional bound constraints

LB≤ c⊺x≤ UB. (7.28)
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We call these z-cuts because they impose restrictions on the value of the objective
function. The aim of these cuts is to remove not only the current fractional point,
but also non-optimal integer ones from the domain of the ISP. They dynamically
modify D, with all algorithmic consequences, that is, possible complications if a
combinatorial algorithm is used to solve the ISP.

In Example 3.2 on the TCSPP, assume that we impose 7 ≤ c⊺x ≤ 15 within the
pricing problem after iteration 3, see Table 3.1 reproduced below as Table 7.1.

RMP ISP

t primal solution zRMP π0 π7 c̄(π7,π0) p cp tp lb

1 y0 = 1 100.0 100.00 0.00 −97.0 1246 3 18 3.00
2 y0 = 0.22,λ1246 = 0.78 24.6 100.00 −5.39 −32.9 1356 24 8 −8.33
3 λ1246 = 0.6,λ1356 = 0.4 11.4 40.80 −2.10 −4.8 13256 15 10 6.60
4 λ1246 = λ13256 = 0.5 9.0 30.00 −1.50 −2.5 1256 5 15 6.50
5 λ13256 = 0.2,λ1256 = 0.8 7.0 35.00 −2.00 0.0 - - - 7.00

x12 = 0.8, x13 = x32 = 0.2, and x25 = x56 = 1

Table 7.1: Iterations of the column generation algorithm while solving the MP.

The imposed lower and upper bounds come from the following observations:
• because all cost data is integral, the current lower bound can be rounded up to

LB = ⌈6.6⌉= 7;
• the generated path 13256 at iteration 3 is integer feasible for the ILP with
(cost, time) values (15,10), hence the upper bound is set to UB = 15.

The path 1256 previously generated at the fourth iteration cannot be generated any-
more since its cost of 5 is too small. More importantly, the first two generated paths
are removed from the RMP, the first because its cost of 3 is smaller than LB, the
second because its cost of 24 is larger than UB. Observe that out of the nine possible
paths (some already generated, some not), only three satisfy the added z-cuts.

min 3λ1246+14λ12456+ 5λ1256+13λ13246+24λ132456+15λ13256+16λ1346+27λ13456+24λ1356

s.t.18λ1246+14λ12456+15λ1256+13λ13246+ 9λ132456+10λ13256+17λ1346+13λ13456+ 8λ1356≤14
λ1246+ λ12456+ λ1256+ λ13246+ λ132456+ λ13256+ λ1346+ λ13456+ λ1356= 1
λ1246 , λ12456 , λ1256 , λ13246 , λ132456 , λ13256 , λ1346 , λ13456 , λ1356≥ 0.

Table 7.2 summarizes the modified iterations. The RMP is re-solved in iteration
4′ with a single remaining λ -variable, that is, the path variable λ13256 = 1, hence
π0 = 15.0 and π7 = 0. Solving the ISP, we generate the path 13246 with cost 13 and
duration 13. This produces an integer solution x13 = x32 = x25 = x56 = 1 to the RMP
that sets UB = 13. At the same time, the lower bound becomes LB = max{z⋆RMP +
c̄(π7,π0),7}=max{15−2,7}= 13 and the column generation algorithm stops with
an optimality gap of zero.

Using the z-cuts within the ISP, an optimal integer solution to the constrained
shortest path example has been found without branching, see Figure 7.3. An appli-
cation is presented in Example 7.9 (Preferential bidding system).
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RMP ISP
t primal solution zRMP π0 π7 c̄(π7,π0) p cp tp LB UB

1 y0 = 1 100.0 100.00 0.00 −97.0 1246 3 18 3
2 y0 = 0.22,λ1246 = 0.78 24.6 100.00 −5.39 −32.9 1356 24 8 −8.33 7→ 3
3 λ1246 = 0.6,λ1356 = 0.4 11.4 40.80 −2.10 −4.8 13256 15 10 6.6 7→ 7 15
4′ λ13256 = 1 15.0 15.00 0.00 −2.0 13246 13 13 13 13

x⋆12 = x⋆24 = x⋆45 = x⋆56 = 1

Table 7.2: Solution of the MP (and IMP) with the dynamically added z-cuts.

0
3
6
9

12
15

1 2 3 4

z⋆ILP = 13•

Iterations

Fig. 7.3: Lower and upper bounds on z⋆ILP with the dynamically added z-cuts.

Discussion

Whenever there is choice, we are in need of advice about what to do. Theory advo-
cates for integrating cuts into the subproblem since this is potentially stronger:

{x ∈ Rn
+ | Ax≥ b}∩ conv{x ∈ Zn

+ | Dx≥ d, Fx≥ f}
⊆ {x ∈ Rn

+ | Ax≥ b, Fx≥ f}∩ conv{x ∈ Zn
+ | Dx≥ d}.

(7.29)

However, this may not always be possible. When a cutting plane is linking several
subproblems, an integration into the master problem is the way to go. Since they
apparently “carry global information,” we may be looking for such cuts anyway.
When a specialized algorithm for the ISP is not compatible with the cutting planes,
these must go into the master problem as well.

At this point, we are in the good situation that when aiming for stronger formu-
lations, we do not have to decide for either Dantzig-Wolfe reformulation or the rich
body of literature on cutting planes. Even better, since we always work with two
models, we have more options to formulate cutting planes. This is discussed next.

Cutting planes on the master variables

We have already seen the cutting planes Fx≥ f (7.7d) expressed in the λ -variables
as ∑p∈P fpλp+∑r∈R frλr ≥ f in (7.10c). However, these came as a byproduct of cuts
which are designed to strengthen a model in the original x-variables. Additionally,
we may strengthen the model by explicitly deriving information from the integrality
of the λ -variables. Example situations are IMP and ISP (“pattern based”) models
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that are stated without going through a Dantzig-Wolfe reformulation; or when we
convexify a binary program; or when we apply discretization and arrive at reformu-
lation IMP̈ (7.4).

Now we assume that we know a set of cutting planes ∑p∈P̈ gpλp +∑r∈R̈ grλr ≥ h
to be added to the linear relaxation of (7.4), the cut coefficients gp,gr and h given
as integer vectors (scaled if necessary). The resulting MP̈ reads as

z⋆MP̈ = min ∑
p∈P̈

cpλp + ∑
r∈R̈

crλr (7.30a)

s.t. ∑
p∈P̈

apλp + ∑
r∈R̈

arλr ≥ b [πππb] (7.30b)

∑
p∈P̈

gpλp + ∑
r∈R̈

grλr ≥ h [γγγ] (7.30c)

∑
p∈P̈

λp = 1 [π0] (7.30d)

λp≥ 0 ∀p ∈ P̈ (7.30e)
λr≥ 0 ∀r ∈ R̈ (7.30f)

∑
p∈P̈

xpλp + ∑
r∈R̈

xrλr = x ∈ Rn
+. (7.30g)

where πππb,γγγ ≥ 0, and π0 ∈ R. From the restricted master problem point of view,
there is no difference between the strengthened formulations (7.10) and (7.30). The
differentiation comes to light in the ISP

c̄(πππb,γγγ,π0) =−π0 + min
x∈D

cx−πππ
⊺
bax−γγγ

⊺gx

s.t. cx = c⊺x, ax = Ax, gx = g(x),
(7.31)

equivalently rewritten as

c̄(πππb,γγγ,π0) =−π0 + min
x∈D

c⊺x−πππ
⊺
bAx−γγγ

⊺gx

s.t. gx = g(x),
(7.32)

where gx adequately computes the column coefficients of the added cuts, as does
c⊺x for the cost value cx and Ax for the column coefficients ax (see Figure 7.4).
However, observe that for some cuts on the master variables, it may not be possible
to perform the (linear) substitution for g(x) in the objective function.

It remains the question of how the g(x) should “know about” the cut coefficients.
In our illustrations below, we restrict ourselves to rank-1 inequalities, i.e., those
where g(x) is derived from the column coefficients ax only, i.e., gx = g(ax). It turns
out that we can, in concrete cases, encode in a relatively easy way the semantics of
the cut coefficients using the extra variables gx and a system of linear constraints
encoding gx = g(ax) in the ISP.
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λxcx = c⊺x
ax = Ax
gx = g(ax)

 πππb
γγγ

π0



Fig. 7.4: Information flow of the column generation algorithm solving the MP̈ (7.30)
with cuts on the master variables, gx given as a function of ax in the ISP (7.32).

Illustration 7.4 Chvátal-Gomory cuts

The Chvátal-Gomory cuts are based on a simple observation:

If a is an integer number and a≥ b, then a≥ ⌈b⌉. (7.33)

Let us write the IMP̈ using the finite set of variables indexed in X as

z⋆IMP̈ = min ∑
x∈X

cxλx

s.t. ∑
x∈X

axλx ≥ b [πππ]

λx ∈ Z+ ∀x ∈ X⊂ Zn
+,

(7.34)

assuming a single pricing problem. The procedure for defining a Chvátal-Gomory
cut of rank-1 on ∑x∈X axλx ≥ b in the MP̈ is in three steps.

1. Choose a non-negative vector of weights w ∈ Rm
+ and left-multiply

the system of constraints. This gives ∑x∈X w⊺axλx ≥ w⊺b.
2. The following inequality is thus valid: ∑x∈X⌈w⊺ax⌉λx ≥ w⊺b.
3. Because a = ∑x∈X⌈w⊺ax⌉λx is an integer number when λx ∈ Z+,
∀x ∈ X, we use observation (7.33) with b = w⊺b to obtain the cut

∑
x∈X
⌈w⊺ax⌉λx ≥ ⌈w⊺b⌉. (7.35)

In the case of an inequality system ∑x∈X axλx ≤ b, the observation a ≤ b, where a
is an integer number, leads to a≤ ⌊b⌋, and the cut is given by
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∑
x∈X
⌊w⊺ax⌋λx ≤ ⌊w⊺b⌋. (7.36)

If we combine equality constraints, both versions are valid. Assume we are given
L cuts in (7.30c) expressed by (7.35) with associated γγγ ∈R|L|+ . For a row-index ℓ∈ L,
coefficient gℓx (similarly for right-side hℓ) is calculated using the ceiling function
taking vector ax as argument together with a weight vector wℓ, that is,

gℓx = ⌈w⊺ℓ ax⌉ ∀ℓ ∈ L, x ∈ X (7.37a)
hℓ = ⌈w⊺ℓb⌉ ∀ℓ ∈ L. (7.37b)

The ISP (7.32) becomes

c̄(πππb,γγγ,π0) =−π0 + min
x∈D

c⊺x−πππ
⊺
bAx−γγγ

⊺gx

s.t. gx =
[
⌈w⊺ℓ ax⌉

]
ℓ∈L ,

(7.38)

where
[
⌈w⊺ℓ ax⌉

]
ℓ∈L denotes the Chvátal-Gomory function of rank 1. Observe that

we are lucky regarding the ceiling and floor functions. Indeed, y = ⌈x⌉ can be com-
puted using the integer linear inequality y≤ x+1−ε , y∈Z, for a small value ε > 0
and gℓx = ⌈w⊺ℓ ax⌉ in (7.37a) and (7.38) is replaced by

gℓx ≤ w⊺ℓ ax +1− εℓ ∀ℓ ∈ L, x ∈ X

gℓx ∈ Z ∀ℓ ∈ L, x ∈ X.
(7.39)

Note that the non-negative sign of the dual values γγγ makes it attractive to have gℓx
as large as possible. Similarly, y = ⌊x⌋ can be replaced by y≥ x−1+ ε , y ∈ Z.

Illustration 7.5 Clique cuts for the set partitioning problem

In general mixed-integer programs, clique cuts can be derived from the so-called
conflict graph. This graph carries information about pairs of binary variables which
must not attain certain values simultaneously. We consider a basic version here and
restrict the discussion to the linear relaxation of the set partitioning model for which
the MP is given as

z⋆MP = min ∑
x∈X

cxλx

s.t. ∑
x∈X

aixλx = 1 [πi ∈ R] i ∈ {1, . . . ,m}

λx ≥ 0 ∀x ∈ X,

(7.40)

where X= {xp}p∈P is the set of extreme points of conv(D), D= {x∈Zn |Dx≥ d},
and the binary variable λx takes value 1 if and only if the binary column ax =
[aix]i=1,...,m is selected in the partition of the m rows. We assume that every column
is computed by a linear function, say ax = Ax, as well as the cost cx given by c⊺x.
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The x-vectors are solutions of the ISP given by

c̄(πππ) = min
x∈D

cx−πππ
⊺ax

s.t. cx = c⊺x, ax = Ax.
(7.41)

We define the conflict graph G = (V,E) of (7.40) as follows. There is a node
for every generated variable λx, x ∈ X′ = {xp}p∈P′ ; we therefore identify V = X′.
Whenever it is infeasible to set λx1 = λx2 = 1 for some x1 ̸= x2—this is called a
conflict—we have an edge {x1,x2} ∈ E. Note that this is equivalent to x⊺1x2 ≥ 1.
Every clique Q ⊆ V in G represents a subset of master variables, at most one of
which can be set to value 1 in any integer solution to (7.40). This immediately gives
the associated clique cut

∑
x∈Q

λx ≤ 1 [γQ ≤ 0]. (7.42)

A negative reduced cost variable λx is either part of the clique cut (7.42) or not.
Thus, in the ISP, we introduce a variable gQ ∈ {0,1} for the binary cut coefficient
and it appears in the additional non-negative term −γQ gQ in the objective function.
We must ensure that gQ = 1 if and only if x enlarges the clique Q, in which case
x is in conflict with all y ∈ Q. Let us introduce variable zQy ∈ {0,1} to represent
whether x conflicts with y ∈ Q. For a generated x ∈D, the correct binary values of
gQ and zQy, ∀y ∈ Q, can be set, e.g., using the constraints

m

∑
i=1

yixi ≤ (
m

∑
i=1

yi) zQy ∀y ∈ Q (7.43a)

∑
y∈Q

zQy−|Q|+1≤ gQ ≤
1
|Q|∑y∈Q

zQy. (7.43b)

The constraints (7.43a) examine one by one the possible conflicts with every y ∈Q,
fixing zQy = 1 if ∑

m
i=1 yixi ≥ 1, otherwise 0 if there is no conflict with y as it also sets

gQ = 0 in (7.43b) when ∑y∈Q zQy < |Q|. These |Q|+2 constraints are added to the
ISP (7.41) for each Q for which we add a clique cut (7.42) to the MP (7.40). This
extra burden can be handled, also heuristically, by tailoring to the specific applica-
tion. Spoorendonk and Desaulniers (2010) present ideas for the VRPTW. Note that
all the above also works for set packing master problems.

For the separation of a most violated clique cut, one puts a weight of λx to node
x ∈ V and solves a maximum weighted clique problem in G. This is itself a hard
problem, for which, however, good heuristics exist.

Note 7.6 (How much is too much?) As always with cutting planes, we may find (too)
many of them. Then we have to keep an eye on the tradeoff between strengthening
the relaxation and the computational burden this entails for re-optimizing a larger
restricted master problem. ÏOne may first collect violated cuts in a pool, and then
select from the pool according to some standard cut selection criteria.
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Discussion

We have derived cutting planes in both ways, based on the integrality of the original
or the master variables. However, we see that it is not the question whether cutting
planes are formulated in the master variables or not (this is possible in both cases),
but whether they can be expressed by reformulation of the original variables alone or
not. More precisely, the former is exactly the special case of the latter when master
cut coefficients can be expressed as in (7.11), that is, the values of fx are given by
Fx, linearly in x.

Conversely, the cut coefficients gx = g(ax) in Illustration 7.4 (Chvátal-Gomory
cuts) are computed using linear inequalities in x ∈ Zn

+ and gx ∈ Z|L|+ (similarly for
Illustration 7.5, Clique cuts for the set partitioning problem). When we are not able
to express g(x) linearly in x, we need extra variables g and a system of constraints
for gx = g(x), say Fx + Gg ≥ f for x,g ∈ Zn+|L|

+ , i.e., we construct an extended
formulation of the ISP (see Definitions 1.23–1.24, p. 25).

In the spirit of reverse engineering a compact formulation, we find the extended
compact formulation ILP (7.44) from which a strengthened MP results by Dantzig-
Wolfe reformulation:

z⋆ILP = min c⊺x
s.t. Ax≥ b

Dx≥ d
Fx+Gg≥ f

x,g ∈ Zn+|L|
+ ,

(7.44)

with |L| extra variables in vector g. As a side effect, enabled by discussions about
cutting planes, we may find inspiration for different compact formulations for an
optimization problem. Conversely, considering extended formulations from the lit-
erature may motivate finding cutting planes in master variables.

A main takeaway of this section is that cutting planes formulated in the origi-
nal variables only cannot be stronger than those formulated in original and extra
variables. We keep our observations in mind when we move on to branching.

7.3 Branching

At each node of a branch-and-price tree, the master problem is solved by column
generation. If x⋆MP in (7.5) is not integer (see Integrality Test) and z⋆MP is less than
the incumbent’s solution value UB, we need to make decisions. Even though, in
principle, we can arrive at integer solutions by only adding cutting planes, this is
not considered efficient. Instead, branching takes place: we split the set of integer
solutions into the feasible domains of created nodes, thereby eliminating fractional
solutions.
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Note 7.7 (Know your branch-and-bound.) For standard branch-and-bound, there is
a huge body of literature on branching rules. It is there for a reason: when we make,
e.g., a 2-way branching decision “without any effect,” we essentially only double
the work. It is debatable what an “effect” is, but intuitively, branching should lead
to some improvement, primal or dual, like arriving at integer solutions or obtaining
(significantly) better local dual bounds in all created nodes. The latter is also known
as aiming for a balanced search tree. This may help in improving the global dual
bound. In branch-and-price, solving a node is typically (much) more costly than in
branch-and-bound. Thus, branching decisions can become even more critical. Since
branching interacts with pricing, we must also keep an eye on implications to the
ISP. In what follows, we make several suggestions for finding branching candidates,
that is, values that are fractional but should not be, so that we can branch on them.
Check Ranking the candidates later for how to select a candidate when there are
many.

Just as we had two options for finding cutting planes, we have the same choices
for branching: decisions on the original x-variables and/or the master λ -variables.
Both have been used with success in the literature, and we present them in turn.

Branching on the original variables

Branching on the “original” x-variables means decisions based on the fractional
components of x⋆MP. Whenever x⋆j /∈ Z for some variable x j, we can branch on it

x j ≤ ⌊x⋆j⌋ or x j ≥ ⌈x⋆j⌉. (7.45)

This is called a variable disjunction and it is a branch-and-bound classic. When the
master problem is not aggregated, this suffices to arrive at an integer solution to the
ILP. More generally, integer combinations of x-variables can be used for branching.
When f⊺x⋆MP = α /∈ Z for some f ∈ Zn, we can impose the decisions

f⊺x≤ ⌊α⌋ or f⊺x≥ ⌈α⌉. (7.46)

Both versions (7.45) and (7.46) are special cases of cutting planes, formulated in
the original variables of the ILP (7.1). We thus already know how to handle this. We
have the two options that branching explicitly splits the ISP domain or not. Assume
a grouping of the constraints of the ILP in sets A and D.

• Either we add the constraints (7.46) to the set A like in (7.8). The domain D

of the ISP is not modified. With X appropriately defined, in the down-branch,
f⊺x≤ ⌊α⌋ appears in the MP as

∑
x∈X

fxλx ≤ ⌊α⌋ [γ1] (7.47)
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with the associated dual value γ1 ≤ 0, and fx = f⊺x, ∀x ∈ X. Then the objective
function of the ISP is modified with the term −γ1 fx, i.e., a positive slope on fx
favoring lower values as requested in (7.47). In the up-branch, we have a similar
behavior:

∑
x∈X

fxλx ≥ ⌈α⌉ [γ2] (7.48)

in the MP, where γ2 ≥ 0 impacts the objective function of the ISP as−γ2 fx, i.e.,
a negative slope on fx favoring the larger values for (7.48).
Although the domain of the ISP is not modified, new variables in the objec-
tive function may change the character of the pricing problem, see Note 7.3 (A
misinterpretation).

• Or we explicitly split the set D, and impose the branching constraints (7.46)
like in (7.14); the domain of the ISP changes to:

{x ∈D | f⊺x≤ ⌊α⌋} in the down-branch node,
{x ∈D | f⊺x≥ ⌈α⌉} in the up-branch node.

(7.49)

Note again that for the branching decision to take effect, that is, to cut off the
current fractional MP solution, all master variables that are incompatible with
the branching decision must be eliminated from the RMP.

Ï If one puts the relation x = ∑p∈P′ xpλp +∑r∈R′ xrλr with integrality require-
ments on x in the MP (also known as the explicit master), a solver automatically
branches on original variables, however, without “telling” the pricing problem. The
latter must be done manually by transferring the local bounds on the x-variables in
the explicit master problem to the x-variables in the ISP.

Since branching constraints are “convexified” in (7.49), the second option is usu-
ally preferred in terms of strength of the dual bound from the reformulation. Less
interference with the ISP in an implementation may speak for the first option.

In Example 7.1, we look at x-branching decisions to solve our long lasting Time
constrained shortest path problem. In some situations, it can be useful to split into
more than two branches, as shown in the following Illustration 7.6.

Illustration 7.6 x-branching for the VRPTW

Recall the two-index formulation (7.21) for the VRPTW. Here are some possible
branching ways.

• We have already seen a global one on the ILP: branching (or cutting) on the
number of vehicles if the current value x⋆do is fractional. If the cost cdo is large
enough, the number of vehicles is already minimized and only a rounding cut
is added: ⌈x⋆do⌉ ≤ xdo ≤ κ . Otherwise, two branches are created:

xdo ≤ ⌊x⋆do⌋ and ⌈x⋆do⌉ ≤ xdo ≤ κ. (7.50)
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• Another type of decisions concerns a single binary arc-flow variable of the ISP.
Any fractional one, say xi j, (i, j) ∈ A, can be set to 0 or 1 on the domain D.
This also generally implies other restrictions on the network structure, for ex-
ample the elimination of a number of useless arcs or time interval reductions,
see Example 7.1 (Time constrained shortest path problem) for some details.

• If a customer i is visited by more than one route, then the solution in the xi j-
variables to formulation (7.21) is necessarily fractional. This may also open
opportunities for imposing decisions on the other type of variables present in
the ISP, that is, the start of service time ti for i ∈C. If we assume integer data,
two branches are created:

ti ≤ ⌊t⋆i ⌋ and ⌊t⋆i ⌋+1≤ ti. (7.51)

A way to determine if customer i ∈ C is a candidate for branching, and hence
compute t⋆i , is presented in Gélinas et al. (1995, Proposition 1). Recursively
compute the maximum earliest and minimum latest service times at customer i
using the routes visiting it, and denote them as Li and Ui, respectively. Then i is
a candidate if and only if Li >Ui. By choosing t⋆i such that Ui ≤ t⋆i < Li, one of
the routes of the current solution is not feasible in each branch. These decisions
create a new time window at customer i on each branch and are, therefore, easily
treated within the ISP.

• Our final suggestion is derived from a fractional λ -variable in the solution of
the MP. For example, assume that the value λ⋆12345 is fractional for the od-path

o⇝ 1⇝ 2⇝ 3⇝ 4⇝ 5⇝ d.

Figure 7.5 depicts the natural way of branching on this variable with two
branches. As noted before, fixing λ12345 at 1 is easy but this is not the case when
fixing it at 0 because the pricing may re-generate that positive basic variable.

0 < λ⋆12345 < 1

λ12345 =
1 λ12345 = 0

Fig. 7.5: The natural way to branch on a fractional binary λ -variable.

An alternative is to generalize the branching on a single arc-flow variable to a
larger set of such variables: this creates multiple xi j-branches as in Desrosiers
et al. (1984). Selecting the four binary variables x12, x23, x34, and x45 amongst
those involved in the above od-path, Figure 7.6 depicts a possible partition into
only five branches of the 24 = 16 configurations.
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1. The branch on the left fixes all four variables at 1. Observe that this does
not correspond to λ12345 = 1 unless, for example, customer 1 has no pre-
decessors and 5 has no successors, or if the capacity is exceeded with the
addition of any customer. The other four branches are described next.

2. A branch that fixes x12 = x23 = x34 = 1 while the last variable x45 in the
sequence takes value 0. This corresponds to one configuration.

3. A branch that fixes x12 and x23 to 1 while x34 = 0 and x45 ∈ {0,1}. This
branch comprises 2 configurations.

4. The next to the last branch fixes x12 = 1 and x23 = 0. As x34,x45 ∈ {0,1}, it
comprises 4 configurations.

5. The last branch comprises 8 configurations by only fixing x12 = 0, leaving
free the three other variables.

Although presented here in the context of a fractional path-variable, the more-
than-two-branches strategy can be done on any subset of at least two fractional
arc-variables.

0 < λ⋆12345 < 1

x12 =
x23 =

x34 =
x45 =

1

x 12
=

x 23
=

x 34
=

1,
x 45

=
0

x 1
2
=

x 2
3
=

1,
x 3

4
=

0

x
12 =

1, x
23 =

0

x12 = 0

Fig. 7.6: A branching partition for the sequence 1⇝ 2⇝ 3⇝ 4⇝ 5.

Note 7.8 (It’s all about timing)Ï Even though we wrote about eliminating variables
from the master problem, this is not actually done in an implementation. Remember
that there is “only one” linear program maintained in the entire branch-and-price
tree, which is locally modified in every node. If variables would be deleted in one
node, it would in fact be deleted from all nodes. This is why one works, e.g. with
local bounds on the variables that fix them to zero. This brings us to the question
when these bounds should be applied. And the answer lies in the above: not when a
branching decision is made, but when a node or one of its descendants is visited to
be processed.
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Identical subproblems and disaggregation

In the case of aggregated master variables,

λx = ∑
k∈K

λ
k
x, ∀x ∈ X, (7.52)

like in (4.53), we have direct access only to xMP = ∑k∈K xk
MP, the aggregated orig-

inal variables which we compute as xMP = ∑x∈X xλx. These are sometimes useful,
like for the VRPTW where they can take fractional values in the formulation (5.7),
see also Desaulniers et al. (1998a). Sometimes they are not useful at all. Let us illus-
trate this with the help of the bin packing problem, in which we have to pack n items
of size wi, i ∈ {1, . . . ,n}, into |K| identical bins of capacity W each. The number of
used bins should be minimized and the textbook ILP reads as follows:

z⋆ILP = min ∑
k∈K

xk
0 (7.53a)

s.t. ∑
k∈K

xk
i = 1 ∀i ∈ {1, . . . ,n} (7.53b)

n

∑
i=1

wixk
i ≤Wxk

0 ∀k ∈ K (7.53c)

xk
i ∈ {0,1} ∀i ∈ {0, . . . ,n}, k ∈ K. (7.53d)

A Dantzig-Wolfe reformulation by convexification of (7.53c)–(7.53d) and ag-
gregation over K leads to the classic “pattern based” model, with set P of packing
patterns. The binary parameter aip indicates whether pattern p contains item i or
not:

z⋆IMP = min ∑
p∈P

λp

s.t. ∑
p∈P

aipλp = 1 ∀i ∈ {1, . . . ,n}

λp ∈ {0,1} ∀p ∈ P.

(7.54)

We have not only deliberately lost the index k in the aggregated master vari-
ables λp = ∑k∈K λ k

p , but also does the ISP use binary variables xi for every item
i ∈ {1, . . . ,n}, without any reference to a specific k. These variables, as representa-
tives for some bin, can be seen as aggregated original variables

xi = ∑
k∈K

xk
i = ∑

k∈K
∑
p∈P

aipλ
k
p

(
= ∑

p∈P
aip(∑

k∈K
λ

k
p) = ∑

p∈P
aipλp = 1

)
, (7.55)

that reflect how often we pack item i in all selected patterns. For this model, the an-
swer is easy and comes directly from the set partitioning constraints in (7.54): every
item is packed exactly once. The aggregated original variables are integer, regard-
less of the, potentially fractional, values of the aggregated master λp-variables. And
this means that we cannot branch on the aggregated xi-values.
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For x ∈ X, disaggregation of λx via the set {λk
x}k∈K , into {xk

MP}k∈K , is fail-safe
because branching on the xk

MP, k ∈K, finally produces an integer solution to the ILP.
However, note again from the options we discussed in Chapter 4 (p. 204) that a map-
ping from the aggregated master variables λx to the disaggregated {λ k

x}k∈K , is not
unique. We do, for example, prefer the solution from the zero-cost balanced trans-
portation problem (4.62) over the symmetric “even split” disaggregation in (4.57):
The latter may produce a completely fractional solution while the former is likely
“more λ -integral.” In fact, when λλλ

⋆
RMP is integral, the solution {λλλk⋆

RMP}k∈K to the
transportation problem (4.62) is integer, and so is {xk⋆

MP}k∈K . This is also important
insofar that a useful disaggregation is needed at the very latest when we produce a
solution to the ILP, where integer {xk⋆

MP}k∈K values have to be put on the table.
On the downside of disaggregation during branching, it (at least partially) re-in-

troduces the symmetry in index k that we wanted to eliminate by performing the
aggregation in the first place: When we have branched on variables xk, k ∈ K′ ⊆ K,
already, we need to differentiate between |K′| pricing problems ISPk, k ∈ K′, and
one more ISP “without” index k. An alternative is to formulate a different ILP with-
out the index k, as discussed in Extended compact and subproblem formulations or
by using the results of Propositions 4.16 or 4.17, respectively, on ISP formulations
defined on a polyhedral cone or having the integrality property. For the bin pack-
ing problem, we can have a network-based formulation, see Example 4.1 on the
knapsack problem and Example 4.2 on the cutting stock problem.
And yet another alternative (drum roll!) is to read on: we branch on the λ -variables.

Branching on the master variables

Similarly to what we did for cutting planes, we may derive branching decisions ex-
plicitly from the integrality of master variables. In a series of papers, François Van-
derbeck (2000, 2005, 2011) develops many general ideas for this, and the following
content is largely inspired by his œuvre.

Fig. 7.7: François Vanderbeck, a great contributor to generic branch-and-price algo-
rithmics and implementation, with an admirer (Aussois, France, 2019-01-07).
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Let us write again the IMP̈ using the finite set of variables indexed in X as

z⋆IMP̈ = min ∑
x∈X

cxλx

s.t. ∑
x∈X

axλx ≥ b [πππ]

λx ∈ Z+ ∀x ∈ X⊂ Zn
+,

(7.56)

assuming a single pricing problem. The notation and discussion can be adapted to
other cases like block-diagonal structures with identical or non-identical blocks.

When the master problem solution λλλ
⋆
RMP is fractional, it seems natural to branch

on a single λx-variable, but this is not a good idea in general. For an intuition, think
of the binary case. When λ⋆x /∈ {0,1} for some x ∈ X, the up-branch (λ⋆x = 1) fixes
x, cx and ax, as part of the ILP and IMP̈ solutions, with a likely impact on the dual
bound. On the down-branch (λ⋆x = 0), however, only one particular x out of so many
is forbidden, and a “similar” variable can take the role of λx in the RMP solution.
This down-branch has essentially no effect, in particular not on the dual bound,
yielding an unbalanced tree. Worse, in the pricing problem, one has to forbid the
re-generation of x, which is difficult, if not impossible to accomplish.

Branching on partitioning X with a single hyperplane

We assume in the rest of this section that the reformulated domain D is defined either
as a polytope or a polyhedral cone (see subsection Polytope and polyhedral cone in
Chapter 4). For both domain types, it is therefore not necessary for the index-set X
to use the binary parameter to differentiate between points and rays.

Let us develop ideas behind branching on constraints in the λx-variables. Classi-
cal (original x-variables) branching recursively splits the fractional solution space in
two (or more) parts, and as an intended effect, partitions the integer points. The in-
tegrality of a solution in the end of the branching process is guaranteed by explicitly
eliminating the “space between integer x points,” the fractionality in x. Now, Theo-
rem 4.2 (Hilbert-Giles-Pulleyblank) says that we combine an integer xIMP̈ solution
from an integer number of integer points and rays in X. Remember that the coeffi-
cients of this combination are precisely our λx-variables. We conclude that for every
subset of integer points and rays in X, the sum of the corresponding λx-variables is
integer in any integer solution xIMP̈. This is true regardless of whether we have one
or several pricing problems, whether an aggregation of identical pricing problems
was performed or not, and whether the pricing problems are bounded or not.

This motivates the following. We identify a condition on x that splits in two the
vectors in X such that the sum of the corresponding λx-variables on one part is
fractional, and then we branch on that sum. This eliminates the fractionality in the
space of the λx-variables directly, which implicitly removes the fractionality in x.
Formulating the split condition in x allows us to “check” it in the pricing problem.
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We first see that it is always possible to find a single linear constraint in x that
separates a fractional master solution.

Proposition 7.1. (Vanderbeck, 2000, Proposition 2, p. 118) Given a fractional so-
lution λλλ

⋆
RMP, there exists a hyperplane f⊺x = f , (f, f ) ∈ Zn+1, such that

β = ∑
x∈X: f⊺x≥ f

λ
⋆
x is fractional. (7.57)

Proof. Let F = {x ∈X | λ⋆x−⌊λ⋆x⌋> 0} ⊂ Zn
+ denote the index-set of the fractional

variables of λλλ
⋆
RMP. Observe that F also corresponds to the set of extreme points of

conv(F). For an arbitrary but fixed fractional variable λ⋆q, xq ∈ F, define the subset
F′ = F \ {xq}. There exists a hyperplane separating xq from the rational polytope
conv(F′). That is, for some hyperplane expressed by f⊺x = f , (f, f )∈Zn+1, we have
xq on one side, and the other points on the other side:

f⊺xq ≥ f

f⊺x ≤ f −1, ∀x ∈ conv(F′)∩Zn
+.

(7.58)

The set of variables in ∑x∈X: f⊺x≥ f λ⋆x whose index-vector x satisfies the prescribed
condition f⊺x ≥ f includes λ⋆q by construction as the only fractional one, but po-
tentially also a number of integer variables, either positive or zero valued. Because

∑
x∈X: f⊺x≥ f

λ
⋆
x−

⌊
∑

x∈X: f⊺x≥ f
λ
⋆
x

⌋
= λ

⋆
q−⌊λ⋆q⌋> 0, then

β = ∑
x∈X: f⊺x≥ f

λ
⋆
x = λ

⋆
q−⌊λ⋆q⌋+

⌊
∑

x∈X: f⊺x≥ f
λ
⋆
x

⌋
is fractional. ⊓⊔

x⋆MP•

xq ∈F

conv(F)

conv(F′)

f⊺x = f
•

■

•

• ■

•

■

• λ⋆x fractional
■ λ⋆x integer

Fig. 7.8: Solution x⋆MP as a positive combination of seven positive λ⋆x-variables.

Let us illustrate some elements of the proof using Figure 7.8. The optimal solu-
tion x⋆MP ∈ Rn

+ is here a positive combination of seven positive λ⋆x-variables, either
fractional (•) or integer ones (■). There are four fractional variables and xq is selected
as the lowest one in F. It is visually easy to draw a hyperplane f⊺x = f separating
xq from the polytope conv(F′) derived from the three other fractional variables.
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Let f⊺x ≥ f be the closed half-space below the hyperplane such that f⊺xq ≥ f . In
∑x∈X: f⊺x≥ f λ⋆x, only three positive variables appear: the fractional variable λ⋆q and
two integer-valued. This sum is obviously fractional, i.e., ∑x∈X: f⊺x≥ f λ⋆x = β /∈ Z+.

Master problem modifications. Once we have identified a condition f⊺x≥ f such
that the sum in (7.57) is fractional, we branch on that sum, i.e., on the number of all
λx-variables that correspond to x which satisfy the condition:

∑
x∈X: f⊺x≥ f

λx ≤ ⌊β⌋ or ∑
x∈X: f⊺x≥ f

λx ≥ ⌈β⌉. (7.59)

We write the respective master problems as follows

min ∑
x∈X

cxλx

s.t. ∑
x∈X

axλx ≥ b [πππ ≥ 0]

∑
x∈X

gxλx ≤ ⌊β⌋ [γ1 ≤ 0]

λx ≥ 0 ∀x ∈ X

min ∑
x∈X

cxλx

s.t. ∑
x∈X

axλx ≥ b [πππ ≥ 0]

∑
x∈X

gxλx ≥ ⌈β⌉ [γ2 ≥ 0]

λx ≥ 0 ∀x ∈ X

(7.60)

with a binary coefficient gx for all x∈X that takes value 1 if and only if the condition
f⊺x≥ f is satisfied.
Carefully note in (7.47)–(7.48) that the coefficients fx, ∀x ∈ X, of the λx-variables
in x-branching are not restricted to binary values.

Pricing problem modifications. As we already know from our discussion on cut-
ting planes, the pricing problem is responsible for adequately producing the gx co-
efficients. Consider the down-branch with a dual value γ1 ≤ 0. Similarly to (7.31),
the ISP is modified to

c̄(πππ,γ1) = min
x∈X

cx−πππ
⊺ax− γ1gx

s.t. cx = c⊺x, ax = Ax, gx = g(x).
(7.61)

We assume that we know lower and upper bounds on f⊺x, say ℓ≤ f⊺x≤ u. Then the
binary coefficient computes as

g(x) =

{
1 if f ≤ f⊺x ≤ u

0 if ℓ ≤ f⊺x ≤ f −1
. (7.62)

One way to express g(x) is given by the two inequalities in (7.63): the interval [ f ,u]
is activated with gx = 1, and otherwise interval [ℓ, f −1] with gx = 0:

ℓ(1−gx)+ f gx ≤ f⊺x≤ ugx +(1−gx)( f −1), gx ∈ {0,1}. (7.63)

The same set of inequalities (7.63) is used for the pricing in the up-branch, which
only slightly differs from (7.61) in the objective function, with dual value γ2 ≥ 0:
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c̄(πππ,γ2) = min
x∈X

cx−πππ
⊺ax− γ2gx

s.t. cx = c⊺x, ax = Ax, gx = g(x).
(7.64)

In Exercise 7.5, we develop an alternative way of writing (7.63) as

g(x) =
⌈

f⊺x− ( f −1)
u− ℓ

⌉
, (7.65)

the linearization of which is given by (7.39) with an additional integer variable.
When we exploit the sign of the dual values γ1 and γ2 in their respective pricing
problem (i.e., in their up- or down-branch node), we develop a third way where not
both inequalities in (7.63) are needed, see Vanderbeck (2000, eqs. (17)–(18)) and
Exercise 7.4:

gx ≥
f⊺x− f +1
u− f +1

, gx ∈ {0,1} in the ISP (7.61) for the down-branch;

gx ≤
f⊺x− ℓ

f − ℓ
, gx ∈ {0,1} in the ISP (7.64) for the up-branch.

(7.66)

In all these variants for g(x), the ISP modifications can be expressed as linear con-
straints and potentially extra variables. We wish to emphasize that this λ -branching
does not need to explicitly partition, at every node of the search tree, the domain
X of the ISP. But it could. Here is a fourth option for generating the two types of
columns at a node, with an exponentially growing number of types when additional
λ -branching decisions are imposed.

At a given branching node, say the down-branch, the RMP derived from (7.60)
contains both types of columns, that is, those of the first type (gx = 1) satisfying
f ≤ f⊺x≤ u and those of the second type (gx = 0) where ℓ≤ f⊺x≤ f −1. Given these
non-identical types, the pricing step can also be solved using two pricing problems,
say ISP1 and ISP2, where the domains of x are

X1 = {x ∈ X | f⊺x ∈ [ f ,u]} in ISP1,

X2 = {x ∈ X | f⊺x ∈ [ℓ, f −1]} in ISP2.
(7.67)

The two pricing problems in this down-branch node become

c̄(πππ,γ1) = min
x∈X1

c⊺x−πππ
⊺Ax− γ1 in ISP1,

c̄(πππ,γ1) = min
x∈X2

c⊺x−πππ
⊺Ax in ISP2.

(7.68)

With q λ -branching decisions already made, this could create up to 2q types for
the columns, i.e, 2q specialized subsets X1,X2, . . . ,X2q ⊂ X instead of a single ISP
imposing on X up to q sets of linear constraints, in up to q extra binary variables.
The shear number of types would quickly get out of hand, but it does not have to
if we take some care. When we formulate as second branching condition one that
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either splits X1 or X2 in (7.67) (and keeps the respective other one intact), we only
have a partition of X into three parts. In general, we produce only a linear number
of subsets X1,X2, . . . ,Xq+1 ⊂ X after having branched q times. Vanderbeck (2011),
in his generic branching scheme, calls this a nested partition of X, and describes
conditions for branching that accomplish it. We note that in practice, we know how
to manage a large number of ISPs by solving, exactly or not, a small number of them
at every column generation iteration, then updating the dual values before solving
for another small number of types (as in a partial pricing strategy); see for example
Gamache et al. (1999) who dealt with 1131 subproblems decades ago.

Finally note that if we are given two column types and ∑x∈X: f⊺x≥ f λx ≤ 2 for the
first type, if the total sum of variables ∑x∈X λx is quite large, you should probably
call the ISP2 more often to generate from this specialized generator the numerous
requested columns of the second type.

The proof of Proposition 7.1 does not show how to construct or choose a separat-
ing hyperplane f⊺x≥ f , let alone one that is good for the branching tree. In practice,
we could make use of problem knowledge, e.g., enforce a cardinality constraint on
each branch for the number of binary λx-variables satisfying, for example, a thresh-
old on the cost or on the number of visited customers in VRPTW applications.

Illustration 7.7 λ -branching for the VRPTW

Let us consider again the Illustration 7.2 with the fractional master problem solution
λ ⋆

132 = λ ⋆
134 = λ ⋆

24 = 0.5 of total cost z⋆MP = 65.5, with respective route costs 37,
48, and 46. Let the route cost be computed as cx = ∑(i, j)∈A ci jxi j and the number
of visited customers as nx = ∑i∈C ∑(i, j)∈A xi j. Both are linear functions in the xi j-
variables.

x 132 134 24

λ⋆x 0.5 0.5 0.5
cx 37 48 46
nx 3 3 2

By inspection, we find some fractional-valued sums for branching, each isolating
one fractional-valued variable from the others:

∑
x∈F: cx≤37

λ
⋆
x = 0.5 (= λ

⋆
132); ∑

x∈F: cx≥48
λ
⋆
x = 0.5 (= λ

⋆
134); ∑

x∈F: nx≤2
λ
⋆
x = 0.5 (= λ

⋆
24).

As a fourth suggestion, we observe that the sum of the generated variables, indeed
the three fractional ones, happens to be fractional as well: ∑x∈R′ λ

⋆
x = 1.5.

Because a λλλ
⋆
IMP̈-solution is given by λ⋆32 = λ⋆14 = 1, with respective costs 30 and

44, this optimal solution appears in the up-branch (∑x∈X: cx≤37 λx ≥ 1) for the first
suggestion, and also the up-branch (∑x∈X λx ≥ 2) for the fourth one. Interestingly,
such branching decisions are appropriate in case of vehicles of homogeneous or
different capacities, i.e., identical blocks or not.



470 7 Branch-Price-and-Cut

Branching on lower and upper bounds on the x-variables

Splitting off only one or few points from X as done in the proof of Proposition 7.1 is
likely not a good idea for a balanced branching decision. Probably more “impactful,”
and yet the simplest hyperplanes one can think of are inspired by branching on
original variables, namely bounds on a single x j variable as in (7.45).

Assume that x⋆j is fractional in x⋆MP. In the format of Proposition 7.1, we formu-
late the condition x j ≥ ⌈x⋆j⌉ on x ∈ X as e⊺j x ≥ ⌈x⋆j⌉, where e j denotes the j-th unit
vector of dimension n. This condition splits the set of master variables in two, that
is, the set X is partitioned into {x ∈ X | e⊺j x≥ ⌈x⋆j⌉} and {x ∈ X | e⊺j x≤ ⌊x⋆j⌋}.
If ∑

x∈X:e⊺j x≥⌈x⋆j⌉
λ
⋆
x = β is fractional, then the down-branch master problem becomes

z⋆MP = min ∑
x∈X:e⊺j x≥⌈x⋆j⌉

cxλx + ∑
x∈X:e⊺j x≤⌊x⋆j⌋

cxλx

s.t. ∑
x∈X:e⊺j x≥⌈x⋆j⌉

axλx + ∑
x∈X:e⊺j x≤⌊x⋆j⌋

axλx ≥ b [πππ ≥ 0]

∑
x∈X:e⊺j x≥⌈x⋆j⌉

λx ≤ ⌊β⌋ [γ1 ≤ 0]

λx ≥ 0 ∀x ∈ X.

(7.69)

Very similarly, the up-branch master problem reads as

z⋆MP = min ∑
x∈X:e⊺j x≥⌈x⋆j⌉

cxλx + ∑
x∈X:e⊺j x≤⌊x⋆j⌋

cxλx

s.t. ∑
x∈X:e⊺j x≥⌈x⋆j⌉

axλx + ∑
x∈X:e⊺j x≤⌊x⋆j⌋

axλx ≥ b [πππ ≥ 0]

∑
x∈X:e⊺j x≥⌈x⋆j⌉

λx ≥ ⌈β⌉ [γ2 ≥ 0]

λx ≥ 0 ∀x ∈ X,

(7.70)

where the binary coefficients gx in (7.60) reflect the condition

gx = 1 ⇔ e⊺j x≥ ⌈x
⋆
j⌉, ∀x ∈ X. (7.71)

When we assume that x j ∈ [ℓ j,u j], relation (7.71) can be implemented in the ISP,
e.g., along the lines of Exercise 7.4:

gx ≥
x j−⌊x⋆j⌋
u j−⌊x⋆j⌋

(
=

x j−⌈x⋆j⌉+1

u j−⌈x⋆j⌉+1

)
, gx ∈ {0,1} in (7.61); (7.72)

gx ≤
x j− ℓ j

⌈x⋆j⌉− ℓ j
, gx ∈ {0,1} in (7.64). (7.73)
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In the binary case x j ∈ {0,1}, this significantly simplifies to

gx ≥ x j, gx ∈ {0,1}, in (7.61) with slope −γ1 ≥ 0 on gx, (7.74)
gx ≤ x j, gx ∈ {0,1}, in (7.64) with slope −γ2 ≤ 0 on gx. (7.75)

That is, we can use gx = x j and there is in fact no need for an extra binary variable.

So far so good, but the crucial condition is

“If ∑
x∈X:e⊺j x≥⌈x⋆j⌉

λ
⋆
x = β is fractional.”

When we restrict ourselves to a subclass of hyperplanes, e.g., the simple bounds
above, we may be unable to guarantee the existence of a hyperplane (from that
subclass) that cuts off a fractional λλλ

⋆
RMP-solution, as observed by Vanderbeck (2000,

p. 119). He shows, however, that we can always accomplish the separation using a
very small set of lower and upper bounds on the x-variables.

Finding fractional β . Given an optimal fractional master problem solution, the
general idea is to iteratively impose lower or upper bounds on x j-variables, i.e., on
a number of components of x ∈ X, until we are able to branch on the resulting sum
of master variables. We introduce some notation first.

Definition 7.2. Let J̄ ⊆ {1, . . . ,n} denote the index-set of the x j-variables on which
we impose an upper bound, i.e., e⊺j x ≤ ⌊v j⌋ for some v j ∈ [ℓ j,u j]. Similarly, we
denote by

¯
J ⊆ {1, . . . ,n} the index-set of the x j-variables on which we impose a

lower bound e⊺j x ≥ ⌊v j⌋+1. The number of bound constraints is |J̄|+ |
¯
J|. The set

of points from X that satisfy the entire collection of bounds is

B= {x ∈ X | e⊺j x≤ ⌊v j⌋, ∀ j ∈ J̄; e⊺j x≥ ⌊v j⌋+1, ∀ j ∈
¯
J} ⊆ Zn

+. (7.76)

We denote (again) by F ⊆ X the index-set of fractional variables of λλλ
⋆
RMP. It can

happen that the sum of master variables satisfying a condition is integer, but some
of the variables are still fractional. We therefore look explicitly at the latter.

Definition 7.3. The fractionality of λλλ
⋆
RMP is given by

F = ∑
x∈F

(λ⋆x−⌊λ⋆x⌋)≥ 0. (7.77)

The fractionality of λλλ
⋆
RMP with respect to x ∈B is computed as

FB = ∑
x∈F∩B

(λ⋆x−⌊λ⋆x⌋)≥ 0. (7.78)

When F = 0, we are done, so the following is relevant for F > 0.

When F is integer and we impose the bound constraints x∈B, two cases can occur:
FB is either fractional or integer.
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1. a < FB < a+1, a ∈ Z+. Expression (7.78) re-writes as

∑
x∈F∩B

⌊λ⋆x⌋+a < ∑
x∈F∩B

λ
⋆
x < ∑

x∈F∩B
⌊λ⋆x⌋+a+1, (7.79)

that is, the sum ∑x∈F∩B λ⋆x = β is guaranteed to be fractional. This is the desired
case in which we can branch as before:

∑
x∈X∩B

λx ≤ ⌊β⌋ or ∑
x∈X∩B

λx ≥ ⌈β⌉. (7.80)

Observe that this is also valid for B= X (no bound constraints), i.e., when F is
fractional.

2. FB ∈ Z+. We are unfortunate in this case as the fractional values of the rele-
vant λx-variables add up to a positive integer. Then we cannot branch as above.
However, there exist fractional λ⋆x1

,λ⋆x2
> 0 indexed by x1,x2 ∈ F, such that

x j1 ̸= x j2, say x j1 < x j2, for some j ∈ {1, . . . ,n}. Define v j =
x j1+x j2

2 and ob-
serve that x j1 ≤ ⌊v j⌋ < ⌊v j⌋+1 ≤ x j2. With this, we re-write FB as the result
of two positive sums,

FB = ∑
x∈F∩B∩{x j≤⌊v j⌋}

(λ⋆x−⌊λ⋆x⌋)︸ ︷︷ ︸
≥ (λ⋆x1−⌊λ

⋆
x1 ⌋)> 0

+ ∑
x∈F∩B∩{x j≥⌊v j⌋+1}

(λ⋆x−⌊λ⋆x⌋)︸ ︷︷ ︸
≥ (λ⋆x2−⌊λ

⋆
x2 ⌋)> 0

(7.81)
where not both sums can be larger than FB/2. In other words, imposing one
more bound, i.e., considering B∩{x j ≤ ⌊v j⌋} or B∩{x j ≥ ⌊v j⌋+1}, reduces
the fractionality of λλλ

⋆
RMP with respect to B by at least a factor of two.

This naturally suggests the following separation procedure. Start with “no bound
constraints,” i.e., B = X. As long as FB is a positive integer, identify a variable x j
and an appropriate value v j ∈ [ℓ j,u j], and impose an additional bound, i.e.,

B1 =B∩{x j ≤ ⌊v j⌋} or B2 =B∩{x j ≥ ⌊v j⌋+1}.

Then, either FB1 and FB2 are both fractional in which case we have two branching
opportunities, or both are integer and we replace B by B1 or B2, whichever results in
the smallest fractionality. Since the fractionality is at least halved in each iteration,
FB eventually goes between 0 and 1 (this is the worst case), and this inductively
proves the following result:

Proposition 7.2. (Vanderbeck, 2000, Proposition 3, p. 119) Given λλλ
⋆
RMP with frac-

tionality 0 < F < 2t for an integer t ≥ 1, there exist at most t bound constraints on
the original x-variables with B as defined in (7.76) such that

β = ∑
x∈F∩B

λ
⋆
x is fractional. (7.82)
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It is notable that Vanderbeck (2000, p. 120) states that “in our experiments, we
seldom need to consider sets [of bound constraints] of cardinality greater than one.”
This suggests that the case of an “integer fractionality” rarely happens. Moreover,
when we consider fractional basic master problem solutions, at most m λ⋆x-variables
can be positive, where m is the number of constraints in the RMP. Therefore, no
more than m variables can be fractional, limiting 2t < m. This gives a small cardi-
nality |J̄|+ |

¯
J| of less than logm as a corollary.

Pricing problem modifications. After branching, the new master problems exactly
follow (7.60) where binary gx = 1⇔ x ∈ B, ∀x ∈ X. This needs to be reflected in
the pricing. In both ISPs, we use a binary variable indicating whether or not a bound
constraint is satisfied: ȳ j = 1⇔ x j ≤⌊v j⌋, ∀ j∈ J̄, and

¯
y j = 1⇔ x j ≥⌊v j⌋+1, ∀ j∈

¯
J.

In (7.83), we have an overview of the conditions on the two pricing problems that,
for now, only differ in the slope of gx in the objective function:

c̄(πππ,γ1) = min
x∈X

c⊺x−πππ
⊺Ax− γ1gx c̄(πππ,γ2) = min

x∈X
c⊺x−πππ

⊺Ax− γ2gx

s.t. gx = 1 ⇔ ∑
j∈J̄

ȳ j + ∑
j∈

¯
J ¯
y j = |J̄| + |¯

J|

gx ∈ {0,1}
ȳ j ∈ {0,1} ∀ j ∈ J̄

ȳ j ∈ {0,1} ∀ j ∈
¯
J.

(7.83)

• In the down-branch where −γ1 ≥ 0, the binary gx naturally takes value 0, so do
the ȳ j- and

¯
y j-variables: We need to determine if all these take value 1.

• In the up-branch, −γ2 ≤ 0 and gx = 1 is preferred (as well as the ȳ j- and
¯
y j-

variables at 1): Is there a y-variable taking value 0?

It remains to express an appropriate set of linear constraints for defining binary
gx = 1⇔ x ∈X∩B in each ISP, together with binary y-variables. This is presented
next in (7.84) while Exercise 7.7 asks the reader to mathematically justify these sets.
The special case of binary x j-variables is considered in Exercise 7.8.

gx ≥ 1+(∑
j∈J̄

ȳ j + ∑
j∈

¯
J ¯
y j) −(|J̄|+ |¯

J|)

ȳ j ≥
⌊v j⌋+1− x j

⌊v j⌋+1− ℓ j
∀ j ∈ J̄

¯
y j ≥

x j−⌊v j⌋
u j−⌊v j⌋

∀ j ∈
¯
J

gx ≤ ȳ j ∀ j ∈ J̄

gx ≤
¯
y j ∀ j ∈

¯
J

ȳ j ≤
u j− x j

u j−⌊v j⌋
∀ j ∈ J̄

¯
y j ≤

x j− ℓ j

⌊v j⌋+1− ℓ j
∀ j ∈

¯
J.

