
Les Cahiers du GERAD ISSN: 0711–2440

A machine-learning-based column generation heuristic
for electric bus scheduling

J. Gerbaux, Q. Cappart, G. Desaulniers

G–2024–13

January 2024

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : J. Gerbaux, Q. Cappart, G. Desaulniers (Janvier
2024). A machine-learning-based column generation heuristic for
electric bus scheduling, Rapport technique, Les Cahiers du GERAD
G– 2024–13, GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2024-13) afin de mettre à
jour vos données de référence, s’il a été publié dans une revue sci-
entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: J. Gerbaux, Q. Cappart, G. Desaulniers (January
2024). A machine-learning-based column generation heuristic for
electric bus scheduling, Technical report, Les Cahiers du GERAD
G–2024–13, GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2024-13) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec à Montréal, ainsi que du Fonds de
recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2024
– Bibliothèque et Archives Canada, 2024

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds de
recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2024
– Library and Archives Canada, 2024

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2024-13
https://www.gerad.ca/en/papers/G-2024-13
https://www.gerad.ca/en/papers/G-2024-13

A machine-learning-based column generation heuristic
for electric bus scheduling

Juliette Gerbaux a

Quentin Cappart a

Guy Desaulniers a, b

a Département de mathématiques et de génie
industriel, Polytechnique Montréal, Montréal,
(Qc), Canada, H3T 1J4

b GERAD, Montréal (Qc), Canada, H3T 1J4

January 2024
Les Cahiers du GERAD
G–2024–13
Copyright © 2024 Gerbaux, Cappart, Desaulniers

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:

• Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

Les Cahiers du GERAD G–2024–13 ii

Abstract : Bus scheduling in public transit consists in determining a set of bus schedules to cover a
set of timetabled trips at minimum cost. This planning process has evolved recently with the advent
of electric buses that introduce constraints related to vehicle autonomy and battery charging process.
In particular, column-generation algorithms have regained popularity for solving problems similar to
the one considered in this paper, namely, the MDEVSP with a piecewise linear charging function and
capacitated charging stations. To tackle large-scale MDEVSP instances, we design a column generation
heuristic that relies on reduced-sized networks to generate the bus schedules. The reduction is achieved
by selecting a priori a subset of the arcs. Multiple selection techniques are studied: some are based
on a greedy heuristic and others exploit a supervised learning algorithm relying on a graph neural
network. It turns out that combining both selection types yields the best computational results.
On 405 artificial instances involving between 568 and 1474 trips and generated from real bus lines
in Montreal, the network reduction technique produced an average computational time reduction of
71.6% while deteriorating solution cost by an average of 2.2%. On 8 larger instances containing more
than 2500 trips on average, the proposed solution method also provided an average time saving of
52.5% with an average gap of 4.2% thanks to a transfer learning approach.

Keywords : Electric bus scheduling, column generation heuristic, network reduction, machine learn-
ing, greedy heuristic

Acknowledgements: We are thankful to the personnel of GIRO Inc. for providing initial datasets
and discussing our progress throughout the project. This work was funded by GIRO Inc., the Natural
Sciences and Engineering Research Council of Canada under the grant ALLRP 567169–21, and Prompt
Québec under the grant PSO 171. This financial support was greatly appreciated.

Les Cahiers du GERAD G–2024–13 1

1 Introduction

More and more cities are using battery-electric buses for public transit to reduce greenhouse gas

emissions as well as pollution and noise. However, the deployment of electric buses requires rethinking

the planning process of the bus operations due to new constraints imposed by the vehicle batteries.

Depending on the recharging technology, different changes, described in Häll et al. (2019), have to be

made.

