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Abstract : The truck loading and inventory routing problems are the two most important decisions
made by companies replenishing petrol stations. This paper investigates a complex petrol station
replenishment problem (PSRP) that integrates the truck loading problem (TLP) and the inventory
routing problem (IRP). We introduce a compact mixed-integer linear programming formulation for
the problem. Given its complexity, the compact formulation cannot be solved by general-purpose
solvers, even for small instances. Driven by a decoupling intuition, we develop an exact two-phase
solution approach that combines Benders decomposition and column generation. In the first phase, we
solve the relaxed (integrality) Benders subproblems using column generation until the inventory levels
stabilize. In the second phase, we solve the Benders subproblems using column generation embedded
in a branch-and-bound framework. We enhance our approach with acceleration strategies, including
warm-start, parallelism, a hashing technique, and a primal diving heuristic. Extensive computational
results using real-world instances from a geographical zone in West Africa highlight the strength of our
approach. We reach near-optimal solutions in all these instances and note that acceleration strategies
significantly boost the performance of our two-phase method. We generate several managerial insights
that highlight our approach’s benefits.

Keywords: Petrol station replenishment, inventory routing, truck loading, Benders decomposition,
column generation, branch-and-price
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1 Introduction
Despite the slow introduction of electric vehicles, petrol stations remain crucial nodes in the global sup-
ply chain and have been evolving continuously for more than 40 years. Due to this growth, the number
and size of vehicles using petrol energy from petrol stations have increased significantly. Consequently,
petroleum distribution companies made huge investments in the infrastructure. To capitalize on these
investments, these companies rely heavily on business analytics. Nowadays, predictive and prescrip-
tive data analytics are impossible to achieve without effective mathematical optimization tools. The
emerging synergy between business analytics and operations research involves new challenges for the
next generation of exact algorithms. Even with the remarkable development of general-purpose solvers
over the past 10 years, finding optimal solutions for most of the significant combinatorial optimization
problems is still out of reach, especially for mixed-integer linear programming (MILP) models with
millions of variables.

This paper investigates a complex variant of one of the well-studied problems in the operations re-
search literature: the petrol station replenishment problem (PSRP). Given a set of multi-compartment
trucks, the PSRP integrates the truck loading problem (TLP) and inventory routing problem (IRP).
The TLP aims to determine the quantity of each type of product to load into the truck’s compartments
without exceeding the compartments’ capacities and simultaneously satisfying the demand for each
product and each client. A vehicle may carry one or several products, and each truck compartment
may be fully or partially filled with a single product when the truck leaves the depot. The IRP seeks
to optimize, throughout a given time horizon and day by day, each client demand, by using optimal
routes. The solution has to satisfy the route capacity and guarantee that each client has, in each
period, a sufficient quantity for daily consumption. Figure 1 illustrates a petrol station replenishment
process.

3-Compartment Truck

5-Compartment TruckDepot

t
Petrol Station

t

t

t t

t

Figure 1: Illustration of a Petrol Station Replenishment Process

1.1 Our contribution

Motivated by the recently emerging applications in inventory management (Bertsimas et al., 2016) and
routing (Reed et al., 2022), our study addresses the methodological challenge of developing a highly
scalable approach for solving large-scale PSRP optimization problems and other similar ones. While
addressing a complex variant of the PSRP, this paper is a case study enhancing the development of
exact MILP-based solutions for large-scale optimization problems involving inventory management and
routing problems. Our approach is based on the intuition of decoupling inventory and routing decisions.
This intuition comes from observing that when the inventory levels are fixed, the routing can be solved
efficiently using existing operations research techniques. We believe our approach is a significant leap
in the right direction for three reasons. First, the approach demonstrates the effectiveness of decou-
pling classical operations research models by using current technology. Indeed, the current technology
provides a reason to criticize, review, and implement methods that decouple complex decisions since
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they are inherently more scalable. Second, several companies now keep a history of good solutions
(obtained, for instance, using heuristics or machine learning). Using these solutions as an input to
the mathematical model (e.g., warm-start, initial cuts, fixing some variables) will make it possible to
reach optimal solution(s) quickly. Third, the insights presented in this paper are easily implementable,
scalable, and generic enough to be applied to other problems that involve a synchronized inventory
and the routing of multiple resources, and they can be tailored for such purposes.

The complex variant of the PSRP addressed in this paper is the multi-depot, multi-period PSRP
with inventory management (MDMPPSRPIM). Thanks to our proposed approach, we can solve in
under a minute models whose compact MILP formulations cannot be solved by a general-purpose
solver, even for small instances. Our research has yielded five outcomes:

1. We combine Benders Decomposition (BD) and column generation (CG) in a two-phase (Phase 1
and Phase 2 ) approach to solve exactly the MDMPPSRPIM, with inventory management at the
depots and the clients.

2. We use BD to accomplish the decoupling intuition. We manage inventory in the Benders master
problem and tackle the routing in the Benders subproblem(s). Since the inventory variables
are continuous, the Benders master problem is solved quickly, without adding complexity to the
problem. The Benders master problem can further be tightened with initial cuts obtained from
existing heuristics in the literature or user-specific heuristics. The BD decomposition smartly
reduces the complexity that is faced when considering the whole horizon, to a period-specific
complexity, which is significantly better.

3. We use CG to solve the Benders subproblems and smartly tackle these subproblems’ integrality
using a two-phase approach. In Phase 1, we relax the integrality of the Benders subproblems and
use an efficient label-correcting algorithm for generating columns. In Phase 2, we re-establish the
integrality of the Benders subproblems and implement a tailored branching scheme to identify
integer solutions and obtain Benders cuts. We leverage insights from Bani et al. (2023) to solve
the Benders subproblems efficiently,

4. We propose several acceleration strategies that significantly improve the performance of the
approach, including warm-start, parallelism, hashing techniques, and primal diving heuristics.
In particular, warm-start makes it possible to decrease the execution time from hours to minutes
for large instances.

5. As a proof of concept, we conduct extensive numerical experiments using real data instances from
a geographical zone in West Africa. The results and managerial insights demonstrate the strength
of our approach and show that it can obtain near-optimal solutions for real-world instances. We
believe that our approach remains scalable for larger instances: decomposition by zone is always
possible, the number of clients per route remains moderate due to real-life truck sizes, and the
integrality of the Benders subproblems can still be well managed when increasing the size.

The remainder of this paper is organized as follows. We discuss the relevant literature in Section 2.
We describe the problem and formulate it as a compact MILP model in Sections 3 and 4. Our
solution approach is highlighted in 5, followed by computational experiments and their interpretation
in Section 6. Section 7 presents the general conclusion with some directions for future research.

2 Literature review
In the literature, among many problems related to petrol station replenishment operations, the ones
significantly linked to the MDMPPSRPIM are the TLP, the IRP, and the PSRP. In the following, we
review studies that focus on these problems. Then, we highlight the papers that combine BD and CG.
Lastly, we position our paper in the literature and highlight the gaps filled.
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2.1 The Truck Loading Problem

The TLP studied in this paper can be seen as a specific case of the container loading problem (Pisinger,
2002; Bortfeldt and Wäscher, 2013). The specificity is that each compartment can be allocated to, at
most, a single product and a single client. The main reason for this is the prohibition against mixing
multiple products, which is the case in several real contexts, including petrol distribution and olive oil
collection (Androutsopoulos and Karouti, 2022).

In the petrol distribution context, Cornillier et al. (2008a) tackle the TLP as a subproblem of the
PSRP, which was formulated as a set partitioning problem and solved using CG. Any route considered
in the CG process involves a TLP that aims to assign the deliverable quantity of each product to the
trucks’ compartments. The objective of the TLP is to maximize the total petrol quantity delivered.
A close TLP was tackled by the same group in Cornillier et al. (2008a) while solving a multi-period
PSRP. To check the feasibility of any (heuristically) selected route, they solve the TLP introduced in
Cornillier et al. (2008a). In another variant, the TLP arises as a subproblem for checking the feasibility
of the constructed routes for the PSRP with time windows (Cornillier et al., 2009). The main difference
is that this TLP objective maximizes the total revenue (instead of quantity) from the delivered petrol.
Wang et al. (2020) introduce a different TLP for the PSRP with similar compartments. The latter
are equipped with flow meters, which make it possible for compartments to be assigned to multiple
orders of the same petrol product. Homogeneous compartments make the problem easier since the
TLP becomes equivalent to assigning petrol quantities (to the compartments) instead of client-order
quantities. Bani et al. (2023) design a hashing technique where, at each iteration, the solved TLPs
are memorized, to be used in subsequent iterations. This hashing technique reduces the number of
MILPs to be solved in a given iteration (tens of millions in one iteration of CG). Thus, the execution
time of the CG subproblem labeling algorithm decreases significantly. Furthermore, after exploring
the clients’ total orders, they show that it is possible to tighten several resources (e.g., the tank truck
capacity and the number of compartments required).

2.2 The Inventory Routing Problem

By the end of 2023, the IRP had been around for about 40 years. It can be seen as a combination
of the vehicle routing problem (VRP) and the inventory management problem (IMP). The aim is to
optimize the delivery of a set of products to a set of clients while respecting several constraints. The
optimal solution provides integrated scheduling with the following insights: (1) the optimal inventory
management policy, (2) the optimal routes for product delivery, and (3) the optimal delivery schedules.
Several metaheuristics, matheuristics, and a few exact methods have been developed for the IRP. More
details can be found in Coelho et al. (2014), Archetti and Ljubić (2022), and Cui et al. (2023).

The IRP is known to be a very complex problem, which made it highly popular within the oper-
ations research community. In terms of heuristic approaches, many recent contributions are based on
metaheuristics or matheuristics methods (Archetti et al., 2012, 2017; Chitsaz et al., 2019; Coelho et al.,
2012). As for exact approaches, the first approach for the IRP was developed by Archetti et al. (2007)
for the single-vehicle case. More recently, exact approaches for the multi-vehicle case have emerged.
Generally, these approaches are based on branch-and-cut frameworks (Adulyasak et al., 2014; Avella
et al., 2018; Manousakis et al., 2021). Desaulniers et al. (2016) are the only ones who propose a branch-
and-price algorithm with various valid inequalities. In the computational results, they compare their
algorithm with the branch-and-cut algorithm proposed by Coelho and Laporte (2013). The results
show that neither algorithm outperforms the other, with branch-and-price performing better for large
instances with many vehicles and vice versa.

2.3 The Petrol Station Replenishment Problem

The PSRP, a known variant of the multi-compartment vehicle routing problem (MCVRP), has been
studied intensively in the literature (Dantzig and Ramser, 1959; Ostermeier et al., 2021; Coelho and
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Laporte, 2015). Compared to the traditional vehicle routing problem with a single product and a single
compartment per vehicle, the MCVRP is a generalization with the following characteristics: (1) a client
demand might include multiple heterogeneous products; (2) each vehicle has multiple compartments
with different configurations and sizes; (3) all products delivered on a route must be assigned a priori
to a vehicle’s compartments; (4) some products must not be mixed in one compartment. More details
can be found in the surveys of Cornillier et al. (2012) and Wang et al. (2020).

The PSRP can be classified into five variants based on these three features: the number of periods,
the number of depots, and the consideration of time windows or not. The variants are (1) the basic
PSRP with one depot, a single-period, and no time windows (Brown and Graves, 1981), (2) the
multi-period PSRP, referred to as MPPSRP (Triki, 2013; Archetti et al., 2015), (3) the PSRP with
time windows, referred to as PSRPTW (Cornillier et al., 2009), (4) the multi-depot PSRP with time
windows, referred to as MDPSRPTW (Cornillier et al., 2012), (5) the multi-depot, multi-period PSRP,
referred to as MDMPPSRP (Carotenuto et al., 2018; Bani et al., 2023). Carotenuto et al. (2018)
tackle the MDMPPSRP by considering a single product and homogeneous trucks of a fixed capacity.
Bani et al. (2023) solve the MDMPPSRP with multiple products and a heterogeneous fleet of multi-
compartmented tank trucks.

Most literature papers rely on heuristic approaches to solve the PSRP variants. The main meta-
heuristics used are (1) cluster first and route second, where the clustering is based on expert consider-
ations and geographic limitation; (2) adapted variable neighborhood search (Hansen and Mladenović,
2001); (3) load first and route second; and (4) tailored heuristics. Vidović et al. (2014) decompose
the problem into an inventory and a routing problem. The initial solution found by the heuristic is
improved using a local search procedure based on shifting the content of the compartment of a vehi-
cle between days in the planning period. Generally, neither lower bounds nor optimal solutions are
confirmed for the variants addressed.

Few papers have attempted to tackle the PSRP exactly, even for small instances. Cornillier et al.
(2008a) decompose the basic PSRP using an a priori CG scheme into two subproblems: the TLP
and the routing problem (RP). They consider just two clients per route. The TLP is used to assign
orders to compartments to maximize the profit. The RP is used to select routes that minimize total
transportation costs. Avella et al. (2004) propose a branch-and-price algorithm for the basic PSRP,
where they consider multiple clients per route. The authors use a heuristic approach to provide
an initial set of columns to initialize the branch-and-price algorithm. Their approach is tested on
realistic instances, which consist of 25 clients and 6 trucks of 3 different types with 3 compartments
each. Benantar et al. (2016) solve small MPPSRP instances with 15 clients, 2 product types, and 2
compartments using CPLEX. Cornillier et al. (2012) propose an exact model for MDPSRPTW that
selects, among a set of feasible routes, the subset that satisfies the demand while maximizing the
total daily net revenue. Since the number of possible routes is often exponential, the authors propose
an alternative heuristic approach. Bani et al. (2023) address the MDMPPSRP and show that this
complex variant can be solved with an exact branch-and-price approach and some derived heuristics.

2.4 Combining Benders Decomposition and Column Generation

BD has been applied to tackle large-scale optimization problems (Fischetti et al., 2017) with compli-
cating variables, which, when temporarily fixed, yield problems that are significantly easier to solve.
A comprehensive review of the method is available in Rahmaniani et al. (2017). CG is an efficient
algorithm for solving large linear programs (LPs) with an exponential number of variables (columns).
A detailed review is available in Desaulniers et al. (2006) and Lübbecke and Desrosiers (2005).