(7.84)

Note that, in particular on the down-branch, it is not clear that there should be any
positive λx-variable which satisfies the bound constraints of the parent node. We
therefore, in general, cannot just refine set B. One remedy is to start the search for
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bound constraints from scratch in every node. Note again that no points from X need
to be explicitly excluded from the ISP domain through branching.

There may be many different sets B that lead to a fractional sum of master vari-
ables for branching. A smaller number |J̄|+ |

¯
J| of variable bounds reduces the over-

head of pricing problem modifications. Furthermore, it may lead to larger sets B

which, intuitively, may have a larger impact, e.g., on the dual bound improvement.
Vanderbeck (2000, 2011) proposes several enumeration schemes of varying com-
plexity for finding a set of bounds. Since we are free to choose the order in which
we consider the x j-variables on which to impose bounds, we may start with those
that have larger branching priority.

Ryan-Foster rule for set partitioning master problems

A discussion about branching rules on master variables would not be complete with-
out presenting the oldest known general rule, the one by Ryan and Foster (1981).
It only works on the important special case of set partitioning IMPs. Let the MP
be given as its linear relaxation, where for i ∈ {1, . . . ,m} and x ∈ X, the binary
parameter aix takes value 1 if row i belongs to the column indexed by x of cost cx:

z⋆MP = min ∑
x∈X

cxλx

∑
x∈X

aixλx = 1 ∀i ∈ {1, . . . ,m}

λx ≥ 0 ∀x ∈ X.

(7.85)

For example, aix = 1 represents a customer i visited in route x in the VRPTW, or a
flight i operated in schedule x in a crew pairing problem, these tasks being performed
exactly once. Our presentation of the rule more or less follows that of Barnhart et al.
(1998). It is based on this result: For a fractional basic solution to the MP (7.85),
there exist two rows r and s such that

0 < ∑
x∈X: arx=asx=1

λ
⋆
x < 1. (7.86)

Interpreted in the VRPTW, if (7.86) holds, then customers r and s are each visited
exactly once as requested by the partitioning constraints, but partly when they are
together on a route, partly when they are not. This entails a fractional basic λλλ

⋆
RMP-

solution when the MP is solved by column generation. The branching rule imposes
that in an integer solution, the customers are either in the same route or in two
different ones, suggesting that this can be handled by modifying the ISP. The Ryan-
Foster condition on x in (7.86) can be formulated as a separating hyperplane in the
language of Proposition 7.1, see for the pleasure Exercise 7.9. It is also a special
case of Proposition 7.2 with lower bounds on variables xr and xs.
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To show that a fractional basic solution implies (7.86), let λ⋆k be fractional (for
x = xk) in λλλ

⋆
RMP and select any row r such that ark = 1. Recall that 1 = ∑x∈X arxλ⋆x:

hence there exists another fractional basic variable λ⋆ℓ such that arℓ = 1. Because
there are no identical columns in the basis of the RMP, there must exist a row s such
that ask ̸= asℓ, i.e., either ask = 1 or asℓ = 1, but not both. Hence

1 = ∑
x∈X

arxλ
⋆
x = ∑

x∈X: arx=1
λ
⋆
x > ∑

x∈X: arx=asx=1
λ
⋆
x > 0,

where the first inequality comes from the sum on the right that includes either frac-
tional variable λk or λℓ, but not both. Such a pair (r,s) leads to branches married or
divorced,

∑
x∈X: arx=asx=1

λx = 1 or ∑
x∈X: arx=asx=1

λx = 0, (7.87)

that is, rows r and s are covered by the same column on the left or by two columns on
the right. The literature calls these the same and differ branches. An optimal solution
on the left branch uses columns having arx = asx = 0 or arx = asx = 1, while on the
right, feasible columns have arx = asx = 0, or arx = 0, asx = 1, or arx = 1, asx = 0.
Note that covering neither r nor s is allowed in both branches. For this rule, the
ISP domain is explicitly partitioned by branching. Note also that, except possibly as
a post-processing step, no disaggregation takes place, even though set partitioning
master problems often result from aggregation.

The implementation of the Ryan-Foster branching rule depends on the applica-
tion. For additional details, see Rule 3 (p. 478) below and the Examples 7.3 and 7.4
that discuss how to implement the branching decisions in the ISP.

Note 7.9 (To B or not to B.) Although the validity of the Ryan-Foster rule is pre-
sented for a basic solution λλλ

⋆
RMP, it remains valid for an interior point solution.

Indeed, there are no identical columns in any RMP.

Branching on inter-tasks

Because set partitioning IMPs are important models, the Ryan and Foster’s idea
has been used many times and even adapted to ease the solution of the ISP for
specific cases. A popular adaptation, called branching on inter-tasks or on follow-
ons (see, e.g., Desrochers and Soumis, 1989; Irnich and Desaulniers, 2005), targets
applications such as the VRPTW or the crew pairing problem (CPP, see Example
5.3 but without the base constraints), where the ISP is an ESPPRC or a SPPRC
solved by a labeling algorithm (see Labeling algorithm). It exploits the fact that a
path covers the rows in a given order, which is irrelevant for the Ryan-Foster rule
presented above.

To describe the inter-task branching, we assume that each set partitioning con-
straint in the MP (7.85) enforces the covering of a task i, e.g., a customer in the
VRPTW or a flight in the CPP. Furthermore, in the ISP, we define a binary vari-
able xi for each task i ∈ {1, . . . ,m} that indicates whether or not task i is covered
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by a path and an extra binary variable yr→s for each pair of tasks r and s on which
an inter-task decision is imposed. This variable takes value 1 if tasks r and s are
covered consecutively in a path (r before s) and 0 otherwise.

Using a reasoning similar to that presented above for the Ryan-Foster rule, we
can show the following result: For a fractional basic solution to the MP (7.85), there
exist two rows r and s such that

0 < ∑
x∈X: xr=xs=yr→s=1

λ
⋆
x < 1. (7.88)

Hence, it is possible to branch on this sum of λ -variables:

∑
x∈X: xr=xs=yr→s=1

λx = 1 or ∑
x∈X: xr=xs=yr→s=1

λx = 0, (7.89)

where, on the up-branch (left), rows r and s must be covered consecutively and in
this order by the same path and on the down-branch (right), they must be covered
either by two paths or by the same path but not consecutively in this order. These
branching decisions are also imposed directly in the ISP, i.e., no constraints are
added to the master problem.

Note 7.10 (Inter-task branching is not Ryan-Foster branching.) In the literature, a
few papers have mistakenly mentioned that inter-task (or follow-on) branching is a
special case of Ryan-Foster branching. This is not true! Indeed, we can observe that
the set of columns involved in (7.88) is, in general, only a subset of the columns
in (7.86): columns (paths) covering r and s but not consecutively and in the right
order (i.e., columns for which xr = xs = 1,yr→s = 0) are not considered in (7.88).
When the ISP is an ESPPRC or a SPPRC solved by a labeling algorithm, handling
Ryan-Foster branching decisions in the ISP makes it much harder to solve. This is
not the case with inter-task decisions as explained next.

To implement inter-task branching, we consider the following two cases.
Case 1: Direct connection network.

In a direct connection network, all nodes, except the source and the sink, are
associated with a single task like in the VRPTW. Consequently, two tasks r and s
can be covered consecutively along a path if and only if the arc linking the task
nodes r and s is traversed. In a fractional solution, the pair of customers r and s
can be selected if the corresponding arc-flow variable x⋆rs is fractional, that is,

0 < x⋆rs = ∑
x∈X

gxλ
⋆
x < 1,

where gx = xrs = 1 in the paths containing arc (r,s), and 0 otherwise. The up-
branch ∑x∈X xrsλ

⋆
x = 1 keeps the arc (r,s) but removes all other arcs out of node r

and into node s. The down-branch ∑x∈X xrsλ
⋆
x = 0 simply removes the arc (r,s).

Case 2: Arbitrary network.
In many applications, the network underlying the ISP is not a direct connection
network. For example, in the electric VRPTW (see Desaulniers et al., 2016a),
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the network includes nodes representing stations where the vehicles can recharge
their battery in the middle of their route while, in the CPP, the tasks are modeled
as flight arcs but the network also contains arcs representing, e.g., connections
between two flights or rests between two working days (see Figure 5.7). In such
networks, two tasks can be covered consecutively in a path but using a sequence
of arcs to link them, i.e., a single arc-flow variable might not be sufficient to de-
termine the consecutiveness. Hence, to branch on a fractional sum of λ -variables

0 < ∑
x∈X

gxλ
⋆
x < 1,

where gx = 1⇔ xr = xs = yr→s = 1 for a given pair of tasks r and s, we can
add a new component to the labels to compute gx in the labeling algorithm used
to solve the ISP. This implies multiple additional components when there are
several inter-task decisions applicable at a branch-and-bound node, substantially
increasing the complexity of the labeling algorithm. Nevertheless, by exploiting
the consecutiveness condition, this increase in complexity can be controlled by
considering a single new label component that only keeps track of the last task
covered; see Exercise 7.10.

Note 7.11 (Sufficiency of inter-task branching.) For pure set partitioning IMPs with
an ESPPRC or SPPRC pricing problem, branching on inter-tasks is sufficient to
fully explore the search tree, even if a sequence of tasks can be represented by sev-
eral paths in the ISP (in this case, a single one of them can appear in the RMP basis,
namely, one with the least cost). On the other hand, for set partitioning problems
with side constraints, the inter-task branching remains applicable but it might not be
sufficient to guarantee a complete tree exploration. In this case, it can be comple-
mented with, e.g., branching decisions on arc-flow variables or other λ -branchings.
A similar remark applies to the Ryan-Foster branching.

Some practical rules on the sum of binary λ -variables

Simple rules may be easier to tailor to a specific situation. It follows a small col-
lection of such simple rules on the sum of certain sets of λx-variables derived from
constraints in the x-variables. These are all inspired by the discussions above.

Rule 1 ∑
x∈X: c1≤c⊺x≤c2

λx ∈ Z+.

This is a special case of Proposition 7.1 which we have already sketched in Il-
lustration 7.7. As we compute the cost cx for every variable λx anyway, a natural
hyperplane turns out to be in terms of c⊺x. We assume c integer, c⊺x ∈ [ℓ,u], and
that a sensible range of cost coefficients occurs. In Exercise 7.13, we ask for a way
to possibly find a set B = {x ∈ X | c1 ≤ c⊺x ≤ c2} such that ∑x∈X∩B λ⋆x = β is
fractional. If it occurs, the master in the down- and up-branches write similarly as
(7.69)–(7.70) and x ∈B can be implemented in the pricing as in Pricing problem
modifications (page 467). Meaningful functions other than the cost, e.g., resource
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consumption, number of items, etc., can be used in the same way. Of course, this
also works for more than one pricing problem.

Rule 2 ∑
x∈X

λx ∈ Z+, adapted for a |K|-block structure as ∑
xk∈Xk

λxk ∈ Z+, ∀k ∈ K.

A request that directly follows from the way we apply a decomposition is to have
an integer number of columns taken from each pricing problem. Our fourth sug-
gestion in Illustration 7.7 (λ -branching for the VRPTW, p. 469) is an example.
A related application is the multiple depot vehicle scheduling problem (MDVSP),
where each depot uses an integer number of vehicles. If such a branching deci-
sion is applied to the usual convexity constraint ∑xk∈Xk λxk = 1 associated with
block k, this means that the corresponding ISPk is used or not. For this rule, there
are no modifications to the domain of the ISPks.

Rule 3 ∑
x∈X: xr=xs=1

λx ∈ Z+, where (xr,xs) is a pair of original binary variables.

This generalizes the Ryan-Foster rule. Assuming 0≤ ∑x∈X λx ≤U , we describe
four special cases. where the introduction in the ISP of a binary variable, say yrs,
linking the pair (xr,xs) may be required. In that case, the condition is interpreted
as xr = xs = 1⇔ yrs = 1.

Rule 3.1 ∑
x∈X: xr=xs=1

λx ≤ ⌊β⌋= 0.

The generated columns satisfying the condition xr = xs = 1 are removed from
the RMP, the constraint xr + xs ≤ 1 is added to the ISP, and no columns satis-
fying the condition can be newly generated.

Rule 3.2 ∑
x∈X: xr=xs=1

λx ≤ ⌊β⌋, where ⌊β⌋ ≥ 1.

The configuration xr = xs = 1, yrs = 0 must be eliminated, i.e., yrs ≥ xr +xs−1
in the ISP. Observe that if xr +xs ≤ 1, then yrs = 0 because of the non-negative
slope of −γ1gx, γ1 ≤ 0, in the objective function of c̄(πππ,γ1). Finally, the binary
coefficient gx is computed as gx = g(x) = yrs in the ISP: this means that the
extra variable yrs can be discarded from the formulation and replaced by gx.

Rule 3.3 ∑
x∈X: xr=xs=1

λx ≥ ⌈β⌉=U .

The generated columns satisfying xr + xs ≤ 1 are removed from the RMP be-
cause all the U columns must satisfy xr = xs = 1. The constraint xr + xs ≥ 2 is
added to the ISP, or the condition xr = xs = 1 is implemented in an appropri-
ate way for specific applications. Finally, the coefficient gx = 1, ∀x ∈ X, i.e.,
∑x∈X λx =U .

Rule 3.4 ∑
x∈X: xr=xs=1

λx ≥ ⌈β⌉, where ⌈β⌉ ≤U−1.

The constraint 2yrs ≤ xr + xs is added to the ISP and gx = yrs. Alternatively,
we can rather impose the two constraints yrs ≤ xr and yrs ≤ xs. Observe that if
xr + xs ≤ 1, then the binary variable yrs = 0 because yrs ≤ xr+xs

2 ≤ 1/2.

Given xr = xs = 1 written as xr + xs ≥ 2, constraints yrs ≥ xr + xs−1 in Rule 3.2
and 2yrs ≤ xr + xs in Rule 3.4 are derived from (7.66), see Exercise 7.14.
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Illustration 7.8 λ -branching for the VRPTW (cont.)

Recall the VRPTW example in Illustration 7.7 (initially in Illustration 5.1) with four
customers. Applying column generation to solve the MP (with an ESPPTWC pricing
problem), we obtain the optimal λ⋆RMP-solution

λ
⋆
132 = λ

⋆
134 = λ

⋆
24 = 0.5 and λ

⋆
r = 0 for all other routes r ∈ R′.

The fractionality of this solution is F = ∑r∈F(λ
⋆
r−⌊λ⋆r⌋) = 0.5×3 = 1.5. Using

the first two routes, where x32,1 = 1 in the first and x32,2 = 0 in the second, we obtain
an average value v32 =

x32,1 + x32,2
2 = 0.5. Because ⌊v32⌋= 0, ⌊v32⌋+1 = 1, and x32

a binary variable, F splits in two sums, as in (7.81):

F = ∑
r∈F :x32=0

(λ⋆r−⌊λ⋆r⌋) + ∑
r∈F :x32=1

(λ⋆r−⌊λ⋆r⌋)

= λ
⋆
134 +λ

⋆
24︸ ︷︷ ︸

= 1

+ λ
⋆
132︸ ︷︷ ︸

= 0.5

where the fractionality of the second ∑
r∈F :x32=1

λ
⋆
r = 0.5, see (7.79)–(7.80), allows for

the branching decisions

∑
r∈R :x32=1

λr = 0 or ∑
r∈R :x32=1

λr ≥ 1.

Because the MP is the linear relaxation of a set partitioning problem, the up-branch
is replaced by an equality to 1. The optimal solution λ⋆32 = λ⋆14 = 1 appears in this
branch. We see that this branching on the master variables is in fact a branching on
an original variable.

Note 7.12 (The sky is the limit.) Only very few are in need of generally applicable
branching rules, but they typically look for strategies that work well in their particu-
lar application. In that regard, the above serves as a starting point, and tailoring may
be beneficial or even necessary for performance. Consider, for instance, the above
Rule 1 which formulates a condition that works for every (!) ISP under the mild
condition that costs of master variables are not all identical. For a specific applica-
tion, research and experimentation may lead to a customization of such a rule. One
question could be how we decide about the “split points,” here c1 and c2, what gives
an “interesting” condition? A suggestion is to order the positive fractional λ⋆x-values
by some criterion (say cost), and start summing until we are “happy” with the sum.
(Another strategy is presented in Exercise 7.13.) In practice, we may not be able to
prove that we actually find a fractional sum, then we may not care about theory, and
try alternative branching strategies in x and λ , since we have many.
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Ranking the candidates

As we announced in Note 7.7, we discussed mainly the first part of a branching rule,
the identification of branching candidates. Often, however, there are many candi-
dates, many values that are fractional but should be integer. Then, one unavoidably
faces the second part, the ranking of the candidates. There are general ideas one
should have at least heard of, most importantly, branching priorities, pseudo-costs,
and strong branching.

It is usually clear from the application context what decisions are most important
because of their role in the solution structure or the cost. Global design decisions
(use a vehicle or not, open a facility, build infrastructure, and other fixed cost com-
ponents of the objective function) can have a larger impact than local decisions (like
routing, servicing, or other variable cost components). Branch on most important
information first, and when there is a difference, in the direction that has greater
consequences for the solution and/or its value (usually, the down-branch is weaker
than the up-branch). This is immediately realizable for original variable branching.
Also master variable branching can be guided by the same thoughts, by accordingly
defining the conditions on how to find a fractional sum. This can lead to a “hierar-
chy” of branching rules, where lower priority rules are called when higher priority
ones are failing.

A problem-independent ranking of branching candidates can be done through
pseudo-costs. For every candidate and every branching direction, they estimate the
resulting impact on the dual bound, based on the previous branching on that candi-
date. One difficulty with pseudo-costs is that we initially have no branching history.
A standard approach then is to tentatively branch on (some) candidates, (partly)
solve the resulting branching node, assess the impact on the dual bound (maybe
combined in both branches), and select a most promising candidate. This strong
branching strategy can be very expensive, but may be helpful, see Acceleration tech-
niques. As soon as enough historical branching information is collected, or from a
certain level of the tree on, one can fall back to pseudo-cost branching (these variants
are called reliability and hybrid branching).

We do not recommend a rule which is likely the most popular in research papers:
branching on a most fractional variable, that is, one whose fractional part is closest
to 0.5. This most infeasible branching is maybe the simplest that comes to mind, and
easy to implement. There may be cases where this works well, but experimentation
tells us that in general “most fractional” is the worst one can do: this rule is no better
than random branching and should be avoided (Achterberg et al., 2005).

The other extreme, least fractional branching, selects a candidate closest to an
integer. The two branches can have a very unbalanced impact on the dual bound,
but one branch potentially leads to integer solutions quickly. It is therefore mainly
used in diving, see Primal heuristics below.
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7.4 Convexification vs. discretization revisited

It is clear that in general, in one way or another, we need access to the interior
points Ï of P̈ in the original ISP domain. Otherwise, we may miss optimal or even
only feasible integer solutions to the ILP, see Figure 7.9.

A= {x ∈ Zn | Ax≥ b}
(master)

D= {x ∈ Zn | Dx≥ d}
(subproblem)

• • • • •

⊙ ⊙ ⊙ ⊙ ⊙

• ⊙ • • •

Fig. 7.9: Constraints of the ILP, where the integer points for the ISP are marked.

“Access” here means that we need a way of representation, and we actually got to
know two ways: convexification and discretization. But does it really matter? When
you ask a researcher whether they have reformulated their ILP by convexification
or by discretization, they often cannot tell you. Part of the answer is that for binary
problems, and many problems are binary, the decomposition approaches are literally
identical. Also, in general, we have observed that the RMPs are the same in both
approaches, see Proposition 4.2 and Note 4.4. However, this is only true for the root
node and branching makes the differences between the two concepts visible.

Convexification requests branching on original variables for the simple reason
that the master variables are not required to be integer. Conversely, branching on
original variables can be seen as a concept that induces a convexification. How is
that? Let us consider the ISP domain D and how it is impacted by branching. Con-
vexification relies on extreme points (and rays) of conv(D). When we branch on
original variables and impose the decision in the ISP, we explicitly restrict D in
each child node, giving rise to new extreme points that may have been interior to
(some face of) conv(D) in the parent (in particular, the root) node, see Figure 7.10a.
In fact, the ISP domain is different in every node of the branch-and-price tree and
one could speak of a dynamic convexification.

Also, when we impose the x-branching decision on the master problem domain
A, this creates an explicit boundary that we can hit when optimizing a linear ob-
jective function, to reach points that are interior to D, see Figure 7.10b. Note that
in this case, it is imperative that we do not only generate but also keep variables
in the master problem that correspond to integer points of D which are infeasible
for A. The points of A∩D interior to D need to be represented by a (strict) convex
combination of extreme points (and rays) of conv(D), thus again, convexification
comes to the surface (see also p. 109 in Chapter 3).
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• • • • •

⊙ ⊙ ⊙ • •

• ⊙ • • •

(a) x-decision in subproblem

• • • • •

⊙ ⊙ ⊙ ⊙ ⊙

• ⊙ • • •

(b) x-decision in master

Fig. 7.10: Domains from Figure 7.9, after an x-branching decision.

Branching on λ -variables in general requests the discretization approach be-
cause of the integrality requirement that is needed on the master variables. Again,
conversely, discretization suggests to branch on master variables and to handle the
branching decisions in the ISP without explicitly restricting its domain. In fact, also
here the domain of the ISP is different in every node of the tree, but using, e.g., (7.63)
or (7.84), we relax it with every branching decision. The restriction happens only
implicitly: by introducing extra variables (and constraints), we lift the ISP domain to
an extended formulation, and by projecting to the original variable space, we arrive
at interior points of D, see the following Illustration 7.9.

Illustration 7.9 What you eat is what you are

The difference between convexification and discretization becomes visible through
branching, and at the same time it vanishes in branching: both approaches give ac-
cess to interior points of the ISP domain. However, it is fair to say that how you
branch determines how you decompose(d).

Too see this, consider the ILP

z⋆ILP = min −x1 + x2 (7.90a)
s.t. 2x1 + x2 ≤ 3 (7.90b)

x1 ≤ 2 (7.90c)
x1 ∈ Z+ (7.90d)

x2 ∈ Z+, (7.90e)

the optimal solution of which is x⋆1 = 1, x⋆2 = 0, and z⋆ILP =−1. We reformulate the
ILP (7.90) with the grouping of constraints as

A= {x1,x2 ∈ Z+ | 2x1 + x2 ≤ 3} (7.91a)
D= {x1 ∈ Z+ | x1 ≤ 2}, (7.91b)

and do not tell you how, by convexification or by discretization. The domain D of
the ISP contains three points (in fact, scalars): x1 = 0,1, and 2, i.e., D= {0,1,2}.
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• Convexification of D would give us the extreme points {xp}p∈P = {0,2} with
master variables λ0,λ2 ≥ 0, λ0 +λ2 = 1, and x1 = 0λ0 +2λ2.

• Discretization of D would give us the points {xp}p∈P̈ = {0,1,2} with master
variables λ0,λ1,λ2 ∈ {0,1}, λ0 +λ1 +λ2 = 1, and x1 = 0λ0 +1λ1 +2λ2.

Note that x2 is a static variable here, it remains in the master problem as is. As λ1
is defined for an interior point, we cannot generate it in the ISP, and the final (root
node) RMP, either way, could look like this (remember Proposition 4.2):

z⋆RMP = min −0λ0 − 2λ2 + x2

s.t. 0λ0 + 4λ2 + x2 ≤ 3
λ0 + λ2 = 1
λ0, λ2, x2 ≥ 0,

(7.92)

with an optimal solution λ⋆0 = 0.25, λ⋆2 = 0.75, and x⋆2 = 0, resulting in z⋆RMP =−1.5
and x⋆1 = 1.5.

Option 1: Branch on original variables.
We can branch on x1 = 1.5, imposing either x1 ≤ 1 or x1 ≥ 2 in the ISP.

• In the down-branch, the subproblem domain is D1 = {x1 ∈ Z+ | x1 ≤ 1}. This
gives ISP1 with extreme points {xp}p∈P1 = {0,1}, x1 = 0λ0 +1λ1, λ0 +λ1 = 1,
and λ0,λ1 ≥ 0. We would remove λ2 from the RMP, generate the extreme point
x1 = 1, and corresponding variable λ1,

zRMP = min −0λ0 − 1λ1 + x2

s.t. 0λ0 + 2λ1 + x2 ≤ 3
λ0 + λ1 = 1
λ0, λ1, x2 ≥ 0,

(7.93)

and obtain the optimal integer solution λ0 = 0, λ1 = 1, x2 = 0, resulting in
zRMP =−1 and x1 = 1. Note that the new extreme point x1 = 1 of the subprob-
lem domain D1 is in fact an interior point of D. In order to “reach it” we have
applied a (re-)convexification, we have adjusted the previous convexification.

• In the up-branch, the subproblem domain becomes D2 = {x1 ∈ Z+ | x1 = 2}
with extreme point {xp}p∈P2 = {2}. We would remove λ0 from the RMP (7.92)
and observe that the unique extreme point has already been generated. We then
find that the resulting RMP is infeasible as λ2 ≤ 3/4 in the first constraint and
λ2 = 1 from the convexity constraint.

Option 2: Branch on master variables.
We can alternatively branch, e.g., on the fractional sum ∑p∈P̈:x1≥1 λp = 0.75. The
branching constraints in the RMPs are

∑
p∈P̈

gpλp ≤ 0 [γ1 ≤ 0] or ∑
p∈P̈

gpλp ≥ 1 [γ2 ≥ 0], (7.94)
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with gp = 1⇔ x1p ≥ 1, ∀p∈ P̈. This condition is linearized as in (7.63) and imposed

in the ISPs with domain Dd =

{[
x1
g

]
∈ Z+×{0,1}

∣∣∣∣ x1 ≤ 2, g≤ x1 ≤ 2g
}

which

is the same in both branches.

x1
0 1 2

g

1

0

g≤
x 1

x1≤
2g

Fig. 7.11: The same domain for the ISPs in both the up- and down-branches.

Figure 7.11 shows the integer domain Dd =

{[
0
0

]
,
[

1
1

]
,
[

2
1

]}
of the resulting pric-

ing problem: all of these are extreme points of an extended formulation of the orig-
inal set D. We see that, when projected back into the original variable space (which
is only variable x1 here), we can obtain all of D = {0,1,2} in both branches, in
particular also the interior point x1 = 1 and the corresponding variable λ1. Because
x1 = 1 really is an interior point of the original D here, the decomposition concept
apparently must be discretization.

Taking benefit from the slightly different objective functions in the ISPs, we may
alternatively linearize the logical condition using (7.66). In the ISPs, this saves us
one linear constraint per branch, and now results in two different extended formu-
lations of the original ISP domain D, as illustrated in Figure 7.12. Note again that
(here only in the up-branch) an interior point of D can be generated.

x1
0 1 2

g

1

0

2g≥
x1

(a) Down-branch

x1
0 1 2

g

1

0

g≤
x 1

(b) Up-branch

Fig. 7.12: Domains of the ISPs derived from (7.66).
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En résumé: we must arrive and we do arrive (by branching) at interior points
of the domain D of the (root node) ISP. The way how we arrive there determines
whether we are in the convexification or in the discretization framework: by creating
new extreme points in the variables of the original ISP domain formulation, or by
creating new extreme points in the variables of an extended ISP domain formulation.
In the end, the difference between the two concepts is mainly one of presentation:
interior points are “there” right from the beginning or they “appear” through branch-
ing. In both cases, branching is necessary to actually access them.

It is true that also in λ -variable branching, we can explicitly restrict the ISP
domain, that is, we create more than one subproblem like in (7.67). But then again,
we do not lose any points from the original D (after projection) and also the ISPs of
different flavors create integer points interior to D, as just seen in Illustration 7.9.

Discretization is more general than convexification in that every branching idea in
the latter works in the former, while the reverse is not true. Yet, the practitioner may
still not care about the distinction. If one, maybe not even knowingly, starts with
a convexification and then “accidentally” branches on fractional sums of master
variables, the approach may automatically turn into one of discretization. Interior
points that may be missing “in the concept” are generated “in practice.” Conversely,
branching on original variables, and thereby explicitly restricting the ISP domain, is
possible also in discretization. In that sense, both decomposition schemes are very
robust against incorrectly using them. The theoretician, of course, wishes to ensure
that their presentation is unified and correct, and they have to decide for a framework
in which to present their work.

So, what kind of decomposition person you are may depend on the branching
rules you prefer; branching on original variables may signal your secret love for
convexification; directly enforcing integrality of sums of master variables may sort
you into the discretization team. When you branch like the Red Hot Chili Peppers,
it is Californication. To answer our initial question, in the end it doesn’t matter.
You can freely mix, you can and you will generate points interior to D when this is
needed, and this is because of branching.

Final remarks

The section on branching could have been very short if we had only non-identical
pricing problems. In that case, branching on original variables directly works and
always leads to integer solutions. Pricing problem modifications are usually minor,
and the impact on the solution structure, and thus on the dual bound, is likely good.

When we have an aggregation of several identical pricing problems, however,
things may get more involved. The aggregated original variable values may not pro-
vide a “rich enough” information to branch on (they need not be fractional even
when we do not have an integer solution to the ILP yet). In our discussion on cut-
ting planes, we observed that using an extended formulation, in particular extra
variables, in the ISP allows us to express more and stronger cuts than when formu-
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lating them in original variables only. The situation is similar in branching. We have
seen examples, like the Ryan-Foster rule, the more general Rule 3, or the Branching
on inter-tasks, which can be interpreted as branching on auxiliary variables. They
require changes, if only mild, to the ISP, but sometimes we are lucky and the “extra
variables” are already there. Vanderbeck and Wolsey (2010) call this an extended
formulation that is implicit in the solution of the ISP. An example is the network
flow based ISP in routing problems (where a “solution” is an incidence vector of
visited customers) in which we can branch, e.g., on arc-flow variables, summed
over all vehicles, see Illustration 7.6 (x-branching for the VRPTW). Similarly, the
knapsack ISP of cutting stock or bin packing, in its network-based formulation (see
Example 4.1) allows for branching on arc flows as well. In the words of Vander-
beck and Wolsey (2010), these extra variables “offer a larger spectrum of branching
objects” than the (aggregated) original variables alone.

A drawback of original variable branching is that a potentially necessary dis-
aggregation brings us back issues with symmetry. Since branching on original
variables must explicitly name the variable(s) to branch on, we cannot avoid the
re-introduction of index k, at least for some variables: the pricing problems re-
differentiate into pricing problems belonging to a certain index k. In this situation,
λ -branching on fractional sums of master variables has the potential for allowing
us to avoid the re-introduction of symmetry: the disaggregation does not have to
establish a one-to-one correspondence between master and original variables, like
suggested in the Integrality Test.

We have not explicitly discussed the mixed-integer case but the generalization is
natural as one (usually) only branches on values that should be integer. In this case,
conceptually, convexification applied to continuous variables and discretization used
for discrete variables may even mix (Vanderbeck and Savelsbergh, 2006).

Note that tree search strategies, that is, node selection rules like those we dis-
cussed on p. 29 for standard branch-and-bound can be relevant in branch-and-price
as well, in particular in conjunction with branching rules, see Example 7.2 (Semi-
assignment branching), or Primal heuristics.

Fig. 7.13: Eduardo Uchoa and Marcus Poggi de Aragão (Montréal, 2023-05-17).
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This section covers two topics. The first is a method for eliminating flow variables
when the ISP is a shortest path problem with resource constraints. This is done with-
out compromising optimality of the branch-and-price approach. The second presents
a wide range of acceleration techniques.

Arc-flow variable fixing by reduced cost

In many branch-and-price applications, the ISP solutions consist of directed paths
in a network. The arc elimination, or variable fixing to zero, can lead to a substantial
reduction of the network size, hence a speedup of the pricing and overall solution
process. Irnich et al. (2010) propose a method to do so in this context, with a special
attention to variants of the shortest path problem with resource constraints. Our
presentation in six points below is intuitive. We refer the reader to the original paper
for details.

1. Solving the LP (3.1) provides an optimal dual solution
[

σ⋆
b

σ⋆
d

]
and the Variable

fixing by reduced cost (p. 30) can be applied. Proposition 3.1 (Walker, 1969)

tells us that this is the same with
[
πππ⋆

b
πππ⋆

d

]
obtained from a Dantzig-Wolfe reformu-

lation, where πππ⋆
b comes from the MP while πππ⋆

d is retrieved from the SP, a linear
program.

2. Next, assume that we want to solve the integer program ILP (4.1) using a
Dantzig-Wolfe reformulation, where the ISP is first defined as a (standard)
shortest path problem on an acyclic network G = (N,A). This ISP possesses
the integrality property, thus LB = z⋆MP = z⋆LP. As such, the variable fixing tech-
nique stated in the previous paragraph applies. Indeed, the negative of the short-
est path labels obtained from a forward dynamic programming (DP) algorithm
are optimal dual values for πππ⋆

d = [π⋆
i ]i∈N (e.g,. see Ahuja et al., 1993, p. 136).

3. The critical path method for project scheduling (Elmaghraby, 1977, Chapter 1)
looks for a longest path on an acyclic network and is very similar to the above
ISP. It is common practice to compute, for every activity to be scheduled, not
only a single optimal starting time but rather an optimal interval given by the
earliest and latest starting times. The earliest times are obtained using a forward
DP algorithm while the largest come from using a backward DP algorithm.

4. Interestingly, the same can be done for the dual vector πππ⋆
d = [π⋆

i ]i∈N retrieved
from the ISP, that is, computing an optimal dual interval [E⋆

i ,L
⋆
i ] for π⋆

i , ∀i∈N.
At optimality of the MP and given the adjusted costs c̃i j, (i, j) ∈ A, that depend
on πππ⋆

b, the reduced cost of xi j is given by c̄i j = c̃i j−πi +π j ≥ 0. When there
are multiple optimal solutions πππ⋆

d, this reduced cost can vary and its maximum
is obtained by subtracting the smallest π⋆

i and adding the largest π⋆
j , i.e.,
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c̄⋆i j = max
πππ⋆

d

c̄i j = c̃i j−E⋆
i +L⋆

j . (7.95)

If c̄⋆i j > UB−LB, where UB is an upper bound on z⋆ILP, then x⋆i j = 0 in every
optimal solution x⋆ILP, i.e., xi j can be fixed to 0.

5. Irnich et al. (2010) suggest computing these intervals simultaneously, by using a
bidirectional search that first solves the ISP using a forward-labeling algorithm
(to produce all E⋆

i values) and then solves it again using a backward-labeling
algorithm (to derive all L⋆

i values). With this technique, the c̄⋆i j are computed
from different optimal dual solutions, for all (i, j) ∈ A.

6. Technical adjustments are required to adapt this technique to a more complex
ISP defined as a shortest path problem with resource constraints which can also
be represented on an acyclic state-space network. Applications are found in
Irnich et al. (2010) for the VRPTW and Pecin et al. (2017b) for the capacitated
VRP. An extension for two-arc sequences appears in Desaulniers et al. (2020a),
applied to the VRPTW and four variants of the electric VRPTW.

Note that fixing an arc-flow variable xi j to 0 corresponds to fixing to 0 all path-
flow variables λp, p ∈ Pi j, where Pi j is the set of feasible paths traversing arc (i, j).
It can be shown that the maximum reduced cost c̄⋆i j is equal to the minimum reduced
cost c̄p (as a function of πππ⋆

b and π⋆
0 ) of a path p ∈ Pi j, i.e.,

c̄⋆i j = min
p∈Pi j

c̄p. (7.96)

Because the lower bound LB on the optimal value z⋆ILP does not have to be equal
to z⋆MP, the Lagrangian bound can also be used and, moreover, at any iteration of the
column generation algorithm. Pessoa et al. (2010) propose to use such a bound in a
variable fixing procedure similar to the one above. Their computational experiments
are carried out on an arc-time-indexed formulation for parallel machine scheduling
problems, where the columns are also generated by solving a shortest path problem.
The lower bound is additionally computed using a dual stabilization approach and
the fixing procedure is invoked only when there is a new stability center.

Acceleration techniques

Branch-and-price algorithms are quite sophisticated because they involve many
components and concepts. To make them as efficient as possible, they are often com-
plemented with various acceleration techniques. However, instead of implementing
all existingÏ techniques for solving a particular application, we rather recommend
to start by implementing a basic branch-and-price algorithm (using a framework,
see Beginner’s guide to an implementation) and run computational experiments to
identify the algorithm weaknesses on a representative set of relatively large test in-
stances. To analyze the algorithm’s performance, we consider three main indicators:
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number of column generation iterations, RMP time versus ISP time over all iter-
ations, and number of branch-and-bound nodes. In the following, we discuss dif-
ferent acceleration techniques that preserve the exactness of the branch-and-price
algorithm and that can be applied when these indicators highlight an undesirable
behavior. Several of them are surveyed in Desaulniers et al. (2002), together with
additional ones.

Large number of column generation iterations

In a branch-and-price algorithm, the linear relaxation at the root node typically re-
quires the largest number of column generation iterations among all linear relax-
ations solved in the search tree. Although it is difficult to determine what should be
the ideal number of column generation iterations for a particular problem instance,
we can sometimes observe an excessive number of iterations. To reduce this num-
ber (at the root node or any other node), we can use one or several of the following
techniques.

• Generating multiple columns per iteration
An obvious way to reduce the total number of column generation iterations is to
try to generate more than one column per iteration. This may be possible when
there are several subproblems or when the pricing algorithm can return multiple
negative reduced cost solutions, for exemple, when the ISP is solved by dynamic
programming, branch-and-cut, or a local search heuristic. In general, adding a
few dozen to a few hundred columns to the RMP greatly speeds up the column
generation process. However, adding too many columns at once may put too much
burden on the RMP and have a negative impact on the overall solution process.

• Complementary columns
As suggested in Note 2.25, it might be beneficial to generate columns that impact
(or cover) different constraints. To achieve this, it might even be profitable to
solve a pricing subproblem more than once in the same iteration, slightly altering
it to ensure that the columns produced are complementary, e.g., by forbidding to
cover the rows covered in previously generated columns. Keep in mind that the
columns generated this way are typically chosen to help feasibility or optimality
of the ILP, which is not the same as helping the feasibility or optimality of the
MP, as optimality criteria are different.

• Dual variable strategies
As discussed in Chapter 6, controlling the dual variables can help to generate
better columns and improve column generation convergence. Therefore, all pro-
posed tools (dual inequalities, dual boxes, dual variable stabilization, dual variable
smoothing, etc.) can be applied to reduce the number of iterations. If you know
your problem well, heuristics for finding good dual solutions may come to mind.

• Early branching
When a good Lagrangian bound is available, column generation can always be
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stopped early to avoid a long tailing-off at any node of the search tree (see
Note 2.18). In this case, column generation is stopped even if there are still
columns with a negative reduced cost. Then, the solution process continues with
pruning, cutting, or branching at this node. Observe that early termination is com-
monly used in conjunction with Lagrangian relaxation methods, which we know,
most of the time, approximately solves the AMP (see Alternative master problem
and the proof of Proposition 6.2). One may even branch without a “good” bound
available since one always inherits a bound from the parent node; actually, such
branching happens regularly in branch-and-bound when solving the LP fails, e.g.,
because of numerical difficulties. Alternatively, one may want to stop column
generation early because it seems obvious that it will lead to a fractional solution,
e.g., with a fractional number of vehicles. Branching on the corresponding entity
can, thus, be performed right away.

Most of the time spent solving the RMP

In a branch-price-and-cut algorithm, most of the computation time is often devoted
to the column generation process, i.e., solving the RMP and the ISP in each column
generation iteration. To reduce the total time as much as possible, the effort should
concentrate on the most time-consuming part. When the RMP requires more time
over all iterations than the ISP, the following techniques can be considered. Note
that they can still be applied in the opposite case but with less overall impact.

• Degeneracy
When the RMP is subject to high degeneracy, then several options can be envis-
aged. First, we can try LP solvers that are less prone to degeneracy such as the
dual simplex algorithm or the barrier algorithm. Second, all dual variable strate-
gies proposed in Chapter 6 can also help to solve each individual RMP more
efficiently. Third, at some iterations, a subgradient algorithm can be used to ad-
just the dual values like in a Lagrangian relaxation method. Finally, if the MP
contains a large number of set partitioning constraints, a dynamic constraint ag-
gregation method (DCA, El Hallaoui et al., 2005, 2008, 2010) can be applied to
take advantage of degeneracy.

• High-density matrix
When the coefficient matrix of the MP constraints has a high density, solving
the RMP might be highly time-consuming due to the numerous matrix operations
that are required. In some cases, it might be possible to reduce the matrix density
by changing the MP formulation. For example, for an integrated bus and driver
problem, Haase et al. (2001) replace subsets of dense task covering constraints
by corresponding subsets of sparse flow conservation constraints. Because the
tasks of each former subset are most likely performed by the same bus driver
in a predefined order, most generated columns covering one task in this subset
also cover all the others. The corresponding flow conservation constraints simply
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ensure that, if a driver leaves the sequence of tasks in the middle of it, then another
driver enters it to continue the sequence.

• Constraint relaxation/generation
In some applications, there might be a relatively large set of constraints in the MP
that are necessary but have little chance of being violated if they were relaxed. In
that case, it is often better to remove them a priori and add them to the MP dynam-
ically only if they are violated by the solution of a linear relaxation in the search
tree. These so-called “lazy constraints” should also be checked to determine the
feasibility of any computed integer solution.

• Column management
After a certain number of iterations, the number of columns present in the RMP
might become large, hindering the RMP re-optimization process. In this case, a
column management strategy can be implemented to limit the RMP size as men-
tioned in Pivot rules and column management. For instance, when the number of
columns in the RMP reaches a predefined maximum number, say 3m where m is
the number of rows, then a certain number of columns, say m, is removed from
the RMP. These columns can be completely discarded or put in a pool for future
direct pricing (Savelsbergh and Sol, 1998). In both cases, these columns can be
generated anew by the pricing algorithm if their reduced cost becomes negative in
subsequent iterations. The columns to be removed from the RMP can be selected
based on their reduced cost or on the number of iterations since they have been in
the RMP basis. Note that there should be a minimum number of column genera-
tion iterations (say, 5) between two consecutive RMP column removal operations.
Otherwise, the column generation process might run into some convergence is-
sues. Consequently, the number of columns generated per iteration should not be
too large in this case.

• Column selection
When a very large number of columns is generated in each iteration, then the
RMP might rapidly become cluttered with too many variables as discussed in the
previous point. In this case, it might be advisable to select a subset of the generated
columns at each iteration and add only this subset to the RMP. For example,
when the MP contains set partitioning constraints, columns can be selected by
groups of orthogonal (complementary) columns with respect to these constraints
(Savelsbergh and Sol, 1998; Desaulniers et al., 2002). A machine learning model
can also be used to select the columns to add to the RMP (Morabit et al., 2021).

Most of the time spent solving the ISP

When the ISP requires more time over all column generation iterations than the
RMP, the following strategies can be considered.

• Partial pricing
Partial pricing consists in restricting the pricing to a subset of the feasible columns
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(i.e., restricting the domain of the ISP), reducing the pricing time in a column gen-
eration iteration. To ensure the exactness of a column generation algorithm, full
pricing must, however, be performed at least in its last iteration. Partial pricing is
essential to any primal simplex algorithm implementation and so for any column
generation algorithm implementation. On the other hand, there are many ways to
temporarily restrict the domain of the ISP. In particular, when there are multiple
ISPs, not all ISPs have to be solved in each iteration (see Heuristic pricing). For
example, we can stop solving the ISPs if a small number of ISPs (say, 3) have
been successful at producing negative reduced cost columns; or if at least a small
number of ISPs (say, 2) have failed to yield such columns and at least one has
been successful. Another partial pricing strategy consists in fixing the values of
certain variables. For instance, when the ISP is a shortest path problem, arcs can
be removed from the network (i.e., the associated flow variables are fixed to 0)
to speed up the pricing algorithm (Dumas et al., 1991; Fukasawa et al., 2006;
Desaulniers et al., 2008). The fixed variables may be selected according to vari-
ous criteria (e.g., their cost, their adjusted cost, etc., or using a machine learning
model as in Quesnel et al., 2022; Morabit et al., 2023) and this selection may vary
from one iteration to another. Note that this partial pricing technique also falls
into the heuristic pricing category discussed next.

• Heuristic pricing
As mentioned in Heuristic pricing, there is no need to solve the ISP to optimality
in each column generation iteration, as long as negative reduced cost columns are
found. Hence, any heuristic and even several of them can be invoked at each it-
eration to solve the ISP and potentially deliver many columns in a fraction of the
time required by an exact pricing algorithm. The heuristic used is often derived
from the exact pricing algorithm. For example, for an ESPPRC subproblem (see
Elementary Shortest Path Problem with Resource Constraints) that is solved by
a labeling algorithm (see Labeling algorithm for the ESPPTWC), it can be made
heuristic by considering only a subset of the arcs, using a heuristic dominance
rule, or limiting the number of labels associated with each node (Dumas et al.,
1991; Fukasawa et al., 2006; Desaulniers et al., 2008). Also, when the ISP is an
ILP or a MILP, it can be solved using a truncated (heuristic) branch-and-cut al-
gorithm by imposing a time or node limit, an optimality tolerance, or a maximum
number of integer solutions with a negative reduced cost found. Alternatively,
ad hoc heuristics, exploiting the ISP structure, can also be applied, such as local
search or tabu search (Savelsbergh and Sol, 1998; Desaulniers et al., 2008). Note
that some dual bound computations depend on an optimal solution of the pricing
problems.

• Variable fixing
The variable fixing technique described in Variable fixing by reduced cost and
Arc-flow variable fixing by reduced cost can help to speed up the solution of the
ISP as it can fix the value of a large subset of its variables (see Irnich et al., 2010;
Pecin et al., 2017b; Desaulniers et al., 2020a). This technique is only applicable
when a good upper bound UB on the optimal value z⋆IMP is known.
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• Relaxed ISP
As discussed in Relaxed pricing, relaxed master, when the computational com-
plexity of the ISP is high, it might be advantageous to generate columns using a
relaxation of the ISP, yielding a relaxed MP and possibly weaker lower bounds.
This technique is often used in branch-and-price algorithms for solving vehicle
routing problems, where the pricing subproblem is a strongly NP-hard elemen-
tary shortest path problem with resource constraints (see Chapter 5). In this case,
the ISP is replaced by a relaxed shortest path problem such as the ng-shortest path
problem with resource constraints (see ng-SPPTWC relaxation). Thus, columns
associated with inadmissible objects can be generated and must be excluded from
the MP optimal solutions in the branch-and-bound tree. Note that this technique
may allow to substantially reduce the time devoted to the ISP, but might result in
a much larger search tree to be explored. Consequently, a compromise must be
reached between the speed up obtained by relaxing the ISP and the quality of the
resulting lower bounds.

• Rolling back on cuts
As discussed in Cutting planes on the master variables, adding cuts defined on
the master variables may impact the ISP formulation, requiring extra variables
and constraints. The ISP may then become much more difficult to solve as cuts
are generated. A typical example for this occurs when subset-row inequalities
are applied in a branch-price-and-cut algorithm for the VRPTW (see Example 7.8
VRPTW and Chvátal-Gomory rank-1 cuts) and the ISP is solved using a labeling
algorithm similar to that described in Labeling algorithm for the ESPPTWC. For
this case, the dominance rule becomes less effective at discarding labels due to the
handling of the cut dual variables and the ISP may consume more than 95% of
the total computational time. One option to avoid this burden is to impose a preset
limit on the number of cuts that can be generated. This approach may, however,
be too conservative as this limit may be reached without inducing an ISP that is
too difficult to solve. Pecin et al. (2017b) proposed a dynamic alternative that does
not rely on a maximum number of cuts but on a difficulty threshold for solving
the ISP (e.g., a maximum number of labels generated). After adding a round of
cuts to the MP, a rollback procedure is triggered if this threshold is reached when
solving the next ISP. This procedure stops the labeling algorithm, removes the
last round of cuts and imposes branching decisions instead of adding cuts.

Large number of branch-and-bound nodes

When the number of nodes in the search tree is large, the following techniques
can be applied to reduce this number. The impact on the total computation time of
each of these techniques depends on the time it consumes versus the time saved by
exploring a reduced number of nodes.

• Lower bound strengthening
It is well known that strengthening the lower bounds typically yields smaller
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branch-and-bound trees. This can be achieved in different ways. A popular one is
to generate cuts as discussed in Section 7.2. Variable fixing, as presented in Vari-
able fixing by reduced cost, can also help to reduce the size of the search tree by
yielding stronger lower bounds and more efficient cuts (see Irnich et al., 2010;
Desaulniers et al., 2020a). Finally, the definition of the pricing subproblem influ-
ences the quality of the lower bounds obtained. Using an ISP that does not pos-
sess the integrality property yields stronger bounds than solving the ILP directly
(see Section 4.3). Moreover, integrating more decisions in the ISP can produce
tighter lower bounds as demonstrated for two different vehicle routing problems
in Desaulniers (2010) and Desaulniers et al. (2016b). In the former, the split de-
livery vehicle routing problem with time windows is addressed and the quantity
delivered to each customer visited along a route is a decision made in the ISP. In
the latter that tackles the inventory routing problem, the ISP also determines the
quantity delivered to each visited customer in a route, but further specifies how
this quantity is used to cover the demands of the customer over the next periods.

• Strong branching
Strong branching (see Achterberg et al., 2005) is a technique used in branch-and-
bound algorithms that can also be applied to branch-and-price algorithms. Given a
subset C of candidate branching decision pairs that can be used to separate a node
in the search tree, it evaluates them all to determine which pair of decisions to se-
lect. An evaluation consists of computing for each decision (i.e., for each potential
child node) an estimate of the objective value deterioration (or, positively speak-
ing, dual bound improvement) if it was imposed. The retained candidate is, then,
selected using a rule based on these estimates (for instance, a max-min rule). In a
branch-and-price algorithm, the evaluation can be quite time-consuming. There-
fore, Pecin et al. (2017b) propose to perform it in two phases. In the first phase, all
candidates in C are briefly evaluated by only reoptimizing the RMP after impos-
ing each decision. Based on these coarse evaluations, a subset C′ of C is selected.
In the second phase, the evaluation of each candidate in C′ is refined by apply-
ing column and cut generation for each potential decision but using only heuristic
pricing.

• Column enumeration
Introduced by Baldacci et al. (2008) for the capacitated vehicle routing problem,
column enumeration is based on the reduced cost criterion applied for variable
fixing. Given an upper bound z̄ on the optimal value z⋆IMP and a lower bound z
derived from a dual solution πππ to the MP possibly tightened with cuts, the pro-
cedure tries to enumerate all columns whose reduced cost with respect to πππ is
less than or equal to z̄− z (the other columns can all be fixed to their zero lower
bound). If the enumeration is successful, then an IMP restricted to the subset of
enumerated variables is solved using a standard branch-and-cut solver and its op-
timal solution in binary λ -variables, if any, is also optimal for the whole problem.
Otherwise (i.e., when memory lacks during enumeration), the procedure simply
fails. In their paper, Baldacci et al. (2008) compute πππ and z using a dual ascent
method based on column and cut generation, enumerate the subset of routes us-
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ing dynamic programming, and apply this column (route) enumeration procedure
only at the root node, possibly leaving some instances unsolved when enumera-
tion fails.
To fix this issue, Pessoa et al. (2009) develop a hybrid algorithm combining col-
umn enumeration and branch-and-price. After solving the MP at each node of
the search tree, column enumeration is attempted and, if it seems too demanding
according to some predefined criteria, it is aborted and branching is rather per-
formed at this node. This algorithm can be further enhanced by using a column
pool when a large number of columns can be enumerated but the resulting re-
stricted IMP cannot be solved in a reasonable amount of time (see Contardo and
Martinelli, 2014).

• Preprocessing
A key element of being able to solve large instances is making them smaller.
Branch-and-bound algorithms have a lot of so-called preprocessing procedures
that eliminate variables (like in Arc-flow variable fixing by reduced cost) or redun-
dant constraints, tighten bounds, strengthen coefficients, etc. This is no different
in branch-and-price. Use as much problem knowledge as possible to reduce the
size of the instance to solve. For instance, in VRPTW applications, try to reduce
wide time windows in order to eliminate impossible visiting times (see Desrosiers
et al., 1995, Section 3.2. Time window reduction and arc elimination).

7.6 More to Know

We start this section with ideas for primal heuristics and then extend our discussion
on Chvátal-Gomory cuts to rank 2. The first topic should indeed be relevant for
every branch-and-price person, the second is rather for connoisseurs. We close with
some thoughts about an implementation. Even though we place this item last, it is
indispensable in practice, of course.

Primal heuristics

When students first learn about the standard branch-and-bound algorithm, they often
think that integer solutions are obtained by branching. While this is true, of course,
this is usually not the main source of them. Instead, branch-and-bound solvers have
problem-specific and/or general primal heuristics implemented to obtain integer fea-
sible solutions, hopefully early in the process. This is also true for branch-and-price.
Finding a good primal bound rapidly can certainly help prune nodes in the search
tree, but it can also trigger substantial speedups when applying complementary tech-
niques like variable fixing by reduced cost (see Arc-flow variable fixing by reduced
cost) and column enumeration (see Large number of branch-and-bound nodes).
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Inventing heuristics for the particular problem at hand is a natural idea. One can
find inspiration for this in the many general ideas that exist for primal heuristics.
Several are inherited from classical branch-and-bound implementations, and some
can even exploit the particular branch-and-price context of having a decomposition
available. We sketch a handful of the most popular themes.