Bus operations planning has been extensively studied in the literature and involves several im-

portant steps (Desaulniers and Hickman, 2007; Ibarra-Rojas et al., 2015): strategic planning, which

establishes the transportation network by selecting the bus lines; tactical planning, which determines

trip frequencies and schedules over the lines; and operational planning, which elaborates bus and driver

schedules, among others. Each of these steps entails solving one or several combinatorial optimiza-

tion problems to maximize service quality (passenger satisfaction) or minimize operational costs. The

constraints considered in each problem can be infrastructure constraints (e.g., location of depots),

budget constraints (e.g., maximum number of buses available) or operational constraints (e.g., a bus

schedule must start and end at the same depot). One of the essential steps in this process is the ve-

hicle scheduling problem (VSP). Given a set of timetabled trips and a set of available buses, the VSP

consists in finding feasible bus schedules (sequences of trips) such that the total operating costs are

minimized and all planned trips are serviced. The operating costs include, for example, fixed costs for

each bus used as well as variable travel costs for empty bus movements (deadheads). The multi-depot

VSP (MDVSP), which arises when the buses are assigned to multiple depots, is known to be NP-hard

(Bertossi et al., 1987).

The algorithms developed for the VSP cannot be directly applied to the electric VSP (EVSP), which

is also NP-hard (Sassi and Oulamara, 2017). Indeed, operating electric vehicles induces additional

constraints such as limited vehicle autonomy due to battery capacity. The battery recharging process,

which is non-linear, must also be taken into account in the mathematical formulation (Zhang et al.,

2021a). Moreover, the location of the recharging stations and their available number of chargers must

be considered.

Therefore, the EVSP needs to be further studied in order to efficiently use electric buses in practice.

It is essential that the chosen model be realistic and that the applied solution method yields high-

quality solutions in relatively short computational times. Although there has been several research

works published in recent years (see below), several challenges still lie ahead before being able to

address efficiently large-scale industrial problems. It is in this context that we conducted this research

project on the multi-depot EVSP (MDEVSP) that was proposed to us by our industrial partner GIRO

Inc., a leader in the commercialization of optimization software for public transit. Our goal is to

accelerate a column generation (CG) heuristic, without deteriorating too much solution quality, by

selecting a relatively small subset of the arcs to consider during the optimization process. To perform

this arc selection, we explore the usage of a greedy heuristic and a deep learning architecture, namely,

a graph neural network (GNN).

This paper is structured as follows. Section 2 presents a literature review on the EVSP and states

our contributions. Section 3 defines the problem studied and proposes a mathematical formulation for

it. Then, Sections 4 and 5 describes a CG heuristic for solving the EVSP and the arc selection tech-

niques used to reduce heuristically the model size, respectively. Section 6 presents the computational

experiments carried out and their results. Finally, conclusions are drawn in Section 7.

2 Literature review and contributions

The entire planning process at the strategic, tactical, and operational levels must be revisited to

operate electric buses. For instance, decisions on bus acquisition and charging infrastructure design

must be considered. An overview of papers addressing such issues can be found in Dirks et al. (2022)

Les Cahiers du GERAD G–2024–13 2

and Perumal et al. (2022). Below, our literature review focuses on the (MD)EVSP. However, it is not

exhaustive given the large number of works published recently and problem variants. More exhaustive

reviews can be found in Perumal et al. (2022) and Gkiotsalitis et al. (2023).

Our review is divided in four parts: simplified recharging process (Section 2.1), nonlinear recharging

process (Section 2.2), charger capacity constraints (Section 2.3), and GNNs in combinatorial optimiza-

tion (Section 2.4). Our contributions with respect to this literature are presented in Section 2.5.

2.1 Works assuming a simplified recharging process

At first, only the autonomy of the vehicles and a constant recharging time of the batteries were taken

into account. A first version of the EVSP was proposed by Chao and Xiaohong (2013), in which the

vehicles are equipped with batteries that can be exchanged in a constant time throughout the day. It

was solved using a genetic algorithm. Afterwards, several papers like Li (2014), Reuer et al. (2015), and

Adler and Mirchandani (2017) developed heuristics for solving variants of the EVSP with a constant

recharging time, always assuming that the battery is fully recharged during this time.