In large-scale contexts, combining BD and CG has emerged as a new approach that exploits the
primal and the dual problem structures. Cordeau et al. (2001) employ it for simultaneous aircraft
routing and crew scheduling problems. The aircraft routing is the Benders master problem, while the
crew scheduling problem is the Benders subproblem. Then, both are solved using CG. The authors
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introduce a three-phase approach. In the first phase, the integrality restrictions are relaxed. In the
second phase, the integrality restrictions are added to the Benders master problem. In the third phase,
the integrality restrictions are added to the Benders master problem and subproblem. Zeighami and
Soumis (2019) combine BD and CG to tackle crew pairing and crew assignment problems in airline
planning. The crew pairing problem represents the Benders master problem, while the (co)pilots
subproblems represent the Benders subproblems, i.e., one for the pilots and one for the copilots. Given
the exponential number of variables in the subproblems, they use CG to solve them. Wu et al. (2022)
investigate a vessel service planning problem (VSPP) in seaports that integrates berth allocation and
pilotage planning. The berth allocation problem is the Benders master problem, while the Benders
subproblem is the pilotage scheduling problem. Both problems are solved using CG. Unlike Cordeau
et al. (2001), where the last phase is solved just once (which does not guarantee optimality), Zeighami
and Soumis (2019) solve the last phase by generating Benders cuts until the optimality condition is
reached, and Wu et al. (2022) propose a branching scheme that enables their approach to determine
an optimal solution to the VSPP.

2.5 Paper positioning

To the best of our knowledge, no paper in the literature tackles the MDMPPSRPIM exactly (See
Table 1). Heuristics are the dominating techniques, which implies no guarantee of the solutions’
quality. The closest papers to ours are Cornillier et al. (2008b) and Vidović et al. (2014). Cornillier
et al. (2008b) tackle a similar problem, with one depot and two clients per route, using a multi-phase
heuristic. Vidović et al. (2014) use two constructive heuristics to solve the MDMPPSRPIM over five
days using homogeneous four-compartment trucks. They do not consider the depot inventory. Since
we decouple inventory and routing, these heuristics, which we improve, can be used as initial cuts or
upper bounds in our exact approach.

Table 1: Past close studies
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Cornillier et al. (2008b) ✓ ✓ ✓ ≤ 2 ✓
Cornillier et al. (2012) ✓ ✓ ≥ 1 ✓
Vidović et al. (2014) ✓ ✓ ✓ ≤ 4 ✓
Carotenuto et al. (2018) ✓ ✓ ✓ ✓ ≥ 1 ✓
Boers et al. (2020) ✓ ✓ ✓ ✓ ≥ 1 ✓
Bani et al. (2023) ✓ ✓ ✓ ✓ ≥ 1 ✓
This paper ✓ ✓ ✓ ✓ ✓ ✓ ≥ 1 ✓

In this paper, we leverage the insights in Bani et al. (2023) and tackle the MDMPPSRPIM exactly
by combining BD and CG. Our paper extends the works highlighted above in four directions. First,
we consider more realistic cases with inventory management taking place both at the depots and the
clients, a heterogeneous fleet of highly compartmentalized trucks, up to four months in the planning
horizon, up to four depots, up to four products, up to 65 clients, and no limit on the number of clients
per route. The trucks have up to 15 compartments each. Second, we design a tailored two-phase
approach that makes it possible to find an optimal solution to the MDMPPSRPIM. While several
papers combine BD and CG in the literature (Cordeau et al., 2001; Zeighami and Soumis, 2019; Wu
et al., 2022), the uniqueness of the MDMPPSRPIM does not allow for direct applications of the existing
solution approaches based on this combination. Third, we propose several acceleration strategies that
have proven to be very effective in improving the performance of the approach. Fourth, the proposed
method is generic for a large family of problems with inventory variables and large integrality gaps.
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It tackles the Benders subproblems integrality well and requires few adjustments that need specific
complex development (e.g., the user rules can be easily implemented).

3 Problem description
The MDMPPSRPIM seeks to find an optimal petrol replenishment schedule over a planning horizon
(e.g., week, month, quarter) from a set of depots to a set of clients, using a heterogeneous fleet
of multi-compartment trucks. An optimal schedule provides the loading of these products into the
compartments of the trucks, the timing and quantities of products to be delivered to each client, the
delivery routes for the trucks, the inventory levels at the depots and clients at each period, and the
assignment of routes to available tank trucks. The optimal petrol replenishment schedule minimizes
the total costs involved, including the total distance cost, unloading cost, penalty cost for using tank
trucks, penalty for free space in tank trucks, and inventory costs.

The first step is to load different product types onto trucks from the depots. We assume the depots
have storage tanks and can order petrol products to fulfill the total demand. A truck may carry more
than one product, and each truck compartment may be fully or partially filled with a single product
when leaving the depot. The product distribution is carried out by a heterogeneous fleet of tank
trucks. We distinguish between several types of tank trucks depending on their capacities and number
of compartments. The tank trucks may not all be available at the same time. Each tank truck has
several compartments, and each compartment has a fixed capacity.

An order placed by a client consists of a specific product, its associated requested volume, and a
due date. A client may order one or several types of petrol products. The weekly client orders are
computed from their average daily consumptions and thus are known before the week of delivery. The
inventory of each petrol station is managed by the petroleum distribution company. The auditors of
the petroleum company collaborate daily with the managers of the petrol stations to have up-to-date
information (e.g., levels of the tanks, sales, and consumption rates). The final decision to replenish a
petrol station to a certain level depends on the volumes of petrol available at the petroleum distribution
company depots. In other words, the stations do not specify the visit periods or the quantities of each
product type to be delivered. The loading time at each depot, the waiting time, and the unloading
time at each client are assumed constant.

Table 2: General rules

Rule Definition

R1 Some clients cannot accommodate large tank trucks due to accessibility constraints.
R2 Demand satisfaction: each product ordered by a client must be served by a single tank truck.
R3 The quantities of products at the depots are limited.
R4 Only one product ordered by a client is permitted per compartment.
R5 The daily total travel time must not exceed the total working time in a day.

Some general rules must be enforced (see Table 2). Furthermore, a certain percentage of the
petroleum products carried transforms into gas en route, due to friction between the liquid and the
compartment walls, thereby changing the shape and volume of the compartments. This phenomenon
is called sloshing. So, avoiding free space in a tank truck is highly recommended. Thus, we penalize
free space in the trucks, as mentioned when discussing the various costs to minimize.

4 Mathematical formulation
In this section, we first describe the MDMPPSRPIM and then highlight the mathematical formulation.
We first introduce the MDMPPSRPIM network representation before presenting the MDMPPSRPIM’s
MILP formulation. For the notation, summarized in Table 3, sets are in calligraphic style, parameters
are in bold, and decision variables are in italics.
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Table 3: MDMPPSRPIM Notation

Notation Definition

Sets

P Set of all products p ∈ P
N Set of all client-product nodes n ∈ N : each client-product node corresponds to an order of one product

by a client
Np Subset of client-products ordering product p ∈ P

E Set of depots e ∈ E
V ′ Set of dummy nodes
V Set of all nodes of the network including the source and destination nodes in addition to the dummy

nodes (V = {N ∪ E ∪ {σ, δ}} ∪ V ′)
S Subset of vertices in the sub-tour
A Set of possible connections (arcs) that satisfies the Rule R6
K Set of tank trucks k ∈ K

W Set of planning weeks w ∈ W
Dw Set of days in a week w ∈ W (numbered from 0 to 6)
Dw

k Set of availability days d ∈ Dw
k for each tank truck k ∈ K at week w ∈ W

D Set of all planning weekdays d ∈ D
Lk Set of compartments l ∈ Lk of each tank truck k ∈ K

C Set of compatible arc-truck-day combinations. A combination (i, j, k, d) is compatible if the tank truck
k ∈ K can visit both nodes i and j consecutively in day d ∈ D without breaking the rules R1

Parameters

Q̂pe Maximum quantity of product p ∈ P allowed at depot e ∈ E
Uw

pe Unit price for a liter of product p ∈ P at depot e ∈ E at week w ∈ W
Hw

pe Storage unit cost for a liter of product p ∈ P at depot e ∈ E for a week w ∈ W
Clk Capacity of compartment l ∈ Lk in tank truck k ∈ K
cij Cost of visiting node j after node i, including distance
τ ij Travel time from node i to node j, including the waiting time and the unloading time of the products

Tmax Length of a workday
Q̂n Tank capacity of client-product n ∈ N
Ôd

n Daily consumption of client-product n ∈ N
Ψk Penalty value of using tank truck k ∈ K
β Penalty for leaving free space in the tank truck

∆k Capacity of tank truck k ∈ K, also equal to
∑

l∈Lk

Clk

Decision variables

ukd = 1 if a tank truck k ∈ K is used on day d ∈ D, 0 otherwise
xkd

ij = 1 if (i, j, k, d) ∈ C and the tank truck k ∈ K visits node j on day d ∈ D after visiting the node i, 0
otherwise

ykd
ln = 1 if the product in client-product n ∈ N is loaded in compartment l ∈ Lk of tank truck k ∈ K on day

d ∈ D, 0 otherwise
qkd

pe ≥ 0 quantity of product p ∈ P picked up from depot e ∈ E by tank truck k ∈ K on day d ∈ D
Iw

pe ≥ 0 inventory level of product p ∈ P at depot e ∈ E at the end of week w ∈ W
zd

pe ≥ 0 quantity of product p ∈ P to be bought at depot e ∈ E at day d ∈ D
okd

n ≥ 0 quantity of product to be delivered to client-product n ∈ N at day d ∈ D using tank truck k ∈ K
Id

n inventory level of client-product n ∈ N at the end of day d ∈ D [0, Q̂n]

4.1 Network representation

Let G = (V, A) be a directed multi-graph, where V and A are the node and arc sets, respectively. We
illustrate G in Figure 2. In addition to the source (σ) and destination (δ) nodes, G contains five node
types: depot, client, client-departure, client-arrival and client-product. From a modeling perspective,
the last node type (client-product) allows for split delivery if it is less costly. It also fits with the
practice where a client’s orders (products) are treated separately: each product is stored in a separate
tank at the client’s site, and the consumption rate differs between products. It follows that each
client-product node n ∈ N represents a product p ∈ P requested by a client. Each client has a pair
of dummy nodes: the client-departure and client-arrival nodes. A client-arrival node represents the
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entry to the client location, and a client-departure node represents the exit from the client location.
We denote by V ′ the subset of these dummy nodes.

σ δ

3

2

1

4

Depots

C1

C2

C3

Ci

Ck

Cj

Cn

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Clients

2
Id

n2

1
Id

n1

3
Id

n3

SE

Client k

2
Iw

p2

1
Iw

p1

3
Iw

p3

SE

Depot 1

σ
Start Node

Ci
Client Node i e Depot e E Client/Depot-Arrival Travel Arc End of Delivery/Pickup Arc

δ
Sink Node

p
Id

n Client-Product Node p

p
Iw

pe Depot-Product Node p S Client/Depot-Departure Pickup Arc Delivery Arc

Figure 2: Part of the MDMPPSRPIM Network

The network involves four arc types connecting the different nodes mentioned above: travel arc,
pickup arc, delivery arc, and end of delivery arc. The travel arcs link the client-departure node of each
client to the client-arrival node of the other clients. They also link the depot nodes to client-arrival
nodes. The pickup arcs connect the source node with the depots and the depots between them. The
delivery arcs link the client-arrival node with the client-product nodes of the same client. The arcs
connecting the client-product nodes of a client with the client-departure node are the end of delivery
arcs.

We also manage inventory at the depots and the clients’ locations. Each lower part of the client-
product (n ∈ N ) node represents the inventory level for the period (d ∈ D). If the quantity Id

n ≤ Ôd
n,

then a delivery of quantity okd
n must be made for the client-product n ∈ N for the period d ∈ D using

truck k ∈ K and we update the inventory level as follows: Id+1
n = Id

n −Ôd
n +okd

n . Otherwise, we update
the client-product inventory for the next period as follows: Id+1

n = Id
n − Ôd

n. For the depot (e ∈ E)
and a given product p ∈ P, the update is done weekly (w ∈ W) as follows: Iw+1

pe = Iw
pe − qw

pe + zw
pe if

we buy quantity zw
pe. Otherwise, we update as follows: Iw+1

pe = Iw
pe − qw

pe, where qw
pe is the quantity of

product p ∈ P delivered from the depot e ∈ E during w ∈ W.