• Restricted master heuristic (“price-and-branch”)
One of the simplest ideas often happens almost “automatically” when you have
not implemented a branching rule (yet). In price-and-branch, column generation
is only applied at the root node to solve the initial master problem. The final RMP
is then transformed into a MILP and solved using a standard MILP solver. This
transformation is straightforward if the integrality requirements can be imposed
directly on the master variables λλλ (just change the variables’ type from continuous
to integer). Otherwise, the variables x of the compact formulation together with
the constraints linking x with λλλ must be added to the RMP before imposing the
integrality requirements on x. The simplicity of this heuristic comes at a price: the
quality of the feasible solution obtained depends on the subset of columns gener-
ated. Given that these columns were generated for solving the MP but not directly
the IMP, they are often insufficient to compute a high-quality integer solution.
Hence, it is important to generate a sufficiently large subset of columns. Finally,
note that milpping the RMP can be done at any column generation iteration and
not necessarily only at the last one at the root node.

• Complementary pricing
We emphasized previously that the columns we generate follow an optimality cri-
terion of linear programs, not one of integer programs. However, we can always,
at least additionally, generate columns with the explicit hope that they fit well in
a good IMP solution. One such idea is complementary pricing, see Acceleration
techniques above. It works well in set partitioning master problems: when a col-
umn is generated, we temporarily fix the new variable to 1, thus covering certain
rows already. Then we call the pricing problem again on the reduced size prob-
lem to generate columns that cover the remaining rows, and repeat. The aim is to
produce column vectors that “complement well” to an integer feasible solution.
The idea can be generalized to other kinds of master problems, plus it is usually
not hard to implement. While this is in fact a pricing strategy, see Pivot rules and
column management, it is relevant also in the primal heuristics context, of course.
This reminds us that, often, everything is connected with everything else.

• Diving heuristics
In an exact branch-and-price algorithm, columns are generated in every node of
the search tree. The newly generated columns were not useful to solve the MP
at the parent node but some of them are complementary to the solution obtained
after imposing a branching decision. The main weakness of the restricted master
heuristic described above is that it does not possess this recourse mechanism. A
diving heuristic exploits this recourse option, but restricts the exploration of the
search tree to a single branch in general. It just dives in the tree from the root to
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a single leaf node, generating columns in each node. In general, it finds just one
feasible integer solution in this leaf node.
Given that a single child node is created when the current master problem solu-
tion is fractional, certain branching decisions that cannot be applied in an exact
algorithm might become applicable. For instance, branching on an integer mas-
ter variable λx that takes a fractional value λ⋆x in the current MP solution is not
practical in an exact algorithm because the down-branch decision λx ≤ ⌊λ⋆x⌋ is
usually weak and difficult to implement (see Branching on the master variables).
However, in a diving heuristic, we can select the up-branch decision λx ≥ ⌈λ⋆x⌉
to create a single node. This strong decision is easy to implement and can help
to rapidly reduce the solution space. On the other hand, imposing λx ≥ 1 when
0 < λ⋆x < 1 is not very close to 1 (e.g., λ⋆x ≤ 0.6) may be a bad decision that is not
reversible because backtracking in the search tree is not allowed. As this situation
often arises, we should consider alternative decision types that are defined on the
original x-variables or equivalently on a sum of the master variables, and which
are less aggressive. For example, for a vehicle routing problem like the VRPTW
with binary arc-flow variables xi j in the compact formulation and binary route
variables λp in the extended formulation, we can choose to fix λp = 1 for a route
p or xi j = 1 for an arc (i, j). The former decision type should be favored only if
λp takes a sufficiently large fractional value. The latter type is less constraining
and has, therefore, less impact on the dual bound. It can be imposed even if the
value of xi j is not too close to 1.
To further accelerate the search for an integer solution, multiple up-branch deci-
sions can be imposed simultaneously, which means that columns are not gener-
ated between these decisions. This is often acceptable when the set of decisions is
defined on variables taking values very close to the imposed lower bounds (e.g.,
their fractional parts are all greater than or equal to 0.9).
For certain problems, a single dive in the tree might be risky as it may lead to
an integer solution of a doubtful quality, or worse to no feasible solution at all.
To prevent this, we can explore more than one branch of the tree. This is accom-
plished by creating more than one child node at some nodes of the tree, typically,
when the best candidate decision is rather uncertain (e.g., imposing a lower bound
on a master variable that has a fractional part less than 0.7). In this case, multiple
nodes are not created by branching, but rather by defining up-branches for dif-
ferent decisions. For example, let us assume that the fractional parts of the three
best candidate master variables λx1 , λx2 , and λx3 are given by 0.7, 0.67, and 0.65,
respectively. In this case, three child nodes can be created, one for each decision
λx1 ≥ ⌈λ⋆x1

⌉, λx2 ≥ ⌈λ⋆x2
⌉, and λx3 ≥ ⌈λ⋆x3

⌉, where λ⋆xi
, i = 1,2,3, is the variable

value in the current MP solution. Compared to a pure diving heuristic with a sin-
gle branch, this diving heuristic with backtrackings can only lead to a better final
solution. The creation of multiple nodes must be used with parsimony to limit
the computational time. Other diving heuristic variants are described in Sadykov
et al. (2019), Lübbecke and Puchert (2013), and Quesnel et al. (2017).
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• Rounding and sub-MILP heuristics
Simply rounding a fractional RMP solution can be totally useless, but also surpris-
ingly successful. In any case, this is very cheap and always worth a try. However,
one can do the rounding more intelligently, but thus also more expensive: Fix all
the λ -variables to their current values when these are already integer. Then solve
the resulting sub-MILP using branch-and-bound. This can be seen as an optimal
rounding. One can also try to fix a smaller, potentially more meaningful subset
of λ -variables: for instance, those variables, in which the RMP solution and an
incumbent (integer feasible) solution agree. Similarly, one can fix the values of
x-variables when “many” columns of positive λ -variables agree in the respective
components. We refer to Lübbecke and Puchert (2013) for inspiration.

• Large neighborhood search
A sub-MILP searches the neighborhood of a fractional or incumbent solution.
This can be generalized to a true large neighborhood search (LNS, Shaw, 1998).
The LNS procedure starts with an initial solution that can be feasible or not. Then,
at each iteration, it destroys part of the current solution before repairing it using
branch-and-price as a re-optimization tool. Various destruction operators can be
employed throughout the iterations (Røpke and Pisinger, 2006). These operators
can work directly on the master variables (e.g., on schedule variables as in Pepin
et al., 2009) or on objects appearing in the compact model or ISP (e.g., on subsets
of customer nodes as in Prescott-Gagnon et al., 2009). An appreciated feature of
this heuristic is that it provides a sequence of improving solutions throughout the
solution process and can, thus, be stopped at almost any time with a feasible in-
teger solution in hand. The (expensive) re-optimization step by branch-and-price
can, and should, be done by a branch-and-price heuristic. Any of those mentioned
above could apply. In that sense, LNS can be considered as a hybrid heuristic, see
the next item.

Fig. 7.14: Elina Rönnberg (2023-05-17) and Stefan Irnich (2024-07-30) in Montréal.
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Maher and Rönnberg (2023) propose a destroy-and-repair scheme for general
master problems which include set covering, packing, or partitioning constraints.
They adapt the pricing problem so that it does not (only) generate columns that
are favorable for optimality of the RMP MP, but for the IMP itself.

• Hybrid heuristics
Hybrid heuristics combine different heuristic or exact algorithms. One can imag-
ine that the options here are countless. We give two examples. The first one is
called Diving with sub-MILP by Sadykov et al. (2019) and combines a pure div-
ing heuristic with the restricted master heuristic. It starts by applying a diving
heuristic with a single branch to obtain, if any, a feasible integer solution. Then,
all columns generated throughout the process are gathered in an augmented RMP,
which is milped and solved using a standard MILP solver. Given the augmented
set of columns considered, this heuristic can hopefully find a better solution than
the restricted master heuristic.
The second, which can be called Dive-first, then-branch, mixes a diving heuristic
with an exact branch-and-price algorithm. It begins by a dive in one or multiple
branches as discussed above. The dive in a branch is stopped when only highly
uncertain candidate decisions are available and the size of the residual problem
(i.e., the initial problem restricted by all applicable decisions) is relatively small.
One may also use the number of fractional-valued variables in the current MP
solution to evaluate this size. The search in this branch is then replaced by the
exploration of the full sub-tree using the exact branch-and-price algorithm which
should be relatively fast for solving the residual problems.

We are in the comfortable situation that we have two formulations in our hands,
the ILP and the IMP. We can therefore run heuristics on (the variables of) both of
them (see, e.g, Lübbecke and Puchert, 2012, 2013). One may, for instance, run the
primal heuristics of a standard solver on the ILP and use the resulting heuristic so-
lution, if one was found, for the initialization of the RMP. It shows again, that a
good general knowledge about modern branch-and-bound implementations is help-
ful, see Note 7.7. In the context of primal heuristics, having some background in
meta-heuristic ideas like local search, evolutionary algorithms, etc., and how they
can be hybridized with exact methods into matheuristics certainly helps, too. Let
us mention that ideas for primal heuristics for the entire problem can be useful for
heuristic pricing as well, as the pricing solves only a part of the same problem.

It is not only that primal heuristics help the exact branch-and-price algorithm.
Often, practical-sized instances are too large to be solved to optimality anyway. For
example, Barnhart et al. (1998, p. 318) report that Vance (1993) found more than
five million crew pairings in a daily problem with 253 flights. You can imagine the
size of an instance with 1000 flights per day over a weekly horizon. Then, imposing
a time, node, or gap limit turns the exact approach into a heuristic. In branch-and-
price, we can then be more sloppy in many places. For instance, there is no require-
ment to solve the master problem to optimality in each node. In particular, the ISP
does not have to be solved exactly at any column generation iteration. Hence, we
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can apply various pricing heuristics that can be simply defined by removing a priori
some variables from the ISP formulation or by heuristically speeding up the pricing
algorithm (for instance, by using an aggressive dominance rule in a labeling algo-
rithm for solving an ESPPRC or a SPPRC– see Chapter Vehicle Routing and Crew
Scheduling Problems). Alternatively, a pure heuristic such as a greedy heuristic or
tabu search can also be used. Finally, to avoid the column generation tailing-off at
each node, column generation can be halted prematurely when the RMP optimal
value does not decrease sufficently in a predetermined number of iterations (see
also Early branching, p. 489). All this can result in stand-alone branch-and-price
heuristics which are used in the industry to compute high-quality feasible solutions
for huge instances.

Note 7.13 (You do not solve an ILP by column generation.) In many articles, one
reads about “column generation approaches to this or that integer program.” After
having read 500 pages of this book you know that this cannot be true: The column
generation algorithm solves linear programs only. Often, these authors neither dis-
cuss nor implement a branching rule, and thus do not present a true branch-and-price
approach. Instead, typically, heuristic integer solutions are obtained using what we
called above the restricted master or price-and-branch method.

Chvátal-Gomory cuts of higher ranks

Recall Illustration 7.4 on the Chvátal-Gomory cuts of rank-1. We here consider the
case of rank-2 cuts whereupon it becomes clear how to extend to cuts of any higher
rank. Our goal is to add to the MP two sets of cuts:

z⋆MP = min ∑
x∈X

cxλx (7.97a)

s.t. ∑
x∈X

axλx ≥ b [πππb ∈ Rm
+] (7.97b)

∑
x∈X

g1
xλx ≥ h1 [γγγ1 ∈ R|L

1|
+ ] (7.97c)

∑
x∈X

g2
xλx ≥ h2 [γγγ2 ∈ R|L

2|
+ ] (7.97d)

λx ≥ 0 ∀x ∈ X, (7.97e)

where the |L1|+ |L2| additional constraints are rank-1 and rank-2 cuts with respec-
tive dual vectors γγγ1 and γγγ2. A column for x ∈ X is composed of cx = c⊺x, ax = Ax,
g1

x = [g1
ℓx]ℓ∈L1 and g2

x = [g2
ℓx]ℓ∈L2 . Let h1 = [h1

ℓ ]ℓ∈L1 and h2 = [h1
ℓ ]ℓ∈L2 on the right-

side. Given weight vectors w1
ℓ ∈ Rm

+ for ℓ ∈ L1 and w2
ℓ ∈ Rm+|L1| for ℓ ∈ L2, the cut

coefficients are computed as

g1
ℓx = ⌈w1⊺

ℓ ax⌉ ∀ℓ ∈ L1, x ∈ X (7.98a)
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h1
ℓ = ⌈w1⊺

ℓ b⌉ ∀ℓ ∈ L1 (7.98b)

g2
ℓx =

⌈
w2⊺
ℓ

[
ax
g1

x

]⌉
∀ℓ ∈ L2, x ∈ X (7.98c)

h2
ℓ =

⌈
w2⊺
ℓ

[
b
h1

]⌉
∀ℓ ∈ L2. (7.98d)

That is, the functions for calculating the rank-2 cut coefficients depend on both ax
and the rank-1 coefficients g1

x on the left-side, similarly on b and h1 on the right-
side. Because γγγ1,γγγ2 ≤ 0, the ceiling functions can be computed as in (7.39), that is,
using integer linear inequalities. Hence, the ISP becomes

c̄(πππb,γγγ
1,γγγ2) = min

x∈X
c⊺x−πππ

⊺
bAx−γγγ

1⊺g1
x−γγγ

2⊺g2
x

s.t. g1
ℓx ≤ w1⊺

ℓ Ax +1− ε
1
ℓ ∀ℓ ∈ L1

g2
ℓx ≤ w2⊺

ℓ

[
Ax
g1

x

]
+1− ε

2
ℓ ∀ℓ ∈ L2

g1
x ∈ ZL1

, g2
x ∈ ZL2

.

(7.99)

Repeating the procedure, we can observe that higher rank cuts depend on lower rank
cuts to compute adequately the cut coefficients.

Beginner’s guide to an implementation

ÏThere is nothing so practical as a good theory.

Kurt Lewin (1951)

When you have read this book, it is likely that you wish to actually do some branch-
price-and-cut, and use it to solve some real optimization problem. And this unavoid-
ably brings us to an implementation. We have given some specific details at several
places, however, we spared a very practical question: where to even start? An an-
swer depends, of course, on your background and goals. We assume that you neither
develop a generic branch-price-and-cut solver that can be applied to any problem
(because only very few people on earth do this, and the probability that you are one
of them is small), nor that you have an existing code, maybe “from your last branch-
and-price project” (because then you already know where to start). That is, you are
a beginner. Nice! We recommend two phases, the first of which is about creating
your setup and doing column generation only, and consists of a few steps.

Step one is solely on paper. Don’t skip this. Write down a compact (the “origi-
nal”) MILP model for your problem. We think of it as a formal problem description.
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Be clear about all the parameters, and how precisely a solution looks like. Rigor and
a good organization here helps in every step downstream.

Step two, choose a MILP solver, proprietary or open source, whatever is available
to you, and a programming language, e.g., Python. Every solver offers an API to
current languages, and usually they come with modeling examples. Now implement
your model. The modeling part itself literally translates your model from paper into
one written in your programming language. You create some kind of model ob-
ject (which is initially empty), define variables and constraints (there are
methods to add them to your model), and finally you call the optimize method.
Learn how to access a solution and print it in an informative way. Since variables
and constraints are defined over index sets, the modeling part benefits from pre-
cision in your earlier work on paper. The data part is trickier, you have to fill the
abstract coefficients in the model with life, and need instances of your problem for
this. It may sound obvious, but without data, we cannot compute anything. Acquir-
ing data can be the most time consuming, most boring or most exciting, maybe the
most critical phase of the entire project.

The importance of not doing any column generation at first is in the setup that you
accomplish: install a solver, learn the basics of a programming language, produce a
pipeline from the data sources into your model, and from the solution to your model
into something interpretable, maybe a visualization or a table. This step also serves
as a benchmark: how large (or small) instances can be solved in acceptable time?
We could also use an algebraic modeling language for this experiment. Maybe you
have done all of this already, and state-of-the-art branch-and-cut (that is built into
MILP solvers) left you unsatisfied with the results. Maybe this brought you to this
book. This is good, you are not a beginner any more, we can proceed.

Step three is column generation. Again, preparing everything meticulously on
paper is our friend. Reformulate your compact model according to Dantzig and
Wolfe, let Chapter 4 inspire you. Maybe after aggregation, this results into an MP
and one or several ISPs. Some skip the Dantzig-Wolfe reformulation step and di-
rectly formulate a master and pricing problems, but this may conceal connections
which are “there” anyway, and this knowledge is likely needed in branching and cut-
ting later. In any case, we work with two communicating models now, see Fig. 2.2.
The variable type in the master model should be continuous, and it is likely
that this type is integer (or binary) in your ISPs. We need methods for obtaining
the values of the dual variables (remember, there is one for every constraint in the
master, so the dual value may be an attribute of the constraint object). Also,
the columns that are returned from the ISPs need to be added to the RMP: Create a
new variable in the master model and change its coefficients in the respective
master constraints according to the values of the solution obtained from the pricing
model. You have to write a loop for the column generation algorithm according
to Algorithm 2.1 and you may have to think about initialization. We promise that
through the implementation (and the debugging!), you understand the theory much
better. Maybe you replace the ISP MILP model with a specialized solver for the
pricing later. You may wish to add cutting planes which are derived from the original
model, but maybe keep it simple first. Integer solutions are heuristically obtained by
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switching the variable type to integer (or binary) and optimize the MP with
branch-and-bound. This completes phase one.

Doing true branch-and-price, which is phase two of an implementation, can be
more involved. It is likely that one needs more programming skills than in the previ-
ous phase. A main reason for this is that standard, in particular commercial solvers,
do not give us control over how the relaxation is solved in every node of the search
tree (in contrast to “callback” functions that allow a user to implement, e.g., an own
separation of cutting planes, there is no such form of access to the pricing). If you
use an open source solver framework, however, your column generation code from
above can be “hooked” into the solving loop to realize precisely this control. De-
pending on the framework, you may only have to put the code for your ISPs in an
appropriate place (and the RMP is then re-optimized automatically as part of the
usual solving process). Now the exchange of information between master and pric-
ing problems likely manifests itself in the implementation of a predefined interface.
We can give much less general advise here, except: use a framework that takes care
of managing the branch-and-bound process for you. It is not a secret that, e.g., SCIP
is well-suited for this.

We should not hide that even a large investment in an implementation may turn
out to be fruitless in the end. Your optimization problem, at this moment, may be
too hard to be solved to proven optimality in acceptable time. After all, this is what
drives research. Therefore, before you embark on an implementation, you may wish
to have some prediction about a success probability. This is one motivation of the
GCG1 project. What is needed is only the original model (the first steps of phase one),
the remainder is done automatically by the solver: reformulation, pricing, cutting,
branching. Improvement and tailoring like using a specialized pricing solver is still
possible, it may even be necessary. But when you are lucky, you may have done full
branch-price-and-cut without having to go through an implementation.

7.7 Examples

In Example 7.1 (Time constrained shortest path problem), we use our creative free-
dom in proposing various branching decisions on the x-variables, integrated either to
the ISP or the IMP. In the second example (Semi-assignment branching), we present
a strategy that can be useful for problems such as the generalized assignment, ca-
pacitated p-median, unrelated parallel machines scheduling, and similar ones. In
Example 7.3 (Ryan-Foster branching for vertex coloring), we use a specialized λ -
branching, and decisions are imposed in the set partitioning master problem. In the
next one, the Ryan-Foster branching for bin packing makes the ISP harder. Con-
tinuing with the Edge coloring and odd-circuit cuts helps understanding the use of
indicator variables in the ISP (which are useful in λ -branching as well).

1 https://gcg.or.rwth-aachen.de/

https://gcg.or.rwth-aachen.de/
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Example 7.6 (k–path cuts for the VRPTW) describes one of the first efficient
x-cuts for the VRPTW whereas VRPTW and non-robust rounded capacity cuts im-
proves on the capacity cuts of Illustration 7.2. For the VRPTW and Chvátal-Gomory
rank-1 cuts, we present a rather easy implementation of the pricing problem. The
set of examples is completed by two large-scale applications. The Preferential bid-
ding system for a monthly airline crew assignment problem makes use of the z-cuts
while the Branch-first, Cut-second strategy for locomotive assignment in freight
transportation combines branching and cutting on the x-variables. For these two, we
have to say: If we can find good-quality integer solutions, we are very happy.

Example 7.1 Time constrained shortest path problem

� We use various branching rules derived from a compact formulation.
The freedom of choosing the branching decisions is a powerful tool
when properly applied.

Given is the ILP (4.33) for the time constrained shortest path problem (TCSPP),
reformulated as the IMP (4.35), for which we want to find an optimal integer solu-
tion x⋆ILP. The column generation algorithm rather gives us a solution for the MP,
where x⋆MP is indeed fractional. For reference, we have accomplished all this in Il-
lustration 4.5 and Example 3.2.

From Table 3.1, we get λ13256 = 0.2, λ1256 = 0.8, and z⋆MP = 7. This is obtained
by solving the following RMP, where y0 is an artificial variable in the convexity
constraint with a big-M cost equal to 100:

min 100y0 + 3λ1246 + 24λ1356 + 15λ13256 + 5λ1256
s.t. 18λ1246 + 8λ1356 + 10λ13256 + 15λ1256 ≤ 14 [π7]

y0 + λ1246 + λ1356 + λ13256 + λ1256 = 1 [π0]
y0, λ1246, λ1356, λ13256, λ1256 ≥ 0.

In the compact formulation, this λ -solution corresponds to the arc-flows x12 = 0.8,
x13 = x32 = 0.2, and x25 = x56 = 1, see Figure 7.15. Let us instantiate a branch-and-
bound tree whose root node, denoted BB0, captures all this information.
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Fig. 7.15: Network G= (N,A) with (ci j, ti j) values, ∀(i, j)∈A, and optimal arc-flow
solution as a combination of paths 13256 and 1256.
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Since the x-variables are required integer, we know that any combination of their
values must also be. We can therefore consider branching on the sum of any subset
of arc-flow variable values. Immediate examples are the single arc-flow x12 = 0.8
and the total sum ∑(i, j)∈A xi j = 3.2.

Let us instead focus our first decisions on x13 + x32 = 0.4 (just because we can):
the down-branch imposes x13 + x32 = 0 whereas we have x13 + x32 ≥ 1 in the up-
branch. Table 7.3 summarizes the procedure, where c̄(·) denotes the minimum re-
duced cost obtained by the ISP for the appropriate dual vector that is modified in
dimension and values during the search.

Node RMP solution z⋆MP π0 π7 π8 c̄(·) p cp tp

BB1: BB0 and x13 + x32 = 0
BB1.1 y0 = 1/15,λ1256 = 14/15 11.3 100 −6.33 – 0
BB1.2 M increased to 1000

y0 = 1/15,λ1256 = 14/15 71.3 1000 −66.33 – −57.3 12456 14 14
BB1.3 λ12456 = 1 14 1000 −70.43 – 0

Integer arc-flows: x12 = x24 = x45 = x56 = 1

BB2: BB0 and x13 + x32 ≥ 1
BB2.1 λ1246 = λ13256 = 0.5 9 15 −0.67 3.33 0

Fractional arc-flows: x12 = x13 = x24 = x25 = x32 = x46 = x56 = 0.5

BB3: BB2 and x12 = 0
BB3.1 λ13256 = 1 15 15 0 0 -2 13246 13 13
BB3.2 λ13246 = 1 13 13 0 0 0

Integer arc-flows: x13 = x32 = x24 = x46 = 1

BB4: BB2 and x12 = 1
BB4.1 Infeasible

Table 7.3: Details of the branch-and-bound tree.

BB1: BB0 and x13 + x32 = 0

Housekeeping: We 1) discard λ1356 and
λ13256 from the RMP and 2) remove the
arcs (1,3) and (3,2) from G. As a con-
sequence, node 3 has no more prede-
cessors so it is discarded as well along
with the arcs (3,4) and (3,5). In itera-
tion BB1.1, we therefore start by solv-
ing the RMP
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min 100y0 + 3λ1246 + 5λ1256
s.t. 18λ1246 + 15λ1256 ≤ 14 [π7]

y0 + λ1246 + λ1256 = 1 [π0]
y0, λ1246, λ1256 ≥ 0 .
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The optimal solution with the artificial variable y0 = 1/15 and λ1256 = 14/15 is infea-
sible for the MP, with z⋆MP = 11.33. The dual values are π0 = 100 and π7 =−6.33,
and given these, no columns with negative reduced cost can be generated. Are we
ready to prune node BB1 based on infeasibility?

Big-M is not big enough. Here we face a drawback of the big-M approach to initial-
ize the column generation algorithm. Indeed,

z⋆MP = M(1/15)+5(14/15), π0 = M, and π7 = 5− z⋆MP.

Path 12456 is feasible, its cost is 14 as well as its duration, and its reduced cost
becomes negative when M is large enough:

c̄12456 = 14−14π7−π0 < 0 ⇔ M > 140.

Even though z⋆LP = 7 and z⋆ILP = 13, the initially chosen constant M = 100 is unfor-
tunately too small so we increase it, say to M = 1000:

min 1000y0 + 3λ1246 + 5λ1256
s.t. 18λ1246 + 15λ1256 ≤ 14 [π7]

y0 + λ1246 + λ1256 = 1 [π0]
y0, λ1246, λ1256 ≥ 0 .

The RMP returns y0 = 1/15, λ1256 = 14/15, and z⋆MP = 71.3, together with π0 = 1000
and π7 = −66.33. The ISP returns path 12456 with reduced cost −57.33, cost 14,
and duration 14.
In BB1.3, the RMP finds λ12456 = 1, an integer solution x12 = x24 = x45 = x56 = 1
with z⋆MP = 14 (an upper bound UB on z⋆ILP). The dual values are π0 = 1000 and π7 =
−70.43, and no new variable is generated. Node BB1 can be pruned by integrality.

BB2: BB0 and x13 + x32 ≥ 1

Housekeeping: The new constraint is handled in the MP. It does not forbid any ex-
isting columns but does add row coefficients. The domain of the ISP is not modified
but the objective function must be adapted with the new dual variable.

In more details, this constraint is added to the ILP (4.33) together with the as-
sociated dual variable π8. There is no change in the original network so we exploit
again the path structure of D which means that x13 + x32 ≥ 1 is a robust cut. We
then go through the reformulation process in terms of its extreme points, and obtain
a new MP to work with. The resulting new constraint in the successive RMPs is

∑
p∈P

(x13p + x32p)λp ≥ 1 [π8]. (7.100)

The value (x13p +x32p) reflects how often the arcs (1,3) and (3,2) are used to com-
pute the coefficient of λp in (7.100): zero for λ1246 and λ1256, one for λ1356, and two
for λ13256.
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The RMP at the start of iteration BB2.1 is

min 1000y0 + 1000y8 + 3λ1246 + 24λ1356 + 15λ13256 + 5λ1256
s.t. 18λ1246 + 8λ1356 + 10λ13256 + 15λ1256 ≤ 14 [π7]

y8 + λ1356 + 2λ13256 ≥ 1 [π8]
y0 + λ1246 + λ1356 + λ13256 + λ1256 = 1 [π0]
y0, y8, λ1246, λ1356, λ13256, λ1256 ≥ 0,

where the artificial variable y8 ensures feasibility of the new constraint irrespective
of X′. Solving it, we obtain z⋆MP = 9, λ1246 = λ13256 = 0.5, π0 = 15, π7 = −0.67,
and π8 = 3.33. The modified ISP is given by

c̄(π7,π8,π0) = min
x∈D ∑

(i, j)∈A
ci jxi j−π7( ∑

(i, j)∈A
ti jxi j)−π8(x13 + x32)−π0. (7.101)

For the above dual values, no path of negative reduced cost exists. The fractional arc-
flow solution derived from λ1246 = λ13256 = 0.5 is x12 = x13 = x24 = x25 = x32 =
x46 = x56 = 0.5. We arbitrarily choose the first fractional-valued variable x12 = 0.5
to branch on.

BB3: BB2 and x12 = 0

Housekeeping: We discard λ1246 and
λ1256 from the RMP. We then drop arc
(1,2) from G. In iteration BB3.1, we
therefore start by solving the following
RMP:

1

2

3

4

5

6

(1,1)

(1,7)

(10,3)

(12,3)

(2,2)

(1,2) (10,1)

(2,3)

(5
,7
)

min 1000y0 + 1000y8 + 24λ1356 + 15λ13256
s.t. 8λ1356 + 10λ13256 ≤ 14 [π7]

y8 + λ1356 + 2λ13256 ≥ 1 [π8]
y0 + λ1356 + λ13256 = 1 [π0]
y0, y8, λ1356, λ13256 ≥ 0.

Two column generation iterations are needed to solve the MP at this child node.
The dual values we get at BB3.1 are π0 = 15 and π7 = π8 = 0. The corresponding
primal solution λ13256 = 1 of cost 15 is anecdotally integer. This may or may not be
relevant to keep track of depending on how difficult it is to find an integer solution
at all in the specific application. The path 13246 of reduced cost −2, cost 13, and
duration 13 is generated and used in the next iteration BB3.2.

The solution of the RMP is integer feasible with variable λ13246 = 1 and a new
best integer solution with cost 13 is identified. The dual values are π0 = 13 and
π7 = π8 = 0 for which no negative reduced cost path exists, that is, c̄(π0,π7,π8) = 0.
Node BB3 can be pruned by integrality.
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BB4: BB2 and x12 = 1

Housekeeping: Imposing x12 = 1 implies set-
ting x13 to zero, that is, removing arc (1,3).
This implies that node 3 can be discarded
as well as its three exiting arcs. We end up
with the same network structure as the one for
x13 + x32 = 0. Therefore, combining x12 = 1
with the constraint x13 + x32 ≥ 1 introduced
in node BB2 means that there is no solutions
for the MP so node BB4 can be pruned by
infeasibility. Exercise 7.15 asks the reader to
describe how this reasoning plays out from a
digital perspective.

1

2 4

5

6

(1,10)

(1,1)

(1,7)

(2,2)

(10,1)

(2,3)

To summarize, a total of five nodes are explored in this branch-and-bound tree
(Figure 7.16). It involves decisions incorporated as constraints into the ISP as well
as in the ILP. It produces integer solutions in terms of the original arc-flow variables
in two nodes, fractional solutions in two others, and results in infeasibility in one
node. An optimal integer solution is found in node BB3 at a cost z⋆ILP = 13.

BB0 LB = 7

BB1 UB = 14 BB2 LB = 9

BB3 LB = UB = 13 BB4 infeasible

x13 + x32 = 0 x13 + x32 ≥ 1

x12 = 0 x12 = 1

Fig. 7.16: A branch-and-bound tree for the TCSPP.

Example 7.2 Semi-assignment branching

� Branching on original variables, ranking the candidates, and a rule that
works for many similar problems.

We revisit the Capacitated p-median problem that we considered already in Exam-
ple 6.2 on page 405. Each customer in a set N has to be assigned to exactly one
cluster center (“median”) from a set K ⊆ N, such that exactly p clusters result. We
repeat for convenience the compact ILP (6.89) which contains the remaining nota-
tion for costs and capacities:
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z⋆ILP = min ∑
k∈K

∑
i∈N

ck
i xk

i (7.102a)

s.t. ∑
k∈K

xk
i = 1 ∀i ∈ N (7.102b)

∑
k∈K

yk = p (7.102c)

∑
i∈N

dixk
i − Dkyk ≤ 0 ∀k ∈ K (7.102d)

xk
i ∈ {0,1} ∀k ∈ K, i ∈ N (7.102e)

yk ∈ {0,1} ∀k ∈ K. (7.102f)

Ceselli and Righini (2005) convexify the capacity constraints (7.102d), that is,

Dk =

{[
xk

yk

]
∈ {0,1}n+1

∣∣∣∣ ∑
i∈N

dixk
i ≤ Dkyk

}
, ∀k ∈ K. (7.103)

This results in the IMP (6.92) and an ISPk (6.93) for every k ∈ K (reproduced here)

c̄k(πππ,γ,πk
0) =−π

k
0 + min[

xk

yk

]
∈Dk

∑
i∈N

(ck
i −πi)xk

i − γ yk, (7.104)

which can be transformed into a knapsack problem. We consider two strategies to
branch on original variable values x⋆RMP = [xk⋆

i ]k∈K, i∈N and y⋆RMP = [yk⋆]k∈K .

Strategy 1. We first put a higher priority on opening medians than on assigning
customers, thus prefer branching on y- over branching on x-variables. Branching
candidates are all yk for which yk⋆ is fractional. They are ranked by non-increasing
value of

τ
k = min[

xk

yk

]
∈Dk

∑
i∈N

(ck
i −πi)xk

i = c̄k(πππ,γ,πk
0)+π

k
0 + γ yk (7.105)

and we pick a k̄ for which this value is largest (most unpromising median). Branch-
ing on whether to open median k̄ or not, that is, yk̄ = 1 or yk̄ = 0, is performed
as follows: in the up-branch, add to the MP the constraint ∑p∈Pk̄ yk̄

pλk̄
p = 1; in the

down-branch, remove the corresponding ISP. Ceselli and Righini (2005) explore
the down-branch first and select nodes in a depth-first manner.

Once p medians are fixed to be used, or |K| − p medians are fixed not to be
used, branching on binary xk

i -assignments takes place. Customers are sorted in non-
increasing order of |Ki|, where Ki ⊆K is the set of medians to which i is fractionally
assigned (most undecided customers first). Select a highest ranked customer ı̄ and
create p child nodes, one for each used median. In such a node, customer ı̄ is as-
signed to the respective median k′, thus fixing xk′

ı̄ = 1 in ISPk′ and xk
ı̄ = 0 in all ISPk

with k ̸= k′. The pricing problems remain knapsack problems, of smaller size.



510 7 Branch-Price-and-Cut

Strategy 2. This second strategy refines a proposal by Savelsbergh (1997) for the
generalized assignment problem, and is even more interesting (and according to
Ceselli and Righini (2005), much more effective). For each customer i∈N, consider
again the set Ki ⊆ K of all the medians to which i is fractionally assigned. For each
i, we create two disjoint subsets K+

i and K−i by alternately assigning to them the
medians in Ki in the order of non-increasing (fractional) value xk⋆

i of the assignment
variable. The aim is to create a partition of Ki into two subsets which are balanced
in fractional assignment to i. Also, the medians in K̄i to which i is not assigned, are
partitioned into two subsets K̂+

i and K̂−i of (almost) equal cardinality.
Again, a customer ı̄ is selected for which |Kı̄| is largest, that is, for which the

number of medians to which ı̄ is fractionally assigned is largest. Then branching
on the selected semi-assignment constraint ∑k∈K xk

ı̄ = 1 in (7.102b) imposes that ı̄
is not assigned to the medians in K+

ı̄ ∪ K̂+
ı̄ in one branch or not to the medians in

K−ı̄ ∪ K̂−ı̄ in the other branch. In the ILP, this is done by forcing

either ∑
k∈K−ı̄ ∪ K̂−ı̄

xk
ı̄ = 0 or ∑

k∈K+
ı̄ ∪ K̂+

ı̄

xk
ı̄ = 0, (7.106)

or, in terms of the master variables in the MP, by

either ∑
k∈K−ı̄ ∪ K̂−ı̄

∑
p∈Pk

xk
ı̄pλ

k
p = 0 or ∑

k∈K+
ı̄ ∪ K̂+

ı̄

∑
p∈Pk

xk
ı̄pλ

k
p = 0. (7.107)

Note that both branches can be implemented by “eliminating” the corresponding
variables from the RMP and ISPs by locally setting them to zero (this reduces the
size of the resulting knapsack pricing problems.)

We have semi-assignment constraints in many classical combinatorial optimiza-
tion models. Sometimes, the subproblems are identical, like in bin packing, vertex
coloring, etc. Then, the Ryan and Foster (1981) branching rule (p. 474) is most
suited for the resulting set partitioning IMP. When the subproblems are different,
however, like also for generalized assignment, unrelated parallel machines schedul-
ing, etc., semi-assignment branching is an option worth considering.

Example 7.3 Ryan-Foster branching for vertex coloring

� Also for master variable branching, we may be able to leave the pricing
problem structure intact after branching.

In this example we wish to see the Ryan and Foster (1981) branching rule (p. 474) in
action. The rule needs a set partitioning type IMP to work. The latter is a very com-
mon model and, among others, arises from Dantzig-Wolfe reformulation of ILPs
that contain assignment requirements: assign tasks like nodes, items, customers,
flights, etc. to exactly one resource like color, bin, vehicle, crew member, etc.

The vertex coloring problem from Illustration 7.1 fits into this scheme. We for-
mulated an ILP in (7.16) that assigns every node i∈N of a graph G = (N,E) exactly
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one color from a set K. A Dantzig-Wolfe reformulation, e.g., MP (7.18), and aggre-
gation over the colors K bring us to a set partitioning program:

z⋆IMP = min ∑
p∈P

λp

s.t. ∑
p∈P

aipλp = 1 [πi] ∀i ∈ N

λp ∈ {0,1} ∀p ∈ P.

(7.108)

The columns ap = [aip]i∈N , p ∈ P, encode (in binary) subsets of nodes that all
may receive the same color. That is, for every p ∈ P, whenever aip = a jp = 1, there
is no edge (i, j) in set E. In other words, the ap are incidence vectors of independent
(or stable) sets. An interpretation of (7.108) is thus: we seek a partition of the node
set N into a minimum number of independet sets. Some authors directly start here.

For solving the MP by column generation, we need to price independent sets
where nodes are weighted by the dual values πππ = [πi]i∈N :

c̄(πππ) = min x0−∑
i∈N

πixi

s.t. xi + x j ≤ x0 ∀(i, j) ∈ E

x0 ∈ {0,1}
xi ∈ {0,1} ∀i ∈ N.

(7.109)

That is, the ISP is a maximum weighted independent set problem. Again, we have
the variable x0 only for correctly reflecting a zero cost of the empty independent set.

Now, assume that we have a fractional solution λλλ
⋆
MP to the MP. The Ryan-Foster

rule says that there exist two rows r and s such that we can branch as

∑
p∈P: arp=asp=1

λp = 1 (same) or ∑
p∈P: arp=asp=1

λp = 0 (differ). (7.110)

Barring the removal of columns that violate the branching decision, we can com-
pletely implement these two branches in the ISP: in the same branch, both nodes, r
and s (or none of them) must appear in the independent set (xr = xs); in the differ
branch, at most one of the two nodes can be part of the independent set (xr +xs ≤ 1).
Even better, also after these modifications, the ISP remains a weighted independent
set problem on a slightly altered graph, see Figure 7.17: For the same branch, nodes
r and s are contracted into one. That is, a new node rs of weight πr +πs is created,
and all edges previously incident to r or s become incident to rs. The differ branch
is even easier, we simply insert a new edge (r,s). A combinatorial algorithm that
directly works on the weighted graph remains applicable.

One may ask how we select the pair when there are many (r,s) for which the sum

∑
p∈P: arp=asp=1

λp = β is fractional. (7.111)
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r
s

(a) Detail of graph G

rs

(b) Same branch

r
s

(c) Differ branch

Fig. 7.17: Respecting same and differ branches directly in the graph.

Mehrotra and Trick (1996) start from a variable λp closest to 0.5 and take r as the
first row with arp = 1. Then find another variable λq with arq = 1 and select s as one
row with asp ̸= asq. This rule appears to be a popular one, in particular since it is not
problem specific. Other authors tailored the selection to the problem at hand, always
with the aim that both branches have a noticeable impact on the solution structure
and thus the dual bound. Finally note that for the very similar edge coloring problem
in Example 2.3, we do not know how to enforce directly in the graph that two edges
are taken together in a matching, neither that at most one edge is taken.

Example 7.4 Ryan-Foster branching for bin packing

� Branching can make your pricing problem harder.

This example is related to Example 7.3, which should be read first. We consider the
bin packing problem that we introduced in ILP (7.53) and for which we also have
a set partitioning IMP (7.54). The columns ap = [aip]i∈{1,...,n}, p ∈ P, are incidence
vectors of subsets of items that together fit into one bin. The ISP therefore is a binary
knapsack problem. We again associate the dual values πππ = [πi]i∈{1,...,n} with the set
partitioning constraints, and thus, with the items. Similarly to (2.32), we price the
packing patterns as:

c̄(πππ) = min x0−
n

∑
i=1

πixi

s.t.
n

∑
i=1

wixi ≤Wx0

xi ∈ {0,1} ∀i ∈ {0, . . . ,n}.

(7.112)

According to the Ryan-Foster rule, for a fractional solution to the MP, we find
two items r and s so that we can branch exactly as in (7.87). What does this mean
in the binary knapsack problem? The same branch glues items r and s together
into a “super item” rs of profit πr +πs that we can either pack or not. This makes
the knapsack problem even a tiny bit easier because there is one item less. On the
differ branch, however, we introduce a conflict between items r and s that cannot be
packed together. While one branch remains the weakly NP-hard binary knapsack
problem, the other branch becomes the strongly NP-hard binary knapsack problem
with conflicts. The latter can be solved as an integer program, of course.
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Example 7.5 Edge coloring and odd-circuit cuts

� Extra variables and constraints in the ISP help us capture the semantics
of master cut coefficients.

Let us formulate the ECP defined on an undirected graph G = (N,E) as an integer
program of covering (actually partitioning) edges by matchings (see Example 2.3):

z⋆IMP = min ∑
x∈X

λx

s.t. ∑
x∈X

aexλx ≥ 1 [πe] ∀e ∈ E

λx ∈ {0,1} ∀x ∈ X,

(7.113)

where X denotes the set of incidence vectors x = [xe]e∈E of matchings. Like
in (2.36), we define X =

{
x ∈ {0,1}|E| | ∑e∈δ ({i}) xe ≤ 1, ∀i ∈ N

}
, where the con-

straints ensure that, for each node i, at most one incident edge is selected. Let
aex = xe, ∀e ∈ E; then the ISP reads as

min
x∈X

(1−∑
e∈E

πexe) ≡ max
x∈X ∑

e∈E
πexe. (7.114)

Nemhauser and Park (1991) use a combinatorial observation on odd circuits, which
are cycles with an odd number of edges: we need at least three colors (see Fig-
ure 7.18).

Fig. 7.18: Taken alone, any odd circuit requires exactly 3 colors (or matchings).

In other words, we need at least three matchings to partition the edges of an odd
cycle in G, and this can be formulated as an inequality in the λ -variables. Let C⊆ E
denote the set of edges of an odd circuit. The corresponding odd-circuit cut reads as

∑
x∈X:∑e∈C xe≥1

λx ≥ 3. (7.115)

The summation is over all matchings which have non-empty intersection with C.
This is the semantics of the binary cut coefficient gCx which equals one if and only
if ∑e∈C xe ≥ 1. The cut (7.115) can thus be stated as

∑
x∈X

gCxλx ≥ 3 [βC], (7.116)

with the corresponding dual variable βC. Of course, one does not statically add all
odd-circuit cuts C, but dynamically separates violated ones as needed. Let us denote
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by C′ the set of odd circuits for which we have added an inequality (7.116) to the MP.
In the ISP, we have to ensure that the cut coefficients gCx, ∀C ∈ C′, are appropriately
computed. This can be done using linear inequalities in the original xe-variables and
the extra ones in g = [gC]C∈C′ :

max
x∈X, g∈{0,1}|C′ |

{
∑
e∈E

πexe + ∑
C∈C′

βCgC

∣∣∣∣ gC ≤ ∑
e∈C

xe, ∀C ∈ C′

}
. (7.117)

Since a βC dual variable is non-negative, the gC indicator variable is encouraged to
be positive. However, the inequality allows gC to be non-zero only if matching x
has a non-empty intersection with C, as required. The ISP (7.117) can be solved
to optimality by a branch-and-cut algorithm. There remains to devise a separation
routine for recognizing violated odd circuit constraints from a fractional solution λλλ ,
i.e.,

∃C ∈ C\C′ such that ∑
x∈X′:∑e∈C xe≥1

λx < 3. (7.118)

We point to Nemhauser and Park (1991, §5) for one such method on 3-regular
graphs. In any case, these odd-circuit cuts are not sufficient to guarantee we reach
integrality so be prepared to devise alternative cutting and branching decisions.

Example 7.6 k–path cuts for the VRPTW

� These valid inequalities are amongst the first producing better lower
bounds for the vehicle routing problem with time windows.

Various families of valid inequalities can be considered for the VRPTW (see Illustra-
tion 7.2 for the problem statement, a two-index arc-flow formulation and a Dantzig-
Wolfe reformulation, and such inequalities). In the literature, most of them, such as
the k-path cuts proposed by Kohl et al. (1999), are defined as linear combinations of
the xi j-variables and easily rewritten in terms of the λ -variables. In this case, their
treatment does not pose any difficulties with regard to the complexity of the pricing
problem as their dual values affect only the arc costs.

We first formulate the general k-path inequalities and later focus on the specific
2-path type for the VRPTW. Let S be a non-empty subset of customers. A k-path
inequality writes as

∑
i∈N\S

∑
j∈S

xi j ≥ k(S), S⊆C, |S| ≥ 1, (7.119)

where k(S) is a lower bound on the number of vehicles required to service the cus-
tomers in S. Some such lower bounds are given by

• lb1 = optimal objective value of a bin packing problem with items of length qi,
∀i ∈ S, and bins of length Q (NP-hard).

• lb2 = ⌈∑i∈S qi/Q⌉ (linear time but weaker).
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• lb3 = optimal objective value of a vehicle scheduling problem that minimizes
the number of vehicles required to service the customers in S considering only
the time windows (NP-hard, see Desrosiers et al., 1988b).

• lb4 = 2 if the traveling salesperson problem with time windows (TSPTW) for S
is infeasible and 1 otherwise (still NP-hard but easier to compute).

In practice, k(S) is set to max{lb2, lb4}. In general, if time windows are more con-
straining than vehicle capacity and S is not very large, then lb2 ≤ lb4 and k(S) = lb4;
in that case, the 2-path cuts are more relevant.

Let (x⋆MP, t⋆MP) be fractional in the x-variables. There are no efficient algorithms
for finding violated k-path inequalities, yet. We rather proceed with the enumera-
tion of several relatively small subsets of customers. For such a subset S, here is a
possible strategy using lb2 and lb4:

1. If ∑i∈N\S ∑ j∈S x⋆i j < lb2,
then a cut is found with k(S) = lb2.

2. If 1 < ∑i∈N\S ∑ j∈S x⋆i j < 2 and the TSPTW is infeasible,
then a cut is found with k(S) = lb4 = 2.

Although the TSPTW is NP-hard, |S| is selected rather small in practice such
that this optimization problem is easily solved by dynamic programming. For ex-
ample, Dumas et al. (1995) point out that the TSPTW can be seen as an elementary
shortest path problem with time windows further constrained by the fact that all
nodes must be visited. This provides an efficient elimination rule: given a subset
of visited customers, if the earliest unvisited one is unreachable, the correspond-
ing state is discarded. Therefore, we have a relatively fast, though not polynomial,
algorithm to determine whether k(S) ≥ 2 and possibly identify a set of customers
S which requires at least two vehicles to be serviced, but is currently serviced by
strictly less than two. The number of subsets S that can be enumerated is, however,
exponential and some rules (e.g., on the cardinality of S) are necessary to restrict
the enumeration process (see Desaulniers et al., 2008, for further details).

A k-path inequality for subset S is added to the MP (7.23) as

∑
r∈R

∑
(i, j)∈Ado

αi jxi j,rλr ≥ k(S), [πS ≥ 0] (7.120)

where αi j = 1 if i ∈ N \S, j ∈ S, and 0 otherwise. In the ISP, the adjusted cost c̃i j of
arc (i, j) ∈ Ado becomes

c̃i j =

 ci j−πκ for (i, j) = (d,o)
ci j−αi jπS ∀(i, j) ∈ A such that i = o
ci j−πi−αi jπS ∀(i, j) ∈ A such that i ̸= o

. (7.121)

Figure 7.19 taken from Kohl et al. (1999) illustrates the efficiency of the 2-path cuts
for Solomon’s instance RC101.25 in which the 25 customers are located in three
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Fig. 7.19: Illustration of the 2-path cuts.

clusters. The fractional solution in the top part of the figure uses 43/12≈ 3.583 vehi-
cles and z⋆MP = 406.625. The three clusters are serviced by respectively 1, 4/3, and
5/4 vehicles. Three subsets S (surrounded by dotted lines) are identified for which
∑i∈N\S ∑ j∈S xi j < 2 but requires at least 2 vehicles. After the insertion of three cuts,
the lower bound increases to 459.03125 while the number of vehicles goes up to
31/8 = 3.875 (this solution is not displayed). Three new cuts are inserted and the
solution appears in the bottom part: it requires 4 vehicles and costs 459.6. After
insertion of three more cuts, an optimal integer solution with an objective value of
461.1 is obtained without any branching.

Example 7.7 VRPTW and non-robust rounded capacity cuts

� A non-robust version of these cuts is stronger but requires modifica-
tions to the pricing algorithm.

In Illustration 7.2, we have presented a robust version of the rounded capacity cuts
that writes as follows:
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∑
r∈R

nSrλr ≥ LB(S) [πS] ∀S⊆C such that |S| ≥ 2, (7.122)

where LB(S) is a lower bound on the number of vehicles needed to serve all cus-
tomers in subset S and the coefficient nSr is equal to the number of times that route
r ∈ R enters subset S, i.e., traverses an arc (i, j) ∈ δ−(S). This version of the cuts
can easily be handled in the column generation algorithm by simply transferring the
dual values πS of these cuts to the adjusted cost c̃i j of the arc-flow variables in the
ISP:

c̃i j =


ci j−πκ for (i, j) = (d,o)

ci j−∑S∈Si j πS ∀(i, j) ∈ A such that i = o
ci j−πi−∑S∈Si j πS ∀(i, j) ∈ A such that i ̸= o,

(7.123)

where Si j is the set of subsets S such that (i, j) ∈ δ−(S).
Because the coefficient nSr can be greater than 1, the left-hand side in (7.122)

may overestimate the number of vehicles used to serve the customers in S in the
current solution, yielding weak rounded capacity cuts. A stronger version of these
cuts, introduced by Baldacci et al. (2008) for the capacitated VRP, expresses as
follows:

∑
r∈R

gSrλr ≥ LB(S) [πS] ∀S⊆C such that |S| ≥ 2, (7.124)

where gSr is a binary parameter taking value 1 if route r visits at least one customer
in S and 0 otherwise. In this case, the left-hand side really counts the number of
vehicles used to serve the customers in S. These strong rounded capacity cuts are
defined on the master variables because there are no equivalent cuts defined on the x-
variables of the compact formulation (7.21). In this case, the ISP cannot be obtained
by transferring the dual values of (7.124) in the adjusted arc costs as in (7.123)
because the dual πS cannot be subtracted more than once along a route even if this
route enters S multiple times.

Let S be the set of customer subsets S for which a strong rounded capacity
inequality (7.124) has been generated at a given column generation iteration and
πS > 0. Using the initial grouping of the constraints (7.22) where these cuts are
integrated into set A, the modified ISP at that iteration is given by

c̄(πππ) =−πκ +min
x∈X

cx−∑
i∈C

πiaix− ∑
S∈S

πSgSx (7.125a)

s.t. cx = ∑
(i, j)∈Ado

ci jxi j (7.125b)

aix = ∑
j:(i, j)∈A

xi j ∀i ∈C (7.125c)

gSx =

⌈
∑

(i, j)∈δ−(S)
xi j/

∣∣δ−(S)∣∣⌉ ∀S ∈ S. (7.125d)
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Non-linear function
⌈
∑(i, j)∈δ−(S) xi j/ |δ−(S)|

⌉
takes value 1 if at least one arc

(i, j) ∈ δ−(S) is used in the ISP solution and 0 otherwise. Given that πS > 0 and
the objective function of (7.125) favors larger values of gSx, it can be linearized as
follows

gSx ≤ ∑
(i, j)∈δ−(S)

xi j ∀S ∈ S

0≤ gSx ≤ 1 ∀S ∈ S.

(7.126)

Setting xdo = 1 in D, the ISP remains an ESPPRC that can be solved by a labeling
algorithm similar to that described in Labeling algorithm for the ESPPTWC. A label

Ep =
(
T rCost

p ,T time
p ,T load

p , [T custi
p ]i∈C, [T rccS

p ]S∈S+

)
(7.127)

representing a partial path p = (i0 = o, i1, . . . , im = j) contains a binary resource
component T rccS

p for each generated rounded capacity cut (7.124) associated with
a subset S ∈ S+, where S+ = {S ∈ S | πS > 0}. When extending Ep along an arc
( j,h) ∈ A to yield a new path p′, the values T rccS

p′ of these components in label Ep′

are computed using the REF

T rccS
p′ = f rccS

jh (T rccS
p ) =

{
1 if ( j,h) ∈ δ−(S)
T rccS

p otherwise
∀S ∈ S+. (7.128)

Moreover, the REF (5.18a) for the rCost component is replaced by

T rCost
p′ = f rCost

jh (T rCost
p , [T rccS

p ]S∈S+) = T rCost
p + c̃ jh− ∑

S∈S+

πS
(
T rccS

p′ −T rccS
p
)
, (7.129)

that is, a dual value πS is subtracted from the path reduced cost only if ( j,h) is the
first arc of the path entering S (or, equivalently, if T rccS

p′ = 1 and T rccS
p = 0). The

other REFs do not change. On the other hand, given that the REFs (7.128)–(7.129)
are non-decreasing, the dominance rule (5.19) augmented with the conditions

T rccS
p ≤ T rccS

p′ , ∀S ∈ S+ (7.130)

can be applied to eliminate labels. Clearly, handling the duals of these non-robust
cuts in the ISP reduces the number of labels that can be dominated and, thus, in-
creases the difficulty of solving the pricing subproblem.

To improve this dominance rule, we can drop the conditions (7.128) and replace
the condition (5.19a) on the reduced cost by

T rCost
p ≤ T rCost

p′ − ∑
S∈S+

10

πS, (7.131)

where S+10 = {S ∈ S+ | T rccS
p = 1,T rccS

p′ = 0}. To summarize, a label Ep dominates a
label Ep′ ending at the same node if the following conditions are met:
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T rCost
p ≤ T rCost

p′ − ∑
S∈S+

10

πS (7.132a)

T time
p ≤ T time

p′ (7.132b)

T load
p ≤ T load

p′ (7.132c)

T custi
p ≤ T custi

p′ , ∀i ∈C. (7.132d)

Note 7.14 (Weak or strong?) Several efficient separation heuristics have been de-
veloped to separate the weak version of the rounded capacity inequalities (see, e.g.,
Lysgaard et al., 2004). On the other hand, no specific separation algorithms have
been designed for the strong version. As any violated weak inequality implies a vi-
olated strong inequality, the separation approach consists in searching for violated
weak inequalities only and convert them into strong ones whenever useful. More
precisely, weak cuts are first added to the MP to minimize the impact on the ISP
solution process. Then, after re-optimizing the MP, a weak rounded capacity cut
that was previously added can be lifted to its strong version if this version remains
violated by the current MP solution.