4.2 The MDMPPSRPIM Formulation

We present a compact MILP formulation for the MDMPPSRPIM, which recalls an extension of the
MDMPPSRP formulation studied by Bani et al. (2023). Using the notation in Table 3, the compact
formulation integrates the TLP and the IRP as follows:
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min
x,y,u,q

I,o,z

∑
k∈K

∑
d∈Dk

 ∑
(i,j)∈A

cijxkd
ij + Ψkukd + β

(
∆kukd −

∑
l∈Lk

∑
n∈N

Clkykd
ln

)+
∑

w∈W

∑
p∈P

∑
e∈E

(
Uw

pezw
pe + Hw

peIw
pe

)
(MDMPPSRPIM)

s.t.: Iw
pe −

∑
k∈K

∑
d∈Dw

k

qkd
pe + zw

pe = Iw+1
pe ∀ p ∈ P, ∀ e ∈ E, ∀ w ∈ W (1)

Id
n − Ôd

n +
∑
k∈K

okd
n = Id+1

n ∀ n ∈ N , ∀ d ∈ D (2)∑
e∈E

(
Iw

pe − Iw+1
pe + zw

pe

)
=
∑

n∈Np

∑
d∈Dw

(
Ôd

n + Id+1
n − Id

n

)
∀ p ∈ P, ∀ w ∈ W (3)

okd
n ≤ Q̂d

n

∑
(i,n)∈Akd

xkd
in ∀ n ∈ N , ∀ k ∈ K, ∀ d ∈ Dk (4)

∑
k∈K

Clkykd
ln = okd

n ∀ n ∈ N , ∀ k ∈ K, ∀ d ∈ Dk (5)∑
(i,n)∈A

∑
k∈K

∑
d∈Dw

k

xkd
in ≤ 1 ∀ n ∈ N , ∀ w ∈ W (6)

qkd
pe ≤ Q̂pe

∑
i∈{E\{e}}∪{σ}

xkd
ie ∀ p ∈ P, ∀ e ∈ E, ∀ k ∈ K, ∀ d ∈ Dk (7)

xkd
ij ≤ ukd ∀ (i, j) ∈ A, ∀ k ∈ K, ∀ d ∈ Dk (8)∑

n∈N

ykd
ln ≤ 1 ∀ k ∈ K, ∀ l ∈ Lk, ∀ d ∈ Dk (9)∑

e∈E

qkd
pe =

∑
n∈Np

∑
l∈Lk

Clkykd
ln ∀ p ∈ P, ∀ k ∈ K, ∀ d ∈ Dk (10)

∑
(i,j)∈A

τ ijxkd
ij ≤ Tmax ∀ k ∈ K, ∀ d ∈ Dk (11)

∑
i∈V

xkd
ij −

∑
i∈V

xkd
ji =

−1 if j = σ

0 if j ∈ V \ {σ, δ}
1 if j = δ

∀ k ∈ K, ∀ d ∈ Dk (12)

∑
i,j∈S

xkd
ij ≤ |S| − 1 ∀ k ∈ K, ∀ d ∈ Dk (S ⊂ V, 2 ≤ |S| ≤ |V| − 2) (13)

xkd
ij ∈ {0, 1} ∀ (i, j, k, d) ∈ C (14)

ukd ∈ {0, 1} ∀ k ∈ K, ∀ d ∈ Dk (15)

ykd
ln ∈ {0, 1} ∀ n ∈ N , ∀ k ∈ K, ∀ l ∈ Lk, ∀ d ∈ Dk (16)

qkd
pe ≥ 0 ∀ k ∈ K, ∀ p ∈ P, ∀ e ∈ E, ∀ d ∈ Dk (17)

0 ≤ zw
pe ≤ Q̂pe ∀ p ∈ P, ∀ e ∈ E, ∀ w ∈ W (18)

0 ≤ Iw
pe ≤ Q̂pe ∀ p ∈ P, ∀ e ∈ E, ∀ w ∈ W (19)

0 ≤ Id
n ≤ Q̂n ∀ n ∈ N , ∀ d ∈ D (20)

okd
n ≥ 0 ∀ n ∈ N , ∀ k ∈ K, ∀ d ∈ Dk (21)

The objective function minimizes the total cost. It includes the total distance cost, unloading cost
(first term), the cost of using tank trucks (second term), the penalty for free space in tank trucks
(third term), and the inventory costs (last term). Constraints (1) manage the inventory at the depot
while satisfying Rule R3 on available quantities. Constraints (2) manage the inventory at the clients’
sites. Constraints (3) guarantee that, for a given p ∈ P and w ∈ W, the total quantity that goes out
of the depots must be equal to the total quantity delivered to clients. Constraints (4) ensure that the
delivery can take place only when the client n ∈ N is visited. Constraints (5) indicate that the sum
of the compartment capacities fulfilling the order of client-product n ∈ Np must correspond exactly to
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the quantity requested by the client. Constraints (6) specify that each client-product n ∈ Np can be
visited at most once a week, as indicated by Rule R2. Constraints (7) ensure that a tank truck can
load products from the depot e ∈ E only after visiting it. Constraints (8) ensure that a tank truck can
only be used if it is available on day d ∈ D. Constraints (9) impose that for each tank truck k ∈ K, at
most one client-product n ∈ Np is allowed in the same compartment on a given day d ∈ D (Rule R4).
Constraints (10) specify that the quantities of each product p ∈ P delivered to clients must be loaded
from depots. Constraints (11) make sure that the daily total travel time falls within the length of a
workday d ∈ D for each tank truck driver, as requested by Rule R5. Constraints (12) and (13) are the
flow conservation constraints and sub-tour elimination constraints, respectively. Finally, the decision
variable conditions are given by (14)–(21).

We observe that the second and third terms of the objective function with constraints (5)–(10),
(15), and (16) define the TLP. The remaining terms in the objective and constraints model the IRP.
Without loss of generality, we assume that the above problem is integer feasible and bounded, which
is the case in real life. The compact MILP formulation is too large and complex to be used in practice.
Still, it helps to understand the problem and motivates the decomposition method in Section 5.

5 Solution methodology
In the previous section, we formulated the MDMPPSRPIM using a compact MILP formulation. For
this formulation, the complexity comes essentially from the very large integrality gap, which is due to
the mix of continuous and binary variables in the same constraints and the big-M constraints (e.g.,
Constraints 4, 5, and 7). Thus, it is practically impossible to solve even relatively small instances using
a general-purpose optimization solver. In this section, we propose an exact approach combining BD
and CG to solve the MDMPPSRPIM. We first present a route formulation for MDMPPSRPIM. Then,
we motivate the BD choice. Following that, we describe the exact approach combining BD and CG.
Lastly, we highlight some acceleration strategies.

5.1 The Route Formulation

We reformulate the MDMPPSRPIM using routes. For this purpose, let Ω = {1, . . . , |Ω|} be the set of
feasible routes (columns). We define a binary variable ρϱ for each route ϱ ∈ Ω. It takes the value 1 if
route ϱ with cost cϱ is selected, and 0 otherwise. The cost cϱ corresponds to the sum of all the costs
associated with route ϱ ∈ Ω.

We introduce the following additional notation. The coefficient s̃nw
ϱ is set to 1 if the tank truck

used for route ϱ ∈ Ω serves the client-product n ∈ N during the week w ∈ W, and 0 otherwise. The
coefficient ũkwd

ϱ is equal to 1 if the route ϱ is served by tank truck k ∈ K in day d ∈ D of week
w ∈ W, and 0 otherwise. The coefficient q̃pe

ϱ is the quantity of product p ∈ P loaded from depot
e ∈ E to satisfy the order for the same product on route ϱ ∈ Ω. The coefficient õnd

ϱ is the quantity of
product p delivered to client-product n in day d using route ϱ ∈ Ω. The resulting route reformulation
of MDMPPSRPIM is as follows:

min
ρ,z,I

∑
ϱ∈Ω

cϱρϱ +
∑

w∈W

∑
p∈P

∑
e∈E

(
Uw

pezw
pe + Hw

peIw
pe

)
(MDMPPSRPIMρ)

s.t.: Iw
pe −

∑
ϱ∈Ω

q̃pe
ϱ ρϱ + zw

pe = Iw+1
pe ∀ p ∈ P, ∀ e ∈ E, ∀ w ∈ W (22)

Id
n − Ôd

n +
∑
ϱ∈Ω

õnd
ϱ ρϱ = Id+1

n ∀ n ∈ N , ∀ d ∈ D (23)

∑
e∈E

(
Iw

pe − Iw+1
pe + zw

pe

)
=
∑

n∈Np

∑
d∈Dw

(
Ôd

n + Id+1
n − Id

n

)
∀ p ∈ P, ∀ w ∈ W (24)
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∑
ϱ∈Ω

s̃nw
ϱ ρϱ ≤ 1 ∀ n ∈ N , ∀ w ∈ W (25)

∑
ϱ∈Ω

ũkwd
ϱ ρϱ ≤ 1 ∀ k ∈ K, ∀ w ∈ W, ∀ d ∈ Dw

k (26)

0 ≤ zw
pe ≤ Q̂pe ∀ p ∈ P, ∀ e ∈ E, ∀ w ∈ W (27)

0 ≤ Iw
pe ≤ Q̂pe ∀ p ∈ P, ∀ e ∈ E, ∀ w ∈ W (28)

0 ≤ Id
n ≤ Q̂n ∀ n ∈ N , ∀ d ∈ D (29)

ρϱ ∈ {0, 1} ∀ ϱ ∈ Ω (30)

The objective function minimizes the total cost. Constraints (22) manage the inventory at the depot
for each product. Constraints (23) manage the inventory at the client. Constraints (24) equals the
quantities that go out of the depots with the quantities received by the clients. Constraints (25) indicate
that each client-product must be visited at most once a week. We note that we may perform multiple
visits per day if we visit two client-products of the same client on the same day. Constraints (26)
ensure that we can use tank truck k ∈ K at most once per day d ∈ D. Constraints (28) ensure that
the quantities loaded from each depot do not exceed what is available. Constraints (29) ensure that
the daily quantities delivered to each client-product n respect their maximum capacity limit. Finally,
integrality constraints (30) are imposed on the route variables ρϱ for each route ϱ ∈ Ω.

In terms of the integrality gap, the route formulation is better than the compact one at the expense
of a combinatorial number of routes. In practice, generating a subset of routes using CG would be
enough. However, tackling model MDMPPSRPIMρ using the Dantzig-Wolfe decomposition (Vander-
beck, 2000) remains complex because of the following:

• If we keep the constraints (22–23) in the Dantzig-Wolfe master problem, although the sub-
problems can be easily broken down by day and by truck and can be solved in parallel, these
subproblems are more complex because we do not know a priori the clients who will be delivered
to on a given day. In addition, the dynamic programming algorithm (used to solve the CG
subproblem, which is an elementary shortest path problem with resource constraints) is very
long because we generate a large number of labels since all the clients are present in the cyclic
network. Furthermore, this decomposition also suffers from a major loss of information on the
inventory at the clients’ sites and at the depots, which makes the generated routes not compat-
ible with the master problem despite their negative reduced cost: the routes obtained from the
subproblem consider only a single period without access to the actual client inventories, and the
delivered quantities by routes do not respect inventory balance constraints. For this reason, the
master problem does not find a combination of routes that satisfies all the constraints. Thus,
the decomposition will require a lot of iterations and will lead to a huge number of routes in the
master problem.

• If we keep the constraints (22–23) in the Dantzig-Wolfe subproblem(s), we ensure that all the
generated routes are usable in the master problem without any loss of information. However, the
subproblem(s) become even more complex for the dynamic programming algorithm because, in
addition to the fact that it contains all the clients (the network is larger, with more nodes, more
arcs, and more labels), we cannot break it down by periods because of the presence of constraints
that link days d and d + 1.

The analysis highlighted above, aligned with the decoupling intuition, leads us to observe that
when we fix the inventory variables (z, I), the problem becomes relatively easier. One of the ways to
decouple inventory and routing decisions is BD, which is presented next.

5.2 The Benders reformulation

In this section, we present the Benders reformulation by highlighting the Benders subproblem and the
Benders master problem.
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5.2.1 The Benders subproblem

After fixing the complicating variables Iw
pe, Id

n, and zw
pe (a fixed variable has a bar on it), the Benders

primal subproblem is the following:

min
ρ

∑
ϱ∈Ω

cϱρϱ (BPSP)

s.t.:
∑
ϱ∈Ω

q̃pe
ϱ ρϱ = Īw

pe − Īw+1
pe + z̄w

pe ∀ p ∈ P, ∀ e ∈ E, ∀ w ∈ W (31)

∑
ϱ∈Ω

õnd
ϱ ρϱ = Ôd

n + Īd+1
n − Īd

n ∀ n ∈ N , ∀ d ∈ D (32)

∑
ϱ∈Ω

s̃nw
ϱ ρϱ ≤ 1 ∀ n ∈ N , ∀ w ∈ W (33)

∑
ϱ∈Ω

ũkwd
ϱ ρϱ ≤ 1 ∀ k ∈ K, ∀ w ∈ W, ∀ d ∈ Dw

k (34)

ρϱ ∈ {0, 1} ∀ ϱ ∈ Ω (35)

At each iteration, we are supposed to solve the dual of BPSP to obtain either an optimality
or feasibility cut. Let π(31) = (π(31)

pew | p ∈ P, e ∈ E , w ∈ W), π(32) = (π(32)
nd | n ∈ N , d ∈ D),

π(33) = (π(33)
nw ≤ 0 | n ∈ N , w ∈ W) and π(34) = (π(34)

kwd ≤ 0 | k ∈ K, w ∈ W, d ∈ Dw
k ) be the dual

variables associated with constraints (31)–(34), respectively. The dual of the relaxed BPSP is then

min
π

∑
p∈P

∑
e∈E

∑
w∈W

(
Īw

pe − Īw+1
pe + z̄w

pe

)
π

(31)
pew +

∑
n∈N

∑
d∈D

(
Ôd

n + Īd+1
n − Īd

n

)
π

(32)
nd

(BDSP)

+
∑
n∈N

∑
w∈W

π
(33)
nw +

∑
k∈K

∑
w∈W

∑
d∈Dw

k

π
(34)
kwd

s.t.:
∑
p∈P

∑
e∈E

∑
w∈W

q̃pe
ϱ π

(31)
pew +

∑
n∈N

∑
d∈D

õnd
ϱ π

(32)
nd

+
∑
n∈N

∑
w∈W

s̃nw
ϱ π

(33)
nw +

∑
k∈K

∑
w∈W

∑
d∈Dw

k

ũkwd
ϱ π

(34)
kwd

≤ cϱ ∀ ϱ ∈ Ω (36)

π
(33)
nw ≤ 0 ∀ n ∈ N , ∀ w ∈ W (37)

π
(34)
kwd

≤ 0 ∀ k ∈ K, ∀ w ∈ W, ∀ d ∈ Dk (38)

Instead of solving the BDSP, we solve an equivalent problem in the literature (Bani et al., 2023).
The next theorem highlights this equivalence.
Theorem 1. Solving the BDSP is equivalent to solving |W| dual SPPs.

Proof. Since we fixed inventory levels, we observe that the BDSP can be decomposed into |W| prob-
lems. Furthermore, we know the total quantity delivered to each client-product for each day d. We
note this quantity ōd

n = Ôd
n + Īd+1

n − Īd
n. We also know the quantities of each product p that must

be taken from the depot e each week w, which we denote q̄w
pe = Īw

pe − Īw+1
pe + z̄w

pe. For a given week
w ∈ W, the weekly problem is this:

max
π,w

∑
p∈P

∑
e∈E

q̄w
peπ

(31)
pew +

∑
n∈N

∑
d∈Dw

ōd
nπ

(32)
nd

+
∑
n∈N

π
(33)
nw +

∑
k∈K

∑
d∈Dw

k

π
(34)
kwd

(WBDSP)

s.t.:
∑
p∈P

∑
e∈E

q̃pe
ϱ π

(31)
pew +

∑
n∈N

∑
d∈Dw

õnd
ϱ π

(32)
nd

+
∑
n∈N

s̃nw
ϱ π

(33)
nw +

∑
k∈K

∑
d∈Dw

k

ũkwd
ϱ π

(34)
kwd

≤ cϱ ∀ ϱ ∈ Ω (39)

π
(33)
nw ≤ 0 ∀ n ∈ N (40)

π
(34)
kwd

≤ 0 ∀ k ∈ K, ∀ d ∈ Dw
k (41)
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The dual of SPP (Appendix A) of Bani et al. (2023) is

max
π

∑
p∈P

∑
e∈E

q̄peα
(1)
pe +

∑
n∈N

α
(2)
n +

∑
k∈K

∑
d∈Dw

k

α
(3)
kd

(DSPP)

s.t.:
∑
p∈P

∑
e∈E

q̃pe
ϱ α

(1)
pe +

∑
n∈N

s̃n
ϱ α

(2)
n +

∑
k∈K

∑
d∈Dk

ũkd
ϱ α

(3)
kd

≤ cϱ ∀ ϱ ∈ Ω (42)

α
(1)
pe ≤ 0 ∀ n ∈ N (43)

α
(3)
kd

≤ 0 ∀ k ∈ K, ∀ d ∈ Dk (44)

The SPP is always feasible and bounded (Bani et al., 2023). Thus, the DSPP is always feasible
and bounded. For a given w ∈ W, let

α
(1)
pe = π

(31)
pew ∀ p ∈ P, ∀ e ∈ E (Dual Equalities)

α
(2)
n =

∑
d∈Dw

ōd
nπ

(32)
nd

+ π
(33)
nw ∀ n ∈ N

s̃n
ϱ α

(2)
n =

∑
d∈Dw

õnd
ϱ π

(32)
nd

+ s̃nw
ϱ π

(33)
nw ∀ n ∈ N

α
(3)
kd

= π
(34)
kwd

∀ k ∈ K, ∀ d ∈ Dw
k

Using the Dual Equalities above, we deduce that the WBDSP is always feasible and bounded.
Furthermore, the DSPP and the WBDSP have the same optimal value, which implies that solving
the DSPP is equivalent to solving the WBDSP. Thus, solving |W| DSPPs is equivalent to solving the
BDSP.

Theorem 1 is interesting because, instead of solving the BDSP, it involves solving |W| DSPP prob-
lems (one problem per week), and then using the Dual Equalities equations to find the corresponding
dual solutions for the BDSP. These dual solutions will be used to construct the Benders optimality
cuts for the Benders master problem. We recall that the insight is that BD makes it possible to de-
couple the inventory management decisions from the routing and loading problems, and thus each of
the Benders subproblems obtained is similar to the weekly problem tackled by Bani et al. (2023).

5.2.2 The Benders master problem

Let F be the feasible region of the BDSP and let ΥF be the set of extreme points of F . Introducing
the additional free variable µ, the Benders master problem can be formulated as follows:

min
z,I

∑
w∈W

∑
p∈P

∑
e∈E

(
Uw

pezw
pe + Hw

peIw
pe

)
+ µ (BMP)

s.t.: µ ≥
∑
p∈P

∑
e∈E

∑
w∈W

(
Iw

pe − Iw+1
pe + zw

pe

)
π

(31)
pew

+
∑
n∈N

∑
d∈D

(
Ôd

n + Id+1
n − Id

n

)
π

(32)
nd

+
∑

n

∑
w

π
(33)
nw +

∑
k∈K

∑
w∈W

∑
d∈Dw

k

π
(34)
kwd

(π(31),π(32),π(33),π(34)) ∈ ΥF (45)

∑
e∈E

(
Iw

pe − Iw+1
pe + zw

pe

)
=
∑

n∈Np

∑
d∈Dw

(
Ôd

n + Id+1
n − Id

n

)
∀ p ∈ P, ∀ w ∈ W (46)

0 ≤ zw
pe ≤ Q̂pe ∀ p ∈ P, ∀ e ∈ E, ∀ w ∈ W (47)

0 ≤ Iw
pe ≤ Q̂pe ∀ p ∈ P, ∀ e ∈ E, ∀ w ∈ W (48)

0 ≤ Id
n ≤ Q̂n ∀ n ∈ N , ∀ d ∈ D (49)

We recall that since each DSPP is always feasible and bounded (see Theorem 1), the feasible
region F does not contain extreme rays, and consequently we only have extreme points, i.e., Benders
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optimality cuts. Model BMP contains more constraints than the LP relaxation of MDMPPSRPIMρ,
but most optimality cuts are inactive in the optimal solution. Therefore, these Benders cuts do not
need to be generated exhaustively. Instead, an iterative approach is used to generate a subset of cuts,
which is sufficient to identify an optimal solution. We highlight the two-phase approach next.

5.3 Column and Benders cut generation

We are now ready to describe the overall algorithm, referred to as the two-phase Benders decomposition,
first introduced by Cordeau et al. (2001). We adapt it to our context where we solve |W| DSPPs using
CG. We highlight the algorithm in Figure 3.

Figure 3: Flowchart of the Two-Phase Approach

Initial Cuts

Solve BMP
Phase 1: LP
Phase 2: LP

Add Benders
Optimality Cuts

Solve |W| Systems
(Dual Equalities)

and Obtain BDSP Solution

Next Phase
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Stop
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Solve |W| DSPPs using C
Phase 1: LP Relaxation
Phase 2: MIP

Solve |W| DSPPs using C
Phase 1: LP Relaxation
Phase 2: MIP

Solve |W| DSPPs using C
Phase 1: LP Relaxation
Phase 2: MIP

Solve |W| DSPPs using CG
Phase 1: LP Relaxation
Phase 2: MILP

Yes

No

The algorithm consists of two phases: Phase 1 and Phase 2. In Phase 1, the integrality conditions
are relaxed, and at each iteration of the BD, the LP relaxation of the BMP and the |W| SPPs are
solved. Each SPP is solved using CG. All the Benders optimality cuts generated in the first phase are
kept in the BMP. In Phase 2, the integrality constraints are introduced for the SPP variables. The
resulting MILP is solved using CG embedded in a branch-and-bound framework. We recall that we
solve the Dual Equalities system (see Proof of Theorem1) to obtain the BDSP solution, which is used
to obtain the Benders optimality cuts.

An important aspect to highlight is the following. In Phase 2, we face two cases. The first case is
when the relaxed solution of the SPP is integer. This case mainly happens when the problem columns
are very sparse. In such a case, we collect the dual solution of the SPP and obtain the corresponding
Benders cut. The second case is when the relaxed solution obtained from the CG is fractional. In
such a case, we embed CG in a branch-and-bound framework until reaching a near-optimal feasible
node. Then, we fix the routes from the standard branching constraints and keep others free. Such a
procedure maintains the problem structure (in the sense of the number of constraints). We then collect
the dual solution corresponding to that node and obtain the Benders cut to be added into BMP, as in
Er Raqabi et al. (2023).

We also note that instead of solving Phase 2 once, as in Cordeau et al. (2001), we solve it until the
optimality criterion is reached, as in Zeighami and Soumis (2019) (see Section 2). In other words, our
approach is theoretically exact. However, in practice, we often stop each phase before the optimality
conditions are met. As we approach optimality, new cuts have little or no effect on the optimal BD
solution. To avoid the well-known tailing-off effect (Rahmaniani et al., 2017), we generate new cuts
until the relative difference between the lower and upper bounds is less than or equal to 0.1% for
Phase 1 and 0.05% for Phase 2.
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The number of feasible routes ϱ ∈ Ω is exponential. To avoid a large model, we generate these
routes iteratively using a CG method (embedded in a branch-and-price scheme for Phase 2). The CG
decomposes the main problem into a restricted master problem (RMP) and several pricing problems.
At each iteration of the CG procedure, we solve the RMP using an LP solver over a subset of the routes
(columns). Based on the dual solution, we solve the pricing subproblems to find negative reduced-cost
route(s). The pricing subproblem is detailed in Appendix B. We then add these routes to the RMP.
We iterate until no negative reduced-cost route(s) are identified, as highlighted in Figure 4. Similarly
to BD, in practice, as we approach optimality, new routes with negative reduced costs have little or
no effect on the optimal value of the RMP. Therefore, we stop the CG when the optimal value of the
RMP improves by less than 0.1% over five iterations. To make the algorithm work, we enhance it with
several acceleration strategies. The latter are presented next.

Figure 4: Flowchart of the Colum Generation Procedure
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CG Master Problem
(Solve using CPLEX)
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5.4 Acceleration strategies

We now describe the acceleration strategies that improve the efficiency of the combined BD and CG
approach.

Warm-Start. To tighten the Benders MP, we add a set of initial Benders cuts corresponding to initial
solutions. These solutions are based on the maximum level policy heuristic, which consists of two
stages: In the first stage, we start by finding the depletion day d ∈ D for each client-product n ∈ N .
Then, we find an available truck (k ∈ K) that best fits the free space in the client-product tank. In other
words, we fill the client-product tank to its maximum capacity. After that, we update the inventory
values and set the next depletion day for the same client-product. We iterate over the client-products
until all daily consumption of client-products is covered for the whole horizon. In the second stage, we
assign each quantity ordered of each client-product to the closest depot. To guarantee the solution’s
feasibility, we set the inventory levels at the depots for each product p ∈ P and week w ∈ W to zero.
In the final stage, we solve the routing problem in the Benders subproblem to find combinations of
the client-products that can be put together in the same truck k ∈ K, if any. After solving the BDSP,
we use the solution to obtain an initial Benders cut, which is added to the BMP. We recall that any
heuristic (in the literature or user-specific) that finds feasible solutions can be used to define initial
Benders cuts to our problem.

Parallelism. An interesting aspect of decomposition methods is that we can solve their subproblems in
parallel. In our case, as per Theorem 1, and since we solve the Benders subproblems using CG, we can
profit from two levels of parallelism. The first level consists of solving the independent |W| SPPs (the
Benders subproblems) in parallel. The second level consists of solving in parallel the independent CG
subproblems in each Benders subproblem, where each CG subproblem corresponds to one truck k ∈ K
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and one day d ∈ Dw
k , as in Bani et al. (2023). For both levels, we use multi-threading to solve the

subproblems in parallel. It is worth mentioning that we use a subnetwork for each subproblem (both
the Benders subproblems and the CG subproblems) to avoid any access conflict between threads. Each
subnetwork has an independent set of arcs, nodes, and a data labeling structure. We limit CPLEX to
a single thread to solve the resulting TLP problem inside the extension function.

Hashing Technique. Solving a set of TLPs inside the labeling algorithm can be very time-consuming.
Thus, at each iteration, we use a hashing technique to memorize the solved TLPs, to use them in the
subsequent iterations. This technique helps reduce the execution time of the CG subproblem labeling
algorithm. Furthermore, after exploring the total orders, it is possible to tighten the resources, which
are the tank truck capacity and the number of compartments required. The hashing technique is
useful when solving similar MILPs several times and when several routes’ components are regenerated
at each iteration, i.e., we can reuse the information and solutions history.

Primal Diving Heuristic. To accelerate finding the CG integer solution in Phase 2, we use the primal
diving heuristic introduced in Bani et al. (2023), which is a mix of local branching (Fischetti and
Lodi, 2003) around primal feasible integer solution(s) and a diving heuristic (Joncour et al., 2010).
The primal diving heuristic consists of fixing fractional variables close to the integer primal solution.
This technique, proven to find the closest integer solution to the optimal one for problems that have
some nice polyhedral properties that favor integrality (e.g., set partitioning– type problems with low
to moderate density), helps reduce the number of branching nodes and iterations. It limits the number
of iterations without solution improvement.

6 Computational experiments
In this section, we run computational experiments on real instances. We first describe the case context.
Then, we present the experimental design. After that, we highlight the computational results, the
comparison with two heuristics, and the managerial insights.

6.1 Case context: West Africa

We consider a petroleum distribution company from West Africa facing the MDMPPSRPIM in a
geographical zone. The specificity is that the petrol products are broken down into the categories of
marked and unmarked products. Marked products are partially subsidized by the government. For
this reason, they are chemically marked to detect fraud. Furthermore, the company has a limited fleet
of heterogeneous trucks, with many variably sized compartments. It also serves distinct subfamilies
of clients: (i) petrol stations, (ii) marine stations, (iii) private bakeries, and (iv) occasional private
companies. We assume a fixed consumption rate for each client-product, which makes their demand
deterministic. In real life, we cannot know the stations’ fuel consumption beforehand. The company
uses safety stock levels or emergency deliveries to correct the resulting uncertainty, as described in the
use case of Popović et al. (2011). In addition to the problem description in Section 3, some additional
specific business rules are summarized in Table 4 below.

Table 4: West Africa–specific rules

Rule Description

R6 Marked and unmarked products cannot be loaded onto the same tank truck (exclusion constraint).
R7 Some tank trucks must only carry marked products.
R8 A truck cannot visit more than two marine stations in a row.

There are also these additional constraints:∑
(i,j)∈N ×Nf

xkd
ij ≤ 2 ∀ k ∈ K, ∀ d ∈ Dk (50)
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where Nf is the subset of client-products related to marine stations. Constraints (50) state that a
tank truck cannot visit more than two marine stations, as imposed by Rule R8.

Given that the company considers two types of products (marked and unmarked), we highlight that
the graph in Figure 2 above contains two disjoint subgraphs: the subgraph of unmarked products and
the subgraph of marked products. Since the graph becomes bipartite, we tackle each class separately
to ensure that Rules R6 and R7 are met. By doing so, we highlight the approach’s flexibility in
incorporating user-specific and context-specific decision rules.

6.2 Experimental design

For our tests, we consider 48 realistic instances. These instances belong to two seasons (2016 and
2017). The instances, presented in Table 5, have the following features: the number of client-products
(|N |), the number of clients (#C), the number of products (P), the number of weeks/days (|W|/|D|),
the number of depots (|E|) and the instance name. In total, we have four types of petrol products. The
instance name includes the number of weeks, the number of client-products, the number of depots,
and the season. For instance, Instance P4-C24-D1-S1 has 4 weeks, 24 client-products, 1 depot, and
belongs to season 1 (2016). We classify instances into four classes based on |N |.