Example 7.8 VRPTW and Chvátal-Gomory rank-1 cuts

� We present an application that turns out to be rather easy to implement.

Consider the set partitioning formulation (7.133) of the VRPTW (see Illustration 7.2
for the parameter definitions) for which the number of available vehicles is suffi-
ciently large, hence not binding, and the corresponding constraint is discarded:

z⋆IMP = min ∑
x∈X

cxλx

s.t. ∑
x∈X

aixλx = 1 [πi] ∀i ∈C

λx ∈ {0,1} ∀x ∈ X.

(7.133)

As already defined in (7.22b), a route x ∈ X is an od-path scaled with xdo = 1, of
cost cx = ∑(i, j)∈Ado

ci jxi j, and binary coefficients aix = ∑ j:(i, j)∈A xi j, ∀i ∈C. Assume
known a Chvátal-Gomory rank-1 cut, i.e., we know a vector of non-negative rational
weights [ui]i∈C on the columns [aix]i∈C, x ∈ X, and the linear relaxation of (7.133)
is augmented with constraint

∑
x∈X

gxλx ≤

⌊
∑
i∈C

ui

⌋
, [γ ≤ 0], (7.134)

where gx is computed in the modified ISP:

c̄(πππ,γ) = min
x∈X

cx−∑
i∈C

πiaix− γgx (7.135a)
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s.t. cx = ∑
(i, j)∈Ado

ci jxi j (7.135b)

aix = ∑
j:(i, j)∈A

xi j ∀i ∈C (7.135c)

gx =

⌊
∑
i∈C

uiaix

⌋
. (7.135d)

Function ⌊∑i∈C uiaix⌋ is non-linear but ∑i∈C πiaix and ∑i∈C uiaix are linear expres-
sions computed in the same way. Moreover, it is only on the last arc reaching node d
that we use the floor function. The ISP (7.135) can still be regarded as an elemen-
tary shortest path problem with resource constraints with an additional resource for
every Chvátal-Gomory cut. In this ISP, the adjusted cost c̃i j of arc (i, j) ∈ A is still
computed as c̃i j = ci j−πi and does not depend on γ . This dual value is treated as
discussed below. Let a partial path p ending at node j ∈ C be represented by the
label

Ep = (T rCost
p ,T time

p ,T load
p , [T custi

p ]i∈C,T cgc
p ) (7.136)

consisting of the current resource values from o to j, i.e., the reduced cost T rCost
p ,

the earliest start of service time T time
p , the vehicle load T load

p , the vector of visited
customers [T custi

p ]i∈C, and the cut resource T cgc
p . At the source o, all components of

Eo are initialized to zero. Extending label Ep on arc ( j,h) ∈ A,h ̸= d to create a par-
tial path p′ represented by label Ep′ (if feasible considering the resource limitations)
is performed by the following REFs:

T rCost
p′ = f rCost

jh (T rCost
p ) = T rCost

p + c̃ jh (7.137a)

T time
p′ = f time

jh (T time
p ) = max{ah,T time

p + t jh} (7.137b)

T load
p′ = f load

jh (T load
p ) = T load

p +qh (7.137c)

T custi
p′ = f custi

jh (T custi
p ) =

{
T custi

p +1 if h = i
T custi

p otherwise
∀i ∈C (7.137d)

T cgc
p′ = f time

jh (T cgc
p ) = T cgc

p +uh. (7.137e)

On an arc ( j,d), the extension functions are slightly different:

T rCost
p′ = f rCost

jd (T rCost
p ,T cgc

p ) = T rCost
p + c̃ jh− γ⌊T cgc

p ⌋ (7.138a)

T time
p′ = f time

jd (T time
p ) = max{ad ,T time

p + t jd} (7.138b)

T load
p′ = f load

jd (T load
p ) = T load

p (7.138c)

T custi
p′ = f custi

jd (T custi
p ) = T custi

p ∀i ∈C (7.138d)

T cgc
p′ = f time

jd (T cgc
p ) = ⌊T cgc

p ⌋. (7.138e)
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From j to d, the reduced cost T rCost
p′ not only depends on T rCost

p but also on
T cgc

p , the value of the resource computing the gx-coefficient, see (7.138a). The two-
dimensional REF f rCost

jd (T rCost
p ,T cgc

p ) is non-decreasing with respect to each variable
with a unitary slope for T rCost

p and a non-negative slope −γ for ⌊T cgc
p ⌋, the floor

function being also non-decreasing. All extension functions in (7.137)–(7.138) are
non-decreasing with respect to each of their variables and, therefore, the classical
dominance rule between labels can be used to discard dominated ones.

Jepsen et al. (2008) introduced the so-called subset-row inequalities, which are
Chvátal-Gomory rank-1 cuts, but implemented only a special case of them that is
expressed with exactly three non-zero weights equal to 1/2. Their computational re-
sults show that this strategy significantly improves the lower bound and, in many
cases, makes it possible to prove optimality in the root node. They also used an im-
proved dominance rule by exploiting the step-like structure of the objective function
of the ISP. Subset-row inequalities involving more than three non-zero weights have
been studied in Petersen et al. (2008) and Pecin et al. (2017c,b). To limit the impact
of handling these cut dual values in the ISP, Pecin et al. (2017a,b) have proposed
weaker versions that are called limited-memory subset-row inequalities.

Subset-row inequalities have been applied in branch-price-and-cut algorithms for
other problem types that involve set-packing or set-partitioning constraints, namely,
for computer vision applications (Yarkony et al., 2020), bin packing (Wei et al.,
2020), and vector packing (Wang et al., 2022), among others.

Example 7.9 Preferential bidding system

� We present a real-life application for the z-cuts. We exploit lexico-
graphic optimization properties to discard significant portions of the
solution space that are irrelevant for integrality optimality. These cuts
allow us to rapidly improve the lower bound on integer optimality be-
fore any branching even occurs.

Opportunities for optimization in the airline industry are legion. Crew scheduling is
a prominent example of operational and tactical planning. The importance of this
problem can be simply explained by the fact that crew costs are the second largest
expense after fuel costs. Because it is so complex, it is typically tackled via two se-
quential problems: crew pairing and crew assignment. In the crew pairing problem,
we aim to pair all flights to anonymous crews at minimal cost. To accomplish this,
each flight is decomposed into a sequence of possibly shorter flights that correspond
to each nonstop departure/arrival portion. This breakdown increases flexibility as
crew pairing can be done at this finer granularity. In the simplest of terms, a pairing
consists of a series of flights intertwined with enough but not too much in-between
time to be feasible. In reality, all legal regulations have to be met as well as condi-
tions specified by the collective agreements. (For more definitions, see Crew pairing
problem with base constraints.) In any case, we especially point to Figure 5.7 to
appreciate how time is embedded into the network structure.
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In the crew assignment problem, we get rid of the anonymousness by assigning
explicit crew members to every pairing we found in the first step. Pairings are them-
selves sequenced in time to produce a schedule for a crew member, say for the next
month. A set of schedules, called a roster, is feasible if it covers all pairings and
regulations/collective agreements are still taken into account. There are three main
ways to create a roster: bidline, rostering, and preferential bidding.

Let us focus on a simpler crew variant in which we only take care of the pilots
with same qualifications such that any of them can cover any schedule. In a bidline
process, schedules are first generated anonymously before each pilot, from the most
senior to the most junior, selects his or her preferred schedule amongst the remain-
ing ones. For rostering, we generate personalized schedules that must satisfy a list
of predefined activities for each pilot with the objective of balancing as much as
possible some schedule characteristics (e.g., number of worked hours or days off)
between the pilots. Preferential bidding is similar to rostering but aims at maximiz-
ing how much a schedule fulfills the desiderata of each pilot, favoring the pilots
in order of seniority. We learn from Gamache et al. (1998) that such a preferential
bidding system is indeed in place at Air Canada.

Interestingly, we can greatly exploit the switch to a preference-based objective
function if the policy favors seniority above all else. More specifically, each pilot k
in a set K assigns integer weights to various preference indicators that we use to
measure the score sk of a schedule xk ∈Dk, say sk = f k(xk). Respecting the seniority
policy, we get a lexicographic optimization problem (Ehrgott, 2005) for which the
contribution of every function f k(xk) is more important than those that follow. The
rest of the model has a block-diagonal structure over the |K| pilots.

In principle, a lexicographic problem can be solved sequentially by optimizing
one objective at a time and then imposing higher-ranked optimal objective values as
constraints in the following lower-ranked objectives. Let us not forget that we face
column generation and integrality at every step of the way which means that we do
not want to get lost in branching decisions before having a chance to find a decent
solution.

• The ILP has a block-diagonal structure with partitioning constraints on the pair-
ings as the linking constraints and bounded domains Dk, ∀k ∈ K, each one ap-
pearing in a dedicated pricing problem. Indeed, the ISPk for finding the maxi-
mum score for pilot k is a longest path problem with resource constraints defined
on an acyclic network. The IMP comprises partitioning constraints for both the
pairings and pilots (indeed, expressed by the convexity constraints for the latter).

• The first integer master pilot-problem (denoted IMP1) is solved while only con-
sidering the bids of the most senior pilot in the objective function. In other words,
we solve the IMP1 to integer optimality by using |K| pricing problems such that
all pairings are assigned and all pilots have a feasible schedule.
Let P denote the set of pairings and define the binary parameter ak

ip taking value
1 if and only if pairing i ∈ P belongs to schedule xk

p ∈ Dk, for k ∈ K, p ∈ Pk.
Morever, let sk

p = f k(xk
p) denote the score of schedule xk

p. Then
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z⋆IMP1 = max ∑
p∈P1

s1
pλ

1
p

s.t. ∑
k∈K

∑
p∈Pk

ak
ipλ

k
p = 1 ∀i ∈ P

∑
p∈Pk

λ
k
p = 1 ∀k ∈ K

λ
k
p ∈ {0,1} ∀k ∈ K, p ∈ Pk.

(7.139)

• Then, the second integer master pilot-problem (IMP2) is solved for maximizing
the score of the second most senior pilot but without deteriorating the score of the
first, i.e., maximizing ∑p∈P2 s2

pλ 2
p but additionally imposing ∑p∈P1 c1

pλ 1
p ≥ z⋆

IMP1 :

z⋆IMP2 = max ∑
p∈P2

s2
pλ

2
p

s.t. ∑
p∈P1

s1
pλ

1
p ≥ z⋆IMP1

∑
k∈K

∑
p∈Pk

ak
ipλ

k
p = 1 ∀i ∈ P

∑
p∈Pk

λ
k
p = 1 ∀k ∈ K

λ
k
p ∈ {0,1} ∀k ∈ K, p ∈ Pk.

(7.140)

This is what the authors refer to as a residual pilot-problem. We can even set the
schedule x1⋆ for pilot 1 in stone (potentially turning the overall algorithm into
a heuristic) in which case there remains only |K| − 1 pricing problems and the
objective value constraint becomes redundant.

• And so on for the third integer master pilot-problem (IMP3), imposing both

∑
p∈P1

s1
pλ

1
p ≥ z⋆IMP1 and ∑

p∈P2

s2
pλ

2
p ≥ z⋆IMP2 ,

and the remaining (residual) pilot-problems. A simple sum tells us that a total
of |K| (|K|+1)

2 pricing problems have to be considered in the (possibly heuristic)
sequential process.

• Of course, since there can exist alternative same-score schedules, allowing
retroactive decisions potentially yields better overall preferences at the cost of
having to deal with |K|2 pricing problems. The computation results suggest that
cutting this corner is a reasonable decision.

In the linear relaxation of the IMPk, the maximum score for pilot k is a convex
combination of scores which is calculated as
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z⋆MPk = max ∑
p∈Pk

sk
pλ

k
p, (7.141)

where ∑p∈Pk λk
p = 1 is required by the convexity constraint. If these scores are not

all equal, then some are strictly greater than the maximized objective value z⋆
MPk .

Hence, these large score-schedules cannot appear in any optimal integer solution
for pilot k. Figure 7.20 illustrates a fractional λ -solution in the MPk.

sk
p, p ∈ Pk

z⋆
MPk

Fig. 7.20: Possible score-schedules (o and •) and selected ones (•) for an optimal
convex combination of schedules in the MPk.

Because an integer solution for the IMPk assigns only one schedule to pilot k, the
z-cut in xk-variables

f k(xk)≤ UBk = ⌊z⋆MPk⌋ (7.142)

removes all schedules with a score larger than UBk. The floor function can be used
as we know the optimum must be an integer score given the integral weight inputs.
Those already generated are discarded from the current RMPk. Such a cut is im-
posed on the subproblem domain Dk and implemented as an additional resource in
the constrained longest path problem. This maximum-score resource is treated as a
capacity constraint.

sk
p, p ∈ Pk

z⋆
MPk

First cut

UBkz⋆
MPk

Update 1

UBkz⋆
MPk

Update 2

UBkz⋆
MPk

Fig. 7.21: Successive impact on Dk of the dynamic z-cut f k(xk)≤ UBk.

Although a cut on the objective function imposed in the ILP is usually not all
that efficient in practice, only a few are needed in this application to obtain a convex
combination of equal maximum-score schedules for pilot k by dynamically updating
UBk. Figure 7.21 illustrates the successive elimination of integer points from the
domain of the ISPk with the use of three cuts (i.e., two upper bound updates). At that
point, classical decisions on the binary flow variables are used for the other pilots.
There is no need to branch on pilot k because its solution automatically becomes
integer when all other pilots have assigned schedules.
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Gamache et al. (1998) report solving 24 monthly problems giving rise to 710
pilot-problems. The largest ILP involves 568 pairings and 108 pilots; this means that
a total of 108(109)/2 = 5886 pricing problems are solved (72 % of the computation
time) during the solution process that lasts 5.7 hours on a HP9000/735 with 128 MB
of RAM, more than two decades ago.

Amongst these 24 ILPs, 15 need such z-cuts on 51 IMPk. The average number
of cuts on these 51 pilot-problems is only 2.3, with a maximum of 7. The average
integrality gap is 15 %, with a maximum of 99 %: branching decisions on the flow
variables alone cannot be expected to handle such large gaps. We emphasize that if
any of the pilot-problems cannot be solved, then neither can the original ILP.

Example 7.10 Branch-first, Cut-second strategy

� Branching decisions are taken such that, on one branch, the facets of
the polyhedron describing a subset of constraints are easily derived.

The problem considered in this example is to assign locomotives of different types
to trains to operate a pre-planned train schedule. Each train may be operated by
several locomotives of different types (heterogeneous consists). The following text
is a simplified version inspired by Ziarati et al. (1997, 1999b).

The proposed ILP is an integer multi-commodity flow problem with operational
constraints, where each locomotive type defines a commodity. In practice, we ob-
serve integrality gaps well above 5 % on this formulation. An important reason is
that the train covering constraints are often expressed in terms of horsepower or ton-
nage requirements rather than a number of locomotives. Therefore the solution of
the LP is strongly fractional.

A time-space network similar to an airline time-line network is constructed for
each commodity. Arcs represent activities such as trains, waiting, and so on (Ziarati
et al., 1997, Fig. 1). For each commodity k ∈K, let Gk = (V k,Ak

do) be the associated
network, where V k = Nk∪{ok,dk} is the node set and Ak

do = Ak∪{(dk,ok)} the arc
set. There are nk available locomotives of type k at the origin node ok.

Let W be the set of trains and set binary coefficient ak
w,i j to 1 if arc (i, j) ∈ Ak

covers train w ∈W , 0 otherwise. For every train covered by active locomotives, pull
power requirements are expressed in terms of the minimum number of locomotives,
the requested horsepower or tonnage, or some combination. Let W n, W p, W q be,
respectively, the trains for which the corresponding measure is used (W = W n ∪
W p∪W q). We utilize the following parameters:

nw: minimum number of locomotives necessary to cover train w ∈W n,
pk: operating power of locomotive type k,
pw: requested power for train w ∈W p,
qk

i j: total weight that may be pulled by a locomotive of type k on arc (i, j),
qw: tonnage of train w ∈W q.
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Integer flow variables in block k are xk
i j and yk

i j, respectively indicating the num-
ber of active and deadheading locomotives of type k covering arc (i, j) ∈ Ak. The
cost of an active locomotive is denoted ck

i j, that of a deadhead dk
i j. The ILP with a

block-diagonal structure writes as

z⋆ILP = min ∑
k∈K

∑
(i, j)∈Ak

(ck
i jx

k
i j +dk

i jy
k
i j) (7.143a)

s.t. ∑
k∈K

∑
j:(i, j)∈Ak

ak
w,i jx

k
i j ≥ nw ∀w ∈W n (7.143b)

∑
k∈K

∑
j:(i, j)∈Ak

pkak
w,i jx

k
i j ≥ pw ∀w ∈W p (7.143c)

∑
k∈K

∑
j:(i, j)∈Ak

qk
i ja

k
w,i jx

k
i j ≥ qw ∀w ∈W q (7.143d)

xk
do ≤ nk ∀k ∈ K (7.143e)

∑
j:(i, j)∈Ak

(xk
i j + yk

i j)− ∑
j:( j,i)∈Ak

(xk
ji + yk

ji) =

 xk
do

0
−xk

do

∀k ∈ K, i = ok

∀k ∈ K, i ∈ Nk

∀k ∈ K, i = dk
(7.143f)

xk
i j ∈ Z+ ∀k ∈ K, (i, j) ∈ Ak

do. (7.143g)

The objective function (7.143a) minimizes the total cost to cover all trains. Con-
straints (7.143b)–(7.143d) represent train coverage requirements. The set (7.143e)
makes at most nk locomotives of type k available at ok whereas (7.143f) provides
the flow conservation equations at every node i ∈ V k, for all k ∈ K. We group the
covering constraints and the upper bound on xk

do in A whereas Dk contains the flow
conservation equations for type k:

A=


 xk

yk

xk
do

 ∈ Z|A
k|

+ ×Z|A
k|

+ ×Z+

∣∣∣∣ (7.143b)–(7.143e)

 (7.144a)

Dk =


 xk

yk

xk
do

 ∈ Z|A
k|

+ ×Z|A
k|

+ ×Z+

∣∣∣∣ (7.143f) for type k

 , ∀k ∈ K. (7.144b)

The set Dk is a polyhedral cone with the unique zero extreme point and the set of
extreme rays indexed by Rk. Such a ray is a cycle formed by a path from ok to dk

and returning arc (dk,ok). We represent it with a unit-flow on the selected arcs, i.e.,
we set xk

do = 1. The Dantzig-Wolfe reformulation becomes

z⋆IMP = min ∑
k∈K

∑
r∈Rk

ck
rλ

k
r (7.145a)

s.t. ∑
k∈K

∑
r∈Rk

nk
w,rλr ≥ pw ∀w ∈W n (7.145b)
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∑
k∈K

∑
r∈Rk

pk
w,rλr ≥ pw ∀w ∈W p (7.145c)

∑
k∈K

∑
r∈Rk

qk
w,rλr ≥ pw ∀w ∈W q (7.145d)

∑
r∈Rk

λ
k
r ≤ nk ∀k ∈ K (7.145e)

λ
k
r ≥ 0 ∀k ∈ K,r ∈ Rk (7.145f)

∑
r∈Rk

xk
r

yk
r

1

λ
k
r =

 xk

yk

xk
do

≥
0

0
0

, integer ∀k ∈ K, (7.145g)

where, for an extreme ray [xk
r ,yk

r ,1]
⊺, r ∈ Rk,

ck
r = ∑

(i, j)∈Ak

(ck
i j,rx

k
i j+dk

i jy
k
i j,r), nk

w,r = ∑
j:(i, j)∈A

ak
w,i j xk

i j,r,

pk
w,r = ∑

j:(i, j)∈A
pkak

w,i j xk
i j,r, qk

w,r = ∑
j:(i, j)∈A

qk
i ja

k
w,i j xk

i j,r.

In the applications described in Ziarati et al. (1997, 1999b), there are 26 loco-
motive types at Canadian National North America railway company (CN), yet on
average only 2.3 are used per train. This provides the rationale for developing the
Branch-first, Cut-second strategy exploiting the facets defined for at most two types
of locomotives.
Facets. In general, it is unlikely to find a mix of locomotives that exactly matches
the requested power pw or tonnage qw for train w, let alone both at the same time.
We take advantage of this by adjusting the power or tonnage requests ad hoc with
respect to fractional solutions. For example, consider two locomotive types repre-
sented by the integer variables x1 and x2 in Figure 7.22-Left: 3000 and 4000 hp,
respectively, and a requested power of 3000x1 + 4000x2 ≥ 8500. The smallest hp-
amounts are 12 000 at (0,3), 11 000 at (1,2), 10 000 at (2,1), and 12 000 at (4,0).
Then 10 000 hp becomes the requested lifted power: 3000x1+4000x2 ≥ 10000. The
solution (2,1) is obviously integer but the extreme points (0,10/4) and (10/3,0) are
not. Indeed, the set of feasible solutions is bounded from below by the two line seg-
ments passing through the points (4,0)–(2,1) and (2,1)–(0,3). We can then replace
the original constraint 3000x1+4000x2 ≥ 8500 specifying the requested pull power
by the two facets x1 + x2 ≥ 3 and x1 +2x2 ≥ 4.

Taking into account all covering constraints (7.143b)–(7.143d), for a given train,
Figure 7.22-Right depicts all possible integer solutions of at least one and at most
four locomotives of two different types, i.e., 1 ≤ x1,x2 ≤ 4. Given that zero-facets
are defined as x1,x2 ≥ 0, it is easy to see that at most three non-zero facets are
sufficient to describe the lower envelope of the convex hull of the integer solutions.
This is the case for up to 6 locomotives (Ziarati et al., 1999b, Propositions 2 and 3),
which is in practice the maximum number of active locomotives pulling a train.
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Fig. 7.22: Left: power request 8500 lifted to 10000 or 3000x1 + 4000x2 ≥ 8500
replaced by two facets. Right: non-zero facets with at most 4 locomotives of 2 types.

Branch-first. Assume that for a given train w, the MP solution at a certain branching
node uses exactly two types of locomotives (let this set be denoted Kw), with frac-
tional values for ak

w,i jx
k
i j,k∈Kw. A possible set of decisions is to restrict the covering

of this train by the actual two locomotives types or accept at least one from another
type:

∑
k∈K\Kw

∑
j:(i, j)∈Ak

ak
w,i jx

k
i j = 0 or ∑

k∈K\Kw

∑
j:(i, j)∈Ak

ak
w,i jx

k
i j ≥ 1. (7.146)

The proposed branching decisions create an unbalanced search tree. On the down-
branch, the actual solution is still feasible since only the two locomotive types in
Kw are used in the MP solution. For this train w, this is equivalent to replacing
constraint (7.143b) by

∑
k∈Kw

∑
j:(i, j)∈Ak

ak
w,i jx

k
i j ≥ nw. (7.147)

Cut-second. On the down-branch, we can impose the facets describing the lower
envelope of the polyhedron of the covering constraints (7.143b)–(7.143d) for the
locomotives of types in Kw, that is, replacing one to three constraints for train w by
at most three facets. Let Kw comprises types 1 and 2: any 2-dimensional facet of the
form x2 ≥ ax1 +b writes as

−a ∑
j:(i, j)∈A1

a1
w,i jx

1
i j + ∑

j:(i, j)∈A2

a2
w,i jx

2
i j ≥ b. (7.148)

On the up-branch, the locomotive types in K \Kw are not currently being used
for train w. The new RMP solution can be quite costly if the alternative locomotive
types are marginally expensive to cover train w.

Selection of w. At a given branching node, let W2 ⊆W be the subset of trains using
at most two types of locomotives with fractional x-values in the MP solution. If a
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single type is used for a train w, each of the other types is evaluated by computing
the marginal cost of forcing their use. The least-cost type is then coupled with the
currently used type to form Kw. If W2 = /0, the heuristic branching rules of Ziarati
et al. (1997) are applied, that is, selecting the λ -variables having fractional parts
greater than or equal to 0.8 and fixing to the next integer those producing the mini-
mal horsepower excess. Otherwise W2 ̸= /0 and we compute for every train w in this
set the marginal cost, say Ĉk

w, of assigning a third locomotive type k ∈ K \Kw to w
and we save the minimum value. The marginal cost Ĉk

w is computed by solving a
shortest path problem passing through arc (i, j) ∈ Ak for which ak

w,i j = 1. Since we
only need an underestimate, it is derived from the current solution of subproblem k
in the column generation process. Then

Ĉmin
w = min

w∈K\Kw
Ĉk

w, ∀w ∈W2, (7.149)

and the selected train corresponds to the largest value:

w ∈ argmax
w∈W2

Ĉmin
w . (7.150)

In other words, for the selected train w, we impose the use of at most two locomotive
types on the down-branch while on the up-branch, the likelihood of adding a third
type of locomotive is marginally costly.

Ziarati et al. (1999b) report computational results on a weekly scheduling prob-
lem using data from the CN. In addition to the 26 locomotive types covering 1988
trains, it involves 171 critical locomotives that need maintenance (each subproblem
is solved using a shortest path problem with time windows), 18 shop maintenance
restrictions, and 26 power change point demands. The ILP with 26+171 = 197 dif-
ferent blocks also comprises a total of 4000 train coverage constraints. Some results
are presented in Table 7.4.

Solution Number of Horsepower time
approach locomotives (hp) (hours)

CN (manual) 1090 3 116 000 –
B&B without facets 1024 2 939 000 2.45
B&B with facets 1013 2 902 500 3.27

Table 7.4: A CN weekly scheduling problem involving 26 locomotive types and 171
critical locomotives for the covering of 1988 trains.

The reduction of 11 locomotives from 1024 to 1013 translates into savings of
1.1 % (more than $30 M). The decrease in the power consumed is also of 1.2 % and
the total cpu time increases by only 33 % by introducing the facets, from 2.45 to 3.27
hours (on a workstation HP9000/735). Similar results were obtained on a 1794-train
problem: a decrease of 14 locomotives from 1044 to 1030 for a cpu time increase of
24 % (from 42 to 52 minutes on a SUN Ultra-2/2300 workstation).
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7.8 Reference notes

Introduction In the first two decades of the GENCOL team on experiments with
large scale applications, e.g., school bus routing, bus drivers scheduling, transporta-
tion of persons with reduced mobility, crew pairing, monthly rostering and pref-
erential biding system, locomotive and car assignment, etc., the main difficulties
always came from the design of branching and cutting rules: they were different in
all applications. The rules working previously were not anymore efficient in the new
application. This is indeed typical of integer programming applications, where spe-
cialized decision rules are often more efficient than those used by general solvers.

Section 7.1 The simple necessity to check an original or master problem solution
for integrality, formally promoted by Vanderbeck (2011); Vanderbeck and Wolsey
(2010), reminds us of many topics seen in Chapter 4, in particular aggregation and
disaggregation of subproblems.

Section 7.2 The theoretical material of the subsections Cutting planes on the orig-
inal variables and Cutting planes on the master variables is largely inspired by De-
saulniers et al. (2011). The design of z-cuts within the ISP in Illustration 7.3 come
from a one-hour discussion between François Soumis and Jacques so as to effi-
ciently find optimal integer solutions to the many ISPk, k ∈ K, in the Preferential
bidding system, where |K| is the number of pilots considered in the monthly sched-
ules (Example 7.9). Lübbecke et al. (2021) eliminate solutions from the ISPs which
cannot be part of an optimal IMP solution using cuts from Benders-like arguments.

For the Clique cuts for the set partitioning problem in Illustration 7.5, we are the
first to write this down in this generality. The specialized idea for the VRPTW is
from Spoorendonk and Desaulniers (2010).

Section 7.3 The general strategy of Branching on the original variables (x-branching)
starts with Desrosiers et al. (1984) for a network-based ILP formulation of a vehicle
routing problem with time window constraints. For aggregated master problems,
Villeneuve et al. (2005) suggest to disaggregate and branch on original variables,
thereby partially re-introducing the symmetry in pricing problems. As pointed out in
Chapter 4, note that there are alternative compact models without a block-diagonal
structure if the ISP formulation is defined on a cone (Proposition 4.16) or if it pos-
sesses the integrality property (Proposition 4.17).

Illustration 7.6 (x-branching for the VRPTW) presents various strategies for ve-
hicle routing applications. Branching on the resource variables as in (7.51) is first
found in Gélinas et al. (1995), where decisions are taken on the time or capacity val-
ues rather than on the network flow variables of a routing problem with backhauling.
This branching type has been re-used with success by Pessoa et al. (2021) for solv-
ing bin packing models. The strategy involving multiple xi j-branches in Figure 7.6
originally appears in Bellmore and Malone (1971), later adapted by Carpaneto and
Toth (1980) for the asymmetric TSP.

The strategy of Branching on the master variables (λ -branching) first appears
in Ryan and Foster (1981) for a set partitioning IMP formulation, that is, a few
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years before that on Branching on the original variables. In full generality, it was
later developed by François Vanderbeck (2000, 2005) and we hope having well
summarized his work. Extensions to the mixed-integer case appear in Vanderbeck
and Savelsbergh (2006). The latest proposal of a generic λ -branching (Vanderbeck,
2011) goes beyond our presentation. The alternative way of writing (7.63) using a
floor function in (7.65) is new. We recall that the x- and λ -branchings are comple-
mentary and the best of each should be used in appropriate situations. Advantages
and disadvantages of certain strategies are discussed by Vanderbeck (2000) and Van-
derbeck and Wolsey (2010).

Successful applications of strong branching were reported e.g., by Stefan Røpke
at the Column Generation 2012 workshop (see Figure 5.9). The question whether
to generate columns (and how many) in the linear programming subproblems led to
the notion of hierarchical or multi-phase branching (e.g., Pecin et al., 2017b).

Referring to the Brazilian friends in Figure 7.13, Eduardo is a former doctoral
student (PUC-Rio, 2001) of Marcus who previously obtained his PhD under the
supervision of Professor Brigitte Jaumard (Polytechnique Montréal, 1993).

Good to Know As already mentioned in Arc-flow variable fixing by reduced cost,
applications of this strategy are found in Irnich et al. (2010) for the VRPTW and
Pecin et al. (2017b) for the capacitated VRP. An extension for two-arc sequences
appears in Desaulniers et al. (2020a), applied to the VRPTW and four variants of the
electric VRPTW.

A lot has been written on Acceleration techniques, indeed ideas spread over hun-
dreds of various application papers. Let us here concentrate on a single item, the
degeneracy of the RMP. Dynamic constraint aggregation (DCA) and dual variable
stabilization are two methods that reduce the negative impact of degeneracy. The
first uses a projection to reduce the primal space (the number of constraints of the
RMP, hence the size of the working basis, decreases to the number of positive basic
variables) whereas the second acts in the dual space by providing relevant restric-
tions. Benchimol et al. (2012) develop a stabilized dynamic constraint aggregation
that simultaneously combines both for solving set partitioning problems. On highly
degenerate MDVSP instances, it reduces the average CPU time of the RMP by a
factor of up to 7 with respect to the best of the two combined methods. By going
back to the linear algebra framework from which emanates the so-called concept
of subspace basis, Gauthier et al. (2016) establish tight bounds between three tools
for dealing with primal degeneracy, that is, the dynamic constraint aggregation, the
positive edge rule, and the improved primal simplex (see Positive edge rule and Im-
proved Primal Simplex algorithm in Chapter 3 for a short description of the last
two). Combining the first and the last tools in the context of column generation,
Desrosiers et al. (2014) propose a row-reduced column generation algorithm.

More to Know When it comes to an implementation, at least three viewpoints are
interesting: the theoretical background, the technical setup, and the “tricks” that
bring efficiency. Sometimes the three are hard to distinguish from one another. Most
of the practical advise given by Vanderbeck (2005) is in fact theory. Descriptions on

https://escavador.com/sobre/7102712/eduardo-uchoa-barboza#:~:text=Eduardo&text=Uchoa&text=Barboza
https://escavador.com/sobre/7102706/marcus-vinicius-soledade-poggi-de-aragao
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general branch-and-price frameworks are very helpful, too (e.g., Pessoa et al., 2020,
2021; Sadykov and Vanderbeck, 2021), also because they come with examples.

The major contributors to the GCG project (Gamrath and Lübbecke, 2010) over
the years have been Gerald Gamrath (who laid out the original “two communicating
trees” design which is still intact today), Martin Bergner, Michael Bastubbe, Chris-
tian Puchert, Jonas Witt, Steve Maher, Erik Mühmer, and many more. Marco is the
one with the vision who keeps it all together.

Examples
Example 7.5 Edge coloring and odd-circuit cuts is inspired by Desaulniers et al.
(2011). For the other examples, the text already includes the main references.

Exercises

7.1 François Vanderbeck
Who is François Vanderbeck, chair of the organization committee in charge of the
logistics for the 23rd ISMP (International Symposium on Mathematical Program-
ming) held in Bordeaux (July 1–6, 2018), cited or mentioned close to 50 times in
this book?

7.2 B&P: Wikipedia
At the time of publication, the entry about branch-and-price on Wikipedia supports
the explanation of this method using Figure 7.23. What is wrong with it?

Fig. 7.23: Wikipedia’s misleading flowchart for branch-and-price, 2024.04.01.

https://ismp2018.sciencesconf.org
https://en.wikipedia.org/wiki/Branch_and_price
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7.3 B&P: early branching
Consider a minimization problem and a branch-and-bound tree in which some nodes
are not solved to optimality, that is, more specifically, an early branching strategy
is used such that the column generation process is stopped even if there are still
columns with a negative reduced cost (see Early branching, p. 489). Consider the
cases where the Lagrangian lower bound is computed at a node and that where it
is not, for example, because the subproblems are not all solved. Adapt the Branch-
and-Bound method of Section 1.5, in particular, the definition of node value (p. 29).

7.4 ISP modifications for a λ -branching
By exploiting the sign of γ1 ≤ 0 and γ2 ≥ 0 in their respective pricing problem, show
that (7.63) can be replaced by

(a) gx ≥ f⊺x− f+1
u− f+1 , gx ∈ {0,1} in the ISP (7.61).

(b) gx ≤ f⊺x−ℓ
f−ℓ , gx ∈ {0,1} in the ISP (7.64).

7.5 ISP modifications for a λ -branching: alternative function g(x)
Show that g(x) in the ISPs (7.61) and (7.64) can take the form g(x) =

⌈
f⊺x−( f−1)

u−ℓ

⌉
.

7.6 A binary x-branching decision imposed in A rather than D

Let a Dantzig-Wolfe reformulation of the ILP (7.1) be based on the grouping A and
D in (7.2), where conv(D) is a polytope. Assume that the branching decision on the
binary variable x j is imposed in A rather than D. Describe the modifications on the
RMP and ISP in the down- and up-branches.

7.7 Bound constraints on several x-variables: underlying mathematics
Mathematically justify the added constraints to the ISPs in (7.84) for
(a) the down-branch; (b) the up-branch.

7.8 Bound constraints on several x-variables: binary case
Refresh the set of constraints in (7.84) if x ∈ {0,1}n. Show that it simplifies to

gx ≥ 1−∑
j∈J̄

x j + ∑
j∈

¯
J
x j− (|J̄|+ |

¯
J|) gx ≤ 1− x j ∀ j ∈ J̄

gx ≤ x j ∀ j ∈
¯
J.

(7.151)

7.9 Ryan-Foster separating hyperplane for the VRPTW
(a) Given the Ryan-Foster rule in (7.86), how does a separating hyperplane for the

VRPTW in the language of Proposition 7.1 look like?

(b) Generalize it for an ILP (7.1) whose IMP reformulation is a set partitioning
model.

7.10 Handling inter-task branching decisions in labeling algorithm
We consider applying Branching on inter-tasks when the ISP is a SPPRC defined on
an acyclic network G = (N,A) (with source and sink nodes o and d) such as that in
Figure 5.7. Let W = {1, . . . ,m} be the set of tasks to cover. In network G, each task
w ∈W is associated with a single arc and each arc represents at most one task. Let
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wi j be the task associated with arc (i, j) ∈ A, including the fictitious task NIL if the
arc does not represent a real task in W .

Assume that, at the current branch-and-bound node, multiple inter-task deci-
sions are applicable and compatible (i.e., they do not contradict): some are from
up-branches and stored as follow-on task pairs (r,s) in a set F , others are from
down-branches and stored as do-not-follow-on task pairs (r,s) in a set D.

(a) Describe a labeling algorithm that takes into account these inter-task branching
decisions using a single additional label component which keeps track of the
last task covered in a path. Focus on this additional component by presenting its
extension functions and its roles in label feasibility and dominance.
For convenience, use the following notation:

• For w ∈W , let fw = s be the task that must be covered immediately after w
if ∃s ∈W such that (w,s) ∈ F ; otherwise, set fw = NIL.

• In the labeling algorithm, a label Ep representing a partial path p contains
an additional component T last

p that indicates the last task covered in p.
(b) In an acyclic network, we can easily compute a priori a subset of unreachable

tasks Ui ⊆W from a node i∈N, i.e., tasks that cannot appear in any feasible ex-
tension of a path ending in node i. How can you improve the algorithm proposed
in (a) by considering unreachable tasks?

7.11 Finite number of iterations in Proposition 7.2
Can the bound constraints x j ≤ ⌊v j⌋ or x j ≥ ⌊v j⌋+1 already exist in set B in (7.81)?

7.12 λ -branching: single bound constraint on x j
Let x j ∈ Z+ take values between 0 and u j > 2 in the ILP, with x⋆j /∈ Z+ in the final
RMP. Let us refer to (7.59) and assume that ∑x∈X:x j≥2 λ⋆x = β is fractional. Derive
a λ -branching, providing the modifications to the MPs (7.60) and ISPs (7.66).

7.13 λ -branching: interval constraint on the cost function
Assume that c in Rule 1 (p. 477) is integer and that we have cost coefficients
{cx}x∈X, not all identical, ranging between lower and upper bounds ℓ and u, re-
spectively. Given λ⋆RMP fractional, show how to possibly find a set B = {x ∈ X |
c1 ≤ c⊺x≤ c2} such that ∑x∈X∩B λ⋆x = β is fractional.

7.14 λ -branching: ISP modifications for Rules 3.2 and 3.4
Given the condition xr = xs = 1 re-written as xr + xs ≥ 2 in page 478, show that the
constraints yrs ≥ xr +xs−1 in Rule 3.2 (down-branch) and 2yrs ≤ xr +xs in Rule 3.4
(up-branch) can be derived from (7.66).

7.15 Time constrained shortest path problem: thinking like a computer
In Example 7.1, we describe a branch-and-bound for the TCSPP but we skip or bend
a lot of technical explanations regarding implementation. Let us take a snapshot of
the internal computer representation of the RMP at node BB4. In particular, one has
to think that variables and constraints are passively suppressed. Describe exactly
the optimization program that the solver solves for the RMP after housekeeping and
explains how infeasibility is detected.
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7.16 Minimum number of vehicles for the VRPTW
Give a compact ILP formulation and propose branching and cutting strategies to
only determine the minimum number of vehicles for the VRPTW.

7.17 Validity of a dominance rule for the VRPTW with strong capacity cuts
Show that the dominance rule (7.132) is valid.

7.18 Comparison of dominance rules for the VRPTW with strong capacity cuts
Show that the dominance rule (7.132) is stronger (i.e., cannot yield less dominated
labels) than the dominance rule (5.19) and (7.130).

7.19 Arc-flow variable fixing for the VRPTW
Consider the VRPTW example in Illustration 5.1 with C = {1,2,3,4}, q1 = q3 = 1,
q2 = q4 = 2, Q = 5, and z⋆IMP = 74. Its MP is the linear relaxation of (5.8) without
the constraint (5.8c) (the number of available vehicles is unconstraining). Let us
assume that a heuristic solution of cost 75 is known and provides an upper bound
UB = 75 on z⋆IMP.

(a) After solving the MP by column generation (with an ESPPRC pricing problem),
we obtain the optimal primal-dual solution pair:

λ
⋆
132 = λ

⋆
134 = λ

⋆
24 = 0.5, λ

⋆
r = 0 for all other routes r ∈ R,

and
π
⋆
1 = 13.5, π

⋆
2 = 17.5, π

⋆
3 = 6, π

⋆
4 = 28.5,

with a cost z⋆MP = LB = 65.5. The following table lists the non-dominated labels
obtained at nodes 1 and 2 when applying a forward-labeling algorithm to solve
the ISP defined for this dual solution.

Node Forward labels (T rCost ,T time,T load , [T uCusth ]h∈C)
1 (3,2,1, [1,0,0,0])
2 (15,8,2, [1,1,0,0]),(8.5,12,3, [1,1,0,1]),(2.5,15,4, [1,1,1,1])

Next, executing a backward-labeling algorithm yields at nodes 2 and 3 the non-
dominated labels listed in the following table.

Node Backward labels (BrCost ,BlTime,BmLoad , [BuCusth ]h∈C)
2 (−2.5,18,3, [0,1,0,1]),(−15,9,1, [1,1,1,1])
3 (12,25,4, [0,0,1,0]),(−5.5,12,2, [0,0,1,1])

In these backward labels, resources rCost and uCust j, j ∈ C, act like the cor-
responding resources in the forward labels. Resource lTime provides the latest
time at which the service at the corresponding node can start, whereas resource
mLoad indicates the maximum load that can be collected/delivered before this
node, i.e., the vehicle capacity minus the total load of the customers visited
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along the path. For instance, label (−5.5,12,2, [0,0,1,1]) at node 3 represents
the path 34d traversed backwardly. To be feasibly concatenated with it, any
forward path must arrive at node 3 no later than time 12 and with a load not
exceeding 2.
For arcs (i, j) ∈ {(1,2),(2,3)} (for which t12 = 10, t23 = 5, c̃12 = 5.5, and
c̃23 = −13.5), use the above forward and backward labels to compute c̄⋆i j, the
minimum reduced cost of a path traversing (i, j), and determine if xi j can be
fixed to 0.

(b) Same question as the previous one except that we have added to the MP the
capacity cut (7.26) for S = C. In this case, we obtain the following optimal
primal-dual solution pair:

λ
⋆
1 = λ

⋆
132 = λ

⋆
24 = λ

⋆
34 = 0.5, λ

⋆
r = 0 for all other routes r ∈ R,

and
π
⋆
1 = 7, π

⋆
2 = 9.5, π

⋆
3 = 4.5, π

⋆
4 = 20.5, ψ

⋆ = 16

with z⋆MP = LB = 73.5, where ψ is the dual variable associated with the cut.
The following two tables provide the forward and backward labels at the appro-
priate nodes.

Node Forward labels (T rCost ,T time,T load , [T uCusth ]h∈C)
1 (−13,2,1, [1,0,0,0])
2 (−1,8,2, [1,1,0,0]),(−5.5,14,3, [1,1,1,1])

Node Backward labels (BrCost ,BlTime,BmLoad , [BuCusth ]h∈C)
2 (5.5,18,3, [0,1,0,1]),(1,9,1, [1,1,1,1])
3 (13.5,25,4, [0,0,1,0]),(4,14,2, [0,1,1,0])

The adjusted costs of the arcs (1,2) and (2,3) are c̃12 = 12, and c̃23 =−5.5.

7.20 Branching on a resource interval
Let the value of a certain resource in a constrained shortest od-path problem be
restricted to an interval, for example, the number of flight credits for a pilot must
be between 70 and 78 in a monthly crew assignment problem. How is this resource,
say F , implemented in the corresponding pricing problem if we only want to use
non-decreasing resource extension functions?

7.21 B&P&C strategies for various applications
We provide the solution to all exercises in the book except this one. The applica-
tions listed below can be found in the literature, each one with some branching or
cutting decisions. Since their publication, theory and practice have evolved. There-
fore, propose and discuss various strategies that might be efficient in finding optimal
(or near-optimal) integer solutions.

(a) One-dimensional cutting stock problem (Chapter 2)
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(b) Aircraft routing with schedule synchronization (Chapter 2)
(c) Scene selection problem (Chapter 4)
(d) Design of balanced student teams (Chapter 4)
(e) Multiple depot vehicle scheduling problem (Chapter 4)
(f) Pickup and delivery problem with time windows (Chapter 5)
(g) Crew pairing problem with base constraints (Chapter 5)
(h) Capacitated p-median problem (Chapter 6)
(i) Generalized assignment problem (Chapter 6)
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Conclusion

Rien de beau ne peut se résumer.

Rhumbs
Paul Valéry

Mmm num ba de
Dum bum ba be
Doo buh dum ba beh beh

Under Pressure
Queen and David Bowie

Abstract We have reached the final chapter to conclude this great and hazardous
adventure of writing a book on the column generation algorithm, Dantzig-Wolfe
reformulations, and resolution of integer linear programs, indeed, the branch-and-
price approach. We begin with a brief history of the research activities carried out
over five decades by the Montréal group GENCOL, then look to the future.
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The conclusion at last. Whether column generation is part of your daily work routine
or you rather appreciate its value as an enthusiastic observer, we can only encourage
giving this book another read. Before we turn the final page, Section 8.1 connects
the dot between Jacques’ career debut and where we stand today. With the utmost
modesty and respect towards all those who accompanied and supported him profes-
sionally and emotionally, let this book be his legacy. It is the end of a journey but
certainly not that of column generation. We thus leave space for the story to unfold
with general perspectives for the future. These are summarized, along with a few
others we have raised in the course of this book, in Section 8.2 as suggestions for
those with an interest in writing.

8.1 GENCOL

The GENCOL team—that is the name of the research team supervised since 1981 by
François Soumis, Jacques Desrosiers, and Guy Desaulniers at the GERAD1 research
center in Montréal—has revived the column generation method which is now con-
sidered a major tool in the solution of large-scale integer linear programs. Indeed,
from a negligible number of column generation papers published fifty years ago,
we see many more of them every year as illustrated in Figure 8.1 obtained by the
topic search “column generation” or “branch-and-price” or “Dantzig-Wolfe” on
the Web of Science2.

Since 2005, members of the team edited a book on column generation (De-
saulniers et al., 2005) and organized either an international school (Montréal 2006,

1 https://gerad.ca
2 https://webofscience.com

https://gerad.ca/en/people/francois-soumis
https://gerad.ca/en/people/jacques-desrosiers
https://gerad.ca/en/people/guy-desaulniers
https://gerad.ca
https://webofscience.com
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Fig. 8.1: Publications on column generation every year from 1966 to 2023.

Darmstadt 2010, Paris 2014 and 2018 with the help of Roberto Wolfler Calvo) or
a workshop (Aussois 2008, Bromont 2012, Búzios 2016, Montréal 2023). Let us
highlight some marking events that occurred for the GENCOL team in the last four
decades and what the future looks like for the fifth one. Note that an earlier text
already appeared in Desrosiers (2010).

First decade (1980s)

At the Sixth European Congress on Operational Research (Euro VI) held in Vienna
(1983), Jacques Desrosiers, François Soumis, and Martin Desrochers are awarded
with the best scientific contribution paper for “Routing with Time Windows by Col-
umn Generation” (Desrosiers et al., 1984). Several school bus transportation prob-
lems with up to 151 trips are solved. This paper is the result of three years of re-
search, the first month devoted to design and code the pricing problem in FORTRAN
(the first high-level programming language), the rest of the time to numerically
stabilize that particular column generation framework using the open source code
LANDP by Ailsa Land and Suzan Powell, see Land and Powell (1973). It is one of
the first efficient applications of column generation integrating branch-and-bound
decisions and cutting planes to reach integer solutions. The algorithm for the short-
est path problem with time windows (SPPTW) is designed in November 1981, pub-
lished in Desrosiers et al. (1983), and the improved and re-optimized versions ap-
peared some years later in Desrochers and Soumis (1988b,c).

A key point of this stream of research is to recognize that the sets of incom-
ing/outgoing constraints for visiting a node k exactly once in the directed network
G = (N,A) can be separated in the master and pricing problems. That is, we can
keep one of ∑ j:(k, j)∈A xk j = 1 or ∑i:(i,k)∈A xik = 1 in the master problem and use a
transformation of their combination in the pricing problem, e.g., their difference as

https://lipn.univ-paris13.fr/~wolfler/
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∑i:(i,k)∈A xik−∑ j:(k, j)∈A xk j = 0. These are flow conservation constraints found in the
shortest path formulations of the ISP.

An important breakthrough is the generalization of SPPTW to the shortest path
problem with resource constraints (SPPRC) (Desrochers, 1986; Desrochers and
Soumis, 1991; Irnich and Desaulniers, 2005). These constraints are treated by dy-
namic programming and enable the handling of non-decreasing extension functions
between states. These functions, which can be discontinuous and non-convex, are
used to model the industrial rules that are defined by administrators and lawyers (see
Desrochers et al., 1992b). During this first decade, the team uses column generation
to solve various routing and scheduling integer programming problems: pick-up
and delivery (Desrosiers et al., 1986; Dumas et al., 1991), transportation of persons
with reduced mobility (Desrosiers et al., 1988a), and bus driver scheduling (Soumis
et al., 1984; Desrochers and Soumis, 1988a), amongst others. Two surveys are pub-
lished in this early period, see Desrochers et al. (1988) and Solomon and Desrosiers
(1988).

International commercialization starts with GIRO Inc.3 at the end of the ’80s: In
over 300 cities worldwide, their HASTUS software system is now used by transit
authorities ranging in size from 20 to over 6500 vehicles/rail cars, including instal-
lations in Montréal, Los Angeles, Chicago, New York, Barcelona, Brussels, Geneva,
Stockholm, Vienna, Hamburg, Singapore, Tokyo, and Sydney.

Second decade (1990s)

While Irvin Lustig, Roy Marsten, and David Shanno present an interior-point
method capable of solving a linear program involving 4 million variables, the
GENCOL team shows in the same ORSA/TIMS meeting (1992) that an airline crew
pairing problem with over 190 millions of millions of variables is solved to optimal-
ity using column generation. The solution improves by 6 % those computed by the
best available software systems.

AD OPT Technologies4 starts the commercialization of the Altitude software
suite for the airline industry (Jacques Desrosiers and Yvan Dumas are partners in
this startup co-founded in 1987 by François Soumis and four OR researchers). In
1993, it acquires Volvo’s Carmen division, which provides pilot schedules for SAS
and Lufthansa. The company goes public on the Toronto Stock Exchange market in
June 1999, carving out a place for itself in a market already occupied by major com-
panies such as IBM, Unisys, and AT&T. The core engine of this suite is GENCOL,
the column generation solver developed at GERAD and already utilized by GIRO.
The acronym comes from the French expression GÉNération de COLonnes. This
is a success story that is in particular recognized by the prize Excellence in Inno-
vative Partnership, University-Industries Synergy, awarded by the Natural Sciences

3 https://giro.ca
4 https://ad-opt.com

https://giro.ca
https://ad-opt.com
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and Engineering Research Council of Canada and the Conference Board of Canada
(Vancouver, 1997).

Some notable papers for this time period are for multi-depot vehicle routing
(Ribeiro and Soumis, 1994; Desaulniers et al., 1998b), crew pairing (Desaulniers
et al., 1997b), aircraft routing and scheduling (Desaulniers et al., 1997c), monthly
schedules at Air Canada (Gamache et al., 1998) and Air France (Gamache et al.,
1999), simultaneous aircraft routing and crew scheduling (Cordeau et al., 2001b),
and crew recovery (Stojković et al., 1998, 2002).

Applications in the rail industry include Ziarati et al. (1997, 1999b,a) for freight
trains and Cordeau et al. (2000, 2001a); Lingaya et al. (2002) for passenger trains.
This decade also sees the first attempts to solve the vehicle routing problem with
time windows (VRPTW) using a branch-and-price approach (Desrochers et al.,
1992a). In a certain way, it is a failure on these small 25- to 100-customer instances
compared to those in the airline industry, but this paper opens the way to fundamen-
tal research, e.g., on cutting plane generation (Kohl et al., 1999).

Three survey papers on column generation and branch-and-price applied to ve-
hicle routing and crew scheduling problems appear during that period: Desrosiers
et al. (1995), Soumis (1997), and Desaulniers et al. (1998a).

Third decade (2000s)

Together with Bombardier Flexjet5, the team is a finalist in Boston for the INFORMS
2004 Franz Edelman Award for Achievement in Operations Research and the Man-
agement Sciences. The three-year project with AD OPT Technologies helped Flex-
jet, a division of Bombardier operating a fleet of more than 100 business jets, to
achieve operational profitability and improve its scheduling process (Hicks et al.,
2005). In the first two years of operation, the new optimization system generated
savings of US$54 million. FlexJet became profitable and was subsequently sold for
US$500 million with a firm aircraft order valued at US$1.5 billion when Bombardier
needed funds to develop the C Series.

With about 400 large-scale worldwide industrial implementations using GENCOL
and hundreds of academic research projects published in over 150 papers by the
team, the column generation method is mathematically better understood. This is
true for its virtues, but also for its shortcomings. At that point in time, branch-and-
price (Barnhart et al., 1998), that is, column generation combined with a branch-
and-bound search tree, becomes a powerful tool in solving large-scale integer pro-
grams. Under mild assumptions, it is shown that a compact formulation exists for
any column generation scheme, hence branching and cutting decisions can always
be defined on the variables of this formulation. It has a block diagonal structure
with identical subproblems, each of which contributes only one column in an in-

5 https://flexjet.com

https://flexjet.com
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teger solution (Villeneuve et al., 2005). Single block special cases are presented in
Propositions 4.16 for and 4.17.

Dantzig-Wolfe reformulation and column generation, both devised for linear pro-
grams, are the main characters of a success story in large-scale integer program-
ming. Lübbecke and Desrosiers (2005) outline and relate these approaches. The au-
thors emphasize the growing understanding of the dual point of view, which brings
considerable progress to the column generation theory and practice.