Table 5: Instances Properties

|N | #C P |W|/|D| |E| Instance |N | #C P |W|/|D| |E| Instance

24 12 [0, 1]

4/28
1

P4-C24-D1-S1

47 47 [2, 3]

4/28
1

P4-C47-D1-S1
P4-C24-D1-S2 P4-C47-D1-S2

4
P4-C24-D4-S1

4
P4-C47-D4-S1

P4-C24-D4-S2 P4-C47-D4-S2

8/56
1

P8-C24-D1-S1

8/56
1

P8-C47-D1-S1
P8-C24-D1-S2 P8-C47-D1-S2

4
P8-C24-D4-S1

4
P8-C47-D4-S1

P8-C24-D4-S2 P8-C47-D4-S2

12/84
1

P12-C24-D1-S1

12/84
1

P12-C47-D1-S1
P12-C24-D1-S2 P12-C47-D1-S2

4
P12-C24-D4-S1

4
P12-C47-D4-S1

P12-C24-D4-S2 P12-C47-D4-S2

34 22 [0, 1, 2]

4/28
1

P4-C34-D1-S1

77 65 [0, 1, 2, 3]

4/28
1

P4-C77-D1-S1
P4-C34-D1-S2 P4-C77-D1-S2

4
P4-C34-D4-S1

4
P4-C77-D4-S1

P4-C34-D4-S2 P4-C77-D4-S2

8/56
1

P8-C34-D1-S1

8/56
1

P8-C77-D1-S1
P8-C34-D1-S2 P8-C77-D1-S2

4
P8-C34-D4-S1

4
P8-C77-D4-S1

P8-C34-D4-S2 P8-C77-D4-S2

12/84
1

P12-C34-D1-S1

12/84
1

P12-C77-D1-S1
P12-C34-D1-S2 P12-C77-D1-S2

4
P12-C34-D4-S1

4
P12-C77-D4-S1

P12-C34-D4-S2 P12-C77-D4-S2

The vehicles’ features, which include the capacity (Ca.) in m3, the compartment configuration
(Config.), the number of compartments (Co.), whether the truck is suitable for marked and unmarked
products (F.), and whether or not the truck is jumbo (J.), are highlighted in Table 6.

The coding language is C++, and tests are conducted using version 22.1.1 of the IBM ILOG
CPLEX solver. All experiments were carried out on a 3.20GHz IntelR CoreT M i7-700 processor, with
a 64GiB system memory, running on Oracle Linux Server release 7.7. We use real time to measure
runtime. In addition to the BD gap threshold (0.1% for Phase 1 and 0.05% for Phase 2), we stop the
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BD iterations when the value of the BD RMP improves by less than 0.1% over five iterations. We also
stop the CG when the value of the CG RMP improves by less than 0.1% over five iterations.

Table 6: Tank Trucks Properties

Id Ca. Config. Co. F. J. Id Ca. Config. Co. F. J.

k1 13 [2, 1, 4, 6] 4 ✓□ □ k23 21 [2, 5, 5, 5, 4] 5 ✓□ ✓□
k2 13 [1, 2, 4, 6] 4 ✓□ □ k24 21 [2, 3, 1, 1, 2, 3, 5, 4] 8 □ ✓□
k3 13 [3, 1, 1, 1, 1, 2, 2, 2] 8 ✓□ □ k25 21 [6, 4, 6, 2, 3, 5, 4, 2, 6] 9 □ ✓□
k4 13 [2, 1, 1, 1, 1, 5, 2] 7 ✓□ □ k26 22 [2, 2, 1, 3, 2, 1, 2, 3, 2, 2, 2] 11 ✓□ ✓□
k5 13 [3, 2, 2, 3.5, 3] 5 ✓□ □ k27 30 [7, 7, 2, 7, 7] 5 □ ✓□
k6 14 [2, 1, 1, 4, 4, 2] 6 □ □ k28 33 [5, 3, 4, 1.5, 1.5, 1, 1, 2, 3, 2, 4, 3, 2] 13 ✓□ ✓□
k7 14 [2, 2, 3, 1, 2, 2, 2] 7 ✓□ □ k29 33 [5, 4, 3, 2, 1, 1, 2, 2, 3, 4, 6] 11 □ ✓□
k8 14 [4, 2, 3, 2, 3] 5 ✓□ □ k30 33 [5, 4, 3, 2, 1, 1, 2, 2, 3, 4, 6] 11 □ ✓□
k9 14 [2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2] 11 □ □ k31 33 [4, 5, 4, 3, 2, 3, 2, 5, 5] 9 □ ✓□
k10 14 [2, 1, 1, 1, 1, 2, 3, 3] 8 ✓□ □ k32 35 [6, 4, 5, 2, 2, 2, 3, 8, 3] 9 ✓□ ✓□
k11 14 [4, 2, 1, 1, 4, 2] 6 ✓□ □ k33 35 [4, 6, 2, 4, 3, 4, 3, 6, 3] 9 □ ✓□
k12 18 [3, 2, 2, 3, 2, 6] 6 □ □ k34 35 [6, 4, 3, 1, 1, 2, 5, 6, 7] 9 □ ✓□
k13 18 [5, 2, 2, 2, 3, 4] 6 ✓□ □ k35 36 [4, 2, 6, 2, 4, 2, 4, 3, 6, 3] 10 □ ✓□
k14 18 [4, 2, 5, 4, 3] 5 □ □ k36 37 [5, 2, 5, 2, 2, 1, 1, 2, 2, 2, 2, 5, 2, 2, 2] 15 ✓□ ✓□
k15 18 [2, 2, 2, 2, 1, 1, 1, 1, 3, 3] 10 □ □ k37 37 [6, 3, 6, 4, 6, 6, 6] 7 ✓□ ✓□
k16 18 [2, 1.5, 1, 1, 1.5, 4, 4, 3] 8 □ □ k38 37 [10, 3, 4, 2, 5, 6, 7] 7 ✓□ ✓□
k17 18 [2, 1.5, 1, 1, 1.5, 4, 4, 3] 8 □ □ k39 38 [6, 4, 1, 1, 4, 2, 4, 6, 4, 3, 5] 11 ✓□ ✓□
k18 19 [5, 1, 1, 5, 5, 2] 6 □ □ k40 38 [8, 4, 3, 2, 2, 1, 1, 2, 5, 4, 6] 11 ✓□ ✓□
k19 20 [6, 5, 5, 2, 2] 5 □ ✓□ k41 38 [6, 4, 6, 2, 3, 5, 4, 2, 6] 9 ✓□ ✓□
k20 20 [3, 3, 3, 3, 2, 2, 2, 2] 8 □ ✓□ k42 40 [7, 5, 4, 1, 1, 4, 2, 5, 2, 3, 6] 11 □ ✓□
k21 20 [2, 4, 3, 4, 5, 1, 1] 7 □ ✓□ k43 40 [7, 5, 4, 1, 1, 4, 2, 5, 2, 3, 6] 11 □ ✓□
k22 20 [2, 4, 3, 4, 5, 1, 1] 7 □ ✓□ k44 40 [6, 4, 1, 1, 4, 2, 4, 6, 4, 3, 5] 11 □ ✓□

6.3 Computational results

In this section, we first present the performance of the combined BD and CG approach. Then, we
highlight the impact of our acceleration strategies.

6.3.1 Performance

Table 7 shows the performance of BD. For each instance, we report the total time (T) in seconds, the
time required by the BD MP (TMP) in seconds, and the number of Benders cuts (#Cuts). Further-
more, for each phase, we report the integrality gap (Gap) percentage, the percentage of time required
by the BD MP (TMP), and the number of Benders cuts (#Cuts).

We observe that, on average, the four classes require around 4 seconds, 9 seconds, 47 seconds,
and 40 seconds for both phases, respectively. The Benders MP requires less than 1% of the total
execution time (T). For the Benders cuts, on average, the four classes require 4, 7, 8, and 7 Benders
cuts, respectively. We reach near-optimal, if not optimal, solutions in all the instances. It is worth
mentioning that Phase 1 requires more iterations and consumes most of the Benders MP time. Phase
2 benefits from the Benders cuts kept from Phase 1, reaching near-optimal integer solutions more
quickly. During Phase 2, the stabilized inventory levels from Phase 1 are not changed. In other words,
Phase 2 confirms the results obtained in Phase 1. Among all instances, only 10 instances do not reach
the 0.05% gap threshold in Phase 2 but have at most 0.70% in integrality gap.

Table 8 shows the performance of CG. For each instance, we report the total time (T) in seconds
(same as Table 7), the total number of columns generated (Total #Col), and the number of CG
iterations (Total #It). Furthermore, for each phase, we report the percentage of time required by the
BD SP (TSP), the number of columns generated (#Col), and the number of CG iterations (#It). For
Phase 2, we also report the number of branching nodes (#No).

We observe that the Benders subproblem consumes most of the total execution time, with a higher
portion consumed in Phase 1, as compared to Phase 2. In Phase 1, the number of columns generated
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Table 7: Benders Decomposition Results

Phase 1 Phase 2

|N | |W| Inst. T(s) TMP(s) #Cuts Gap(%) TMP(%) #Cuts Gap(%) TMP(%) #Cuts

24 4 P4-C24-D1-S1 1.82 0.00 4 0.10 87.71 3 0.05 12.29 1
24 4 P4-C24-D1-S2 1.62 0.00 4 0.10 88.44 3 0.05 11.56 1
24 4 P4-C24-D4-S1 1.85 0.00 4 0.10 87.56 3 0.05 12.44 1
24 4 P4-C24-D4-S2 1.63 0.00 4 0.10 88.33 3 0.05 11.67 1
24 8 P8-C24-D1-S1 3.33 0.01 4 0.02 88.93 3 0.05 11.07 1
24 8 P8-C24-D1-S2 5.56 0.01 7 0.10 74.83 3 0.09 25.17 4
24 8 P8-C24-D4-S1 3.33 0.01 4 0.02 88.77 3 0.05 11.23 1
24 8 P8-C24-D4-S2 3.26 0.01 4 0.10 90.31 3 0.05 9.69 1
24 12 P12-C24-D1-S1 5.16 0.02 4 0.10 86.58 3 0.05 13.42 1
24 12 P12-C24-D1-S2 5.46 0.02 4 0.10 87.31 3 0.05 12.69 1
24 12 P12-C24-D4-S1 5.09 0.02 4 0.10 86.73 3 0.05 13.27 1
24 12 P12-C24-D4-S2 5.31 0.02 4 0.10 86.85 3 0.05 13.15 1

Avg 3.62 0.01 4 0.09 86.86 3 0.05 13.14 1

34 4 P4-C34-D1-S1 2.86 0.01 4 0.10 89.72 3 0.05 10.28 1
34 4 P4-C34-D1-S2 8.61 0.01 11 0.05 79.11 7 0.70 20.89 4
34 4 P4-C34-D4-S1 2.92 0.01 4 0.10 89.35 3 0.05 10.65 1
34 4 P4-C34-D4-S2 9.59 0.01 12 0.10 71.86 7 0.42 28.14 5
34 8 P8-C34-D1-S1 8.78 0.03 6 0.10 90.61 5 0.05 9.39 1
34 8 P8-C34-D1-S2 15.52 0.05 10 0.02 76.63 6 0.20 23.37 4
34 8 P8-C34-D4-S1 8.73 0.03 6 0.10 89.60 5 0.05 10.40 1
34 8 P8-C34-D4-S2 13.74 0.04 9 0.10 72.97 5 0.09 27.03 4
34 12 P12-C34-D1-S1 8.49 0.04 4 0.10 77.90 3 0.05 22.10 1
34 12 P12-C34-D1-S2 12.11 0.04 5 0.10 80.90 4 0.05 19.10 1
34 12 P12-C34-D4-S1 8.42 0.04 4 0.10 77.24 3 0.05 22.76 1
34 12 P12-C34-D4-S2 9.85 0.03 4 0.01 86.24 3 0.05 13.76 1

Avg 9.14 0.03 7 0.08 81.84 5 0.15 18.16 2

47 4 P4-C47-D1-S1 39.62 0.02 11 0.10 87.02 10 0.05 12.98 1
47 4 P4-C47-D1-S2 16.02 0.01 8 0.10 94.66 7 0.05 5.34 1
47 4 P4-C47-D4-S1 39.07 0.02 11 0.10 79.46 10 0.05 20.54 1
47 4 P4-C47-D4-S2 15.95 0.01 8 0.10 94.79 7 0.05 5.21 1
47 8 P8-C47-D1-S1 30.48 0.05 9 0.02 73.54 5 0.13 26.46 4
47 8 P8-C47-D1-S2 33.26 0.06 10 0.10 94.22 9 0.05 5.78 1
47 8 P8-C47-D4-S1 15.42 0.03 4 0.10 88.84 3 0.05 11.16 1
47 8 P8-C47-D4-S2 26.23 0.05 8 0.10 92.32 7 0.00 7.68 1
47 12 P12-C47-D1-S1 108.89 0.10 8 0.04 52.47 4 0.10 47.53 4
47 12 P12-C47-D1-S2 63.70 0.10 10 0.10 71.38 6 0.06 28.62 4
47 12 P12-C47-D4-S1 132.53 0.09 7 0.01 44.21 3 0.09 55.79 4
47 12 P12-C47-D4-S2 42.09 0.08 7 0.02 86.31 6 0.03 13.69 1

Avg 46.94 0.05 8 0.07 79.93 6 0.06 20.07 2

77 4 P4-C77-D1-S1 23.59 0.03 6 0.10 89.37 5 0.05 10.63 1
77 4 P4-C77-D1-S2 17.67 0.04 7 0.10 91.74 6 0.05 8.26 1
77 4 P4-C77-D4-S1 21.81 0.03 6 0.10 90.41 5 0.03 9.59 1
77 4 P4-C77-D4-S2 17.19 0.03 7 0.10 91.46 6 0.05 8.54 1
77 8 P8-C77-D1-S1 23.94 0.08 6 0.10 84.52 5 0.05 15.48 1
77 8 P8-C77-D1-S2 41.07 0.10 8 0.03 92.62 7 0.01 7.38 1
77 8 P8-C77-D4-S1 27.26 0.09 7 0.03 86.52 6 0.01 13.48 1
77 8 P8-C77-D4-S2 85.00 0.18 16 0.06 77.40 12 0.14 22.60 4
77 12 P12-C77-D1-S1 71.21 0.11 5 0.03 80.27 4 0.05 19.73 1
77 12 P12-C77-D1-S2 44.83 0.13 6 0.10 78.21 5 0.05 21.79 1
77 12 P12-C77-D4-S1 70.57 0.11 5 0.03 80.41 4 0.05 19.59 1
77 12 P12-C77-D4-S2 35.71 0.11 5 0.01 83.01 4 0.01 16.99 1

Avg 39.99 0.09 7 0.07 85.49 6 0.05 14.51 1
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Table 8: Column Generation Results

Phase 1 Phase 2

|N | |W| Inst. T(s) Total #Col Total #Itr TSP(%) #Col #Itr TSP(%) #Col #Itr #No

24 4 P4-C24-D1-S1 1.76 4601 120 73.08 3434 84 26.92 1167 36 8
24 4 P4-C24-D1-S2 1.55 3977 110 74.33 2905 82 25.67 1072 28 5
24 4 P4-C24-D4-S1 1.78 4601 120 72.66 3434 84 27.34 1167 36 8
24 4 P4-C24-D4-S2 1.57 4001 110 74.63 2920 82 25.37 1081 28 5
24 8 P8-C24-D1-S1 3.22 8401 216 74.21 6334 156 25.79 2067 60 10
24 8 P8-C24-D1-S2 5.45 13959 384 41.29 6015 168 58.71 7944 216 32
24 8 P8-C24-D4-S1 3.22 8401 216 74.36 6334 156 25.64 2067 60 10
24 8 P8-C24-D4-S2 3.14 8079 220 73.69 6053 168 26.31 2026 52 8
24 12 P12-C24-D1-S1 5.00 12243 322 73.91 9113 238 26.09 3130 84 14
24 12 P12-C24-D1-S2 5.30 12373 338 73.29 9196 250 26.71 3177 88 14
24 12 P12-C24-D4-S1 4.93 12225 322 74.32 9095 238 25.68 3130 84 14
24 12 P12-C24-D4-S2 5.15 12377 338 73.46 9196 250 26.54 3181 88 14

Avg 3.51 8770 235 71.10 6169 163 28.90 2601 72 12

34 4 P4-C34-D1-S1 2.79 6938 114 73.20 5184 80 26.80 1754 34 7
34 4 P4-C34-D1-S2 8.53 28760 298 63.16 18852 186 36.84 9908 112 20
34 4 P4-C34-D4-S1 2.84 6938 114 73.39 5184 80 26.61 1754 34 7
34 4 P4-C34-D4-S2 9.51 31596 336 55.84 18886 186 44.16 12710 150 30
34 8 P8-C34-D1-S1 8.64 19266 318 82.38 16114 260 17.62 3152 58 11
34 8 P8-C34-D1-S2 15.36 40541 560 57.53 24449 328 42.47 16092 232 40
34 8 P8-C34-D4-S1 8.59 19292 316 82.20 16116 258 17.80 3176 58 11
34 8 P8-C34-D4-S2 13.58 35663 490 54.02 20099 274 45.98 15564 216 32
34 12 P12-C34-D1-S1 8.30 18107 314 73.98 13572 236 26.02 4535 78 13
34 12 P12-C34-D1-S2 11.91 28040 422 79.07 22387 332 20.93 5653 90 16
34 12 P12-C34-D4-S1 8.23 18107 314 74.22 13572 236 25.78 4535 78 13
34 12 P12-C34-D4-S2 9.66 22626 342 73.18 16821 250 26.82 5805 92 16

Avg 8.99 22990 328 70.18 15936 226 29.82 7053 103 18

47 4 P4-C47-D1-S1 39.42 86928 302 89.41 78622 266 10.59 8306 36 9
47 4 P4-C47-D1-S2 15.93 49300 226 83.11 42850 196 16.89 6450 30 6
47 4 P4-C47-D4-S1 38.96 86928 302 89.52 78622 266 10.48 8306 36 9
47 4 P4-C47-D4-S2 15.86 49300 226 83.26 42850 196 16.74 6450 30 6
47 8 P8-C47-D1-S1 30.30 96739 584 54.41 54891 288 45.59 41848 296 64
47 8 P8-C47-D1-S2 33.07 104735 594 89.13 94668 522 10.87 10067 72 15
47 8 P8-C47-D4-S1 15.27 51794 242 72.59 37841 168 27.41 13953 74 17
47 8 P8-C47-D4-S2 26.05 85795 482 84.96 74623 410 15.04 11172 72 15
47 12 P12-C47-D1-S1 108.61 161455 730 52.77 82899 338 47.23 78556 392 80
47 12 P12-C47-D1-S2 63.41 176507 942 54.48 105379 526 45.52 71128 416 84
47 12 P12-C47-D4-S1 132.26 164464 628 33.91 62824 252 66.09 101640 376 68
47 12 P12-C47-D4-S2 41.84 127887 622 82.12 108523 520 17.88 19364 102 19

Avg 46.75 103486 490 72.47 72049 329 27.53 31437 161 33

77 4 P4-C77-D1-S1 23.47 52981 190 79.44 43315 148 20.56 9666 42 10
77 4 P4-C77-D1-S2 17.54 53244 218 84.32 45584 184 15.68 7660 34 7
77 4 P4-C77-D4-S1 21.69 52994 194 82.62 43841 148 17.38 9153 46 12
77 4 P4-C77-D4-S2 17.06 52574 208 84.55 45089 178 15.45 7485 30 5
77 8 P8-C77-D1-S1 23.71 82374 366 81.24 69146 292 18.76 13228 74 16
77 8 P8-C77-D1-S2 40.81 114884 488 86.22 100149 414 13.78 14735 74 15
77 8 P8-C77-D4-S1 27.01 92930 424 83.75 79817 346 16.25 13113 78 18
77 8 P8-C77-D4-S2 84.62 234120 988 72.11 174268 700 27.89 59852 288 60
77 12 P12-C77-D1-S1 70.89 117928 480 76.65 93482 360 23.35 24446 120 24
77 12 P12-C77-D1-S2 44.48 129412 542 78.19 105679 436 21.81 23733 106 22
77 12 P12-C77-D4-S1 70.25 117928 480 76.45 93482 360 23.55 24446 120 24
77 12 P12-C77-D4-S2 35.38 104211 458 76.49 82378 356 23.51 21833 102 21

Avg 39.74 100465 420 80.17 81353 327 19.83 19113 93 20
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in the CG process increases significantly, from 6169 columns on average for the first class (24 clients-
products) to 81353 columns on average for the fourth class (77 clients-products). The number of CG
iterations also increases from 163 for the first class to 329 for the third class (47 clients-products). In
Phase 2, a similar trend is observed for the number of iterations, which increases from 72 on average
for the first class to 161 on average for the third class. Figure 5 shows the improvement of the UB
(provided by the BD subproblem) and the LB (provided by BD master problem) along the number of
Benders iterations for Instance P4-C77-D4-S2.

Figure 5: UB and LB Improvement Along With the Number of Benders Iterations for Instance P4-C77-D4-S2
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The compact model has a large integrality gap, especially in the presence of inventory constraints.
The main insight behind the performance results originates from observing that when the inventory
levels are fixed, the resulting problems have a lower integrality gap, as compared to the compact model.
The Benders master problem (which is LP) is easy to solve. Then, the Benders subproblems can be
efficiently solved as shown above. Furthermore, the gap between the near-optimal solution obtained
in Phase 1 and the near-optimal integer solution obtained in Phase 2 is small. This observation is
established for VRPs with fewer side constraints (Bani et al., 2023). These problems can be seen
as set-partitioning problems, thus they have the quasi-integrality property. Thus, after using Phase
1 to stabilize the inventory levels, Phase 2 quickly reaches the near-optimal integer solution. For
some instances, we observed that Phase 1 is enough to reach the near-optimal integer solution. The
results also confirm the effectiveness of the solution approach and the decoupling intuition behind it.
To further complement the performance analysis, we will now discuss the impact of the acceleration
strategies.

6.3.2 Impact of acceleration strategies

To evaluate the acceleration strategies, we run additional experiments. We distinguish the strategies
based on the BD master problem and the BD subproblems. Table 9 shows the impact of the warm-
start strategy on the Benders master problem. We report the results without warm-start (No WS)
and with warm-start (Our Approach).

Table 9 shows that without a warm start, the total time required to reach small gaps increases
significantly. Even with more time, the gap is still higher. For many instances, the gap is higher than
1%. The number of Benders cuts is also higher than with our approach. For the first class, the time
increases by a factor of 40, the gap is 0.52% higher, and the number of Benders cuts increases by a
factor of 4.5. For the second class, the time increases by a factor of 30, the gap is 0.48% higher, and
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Table 9: Benders Master Problem Acceleration Strategies Impact

No WS Our Approach

|N | |W| Inst. T(s) Gap(%) #Cuts T(s) Gap(%) #Cuts

24 4 P4-C24-D1-S1 50.71 0.15 14 1.82 0.05 4
24 4 P4-C24-D4-S1 128.86 0.05 7 1.62 0.05 4
24 4 P4-C24-D1-S2 36.41 0.61 11 1.85 0.05 4
24 4 P4-C24-D4-S2 49.49 2.06 15 1.63 0.05 4
24 8 P8-C24-D1-S1 212.16 0.31 15 3.33 0.05 4
24 8 P8-C24-D4-S1 100.06 0.73 19 5.56 0.09 7
24 8 P8-C24-D1-S2 246.58 0.04 11 3.33 0.05 4
24 8 P8-C24-D4-S2 98.93 0.51 17 3.26 0.05 4
24 12 P12-C24-D1-S1 214.67 0.54 41 5.16 0.05 4
24 12 P12-C24-D4-S1 140.20 0.05 9 5.46 0.05 4
24 12 P12-C24-D1-S2 204.35 1.43 41 5.09 0.05 4
24 12 P12-C24-D4-S2 235.37 0.41 15 5.31 0.05 4

Avg 143.15 0.57 18 3.62 0.05 4

34 4 P4-C34-D1-S1 99.52 1.16 41 2.86 0.05 4
34 4 P4-C34-D4-S1 24.68 0.21 12 8.61 0.70 11
34 4 P4-C34-D1-S2 67.13 0.05 33 2.92 0.05 4
34 4 P4-C34-D4-S2 64.91 0.05 31 9.59 0.42 12
34 8 P8-C34-D1-S1 186.22 0.88 26 8.78 0.05 6
34 8 P8-C34-D4-S1 161.59 1.24 33 15.52 0.20 10
34 8 P8-C34-D1-S2 412.33 1.24 41 8.73 0.05 6
34 8 P8-C34-D4-S2 252.35 0.57 40 13.74 0.09 9
34 12 P12-C34-D1-S1 445.09 0.71 41 8.49 0.05 4
34 12 P12-C34-D4-S1 285.44 0.40 30 12.11 0.05 5
34 12 P12-C34-D1-S2 418.00 0.05 36 8.42 0.05 4
34 12 P12-C34-D4-S2 788.60 0.96 37 9.85 0.05 4

Avg 267.16 0.63 33 9.14 0.15 7

47 4 P4-C47-D1-S1 506.68 0.03 25 39.62 0.05 11
47 4 P4-C47-D4-S1 1900.41 0.05 35 16.02 0.05 8
47 4 P4-C47-D1-S2 247.78 0.05 37 39.07 0.05 11
47 4 P4-C47-D4-S2 202.94 0.05 41 15.95 0.05 8
47 8 P8-C47-D1-S1 3076.22 0.65 37 30.48 0.13 9
47 8 P8-C47-D4-S1 2099.24 0.33 41 33.26 0.05 10
47 8 P8-C47-D1-S2 2718.42 1.11 40 15.42 0.05 4
47 8 P8-C47-D4-S2 2852.87 0.54 45 26.23 0.00 8
47 12 P12-C47-D1-S1 5227.72 0.66 39 108.89 0.10 8
47 12 P12-C47-D4-S1 4949.52 0.67 37 63.70 0.06 10
47 12 P12-C47-D1-S2 2326.98 0.28 41 132.53 0.09 7
47 12 P12-C47-D4-S2 5346.13 0.74 38 42.09 0.03 7

Avg 2621.24 0.42 38 46.94 0.06 8

77 4 P4-C77-D1-S1 510.96 0.38 21 23.59 0.05 6
77 4 P4-C77-D4-S1 474.61 1.13 25 17.67 0.05 7
77 4 P4-C77-D1-S2 358.71 0.58 67 21.81 0.03 6
77 4 P4-C77-D4-S2 359.53 0.59 65 17.19 0.05 7
77 8 P8-C77-D1-S1 6309.51 0.76 46 23.94 0.05 6
77 8 P8-C77-D4-S1 6699.86 0.47 61 41.07 0.01 8
77 8 P8-C77-D1-S2 6593.56 1.02 41 27.26 0.01 7
77 8 P8-C77-D4-S2 7800.53 1.34 52 85.00 0.14 16
77 12 P12-C77-D1-S1 7142.98 0.36 44 71.21 0.05 5
77 12 P12-C77-D4-S1 7359.32 0.28 85 44.83 0.05 6
77 12 P12-C77-D1-S2 6830.86 0.69 41 70.57 0.05 5
77 12 P12-C77-D4-S2 1239.64 1.23 38 35.71 0.01 5

Avg 4306.67 0.74 49 39.99 0.05 7
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the number of Benders cuts increases by a factor of 4.7. For the third class, the time increases by a
factor of 56, the gap is 0.36% higher, and the number of Benders cuts increases by a factor of 4.8. For
the fourth class, the time increases by a factor of 108, the gap is 0.69% higher, and the number of
Benders cuts increases by a factor of 7. Warm-start reduces the execution time from hours to minutes
for several instances from the third and fourth classes.

Table 10 reports the impact of the Benders subproblem acceleration strategies. We show the results
without parallelism (No Parallel), without the hashing technique (No Hash), and without the primal
diving heuristic (No PDH). For the No PDH scenario, we implement an exact branch-and-price method
that confirms the quality of the proposed PDH approach. This exact method is implemented in C++
using the Branch-and-Cut-and-Price (BCP) framework version 1.4 (Coin-Or, 2023). We use the default
branching rule.