In fact, the GENCOL team develops during that time period dual variable stabi-
lization techniques to reduce the impact of the well-known tailing-off effect seen in
column generation (du Merle et al., 1999; Oukil et al., 2007; Ben Amor et al., 2009)
and introduces the dynamic constraint aggregation procedure to dynamically reduce
the row-size of set partitioning master problems (El Hallaoui et al., 2005, 2008,
2010). The latter procedure is elegantly generalized to the improved primal simplex
algorithm (El Hallaoui et al., 2011), allowing for a better treatment of degeneracy
in linear programming. Degeneracy, which has been seen as the major drawback
of the primal simplex and column generation algorithms, can be exploited advan-
tageously. As a by-product, the primal and dual versions of the positive edge rule
(Towhidi et al., 2014) is implemented within COIN-OR’s Clp by John Forrest (see
Figure 3.22). Moreover, this research on the dual side leads to an efficient crossover
method, from an optimal interior to extreme point solution (Ben Amor et al., 2006a).

Fourth decade (2010s)

The fourth decade sees the use of new pricing problems based on alternative opti-
mality conditions (Desrosiers et al., 2014; Gauthier et al., 2016, 2018). From a dual
point of view, we essentially optimize all or a subset of the dual variables to maxi-
mize the smallest reduced cost. From a primal point of view, we look for an improv-
ing combination of variables, also called an augmenting cycle of negative cost (as
in solving network flow problems). Furthermore, the nature of the pricing problem
is such that it identifies combinations containing few variables. This approach is an
extension of the improved primal simplex algorithm (El Hallaoui et al., 2011). The
integral simplex using decomposition (ISUD) algorithm extends upon this pricing
problem in an effort to maintain integer solutions while solving the linear relax-
ation (Zaghrouti et al., 2014; Rosat et al., 2017a). The former fosters integrality by
imposing that negative reduced cost columns must also lead to neighboring integer
solutions. It effectively alters the solution paradigm since the integrality requirement
is now solely the responsibility of the pricing problem. It has been developed in the
context of set partitioning models when columns are all known a priori. ISUD is
then generalized to the case with a very large number of columns that are generated
dynamically to yield the integral column generation algorithm (Tahir et al., 2019)
that can also handle side constraints (Tahir et al., 2022).
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In parallel to these theoretical developments, the GENCOL team develops branch-
price-and-cut algorithms for solving to optimality various rich vehicle routing prob-
lems: split-delivery (Desaulniers, 2010; Archetti et al., 2011), stochastic demands
(Gauvin et al., 2014), pickup and delivery with time windows and loading con-
straints (Cherkesly et al., 2015, 2016), inventory-routing (Desaulniers et al., 2016b),
stochastic service times (Errico et al., 2016, 2018), and electric (Desaulniers et al.,
2016a), among others. For these applications, the pricing problems can still be seen
as elementary shortest path problems with resource constraints (ESPPRCs) but with
more complex label definitions, resource extension functions, and dominance rules.

In 2014, François Soumis receives the Lionel-Boulet Prize, the highest distinction
awarded by the Québec government to a researcher, for his entire career, who distin-
guished himself by his inventions, innovations, leadership in scientific development,
and his contribution to the economic growth of Québec. One year later, Jacques
Desrosiers wins the Pierre Laurin Award at HEC Montréal recognizing research
conducted over his entire career whereas AD OPT receives from the Canadian Op-
erational Research Society the Omond Solandt Award for Excellence in Operations
Research.

Fifth decade (2020s)

While Jacques is happily heading towards retirement, Guy is still doubly ac-
tive, as usual, as is François who received from Polytechnique Montréal the Prix
d’excellence en recherche et innovation 2023. New collaborators joined the team
in the last 20 years such as Marco Lübbecke (RWTH Aachen University), Issmail
El Hallaoui (Polytechnique Montréal), Claudio Contardo (Concordia University),
and Jean Bertrand Gauthier who went private. More recently, the team has grown
with the arrival of Fausto Errico (École de technologie supérieure) together with
Marilène Cherkesly and Frédéric Quesnel (Université du Québec à Montréal).

Fundamental research still has its place, as we can see with improved dynamic
programming algorithms for solving shortest path problems with resource con-
straints (Himmich et al., 2020, 2023) and also Altman et al. (2023) for the fragility-
constrained VRPTW, and a selective pricing mechanism for a variant of the ng-route
relaxation in which the neighborhoods are associated with arcs instead of nodes
(Costa et al., 2021). Another stream of research is about alternative stabilization
techniques such as those described in Haghani et al. (2022) and Costa et al. (2022).

For sure, the future looks like larger instances, again. This has always been the
case for over 40 years, one such application being solving an industrial monthly
crew pairing problem instance with 46 588 flights (Desaulniers et al., 2020b). The
solution approach combines, among others, column generation with dynamic con-
straint aggregation, hence efficiently managing the degeneracy issues of the set par-
titioning master problem. When embedded in a rolling horizon procedure, the aggre-
gation of the constraints allows to consider wider time periods and therefore yields
better solutions.

https://gerad.ca/en/people/marco-e-lubbecke
https://gerad.ca/en/people/issmail-el-hallaoui
https://gerad.ca/en/people/issmail-el-hallaoui
https://gerad.ca/en/people/claudio-contardo
https://www.gerad.ca/fr/people/jean-bertrand-gauthier/publications
https://gerad.ca/en/people/fausto-errico
https://gerad.ca/en/people/marilene-cherkesly
https://gerad.ca/en/people/frederic-quesnel
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The future also looks like machine learning, a strong tendency, see Kruber et al.
(2017) and Bengio et al. (2021). For example, Yaakoubi et al. (2020) use machine
learning and mathematical programming to solve larger crew pairing problems,
Morabit et al. (2021, 2023) accelerate the column generation algorithm with a better
column or arc selection, Tahir et al. (2021) combine an integral column-generation
algorithm and high probability flight connections for solving the crew pairing prob-
lem, and Quesnel et al. (2022) solve a personalized crew rostering problem, where
the pairings to include in each pricing problem are chosen by a deep neural network
trained on historical data.

Another trend getting more and more traction is dealing with stochastic models.
This is seen in Errico et al. (2018) for solving the VRPTW with stochastic service
times by a branch-price-and-cut algorithm. The authors adapt the dynamic program-
ming algorithm of the pricing problem to account for the probabilistic resource con-
sumption by extending the label dimension and providing new dominance rules. An-
other one is for solving a version of the capacitated vehicle routing problem where
the travel times are assumed to be uncertain and statistically correlated (Rostami
et al., 2021).

8.2 Branch-and-Price: More to Know

The following is a short list of advanced subjects, more or less tied to column gen-
eration, that might be covered in a second book (and a third one as Much more to
Know), by various authors hopefully following the notation introduced in this one:

1. Volume algorithm
2. Bundle methods
3. Dual heuristics
4. Lagrangean decomposition
5. Smooth and flexible DOIs

6. Improved primal simplex
7. Positive edge rule
8. Constraints aggregation for the SPP

9. Row-reduced column generation
10. Stabilized dynamic constraints

aggregation for the SPP

11. Nested column generation
12. Benders decomposition
13. Combination of Dantzig-Wolfe and

Benders decompositions

14. Integral simplex
15. Integral column generation
16. Constraint aggregation and

integral simplex for the SPP

17. Cycle-canceling algorithms
18. Vector space decomposition
19. Interior point algorithms
20. Non-linear decomposition

21. Machine learning
22. Integration of stochastic aspects

23. Implementation
24. History of SCIP
25. History of BaPCoD
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Exercises

8.1 François Soumis
Who is François Soumis, a former director of the GERAD research center from
1992 to 1996 and co-author in Desrochers and Soumis (1991), a paper for which we
provide below the main contribution?

In all dynamic programming problems, the aim is to solve the recurrence equations for
all states. The optimal solution is a set of paths going from the initial states to the final
ones. This paper studies the implementation of the shortest path problem with resource
constraints. The authors compare two classes of algorithms: reaching and pulling. The main
conclusion is that the computation times of an implementation of the pulling algorithm does
not grow with the number of states but is rather proportional to the number of feasible paths
in the solution.

8.2 Undivided attention
Find all mistakes in this book.

Und wenn die Frage jemals fällt:
“Was ist es, das am Ende zählt?”
Dann wird die Antwort immer sein
Dass man nicht solche Fragen stellt
Doch wenn ich ehrlich zu mir bin
Dann macht nur die Erkenntnis Sinn:
Das Ende ist nur’n Meilenstein
Und wichtig ist der Weg dahin

Die Parade
von Brücken (2015)

https://gerad.ca/en
https://songtextes.de/songtexte/von-bruecken-die-parade
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Solutions

Exercises of Chapter 1

1.1 George Dantzig
In 1939 Dantzig enrolled in the Ph.D. program of the Berkeley Mathematics Department
where Neyman’s professorship was located. Dantzig took only two courses from Neyman,
but in one of them he had a remarkable experience that was to become a famous legend.
Arriving late to one of Neyman’s classes, Dantzig saw two problems written on the black-
board and mistook them for a homework assignment. He found them more challenging than
usual, but managed to solve them and submitted them directly to Neyman. As it turned out,
these problems were actually two open questions in the theory of mathematical statistics.
Dantzig’s 57-page Ph.D. thesis [I Complete Form of the Neyman-Pearson Lemma; II On the
Non-Existence of Tests of “Student’s” Hypothesis Having Power Functions Independent of
Sigma, 1943] was composed of his solutions to these two problems. – Cottle et al. (2007)

1.2 DDL1x
DDL1x was an abbreviated way to reference to the forthcoming book. In the al-
phabetic order of the author’s name: Desaulniers, Desrosiers, and Lübbecke. This is
followed by the expected year of publication: 2015, or 2016, . . . and so on.

Because the project was a bit stalling, Jean Bertrand joined the team a few months
after completing his doctoral dissertation. Then, the Branch-and-Price team struc-
ture took place: a master coordinator (JD) and three text generators (MEL, GD, and
JBG).

1.3 Farkas’ lemma
Following the proposed hint, let y be the vector of artificial variables in the Phase I
of the primal simplex algorithm. The primal-dual pair reads as follows:

z⋆LP = min 1⊺y
s.t. Ax− s+y = b [πππ]

x, s, y≥ 0

z⋆LD = max b⊺πππ
s.t. A⊺πππ ≤ 0 [x]

−πππ ≤ 0 [s]
πππ ≤ 1 [y]

The LP formulation is feasible (x = 0,s = 0,y = b) and the optimal objective value
is finite, either z⋆LP = 0 or z⋆LP > 0. At the termination of the primal simplex algo-
rithm, all the dual constraints are satisfied, that is, A⊺πππ ≤ 0, 0 ≤ πππ ≤ 1. By strong
duality, z⋆LP = z⋆LD and we therefore have:

1⊺y = πππ
⊺b = 0 ⇔ LP is feasible ⇔ Ax≥ b, x≥ 0

1⊺y = πππ
⊺b > 0 ⇔ LP is infeasible ⇔ A⊺πππ ≤ 0, πππ ≥ 0, πππ

⊺b > 0.
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1.4 Infeasible primal-dual pair of linear programs
(a) Let c ∈ R and a,b > 0 such that the following LP is clearly infeasible:

z⋆LP = min cx

s.t.−ax≥ b [π]

x≥ 0

z⋆LD = max bπ

s.t.−aπ ≤ c [x]

π ≥ 0.

In the dual formulation, −aπ ≤ 0 by construction such that the LD is feasible
for any value of c. Indeed, if c≥ 0, then the inequality is trivially fulfilled. Oth-
erwise, there exists some π > 0 such that −aπ = c. One may then incorporate
an arbitrary number of constraints in the primal for which all dual variables at
value 0 would produce a feasible dual with respect to π .

(b) The key to conceiving a simple example is to realize that a symmetric matrix A
produces an equivalent left-hand side system in both formulations. The task is
then accomplished by using appropriate c and b signed values to have conflict-
ing constraints in both formulations.

z⋆LP = min −x1 − x2

s.t. −x1 ≥ 1 [π1]

x2 ≥ 1 [π2]

x1, x2 ≥ 0

z⋆LD = max π1 + π2

s.t. −π1 ≤−1 [x1]

π2 ≤−1 [x2]

π1, π2 ≥ 0.

1.5 Direction in the primal simplex algorithm
Without loss of generality, let B be an index-set from 1 to m and indices of N′ be
numbered from m+2 up to n.

A

−āℓ
1
0

= [AB aℓ AN′
]−A−1

B aℓ
1
0

= (AB(−A−1
B aℓ)+aℓ+AN′0

)
= 0.

1.6 Sensitivity range for an increase of the lower bound
The non-basic variable xℓ is simply considered as an entering variable and its maxi-
mum value ∆ℓ j is computed using the minimum ratio rule:

∆xℓ = min
i∈{1,...,m}|āiℓ>0

b̄i

āiℓ
.

1.7 Lost in translation?
Subtracting the vector s of surplus variables to the constraints of the LP (1.2) and
taking its dual recovers the signed dual variables πππ ≥ 0:

z⋆LP = min c⊺x + 0⊺s
s.t. Ax − s = b [πππ]

x, s≥ 0

z⋆LD = max b⊺πππ
s.t. A⊺πππ ≤ c [x]

−πππ ≤ 0 [s].
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1.8 Primal simplex and strong duality
Introducing the vector s of surplus variables in the constraints of the LP (1.2), the
primal-dual pair writes as

z⋆LP = min c⊺x + 0⊺s
s.t. Ax − Ims = b [πππ]

x, s≥ 0

z⋆LD = max b⊺πππ
s.t. A⊺πππ ≤ c [x]

−I⊺mπππ ≤ 0 [s].

Assume the primal formulation LP is feasible and bounded. Then the simplex algo-
rithm gives optimal primal solutions as x⋆and s⋆ toghether with a dual one πππ⋆. Let
c̄⊺x = c⊺−πππ⋆⊺A and c̄⊺s = 0⊺+πππ⋆⊺Im denote the non-negative reduced cost vectors
at the stopping rule of the algorithm; this ensure the feasibility of πππ⋆. Then

z⋆LP = c⊺x⋆+0⊺s⋆ = πππ
⋆⊺(Ax⋆+ Ims⋆)+ c̄⊺xx⋆+ c̄⊺s s⋆ = πππ

⋆⊺b+ c̄⊺xx⋆+ c̄⊺s s⋆.

It remains to show that c̄⊺xx⋆+ c̄⊺s s⋆ = 0. This is true because each term only com-
prises a set of basic variables with 0-valued reduced cost and a complementary set
of non-basic variables taking value 0.
The argument in terms of the dual problem being feasible in Proposition 1.6 (Strong
duality) is analogous.

1.9 Lower bound on the optimum
Let x⋆ denote an optimal solution to (1.2) and the reduced cost vector be defined as
usual as c̄⊺ = c⊺−πππ⊺A, hence c̄⊺ ≥ c̄(πππ)1⊺. Then we have

z⋆LP = c⊺x⋆ = (πππ⊺A+ c̄⊺)x⋆ = πππ
⊺Ax⋆+ c̄⊺x⋆ ≥ πππ

⊺b + κ c̄(πππ), (8.1)

because

• πππ⊺Ax⋆ ≥ πππ⊺b by feasibility of x⋆ in (1.2),
• c̄⊺x⋆ ≥ c̄(πππ)1⊺x⋆ ≥ κ c̄(πππ) as c̄(πππ)≤ 0 and 1⊺x⋆ ≤ κ .

0c̄(πππ)κ c̄(πππ) c̄⊺x⋆. . .. . .

1.10 Optimizing πππ for maximizing the smallest reduced cost
(a) Let µ = min j=1,...,n cj−πππ⊺a j denote the smallest reduced cost, µ being an

unrestricted variable whereas πππ ∈ Rm is also unknown. Then

max
πππ

min
j=1,...,n

cj−πππ
⊺a j = max µ

s.t. µ ≤ cj−πππ
⊺a j [y j] ∀ j ∈ {1, . . . ,n}.

Transferring the π-variables on the left-hand side, we obtain

max
πππ

min
j=1,...,n

cj−πππ
⊺a j = max µ

s.t. µ +πππ
⊺a j ≤ cj [y j] ∀ j ∈ {1, . . . ,n}.
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(b) In the above formulation (a), y j ≥ 0, j ∈ {1, . . . ,n}, acts as a dual variable so
the linear programming dual reads as

max
πππ

min
j=1,...,n

cj−πππ
⊺a j = min ∑

j∈{1,...,n}
cjy j

s.t. ∑
j∈{1,...,n}

y j = 1 [µ]

∑
j∈{1,...,n}

a jy j = 0 [πππ]

y j ≥ 0 ∀ j ∈ {1, . . . ,n}.

1.11 Integrality property and algorithm selection bias
The answer is yes. From the equivalence between Proposition 1.9 and Defini-
tion 1.25, we know that every extreme point of the feasible region is integer. Since
the primal simplex algorithm restricts the search to such solutions, it terminates with
an optimal integer solution.

1.12 Unbalanced capacitated minimum cost flow problem
Recall the formulation (1.45) rewritten as

min ∑
(i, j)∈A

ci jxi j

s.t. ∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = bi ∀i ∈ S

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = bi ∀i ∈ D

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 ∀i ∈ N \{S∪D}

0≤ xi j ≤ ui j ∀(i, j) ∈ A.

Take a look at the accompanying figure below, where the node 0 added to G is
connected to the set S = {s1, . . . ,s5} of supply nodes by incoming arcs and to the set
D = {d1, . . . ,d4} of demand nodes by outgoing arcs. The net flow at node 0 mimics
flow conservation as −∑i∈D bi−∑i∈S bi = b0 ∈ Z.

G = (N,A)

0 b0

s1 s2

s3
s4

s5

d1d2

d3
d4
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Such a network results from

• adding an artificial variable xi0 ≥ 0 for each supply constraint at i ∈ S,
• subtracting an artificial variable x0i ≥ 0 for each demand constraint at i ∈ D:

xi0 + ∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = bi ∀i ∈ S

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji − x0i = bi ∀i ∈ D

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 ∀i ∈ N \{S∪D}

Setting xi0 = bi, ∀i ∈ S, and x0i = −bi > 0, ∀i ∈ D, provides a feasible solution.
The flow conservation constraint at node 0 is redundant but can be retrieved by
adding the constraints for all i ∈ N and taking the negative of this sum. Because
each xi j-variable appears twice for (i, j)∈ A, once with a +1 coefficient, once with a
−1 coefficient, it remains only −(∑i∈S xi0−∑i∈D x0i) =−(∑i∈D bi +∑i∈S bi) = b0.
Therefore, ∑i∈D bi +∑i∈S bi +b0 = 0 and the new network is also balanced.

A set of possible [cost; upper bound] values appears next:

[M;+bi], for all arcs (i,0), i ∈ S;
[M;−bi], for all arcs (0, j), j ∈ D.

The cost of the artificial variables is set to big-M. Although there are usually no
upper bounds on such variables, the proposed ones are sufficient for providing an
initial solution: for each i ∈ S, xi0 = bi, for each i ∈ D, x0 j = −bi > 0, whereas
xi j = 0, ∀(i, j) ∈ A. In any optimal solution, the units available from i ∈ S that do
not flow through G go to the extra node on arc (i,0) and there are at most bi such
units. All units reaching node 0 are redirected to the demand nodes, with at most
−b j requested units to node j ∈ D on arc (0, j).

Special case. If there are no upper bounds on the arcs of A in G, as in the classical
formulation of the transportation problem, it is known up-front whether the total
demand or total supply is larger, so we need only one of the two sets of arcs. More-
over, a cost value that better reflects reality can be assigned to an arc, for example,
the penalty cost c0 j incurred for a back-order delivery at a demand node j ∈ D, or
the storage cost ci0 at a supply node i∈ S. If zero-costs are assigned to the additional
variables, these are in fact simply considered as slack or suplus variables.

1.13 Totally unimodular matrices with consecutive ones
(a) If A contains a column of 0’s, then the determinant of A is 0. Otherwise, let

C be the matrix obtained by subtracting from each row of A except its first,
its previous row. All columns of C contains a single 1 if am j = 1, or a single
1 and a single −1 if am j = 0. We can easily check that conditions (i)–(iii) are
satisfied for C by setting M1 = {1, . . . ,m} and M2 = /0. Consequently, C is totally
unimodular and its determinant is, thus, equal to 0, +1, or −1. Given that C is
obtained from A using determinant-invariant line operations, the determinant of
A is also 0, +1, or −1.
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(b) Let Ā be any square submatrix of A. We observe that Ā has also the consecutive
1’s property. Hence, using the result in (a), the determinant of Ā is 0, +1, or−1.
Consequently, A is totally unimodular.

1.14 Variable fixing at upper bound
If x j is at its upper bound in x⋆LP, then its reduced cost c̄ j ≤ 0. By the sensitivity
analysis for x j at its upper bound u j, we find in (1.42) that z⋆LP(∆u j) = z⋆LP+ c̄ j ∆u j.
Reducing the value of x j by 1 would, thus, induce a cost increase of at least −c̄ j.
Denoting LB = z⋆LP, we deduce the following sufficient condition:

if −c̄ j > UB−LB (or equivalently, c̄ j < LB−UB), x j can be fixed at u j.

1.15 Formulations for the minimum-weight perfect matching problem
(a) By observation, we can easily find that

i) x12 = x35 = x46 = 1 and xe = 0 for all other edges e ∈ E is the unique optimal
integer solution of cost z⋆ILP = 102;
ii) x12 = x13 = x23 = x45 = x46 = x56 = 0.5 and xe = 0 for all other edges e ∈ E
is the unique optimal linear relaxation solution of cost z⋆LP = 3;
iii) the relative integrality gap is (z⋆ILP−z⋆LP)/|z⋆ILP|= (102−3)/102 = 97%.

(b) Proof by contradiction. Consider a feasible integer solution x̂ to (1.57) and a
subset of nodes S of odd cardinality. Assume that the corresponding blossom
inequality (1.58) is violated by x̂, i.e.,

∑
e∈E(S)

x̂e >
1
2
(|S|−1).

Given that x̂ is integer and |S| is odd, it ensues that

∑
e∈E(S)

x̂e ≥
1
2
(|S|+1).

Because each edge e ∈ E(S) is incident to two nodes in S, the selected edges
in E(S) are, thus, incident to a total of at least |S|+ 1 nodes. Consequently, S
contains a node that is incident to at least two selected edges, which contradicts
the feasibility of x̂.

(c) Let S1 = {1,2,3}. For the optimal linear relaxation solution of (a), we have

∑
e∈E(S1)

xe = x12 + x13 + x23 = 1.5 ̸≤ 1
2
(|S1|−1) = 1.

Hence, the corresponding blossom inequality is violated by this solution. Simi-
larly, the blossom inequality for S2 = {4,5,6} is also violated by it.

(d) To show that P2 is stronger than P1, we need to prove that P2 ⊂ P1. Given that
P2 is obtained from P1 by adding the blossom inequalities (1.58), we get that
P2 ⊆ P1. The previous example has shown that, for certain problem instances,
there are solutions in P1 that do not belong to P2. Thus, P2 ⊂ P1.



Solutions (1. Linear and Integer Linear Programming) 555

(e) Let yi, i ∈ N, be a binary variable equal to 1 if i ∈ S and 0 otherwise. Let we,
e ∈ E, be a binary variable equal to 1 if e ∈ E(S) and 0 otherwise. Finally, let
k ∈ Z+ be an integer variable such that |S|= 2k+1 is odd. The separation ILP
is given by

z⋆sep = max ∑
e∈E

x⋆ewe− k

s.t. we ≤ yie ∀e ∈ E

we ≤ y je ∀e ∈ E

∑
i∈N

yi = 2k+1

yi ∈ {0,1} ∀i ∈ N

we ∈ {0,1} ∀e ∈ E

k ∈ Z+

where ie and je denote the end nodes of edge e. The first two constraint sets
ensure that an edge e belong to E(S) only if its end nodes ie and je are part of S.
The third constraint imposes the odd cardinality condition.
If z⋆sep > 0, a violated inequality is obtained for the subset S composed of the
nodes i ∈ N such that yi = 1 in the computed solution. Note that we can restrict
this ILP to the edges for which 0 < x⋆e < 1 and the nodes with at least two
incident edges in the linear relaxation solution x⋆LP.

(f) Let S be a node subset of odd cardinality. Summing the main constraints in
model (1.57) associated with the nodes i ∈ S, we obtain

∑
i∈S

∑
e∈δ (i)

xe = |S| or, equivalently, ∑
e∈δ (S)

xe + 2 ∑
e∈E(S)

xe = |S|

because each edge in δ (S) is incident to one node in S and each edge in E(S) is
incident to two nodes in S. Using the latter equation, we start from inequalities
(1.59) to obtain inequalities (1.58):

∑
e∈δ (S)

xe ≥ 1

⇔ |S|−2 ∑
e∈E(S)

xe ≥ 1

⇔ ∑
e∈E(S)

xe ≤
1
2
(|S|−1).

Separating blossom inequalities of the form (1.59) corresponds to finding a cut
set δ (S) in G of minimum weight, where |S| is odd and the weight of an edge e
is equal to x⋆e .
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Exercises of Chapter 2

2.1 Ralph Gomory
Gomory is one of those people with a fascinating biography. Here is a potpourri of
excerpts from various sources which probably does not do justice to his legacy.

Gomory originally studied physics at Williams College but was drawn to mathematics there,
and wrote a Princeton Ph.D. thesis on nonlinear differential equations. After completing his
Ph.D. he joined the U.S. Navy as an officer and was assigned to the Physics Branch of Office
of Naval Research in DC. There he discovered the Operations Research Group (ORG) and
learned linear programming from Alan Goldman. – INFORMS

He is a mathematical engineer in the true sense of the word: mathematician and engineer.
Accordingly he is member of both the National Academy of Sciences and the National
Academy of Engineering. His most influential result is the cutting plane method for integer
linear programming; it bares his name. – Technische Universiteit Eindhoven

After his career in the corporate world, Gomory became the president of the Alfred P. Sloan
Foundation, where he oversaw programs dedicated to broadening public understanding in
three key areas: the economic importance of science and research; the effects of globaliza-
tion on the United States; and the role of technology in education.

Gomory has written extensively on the nature of technology development, industrial com-
petitiveness, models of international trade, social issues under current economics and law,
and the function of the corporation in a globalizing world. – Wikipedia

2.2 Finiteness of X and z⋆MP
(a) If an infinite number of constraints is required to express the domain of the dual

of (2.1), the said domain is not a polyhedron, hence the dual formulation is not
a linear program. Since we assume that the primal is a linear program, it must
be expressed with |X|< ∞ variables.

(b) ∑x∈X λx ≤ κ , where κ is a positive and finite number. Alternatively, with an
upper bound ux on every variable: λx ≤ ux, ∀x ∈ X.

2.3 Cutting stock problem with rolls of different width
(a) Assume an optimal solution to the MP comprises a pattern xk2 such that

m

∑
i=1

wix
k2
i ≤W k1 <W k2 .

The cost or loss (W k2 −∑
m
i=1 wix

k2
i ) of such a pattern is computed relatively to

W k2 while it would be smaller if computed relatively to W k1 . Hence a contradic-
tion on the optimality of the solution and constraint ∑

m
i=1 wix

k2
i ≥W k1 + 1 can

be added to the ISPk2 .
(b) The IMP becomes

z⋆IMP = min ∑
k∈K

∑
xk∈Xk

cxk λxk

s.t. ∑
k∈K

∑
xk∈Xk

aixk λxk = bi [πi] ∀i ∈ {1, . . . ,m}

https://informs.org/Explore/History-of-O.R.-Excellence/Biographical-Profiles/Gomory-Ralph-E
http://win.tue.nl/~wscor/CONF/Gomory/gomory_e.pdf
https://en.wikipedia.org/wiki/Ralph_E._Gomory
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∑
xk∈Xk

dxk λxk ≤ nk [πk] ∀k ∈ K

λxk ∈ Z+ ∀k ∈ K, xk ∈ Xk,

where Xk denotes the set of cutting patterns for the roll width W k and dxk is
a parameter that takes value 1 whenever pattern xk uses a roll of width W k, 0
otherwise. We need a new encoding function dxk = xk

0 and modify the objective
function of the ISPk (2.34) as

c̄k(πππ,πk) = min cxk −
m

∑
i=1

πiaixk −π
kdxk

s.t.
m

∑
i=1

wixk
i ≤W kxk

0

xk
i ≤ bi ∀i ∈ {1, . . . ,m}

xk
0 ∈ {0,1}

xk
i ∈ Z+ ∀i ∈ {1, . . . ,m}

cxk =W kxk
0−

m

∑
i=1

wixk
i

aixk = xk
i ∀i ∈ {1, . . . ,m}

dxk = xk
0.

2.4 Cutting stock problem with rolls of different width: a single subproblem
(a) The ISP reads as

c̄(πππ) = min cx−
m

∑
i=1

πiaix

s.t.
m

∑
i=1

wixk
i ≤W k ∀k ∈ K

xk
i ∈ Z+ ∀k ∈ K, i ∈ {1, . . . ,m}

cx = ∑
k∈K

W k−
m

∑
i=1

wixk
i

aix = ∑
k∈K

xk
i , ∀i ∈ {1, . . . ,m}.

This is equivalent to

∑
k∈K

W k + max ∑
k∈K

m

∑
i=1

(wi +πi)xk
i

s.t.
m

∑
i=1

wixk
i ≤W k ∀k ∈ K

xk
i ∈ Z+ ∀k ∈ K, i ∈ {1, . . . ,m}.
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(b) We see the competitive pricing problems between the usage of different roll
widths in a more direct angle. In this “multiple knapsack problem,” units of
item i are favored/deterred by the same value wi +πi regardless of which knap-
sack we pack them in. In fact, putting conflicting widths W k aside, we see that
we are likely to reproduce packing choices in every knapsack. We thus end up
with a column λx using more or less the same pattern |K| times. This is exactly
the warning we give in Note 2.13.
We have a much more expensive pricing problem which produces basically the
same information as the simple knapsack problem.
Amongst other inconveniences of this formulation, the interpretation of column
ax is not very intuitive. It corresponds to a merged list of cutting patterns, one
for each roll width. What is the interpretation of a λ -variable with a fractional
value then?

2.5 Farley’s lower bound
(a) We show that for any πππ ≥ 0, the vector π̄ππ = πππ

1−c̄(πππ) is dual feasible in Corol-
lary 2.2, that is, π̄ππ ≥ 0 and 1− π̄ππ⊺ax ≥ 0, ∀x ∈ X:

1−
(

πππ

1− c̄(πππ)

)⊺
ax ≥ 0⇔ 1− c̄(πππ)−πππ

⊺ax ≥ 0⇔ c̄(πππ)≤ 1−πππ
⊺ax,

where the first equivalence is true because c̄(πππ) ≤ 0 so the denominator is al-
ways positive (non-negativity of π̄ππ holds as well) and the second equivalence
yields an inequality that holds by definition of the minimum reduced cost c̄(πππ).

(b) We compare πππ⊺b
1−c̄(πππ) ≤ z⋆MP to l(πππ) ·πππ⊺b ≤ z⋆MP and show that 1

1−c̄(πππ) = l(πππ)
given cx = 1, ∀x ∈ X. Starting from the right-hand side, we have

l(πππ) = min
x∈X|πππ⊺ax>0

1
πππ⊺ax

=
1

maxx∈Xπππ⊺ax

which is equal to the left-hand side since the denominators are equal, i.e.,

max
x∈X

πππ
⊺ax =−min

x∈X
(−πππ

⊺ax) = 1−min
x∈X

(1−πππ
⊺ax) = 1− c̄(πππ).

(c) We show that their difference is positive under the given assumptions c̄(πππ)< 0
and zRMP = πππ⊺b. The trick is to realize that the objective function implies that
κ = z⋆MP > 0 by definition (2.10). At any point during the column generation
process, the tightest known value for κ is zRMP ≥ z⋆MP such that a lower bound
can be computed as

zRMP + zRMP · c̄(πππ) = zRMP(1+ c̄(πππ)).

The desired result follows from

zRMP

1− c̄(πππ)
− zRMP(1+ c̄(πππ)) = zRMP

(
c̄(πππ)2

1− c̄(πππ)

)
> 0.
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2.6 Sufficient optimality condition
Figure 2.4 provides such evidence. We found the optimal objective value at iteration
736 and produce a sequence of 952−736= 216 negative reduced cost columns with
no impact thereafter (degenerate pivots). Each new column does however modify the
dual values until c̄(πππ)≥ 0 is fulfilled.

2.7 Single depot vehicle scheduling problem: adjusted arc costs
The adjusted arc costs are defined on network G = (V,A), with the node set V =
N∪{o,d} and arc set A = I∪({o}×N)∪(N×{d})∪{(o,d)}, see the figure below.

o d. . . I . . ....
...

Depot to trips Inter-trip arcs Trips to depot

∑
(i, j)∈A

c̃i jxi j = ∑
(i, j)∈A

ci jxi j−∑
i∈N

πi( ∑
j:(i, j)∈A

xi j) −πo( ∑
j:(o, j)∈A

xo j)

= ∑
i∈N

∑
j:(i, j)∈A

ci jxi j−∑
i∈N

∑
j:(i, j)∈A

πixi j + ∑
j:(o, j)∈A

co jxo j− ∑
j:(o, j)∈A

πoxo j

= ∑
i∈N

∑
j:(i, j)∈A

(ci j−πi)xi j + ∑
j:(o, j)∈A

(co j−πo)xo j

Hence c̃i j = ci j−πi, ∀i ∈ N,(i, j) ∈ A and c̃o j = co j−πo, ∀(o, j) ∈ A.

2.8 Single depot vehicle scheduling problem: arc-flow formulation
(a) Every trip i ∈ N is represented by two nodes for the start (in gray) and end (in

black) of service; these are linked by an arc with xi = 1 (indeed, lower and upper
bounds equal to 1). The cost of such an arc can be set to zero or to the fixed cost
ci incurred to cover that trip; since each trip has to be covered exactly once,
the sum of the costs of all the trips is a constant. The representation with two
nodes is natural in the airline area, for example, the flight Montréal – Frankfurt
is represented by the two city-nodes.

d βdoβo

β j

α j

x j

βi

αi

xi

xi j

xoi

x jd

xod

xdo

(b) c̄od = cod−βo +βd ; c̄do =−βd +βo; c̄i = ci−βi +αi, ∀i ∈ N;
c̄i j = ci j−αi +β j, ∀(i, j) ∈ A.
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2.9 Multiple depot vehicle scheduling problem
(a) The IMP formulation is

z⋆IMP = min ∑
k∈K

∑
xk∈Xk

cxk λxk

s.t. ∑
k∈K

∑
xk∈Xk

aixk λxk = 1 [πi] ∀i ∈ N

∑
xk∈Xk

λxk ≤ vk [πk
0 ] ∀k ∈ K

λxk binary ∀k ∈ K, xk ∈ Xk.

(b) A multi-commodity formulation, with commodity k being associated to depot k,
is

z⋆ILP = min ∑
k∈K

∑
(i, j)∈Ak

do

ck
i jx

k
i j

s.t. ∑
k∈K

∑
j:(i, j)∈Ak

xk
i j = 1 ∀i ∈ N

∑
j:(i, j)∈Ak

do

xk
i j− ∑

j:( j,i)∈Ak
do

xk
ji = 0 ∀k ∈ K, i ∈ Nk

0≤ xk
dkok ≤ vk ∀k ∈ K

xk
i j ∈ {0,1} ∀k ∈ K,(i, j) ∈ Ak \{(dk,ok)}.

Note that xk
dkok ∈ Z+, ∀k ∈ K, as a consequence of the flow conservation equa-

tions and all other flow variables being binary.
(c) A possible network for 2 depots is illustrated below. The minimum number of

buses is obtained as
v⋆ = ∑

k∈K
vk−max ∑

k∈K
xk

okdk ,

subject to the network constraints. In this new formulation, there is no travel
costs and the depot restriction constraints can be satisfied a posteriori by reas-
signing the routes to appropriate depots.

o1 d1

o2 d2

. . . I . . .o d

= v1

= v2

= v1

= v2
...

...
...

...

xdo
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2.10 Maximum flow problem: arc-flow and path-flow formulations
(a) The maximum flow problem between o and d is a specialized form of the gen-

eral flow formulation with zero-supply and zero-demand vectors. Let xi j be the
number of units traveling on arc (i, j) ∈ Ado. An arc-flow formulation is

z⋆LP = max xdo

s.t. ∑
j:(i, j)∈Ado

xi j− ∑
j:( j,i)∈Ado

x ji = 0 ∀i ∈V

0≤ xi j ≤ ui j ∀(i, j) ∈ A.

There is a flow conservation equation per node in N and a pair of bounds for
each arc in A. Variable xdo is maximized in the objective function.

(b) Let X be the finite set of feasible od-paths in Gdo = (V,Ado), where path x ∈ X

is encoded in the MP as the binary vector ax = [ai jx](i, j)∈A with ai jx = 1 if and
only if path x uses arc (i, j). The MP formulation reads as

z⋆MP = max ∑
x∈X

λx

s.t. ∑
x∈X

axλx ≤ u [πππ]

λx ≥ 0,

where u = [ui j](i, j)∈A is the vector of upper bounds and πππ = [πi j](i, j)∈A is the
non-negative dual vector. Regarding the SP, it can be seen as the longest path
problem from o to d with objective function maxx∈X 1−πππ⊺ax, where ax = x.
Alternatively, it can be formulated on Gdo as

c̄(πππ) = max cx−πππ
⊺ax

s.t. ∑
j:(o, j)∈A

xo j = xdo

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 ∀i ∈ N

∑
i:(i,d)∈A

xid = xdo

xi j ∈ {0,1} ∀(i, j) ∈ Ado

cx = xdo

ax = x = [xi j](i, j)∈A.

(c) In any RMP solution, either an arc (i, j) ∈ A is saturated or not.

• In the latter case, xi j < ui j and πi j = 0.
• Otherwise the arc is saturated and πi j gives the impact on the maximum

flow (that is, z⋆MP or equivalently z⋆LP) if ui j is increased by 1. Then, either
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the minimal cut remains unchanged and πi j = 0 or it allows for one addi-
tional unit of flow and πi j = 1. Hence πi j ∈ {0,1}.

(d) Given πππ ≥ 0 and c̄(πππ)> 0, we show that c̄(πππ) = 1.

• If xdo = 1, then 1 > ∑(i, j)∈A πi jxi j. An optimized od-path x must go through
a subset Ax ⊂ A of arcs for which the dual values are πi j = 0, ∀(i, j) ∈ Ax,
hence πππ⊺ax = 0 and c̄(πππ) = xdo = 1.

• The case xdo = 0 is in contradiction with c̄(πππ) > 0. If we assume it to be
true, then xi j = 0, ∀(i, j) ∈ A, ax = x = 0, and c̄(πππ) = xdo = 0.

(e) At optimality of the MP, there is no λx-variables with positive reduced cost,
hence c̄(πππ⋆) = 0.

• This can be achieved in c̄(πππ⋆) = xdo−πππ⋆⊺x with
[

xdo
x

]
=

[
0
0

]
.

• Alternatively, any od-path x ∈ X whose variable λx is positive in the RMP
solution has a zero reduced cost by complementary slackness.

2.11 Maximizing the smallest reduced cost within column generation
(a) Letting µ = minx∈X cx−πππ⊺ax, the SP becomes

c̄⋆ = max
πππ∈Rm

min
x∈X

c̄x = max
πππ∈Rm

µ

s.t. µ ≤ cx−πππ
⊺ax [θx] ∀x ∈ X

= max
πππ∈Rm

µ

s.t. µ +πππ
⊺ax ≤ cx [θx] ∀x ∈ X.

(b) Given θx ≥ 0, ∀x ∈ X, the dual formulation of the above is

c̄⋆ = min ∑
x∈X

cxθx

s.t. ∑
x∈X

axθx = 0 [πππ]

∑
x∈X

θx = 1 [µ]

θx ≥ 0 ∀x ∈ X.

(c) This SP looks for a minimum cost normalized combination of columns sum-
ming up to 0. For a network flow problem, this corresponds to finding a min-
imum mean-cost cycle because the variables take value 1/|W |, for a cycle
comprising |W | arcs. For a network given by G = (N,A) with arc-flow vector
x = [xi j](i, j)∈A, the above formulation becomes
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c̄⋆ = min ∑
(i, j)∈A

ci jxi j

s.t. ∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 [πi] ∀i ∈ N

∑
(i, j)∈A

xi j = 1 [µ]

xi j ≥ 0 ∀(i, j) ∈ A.

2.12 Tailing-off effect
Stop solving the MP before optimality is reached and start the branching process.
This early stopping can be based on the computation of a lower bound on z⋆MP, or if
the value of zRMP does not change sufficiently in a certain number of iterations. In-
deed, branch-and-bound can be started at any time, even while heuristically solving
the MP; we only need a branching rule. See the discussion on early termination in
Note 2.18.

2.13 Transforming a set partitioning problem into a set covering problem
In column generation notation, x j, j ∈ {1, . . . ,n}, becomes λx, x ∈ X. Any upper
bound UB≥ ∑x∈X cxλ⋆x on the optimal objective value can be selected. Then (2.60)
reads as ∑x∈XCxλ⋆x ≤ UB(m+1) while (2.61) becomes ∑x∈XCxλ•x > UB(m+1).

2.14 Set covering vs. set partitioning
(a) Let λλλ

⋆
SCP = [λ⋆x]x∈X be an optimal solution to the SCP under the given con-

ditions and assume it over-covers the right-hand side vector 1 (otherwise we
trivially have λλλ

⋆
SPP = λλλ

⋆
SCP). Select a variable λ⋆x = 1 whose column ax induces

an over-covering on some row i. Let R′x = Rx \{i}.

• If c(R′x) < c(Rx), then λλλ
⋆
SCP cannot be optimal. Hence c(R′x) = c(Rx) and

the use of R′x rather than Rx reduces the over-covering on row i.
• Repeat this process until there is no over-covering, hence producing an op-

timal solution λλλ
⋆
SPP to the set partitioning problem.

(b) From the primal point of view, finding feasible solutions is much easier with
the SCP formulation because over-covering is permitted. Moreover, there exists
fast heuristics to solve the SCP. This is particularly important for the Phase I to
rapidly find relatively good dual variables.
From the dual point of view, recall that the optimality conditions are based on
the reduced costs, hence on the dual vector. Restricting to πππ ≥ 0 in the SCP
rather than πππ ∈ Rm in the SPP relaxes the primal formulation and this strategy
has proven to be much faster in practice to solve the linear relaxation. This is
also the motivation for stabilization techniques used in numerous implementa-
tions of the column generation algorithm, that is, looking for a better control
over likely dual variable values.

2.15 Cutting stock problem: integer optimum bound
We can round up each of the positive λ⋆x-values to the nearest integer. This solution
is feasible and has value UB = ∑x∈X′ ⌈λ⋆x⌉. (If we also assume an optimal basic
solution to the MP, there are at most m such positive variables and UB < z⋆MP +m.)
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2.16 Cutting stock problem with equality constraints
(a) The ISP (2.30) is here given on a one-dimensional domain as

c̄(π1) = min 1−π1x1

s.t. 2x1 ≤ 11
x1 ∈ Z+.

There are six feasible solutions given by x1 ∈ {0, . . . ,5}. Each has a cost en-
coding of 1 whereas the respective column encoding is given by the value of
x1.

(b) Including the empty pattern (x1 = 0) that does not select the requested item, the
IMP writes as

z⋆IMP = min λ0 + λ1 + λ2 + λ3 + λ4 + λ5

s.t. λ1 + 2λ2 + 3λ3 + 4λ4 + 5λ5 = 4 [π1 ∈ R]
λ0, λ1, λ2, λ3, λ4, λ5 ∈ Z+ .

(c) The unique optimal integer solution is z⋆IMP = 1 with λ⋆4 = 1.
(d) The domain conv(X) contains two extreme points: x1 = 0 and x1 = 5.
(e) No, there is an obvious difference between the six columns in the IMP and the

two extreme points which cannot produce λ4.
(f) Solving by column generation goes as follows:

• Phase 1 starts with an artificial variable of cost big-M > 0. Then π1 = M,
i.e., if the demand increases by 1 unit, the value of zRMP goes up by M.

• The ISP generates
[

1
x1

]
=

[
1
5

]
with c̄(M)=1−M(5)<0. Hence zRMP = 0.8

with solution λ5 = 0.8 whereas π1 = 0.2.

• The next iteration gives c̄(0.2) = 1− 0.2(5) = 0, again with x1 = 5. We
terminate with an optimal solution z⋆MP = 0.8 using λ⋆5 = 0.8.

(g) There are now only five feasible solutions to X= {x1 ∈ Z+ | 2x1 ≤ 11, x1 ≤ 4}
given by x1 ∈ {0, . . . ,4} and the variable λ5 is discarded from the IMP. The
optimal solution to the MP is already integer: z⋆MP = 1 using λ⋆4 = 1. Observe
that z⋆MP≤ z⋆MP(R)≤ z⋆IMP = z⋆IMP(R) = z⋆ILP, where (R) indicates that over-packing
solutions are removed from the ISP.

2.17 Edge coloring problem with equality constraints
(a) The ISP is given by

c̄(πππ) = min x0−∑
e∈E

πexe

s.t. ∑
e∈δ ({i})

xe ≤ x0 ∀i ∈ N

x0 ∈ {0,1}
xe ∈ {0,1} ∀e ∈ E.
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There are ten matchings: a 0-edge matching with x = 0 and x0 = 0 as well as
five 1-edge matchings and, illustrated below, four 2-edge matchings.

a

b

c

d

e
a

b

c

d

e
a

b

c

d

e
a

b

c

d

e

(b) Dropping the 0-edge or empty matching, the IMP formulation writes as

z⋆IMP = min λa +λb +λc +λd +λe + λad +λae +λbc +λbe

s.t. λa + λad +λae = 1 [πa]

λb +λbc +λbe = 1 [πb]

λc +λbc = 1 [πc]

λd + λad = 1 [πd ]

λe +λae +λbe = 1 [πe]

λa, . . . . . . λbe ∈ {0,1}.

(c) Three colors are sufficient. The possible optimal solutions are respectively given
by λad = λbc = λe = 1, λae = λbc = λd = 1, and λad = λbe = λc = 1 plus all
3-color permutations.

a

b

c

d

e
a

b

c

d

e
a

b

c

d

e

(d) All matchings listed in a) are extreme points of conv(X). Indeed, we see by the
objective function that a 1-edge matching has a different reduced cost than a
2-edge matching covering the same edge.

(e) Yes, there is no difference between the columns of the IMP and those using the
extreme points of conv(X).

(f) The initial artificial solution implies that πa = πb = . . . = πe = M > 1, hence
the four 2-edge matchings have reduced costs equal to 1− 2M while it is only
1−M for the 1-edge matchings. Assuming we enter in the basis all the four
maximal matchings, then any of the artificial variables covering rows {c,d,e}
can complete the basis. Let us take the artificial variable with an entry 1 in
row c as the last basic column while similar results are obtained with the two
other selections. The basis AB and its inverse A−1

B are
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AB =


1 1 0 0 0
0 0 1 1 0
0 0 1 0 1
1 0 0 0 0
0 1 0 1 0

 A−1
B =


0 0 0 1 0
1 0 0 −1 0
1 1 0 −1 −1
−1 0 0 1 1
−1 −1 1 1 1


and πππ⊺ = c⊺BA−1

B = [1, 1, 1, 1, M]A−1
B = [1−M, 1−M, M, M, M].

Pricing the non-basic variables, that is, the five 1-edge matchings, we obtain

c̄a = c̄b = M > 0 and c̄c = c̄d = c̄e = 1−M < 0.

Selecting λc to enter the basis (replacing the artificial variable), the current basic
solution is zRMP = 3 with

λad = λbe = λc = 1, λae = λbc = 0, and πππ
⊺ = [0, 0, 1, 1, 1].

Pricing again the non-basic variables, we prove optimality of the current solu-
tion because

c̄a = c̄b = 1 and c̄d = c̄e = 0.

Note that the MP finds an integer λ -solution . . . by chance.

2.18 Tolerance on the schedule synchronization constraints
We can use one bounded surplus and one bounded slack variable for every flight,
or simply a single variable vi ∈ [−2,2]. Using the revised model (p. 90) with con-
straints (2.53),

z⋆IMP = min ∑
k∈K

∑
p∈Pk

ck
pλ

k
p

s.t. ∑
k∈K

∑
p∈Pk

ak
ipλ

k
p = 1 ∀i ∈ N

∑
k∈K

∑
p∈Pk

bk
ipλ

k
p −tmi + vi = 0 ∀i ∈ N

−2≤ vi ≤ 2 ∀i ∈ N

∑
p∈Pk

λ
k
p = 1 ∀k ∈ K

λ
k
p ≥ 0 ∀k ∈ K, p ∈ Pk

∑
p∈Pk

xk
i jpλ

k
p = xk

i j ∈ {0,1} ∀k ∈ K,(i, j) ∈ Ak.
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2.19 Degenerate or small step-length pivots
(a) Using X ∼ H(n,20,200), Pr(X ≥ 1) for a degenerate pivot:

n 5 10 15 20 25 30 35 40 45 50
% 41.3 66.0 80.6 89.1 94.0 96.8 98.3 99.1 99.5 99.8

(b) Using X ∼H(n,20,500), Pr(X ≥ 1) for a degenerate or small step-length pivot:

n 5 10 15 20 25 30 35 40 45 50
% 18.5 33.8 46.3 56.5 64.9 71.7 77.3 81.8 85.4 88.4

2.20 Pseudo-code practice
Whenever the RMP is feasible, we have zRMP < ∞ and we perform column gen-
eration as usual. Otherwise, Farkas pricing intervenes by destroying the certificate
of infeasibility found in the RMP or proving that the MP is indeed infeasible. This
pseudo-code also handles infeasibility of the ISP which obviously implies that of
the MP because there do not exist any columns at all. In this case, we go through
the ‘else’ condition and correctly break by infeasibility since F(πππ) = ∞.

Algorithm: The column generation algorithm using Farkas pricing.
input : RMP, SP or ISP
output : Certificate of optimization
initialization : X′← /0

1 loop
2 zRMP, λλλ RMP, πππ ← RMP
3 if zRMP < ∞

4 c̄(πππ), x, cx, ax ← SP
5 if c̄(πππ)≥ 0
6 break by optimality of the MP

7 else
8 F(πππ), x, cx, ax ← Farkas pricing
9 if F(πππ)≥ 0

10 break by infeasibility of the MP

11 X′←X′∪{x}
12 return λλλ RMP, πππ , and zRMP
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Exercises of Chapter 3

3.1 Philip Wolfe
Before joining Princeton, Wolfe had been offered a higher-paid position at RAND, which
he turned down. But in 1957 RAND doubled their earlier offer and Wolfe went back to
California, where he was assigned to RAND’s computing group. There he was associated
with George Dantzig, Ray Fulkerson, and Lloyd Shapley, and worked on ways to improve
the simplex algorithm. In particular, with George Dantzig he developed a decomposition
method to solve linear programming problems that had only a few constraints linking
variables of several smaller LP problems and, for other problems, to generate LP matrix
columns as they were needed in the computation. – INFORMS

3.2 Column generation vs. Dantzig-Wolfe decomposition
Column generation is a solution method, thus the term algorithm. The Dantzig-
Wolfe decomposition is a principle that leads to an equivalent mathematical model:
Dantzig-Wolfe reformulation. The confusion arises from the fact that the MP ob-
tained from a Dantzig-Wolfe reformulation is often solved by column generation.

At the time of writing, the entry on Wikipedia about Dantzig-Wolfe decompo-
sition perpetuates this confusion with its leading statement “Dantzig-Wolfe decom-
position is an algorithm [. . . ].” Feel free to also browse through the implementation
paragraphs and compare with Note 2.14.

3.3 Bounded variables in the compact formulation
The domain of D is obviously bounded so we only have a set of |P| extreme points.
Since every extreme point xp, p ∈ P, of D fulfills ℓℓℓ ≤ xp ≤ u, any convex combi-
nation of those extreme points necessarily fulfills the bounds which means they are
indeed redundant in A.

The MP thus reads no differently than what we are used to, i.e., reformula-
tion (3.11) left which we repeat for convenience:

z⋆MP = min ∑
p∈P

cpλp

s.t. ∑
p∈P

apλp ≥ b [πππb]

∑
p∈P

λp = 1 [π0]

λp ≥ 0 ∀p ∈ P

∑
p∈P

xpλp = x.

In particular, we still simply have non-negativity conditions on the λ -variables. We
reach the same conclusion if the bounds are kept only in the set A, see Decomposi-
tion theorem of a network flow solution.

https://informs.org/Explore/History-of-O.R.-Excellence/Biographical-Profiles/Wolfe-Philip
https://en.wikipedia.org/wiki/Dantzig%E2%80%93Wolfe_decomposition
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3.4 Duplicated cost and column variables
(a) Similarly to (3.3),

∑
p∈P

xpλp + ∑
r∈R

xrλr = x

∑
p∈P

cpλp + ∑
r∈R

crλr = cx

∑
p∈P

apλp + ∑
r∈R

arλr = ax

∑
p∈P

λp = 1

λp ≥ 0, λr ≥ 0 ∀p ∈ P, r ∈ R,

and the reformulation is the same as (3.9).
(b) As in (3.15):

c̄(πππb,π0) = −π0 + min cx−πππ
⊺
bax

s.t. Dx≥ d
cx = c⊺x, ax = Ax, x ∈ Rn

+.

3.5 Dual formulations for the MP
The respective dual formulations are
(a)

z⋆DMP = max b⊺πππb + π0

s.t. a⊺pπππb + π0 ≤ cp [λp] ∀p ∈ P

a⊺r πππb ≤ cr [λr] ∀r ∈ R

πππb ≥ 0, π0 ∈ R.

(b)
z⋆DMP = max b⊺πππb + ∑

k∈K
π

k
0

s.t. ak⊺
p πππb + π

k
0 ≤ ck

p [λk
p] ∀k ∈ K, p ∈ Pk

ak⊺
r πππb ≤ ck

r [λk
r] ∀k ∈ K, r ∈ Rk

πππb ≥ 0

π
k
0 ∈ R ∀k ∈ K.