Table 10: Benders Subproblem Acceleration Strategies Impact

No Parallel No Hash No PDH Our Aapproach

|N | |W| Inst. T(s) #Col #Itr #No T(s) #Col #Itr #No T(s) #Col #Itr #No T(s) #Col #Itr #No

24 4 P4-C24-D1-S1 14.81 4601 120 8 4.16 4601 120 8 13.43 5786 152 22 1.76 4601 120 8
24 4 P4-C24-D4-S1 10.90 3977 110 5 2.29 3977 110 5 12.95 4951 152 27 1.55 3977 110 5
24 4 P4-C24-D1-S2 14.45 4601 120 8 4.13 4601 120 8 13.70 5786 152 22 1.78 4601 120 8
24 4 P4-C24-D4-S2 11.38 4001 110 5 2.30 4001 110 5 13.54 4951 152 27 1.57 4001 110 5
24 8 P8-C24-D1-S1 20.90 8401 216 10 6.21 8401 216 10 27.08 10448 272 32 3.22 8401 216 10
24 8 P8-C24-D4-S1 45.50 13959 384 32 12.96 13959 384 32 27.51 12052 270 11 5.45 13959 384 32
24 8 P8-C24-D1-S2 20.96 8401 216 10 6.20 8401 216 10 25.22 10448 272 32 3.22 8401 216 10
24 8 P8-C24-D4-S2 46.10 8079 220 8 13.39 8079 220 8 27.68 12146 268 10 3.14 8079 220 8
24 12 P12-C24-D1-S1 29.70 12243 322 14 8.18 12243 322 14 38.54 15118 373 33 5.00 12243 322 14
24 12 P12-C24-D4-S1 29.59 12373 338 14 8.66 12373 338 14 42.27 18724 419 17 5.30 12373 338 14
24 12 P12-C24-D1-S2 30.67 12225 322 14 8.89 12225 322 14 37.48 15090 368 33 4.93 12225 322 14
24 12 P12-C24-D4-S2 29.44 12377 338 14 8.63 12377 338 14 42.47 18724 419 17 5.15 12377 338 14

Avg 25.37 8770 235 12 7.17 8770 235 12 26.82 11185 272 24 3.51 8770 235 12

34 4 P4-C34-D1-S1 20.53 6938 114 7 6.71 6938 114 7 17.90 8737 152 24 2.79 6938 114 7
34 4 P4-C34-D1-S2 62.58 28760 298 20 17.80 28760 298 20 28.79 21014 228 26 8.53 28760 298 20
34 4 P4-C34-D4-S1 20.52 6938 114 7 6.69 6938 114 7 17.40 8737 152 24 2.84 6938 114 7
34 4 P4-C34-D4-S2 81.04 31596 336 30 20.93 31596 336 30 29.71 21014 228 26 9.51 31596 336 30
34 8 P8-C34-D1-S1 38.20 19266 318 11 11.28 19266 318 11 45.10 22162 367 32 8.64 19266 318 11
34 8 P8-C34-D1-S2 104.97 40541 560 40 35.98 40541 560 40 132.31 70923 954 148 15.36 40541 560 40
34 8 P8-C34-D4-S1 68.75 19292 316 11 21.57 19292 316 11 45.35 22123 406 46 8.59 19292 316 11
34 8 P8-C34-D4-S2 65.56 35663 490 32 20.28 35663 490 32 129.03 66644 902 148 13.58 35663 490 32
34 12 P12-C34-D1-S1 50.22 18107 314 13 12.71 18107 314 13 50.43 22540 375 37 8.30 18107 314 13
34 12 P12-C34-D1-S2 71.74 28040 422 16 20.63 28040 422 16 66.17 32616 522 65 11.91 28040 422 16
34 12 P12-C34-D4-S1 50.45 18107 314 13 12.73 18107 314 13 50.60 22528 371 35 8.23 18107 314 13
34 12 P12-C34-D4-S2 71.74 22626 342 16 21.30 22626 342 16 64.62 32625 524 66 9.66 22626 342 16

Avg 58.86 22990 328 18 17.39 22990 328 18 56.45 29305 432 56 8.99 22990 328 18

47 4 P4-C47-D1-S1 86.76 86928 302 9 30.90 86928 302 9 123.50 96555 1062 395 39.42 86928 302 9
47 4 P4-C47-D4-S1 107.49 49300 226 6 36.94 49300 226 6 108.59 87739 820 228 15.93 49300 226 6
47 4 P4-C47-D1-S2 92.94 86928 302 9 30.82 86928 302 9 122.61 96555 1062 395 38.96 86928 302 9
47 4 P4-C47-D4-S2 112.05 49300 226 6 36.98 49300 226 6 108.34 87739 820 228 15.86 49300 226 6
47 8 P8-C47-D1-S1 196.43 96739 584 64 57.10 96739 584 64 68.82 59221 394 56 30.30 96739 584 64
47 8 P8-C47-D4-S1 258.78 104735 594 15 90.07 104735 594 15 251.28 147486 12460 5884 33.07 104735 594 15
47 8 P8-C47-D1-S2 307.70 51794 242 17 87.66 51794 242 17 180.86 127225 2044 728 15.27 51794 242 17
47 8 P8-C47-D4-S2 280.44 85795 482 15 94.16 85795 482 15 247.13 147486 12460 5884 26.05 85795 482 15
47 12 P12-C47-D1-S1 487.93 161455 730 80 132.72 161455 730 80 138.43 110556 422 49 108.61 161455 730 80
47 12 P12-C47-D4-S1 458.93 176507 942 84 169.92 176507 942 84 545.79 260293 14386 6456 63.41 176507 942 84
47 12 P12-C47-D1-S2 512.17 164464 628 68 139.29 164464 628 68 138.86 110589 390 27 132.26 164464 628 68
47 12 P12-C47-D4-S2 388.18 127887 622 19 144.93 127887 622 19 542.56 260293 14386 6456 41.84 127887 622 19

Avg 274.15 103486 490 33 87.62 103486 490 33 214.73 132645 5059 2232 46.75 103486 490 33

77 4 P4-C77-D1-S1 169.94 52981 190 10 61.23 52981 190 10 71.99 56700 388 94 23.47 52981 190 10
77 4 P4-C77-D4-S1 140.33 53244 218 7 47.76 53244 218 7 51.36 42085 216 38 17.54 53244 218 7
77 4 P4-C77-D1-S2 185.69 52994 194 12 58.60 52994 194 12 70.58 56700 388 94 21.69 52994 194 12
77 4 P4-C77-D4-S2 263.09 52574 208 5 88.83 52574 208 5 51.68 42085 216 38 17.06 52574 208 5
77 8 P8-C77-D1-S1 135.22 82374 366 16 40.77 82374 366 16 109.67 74140 1522 606 23.71 82374 366 16
77 8 P8-C77-D4-S1 582.72 114884 488 15 216.93 114884 488 15 306.01 197152 4572 1936 40.81 114884 488 15
77 8 P8-C77-D1-S2 182.88 92930 424 18 57.42 92930 424 18 330.94 174507 7376 3375 27.01 92930 424 18
77 8 P8-C77-D4-S2 230.13 234120 988 60 80.73 234120 988 60 339.89 220704 3114 1148 84.62 234120 988 60
77 12 P12-C77-D1-S1 564.89 117928 480 24 144.84 117928 480 24 634.13 154937 1352 407 70.89 117928 480 24
77 12 P12-C77-D4-S1 324.73 129412 542 22 86.30 129412 542 22 418.52 251958 5582 2296 44.48 129412 542 22
77 12 P12-C77-D1-S2 611.46 117928 480 24 171.72 117928 480 24 278.91 160245 8288 3908 70.25 117928 480 24
77 12 P12-C77-D4-S2 273.98 104211 458 21 90.90 104211 458 21 1,336.60 230824 100608 49761 35.38 104211 458 21

Avg 305.42 100465 420 20 95.50 100465 420 20 333.36 138503 11135 5308 39.74 100465 420 20

The results in Table 10 confirm that the acceleration strategies designed for the Benders subproblem
enhance the two-phase performance. When the parallelism is deactivated, the Benders subproblems
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take more time. The increase factors are on average 7.2, 6.5, 5.9, and 7.7 for the four classes, re-
spectively. When the hashing technique is deactivated, the Benders subproblems take more time as
well. The increase factors are on average 2.0, 1.9, 1.9, and 2.4 for the four classes, respectively. The
reason behind this is that when the solved TLPs are not memorized, they must be re-solved several
times during subsequent iterations, which consumes a lot of time. We note that for No Parallel and No
Hash, the number of columns and the number of iterations are not affected since the same solutions are
found as with our approach. When the primal diving heuristic is deactivated, the Benders subproblem
explores more branching nodes, which significantly increases the number of columns and the number
of iterations, and consequently, the execution time. The increase factors are on average 7.6, 6.3, 4.6,
and 8.4 for the four classes, respectively.

6.4 Comparison with other approaches

The first intuitive comparison one can think of is running the compact Model MDMPPSRPIM on
CPLEX. However, given the size of the model, even small instances cannot be solved using CPLEX or
any other solver. Thus, we did not conduct any runs on CPLEX.

Since most of the approaches used to tackle the MDMPPSRPIM are heuristics, we compare the
results obtained using our approach with those obtained with the two following heuristics:

• Heuristic 1: A greedy heuristic that mimics the practice in real life. It delivers a quantity
equivalent to 12 days of average consumption each time the client’s inventory decreases below
the safety stock level. Once the set of client-products that need to be delivered each day d ∈ D is
defined, the routing problem is solved to find the best routes and trucks to satisfy the demand.
It is worth mentioning that, in real life, this process is performed manually and requires two
days of planning by the petroleum distribution company operator. To implement the heuristic,
we use the DSPP to simulate the manual part.

• Heuristic 2: A decomposition heuristic based on decomposing the decision process of the
petroleum distribution company. To create the planning for a single day d ∈ D, the decision
process is decomposed into five phases. Since the planning for a certain day d ∈ D affects the
inventory levels of the next day, a dynamic programming approach is implemented to create the
planning day by day. After each iteration, inventory levels are adjusted with the client-products
orders. More details can be found in Boers et al. (2020).

In Table 11, we report the gap percentage (Gap), the number of visits(#Vis), the number of
routes (#Ro), the number of trucks(#Tr), and the free space percentage (F) for the heuristics and our
approach. We observe that Heuristic 1 outperforms Heuristic 2. For both of them, the integrality gap
is above 5%. Compared to Heuristic 1, our approach achieves 6 fewer visits, using 3 fewer trucks, on 4
fewer routes, and with close free space percentages on average. Compared to Heuristic 2, our approach
achieves 46 fewer visits, using 10 fewer trucks, on 18 fewer routes, with a close free space percentage
on average.

6.5 Managerial insights

The main insight is that, from a systemic point of view, the proposed approach is very interesting for
two reasons. First, it leverages the usage of the tool developed in Bani et al. (2023), which can be
either used as a standalone for route planning or integrated to incorporate the inventory management
component. This tool has been shown to be very effective when tested independently. Second, given the
short execution time, the approach allows decision-makers and users to check several what-if scenarios
and run re-optimization in case of disruptions. We further support the analysis above with additional
tests and statistics highlighting several managerial gains.

Figure 6 reports the number of routes and trucks used per week for the P12-C77-D4-S1 instance.
On average, the number of trucks used represents around 60% of the number of routes. This implies
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that specific trucks are preferred over others. This might be explained by the compartment numbers
and sizes of each truck. For clients requiring small quantities, trucks with several, smaller-capacity
compartments are preferred since several clients can be grouped on a single route. For clients requiring
large quantities, trucks with fewer, larger-capacity compartments are preferred.

Table 11: Comparison with Heuristics 1 and 2

Heuristic 1 Heuristic 2 Our Approach

|N | |W| Inst. Gap(%) #Vis #Ro #Tr F(%) Gap(%) #Vis #Ro #Tr F(%) Gap(%) #Vis #Ro #Tr F(%)

24 4 P4-C24-D1-S1 5.03 55 44 26 12.30 18.77 68 49 28 10.41 0.05 54 44 27 12.50
24 4 P4-C24-D4-S1 5.63 48 38 25 14.71 15.28 57 44 26 8.98 0.05 48 37 23 14.60
24 4 P4-C24-D1-S2 5.03 55 44 26 12.30 8.63 68 49 28 10.41 0.05 54 44 27 12.50
24 4 P4-C24-D4-S2 5.93 48 38 25 14.71 7.17 57 44 26 8.98 0.05 48 37 23 13.59
24 8 P8-C24-D1-S1 5.13 112 91 59 10.55 20.97 140 101 63 9.50 0.05 109 91 58 9.70
24 8 P8-C24-D4-S1 8.97 106 84 54 10.24 17.25 128 96 61 9.45 0.09 104 84 54 10.57
24 8 P8-C24-D1-S2 5.13 112 91 59 10.55 19.86 140 101 63 9.50 0.05 109 91 58 9.70
24 8 P8-C24-D4-S2 5.35 106 83 56 10.37 16.42 128 96 61 9.45 0.05 104 83 55 9.06
24 12 P12-C24-D1-S1 5.00 165 137 84 8.98 12.25 210 153 95 10.16 0.05 166 135 87 9.09
24 12 P12-C24-D4-S1 5.00 161 130 85 8.32 13.18 199 143 91 8.71 0.05 159 131 85 8.63
24 12 P12-C24-D1-S2 5.10 165 137 84 9.01 13.41 210 153 95 10.16 0.05 166 135 88 8.79
24 12 P12-C24-D4-S2 5.00 161 130 84 8.32 11.51 199 143 91 8.71 0.05 159 131 85 8.59

Avg 5.52 108 87 56 10.86 14.56 134 98 61 9.53 0.05 107 87 56 10.61

34 4 P4-C34-D1-S1 5.28 74 60 35 14.03 13.45 96 71 44 11.91 0.05 72 58 38 13.65
34 4 P4-C34-D1-S2 8.27 79 60 36 18.79 17.10 75 62 36 11.63 0.70 70 55 35 18.39
34 4 P4-C34-D4-S1 5.31 74 60 35 14.03 17.93 96 71 44 11.91 0.05 72 58 38 13.65
34 4 P4-C34-D4-S2 5.02 79 60 36 18.79 10.21 75 62 36 11.63 0.42 71 53 34 17.72
34 8 P8-C34-D1-S1 5.41 151 125 85 11.56 21.13 195 146 93 11.48 0.05 146 121 84 10.37
34 8 P8-C34-D1-S2 11.73 160 129 84 13.83 16.21 175 140 85 11.92 0.20 149 121 75 11.93
34 8 P8-C34-D4-S1 5.24 151 125 83 11.55 15.58 195 146 93 11.48 0.05 147 122 85 11.06
34 8 P8-C34-D4-S2 11.00 160 129 84 13.73 15.40 175 140 85 11.92 0.09 148 117 74 11.02
34 12 P12-C34-D1-S1 4.93 219 185 122 9.47 11.70 291 223 137 12.59 0.05 219 186 125 9.48
34 12 P12-C34-D1-S2 6.07 233 194 124 11.91 13.51 272 210 128 11.41 0.05 221 183 119 9.54
34 12 P12-C34-D4-S1 4.93 219 185 125 9.48 10.54 291 223 137 12.59 0.05 219 186 125 9.48
34 12 P12-C34-D4-S2 5.92 233 195 121 11.88 12.99 272 210 128 11.41 0.05 223 187 123 10.10

Avg 6.59 153 126 81 13.25 14.65 184 142 87 11.82 0.15 146 121 80 12.20

47 4 P4-C47-D1-S1 5.55 94 57 42 9.44 31.87 109 70 50 7.75 0.05 94 55 42 8.06
47 4 P4-C47-D4-S1 11.66 103 63 46 12.53 29.14 96 64 46 7.53 0.05 87 51 40 6.84
47 4 P4-C47-D1-S2 5.54 94 57 42 9.44 29.91 109 70 50 7.75 0.05 94 55 42 8.06
47 4 P4-C47-D4-S2 11.37 103 63 46 12.53 23.48 96 64 46 7.53 0.05 87 51 40 6.84
47 8 P8-C47-D1-S1 13.30 197 137 93 9.09 12.63 246 149 104 6.79 0.13 195 139 93 8.21
47 8 P8-C47-D4-S1 6.54 210 141 98 8.79 15.17 234 146 103 7.19 0.05 193 132 91 7.02
47 8 P8-C47-D1-S2 5.30 197 137 96 9.06 16.12 246 149 104 6.79 0.05 205 138 93 8.95
47 8 P8-C47-D4-S2 1.49 210 141 98 8.79 13.25 234 146 103 7.19 0.00 195 132 87 7.07
47 12 P12-C47-D1-S1 10.08 293 211 146 6.80 7.58 376 226 159 6.69 0.10 293 206 142 6.53
47 12 P12-C47-D4-S1 6.71 316 214 138 7.34 7.64 364 222 159 6.88 0.06 299 204 147 5.78
47 12 P12-C47-D1-S2 9.21 293 212 144 7.01 9.36 376 226 159 6.69 0.09 295 205 148 6.28
47 12 P12-C47-D4-S2 3.64 316 214 138 7.34 7.47 364 222 159 6.88 0.03 303 201 143 6.02

Avg 7.53 202 137 94 9.01 16.97 238 146 104 7.14 0.06 195 131 92 7.14

77 4 P4-C77-D1-S1 5.45 161 107 63 10.23 12.78 191 127 71 8.88 0.05 161 103 64 9.29
77 4 P4-C77-D4-S1 8.42 164 105 63 12.85 14.53 163 114 65 8.23 0.05 146 98 57 11.64
77 4 P4-C77-D1-S2 3.34 161 107 63 10.23 16.60 191 127 71 8.88 0.03 164 105 65 9.48
77 4 P4-C77-D4-S2 8.52 164 105 63 12.85 17.40 163 114 65 8.23 0.05 144 97 55 11.56
77 8 P8-C77-D1-S1 5.25 331 245 137 9.68 17.56 418 268 150 7.97 0.05 327 241 125 8.97
77 8 P8-C77-D4-S1 1.98 338 237 132 9.86 15.03 388 256 144 8.16 0.01 321 228 126 8.04
77 8 P8-C77-D1-S2 1.22 331 245 139 9.56 18.14 418 268 150 7.97 0.01 327 242 131 9.30
77 8 P8-C77-D4-S2 14.76 338 239 133 9.78 14.90 388 256 144 8.16 0.14 323 231 130 8.53
77 12 P12-C77-D1-S1 8.57 493 369 208 7.93 9.61 633 403 227 7.96 0.05 495 372 202 7.90
77 12 P12-C77-D4-S1 5.44 503 364 214 8.03 9.07 606 390 216 7.80 0.05 495 350 198 6.91
77 12 P12-C77-D1-S2 10.03 493 369 210 7.96 9.08 633 403 227 7.96 0.05 495 372 202 7.90
77 12 P12-C77-D4-S2 11.07 503 363 214 7.99 9.37 606 390 216 7.80 0.01 494 350 195 6.75

Avg 7.00 332 238 137 9.75 13.67 400 260 146 8.17 0.05 324 232 129 8.86

6.6 Managerial insights

The main insight is that, from a systemic point of view, the proposed approach is very interesting for
two reasons. First, it leverages the usage of the tool developed in Bani et al. (2023), which can be
either used as a standalone for route planning or integrated to incorporate the inventory management
component. This tool has been shown to be very effective when tested independently. Second, given the
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short execution time, the approach allows decision-makers and users to check several what-if scenarios
and run re-optimization in case of disruptions. We further support the analysis above with additional
tests and statistics highlighting several managerial gains.

Figure 6 reports the number of routes and trucks used per week for the P12-C77-D4-S1 instance.
On average, the number of trucks used represents around 60% of the number of routes. This implies
that specific trucks are preferred over others. This might be explained by the compartment numbers
and sizes of each truck. For clients requiring small quantities, trucks with several, smaller-capacity
compartments are preferred since several clients can be grouped on a single route. For clients requiring
large quantities, trucks with fewer, larger-capacity compartments are preferred.

Figure 6: Number of Routes and Trucks Used per Week P12-C77-D4-S1
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Results also highlight that, on average, the number of clients visited by a given truck (on a single
route) is 1.5. This can be explained by the clients’ large tank capacities, which implies that the trucks
will serve few clients. This is similar to the American context, where direct billing is the main trend.

We report in Figure 7 the average free space in trucks per week for all 48 instances. We observe
that 32 instances have an average free space of less than 10%, 14 instances have free space between
10% and 15%, and only 2 instances have free space higher than 15%. This shows that the two-phase
approach tends to maximize the utilization of the trucks. This also depends on the significance of the
cost given to penalize free space within trucks. The higher this cost, the less empty the trucks are in
the optimal solutions.

Figure 8 highlights the number of visits per client-products for instance P12-C77-D4-S1. We
compare the minimum number of visits required and the number of visits performed (obtained from
the optimal solution). The minimum number of visits required is approximated as the ratio of weekly
capacity to demand C

D for each client-product n ∈ Np.

The results highlight that, at most, the number of visits performed is larger than the minimum
threshold by 3. For most instances, the near-optimal solution performs either the minimum number
of visits required or 1 additional visit. This can be explained by the delivery strategy in the near-
optimal solution. When a route contains several clients, a client might not receive the order within the
minimum number of visits. When the strategy is direct billing, the number of visits performed tends
to be equal to the minimum number of visits required. This also depends on the type of truck used
for delivery.



Les Cahiers du GERAD G–2024–18 27

Figure 7: Average Free Space Percentage Within Trucks per Week for All 48 Instances
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We lastly discuss an interesting aspect for oil companies, namely, when to buy and when to store.
Figure 9 shows the inventory (variation) levels and the quantity purchased over 12 weeks for in-
stance P12-C77-D4-S1. We observe that the optimal solutions follow a buy to sell strategy, i.e., the
petroleum distribution company buys the quantity required for a given week and sells it in the same
week, without keeping any stock, except for weeks 9, 10, and 11, where the company buys a large
quantity in week 9 and consumes it over weeks 9, 10, and 11. This can be explained by the variations
in the purchasing and inventory costs. When the former is lower, the company buys and delivers.
When the latter is lower, the company buys when the purchasing cost is low and keeps the stock.

A similar observation holds when the transport costs are higher than the inventory costs. In such
a case, we observe that the number of visits is lower. The inverse behavior is observed when the
inventory costs are higher. When the petrol price increases significantly, the delivery is restricted to
the quantities needed by the clients.

7 Conclusion
The petrol station replenishment problem is a famous and well-studied operations research problem.
For many practical applications and large-scale cases, the size of the underlying MILP is extremely
large, making the direct use of a MILP solver inefficient. Driven by a decoupling intuition, our
motivation was to provide a generic exact framework that could help efficiently solve the problem as
well as its complex variants.

We therefore investigated an exact MILP approach based on combining Benders decomposition
and column generation to tackle a complex variant of the PSRP. The proposed two-phase approach
stabilizes the inventory levels in the first phase, before finding a near-optimal integer solution in the
second phase. The proposed approach is enhanced through several acceleration strategies, including
warm-start, parallelism, a hashing technique, and a primal diving heuristic. The computational results
on realistic instances from a geographical zone in West Africa show that the novel approach reaches
near-optimal solutions and significantly outperforms existing techniques in the literature.

While this work was motivated by practices in Africa, it makes several fundamental and method-
ological contributions and can be extended in several ways. First, although we assume deterministic
parameters, several parameters, such as client demands, are uncertain in real life. Hence, a promising
extension direction is to design solution methods for the MDMPPSRPIM under demand uncertainty.
Second, the inventory forecast can be done using more sophisticated deep learning models and incor-
porated into the optimization model.
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Figure 8: Number of Visits Required and Performed for Each Client-Product for Instance P12-C77-D4-S1
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Figure 9: Inventory Levels (Variation) and Buying Pulses for Instance P12-C77-D4-S1
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Appendix A The MDMPPSRP set-partitioning model
The MDMPPSRP set-partitioning formulation (SPP) of Bani et al. (2023) is the following:

min
ρ

∑
ϱ∈Ω

cϱρϱ (SPP)

s.t.:
∑
ϱ∈Ω

q̃pe
ϱ ρϱ ≤ q̄pe ∀ p ∈ P, ∀ e ∈ E (1)

∑
ϱ∈Ω

s̃n
ϱ ρϱ = 1 ∀ n ∈ N (2)

∑
ϱ∈Ω

ũkd
ϱ ρϱ ≤ 1 ∀ k ∈ K, ∀ d ∈ Dk (3)

ρϱ ∈ {0, 1} ∀ ϱ ∈ Ω (4)

Appendix B The MDMPPSRP pricing subproblem
The MDMPPSRP pricing subproblem is reformulated and adapted from Bani et al. (2023). Every
resource-feasible route corresponds to a feasible route ϱ ∈ Ω. The cost of this route is the sum of the
costs of its arcs Aϱ and is equal to the corresponding route cost cϱ. However, in the pricing subproblem,
the arc costs need to be modified because we seek to find negative reduced-cost routes, if at least one
exists. Hence, the cost of a route should be changed to the reduced cost of the corresponding route
variable. We must define the appropriate arc reduced cost cij for each arc (i, j) ∈ A. To this end, we
define four sets of arcs:

• Aϱ: Set of arcs of route ϱ.
• Au

n: Set of unloading arcs that correspond to serving client-product n.
• Al

pe: Set of loading arcs corresponding to picking up quantity qpe of product p at depot e.
• Ao: Set of other arcs.
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The reduced cost cϱ of a variable ρϱ is then given by

cϱ = cϱ −
∑
n∈N

s̃nw
ϱ π

(33)
nw −

∑
n∈N

∑
d∈Dw

k

õnd
ϱ π

(32)
nd

−
∑
k∈K

∑
d∈Dw

k

ũkd
ϱ π

(34)
kwd

−
∑
p∈P

∑
e∈E

q̃pe
ϱ π

(31)
pew

=
∑

(i,j)∈Aϱ

cij (51)

In this case, the (reduced) cost cij of arc (i, j) ∈ Aϱ is given by

cij =

cij − õnd
ϱ π

(32)
nd

− π
(33)
nw if (i, j) ∈ Au

n

cij − q̃pe
ϱ π

(31)
pew if (i, j) ∈ Al

pe

cij if (i, j) ∈ Ao

(52)

The pricing subproblem is formulated as follows:

min
x,y,u

∑
k∈K

∑
d∈Dk

 ∑
(i,j)∈A

cijxkd
ij + Ψkukd + β

(
∆kukd −

∑
l∈Lk

∑
n∈N

Clkykd
ln

) (Pricing)

s.t.: okd
n ≤ Q̂d

n

∑
(i,n)∈Akd

xkd
in ∀ n ∈ N , ∀ k ∈ K, ∀ d ∈ Dk (53)

∑
k∈K

Clkykd
ln = okd

n ∀ n ∈ N , ∀ k ∈ K, ∀ d ∈ Dk (54)∑
(i,n)∈A

∑
k∈K

∑
d∈Dw

k

xkd
in ≤ 1 ∀ n ∈ N , ∀ w ∈ W (55)

qkd
pe ≤ Q̂pe

∑
i∈{E\{e}}∪{σ}

xkd
ie ∀ p ∈ P, ∀ e ∈ E, ∀ k ∈ K, ∀ d ∈ Dk (56)

xkd
ij ≤ ukd ∀ (i, j) ∈ A, ∀ k ∈ K, ∀ d ∈ Dk (57)∑

n∈N

ykd
ln ≤ 1 ∀ k ∈ K, ∀ l ∈ Lk, ∀ d ∈ Dk (58)∑

e∈E

qkd
pe =

∑
n∈Np

∑
l∈Lk

Clkykd
ln ∀ p ∈ P, ∀ k ∈ K, ∀ d ∈ Dk (59)

∑
(i,j)∈A

τ ijxkd
ij ≤ Tmax ∀ k ∈ K, ∀ d ∈ Dk (60)

∑
i∈V

xkd
ij −

∑
i∈V

xkd
ji =

−1 if j = σ

0 if j ∈ V \ {σ, δ}
1 if j = δ

∀ k ∈ K, ∀ d ∈ Dk (61)

∑
i,j∈S

xkd
ij ≤ |S| − 1 ∀ k ∈ K, ∀ d ∈ Dk (S ⊂ V, 2 ≤ |S| ≤ |V| − 2) (62)

xkd
ij ∈ {0, 1} ∀ (i, j, k, d) ∈ C (63)

ukd ∈ {0, 1} ∀ k ∈ K, ∀ d ∈ Dk (64)

ykd
ln ∈ {0, 1} ∀ n ∈ N , ∀ k ∈ K, ∀ l ∈ Lk, ∀ d ∈ Dk (65)

qkd
pe ≥ 0 ∀ k ∈ K, ∀ p ∈ P, ∀ e ∈ E, ∀ d ∈ Dk (66)

okd
n ≥ 0 ∀ n ∈ N , ∀ k ∈ K, ∀ d ∈ Dk (67)
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