3.6 2D illustration: role inversion

A= {x1,x2 ≥ 0 | −x1 +4x2 ≤ 8, x2 ≥ 2}
D= {x1,x2 ≥ 0 | 3x1 +4x2 ≥ 24, x1 ≤ 10, x2 ≤ 6}.
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x1(0,0)•
10
•

x2

zLP
6•

2• (10,2)•

(10,6)•
(10,4.5)•

(4,3)
•

8
•

( 16
3 ,2)

•
A∩D

(a) X only comprises the extreme points (0,6), (10,6), (10,0) and (8,0).

(b) cx = x1 + x2 and ax =

[
−x1 +4x2

x2

]
.

(c) Let index p ∈ {1, . . . ,4} represent the extreme points of D. The domain of the
MP comprises three constraints, including the convexity one:

xp: (0,6) (10,6) (10,0) (8,0)

z⋆MP = min 6λ1 + 16λ2 + 10λ3 + 8λ4

s.t. 24λ1 + 14λ2 − 10λ3 − 8λ4 ≤ 8 [π1]

6λ1 + 6λ2 ≥ 2 [π4]

λ1 + λ2 + λ3 + λ4 = 1 [π0]

λ1, λ2, λ3, λ4 ≥ 0.

The SP writes as c̄(πππb,π0) =−π0 +min
x∈D

cx− [π1,π4]ax, where

cx = x1 + x2 and ax =

[
−x1 +4x2

x2

]
.

c̄(π1,π4,π0) =−π0 + min (1+π1)x1 +(1−4π1−π4)x2

s.t. 3x1 + 4x2 ≥ 24 [π2]

x1 ≤ 10 [π3]

x2 ≤ 6 [π5]

x1, x2 ≥ 0.

(d) Solving the MP

• directly gives z⋆MP = 7 with primal values λλλ
⋆
MP = (0.5, 0, 0, 0.5) and dual

vector [πππ⋆
b,π

⋆
0 ] = [π⋆

1 ,π
⋆
4 ,π

⋆
0 ] = [−1/16, 0, 7.5]. For this optimal dual vector,

the SP becomes
c̄(−1/16, 0, 7.5) =−7.5 + min 15/16x1 + 1.25x2

s.t. 3x1 + 4x2 ≥ 24 [π2]

x1 ≤ 10 [π3]

x2 ≤ 6 [π5]

x1, x2 ≥ 0,
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where c̄(πππ⋆
b,π

⋆
0 )= 0 at both extreme points (0,6) and (8,0) with dual vector

[π⋆
2 ,π

⋆
3 ,π

⋆
5 ] = [5/16, 0, 0].

• by column generation using Farkas pricing to initialize with objective func-
tion −π0 +minπ1x1− (4π1 +π4)x2. We need two iterations to reach feasi-
bility, one to improve the initial solution and one more to prove optimality.

MP SP

t RMP solution zRMP
[
π1 π4 π0

]
c̄(πππb,π0) xp lb

1 - -
[
0 1 0

]
−24.00

[
0 6
]

-
2 - -

[
−1 0 24

]
−2.00

[
10 0

]
-

3 λ1 = 0.529,λ3 = 0.471 7.88
[
−0.1176 0 8.8235

]
−1.76

[
8 0
]

6.12
4 λ1 = 0.5,λ4 = 0.5 7.00

[
−0.0625 0 7.5000

]
0.00

[
0 6
]

7.00

(e) Verification of primal-dual solutions:

• (x⋆1,x
⋆
2) = ∑

4
p=1 xpλ⋆p = (0,6)(0.5)+(8,0)(0.5) = (3,4).

• [π⋆
1 ,π

⋆
2 ,π

⋆
3 ,π

⋆
4 ,π

⋆
5 ] = [−1/16, 5/16, 0, 0, 0].

3.7 2D illustration: maximization
(a) z⋆LP = 14.5, x⋆LP = (10,4.5), and σσσ⋆⊺ = [0.25, 0, 1.25, 0, 0].
(b) Let index p = 1 represent the extreme point (0,2) in D whereas r = 2 and

r = 3 are used for the extreme rays (4,1) and (1,0), respectively. After sub-
stitution in the constraints of A and the objective function, the MP comprises
four constraints, where the row indices correspond to those of the dual variables
πππ
⊺
b = [π2,π3,π5], π0 being reserved for the convexity constraint (here involving

only variable λ1):

x : (0,2) (4,1) (1,0)

z⋆MP = max 2λ1 + 5λ2 + λ3

s.t. 8λ1 + 16λ2 + 3λ3 ≥ 24 [π2 ≤ 0]
4λ2 + λ3 ≤ 10 [π3 ≥ 0]

2λ1 + λ2 ≤ 6 [π5 ≥ 0]
λ1 = 1 [π0 ∈ R]
λ1, λ2, λ3 ≥ 0.

• λλλ
⋆
MP = (1, 2.5, 0) with objective value z⋆MP = 14.5 = z⋆LP;

• x⋆MP = (0,2)λ⋆1 +(4,1)λ⋆2 +(1,0)λ⋆3 = (10,4.5) = x⋆LP;
• πππ⋆⊺

b = [π⋆
2 ,π

⋆
3 ,π

⋆
5 ] = [0, 1.25, 0] together with π⋆

0 = 2.

• The SP, with the appropriate dual vector πππb, writes as

c̄(πππb,π0) =−π0+max
x∈D

cx−

π2
π3
π5

⊺ax, where cx = x1+x2 and ax =

3x1 +4x2
x1
x2

,
that is,
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−π0 + max (1−3π2−π3)x1 + (1−4π2−π5)x2

s.t. − x1 + 4x2 ≤ 8 [π1 ≥ 0]
x2 ≥ 2 [π4 ≤ 0]

x1 ≥ 0.

• Given πππ⋆
b and π⋆

0 , the SP becomes

c̄(0, 1.25, 0, 2) =−2 + max −1/4x1 + x2

s.t. − x1 + 4x2 ≤ 8 [π1 ≥ 0]
x2 ≥ 2 [π4 ≤ 0]

x1 ≥ 0,

where c̄(πππ⋆
b,π

⋆
0 ) = 0 at the extreme point (0,2) with [π⋆

1 ,π
⋆
4 ] = [0.25, 0].

3.8 Minimum reduced cost of zero at optimality of the MP
Because the MP needs not be solved by a simplex-type algorithm, the zero reduced
cost of the basic variables is not a valid argument. The result follows from the posi-
tiveness of at least one λp-variable in the convexity constraint ∑p∈P λp = 1 and the
optimality conditions in Proposition 1.7: λp > 0⇒ c̄p = 0.

3.9 The Dantzig-Wolfe lower bound does not depend on π0

zRMP + c̄(πππb,π0) = (πππ⊺bb+π0)+(−π0 +min
x∈D

(c⊺−πππ
⊺
bA)x)

= πππ
⊺
bb+min

x∈D
(c⊺−πππ

⊺
bA)x.

3.10 All constraints in the pricing problem
(a) The MP is adapted from (3.9):

z⋆MP = min ∑
p∈P

cpλp + ∑
r∈R

crλr

s.t. ∑
p∈P

λp = 1 [π0]

λp ≥ 0, λr ≥ 0 ∀p ∈ P, r ∈ R

∑
p∈P

xpλp + ∑
r∈R

xrλr = x.

(b) The SP is adapted from (3.15):
c̄(π0) =−π0 + min c⊺x

s.t. Ax≥ b [πππb]

Dx≥ d [πππd]

x≥ 0.

(c) The MP only contains the convexity constraint with associated dual variable π0.
A single artificial variable, say y0, is needed to start, with a large cost M > 0 in
the objective function. The first RMP reads as
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zRMP = min M y0

s.t. y0 = 1 [π0]

y0 ≥ 0.

Obviously, y0 = 1, zRMP = M, and π0 = M in the optimal solution of this first
RMP. Assuming M > z⋆LP, the first call to the SP finds

• c̄(π0) =−M+ c⊺x⋆ =−M+ z⋆LP < 0
• at an extreme point x⋆LP (because z⋆LP is finite),
• as well as πππ⋆

b =σσσ⋆
b and πππ⋆

d =σσσ⋆
d.

The lower bound (3.32) on z⋆LP reads as zRMP + c̄(π0) = M−M+ z⋆LP = z⋆LP. We
thus terminate with an optimal primal-dual solution for the LP found in the SP.
• If the lower bound criterion is not used, it takes a second iteration of the RMP
and SP. Let p = 1, x1 = x⋆LP, c1 = z⋆LP. The second RMP reads as

zRMP = min c1λ1

s.t. λ1 = 1 [π0]

λ1 ≥ 0
x1λ1 = x,

for which the optimal solution is λ1 = 1, zRMP = c1 = z⋆LP, and π0 = z⋆LP. The
SP again finds the same extreme point x1 and c̄(π0) =−z⋆LP + c1 = 0.

3.11 Generating variable λ0
(a) Initialize the RMP with artificial variables of cost big-M as needed, one being y0

in the convexity constraint. Then π0 = M and c̄x =−π0+(c⊺−πππ
⊺
bA)x, ∀x ∈X.

Therefore, the reduced cost of λ0 is c̄0 =−π0 < 0. Although there may be other
λx-variables with negative reduced costs, it is possible that λ0 dominates all of
them such that the ISP indeed generates it. This variable then enters the basis in
the MP with a contribution of zero but it does also change the dual values for
the next iteration.

(b) If there are several pricing problems, a variable λk
0 may be generated after some

other extreme points xk have been found. We can see this from the complicating
constraints that can be covered by extreme points of any block. It may happen
that all previously generated columns of a block k are no longer cost effective
and it is better to do nothing with λk

0 = 1.
(c) In the case of a polyhedral cone, there is only one extreme point per domain

Dk, k ∈ K. Each variable λk
0 therefore has to be generated otherwise we cannot

fulfill the k-th convexity constraint. Once again, we can alternatively remove
the convexity constraints from the MP and only generate extreme rays.

3.12 Time constrained shortest path problem: duality
The figure presents side-by-side the dual domains for the MPs with a level curve
for their respective objective functions in dotted lines (Not all line-equations are
identified).

z⋆MP = 7 = 14π
⋆
7 +π

⋆
0 |(−2, 35) = µ

⋆|(−2, 7).
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Remark: Dual formulations (3.107) and (3.108)right of the master problem are
equivalent. The second dual formulation, the one based on the alternative MP for-
mulation, is used in Lagrangian relaxation, not the first.

−6 −5 −4 −3 −2 −1 0

0

20

40

60

80

100

13256

12456
13246

132456

1346
13456

π0 ≤ cp− tpπ7,

∀p ∈ P

(−2,35)

π7

π0

(a) Domain of the dual of the MP.
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(b) Domain of the dual of the alternative MP.

3.13 Time constrained shortest path problem: circulation pricing problem
(a) The set {xp}p∈P contains the single extreme point 0. Any extreme ray of set
{xr}r∈R can be represented as a unit-cycle composed of a path from 1 to 6
completed by the returning arc (6,1) at value 1; other arc-components are zero.
These cycles are in a one-to-one correspondence with the paths from 1 to 6.

(b) Because the extreme rays are scaled with x61 = 1, we show that the MP remains
the same as (3.81) in Example 3.2, except that index set P is replaced by R.

• First, the variable λ0 is discarded from the MP as well as the convexity
constraint λ0 = 1 on the unique extreme point.

• Second, we have to reformulate both constraints of A, in particular x61=1
in (3.109d), when substituting the extreme rays indexed in R.
This gives back an equivalent “convexity” constraint on the λr-variables.

z⋆MP = min ∑
r∈R

crλr

s.t. ∑
r∈R

trλr ≤ 14 [π7 ≤ 0]

∑
r∈R

λr = 1 [π61 ∈ R]

λr ≥ 0 ∀r ∈ R

∑
r∈R

xi jrλr = xi j ∀(i, j) ∈ Ado,
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The SP is a minimum cost circulation problem:

c̄(π7,π61) = min cx− [π7,π61]ax

s.t. ∑
j:(i, j)∈Ado

xi j− ∑
j:( j,i)∈Ado

x ji = 0 [πi] ∀i ∈ {1, . . . ,6}

xi j ≥ 0, ∀(i, j) ∈ Ado

cx = ∑
(i, j)∈Ado

ci jxi j

ax =

 ∑
(i, j)∈Ado

ti jxi j

x61

.
3.14 Aircraft routing
(a) • Objective function: min ∑(i, j)∈Night xi j,

i.e., the sum of the three night arcs, one per city. Other possibilities exist,
such as the sum of the ground and flight arcs at any specific moment.

• Bounds: xi j = 1, ∀(i, j) ∈ Flight; xi j ≥ 0, ∀(i, j) ∈ Ground.
(b) 6 aircraft on 5 cycles: 3 aircraft at A, 2 at B and 1 at C. The decomposition into

cycles is not unique, see Proposition 3.4.

A

A4D

A2D

B6D

B9D

C6D

(a) Two aircraft cycles
from city A.

B

A5D

B1D

B4D

C8D
C9D

(b) Two aircraft cycles
from city B.

A C
A1D

B3D

B10D

C1D

C5D

(c) A cycle with two aircraft
from cities A and C.

(c) The aircraft at the beginning of the day in city C operates 5 legs over a period
of two days, 1 on the first day, 4 on the second. Several solutions are possible,
and they look like

• flight C1 to A, night arc in A;
• A1 to B, B3 or B4 to C, C5 or C6 to B, B10 back to C, night arc in C.

The schedule repeats itself after two days.
(d) The time of departure in the city of origin remains the same but the arrival time

is modified according to the difference between the time zones.
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(e) Time-space network as a SDVSP:

A

C

o d

0≤ xdo ≤ v

Because the number of departures and arrivals are equal in every city, we do not
have to impose the equality constraints xoA = xAd , xoB = xBd , and xoC = xCd .

(f) We can group a few successive nodes at an airport. Nodes are examined in
chronological order and a new group is started each time an arrival node is
encountered, provided that in the current group there already exists a departure
node. This aggregation rule ensures that a flight leaving an airport utilizes an
aircraft already stationed (Soumis et al., 1980). The reduction is illustrated for
city A followed by that in B.

A B C

(a) Original network.

A B C

(b) Reduction performed in A.

A B C

(c) Reduction in A and B.

3.15 Aircraft routing: reformulation and column generation
The set X = {0}∪ {xr}r∈R, where xr ∈ D is an extreme ray scaled to one unit of
flow, a directed cycle on the network of Figure 3.18. Discarding index 0, the MP
reads as

z⋆MP = min ∑
r∈R

cr λr

s.t. ∑
r∈R

ai j,r λr = 1 [πi j] ∀(i, j) ∈ Flight

λr ≥ 0 ∀r ∈ R,
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where cr counts the number of night arcs in cycle xr and ai j,r = 1 if flight (i, j)
belongs to the cycle, 0 otherwise.

Let πππ = [πi j](i, j)∈Flight . The SP with domain D (3.113b) writes as

c̄(πππ) = min cx− ∑
(i, j)∈Flight

πi jai j,x

s.t. ∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 ∀i ∈ N

xi j ≥ 0 ∀(i, j) ∈ A

cx = ∑
(i, j)∈Night

xi j

ai j,x = xi j ∀(i, j) ∈ Flight.

3.16 Linear relaxation of the cutting stock problem
(a) The first inequality system can be consolidated into a single equation, that is,

∑
k∈K

xk
i ≥ bi, ∀i ∈ {1, . . . ,m} ⇒

m

∑
i=1

∑
k∈K

wixk
i ≥

m

∑
i=1

wibi.

The same consolidation idea can be applied on the second inequality system as

m

∑
i=1

wixk
i ≤Wxk

0, ∀k ∈ K ⇒ ∑
k∈K

m

∑
i=1

wixk
i ≤ ∑

k∈K
Wxk

0.

Merging these two results yields ∑
m
i=1 wibi≤∑k∈K ∑

m
i=1 wixk

i ≤∑k∈K Wxk
0 which

corresponds to the requested lower bound on z⋆LP when dividing the left and right
sides by W : ∑

m
i=1 wibi/W ≤ ∑k∈K xk

0.
Now assign the following values for the variables:

xk
0 =

∑
m
i=1 wibi

W |K|
, ∀k ∈ K;

xk
i =

bi

|K|
, ∀k ∈ K, i ∈ {1, . . . ,m}.

Then, the values xk
i = bi/|K| fulfill the first inequality system ∑k∈K xk

i ≥ bi,
∀i ∈ {1, . . . ,m}, and, for all k ∈ K, the inequalities ∑

m
i=1 wixk

i ≤Wxk
0 are as well

satisfied. Since all bound restrictions are also satisfied, we have a primal solu-
tion that reaches the lower bound, hence z⋆LP = ∑k∈K xk

0 = ∑
m
i=1 wibi/W .

(b) First note that for all k ∈K, the dual variable σ k
0 associated with the second sys-

tem of constraints ∑
m
i=1 wixk

i −Wxk
0≤ 0 does not contribute at all to the objective

value in the dual formulation. Second, σ⋆
i =wi/W , ∀i∈ {1, . . . ,m}, provides the

same solution cost as that of the primal:

m

∑
i=1

biπ
⋆
i =

m

∑
i=1

bi
wi

W
= z⋆LP.
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There remains to complete the solution and tackle the feasibility aspects. An
optimal dual solution implies that the reduced cost of all the variables is greater
than or equal to zero:

c̄k
0 = 1+Wσ

k
0 ≥ 0, ∀k ∈ K;

c̄k
i = −σi−wiσ

k
0 ≥ 0, ∀k ∈ K, i ∈ {1, . . . ,m}.

The first set implies σ k
0 ≥ −1/W , ∀k ∈ K, whereas the second, combined with

σ⋆
i = wi/W , ∀i ∈ {1, . . . ,m}, implies σ k

0 ≤−1/W , ∀k ∈ K. Hence the required
values are σ k∗

0 =−1/W , ∀k ∈ K, to complete an optimal dual solution.
(c) 1- Round up: ⌈z⋆LP⌉. 2- Integer requirements in the subproblems:

Dk =

{
xk ∈ Zm+1

+

∣∣∣∣ m

∑
i=1

wixk
i ≤Wxk

0, xk
0 ≤ 1

}
, ∀k ∈ K.

3- A compact ILP formulation with a better linear relaxation bound z⋆LP. Forth-
coming in Example 4.2, a Network-based compact formulation for the CSP.

3.17 PS, IPS, and MMCC: a dual point of view
Let us dualize the proposed pricing problems (3.119) and witness how a normaliza-
tion constraint naturally appears on a subset of the variables. We are thus looking
for a convex combination of these columns whose impact on the solution is later
determined on the other variables that are not part of this subset. Pay attention to the
presence of an equality system in the proposed pricing problems.

• In PS, we have a system of m equalities and m basic variables which immedi-
ately leads to the well-known πππ⊺ = c⊺BA−1

B with zero degrees of freedom.
• In IPS, we rather have m− |F | ≥ 0 degrees of freedom which means that πππ

breaks down in |F | fixed values and m−|F | optimized ones.
• In MMCC, there are no equalities and we have m degrees of freedom such that

all dual values are optimized.

(a) For PS, the dual writes as

c̄(πππ) = min ∑
j∈B

c jy j + ∑
j∈N

c jy j

∑
j∈B

a jy j + ∑
j∈N

a jy j = 0 [πππ ∈ Rm]

∑
j∈N

y j = 1 [µ ∈ R]

y j ∈ R ∀ j ∈ B

y j ≥ 0 ∀ j ∈ N.

The optimized y-direction allows all basic variables to increase or decrease as
y j ∈R, ∀ j ∈ B. If the impact on any basic variable already at zero is a decrease,
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a degenerate pivot unfortunately occurs. The top rows are fully determined so
an extreme point can only have one variable in N. Perhaps it is easier to see it
when we explicitly impose πππ⊺ = c⊺BA−1

B from the first condition c̄ j = 0, ∀ j ∈ B,
in (3.119) for PS. This leads to the simplified form

c̄(πππ) = max µ

s.t. µ ≤ c̄ j [y j ≥ 0] ∀ j ∈ N,

where µ is unrestricted. The dual program reads as

c̄(πππ) = min ∑
j∈N

c̄ jy j

s.t. ∑
j∈N

y j = 1 [µ]

y j ≥ 0 ∀ j ∈ N.

This program looks for a convex combination of variables, where an extreme
point solution selects a single non-basic variable with the smallest reduced cost.

(b) For IPS, the pricing problem in y-variables writes as

c̄(πππ) = min ∑
j∈F

c jy j + ∑
j∈L

c jy j

∑
j∈F

a jy j + ∑
j∈L

a jy j = 0 [πππ ∈ Rm]

∑
j∈L

y j = 1 [µ ∈ R]

y j ∈ R ∀ j ∈ F

y j ≥ 0 ∀ j ∈ L.

Recall that the system in πππ is partially determined so we are indeed looking
for a convex combination of variables. The y-direction allows the free variables
( j ∈ F) to either increase or decrease which cannot lead to a degenerate pivot.
Such a direction always occurs on an edge (Raymond et al., 2010b).

(c) For MMCC, the pricing problem has another interpretation with an absolute
value, i.e., µ ≤−|c j−πππ⊺a j|, ∀ j ∈ F . In other words, we aim to reduce the dis-
parity in signed reduced cost values of the positive variables until they reach 0
by the complementary slackness optimality conditions. The extra variable y j+n,
j ∈ {i, . . . ,n}, is the result of linearizing this constraint and echoes the forward
and backward directions of the free variables. The dual writes as
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c̄(πππ) = min ∑
j∈F
−c jy j+n + ∑

j∈F∪L
c jy j

s.t. ∑
j∈F
−a jy j+n + ∑

j∈F∪L
a jy j = 0 [πππ ∈ Rm]

∑
j∈F

y j+n + ∑
j∈F∪L

y j = 1 [µ ∈ R]

y j+n ≥ 0 ∀ j ∈ F

y j ≥ 0 ∀ j ∈ F ∪L.

Recall that the system in πππ is completely free so we are indeed looking for a
convex combination of variables. The y-direction cannot be degenerate since
there are no other variables to account for. Gauthier et al. (2018) and Gauthier
and Desrosiers (2022) show that it can be on an edge, a face, or interior.

Exercises of Chapter 4
4.1 Hermann Minkowski

Minkowski’s original mathematical interests were in pure mathematics and he spent much
of his time investigating quadratic forms and continued fractions. His most original achieve-
ment, however, was his ‘geometry of numbers’ which he initiated in 1890. Geometrie der
Zahlen was first published in 1910 but the first 240 pages (of the 256) appeared as the first
section in 1896. – MacTutor

Minkowski is perhaps best known for his work in relativity, in which he showed in 1907 that
his former student Albert Einstein’s special theory of relativity (1905) could be understood
geometrically as a theory of four-dimensional space–time, since known as the “Minkowski
spacetime.” – Wikipedia

4.2 Alternative decomposition of the 2D illustration
Given are A and D in Figure 4.1.
(a) conv(A).
(b) Domain of the MP {x ∈ R2

+ | Dx≥ d}∩ conv(A).
(c) Domain of the MP compared to conv(A∩D), that of the ILP (and IMP).

• • ⊙ • ⊙

• ⊙ ⊙ ⊙ •

• • ⊙ ⊙ •

(a)

• • • ⊙ •

• ⊙ ⊙ ⊙ •

• • ⊙ • •

(b)

• • • ⊙ •

• ⊙ ⊙ ⊙ •

• • ⊙ • •

(c)

https://mathshistory.st-andrews.ac.uk/Biographies/Minkowski/
https://en.wikipedia.org/wiki/Hermann_Minkowski
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{x ∈ R2
+ | Ax≥ b, Dx≥ d}

conv(A∩D)

• • • • •

• ⊙ ⊙ • •

• • ⊙ • •

4.3 2D convexification practice
(a) Domain {x ∈ R2

+ | Ax ≥ b, Dx ≥ d} of the LP in light color. Integer hull
conv(A∩D) of the ILP in dark color.

(b) Reformulation based on the integer set D= {x ∈ Z2
+ | Dx≥ d}.

{x ∈ R2
+ | Ax≥ b}∩ conv(D)

conv(D)

• ⊙ ⊙ • •

• ⊙ ⊙ • •

• • ⊙ ⊙ •

(a) Integer hull conv(D).

{x ∈ R2
+ | Ax≥ b}∩ conv(D)

• • • • •

• ⊙ ⊙ • •

• • ⊙ • •

(b) Domain {x ∈ R2
+ | Ax≥ b}∩ conv(D).

(c) Reformulation based on the integer set A= {x ∈ Z2
+ | Ax≥ b}.

{x ∈ R2
+ | Dx≥ d}∩ conv(A)

conv(A)

• • • • •

• ⊙ ⊙ ⊙ •

• • ⊙ • •

(a) Integer hull conv(A).

{x ∈ R2
+ | Dx≥ d}∩ conv(A)

• • • • •

• ⊙ ⊙ • •

• • ⊙ • •

(b) Domain {x ∈ R2
+ | Dx≥ d}∩ conv(A).
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4.4 Reformulation by discretization
(a) (17,5) = (0,2)+5(1,0)+3(4,1)

= (0,2)+0(1,0)+0(4,1)︸ ︷︷ ︸
(0,2) ∈ T

+ 5(1,0) + 3(4,1)︸ ︷︷ ︸
integer combination of xr , r ∈ R̈

(9,4) = (0,2)+1(1,0)+2(4,1)
= (0,2)+0(1,0)+0(4,1)︸ ︷︷ ︸

(0,2) ∈ T

+ 1(1,0) + 2(4,1)︸ ︷︷ ︸
integer combination of xr , r ∈ R̈

(b) (6,3) = (0,2)+1(2,0)+
1
2
(8,2)

= (0,2)+0(2,0)+
1
2
(8,2)︸ ︷︷ ︸

(4,3) ∈ T

+ 1(2,0) + 0(8,2)︸ ︷︷ ︸
integer combination of xr , r ∈ R̈

(7,3) = (0,2)+
3
2
(2,0)+

1
2
(8,2)

= (0,2)+
1
2
(2,0)+

1
2
(8,2)︸ ︷︷ ︸

(5,3) ∈ T

+ 1(2,0) + 0(8,2)︸ ︷︷ ︸
integer combination of xr , r ∈ R̈

4.5 Trick question
The answer is negative, but why?
Intentionally, the question does not mention the reformulated programs, the IMP
and IMP̈, but only the integer set D that is reformulated in the theorems’ proofs.
Those two integer masters are however where convexification appears through the
convexity constraint. Or, more precisely, in their linear relaxations we solve until
integer optimality is reached. Moreover, full convexification of D is only possible
if all extreme points and extreme rays of conv(D) are generated, which is never the
case in practice. It is in fact the beauty of a Dantzig-Wolfe reformulation that the
MP finds itself implicitly working on this integer hull without us having to know
what it is.

4.6 Alternative expression for the Dantzig-Wolfe lower bound
We have

c̄k(πππb,π
k
0) =−π

k
0 + min

xk∈Dk
(ck⊺ −πππ

⊺
bAk)xk

by definition (4.45) and
zRMP = πππ

⊺
bb+ ∑

k∈K
π

k
0

by strong duality. The terms πk
0 , k ∈ K, therefore cancel out to

πππ
⊺
bb+ ∑

k∈K
min

xk∈Dk
(ck⊺ −πππ

⊺
bAk)xk ≤ z⋆MP.
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4.7 Optimality test for the compact formulation
Because xp is feasible for the ILP, it provides an upper bound: z⋆ILP ≤ c⊺xp = cp.
For |K|= 1 in the lower bound expression on z⋆MP in (4.68), we also have

πππ
⊺
bb+π0 + c̄(πππb,π0)≤ z⋆MP ≤ z⋆IMP = z⋆ILP,

where, for the optimal solution xp to the ISP, c̄(πππb,π0) = cp−πππ
⊺
bap−π0 by (4.12).

Hence,
πππ
⊺
bb+ cp−πππ

⊺
bap = cp +πππ

⊺
b(b−ap)≤ z⋆ILP ≤ cp,

where πππ
⊺
b(b−ap) = 0 by assumption. Therefore, z⋆ILP = cp and x⋆ILP = xp.

• Observe that the value of π0 is useless in this proof.

4.8 Identical subproblems: solving an aggregated compact formulation
Compared to the extreme points and extreme rays of D in (4.49), the index-set Y
associated with Dy is

Y= {yp}p∈P∪{yr}r∈R = {|K|xp}p∈P∪{|K|xr}r∈R.

Let the Minkowski-Weyl substitution be given by

∑
p∈P

ypθp + ∑
r∈R

yrθr = y, ∑
p∈P

θp = 1, θp,θr ≥ 0, ∀p ∈ P,r ∈ R,

i.e., ∑
p∈P
|K|xpθp + ∑

r∈R
|K|xrθr = y, ∑

p∈P
θp = 1, θp,θr ≥ 0, ∀p ∈ P,r ∈ R,

and define λp = |K|θp, λr = |K|θr, ∀p ∈ P,r ∈ R. The substitution becomes

∑
p∈P

xpλp + ∑
r∈R

xrλr = y, ∑
p∈P

λp = |K|, λp,λr ≥ 0, ∀p ∈ P,r ∈ R,

and the resulting reformulation of the aggregated compact formulation (4.183) is

z⋆IMP = min ∑
p∈P

cpλp + ∑
r∈R

crλr

s.t. ∑
p∈P

apλp + ∑
r∈R

arλr ≥ b

∑
p∈P

λp = |K|

λp ≥ 0, λr ≥ 0 ∀p ∈ P, r ∈ R

∑
p∈P

xpλp + ∑
r∈R

xrλr = y ∈ Zn
+.

The linear relaxation of the above is obviously the MP (4.56). Note that if Dy is a
polyhedral cone, i.e., d = 0 in (4.183), the ILP–IMP special case derived in Propo-
sition 4.11 is validated, that is, index-set K is useless in the compact formulation.
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4.9 Identical subproblems: lexicographic ordering of the extreme points
The idea behind the disaggregation rule (4.184) is that the value of λk

p is equal to the
minimum between the residual supply at node p and the residual demand at node k.
As such, recursively compute for p = 1, . . . ,m,

λ
k
p = min

{
λp−

k−1

∑
j=1

λ
j
p, 1−

p−1

∑
i=1

λ
k
i

}
, for k = 1, . . . , |K|.

It remains to show that, while distributing λp, the residual demand at k is also given
by min{1,(k−∑

p−1
i=1 λi)

+}. Indeed, it depends on the total supply available from λ1
up to λp−1.

• If ∑
p−1
i=1 λi ≥ k, this is sufficient to satisfy all the unit-demands of destination

nodes j = 1, . . . ,k and hence the demand at k is 0 = (k−∑
p−1
i=1 λi)

+.
• Otherwise, (k−∑

p−1
i=1 λi)> 0, either greater than 1, or not, and the demand at k

is equal to min{1,(k−∑
p−1
i=1 λi)

+}.

4.10 Not all blocks are used
The ISPk is solved over the domain Dk

0 in (4.186b), where we recall that xk
0 ≥ 0.

• If xk
0 = 0, we have xk = 0 and we obtain the zero-vector

[
0
0

]
for that block.

• Otherwise, a negative reduced cost extreme ray is obtained, encoded with xk
0=1,

equivalent to an extreme point of conv(Dk), i.e., the set {xp}p∈P is in a one-to-

one correspondence with
{[

1
xr

]}
r∈R

.

With the grouping (4.186) in a Dantzig-Wolfe reformulation, the IMP writes as

min ∑
k∈K

[
ck

0 ck⊺][0
0

]
λ

k
0 + ∑

k∈K
∑

r∈Rk

[
ck

0 ck⊺][ 1
xk

r

]
λ

k
r

s.t. ∑
k∈K

[
0 Ak][0

0

]
λ

k
0 + ∑

k∈K
∑

r∈Rk

[
0 Ak][ 1

xk
r

]
λ

k
r ≥ b

λ
k
0 = 1 ∀k ∈ K

λ
k
r ≥ 0 ∀k ∈ K,r ∈ Rk[

0
0

]
λ

k
0 + ∑

r∈Rk

[
1
xk

r

]
λ

k
r =

[
xk

0
xk

]
∈{0,1}×Znk

+ ∀k ∈ K.

For every k, λk
0 is discarded as well as the convexity constraint λk

0 = 1. The IMP,
where we compute the vector product for the coefficients of the λk

r-variables, is
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z⋆IMP = min ∑
k∈K

∑
r∈Rk

(ck
0 + ck

rλ
k
r)

s.t. ∑
k∈K

∑
r∈Rk

ak
rλ

k
r ≥ b

λ
k
r ≥ 0 ∀k ∈ K,r ∈ Rk

∑
r∈Rk

λ
k
r = xk

0 ∈ {0,1} ∀k ∈ K

∑
r∈Rk

xk
rλ

k
r = xk ∈ Znk

+ ∀k ∈ K,

for which, also removing all the constraints on the x-variables, the MP reads as the
linear relaxation of (4.84):

z⋆MP = min ∑
k∈K

∑
r∈Rk

(ck
0 + ck

rλ
k
r)

s.t. ∑
k∈K

∑
r∈Rk

ak
rλ

k
r ≥ b

∑
r∈Rk

λ
k
r ≤ 1 ∀k ∈ K

λ
k
r ≥ 0 ∀k ∈ K,r ∈ Rk.

Notice the re-appearance of the less-than-or-equal-to-one inequality constraints.

4.11 Binary knapsack problem
The table below contains the original data with an additional row providing the ratio
ui/wi, that is, the utility per unit of size. The first item is the most profitable followed
by the second, and so on. The optimal solution to the ILP formulation (4.103)

z⋆ILP = max
4

∑
i=1

uixi s.t.
4

∑
i=1

wixi ≤W, xi ∈ {0, 1}, ∀i ∈ {1, . . . ,4},

is z⋆ILP = 60, where x⋆1 = x⋆2 = x⋆4 = 1. For
the linear relaxation, z⋆LP = 62, where
x⋆1 = x⋆2 = 1 for a load of 6 units com-
pleted with x⋆3 = 1/3. Hence z⋆LP ̸= z⋆ILP
for this data set and the above knapsack
formulation does not possess the inte-
grality property.

i 1 2 3 4

ui 20 36 18 4
wi 2 4 3 1
ui/wi 10 9 6 4

W = 7

4.12 Cutting stock problem: λ -integrality
The domain DK in (4.113) is bounded and the same for all pricing problems:[

xk
0

xk

]
∈DK =

{[
x0
x

]
∈ {0,1}×Zm

+

∣∣∣∣ m

∑
i=1

wixi ≤Wx0

}
, ∀k ∈ K.
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Therefore we can use the discretization approach and the IMP̈ (4.60), with the vari-
ables indexed in P̈ only, reads as

z⋆IMP̈ = min ∑
p∈P̈

cpλp

s.t. ∑
p∈P̈

apλp ≥ b

∑
p∈P̈

λp = |K|

λp ∈ Z+,∈ Z+ ∀p ∈ P̈

λp = ∑
k∈K

λ
k
r ∀p ∈ P̈

∑
p∈P̈

λ
k
p = 1 ∀k ∈ K

λ
k
p ∈ {0,1} ∀k ∈ K, p ∈ P̈

∑
p∈P̈

xpλ
k
p = xk ∈ Zn

+ ∀k ∈ K,

where the aggregated λp-variables become non-negative integers because they are
computed as the sum over k ∈ K of the binary λk

p-variables.

4.13 Time constrained shortest path problem: nine reformulations
(a) Let the six path constraints refer to (4.131b)–(4.131d), the four flow conser-

vation constraints to (4.131c), the duration constraint to (4.131e), and all the
seven constraints to (4.131b)–(4.131e) of the ILP (4.131).

D1 = {x ∈ {0,1}|A| | (4.131b)–(4.131d)} A1 = {x ∈ {0,1}|A| | (4.131e)}

D2 =D1∩{3≤ ∑
(i, j)∈A

xi j ≤ 5} A2 = {x ∈ {0,1}|A| | (4.131e)}

D3 = {x ∈ {0,1}|A| | (4.131e)} A3 = {x ∈ {0,1}|A| | (4.131b)–(4.131d)}

D4 =D3∩{3≤ ∑
(i, j)∈A

xi j ≤ 5} A4 = {x ∈ {0,1}|A| | (4.131b)–(4.131d)}

D5 =D3∩{
3

∑
j=2

x1 j =
5

∑
i=4

xi6 = 1} A5 = {x ∈ {0,1}|A| | (4.131c)}

D6 =D4∩D5 A6 = {x ∈ {0,1}|A| | (4.131c)}

D7 =D6∩{∑
i:(i, j)∈A

xi j ≤ 1,∀ j ∈ {2, . . . ,5}} A7 = {x ∈ {0,1}|A| | (4.131c)}

D8 =D6∩{∑
j:(i, j)∈A

xi j ≤ 1,∀i ∈ {2, . . . ,5}} A8 = {x ∈ {0,1}|A| | (4.131c)}

D9 = {x ∈ {0,1}|A| | all constraints} A9 = {x ∈ {0,1}|A|}.
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(b) Let {xp}p∈P be the set of extreme points of conv(D9) and cp = c⊺xp, ∀p ∈ P.
The IMP comprises the convexity constraint and the bounds on the λ - and x-
variables:

z⋆IMP = min ∑
p∈P

cpλp

s.t. ∑
p∈P

λp = 1 [π0]

λp ≥ 0 ∀p ∈ P

∑
p∈P

xpλp = x ∈ {0,1}|A|.

4.14 Reformulation of the scene selection problem
(a) Consider the solution

xk
i =

1
m

∀i ∈ N, k ∈ K

yk
j =

1
m

∀ j ∈ A, k ∈ K

with objective value ∑
m
k=1 ∑ j∈A c jyk

j = ∑ j∈A c j(∑
m
k=1 yk

j) = ∑ j∈A c j.

• First, we show that the proposed solution is feasible. As the set K contains m
days, it holds in the assignment constraints (4.159b) that

m

∑
k=1

xk
i = m(

1
m
) = 1, ∀i ∈ N.

To have a feasible program, we need at least ⌈|N|/W⌉ days, hence m≥ |N|/W ,
or equivalently 1/m≤W/|N|. Therefore

∑
i∈N

xk
i = |N|(

1
m
)≤ |N|( W

|N|
) =W, ∀k ∈ K,

and the capacity constraints (4.159c) are satisfied. The last set of actor con-
straints in (4.159d) is obviously satisfied as

ai j(
1
m
)≤ (

1
m
), ∀k ∈ K, i ∈ N, j ∈ A.

• Second, we show that ∑ j∈A c j is a lower bound for

m

∑
k=1

∑
j∈A

c jyk
j = ∑

j∈A
c j(∑

k∈K
yk

j)

0≤ yk
j ≤ 1 ∀k ∈ K, j ∈ A

0≤ xk
i ≤ 1 ∀k ∈ K, i ∈ N.
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For each actor j, there is at least one scene i for which ai j = 1, say ı̂ ∈ N. Hence
in (4.159d):

∑
k∈K

yk
j ≥ ∑

k∈K
aı̂ jxk

ı̂ = aı̂ j ∑
k∈K

xk
ı̂ = 1,

the right-hand side being equal to 1 due to the first constraint set ∑k∈K xk
ı̂ = 1

in (4.159b) and aı̂ j = 1, hence

∑
j∈A

c j(∑
k∈K

yk
j)≥ ∑

j∈A
c j.

(b) Days in K are identical so that Dk =D, ∀k ∈ K, where D is given by the xi and
y j binary variables satisfying

∑
i∈N

xi ≤W

ai jxi ≤ y j ∀i ∈ N, j ∈ A.

The set of extreme points is D=

{[
xp
yp

]
∈ {0,1}|N|+|A|

}
p∈P̈

.

For a day-pattern indexed by p ∈ P̈, component xip = 1 indicates that scene
i ∈ N is shot whereas component y jp = 1 indicates that actor j ∈ A has to be

present (at a cost c j). Observe that the zero-pattern exists, that is,
[

0
0

]
∈ D, a

free day without any actor being present and scene shot.
(c) We here face identical subproblems, where the common domain is defined for

binary variables. Following Proposition 4.10 restricted to extreme points, the
IMP̈ becomes

z⋆IMP̈ = min ∑
p∈P̈

(∑
j∈A

c jy jp)λp

s.t. ∑
p∈P̈

xipλp = 1 [πi ∈ R] ∀i ∈ N

∑
p∈P̈

λp = |K| [π0 ∈ R]

λp ∈ Z+ ∀p ∈ P̈.

(d) Let πππ = [πi]i∈N . The ISP writes as

c̄(πππ,π0) =−π0 +min ∑
j∈A

c jy j−∑
i∈N

πixi

s.t. ∑
i∈N

xi ≤W

ai jxi ≤ y j ∀i ∈ N, j ∈ A

xi,y j ∈ {0,1} ∀i ∈ N, j ∈ A.
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(e) If we first select an actor j ∈ A, we still have the choice regarding the scenes
i ∈ N such that ai j = 1 and ∑i∈N xi ≤ 5.
If we rather select a scene i ∈ N, then xi = 1 in D and we need all the actors
j ∈ A for which ai j = 1. The number of scene selection patterns is

5

∑
s=0

(
19
s

)
= 1+19+171+969+3 876+11 628 = 16 664,

including that with s = 0.
(f) With the data of Example 4.7, Table 4.10 shows

z⋆MP = 330 405.41≫ z⋆LP = 137 739.00.

The formulation of the ISP does not possess the integrality property and, most
of the time, z⋆MP≫ z⋆LP.

4.15 Design of balanced student teams
(a) As stated, an optimal solution to the IMP (4.168) is composed of 6 teams

for which the corresponding column-vectors are b1, . . . ,b6. In a sequential ap-
proach for the second semester, remove from the IMP all teams with two or
more students grouped together in the first semester. That is, given the teams of
4 and 5 students, discard all teams indexed by p ∈ P4 and p′ ∈ P5 for which

∃t ∈ {1, . . . ,6} : b⊺t ap ≥ 2; ∃t ∈ {1, . . . ,6} : b⊺t ap′ ≥ 2.

Equivalently, we keep all teams indexed by p and p′ such that

b⊺t ap ≤ 1, ∀t ∈ {1, . . . ,6}; b⊺t ap′ ≤ 1, ∀t ∈ {1, . . . ,6}.

(b) One modeling option is to encode the double semester directly in the columns.
For every team of size ℓ, we create O(|Pℓ|) columns which represent every
possibility that this team could become in the second semester. This means that
we now have O(∑ℓ∈L |Pℓ|2) columns, i.e., 2 228 162 256 = 11 0162 +45 9002,
from which we can filter out all infeasible combinations similarly to what we
have seen in (a), i.e., the new set of columns is composed of

∀ℓ ∈ {4,5}
⋃

p∈P̈ℓ

{[
aℓp
aℓp′

]}
p′∈P̈ℓ|a⊺

p′a
ℓ
p≤1

.

This filter works column by column and is therefore much less aggressive
than when an optimal 1-semester solution is known. An obvious consequence
of a more difficult problem to solve. The actual number of combinations is
1 710 408 420 = 108 984 960+ 1 601 423 460. To be fair, one needs to come
up with more filtering because this is still too many columns even by a modern
solver standard. In our experiment, we can fairly easily solve instances with up
to 80 people and team size of 7.
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4.16 Secret ballot
The answers are based on the following table, where the vote patterns in Da are
presented according to the various rules identified in the last three rows. The first
10 patterns are those for the 1-decimal digit data and results. The two additional
patterns on the right are valid if the percentage shares of every shareholder is given
with two decimal digits while the results are rounded to only one.

Voters Shares (%) Shares (%) Patterns (#)
2-digits 1-digit 1 2 3 4 5 6 7 8 9 10 11 12

9 4.51 4.5 1
10 4.24 4.2 1
11 3.61 3.6
12 3.07 3.1 1 1
13 2.66 2.7 1 1 1 1
14 2.37 2.4 1 1
15 1.49 1.5 1 1 1 1

a16 1.41 1.4 1 1 1 1 1
17 1.32 1.3 1 1
18 1.13 1.1 1 1 1
19 0.36 0.4 1 1 1 1 1 1
20 0.26 0.3 1 1 1 1 1 1 1 1

1-digit 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.6 4.6
2-digits 4.51 4.50 4.48 4.46 4.41 4.43 4.41 4.40 4.48 4.48 4.51 4.48
Rounded 4.5 4.5 4.5 4.5 4.4 4.4 4.4 4.4 4.5 4.5 4.5 4.5
No. of voters 1 2 2 3 3 3 4 4 4 5 3 4

(a) For the two decimal digits results, we simply use the more precise data in the
knapsack equality constraints, i.e.,

20

∑
i=1

pixk
i = bk

2 ∀k ∈ K.

The number of possible voting patterns with ba
2 = 4.48% in Da is only 4:

#3, #9, #10, and #12.
For the rounded results, each knapsack equality constraint becomes an interval
system, i.e.,

bk−0.05≤
20

∑
i=1

pixk
i ≤ bk +0.04, ∀k ∈ K.

There are 8 possible voting patterns with ∑
20
i=1 pixa

i around 4.5% in Da:
#1 (4.51), #2 (4.50), #3 (4.48), #4 (4.46), #9 (4.48), #10 (4.48), #11(4.51), and #12 (4.48).
We observe that more precision means less freedom in the voting patterns.

(b) Candidate a, i.e., shareholder 16 voting for him or herself, appears in 5 patterns:
#3, #6, #8, #9, and #10.

(c) There are only two possible voting patterns for candidate a: #2 and #3.
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4.17 Cutting stock with rolls of different widths: compact formulation
(a) Starting with the structure of the ISPk (2.34), a compact formulation is

z⋆ILP = min ∑
k∈K

(W kxk
0−

m

∑
i=1

wixk
i )

s.t. ∑
k∈K

xk
i = bi ∀i ∈ {1, . . . ,m}

m

∑
i=1

wixk
i ≤W kxk

0 ∀k ∈ K

xk
i ≤ bixk

0 ∀k ∈ K, i ∈ {1, . . . ,m}
xk

0 ∈ {0,1} ∀k ∈ K

xk
i ∈ Z+ ∀k ∈ K, i ∈ {1, . . . ,m}.

Compared to (2.34), note the presence of the variable xk
0 in xk

i ≤ bixk
0.

(b) Let xk = [xk
i ]i∈{1,...,m}, ∀k ∈ K, and group the constraints as

A=

{{
xk

0 ∈ {0,1}, xk ∈ Zm
+

}
k∈K

∣∣∣∣∣ ∑
k∈K

xk
i = bi, ∀i ∈ {1, . . . ,m}

}

Dk =

xk
0 ≥ 0, xk ∈ Zm

+

∣∣∣∣∣∣
m

∑
i=1

wixk
i ≤W kxk

0

xk
i ≤ bixk

0 ∀i ∈ {1, . . . ,m}

 , ∀k ∈ K.

Observe that in this grouping, xk
0 ≥ 0 is not requested to binary values in Dk.

Consequently, conv(Dk) is a polyhedral cone for which the set of extreme rays
can be represented with the integer scaled value xk

0 = 1. Using the discretization
approach on polyhedral cones (Section Polytope and polyhedral cone, p. 185),
the reformulation writes as

z⋆IMP̈ = min ∑
k∈K

∑
r∈R̈k

0

ck
rλ

k
r

s.t. ∑
k∈K

∑
r∈R̈k

0

ak
irλ

k
r ≥ bi [πi] ∀i ∈ {1, . . . ,m}

λ
k
r ∈ Z+ ∀k ∈ K, r ∈ R̈k

0,

where ck
r =W k−∑

m
i=1 wixk

ir, ∀k ∈ K, and ak
ir = xk

ir, ∀i ∈ {1, . . . ,m}.
An optimal solution in x-variables is computed a posteriori as

∑
r∈R̈k

xk
rλ

k⋆
r = xk⋆ ∈ Zn

+, ∀k ∈ K.
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4.18 Aircraft routing with schedule synchronization: compact formulation
A compact formulation is

z⋆ILP = min ∑
k∈K

∑
(i, j)∈Ak

ck
i jx

k
i j

s.t. ∑
k∈K

∑
j:(i, j)∈Ak

xk
i j = 1 ∀i ∈ N

∑
k∈K

(tk
i −aixk

i )− tmi = 0 ∀i ∈ N xk

tk

[xk
i ]i∈N

 ∈Dk ∀k ∈ K,

where Dk =

{ xk

tk

[xk
i ]i∈N

 ∈ {0,1}|Ak|×R|N|+ ×{0,1}|N|
∣∣∣∣∣ (2.45)

}
.

4.19 Single depot vehicle scheduling problem: compact formulations
(a) Let K = {1, . . . ,v} and for a given k ∈ K, consider the following network Gk =

(V k,Ak) with node set V k = N∪{ok,dk} and arc set Ak = I∪ ({ok}×N)∪ (N×
{dk})∪{(ok,dk)}, where I is the common set of inter-trip arcs.

ok dk1 1
. . . I . . ....

...

Let the binary variable xk
i j be the flow through arc (i, j)∈ Ak. Introducing the bi-

nary variables xk
0, ∀k ∈K, a multi-commodity network flow formulation derived

from Proposition 4.15 is given as

z⋆ILP = min ∑
k∈K

∑
(i, j)∈Ak

ci jxk
i j

s.t. ∑
k∈K

∑
j:(i, j)∈Ak

xk
i j = 1 ∀i ∈ N

∑
j:(ok, j)∈Ak

xok j = xk
0 ∀k ∈ K

∑
j:(i, j)∈Ak

xk
i j− ∑

j:( j,i)∈Ak

xk
ji = 0 ∀k ∈ K, i ∈ N

− ∑
j:( j,dk)∈Ak

x jdk =−xk
0 ∀k ∈ K

xk
0,x

k
i j ∈ {0,1} ∀k ∈ K,(i, j) ∈ Ak.

Obviously, the binary variable xk
0 can be renamed as xk

do, ∀k ∈ K.
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(b) Because the ISP (4.188) possesses the integrality property (Condition 1) and
the 0-vector is not a valid x-solution to the partitioning constraints (4.187b)
(Condition 2), Proposition 4.17 is used to derive the following ILP:

z⋆ILP = min ∑
(i, j)∈A

ci jxi j

s.t. ∑
j:(i, j)∈A

xi j = 1 ∀i ∈ N

∑
j:(o, j)∈A

xo j ≤ v

∑
j:(o, j)∈A

xo j = x0

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji = 0 ∀i ∈ N

− ∑
i:(i,d)∈A

xid =−x0

x0,xi j ≥ 0 ∀(i, j) ∈ A,

where the bounding constraints xi j ≤ x0, ∀(i, j) ∈ A, are redundant. Again, x0
can be renamed as xdo, as in the figure below.

o d. . . I . . ....
...

0≤ xdo ≤ v

The definition by Geoffrion (1974, p. 89) states that the integrality gap is
zero for any cost coefficients. A Dantzig-Wolfe reformulation IMP of the
above ILP, expressed as a mixed-integer linear program formulated in terms
of continuous λ - and integer x-variables, also possesses the integrality prop-
erty by Proposition 4.6 . This proposition shows that z⋆LP ≤ z⋆MP ≤ z⋆IMP, where
z⋆IMP = z⋆ILP = z⋆LP. Hence z⋆IMP = z⋆MP yields a zero-integrality gap. Indeed, no
matter the way we group the constraints of the ILP, the x-domain of the arc-flow
variables remains the same in any IMP. See also Note 4.9.

4.20 Multiple depot vehicle scheduling problem
(a) |N| in (4.189b); |K| in (4.189c); |K|× (|N|+2) in (4.189d).
(b) For all k ∈ K, let xk = [xk

i j](i, j)∈Ak
do

.
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A=

{{
xk ∈ Z|A

k
do|

+

}
k∈K

∣∣∣∣ (4.189b)–(4.189c)
}

Dk =

{
xk ∈ Z|A

k
do|

+

∣∣∣∣ (4.189d)
}
, ∀k ∈ K.

(c) conv(Dk) is a polyhedral cone with 0 as the single extreme point (flow conserva-
tion equations for all nodes in Nk), hence Xk = {0}∪{xk

r}r∈Rk and X=∪k∈KX
k.

(d) For all k ∈ K, we discard the 0-vector together with λk
0 and its convexity con-

straint λk
0 = 1. The IMP writes as

z⋆IMP = min ∑
k∈K

∑
r∈Rk

ck
rλ

k
r

s.t. ∑
k∈K

∑
r∈Rk

ak
irλ

k
r = 1 [πi] ∀i ∈ N

∑
r∈Rk

ak
rλ

k
r ≤ vk [πk

0 ] ∀k ∈ K

λ
k
r ≥ 0 ∀k ∈ K,r ∈ Rk

∑
r∈Rk

xk
rλ

k
r = xk ∈ Z|A

k
do|

+ ,

where ck
r = ∑

(i, j)∈Ak
do

ck
i jx

k
i j,r, ak

ir = ∑
j:(i, j)∈Ak

xk
i j,r,

and ak
r = xk

do,r = 1, ∀k ∈ K,r ∈ Rk.

Row-size of the IMP: |N|+ |K|, the number of trips and depots.
(e) Let πππ = [πi]i∈N . The ISPk writes as

c̄k(πππ,πk
0) = min ck−∑

i∈N
πiak

i −ak
π

k
0

s.t. ∑
j:(i, j)∈Ak

do

xk
i j− ∑

j:( j,i)∈Ak
do

xk
ji = 0 ∀i ∈ Nk

xk
i j ∈ Z+ ∀(i, j) ∈ Ak

do

ck = ∑
(i, j)∈Ak

do

ck
i jx

k
i j

ak
i = ∑

j:(i, j)∈Ak

xk
i j

ak = xk
do (scaled to 1).

(f) Solving the ISPk given ak = xk
do = 1 results in solving a shortest path prob-

lem from ok to dk in an acyclic network; dynamic programming complexity of
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O(|Ak
do|), see Ahuja et al. (1993, § 4.4). From the tree-solution of the ISPk, bring

to the RMP a subset of columns, ideally partitioning the covered trips.
(g) The formulation of every ISPk possesses the integrality property: z⋆LP = z⋆MP by

Proposition 4.13.
(h) Let us start with the network Gdo on which we define the SDVSP, a network flow

problem, where for each trip i ∈ N, the costs depot-to-trip and trip-to-depot are
computed as coi = mink∈K coki and cid = mink∈K cidk . Moreover, the cost cv of a
vehicle is assigned to arc (d,o) whereas arc (o,d) is removed.

z⋆SDVSP = min ∑
(i, j)∈Ado

ci jxi j

s.t. ∑
j:(i, j)∈A

xi j = 1 [αi] ∀i ∈ N

∑
j:(i, j)∈Ado

xi j− ∑
j:( j,i)∈Ado

x ji = 0 [βi] ∀i ∈ N∪{o,d}

xi j ≥ 0 ∀(i, j) ∈ Ado.

Given an (integer) optimal solution for the SDVSP:

1. Retrieve the v⋆ od-paths. The dual value αi is a good estimation of πi and
can be used in a Stabilized column generation strategy, see p. 392.

2. ∀p ∈ {1, . . . ,v⋆}, k ∈ K, compute the cost ck
p of path p assigned to depot k.

3. Optional. Solve a network problem for finding a least-cost paths-to-depots
assignment (illustrated below). This provides an upper bound on z⋆IMP.

Paths

1

2

...

v⋆

Depots

1

2

k

...

1

1

1

−v⋆

c1
1

c2
1

ck
1

c1
v⋆

c2
v⋆

ck
v⋆

≤ v1

≤ v2

≤ vk

4. Initialize the RMP with λk
p, ∀p ∈ {1, . . . ,v⋆}, k ∈ K, each with its cost and

column encodings. Add the constraint ∑k∈K ∑r∈Rk λk
r = v⋆ (or ≥ v⋆) with

dual variable πv. Modify the ISPk with this additional dual value:

c̄k(πππ,πk
0 ,πv) = min

Dk
∑

(i, j)∈Ak
do

ck
i jx

k
i j−∑

i∈N
πi( ∑

j:(i, j)∈Ak

xk
i j)−π

k
0 −πv.
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4.21 Useless Dantzig-Wolfe reformulations
We see two additional situations: D= {x∈Rn

+} and D= {x∈ [0,1]n |∑n
j=1 x j = 1}.

The proofs are similar to that of Proposition 4.5.

• In the first case, D is reformulated with extreme rays represented by the orthogonal
unit-vectors xr = er, ∀r ∈ {1, . . . ,n}, together with the 0 removable extreme point.
We express x as

n

∑
j=1

e jλ j = x≥ 0.

Writing this equation component-wise, we get λ1 = x1, . . ., λn = xn which simply
renames the x-variables. This Dantzig-Wolfe reformulation gives back the original
LP formulation.

• In the second case, we reformulate D which is the convex hull of the n unit vectors
in Rn

+. The set of extreme points of D is {e1, . . . ,en}. We express x as

n

∑
j=1

e jλ j = x ∈ [0,1]n,
n

∑
j=1

λ j = 1, λ j ≥ 0, j = 1, . . . ,n.

Writing the first equation component-wise, we also get λ1 = x1, . . ., λn = xn. Finally,
the introduced convexity constraint is exactly the original constraint in D.

Exercises of Chapter 5

5.1 Martin Desrochers
Martin Desrochers is a former PhD student (1983–1986) of François Soumis. The
title of his dissertation is: La fabrication d’horaires de travail pour les conduc-
teurs d’autobus par une méthode de génération de colonnes, Université de Montréal.
Amongst his contributions, we can cite the design of algorithms for the shortest path
problem with time windows (Desrochers and Soumis, 1988c,b). He is best known
for the algorithmic design of the shortest path problem with resource constraints
(Desrochers, 1988).

With Paul Pelletier, Yvan Dumas and Michel Sauvé, Martin Desrochers is be-
hind the development and implementation of the first version of the GENCOL solver
(1981–1987, génération de colonnes, in French) at the heart of two commercial op-
timization systems. Indeed, the findings of his dissertation are part of HASTUS, a
modular software distributed by GIRO (Montréal) for bus, metro, tram and passen-
ger rail operations, used all around the world. The same is true for the ALTITUDE
suite of crew planning solutions for airline companies distributed by AD OPT, the
Montréal division of IBS Software.

5.2 Zero-objects for the VRPTW
(a) Following formulation (4.81) of Section Not all blocks are used, add the binary

variables xk
do, ∀k ∈ K, and write the new compact formulation as

https://giro.ca/en-us/
https://ad-opt.com/
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Martin Desrochers and Jacques (Vancouver, Canada, May 1989).

z⋆ILP= min ∑
k∈K

∑
(i, j)∈A

ci jxk
i j

s.t. ∑
k∈K

∑
j:(i, j)∈A

xk
i j = 1 ∀i ∈C

∑
j:(i, j)∈A

xk
i j− ∑

j:( j,i)∈A
xk

ji =

 xk
do for i = o
0 ∀i ∈C

−xk
do for i = d

∀k ∈ K

∑
i∈C

∑
j:(i, j)∈A

qi xk
i j ≤ Qxk

do ∀k ∈ K

aixk
do ≤ tk

i ≤ bixk
do ∀k ∈ K, i ∈ {o,d}

ai( ∑
j:(i, j)∈A

xk
i j)≤ tk

i ≤ bi( ∑
j:(i, j)∈A

xk
i j) ∀k ∈ K, i ∈C

xk
i j(t

k
i + ti j− tk

j )≤ 0 ∀k ∈ K,(i, j) ∈ A

xk
i j,x

k
do ∈ {0,1} ∀k ∈ K,(i, j) ∈ A.

When xk
do = 0, we have xk

i j = 0, ∀(i, j) ∈ A, such that the vehicle is empty and
tk
i = 0, ∀i ∈ C ∪ {o,d}. Otherwise xk

do = 1 and we compute an od-path con-
strained by the load and time window constraints.

(b) For k ∈ K, let the new set of arcs be Ado = A∪{(d,o)} and xk = [xk
i j](i, j)∈Ado

. A
possible grouping is
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A=

{{
xk ∈ {0,1}|Ado|

}
k∈K
| ∑

k∈K
∑

j:(i, j)∈A
xk

i j = 1, ∀i ∈C

}
Dk =

{
xk ∈ {0,1}|Ado| | Dkxk ≥ dk

}
, ∀k ∈ K,

where the set Dkxk ≥ dk denotes again the constraints associated with vehicle k.
Because all domains Dk are identical, we can aggregate them into a single one
by omitting index k:

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji =

 xdo for i = o
0 ∀i ∈C

−xdo for i = d

∑
i∈C

∑
j:(i, j)∈A

qi xi j ≤ Qxdo

aixdo ≤ ti ≤ bixdo ∀i ∈ {o,d}
ai( ∑

j:(i, j)∈A
xi j)≤ ti ≤ bi( ∑

j:(i, j)∈A
xi j) ∀i ∈C

xi j(ti + ti j− t j)≤ 0 ∀(i, j) ∈ A

xi j ∈ {0,1} ∀(i, j) ∈ Ado.

(c) Adapting the IMP (5.7), the MP becomes

z⋆MP = min ∑
p∈P

cpλp

s.t. ∑
p∈P

aipλp = 1 ∀i ∈C

∑
p∈P

λp ≤ |K|

λp ≥ 0 ∀p ∈ P.

5.3 Two-index arc-flow formulation for the VRPTW
Let R= {time, load}.
For r = time, set atime

i = ai, btime
i = bi, ∀i ∈ N, and ttime

i j = ti j, ∀(i, j) ∈ A.
For r = load, set aload

i = 0, bload
i = Q, ∀i ∈ N, and t load

i j = q j, ∀(i, j) ∈ A.
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z⋆ILP = min ∑
(i, j)∈A

ci jxi j

s.t. ∑
j:(i, j)∈A

xi j = 1 ∀i ∈C

∑
j:(i, j)∈A

xi j− ∑
j:( j,i)∈A

x ji =

 |K| for i = o
0 ∀i ∈C

−|K| for i = d

ar
i ( ∑

j:(i, j)∈A
xi j)≤ tr

i ≤ br
i ( ∑

j:(i, j)∈A
xi j) ∀r ∈ R, i ∈ N

xi j(tr
i + tr

i j− tr
j)≤ 0 ∀r ∈ R,(i, j) ∈ A

xod ≥ 0, integer
xi j ∈ {0,1} ∀(i, j) ∈ A\{(o,d)}.

o d
|K| |K|...

...

5.4 Tightness of the linear relaxations for the VRPTW
Given that qi = 10 for all i ∈ C and Q = 15, any feasible route in P visits at most
one customer. Thus, P contains only four routes, denoted p j, j ∈ {0,1,2,3}, where
p0 visits no customer and p j, j = 1,2,3, visits only customer j. An optimal solution
to the linear relaxation of (5.8) is given by: λp j = 1, j = 1,2,3, and λp0 = 0. Its cost
is z⋆MP = 6.

For model (5.1), let K = {k1,k2,k3}. An optimal solution to its linear relaxation
is given by: x

k j
o1 = x

k j
12 = x

k j
23 = x

k j
3d = x

k j
od = 0.5 for j = 1,2 and all other variables

equal to 0. Its cost is z⋆LP = 4. Thus, z⋆LP < z⋆MP, showing that model (5.8) has a
tighter linear relaxation than that of model (5.1).

5.5 Dominance rule for the ESPPTWC
Like in Definition 5.3, consider two feasible partial paths p and p′, both ending at
node j ∈ N. Consider also a feasible extension χ ′ of p′ that ends at node ℓ ∈ N and
would yield labels

Ep⊕χ ′ =
(
T rCost

p⊕χ ′ ,T
time
p⊕χ ′ ,T

load
p⊕χ ′ , [T

custi
p⊕χ ′ ]i∈C

)
and

Ep′⊕χ ′ =
(
T rCost

p′⊕χ ′ ,T
time
p′⊕χ ′ ,T

load
p′⊕χ ′ , [T

custi
p′⊕χ ′ ]i∈C

)
if used to extend paths p and p′, respectively.
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Because p′⊕χ ′ is feasible, we deduce that

T time
p′⊕χ ′ ≤ btime

ℓ

T load
p′⊕χ ′ ≤ bload

ℓ

T custi
p′⊕χ ′ ≤ bcusti

ℓ ∀i ∈C.

Because all REFs are non-decreasing with respect to each variable and the compo-
sition of non-decreasing functions is non-decreasing, we get that

T time
p⊕χ ′ ≤ T time

p′⊕χ ′ ≤ btime
ℓ

T load
p⊕χ ′ ≤ T load

p′⊕χ ′ ≤ bload
ℓ

T custi
p⊕χ ′ ≤ T custi

p′⊕χ ′ ≤ bcusti
ℓ ∀i ∈C,

which means that p⊕ χ ′ is also feasible. Furthermore, due again to the non-
decreasing property of the REFs, we find that T rCost

p⊕χ ′ ≤ T rCost
p′⊕χ ′ , which is equivalent

to cp⊕χ ′ ≤ cp′⊕χ ′ . Therefore, p dominates p′ according to Definition 5.3.

5.6 Dominance of labels by a dominated label
Observe that the set Uh∪Ph always contains labels that do not dominate each other.
Let Ep∗ be a label in Uh∪Ph that dominates Ep′ in Step 6. Therefore,

T rCost
p∗ ≤ T rCost

p′

T time
p∗ ≤ T time

p′

T load
p∗ ≤ T load

p′

T uCusti
p∗ ≤ T uCusti

p′ ∀i ∈C.

Because Ep∗ does not dominate any other label in Uh∪Ph, these inequalities imply
that Ep′ cannot either. It may only dominate Ep∗ if both labels are equal (one of them
must, however, be kept).

5.7 Dominance of processed labels by a non-dominated label
Observe that h ∈C and t jh > 0 under the assumption. Because all labels Ep′′ in Ph
have been processed before Ep, then T time

p′′ ≤ T time
p < T time

p + t jh ≤ T time
p′ . Therefore,

according to condition (5.19b) of the dominance rule, label Ep′ cannot dominate
Ep′′ .

5.8 Omitting the load resource in the SPPTWC
Label E4 would be dominated by label E8. Consequently, E4 would not be extended
and, thus, labels E28, E29, E37, E38, and E39 would not be generated.
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5.9 Revisiting the time-constrained shortest path problem
(a) The resource set includes only two resources: R = {cost, time}. Note that, be-

cause network G = (N,A) is acyclic, there is no need to define additional re-
sources to ensure path elementarity. There are only resource windows for re-
source r = time: [atime

i ,btime
i ] = [0,14] for all i ∈ N.

Let Ep = (T cost
p ,T time

p ) be a label representing a path p ending at a node h.
Extending Ep along an arc (h, j) ∈ A produces a new label Ep′ = (T cost

p′ ,T time
p′ )

whose components are computed using the following REFs:

T cost
p′ = f cost

h j (T cost
p ) = T cost

p + ch j

T time
p′ = f time

h j (T time
p ) = T time

p + th j,

where the time resource REFs exploit the facts that atime
i = 0, for all i ∈ N, and

th j > 0 for all (h, j) ∈ A.
(b) Given that the network G = (N,A) is acyclic, the nodes in N can be first sorted

on topological order and the labels processed according to this order (i.e., all
labels associated with a node are extended consecutively before moving on to
the labels of the next node).
For Example 3.2, a topological sorting of the nodes in N gives the following
order: (1,3,2,4,5,6). Starting with label E0 = (0,0) at node 1, the labeling al-
gorithm generates the labels listed on page 601. Each row in this table indicates
the extensions of a label (column xLbl) to create new labels (columns nLbl).
For each new label, column F/I specifies if it is feasible (F) or infeasible (I),
while column dLbl identifies a label that dominates it whenever it is the case.
From the labels highlighted in bold, we deduce that (1,3,2,4,6) is an optimal
path of cost 13.

Node 3 Node 2 Node 4 Node 5 Node 6
xLbl nLbl F/I dLbl nLbl F/I dLbl nLbl F/I dLbl nLbl F/I dLbl nLbl F/I dLbl

E0 = (0,0) E1 = (10,3) F - E2 = (1,10) F -

E1 = (10,3) E3 = (11,5) F - E4 = (15,10) F E8 E5 = (22,6) F -

E2 = (1,10) E6 = (2,11) F - E7 = (3,13) F -

E3 = (11,5) E8 = (12,6) F - E9 = (13,8) F -

E6 = (2,11) E10 = (12,12) F - E11 = (3,18) I -

E8 = (12,6) E12 = (22,7) F E5 E13 = (13,13) F -

E5 = (22,6) E14 = (24,8) F -

E7 = (3,13) E15 = (5,15) I -

E9 = (13,8) E16 = (15,10) F -

E10 = (12,12) E17 = (14,14) F E13

Exercise 5.9: Generated labels.

5.10 Two-cycle elimination
We present two solutions.
First solution: To account for the elimination of 2-cycles, a new component is con-
sidered in the labels. This component is not quantitative. It stores the next-to-last
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node of the path represented by the label if this node exists and is set to NIL oth-
erwise. For a path p = (i0 = o, i1, . . . , im), this component, denoted T ntln

p , is given
by

T ntln
p =

{
im−1 if m≥ 1
NIL otherwise.

In label E0, we set T ntln
0 = NIL. When extending a path p = (i0 = o, i1, . . . , im = j)

along an arc ( j,h)∈ A to create a new path p′ = (i0 = o, i1, . . . , im = j,h) represented
by Ep′ = (T rCost

p′ ,T time
p′ ,T load

p′ ,T ntln
p′ ), the REF f ntln

jh (·) for this new resource is given
by

T ntln
p′ = f ntln

jh () = j.

However, to avoid a 2-cycle, path p, represented by Ep = (T rCost
p ,T time

p ,T load
p ,T ntln

p ),
cannot be extended along ( j,h) if T ntln

p = h. According to Definition 5.3, label Ep

cannot dominate a label that can be directly extended to node T ntln
p because Ep

cannot. Therefore, a label Ep can only dominate a label Ep′ associated with the
same node if the condition T ntln

p = T ntln
p′ also holds.

Second solution: The latter condition is very restrictive. Indeed, one can observe
that, if all dominance conditions are met beside this one, then the label resulting
from an extension of label Ep along an arc ( j,h′) ∈ A with h′ ̸= h dominates that
resulting from the corresponding extension of label Ep′ . Therefore, it is not worth
extending Ep′ along any arc ( j,h′) with h′ ̸= h. When all dominance conditions
hold including (resp. except) T ntln

p = T ntln
p′ , we say that Ep strongly (resp. weakly)

dominates Ep′ . When two labels Ep1 and Ep2 with T ntln
p1
̸= T ntln

p2
weakly dominate a

label Ep′ , label Ep′ can be discarded.
To apply strong and weak dominance, the labeling algorithm needs to be modi-

fied as follows. First, for each label Ep representing a path p=(i0 = o, i1, . . . , im), the
T ntln

p component needs to be considered as described in the first solution above, ex-
cept for the dominance condition. Second, the labels must include another new non-
quantitative component, denoted T extN

p , which indicates the single node to which
the label can be extended if it has already been weakly dominated and is equal
to NIL otherwise. In the initial label E0, T extN

0 = NIL. Furthermore, when creat-
ing a new label Ep′ by extending a label Ep, T extN

p′ is initially set to NIL. Dom-
inance works as follows. Given two labels Ep = (T rCost

p ,T time
p ,T load

p ,T ntln
p ,T extN

p )

and Ep′ = (T rCost
p′ ,T time

p′ ,T load
p′ ,T ntln

p′ ,T extN
p′ ) associated with the same node and such

that

T rCost
p ≤ T rCost

p′

T time
p ≤ T time

p′

T load
p ≤ T load

p′ ,
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then Ep′ is dominated if T ntln
p =T ntln

p′ or if T extN
p′ ̸=NIL and T ntln

p ̸=T extN
p′ . Otherwise,

T extN
p′ = T ntln

p . Finally, a label Ep = (T rCost
p ,T time

p ,T load
p ,T ntln

p ,T extN
p ) ̸= E0 cannot be

extended to node T ntln
p and can only be extended to node T extN

p if T extN
p ̸= NIL.

5.11 Backward labeling for the ESPPTWC
Each partial path p = (im = j, . . . , i1, i0 = d) from a node j ∈ N to node d is repre-
sented by a label

Ebw
p =

(
T bw rCost

p ,T bw time
p ,T bw rCap

p , [T bw custi
p ]i∈C

)
associated with node j and whose components are defined as follows:

T bw rCost
p : Reduced cost of path p,

i.e., T bw rCost
p = ∑

m
ℓ=1 c̃iℓ,iℓ−1 ;

T bw,time
p : Latest feasible time at node j using path p.

Its value can be computed recursively as

T bw time
p0 = bi0

T bw time
pℓ = min{biℓ ,T

bw time
p,ℓ−1 − tiℓ,iℓ−1}, ℓ= 1, . . . ,m

T bw time
p = T bw time

pm ;

T bw rCap
p : Residual capacity required at node j to complete path p,

i.e., T bw rCap
p = Q−∑

m
ℓ=1 qiℓ ;

T bw custi
p , i ∈C: Indicator equal to 1 if customer i is visited along path p,

i.e., if there exists ℓ ∈ {1, . . . ,m} such that iℓ = i, and 0 otherwise.

Thus, the backward resource set Rbw is defined by

Rbw = {bw rCost,bw time,bw rCap, [bw custi]i∈C}.

At a node j ∈N, the resource windows for the resources in Rbw \{bw rCost} are
given by

T bw time
p ∈ [a j,b j]

T bw rCap
p ∈ [0,Q]

T bw custi
p ∈ [0,1], ∀i ∈C.

The initial label Ebw
0 =

(
0,bd ,Q, [0]i∈C

)
is associated with node d. To create a

new partial path p′ = (h, im = j, . . . , i1, i0 = d) from path p = (im = j, . . . , i1, i0 = d),
label Ebw

p is extended backwardly along the arc (h, j) ∈ A to yield a new label

Ep′ =
(
T bw rCost

p′ ,T bw time
p′ ,T bw rCap

p′ ,(T bw custi
p′ )i∈C

)
using the following backward REFs:



604 Solutions (5. Vehicle Routing and Crew Scheduling Problems)

T bw rCost
p′ = f bw rCost

h j (T bw rCost
p ) = T bw rCost

p + c̃h j

T bw time
p′ = f bw time

h j (T bw time
p ) = min{bh,T bw time

p − th j}

T bw rCap
p′ = f bw rCap

h j (T bw rCap
p ) = T bw rCap

p −qh

T bw custi
p′ = f bw custi

h j (T bw custi
p ) =

{
T bw custi

p +1 if h = i

T bw custi
p otherwise

∀i ∈C.

A label Ebw
p dominates a label Ebw

p′ associated with the same node if the following
conditions hold:

T bw rCost
p ≤ T bw rCost

p′

T bw time
p ≥ T bw time

p′

T bw rCap
p ≥ T bw rCap

p′

T bw custi
p ≤ T bw custi

p′ , ∀i ∈C.

Observe the ≥ inequalities for the bw time and bw rCap resources which ensue
from the fact that larger values for the bw time and bw rCap resources are preferred.

5.12 Bidirectional labeling for the ESPPTWC
The path p⊕ p′ is feasible if and only if

T time
p ≤ T bw time

p′

T load
p ≤ T bw rCap

p′

T custi
p +T bw custi

p′ ≤ 1, ∀i ∈C \{ j}.

5.13 Unreachable customers in the ng-SPPTWC
When a customer is unreachable for a path p, it will also be unreachable for all
extensions of p. This is not necessarily the case for a customer i ∈ C that cannot
be reached from a direct extension of a label Ep because T ngCusti

p = 1. Indeed, de-
pending on the customer neighborhoods NGi, i ∈ C, it might be possible to reach
customer i using two or more arcs. Consequently, both types of information must be
stored and treated separately in the labels. Furthermore, the definition of unreach-
ability must be revised as follows. For a path ending at node j and represented by
label Ep =

(
T rCost

p ,T time
p ,T load

p , [T ngCusti
p ]i∈C

)
, the customer i ∈ C is said to be un-

reachable if and only if one of the following three conditions is met:

( j, i) ̸∈ A; T time
p + t ji > bi; T load +qi > Q.

Both information can, however, be used simultaneously to improve dominance by
replacing conditions (5.29) with

T ngCusti
p ≤max{T ngCusti

p′ ,T uCusti
p′ }, ∀i ∈C∩NGh.
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5.14 Applying the ng-SPPTWC labeling algorithm
The labels generated by the algorithm are displayed on page 606. A label Ep is
represented by a vector of five components, where, to be concise, the last two com-
ponents indicate the subset of customers i for which T ngCusti

p = 1 (this subset is called
the memory of Ep) and the subset of customers i for which T uCusti

p = 1, i.e., which
are unreachable. The table only lists the feasible labels and specifies in columns
dLbl the labels which have dominated the labels in columns nLbl. Note that the ex-
tensions of a label Ep yielding infeasible paths can be identified a priori by checking
the memory of Ep and its unreachable customers and, thus, do not have to be per-
formed.

From the labels highlighted in bold, we deduce that an optimal solution is given
by path (o,1,3,2,d) which has a reduced cost of -37. Given that this path is elemen-
tary, it would also be an optimal solution to the corresponding ESPPTWC.

5.15 Non-decreasing REFs assumption for the ESPPRC
When some REFs are non-decreasing, we cannot guarantee that the conditions (5.35)
are sufficient to ensure dominance according to Definition 5.3. Indeed, consider a
resource r ∈ R for which some REFs f r

i j, (i, j) ∈ A are not non-decreasing. Let p
and p′ be two partial paths ending at the same node and represented by the labels
Ep =

(
T p

r
)

r∈R and Ep′ =
(
T p′

r
)

r∈R, respectively. Furthermore, let χ ′ be a feasible
extension of p′. Even if T r

p ≤ T r
p′ , there is no guarantee that T r

p⊕χ ′ ≤ T r
p′⊕χ ′ because

some REFs f r
i j, (i, j) ∈ A, are not non-decreasing. Consequently, χ ′ might be an

infeasible extension of p or cp⊕χ ′ might be greater than cp′⊕χ ′ .

5.16 Composition and addition of non-decreasing functions
Let x1,x2 ∈Rn such that x1 ≤ x2. Then f (x1)≤ f (x2) and y1 = g(x1)≤ g(x2) = y2.

(a) Therefore, f (y1)≤ f (y2), that is, f ◦g(x1)≤ f ◦g(x2).
(b) Adding up the two inequalities gives f (x1)+g(x1)≤ f (x2)+g(x2),

i.e., ( f +g)(x1)≤ ( f +g)(x2).

5.17 Customers with both a pickup and a delivery
It would not be valid to use a single node because the quantity delivered at a cus-
tomer that would not be accounted for (qD

i if qP
i ≥ qD

i and qP
i otherwise) comes from

the depot and, thus, limits the total quantity that can be onboard the vehicle before
this customer. Similarly, the quantity picked up at a customer that would not be ac-
counted for (qD

i if qP
i ≥ qD

i and qP
i otherwise) must be transported to the depot and,

thus, limits the total quantity that can be onboard the vehicle after this customer.

5.18 Unreachable customers for the SPDP
Let p = (i0 = o, i1, . . . , im) be a partial path in G that is represented by a label Ep
with components T time

p and T maxL
p amongst others. A customer i ∈C is unreachable

from p if at least one of the following conditions hold:

1. ∃h ∈ {1, . . . ,m} such that ih = i;
2. i ∈CP and T loadP

p +qi > Q;
3. i ∈CD and T maxL

p +qi > Q.
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Node 1 Node 2

xLbl nLbl F/I dLbl nLbl F/I dLbl

E0 = (0,0,0, /0, /0) E1 = (3,2,1,{1},{1}) F - E2 = (15,8,2,{2},{1,2}) F -

E1 = (3,2,1,{1},{1}) E6 = (0,12,3,{2},{1,2,4}) F -

E2 = (15,8,2,{2},{1,2})
E3 = (12,10,1,{3},{1,3}) E13 = (−17,14,3,{2,3},{1,2,4}) F -

E7 = (−3,11,2,{3},{1,3}) E16 = (−32,15,4,{2,3},{1,2,4}) F -

E6 = (0,12,3,{2},{1,2,4})
E13 = (−17,14,3,{2,3},{1,2,4})
E16 = (−32,15,4,{2,3},{1,2,4})
E4 = (20,16,2,{4},{1,2,4})
E14 = (−11,16,3,{3,4},{1,2,4})
E17 = (−26,17,4,{3,4},{1,2,4})
E19 = (−16,17,4,{3},C)

E23 = (3,18,3,{3,4},C)

Node 3 Node 4 Node d

nLbl F/I dLbl nLbl F/I dLbl nLbl F/I dLbl

E3 = (12,10,1,{3},{1,3}) F - E4 = (20,16,2,{4},{1,2,4}) F - E5 = (0,0,0, /0,C) F -

E7 = (−3,11,2,{3},{1,3}) F - E8 = (2,16,3,{4},{1,4}) F - E9 = (1,12,1, /0,C) F E5

E10 = (−1,13,3,{3},{1,3,4}) F E7 E11 = (6,17,4,{4},{1,2,4}) F - E12 = (10,20,2, /0,C) F E5

E14 = (−11,16,3,{3,4},{1,2,4}) F - E15 = (−2,24,1, /0,C) F -

E17 = (−26,17,4,{3,4},{1,2,4}) F - E18 = (−17,25,2, /0,C) F -

E19 = (−16,17,4,{3},C) F - E20 = (−5,24,3, /0,C) F -

E21 = (−22,26,3, /0,C) F -

E22 = (−37,27,4, /0,C) F -

E23 = (3,18,3,{3,4},C) F - E24 = (15,34,2, /0,C) F E5

E25 = (−16,34,3, /0,C) F E18

E26 = (−31,35,4, /0,C) F E22

E27 = (−30,31,4, /0,C) F E22

E39 = (−11,32,3, /0,C) F E18

Exercise 5.14: Labels generated for the ng-SPPTWC.

5.19 SPDP is a special case of the PDP
To model the SPDP as a PDP, we define a transportation request for each customer
i ∈ CP ∪CD as follows. The request ui for a customer i ∈ CP is represented by a
pickup node u+i = i and a delivery node u−i that is adjacent to the destination depot
node d. On the contrary, the request ui for a customer i ∈ CD is represented by a
pickup node u+i adjacent to the origin depot node o and a delivery node u−i = i.

Assuming that the customers i ∈CP are numbered from 1 to |CP|, the only arcs
exiting node u−i for i ∈CP are

(u−i ,u
−
i+1),(u

−
i ,u

−
i+2), . . . ,(u

−
i ,u

−
|CP|), and (u−i ,d).
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They all have a zero-cost. Similarly, assuming that the customers in i ∈ CD are
numbered from 1 to |CD|, the only arcs entering node u+i for i ∈CD are

(u+1 ,u
+
i ),(u

+
2 ,u

+
i ), . . . ,(u

+
i−1,u

+
i ), and (o,u+i ).

They also have a zero-cost. With this modeling, any route starts with a (possibly
empty) sequence of pickup nodes u+i , i ∈CD, that represent the merchandise origi-
nating from the depot and delivered to customers in CD. It is followed by a mixed
sequence of pickup nodes u+i , i ∈CP and delivery nodes u−i , i ∈CD, in any ordered
which may not contain both node types. Finally, it ends with a (possibly empty)
sequence of delivery nodes u−i , i ∈CP.

5.20 The vehicle routing problem with backhauls
As for the VRPTW, the network G = (N,A) contains a source node o, a sink node d,
and one node for each customer i ∈C, i.e., N =C∪{o,d}. The arc set A contains:

• All arcs (o, j) such that j ∈ N \{o};
• All arcs (i,d) such that i ∈ N \{d};
• All arcs (i, j) ∈CD×CD such that qi +q j ≤ Q;
• All arcs (i, j) ∈CP×CP such that qi +q j ≤ Q;
• All arcs (i, j) ∈CD×CP.

Because A contains no arcs from a pickup node to a delivery node, a delivery cannot
be performed after a pickup in any o−d path. The adjusted cost of an arc (i, j) ∈ A
is given by c̃i j = ci j−πi.

The set of resources is given by R = {rCost, load, [uCusti]i∈C}. Resource rCost
stores the reduced cost and is managed similarly as for the VRPTW. Resource
load is used to impose vehicle capacity as follows. We set the resource windows
[aload

i ,bload
i ] = [0,Q] for all i ∈ N and use the following REFs when extending a

label Ep = (T rCost
p ,T load

p , [T uCusti
p ]i∈C) along an arc ( j,h) ∈ A:

f load
jh (T load

p ) =

{
T load

p +qh, if ( j,h) ∈ A\ (CD×CP)
qh, if ( j,h) ∈CD×CP,

assuming that qd = 0. We highlight that, for increased efficiency, a single resource
is used to ensure that vehicle capacity is not exceeded for both the deliveries and the
pickups.

The unreachable customer resources [uCusti]i∈C are used to ensure path elemen-
tarity. For each customer i ∈ C, a resource window [0,1] is associated with each
node i ∈ N. For all customers i ∈ C, the following REFs are applied to compute
these resource values when extending a label Ep = (T rCost

p ,T load
p , [T uCusti

p ]i∈C) along
an arc ( j,h) ∈ A:

f uCusti
jh (T load

p ,T uCusti
p ) =


T uCusti

p +1, if h = i
0, if h ̸= i,( j,h) ∈CD×CP

max{T uCusti
p ,U i

jh(T
load
p )}, otherwise,
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where

U i
jh(T

load
p ) =

{
1 if (h, i ∈CD∨h, i ∈CP)∧ ( f load

jh (T load
p )+qi > Q)

0 otherwise.

We observe that, to increase label elimination, all resources uCusti, i ∈ CD, take
value 0 at pickup nodes. Indeed, all these resource values are reset to 0 when travers-
ing an arc ( j,h) ∈CD×CP.

With this resource set and these non-decreasing REFs (with respect to each vari-
able), the standard dominance rule can be applied: T r

p ≤ T r
p′ , ∀r ∈ R.

5.21 Resource validity for the PDPTW
The resource requ is bounded by [0,1] at all nodes. As it increases by 1 each time
that node u+ is visited and never changes otherwise, request u cannot be picked up
more than once.

When request u is picked up (i.e., node u+ is visited), resource onu becomes
equal to 1. Because the corresponding resource window is [0,0] at the sink node, the
value of onu must decrease afterwards. The only way to do so is to visit the delivery
node u−, i.e., to deliver request u.

Finally, observe that the resources onu are not sufficient to ensure that deliveries
are performed at most once because the REFs f onu

i j (ti) only provide lower bounds
on the resource values tonu

j in the ESPPRC (see Note 5.10). Without the resources
notOnu, it might be possible to perform a delivery without having picked up the
request or to perform several times the same delivery. For a request u, the resource
notOnu plays a role symmetric to that of resource onu. Its value is equal to 1 at the
source node and becomes equal to 0 only at pickup node u+ (which can be visited
at most once). Because visiting node u− increases the value of notOnu by 1 and the
resource window for this node and resource is [1,1], it is impossible to perform the
same delivery multiple times.

5.22 Unreachable requests for the PDPTW
Let p = (i0 = o, i1, . . . , im) be a partial path in G that is represented by a label Ep
with components T time

p and [T onu
p ]u∈U amongst others. A request v ∈U is said to be

unreachable from p if at least one of the following conditions hold:

1. ∃h ∈ {1, . . . ,m} such that ih = v−;
2. T onv = 1 and T time

p + tim,v− > bv− ;
3. T onv = 0 and T time

p + tim,v+ + tv+,v− > bv− .

Note that more complex conditions (taking into account, e.g., the time windows of
the other onboard requests) might also be considered in conditions 2 and 3. How-
ever, checking them might be too time-consuming to be worthwhile.

5.23 Dominance only for same onboard requests in the PDPTW
Let p and p′ be two partial paths ending at the same node and denote by [T onu

j ]u∈U

and [T notOnu
j ]u∈U the on and notOn components of their associated labels E j, j =

p, p′. From the REFs (5.46) and (5.47), we can easily deduce that T onu
j +T notOnu

j = 1
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for all u ∈ U and j ∈ {p, p′}, i.e., if T onu
j = 0, then T notOnu

j = 1 and vice versa.
Consequently, in rule (5.35), the dominance conditions

T onu
p ≤ T onu

p′ , T notOnu
p ≤ T notOnu

p′ ,

for request u can be both satisfied if and only if T onu
p = T onu

p′ and T notOnu
p = T notOnu

p′ .
This is equivalent to saying that these conditions are met for all requests u ∈U if
and only if Op = Op′ .

5.24 Pairing feasibility constraints
The structure of a network Gwb ensures that

• A pairing starts and ends at the same base because the sop and eop arcs are
linked to departure and arrival nodes at base b only.

• A pairing spans at most n̄D days because the network contains flight arcs repre-
senting flights in Ww only.

• A connection between two consecutive flights in a duty lasts at least
¯
tCNX be-

cause the time associated with an arrival node is equal to the flight arrival time
plus

¯
tCNX .

• A rest period between two consecutive duties lasts at least
¯
tRST due to the con-

struction of the rest arcs.
• A rest period cannot occur at base b because there are no rest arcs associated

with this base.

5.25 Minimum and maximum resource constraints for the CPPBC
(a) The dominance rule would not be valid. Indeed, the condition T dtyMax

p ≤ T dtyMax
p′

would favor paths with smaller durations, i.e., paths that could potentitally not
be extended to reach the minimum duty duration

¯
tDTY .

(b) According to the REFs (5.57d)–(5.57e) and the resource windows in Table 5.4,
we can deduce that

T dtyMin
q =

{
¯
tDTY −T dtyMax

q if T dtyMax
q <

¯
tDTY

0 otherwise
q = p, p′.

Therefore, when the dominance condition T dtyMax
p ≤ T dtyMax

p′ holds, we get that

T dtyMin
p > T dtyMin

p′ unless T dtyMax
p = T dtyMax

p′ <
¯
tDTY (in which case T dtyMin

p =

T dtyMin
p′ > 0) or T dtyMax

p ≥
¯
tDTY (in which case T dtyMin

p = T dtyMin
p′ = 0).

5.26 New pairing constraints for the CPPBC
(a) In each subproblem ISPwb, a new resource flyTime is added with a resource

window [0,0] at the source node and [0, t̄FLY ] at all other nodes. When extending
a label along an arc (i, j) ∈ Awb, the REF for this resource is given by:

f f lyTime
i j (ti) =


t f lyTime
i +Fi j if (i, j) ∈ AFLY

0 if (i, j) ∈ ARST

t f lyTime
i otherwise.
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(b) We introduce a new type of arcs and a new resource.
▶ The new arc type, called srf (short-rest-and-flight), represents a rest period of

a duration less than
¯
tRST followed by a start of a duty and a flight. In a network

Gwb, w ∈W , b ∈ B, an srf arc links the arrival nodes of two flights f1 and f2 if

• the arrival airport of f1 is the same as the departure airport of f2;
• this airport is not base b;
• the difference between the departure time of f2 and the arrival time of f1

falls in the semi-open interval [
¯̄
tRST ,

¯
tRST ).

Such an arc (i, j) is associated with an elapsed time Ei j equal to the difference
between the arrival times of f1 and f2, a flying time Fi j equal to the flying time
of flight f2, and an associated flight f (i, j) = f2. The subset of these srf arcs is
denoted ASRF . When extending a label along an arc (i, j) ∈ ASRF , the REFs for
the resources in R are defined as follows:

f rCost
i j (ti) = max{ f costF

i j (ti), f costS
i j (ti)}

f costF
i j (ti) = tcostF

i +Fi j(1−πb)−π f (i, j)

f costS
i j (ti) = tcostS

i +α Ei j−π f (i, j)−Fi jπb

f dtyMin
i j (ti) = max{

¯
tDTY −Fi j−¯

tCNX ,0}

f dtyMax
i j (ti) = Fi j +¯

tCNX

f cnxMax
i j (ti) = ¯

tCNX

f rstMax
i j (ti) = 0.

▶ The new resource shRst counts the number of short rest periods taken. When
it takes value 1, no more rests are allowed before completing the pairing. Its
resource windows are: [0,0] at the source node and all to-flight nodes; and [0,1]
at all other nodes. When extending a label along an arc (i, j) ∈ Awb, the REF for
this resource is given by:

f shRst
i j (ti) =

{
tshRst
i +1 if (i, j) ∈ ASRF

tshRst
i otherwise.

Exercises of Chapter 6

6.1 Joseph-Louis Lagrange
Joseph-Louis Lagrange is usually considered to be a French mathematician, but the Italian
Encyclopædia refers to him as an Italian mathematician. They certainly have some justifi-
cation in this claim since Lagrange was born in Turin and baptised in the name of Giuseppe
Lodovico Lagrangia. – MacTutor

https://mathshistory.st-andrews.ac.uk/Biographies/Lagrange/
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6.2 Nature of the LDP
The LDP can be written as a linear program, see formulation (6.29). Recall that it is
equivalent to another linear program, the MP of a Dantzig-Wolfe reformulation of
the ILP.

6.3 About the AMP
(a) Given the restricted masters RMP and ARMP solved on the same set of λp-

variables, p ∈ P′, we have zRMP = zARMP. Moreover, πππ
⊺
bb+π0 = µ by duality.

Then, the reduced cost of a λp-variable is computed the same way:

c̄p = cp−πππ
⊺
bap−π0 with the MP

c̄p = cp−πππ
⊺
b(ap−b)−µ = cp−πππ

⊺
bap− (µ−πππ

⊺
bb) with the AMP.

(b) By (6.11) and Proposition 6.1, the Lagrangian bound of the AMP is

πππ
⊺
b0+min

x∈D
c⊺x+πππ

⊺
b(0− (Ax−b))≤ z⋆AMP = z⋆MP,

which is obviously the same expression as πππ
⊺
bb+min

x∈D
c⊺x−πππ

⊺
bAx≤ z⋆MP. It is

indeed independent of π0 or µ .

6.4 AMP formulations for a block-diagonal structure
Given that ∑k∈K ∑p∈Pk λk

p = |K|, we have b = ∑k∈K ∑p∈Pk λk
p

b
|K| . Let us write the

primal formulation of the AMP followed by its dual counterpart.

z⋆AMP = min ∑
k∈K

∑
p∈Pk

ck
pλ

k
p + ∑

k∈K
∑

r∈Rk

ck
rλ

k
r

s.t. ∑
k∈K

∑
p∈Pk

(
ak

p−
b
|K|

)
λ

k
p + ∑

k∈K
∑

r∈Rk

ak
rλ

k
r ≥ 0 [πππb]

∑
p∈Pk

λ
k
p = 1 [µk] ∀k ∈ K

λ
k
p ≥ 0 ∀k ∈ K, p ∈ Pk

λ
k
r ≥ 0 ∀k ∈ K,r ∈ Rk,

z⋆AMP = max ∑
k∈K

µ
k

s.t.
(

ak
p−

b
|K|

)⊺
πππb + µ

k ≤ ck
p [λk

p] ∀k ∈ K, p ∈ Pk

ak⊺
r πππb ≤ ck

r [λk
r] ∀k ∈ K,r ∈ Rk

πππb ≥ 0

µ
k ∈ R ∀k ∈ K.
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6.5 Dantzig-Wolfe vs. Lagrange for a block-diagonal structure
(a) Given πππb ≥ 0, we start with the ISP (6.17) given by

LR(πππb) = πππ
⊺
bb+ ∑

k∈K
min

xk∈Dk
(ck⊺ −πππ

⊺
bAk)xk.

Let the ISP be solved with an algorithm that returns xk as either an extreme
point or extreme ray of conv(Dk), respectively indexed in Pk and Rk, ∀k ∈ K.
The Lagrangian bound is either −∞ if there exists an optimal extreme ray such
that ck

r −ak⊺
r πππb < 0, r ∈ Rk, k ∈ K, otherwise finite and given by

LR(πππb) = b⊺πππb + ∑
k∈K

min
p∈Pk

(ck
p−ak

p)
⊺
πππb.

Looking for a finite bound, we restrain πππb with ck
r −ak⊺

r πππb ≥ 0, ∀k ∈ K, r ∈ Rk,
which we know must hold for any optimal πππ⋆

b, see Note 6.3. The LDP is thus
restated as

z⋆LDP = max
πππb

b⊺πππb + ∑
k∈K

min
p∈Pk

(ck
p−ak

p)
⊺
πππb

s.t. ck
r −ak⊺

r πππb ≥ 0 ∀k ∈ K,r ∈ Rk

πππb ≥ 0.

We reformulate the inner optimization minp∈Pk (ck
p−ak

p)
⊺πππb as

max π
k
0

s.t. π
k
0 ≤ (ck

p−ak
p)
⊺
πππb ∀p ∈ Pk.

Combining the last two formulations, we arrive at a reformulation of the LDP
as a linear program in πk

0 ∈ R, ∀k ∈ K, and πππb ≥ 0, where the corresponding
dual λk-variables associated with the constraints appear in brackets:

z⋆LDP = max b⊺πππb + ∑
k∈K

π
k
0

s.t. ak⊺
p πππb + π

k
0 ≤ ck

p [λk
p] ∀k ∈ K, p ∈ Pk

ak⊺
r πππb ≤ ck

r [λk
r] ∀k ∈ K,r ∈ Rk

πππb ≥ 0

π
k
0 ∈ R ∀k ∈ K.

Dualizing, we obtain the formulation of the MP, hence, z⋆LDP = z⋆MP:
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z⋆LDP = min ∑
k∈K

∑
p∈Pk

ck
pλ

k
p + ∑

k∈K
∑

r∈Rk

ck
rλ

k
r

s.t. ∑
k∈K

∑
p∈Pk

ak
pλ

k
p + ∑

k∈K
∑

r∈Rk

ak
rλ

k
r ≥ b [πππb]

∑
p∈Pk

λ
k
p = 1 [πk

0 ] ∀k ∈ K

λ
k
p ≥ 0 ∀k ∈ K, p ∈ Pk

λ
k
r ≥ 0 ∀k ∈ K,r ∈ Rk.

(b) Starting with the ILP (6.16), we rewrite the ISP (6.17) for πππb ≥ 0 as

LR(πππb) = min ∑
k∈K

ck⊺xk + πππ
⊺
b

(
b
|K|
−Akxk

)
s.t. xk ∈Dk, ∀k ∈ K,

which makes the objective function separable in index k, that is,

LR(πππb) = ∑
k∈K

min
xk∈Dk

ck⊺xk + πππ
⊺
b

(
b
|K|
−Akxk

)
.

Let again the ISP be solved with an algorithm that returns xk, ∀k ∈ K, as either
an extreme point or an extreme ray of conv(Dk). The Lagrangian bound is either
−∞ if there exists an extreme ray solution such that ck

r − ak⊺
r πππb < 0, r ∈ Rk,

k ∈ K, otherwise finite and given by

LR(πππb) = ∑
k∈K

min
p∈Pk

ck
p +

(
b
|K|
−ak

p

)⊺
πππb.

Looking for a finite bound, we restrain πππb with ck
r −ak⊺

r πππb ≥ 0, ∀k ∈ K, r ∈ Rk,
which we know must hold for any optimal πππ⋆

b, see Note 6.3. The LDP is thus
restated as

z⋆LDP = max
πππb

∑
k∈K

min
p∈Pk

ck
p +

(
b
|K|
−ak

p

)⊺
πππb

s.t. ck
r −ak⊺

r πππb ≥ 0 ∀k ∈ K,r ∈ Rk

πππb ≥ 0.

We reformulate the inner optimization minp∈Pk ck
p +( b

|K| −ak
p)
⊺πππb as

max µ
k

s.t. µ
k ≤ ck

p +

(
b
|K|
−ak

p

)⊺
πππb ∀p ∈ Pk.
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Combining the last two formulations, we arrive at a reformulation of the LDP
as a linear program in µk ∈ R, ∀k ∈ K, and πππb ≥ 0, where the corresponding
dual λk-variables associated with the constraints appear in brackets:

z⋆LDP = max ∑
k∈K

µ
k

s.t. (ak
p−

b
|K|

)⊺πππb + µ
k ≤ ck

p [λk
p] ∀k ∈ K, p ∈ Pk

ak⊺
r πππb ≤ ck

r [λk
r] ∀k ∈ K,r ∈ Rk

πππb ≥ 0

µ
k ∈ R ∀k ∈ K.

Dualizing, we obtain the alternative Dantzig-Wolfe master problem:

z⋆LDP = min ∑
k∈K

∑
p∈Pk

ck
pλ

k
p + ∑

k∈K
∑

r∈Rk

ck
r λ

k
r

s.t. ∑
k∈K

∑
p∈Pk

(ak
p−

b
|K|

)λk
p + ∑

k∈K
∑

r∈Rk

ak
rλ

k
r ≥ 0 [πππb]

∑
p∈Pk

λ
k
p = 1 [µk] ∀k ∈ K

λ
k
p ≥ 0 ∀k ∈ K, p ∈ Pk

λ
k
r ≥ 0 ∀k ∈ K,r ∈ Rk,

hence, z⋆LDP = z⋆AMP = z⋆MP.

6.6 VRPTW: Dantzig-Wolfe vs. Lagrange
The sequences of dual multipliers differ. The MP solution process by column gener-
ation starts with costly artificial variables, hence favoring paths with a large number
of visited customers in the ISP and also possible cycles. On the contrary, the sub-
gradient algorithm for the LDP rather starts with zero or small dual values: such a
strategy reduces both the number of visited nodes and the cycles and is on average
faster per iteration.

6.7 Yes or No? And why?
(a) No in general, except by chance if the selected extreme point solution is inte-

ger, or if the ILP formulation possesses the integrality property. We can how-
ever indirectly solve the ILP with the primal simplex algorithm embedded in a
branch-and-bound tree.

(b) The column generation algorithm is the primal simplex method for solving a
linear program with a huge number of variables, hence the same answer as (a).

(c) The Dantzig-Wolfe decomposition is a reformulation of the LP or ILP; it cannot
solve anything, see Figures 6.6 and 6.14.
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(d) The LDP can be seen as the dual of the MP, hence it is a relaxation of the orig-
inal problem. Furthermore, it is not an algorithm so it does not solve anything,
see Figures 6.6 and 6.14.

6.8 Ready to answer?
(a) A dual optimal solution πππ⋆

b alone is of no use as we need actionable information
in x or λλλ to formulate a strategy.

(b) We see in Illustration 6.10 that a dual box on π0 can improve the initial objective
value but most of the help comes from using πππ⋆

b. In fact, in Illustration 6.11 we
do not bother at all to test dual boxes on the πk

0 , k ∈ K, and rather concentrate
again on πππ⋆

b.

(c) The black on white answer is yes but only because a Dantzig-Wolfe reformu-
lation IMP is equivalent to the original problem ILP whereas a Lagrangian re-
laxation is only equivalent to the MP at the root node of a Dantzig-Wolfe refor-
mulation. With that said, even focusing on said root node, we have seen some
arguments as to why a Lagrangian relaxation may be solved faster. For example,
the dual values used at initialization may be easier to deal with in the pricing
problem.

(d) We can collect the subgradients we find and post-process them in a master prob-
lem. Since the latter provides analogous solutions to those one would find in
the MP of a Dantzig-Wolfe reformulation, this means that it is neither easier,
nor harder to find a solution to the compact formulation than what we would
observe in the branch-and-price tree.
Sometimes, as in Example 6.5 Balancing printed circuit board assembly line
systems, a solution to the ISP can be transformed into a feasible one for the
ILP, hence providing an upper bound on top of a lower bound. In fact, one
could argue that a Lagrangian relaxation can be preferable to a Dantzig-Wolfe
reformulation whenever integer solutions are indeed easy to recover from col-
lected subgradients and their quality is good enough such that we do not have
to deal with a full-blown master problem implementation.

(e) We can incorporate dual information in the master problem formulation to re-
cover efficiently a primal solution in λ ,x-variables using dual boxes. Further-
more, we can use stabilization and work our way to optimality even if we start
with incorrect dual information.

6.9 Using optimal Lagrangian multipliers with dual boxes
If |K| = 1, we can deduce π⋆

0 = z⋆LDP−πππ⋆⊺

b b. Since this is dual optimal, it leads to
c̄(πππ⋆

b,π
⋆
0 ) = 0 such that we cannot generate any columns.

We could also use M as a placeholder for π0 in c̄(πππ⋆
b,M) < 0 which generates a

negative reduced cost column and then modifies all dual values upon solving the
RMP, thus losing the dual optimal information πππ⋆

b. The big-M strategy obviously
holds no better for |K|> 1.
Proposition 6.10 and Note 6.18 provide a more meaningful way to exploit πππ⋆

b. In-
deed, it is hard to imagine a more to the point approach because we basically only
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generate the columns we need to match this dual optimal solution. In fact, it makes
the most sense in stabilization since in general we have no guarantee that Lagrangian
multipliers πππb are optimal in which case we do likely use “roomier” dual boxes at
initialization.

6.10 Stabilization parameters: initialization and update
(a) In Corollary 6.3, we establish that the MPstab solves the MP for any open interval

and εεε1,εεε2 > 0. When we initialize the RMPstab with X′ = /0, the values of εεε1,εεε2
must be large enough to ensure primal feasibility in the y-variables. The primal
and dual stabilized problems respectively read as (without the 0-index)

min − δδδ
⊺
1y1 + δδδ

⊺
2y2

s.t. − y1 + y2 = b [πππ]

y1 ≤ εεε1 [−w1 ≤ 0]
y2 ≤ εεε2 [−w2 ≤ 0]

y1≥ 0, y2 ≥ 0

and
max b⊺πππ − εεε

⊺
1w1 − εεε

⊺
2w2

s.t. − πππ − w1 ≤−δδδ 1 [y1 ≥ 0]
πππ − w2 ≤ δδδ 2 [y2 ≥ 0]

w1≥ 0, w2≥ 0.

Assuming non-binding εεε1,εεε2, then w1 = w2 = 0 and the first iteration yields
dual values at either end of the interval, that is,

πi = δi2 if bi ≥ 0 and πi = δi1 if bi < 0, ∀i ∈ {1, . . . ,m}.

Primal feasibility, at the same cost, is achieved by setting

yi2 = bi if bi ≥ 0 and yi1 =−bi if bi < 0, ∀i ∈ {1, . . . ,m}.

This follows the statement of Proposition 6.11 and intuitively corresponds to the
behavior we describe for dual optimal inequalities in Note 6.18, where we then
do not solve the pricing problem with πππ⋆ as long as the RMPδδδ does not contain
an optimal primal solution. Numeric precision issues in the pricing suggest that
the δδδ values should also be roomy enough not to behave as πππ⋆.

Perhaps we can add a little more intuition in applications with non-negative
coefficients ax and b. The RMPstab with X′ = /0 can be initialized with εεε2 = b
whereas the pertinence of εεε1 = b becomes visible as the content of X′ increases
along with our ability to over-cover the right-hand side. The delicate tango we
see between λλλ x- and y-variables is the essence of stabilization. Its rhythm is
dictated by the current parameter values εεε and δδδ . Indeed, the stabilization vari-
ables y1 and y2 are there to absorb primal infeasibility but by restricting their
influence in size (εεε) and weight (δδδ ), we more or less favor the use of columns al-
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ready present in X′. The more accurate π̂ππ is, the more we expect to have relevant
columns in X′ because those are precisely the type of columns we generate.

(b) In Algorithm 6.2, we are actually free to update the δδδ and εεε parameters when-
ever we want. This may especially be worth it right after initialization to rapidly
reassess more appropriate values than εεε = b. After all, these are conceptually
perturbation parameters.
A general guideline for δδδ can be to reduce the dual box if δδδ 1 < πππ < δδδ 2, e.g.,
δδδ

2
1 = 0.5δδδ

1
1, and to increase it otherwise, e.g., δδδ

2
1 = 1.5δδδ

1
1.

Similarly for εεε , we augment the penalty when we are in the dual box, e.g., The
idea here is that if the dual box is good, the value of εεε is mostly irrelevant by
Corollary 6.3 whereas we really do want the perturbation effect when the dual
information is not as potent.
Note 6.21 warns us that these parameters must not reduce the dual intervals to
single points so it does not hurt to post-process some hard limits like 10−3 to
avoid numerical instability traps as observed in Illustration 6.11 (see the discus-
sion regarding the last row of Table 6.6). In any case, one must always have a
fail-safe test to ensure that the infeasibility of the RMPstab does not come from
εεε . Furthermore, we can obviously make granular operations per component, and
non-symmetrical updates.

6.11 A crossover method for finding a basic x⋆LP
For i ∈ {1, . . . ,m}, we have π⋆

i − δi ≤ πi ≤ π⋆
i + δi. At optimality, we can fix the

variable x j to zero if the smallest possible value of its reduced cost is positive, that
is, if

min
πππ∈[πππ⋆−δδδ ,πππ⋆+δδδ ]

c j−πππ
⊺a j > 0.

This is equivalent to

c j− ∑
i:ai j≥0

(π⋆
i +δi)ai j− ∑

i:ai j<0
(π⋆

i −δi)ai j > 0

⇔ c j−
m

∑
i=1

π
⋆
i ai j− ∑

i:ai j≥0
δiai j− ∑

i:ai j<0
δi(−ai j)> 0

⇔ c j−
m

∑
i=1

π
⋆
i ai j >

m

∑
i=1

δi|ai j|.

6.12 Symmetric TSP: a compact formulation without block-index k
Because ∑p∈P λp = 1, Proposition 4.15 applies with |K|= 1, hence there is no need
for a block-index. Moreover, as the single block is obviously used, the correspond-
ing variable x0 is set to 1 and disappears.

6.13 Asymmetric and symmetric TSP: flow conservation constraints
• Subtracting the assignment constraints, that is, (6.110b) minus (6.110c) in the
ATSP formulation (6.110) gives
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∑
j:(k, j)∈A

xk j− ∑
i:(i,k)∈A

xik = 0, ∀k ∈ N.

• There is always at least one contradiction in particular at node n. Assume that an
optimal solution for the STSP contains the sequence 1−3−2: it has degree 2 at node
3 in both formulations (6.111) and (6.119), using arcs (1,3) and (2,3), where i < j,
(i, j) ∈ E. In this case, the flow conservation constraint at node 3 is not satisfied:

∑
j:(3, j)∈E

x3 j− ∑
i:(i,3)∈E

xi3 = 0−2 ̸= 0.

6.14 Printed circuit boards: Lagrangian multipliers
(a) For i ∈ N, k ∈ K, let −ak

i,t ≥ 0 be the entry of the subgradient direction at itera-
tion t ≥ 1 and β k

i,t+1 denote the value of the multiplier before the normalization.

β
k
i,t+1 = π

k
i,t +θt(−ak

i,t) ∀i ∈ N,k ∈ K

π
k
i,t+1 =

(
β k

i,t+1

∑k∈K β k
i,t+1

)
pi ∀i ∈ N,k ∈ K.

(b) A multiplier decreases from one iteration to the next, πk
i,t+1 < πk

i,t , if and only if(
β k

i,t+1

∑k∈K β k
i,t+1

)
<

(
πk

i,t
pi

)
, that is, if the contribution of β k

i,t+1 relatively to the sum

∑k∈K β k
i,t+1 over all the machines is less than the contribution of πk

i,t compared
to ∑k∈K πk

i,t = pi.
(c) Because the multipliers are initialized at values greater than 0, β k

i,t+1 > 0, hence
also πk

i,t+1 > 0, ∀t ≥ 1, even if ∑ j∈Ji ∑s∈Sk t js(∑p∈P x js,pλp)< ti.

6.15 Warehouse location problem
(a) The Lagrangian subproblem obtained by relaxing ∑k∈K xk

i = 1, ∀i ∈ N, is

LR(πππ) = min ∑
i∈N

∑
k∈K

ck
i xk

i + ∑
k∈K

Fkyk + ∑
i∈N

πi(1−∑
j∈J

xk
i )

s.t. ∑
i∈I

dixk
i ≤ Dkyk ∀i ∈ N

0≤ xk
i ≤ 1 ∀i ∈ N,k ∈ K

y j ∈ {0,1} ∀k ∈ K,

where the objective function can be rewritten as

min ∑
i∈N

πi + min ∑
i∈N

∑
k∈K

(ck
i −πi)xk

i + ∑
k∈K

Fkyk.

The above formulation does not possess the integrality property and it must
be solved as a mixed-integer linear program, or by a specialized algorithm. As
such, the best lower bound z⋆LDP ≥ z⋆LP.
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(b) The Lagrangian subproblem obtained by relaxing ∑i∈N dixk
i ≤ Dkyk, ∀k ∈ K, is

LR(ωωω) = min ∑
i∈N

∑
k∈K

ck
i xk

i + ∑
k∈K

Fkyk + ∑
k∈K

ω
k(Dkyk−∑

i∈N
dixk

i )

s.t. ∑
k∈K

xk
i = 1 ∀i ∈ N

0≤ xk
i ≤ 1 ∀i ∈ N,k ∈ K

y j ∈ {0,1} ∀k ∈ K,

where the objective function can be rewritten as

min ∑
i∈N

∑
k∈K

(ck
i −ω

kdi)xk
i + ∑

k∈K
(Fk +ω

kDk)yk.

It is separable in x- and y-variables.

• For the continuous x-variables, a solution is obtained by inspection for
each i, fixing xℓi = 1 for any warehouse ℓ ∈ K with the smallest adjusted
coefficient, i.e., ℓ ∈ argmink∈K (ck

i −ωkdi).
• For the binary y-variables, a solution is also obtained by inspection for

each k, fixing yk = 0 if Fk +ωkDk > 0 and equal to 1 otherwise.
• This formulation hence possesses the integrality property and the best lower

bound is z⋆LDP = max
ωωω∈R|K|−

LR(ωωω) = z⋆LP.

(c) Once again, the Lagrangian subproblem with objective value LR(πππ) does not
possess the integrality property while that with LR(ωωω) still has so

z⋆LP = max
ωωω∈R|K|−

LR(ωωω)≤ max
πππ∈R|N|

LR(πππ)≤ z⋆ILP.

As seen in the Generalized assignment problem with the grouping of constraints
in (4.150), another answer that relies on Proposition 4.5 directly tells us that a
Dantzig-Wolfe reformulation with

Di = {xi ∈ {0,1}|K| | ∑
k∈K

xk
i = 1}, ∀i ∈ N

in the pricing problems gives us back exactly the compact formulation, that is,
the IMP is the ILP. Therefore,

max
ωωω∈R|K|−

LR(ωωω) = z⋆MP = z⋆LP.

6.16 Dual inequalities for a two-echelon vehicle routing problem
(a) Recall that a dual variable indicates the rate of change of the optimal objec-

tive value with respect to a change in the right-hand side of the corresponding
constraint, see the Sensitivity analysis (p. 11). Because Rk1 ⊆ Rk2 , each vari-
able λ

k1
r , r ∈ Rk1 , in the k1-constraint (6.145c) has an equivalent variable λ

k2
r in
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the k2-constraint (6.145c) and the latter constraint possibly involves additional
variables, the k2-constraint offers more leeway to react to a change in its right-
hand side. Therefore, its dual variable should take a larger absolute value at
optimality, that is, πk2 ≤ πk1 because πk ≤ 0 for all k ∈ K.

(b) We replace the constraints (6.145c) for k1 and k2 by

∑
r∈Rk1

drλ
k1
r −uk1k2 ≤ Q1yk1 [πk1 ≤ 0]

∑
r∈Rk2

drλ
k2
r +uk1k2 ≤ Q1yk2 [πk2 ≤ 0]

uk1k2 ≥ 0.

(c) Variable uk1k2 allows to transfer some load from first-echelon route k1 to route
k2, i.e., the demand of one or several second-echelon routes that is supposed to
be supplied by k1 can rather be (partially) supplied by k2. Its value indicates the
quantity transferred. It can speed up column generation because, if variable λ

k1
r

is already generated, there is no need to generate λ
k2
r . Indeed, variable uk1k2 can

transfer the demand of second-echelon route r from k1 to k2.

(d) Constraints (6.145c) are replaced by

∑
r∈Rk

drλ
k
r + ∑

(k1,k)∈F
uk1k − ∑

(k,k2)∈F
ukk2 ≤ Q1yk [πk ≤ 0] ∀k ∈ K

uk1k2 ≥ 0 ∀(k1,k2) ∈ F.

(e) • No positive u-variables:
There is no load transfer and, thus, solution (λ̃λλ , ỹ) is integer and feasible.

• Only the variable uk1k2 = ũk1k2 is positive:
In that case (and the next one), it might be impossible to recover primal fea-
sibility, i.e., the DDOIs are incompatible. Indeed, there exists an equivalent
feasible solution if and only if there is a second-echelon route r ∈ Rk1 such
that λ̃

k1
r = 1 and dr = ũk1k2 .

• At least two u-variables take positive values:
Conditions can be defined for some specific cases. However, in general,
determining whether there exists an equivalent solution is a difficult com-
binatorial problem, especially when the same first-echelon route k acts as
a receiver and a giver in different load transfers, i.e., when there are two
positive-valued variables uk1k and ukk2 .
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Exercises of Chapter 7

7.1 François Vanderbeck
This François holds a master’s degree in operations research from MIT ORC. He
continued his studies in the same field and obtained a PhD (1994) at the CORE
(Université Catholique de Louvain, Belgique) under the supervision of professor
Laurence Wolsey. At the time of writing, he is CEO (and co-founder) of Atoptima.

He is known for reformulation and decomposition methods of linear integer pro-
grams “so as to tackle large scale applications arising in planning, scheduling, lo-
gistics and routing problems, as well as cutting and packing problems, or production
and inventory control” (see Institut de Mathématiques de Bordeaux).

As seen in this chapter, François-λ is well renowned for his contributions to
branch-and-price via numerous branching strategies derived from the master vari-
ables in the discretization approach. While he was Professor in Operations Research
at the Université de Bordeaux, he developed BaPCod (swmath.org/software/9871),
a generic branch-and-price code (Sadykov and Vanderbeck, 2021). It solves mixed-
integer linear programs by the application of a Dantzig-Wolfe reformulation on a
compact model. It is actually available under the name Coluna, as an open-source
platform.

He is a good friend of Jacques, Marco, Guy, Eduardo, and many others. More-
over, he likes red wine from France and maple syrup from Québec.

7.2 B&P: Wikipedia
Contrary to what is suggested by the ‘done’ box, finding an integer solution is not
enough to conclude branch-and-price. Indeed, at this point, we have to update the
incumbent integer solution. We can only conclude branch-and-price when we can
prove that this upper bound cannot be improved. (Note also that according to our
terminology, the MP and RMP are linear programs, not integer ones)

7.3 B&P: early branching
In principle, to branch, we do not need to solve a node at all, which amounts to
making a random branching decision. Hopefully, solving a node approximately can
be enough to put forth a meaningful decision, either branching or cutting (and even
heuristically fixing). Let us redefine the node value as follows:
1. If the node is solved to optimality: the objective value of the linear relaxation, as

in § 1.5; this is a lower bound on an optimal integer solution for that node.
2. Else and if available: any other lower bound such as the Lagrangian bound.
3. Otherwise: the current objective value of the RMP (which is not a lower bound

on an optimal integer solution for that node).

• As in the Branch-and-Bound method of § 1.5, before being solved, every child
node inherits the node value of its parent. The node values keep their monotonic
behavior in the above first two cases, i.e., a lower bound is used.
Otherwise, if a child node is assigned a node value that is less than that of its parent
node, the latter is refreshed to the child node value (this retroactive monotonicity
impacts the node selection strategy).

https://orc.mit.edu
https://uclouvain.be/en/research-institutes/lidam/core
https://atoptima.com
https://math.u-bordeaux.fr/~fvanderb/
https://swmath.org/software/9871
https://atoptima.com/about/scientific_background
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• B&P stops when LB = UB, which means that optimality is guaranteed when every
leaf node is assigned a pruning state. In particular, pruning by bound can occur
whenever the relative optimality gap (see Optimality gap in Chapter 1) guarantees
that the lower bound at a node is greater-than-or-equal to UB.

• When applying early branching, column generation may stop with an integer RMP
solution whose cost differs from the computed lower bound, if any. The corre-
sponding leaf node cannot be pruned by integrality. If it cannot be pruned by
bound either, a specialized branching decision or cutting plane must be imposed to
get rid of this integer solution. Alternatively, column generation may be restarted
to sufficiently improve the lower bound and possibly solve the node to optimality.

7.4 ISP modifications for a λ -branching
(a) Given γ1 ≤ 0 in the ISP (7.61), the slope −γ1 is non-negative and gx can be set

to 0 unless forced to be 1 if f⊺x > f −1, as imposed by

gx =

{
1 if f ≤ f⊺x≤ u

0 if ℓ ≤ f⊺x≤ f −1
.

Enforcing the upper bound inequality in (7.63), (f⊺x− f +1) ≤ gx(u− f +1),
this results in

gx = 1 ⇔ f⊺x− f +1
u− f +1

> 0 ⇔ f⊺x > f −1 ⇔ f⊺x≥ f .

(b) Given γ2 ≥ 0 in the ISP (7.64), the slope −γ2 is non-positive and gx can be
set to 1 unless forced to be 0 if f⊺x < f . Enforcing the lower bound inequality
in (7.63), ( f − ℓ)gx ≤ (f⊺x− ℓ), this imposes

gx = 0 ⇔ f⊺x− ℓ

f − ℓ
< 1 ⇔ f⊺x < f ⇔ f⊺x≤ f −1.

7.5 ISP modifications for a λ -branching: alternative function g(x)
Let us start with the set of inequalities in (7.63):

ℓ(1−gx)+ f gx ≤ f⊺x≤ ugx +(1−gx)( f −1), gx ∈ {0,1}.

0 1ℓ− ( f −1) u− ( f −1)

f⊺x− ( f −1)

. . . . . .
////////////////////////////////////////////////.................................................................../////////////////////////////.........................................

f −1 fℓ u

f⊺x
. . . . . .

////////////////////////////////////////////////.................................................................../////////////////////////////.........................................
gx = 0 gx = 1

Subtracting ( f − 1) from f⊺x gives gx = 1 if 1 ≤ f⊺x− ( f − 1) ≤ u− ( f − 1) and
gx = 0 if ℓ− ( f −1)≤ f⊺x− ( f −1)≤ 0. Dividing the left-shifted function by u−ℓ,
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assuming ℓ≤ f −1 and f ≤ u, we obtain the proposed ceiling function

g(x) =
⌈

f⊺x− ( f −1)
u− ℓ

⌉
=

1 if 0 < f⊺x−( f−1)
u−ℓ ≤ 1

0 if −1 < f⊺x−( f−1)
u−ℓ ≤ 0

.

7.6 A binary x-branching decision imposed in A rather than D

Down-branch: x j ≤ 0 appears in the RMP as ∑x∈X x jλx ≤ 0 with the associated dual
variable γ1 ≤ 0. The objective function of the ISP is modified with the term −γ1x j,
i.e., a positive slope on x j, hence favoring x j = 0 as requested.
Up-branch: we have a similar behavior, that is, x j ≥ 1 becomes ∑x∈X x jλx ≥ 1 with
γ2 ≥ 0 in the RMP. This impacts the objective function of the ISP with the term
−γ2x j, i.e., a negative slope on x j which favors x j = 1 in that branch.
This is similar to the λ -branching in (7.69)–(7.70) with ∑

x∈X:e⊺j x≥⌈x⋆j⌉
λ
⋆
x = β fractional.

7.7 Bound constraints on several x-variables: underlying mathematics
(a) Down-branch: Given the slope −γ1 ≥ 0 on gx, we must detect in (7.84) when

gx = 1, i.e., when ȳ j = 1, ∀ j ∈ J̄, and
¯
y j = 1, ∀ j ∈

¯
J. The value of gx follows

with the constraint gx ≥ 1+ (∑ j∈J̄ ȳ j +∑ j∈
¯
J

¯
y j) −(|J̄|+ |¯

J|), where the total
inner sum equals |J̄|+ |

¯
J| if and only if all the y j-variables take value 1.

• For the set J̄, we derive f̄ (x j,v j) ∈ (0,1] such that ȳ j ≥ f̄ (x j,v j)⇒ ȳ j = 1.

j ∈ J̄ : ȳ j = 1⇔ ℓ j ≤ x j ≤ ⌊v j⌋
⇔−⌊v j⌋ ≤ −x j ≤−ℓ j

⇔ ⌊v j⌋+1−⌊v j⌋ ≤ ⌊v j⌋+1− x j ≤ ⌊v j⌋+1− ℓ j

⇔ 0 <
1

⌊v j⌋+1− ℓ j
≤
⌊v j⌋+1− x j

⌊v j⌋+1− ℓ j
≤ 1;

▶ f̄ (x j,v j) =
⌊v j⌋+1− x j

⌊v j⌋+1− ℓ j
.

• For
¯
J, we derive

¯
f (x j,v j) ∈ (0,1] such that

¯
y j ≥

¯
f (x j,v j)⇒

¯
y j = 1.

j ∈
¯
J :

¯
y j = 1⇔ ⌊v j⌋+1≤ x j ≤ u j

⇔ 1≤ x j−⌊v j⌋ ≤ u j−⌊v j⌋

⇔ 0 <
1

u j−⌊v j⌋
≤

x j−⌊v j⌋
u j−⌊v j⌋

≤ 1;

▶
¯
f (x j,v j) =

x j−⌊v j⌋
u j−⌊v j⌋

.

(b) Up-branch: Given the slope −γ2 ≤ 0, gx = 1 is the preferred choice in the ISP.
Hence, we must detect in (7.84) when gx = 0. This follows from the first two
added constraints gx ≤ ȳ j, ∀ j ∈ J̄, and gx ≤

¯
y j, ∀ j ∈

¯
J, if at least one of the

y j-variable equals 0.
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• For the set J̄, we derive
¯
f (x j,v j) ∈ [0,1) such that ȳ j ≤ f̄ (x j,v j)⇒ ȳ j = 0.

j ∈ J̄ : ȳ j = 0⇔ ⌊v j⌋+1≤ x j ≤ u j

⇔−u j ≤−x j ≤−⌊v j⌋−1
⇔ 0≤ u j− x j ≤ u j−⌊v j⌋−1

⇔ 0≤
u j− x j

u j−⌊v j⌋
≤ 1− 1

u j−⌊v j⌋
< 1;

▶ f̄ (x j,v j) =
u j− x j

u j−⌊v j⌋
.

• For
¯
J, we derive

¯
f (x j,v j) ∈ [0,1) such that

¯
y j ≤

¯
f (x j,v j)⇒

¯
y j = 0.

j ∈
¯
J :

¯
y j = 0⇔ ℓ j ≤ x j ≤ ⌊v j⌋

⇔ 0≤ x j− ℓ j ≤ ⌊v j⌋− ℓ j

⇔ 0≤
x j− ℓ j

⌊v j⌋+1− ℓ j
≤
⌊v j⌋− ℓ j

⌊v j⌋+1− ℓ j
< 1;

▶
¯
f (x j,v j) =

x j− ℓ j

⌊v j⌋+1− ℓ j
.

7.8 Bound constraints on several x-variables: binary case
For a binary x j, ℓ j = ⌊v j⌋= 0, u j = 1; the set of constraints in (7.84) becomes

gx ≥ 1+(∑
j∈J̄

ȳ j + ∑
j∈

¯
J ¯
y j) −(|J̄|+ |¯

J|)

ȳ j ≥ 1− x j ∀ j ∈ J̄

¯
y j ≥ x j ∀ j ∈

¯
J

gx ≤ ȳ j ∀ j ∈ J̄

gx ≤
¯
y j ∀ j ∈

¯
J

ȳ j ≤ 1− x j ∀ j ∈ J̄

¯
y j ≤ x j ∀ j ∈

¯
J.

Following the solution of Exercise 7.7, the y-variables are eliminated:

Down-branch j ∈ J̄ : ȳ j = 1⇔ x j = 0; ȳ j = 1− x j;
j ∈

¯
J :

¯
y j = 1⇔ x j = 1;

¯
y j = x j.

Up-branch j ∈ J̄ : ȳ j = 0⇔ x j = 1 ȳ j = 1− x j;
j ∈

¯
J :

¯
y j = 0⇔ x j = 0;

¯
y j = x j.

Therefore, the set of constraints in (7.84) simplifies to

gx ≥ 1−∑
j∈J̄

x j + ∑
j∈

¯
J
x j− (|J̄|+ |

¯
J|) gx ≤ 1− x j ∀ j ∈ J̄

gx ≤ x j ∀ j ∈
¯
J.

7.9 Ryan-Foster separating hyperplane for the VRPTW
(a) The Ryan-Foster rule in (7.86) reads as 0 < ∑

x∈X: arx=asx=1
λx < 1. Following the

expression of arx,asx in (5.6), f⊺x≥ f is given by
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∑
j:(r, j)∈A

xr j + ∑
j:(s, j)∈A

xs j ≥ 2.

(b) For an ILP (7.1) reformulated as a set partitioning model, it becomes

Ar∗x+As∗x≥ 2,

where Ar∗ refers to the r-th row of matrix A (see Notation in Chapter 1, page 3).

7.10 Handling inter-task branching decisions in labeling algorithm
(a) For w ∈W , let Dw be the set of tasks of W that cannot be covered immediately

after w, i.e.,

Dw =

{
W \{ fw} if fw ∈W
{s ∈W |(w,s) ∈ D} otherwise.

The first case specifies that, if w is the first task of a follow-on decision, then
w cannot be followed immediately by any task in W except fw. The second
case ensues from the applicable do-not-follow-on decisions for task w. We also
define DNIL = /0.
The labeling algorithm starts with an initial label E0, T last

0 = NIL. A path p
ending at node h ∈ N and represented by label Ep can be extended along an arc
(h, j) only if wh j ̸∈ DT last

p
. If the path can be extended, it generates a new path

p′ with a label Ep′ associated with node j, where T last
p′ is computed as follows:

T last
p′ =

{
T last

p if wh j = NIL
w jh otherwise.

If j = d and fT last
p′
̸= NIL, then p′ is discarded.

Finally, the following condition is added to the dominance rule that applies to
two labels representing paths p and p′ ending at the same node:

DT last
p
⊆ DT last

p′
.

(b) Assuming that paths p and p′ end at node j, the previous dominance condition
can be replaced by

DT last
p
⊆ DT last

p′
∪ U j.

7.11 Finite number of iterations in Proposition 7.2
The answer is No, although values ⌊v j⌋ or ⌊v j⌋+1 may already exist.
For example, assume that the current integer lower and upper bounds on x j, includ-
ing those from B, are given by x j ≥ ℓ j and x j ≤ u j, and such that u j− ℓ j = 1, i.e.,
separated by one unit.
Then ℓ j = x j1 < x j2 = u j is a possible choice for which the average is

v j = ℓ j + 1/2 = u j− 1/2.
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Then x j ≤ ℓ j = ⌊v j⌋ is imposed in the left-sum of (7.81) whereas x j ≥ u j = ⌊v j⌋+1
appears in the right-sum. More generally, given ℓ j < u j:

• If v j = ℓ j + 1/2, then x j ≤ ℓ j appears in the left-sum (in addition to x j ≥ ℓ j).
• If v j = u j− 1/2, then x j ≥ u j appears in the right-sum (in addition to x j ≤ u j).
• Hence, a bound constraint cannot be imposed twice. In fact, a bound value can

only be used in opposite inequalities, which also fixes the variable x j.

7.12 λ -branching: single bound constraint on x j
As in (7.60), two branches are created with ∑x∈X gxλx ≤ ⌊β⌋ and ∑x∈X gxλx ≥ ⌈β⌉
incorporated to their respective MP formulation, where the binary coefficient gx
takes value 1 if and only if x j ≥ 2.
Following (7.66) with f⊺x = e⊺j x = x j (where e j is the j-th unit vector of dimension
n), f = 2, ℓ= 0, and u = u j, the ISP is modified by adding

• gx ≥ f⊺x− f+1
u j− f+1 =

x j−2+1
u j−2+1 =

x j−1
u j−1 , gx ∈ {0,1} in the down-branch;

• gx ≤
f⊺x−ℓ j

f−ℓ j
=

x j−0
2−0 =

x j
2 , gx ∈ {0,1} in the up-branch.

7.13 λ -branching: interval constraint on the cost function
The fractionality of λ⋆RMP is given by F = ∑x∈F(λ

⋆
x−⌊λ⋆x⌋). Rank the costs in non-

decreasing order for this index-set F of variables, say ℓ ≤ cx1 ≤ ·· · ≤ cx|F| ≤ u.
When we are lucky, and cx1 < cx|F| , the following works. Compute v such that
cx1 ≤ ⌊v⌋ < ⌊v⌋+ 1 ≤ cx|F| , either by taking the average for x ∈ F, or the median,

or simply v =
cx1+cx|F|

2 . Then F , as in (7.81), is the result of two sums:

F = ∑
x∈F:cx1≤cx≤⌊v⌋

(λ⋆x−⌊λ⋆x⌋)︸ ︷︷ ︸
≥ (λ⋆x1−⌊λ

⋆
x1 ⌋)> 0

+ ∑
x∈F:⌊v⌋+1≤cx≤cx|F|

(λ⋆x−⌊λ⋆x⌋)︸ ︷︷ ︸
≥ (λ⋆x|F|−⌊λ

⋆
x|F| ⌋)> 0

and the fractionality of one of these sums cannot exceed F/2.
If F is fractional at the start, at least one of these sums is also fractional and this

gives us a branching interval on c⊺x, e.g. for the first sum:

∑
x∈X:ℓ≤cx≤⌊v⌋

λx = β fractional.

Otherwise, F takes an integer value and, either both sums are fractional (with
two branching opportunities) or both are integer. In the later case, we split again
using the cx values in the lower or the upper interval until we find a fractional sum.
Although there are many ways to split, interesting intervals in the end are one of
these two forms: B= {x ∈ X | ℓ≤ c⊺x≤ c} or B= {x ∈ X | c≤ c⊺x≤ u}.
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7.14 λ -branching: ISP modifications for Rules 3.2 and 3.4
Expression f⊺x≥ f is given by xr +xs ≥ 2, where xr +xs ∈ [0,2]. Moreover, in both
Rules 3.2 and 3.4, gx = yrs. Therefore, (7.66) becomes

yrs ≥
xr + xs−2+1

2−2+1
= xr + xs−1, yrs ∈ {0,1} in the down-branch;

yrs ≤
xr + xs−0

2−0
=

xr + xs

2
, yrs ∈ {0,1} in the up-branch.

7.15 Time constrained shortest path problem: thinking like a computer
We start by making an exhaustive list of the variables and constraints created at
any point before node BB4 is processed, see the RMP solved at BB0 (p. 504) and
branch-and-bound process.

• Node BB0: artificial variable y0 and path-variables λ1246, λ1356, λ13256, λ1256;
constraint x13 + x32 = 0 and artificial variable y8 together with x13 + x32 ≥ 1.

• Node BB1: path-variable λ12456.
• Node BB2: constraints x12 = 0 and x12 = 1.
• Node BB3: path-variable λ13246.

During housekeeping for node BB4, we activate constraints x13 + x32 ≥ 1 and
x12 = 1. We can then set the variable bounds to [0,∞) for y0, λ1246, λ1256, y8, and
λ12456 whereas the bounds must be set to [0,0] for λ1356, λ13256, and λ13246. The
RMP we deal with after housekeeping is

min 1000y0 + 1000y8 + 3λ1246 + 5λ1256 + 14λ12456
s.t. 18λ1246 + 15λ1256 + 14λ12456 ≤ 14 [π7]

y8 ≥ 1 [π8]
y0 + λ1246 + λ1256 + λ12456 = 1 [π0]
y0, y8, λ1246, λ1256, λ12456 ≥ 0.

An optimal solution is y8 = λ12456 = 1 with cost 1014 together with dual values
π7 = −70.42857 and π8 = π0 = 1000. Solving the ISP produces path 12456 at re-
duced cost c̄12456 = 14−π7(14)−π8(0)−π0 = 0. We confirm that big-M is large
enough thus proving optimality of the MP. Since there remains at least one positive
artificial y-variable, we conclude that node BB4 can be pruned by infeasibility.

A couple more words of wisdom are in order. We conclude by noting that not only
are the way the cuts identified application-specific, but also the way we handle them
during housekeeping depends on what we know about the problem. In particular,
we have handled the branch x13 + x32 = 0 in the ISP but could also have imposed it
in the IMP in a generic fashion.

7.16 Minimum number of vehicles for the VRPTW
• The two-index arc-flow formulation (7.21) is a good choice for the ILP, de-

fined on the network Gdo = (N,Ado) (or the similar one from Exercise 5.3). The
important aspect to consider is the objective function, say z = ∑(i, j)∈Ado

ci jxi j.
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The number of vehicles utilized is given by the value of xdo in an optimal so-
lution. Defining z = xdo alone is the worst objective function because the op-
timization process does not look for “optimal routes.” Therefore, the traveling
costs ci j, (i, j) ∈ A, should be kept while cdo is set to a large value, say big-M:

z = M xdo + ∑
(i, j)∈A

ci jxi j.

• The various branching and cutting strategies described in this chapter can be
applied to the reader’s choice. The stopping rule is however based on an early
termination: from the usual dual bound, derive an integer one on the number of
vehicles only, compare it to the primal integer bound on the number of vehicles
only, and stop when the equality is reached.

• For an early implementation on school bus scheduling problems, see Desrosiers
et al. (1988b) presenting an approach using the augmented Lagrangian method.

7.17 Validity of a dominance rule for the VRPTW with strong capacity cuts
According to Definition 5.3, we need to show that, for every feasible extension χ ′

of p′, p⊕χ ′ is feasible and c̄p⊕χ ′ ≤ c̄p′⊕χ ′ . Let χ ′ be a feasible extension of p′.
• Given (7.132b)–(7.132d) and that the REFs (5.18b)–(5.18d) are non-decreasing,
χ ′ is also a feasible extension of p, i.e., p⊕χ ′ is feasible.
• Now, let

S+(χ ′) = {S ∈ S+ | ∃(i, j) ∈ χ ′ such that S ∈ Si j},
S+u1u2

(χ ′) = {S ∈ S+(χ ′) | T rccS
p = u1,T

rccS
p′ = u2} for u1,u2 ∈ {0,1}, and

c̄χ ′ = ∑(i, j)∈χ ′ c̄i j.
We get

c̄p⊕χ ′ = T rCost
p + c̄χ ′ − ∑

S∈S+
00(χ

′)

πS− ∑
S∈S+

01(χ
′)

πS (a)

≤ T rCost
p′ − ∑

S∈S+
10

πS + c̄χ ′ − ∑
S∈S+

00(χ
′)

πS− ∑
S∈S+

01(χ
′)

πS (b)

≤ T rCost
p′ − ∑

S∈S+
10

πS + c̄χ ′ − ∑
S∈S+

00(χ
′)

πS (c)

≤ T rCost
p′ + c̄χ ′ − ∑

S∈S+
00(χ

′)

πS− ∑
S∈S+

10(χ
′)

πS (d)

= c̄p′⊕χ ′ , (e)

where (b) is derived from (7.132a), (c) from the fact that πS > 0 for all S ∈ S+, and
(d) from S+10(χ

′)⊆ S+10. Hence, c̄p⊕χ ′ ≤ c̄p′⊕χ ′ which completes the proof.

7.18 Comparison of dominance rules for the VRPTW with strong capacity cuts
We need to prove that any label Ep′ declared to be dominated by a label Ep according
to rule (5.19) and (7.130) is also identified as such by rule (7.132).
According to the first rule, we have that

T rCost
p ≤ T rCost

p′ (a)
T rccS

p ≤ T rccS
p′ , ∀S ∈ S. (b)

From (b), we deduce that S+10 = /0. Combined with (a), it thus implies (7.132a). Given
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that (7.132b)–(7.132d) correspond to (5.19b)–(5.19d), rule (7.132) is also satisfied.

7.19 Arc-flow variable fixing for the VRPTW
(a) To compute c̄⋆i j for an arc (i, j), we must consider all concatenations of a for-

ward label (T rCost
i ,T time

i ,T load
i , [T uCusth

i ]h∈C) at node i, arc (i, j), and a backward
label (BrCost

i ,BlTime
i ,BmLoad

j , [BuCusth
j ]h∈C) at node j that yield a feasible path and

select the least cost one. Such a concatenation is feasible if

T time
i + ti j ≤ BlTime

j

T load
i ≤ BmLoad

j

T uCusth
i +BuCusth

j ≤ 1 ∀h ∈C.

Its reduced cost is equal to T rCost
i + c̃i j +BrCost

j .
• For arc (1,2), we can concatenate forward label (3,2,1, [1,0,0,0], arc (1,2),
and backward label (−2.5,18,3, [0,1,0,1]) to yield a feasible path of reduced
cost 6. The other possible concatenation of forward label (3,2,1, [1,0,0,0], arc
(1,2), and backward label (−15,9,1, [1,1,1,1]) is infeasible because of the time
condition (2+ 10 ̸≤ 9) and the condition on customer 1. Therefore, c̄⋆12 = 6.
Given that c̄⋆12 = 6 ̸>UB−LB = 9.5, variable x12 cannot be fixed to 0.
• For arc (2,3), there are 6 possible concatenations to check. Only two of them
are feasible, namely, forward label (15,8,2, [1,1,0,0]), arc (2,3), and backward
label (12,25,4, [0,0,1,0]), and forward label (8.5,12,3, [1,1,0,1]), arc (2,3),
and backward label (12,25,4, [0,0,1,0]). The first option yields a reduced cost
of 13.5 and the second of 7. Hence, c̄⋆23 = min{13.5,7} = 7 and x23 cannot be
fixed to 0 because c̄⋆23 = 7 ̸>UB−LB = 9.5.

(b) For arc (1,2), there are 2 possible concatenations but only the concatenation
of the forward label (−13,2,1, [1,0,0,0]), arc (1,2), and the backward label
(5.5,18,3, [0,1,0,1]) is feasible, with a reduced cost of 4.5. Thus, c̄⋆12 = 4.5 >
UB−LB = 1.5 and x12 can be fixed to 0.
For arc (2,3), there are also 2 possible concatenations and only the concate-
nation of the forward label (−1,8,2, [1,1,0,0]), arc (2,3), and backward label
(13.5,25,4, [0,0,1,0]) is feasible, with a reduced cost of 7. Because c̄⋆23 = 7 >
UB−LB = 1.5, x23 can be fixed to 0.
This shows that adding a cut to substantially raise the lower bound can help to
eliminate arc-flow variables and reduce the size of the ISP.

7.20 Branching on a resource interval
The following solution is adapted from Gamache et al. (1998, pp. 250–251).

• The upper bound 78 is like the vehicle capacity in the VRPTW, and as such,
F is used to cumulate the number of flight credits. Let T F

i denote the resource
value at node i and fi j be the number of flight credits on arc (i, j). If this arc
is used in an od-path, the F-resource consumption is updated from i to j by
T F

j = T F
i + fi j, provided T F

j is less than or equal to 78.
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• The lower bound 70 requires an additional resource, say negF , which is the
negative of F . Then the restriction becomes −F = negF ≤ −70 and the lower
bound is also treated as a capacity restriction. Resource negF is updated from
i to j by T negF

j = T negF
i − fi j, where the negative upper bound −70 is only

enforced at the sink node d. If T negF
d >−70, then the number of flight credits is

insufficient and the corresponding path is discarded.
An unfortunate outcome of having these two opposite resources is that, for two
partial paths reaching node i with different flight credit values, say T F

i,1 < T F
i,2, the

dominance rule never applies. Indeed, T F
i,1 < T F

i,2⇔ T negF
i,1 > T negF

i,2 . To increase
the possibility of dominance once the lower bound is reached, we can replace
the above extension function for resource negF by

T negF
j = max{−70,T negF

i − fi j}.

7.21 B&P&C strategies for various applications
Compare your strategies with those in the suggested references.

(a) One-dimensional cutting stock problem
Desaulniers et al. (2011)

(b) Aircraft routing with schedule synchronization
Ioachim et al. (1999)

(c) Scene selection problem
Jans and Desrosiers (2010)

(d) Design of balanced student teams
Desrosiers et al. (2005)

(e) Multiple depot vehicle scheduling problem
Ribeiro and Soumis (1994)

(f) Pickup and delivery problem with time windows
Dumas et al. (1991); Røpke and Cordeau (2009)

(g) Crew pairing problem with base constraints
Quesnel et al. (2017)

(h) Capacitated p-median problem
Ceselli and Righini (2005)

(i) Generalized assignment problem
Savelsbergh (1997); Barnhart et al. (1998)



Solutions (8. Conclusion) 631

Exercises of Chapter 8

8.1 François Soumis
This François holds a master’s degree in mathematics (topology) from the Dépar-
tement de mathématiques et de statistique (Université de Montréal). He continued
his studies at the Département d’informatique et de recherche opérationnelle and
obtained a PhD (1979) in operations research under the supervision of Professors
Jacques A. Ferland and Jean-Marc Rousseau (co-founder of GIRO).

Since the start of the GENCOL team with Jacques in 1981, François-x is known
to largely prefer the convexification approach over the discretization one (although
he is always open to new ideas). At the time of writing, he has supervised or co-
supervised 107 master’s and 68 doctoral students, his contributions to decomposi-
tion methods (such as Dantzig-Wolfe and Benders) are numerous, both on theory
and efficient resolution of large-scale applications. To name a few, consider the fol-
lowing list where his inspiration is decisive, with the theoretical innovations on the
left and applications on the right:

Constrained shortest path algorithms Urban transit systems
k-path cuts and z-cuts Telecommunication networks
A crossover method Automated vehicles
Branch-first, Cut-second strategy Airline crew scheduling
Existence of a compact formulation Aircraft routing
Constraints aggregation for the SPP Flight planing
Improved primal simplex Production scheduling
Positive edge rule Real-time control of mining trucks
Integral simplex for the SPP Locomotive assignment
Lagrangian decomposition Shift scheduling
Primal Benders Fractional aircraft ownership operations

In the late 1980s, Montreal-based GIRO, which today supplies bus and metro
scheduling software to over 300 cities worldwide, funded the university team to de-
velop a commercial version of GENCOL. This led to the creation of the Crew-Opt
optimizer, subsequently integrated into the HASTUS software, a world reference in
the scheduling of public transit services.

In 1987, François co-founded AD OPT Technologies to put the fruits of his re-
search into practice. The company creates and markets a real-time planning and
optimization system for trucks in open-pit mines. The system is implemented in six
mines in Québec, Brazil, India, and the United States.

Marketing of air transport products began in the early 1990s, with UPS as its
first customer, followed by Air Transat, Air Canada, Quantas, FedEx, etc. Over the
years, AD OPT has done business with some thirty airlines, while developing the
Altitude software suite:

https://dms.umontreal.ca
https://dms.umontreal.ca
https://diro.umontreal.ca/english/home/
https://giro.ca
https://ad-opt.com
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• Pairing
Builds cost-effective pairings meeting all rules, regulations, and fatigue targets.

• Rostering
Creates monthly schedules for pilots and flight attendants.

• PBS (Preferential Bidding System)
Takes into account crew member preferences, collective agreements, and preas-
signed tasks.

• BLISS (BidLine Integrated Scheduling System)
Builds quality lines by offering user-driven, flexible line generation.

• Intuitive Crew Interface
Allows crew members to enter preferences and requests through web and mo-
bile devices for upcoming planning periods.

• Insight
Manages short-term and long-term planning requirements for every applicable
category of crew member.

The company also designs schedules for shift workers in a wide range of industries
such as retail, factories, hospitals, and service centers (ShiftLogic).

From 1992 to 1996, François is the director of the GERAD research center whose
members come from the seven universities in Montréal: specialists in data and de-
cision sciences, computer scientists, applied mathematicians, and mathematical en-
gineers. Moreover, and for several years, the GENCOL team comprises up to 35
students, programmers, professors, and researchers.

In 1999, AD OPT enters the Toronto Stock Exchange and, with its 250 employ-
ees, is subsequently acquired by Kronos in 2004, a world leader in workforce man-
agement solutions. In 2019, the AD OPT division is sold to the aviation and trans-
portation IT services provider IBS Software.

From 2014 to 2017, François is the founding director of IVADO (Institut de val-
orisation des données), which is now a huge research organization in artificial intel-
ligence (AI) and optimization.

IVADO is an interdisciplinary, cross-sectoral research, training and knowledge mobilization
consortium whose mission is to develop and promote a robust, reasoning and responsible
AI. Led by Université de Montréal with four university partners (Polytechnique Montréal,
HEC Montréal, Université Laval and McGill University), IVADO brings together research
centres, government bodies and industry members to co-build ambitious cross-sectoral ini-
tiatives with the goal of fostering a paradigm shift for AI and its adoption. – IVADO

We could go on with his achievements but summarize with a potpourri that high-
lights the extent of his career. The prize Lionel-Boulet is “awarded by the Québec
government since 1999 to a person who has led an outstanding career in industrial
research.” Those who had the opportunity to discuss with François know that this is
a well-deserved recognition, not only because of his exceptional research skills and
strong business acumen, but also his lovable nature.

• programmer at the computing center (Université de Montréal)
• IT analyst at Sainte-Justine Hospital in Montréal

https://gerad.ca/en
https://ibsplc.com
https://ivado.ca/en/about-us/
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• researcher at HEC Montréal
• professor in Rwanda for the Canadian International Development Agency
• gentleman farmer selling tomatoes at 4 in the morning at the market place
• professor at Polytechnique Montréal (polymtl.ca/expertises/en/soumis-francois)
• artist-sculptor
• laureate of the Prix du Québec Lionel-Boulet (2014)

By the way, he is a formidable squash/chess/backgammon player who we have
learned by now not to bet against. He also loves French wines and once made with
Jacques two gallons of maple syrup of dubious dark color over an open wood fire
(Spring 1981). Did we mention that he and Jacques are good friends? Well, the same
is true for Guy who happens to have been supervised for his PhD by François. In the
midst of this reminiscence, we cannot help but mention a few others: Mirela, Goran,
and the late Egon (1922–2019).

8.2 Undivided attention
Look out for an errata appendix and do not hesitate to drop us a line should it prove
incomplete.

https://polymtl.ca/expertises/en/soumis-francois
https://prixduquebec.gouv.qc.ca/recipiendaires/francois-soumis/
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Olivier Briant, Claude Lemaréchal, Philippe Meurdesoif, Sophie Michel, Nancy Perrot, and
François Vanderbeck. Comparison of bundle and classical column generation. Mathematical
Programming, 113(2):299–344, December 2008. doi:10.1007/s10107-006-0079-z.

E. Rod Butchers, Paul R. Day, Andrew P. Goldie, Stephen Miller, Jeff A. Meyer, David Murray
Ryan, Amanda C. Scott, and Chris A. Wallace. Optimized crew scheduling at Air New Zealand.
Interfaces, 31(1):30–56, January–February 2001. doi:10.1287/inte.31.1.30.9688.

Giorgio Carpaneto and Paolo Toth. Some new branching and bounding criteria for the
asymmetric travelling salesman problem. Management Science, 26(7):736–743, July 1980.
doi:10.1287/mnsc.26.7.736.

Alberto Ceselli and Giovanni Righini. A branch-and-price algorithm for the capacitated p-median
problem. Networks, 45(3):125–142, May 2005. doi:10.1002/net.20059.

Abraham Charnes and William Wager Cooper. The strong Minkowski-Farkas-Weyl theorem for
vector spaces over ordered fields. Proceedings of the National Academy of Sciences, 44(9):
914–916, September 1958. doi:10.1073/pnas.44.9.914.

Abraham Charnes and William Wager Cooper. On some works of Kantorovich, Koopmans and
others. Management Science, 8(3):246–263, 1962. doi:10.1287/mnsc.8.3.246.

Elliott Ward Cheney, Jr. and Allen Abbey Goldstein. Newton’s method for convex programming
and Tchebycheff approximation. Numerische Mathematik, 1(1):253–268, December 1959.
doi:10.1007/BF01386389.

Marilène Cherkesly, Guy Desaulniers, and Gilbert Laporte. Branch-price-and-cut algorithms for
the pickup and delivery problem with time windows and last-in-first-out loading. Transportation
Science, 49(4):752–766, 2015. doi:10.1287/trsc.2014.0535.

Marilène Cherkesly, Guy Desaulniers, Stefan Irnich, and Gilbert Laporte. Branch-price-and-cut al-
gorithms for the pickup and delivery problem with time windows and multiple stacks. European
Journal of Operational Research, 250(3):782–793, 2016. doi:10.1016/j.ejor.2015.10.046.
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sur les Transports, Montreal, QC, Canada, 1986. Publication #470 (in French).

Martin Desrochers. An algorithm for the shortest path problem with resource constraints. Les
Cahiers du GERAD G-88-27, HEC Montréal, Montreal, QC, Canada, 1988.
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eration for degenerate master problems. European Journal of Operational Research, 236(2):
453–460, July 2014. doi:10.1016/j.ejor.2013.12.016.

Edsger Wybe Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1(1):269–271, December 1959. doi:10.1007/BF01386390.

Olivier du Merle, Daniel Villeneuve, Jacques Desrosiers, and Pierre Hansen. Stabilized col-
umn generation. Discrete Mathematics, 194(1–3):229–237, January 1999. doi:10.1016/S0012-
365X(98)00213-1.

Yvan Dumas, Jacques Desrosiers, and François Soumis. The pickup and delivery problem with
time windows. European Journal of Operational Research, 54(1):7–22, September 1991.
doi:10.1016/0377-2217(91)90319-Q.

Yvan Dumas, Jacques Desrosiers, Éric Gélinas, and Marius Mihai Solomon. An optimal algorithm
for the traveling salesman problem with time windows. Operations Research, 43(2):367–371,
April 1995. doi:10.1287/opre.43.2.367.

Bernard P. Dzielinski and Ralph Edward Gomory. Optimal programming of lot sizes, inventory and
labor allocations. Management Science, 11(9):874–890, July 1965. doi:10.1287/mnsc.11.9.874.

Jack Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of Research of the
National Bureau of Standards Section B Mathematics and Mathematical Physics, 69B(1 and 2):
125–130, December 1965. doi:10.6028/jres.069B.013.

Jack Edmonds. Matroids and the greedy algorithm. Mathematical Programming, 1(1):127–136,
December 1971. doi:10.1007/BF01584082.

Matthias Ehrgott. Multicriteria Optimization. Springer, Berlin Heidelberg, 2nd edition, 2005.
doi:10.1007/3-540-27659-9.

Issmail El Hallaoui, Daniel Villeneuve, François Soumis, and Guy Desaulniers. Dynamic aggrega-
tion of set-partitioning constraints in column generation. Operations Research, 53(4):632–645,
August 2005. doi:10.1287/opre.1050.0222.

Issmail El Hallaoui, Guy Desaulniers, Abdelmoutalib Metrane, and François Soumis. Bi-dynamic
constraint aggregation and subproblem reduction. Computers & Operations Research, 35(5):
1713–1724, May 2008. doi:10.1016/j.cor.2006.10.007.

Issmail El Hallaoui, Abdelmoutalib Metrane, François Soumis, and Guy Desaulniers. Multi-phase
dynamic constraint aggregation for set partitioning type problems. Mathematical Programming,
123(2):345–370, June 2010. doi:10.1007/s10107-008-0254-5.

Issmail El Hallaoui, Abdelmoutalib Metrane, Guy Desaulniers, and François Soumis. An improved
primal simplex algorithm for degenerate linear programs. INFORMS Journal on Computing,
23(4):569–577, Fall 2011. doi:10.1287/ijoc.1100.0425.

Salah Eldin Elmaghraby. Activity networks: project planning and control by network models. John
Wiley & Sons, New York, 1977.

Gary Dean Eppen and Richard Kipp Martin. Solving multi-item capacitated lot-sizing problems
using variable redefinition. Operations Research, 35(6):832–848, November–December 1987.
doi:10.1287/opre.35.6.832.

Donald Erlenkotter. A dual-based procedure for uncapacitated facility location. Operations Re-
search, 26(6):992–1009, November–December 1978. doi:10.1287/opre.26.6.992.

Fausto Errico, Guy Desaulniers, Michel Gendreau, Walter Rei, and Louis-Martin Rousseau. A pri-
ori optimization with recourse for the vehicle routing problem with hard time windows and
stochastic service times. European Journal of Operational Research, 249(1):55–66, 2016.
doi:10.1016/j.ejor.2015.07.027.

Fausto Errico, Guy Desaulniers, Michel Gendreau, Walter Rei, and Louis-Martin Rousseau. The
vehicle routing problem with hard time windows and stochastic service times. EURO Journal on
Transportation and Logistics, 7(3):223–251, September 2018. doi:10.1007/s13676-016-0101-
4.

Shimon Even, Alon Itai, and Adi Shamir. On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing, 5(4):691–703, 1976. doi:10.1137/0205048.

Julie C. Falkner and David Murray Ryan. Aspects of bus crew scheduling using a set partitioning
model. In Joachim R. Daduna and Anthony Wren, editors, Computer-Aided Transit Schedul-

https://doi.org/10.1016/j.ejor.2013.12.016
https://doi.org/10.1007/BF01386390
https://doi.org/10.1016/S0012-365X(98)00213-1
https://doi.org/10.1016/S0012-365X(98)00213-1
https://doi.org/10.1016/0377-2217(91)90319-Q
https://doi.org/10.1287/opre.43.2.367
https://doi.org/10.1287/mnsc.11.9.874
https://doi.org/10.6028/jres.069B.013
https://doi.org/10.1007/BF01584082
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1287/opre.1050.0222
https://doi.org/10.1016/j.cor.2006.10.007
https://doi.org/10.1007/s10107-008-0254-5
https://doi.org/10.1287/ijoc.1100.0425
https://doi.org/10.1287/opre.35.6.832
https://doi.org/10.1287/opre.26.6.992
https://doi.org/10.1016/j.ejor.2015.07.027
https://doi.org/10.1007/s13676-016-0101-4
https://doi.org/10.1007/s13676-016-0101-4
https://doi.org/10.1137/0205048


References 643

ing, volume 308 of Lecture Note in Economics Mathematical Systems, pages 91–103. Springer,
Berlin Heidelberg, 1988. doi:10.1007/978-3-642-85966-3 9.

Alan Arthur Farley. A note on bounding a class of linear programming problems, includ-
ing cutting stock problems. Operations Research, 38(5):922–923, September–October 1990.
doi:10.1287/opre.38.5.922.

Dominique Feillet. A tutorial on column generation and branch-and-price for vehicle routing
problems. 4OR, 8(4):407–424, June 2010. doi:10.1007/s10288-010-0130-z.

Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille Gueguen. An exact algorithm for
the elementary shortest path problem with resource constraints: Application to some vehicle
routing problems. Networks, 44(3):216–229, August 2004. doi:10.1002/net.20033.

Michael C. Ferris and Jeffrey D. Horn. Partitioning mathematical programs for parallel solution.
Mathematical Programming, 80:35–61, January 1998. doi:10.1007/BF01582130.

Marshall Lee Fisher. The Lagrangian relaxation method for solving integer programming prob-
lems. Management Science, 27(1):1–18, December 1981. doi:10.1287/mnsc.1040.0263.

Robert W Floyd. Algorithm 97: Shortest Path. Communications of the ACM, 5(6):345, June 1962.
doi:10.1145/367766.368168.

Lester Randolph Ford, Jr. and Delbert Ray Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

Lester Randolph Ford, Jr. and Delbert Ray Fulkerson. A suggested computation for max-
imal multicommodity network flows. Management Science, 5(1):97–101, October 1958.
doi:10.1287/mnsc.5.1.97.

John J. H. Forrest and John A. Tomlin. Updated triangular factors of the basis to maintain sparsity
in the product form simplex method. Mathematical Programming, 2(1):263–278, February
1972. doi:10.1007/BF01584548.

Omar Foutlane, Issmail El Hallaoui, and Pierre Hansen. Distributed integral column gener-
ation for set partitioning problems. Operations Research Forum, 3(2):27–48, April 2022.
doi:10.1007/s43069-022-00136-w.

Antonio Frangioni. Generalized bundle methods. SIAM Journal on Optimization, 13(1):117–156,
2002. doi:10.1137/S1052623498342186.

Antonio Frangioni and Enrico Gorgone. Bundle methods for sum-functions with “easy” compo-
nents: applications to multicommodity network design. Mathematical Programming, 145(1):
133–161, February 2014. doi:10.1007/s10107-013-0642-3.

Michael Lawrence Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. In 25th Annual Symposium on Foundations of Computer
Science, 1984., pages 338–346. IEEE, October 1984. doi:10.1109/SFCS.1984.715934.

Michael Lawrence Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in im-
proved network optimization algorithms. Journal of the ACM, 34(3):596–615, July 1987.
doi:10.1145/28869.28874.

Ricardo Fukasawa, Humberto Longo, Jens Lysgaard, Marcus Poggi de Aragão, Marcelo Reis,
Eduardo Uchoa, and Renato Fonseca Werneck. Robust branch-and-cut-and-price for the ca-
pacitated vehicle routing problem. Mathematical Programming, 106(3):491–511, May 2006.
doi:10.1007/s10107-005-0644-x.

Michel Gamache, François Soumis, Daniel Villeneuve, Jacques Desrosiers, and Éric Gélinas. The
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Marco E. Lübbecke. Dual variable based fathoming in dynamic programs for column
generation. European Journal of Operational Research, 162(1):122–125, April 2005.
doi:10.1016/j.ejor.2003.05.006.
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empty line

BRANCH-AND-PRICE

Integer (linear) programs are a standard way of formalizing
a vast array of optimization problems in industry, services,
management, science, and technology. By the logic of the
underlying business problem, such models are often com-
posed of independent building blocks that are kept together
by, e.g., spatial, temporal, or financial constraints. Over the
years, Branch-and-Price, i.e., column generation applied in
every node of a search tree, became a, likely the standard ap-
proach to solving such structured integer programs.

The charm of the method lies in its ability to leverage algo-
rithms for the building blocks by way of decomposition. Hun-
dreds and hundreds of papers have been written on successful
applications in logistics, transportation, production, energy,
health care, education, politics, sports, etc. Besides collect-
ing and unifying the literature, the authors, that is, Jacques,
Marco, Guy, and Jean Bertrand, wanted to share their experi-
ence with the subject.
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