Next, less restrictive assumptions such as non-constant recharging time and partial recharging, have

been considered. Wen et al. (2016) introduced a large neighborhood search (LNS) heuristic to solve an

EVSP with a linear recharging time in function of the state-of-charge (SoC) increase and possible partial

recharging. It can solve instances with up to 500 trips in about 20 minutes. Sassi and Oulamara (2017)

modeled the recharging process using a 15-minute discretization: in each time interval, the charging

power is a decision variable that determines the recharging speed. They considered a mixed fleet of

electric and non-electric buses and developed a mixed-integer program as well as two matheuristics for

solving their problem.

In the last few years, research on the EVSP has exploded with numerous works still assuming a

linear recharging process. In particular, local-search based heuristics have been developed by Jovanovic

et al. (2021), Jiang et al. (2022b) and Zhang et al. (2022). In Jovanovic et al. (2021), a greedy

randomized adaptive search procedure that can solve large-scale real-life instances with up to a few

thousand trips is developed. In Jiang et al. (2022b), the authors devised a LNS metaheuristic to solve

an EVSP arising in Shenzhen, China, and involving close to 800 trips. In Zhang et al. (2022), another

LNS algorithm is proposed to tackle a MDEVSP that considers multiple types of electric buses. This

heuristic can solve instances with 200 trips in around 30 minutes.

The following matheuristics, i.e., heuristics based on mathematical programming tools, have also

been proposed for solving EVSP variants. Wang et al. (2021) tackled the MDEVSP using a genetic

algorithm that exploits the columns produced by a CG algorithm. On instances with up to 510 trips,

their method turned out to be 40 times faster than a branch-and-price (BP) algorithm when duplicate

coverage or non-coverage of some trips is allowed.

For a mixed-fleet MDEVSP with diesel and electric buses, Olsen et al. (2022) proposed a three-

phase matheuristic that first determines a least-cost set of bus schedules without limited driving range

by solving exactly a multi-commodity network flow problem, second rearranges these schedules using

one of eight simple procedures to create a maximum number of schedules that can possibly be assigned

to an electric bus, and third tries to insert charging operations to create feasible schedules for electric

buses. This approach can solve instances with up to 10710 trips in 30 seconds but cannot guarantee

the number of schedules that can be assigned to electric buses.

Jiang et al. (2022a) developed a BP algorithm that takes into account the recharging time in the

CG subproblem, but the final recharging events are only planned in a post-processing step. With this

approach, the authors report solving instances with up to 400 trips in less than 72 minutes. For such

instances, the BP matheuristic yields better solutions than the LNS heuristic of Jiang et al. (2022b)

but in larger computational times.

Les Cahiers du GERAD G–2024–13 3

Finally, let us mention that several mixed-integer linear programming (MILP) models solvable

exactly by a commercial solver have been proposed. However, these approaches do not scale well. To

tackle larger instances, Alvo et al. (2021) devised a Benders decomposition algorithm that can solve

exactly instances with up to 250 trips in less than one hour. The master problem assembles the trips

into bus schedules and the Benders subproblems verify that these schedules are energy-feasible.

The impact of using a simplified recharging process is studied in Olsen and Kliewer (2020) and

Zhang et al. (2021a). Furthermore, the interest of allowing partial recharging is demonstrated in Zhang

et al. (2022).

2.2 Works with a nonlinear recharging process

In reality, the time required to recharge a battery is not linear with respect to the SoC variation

(see Montoya et al., 2017). EVSP models considering nonlinear recharging time emerged in van

Kooten Niekerk et al. (2017). These authors propose several MILP models and solution methods that

rely on a discretization of the recharging process. The solution methods are: an exact branch-and-

cut algorithm, a CG heuristic, and a Lagrangian relaxation heuristic combined with CG. The latter

algorithm yields the best results and can solve instances with 543 trips in about 15 minutes.

With the main goal of analyzing the impact of considering nonlinear recharging times compared

to linear ones, Olsen and Kliewer (2020) extended the local search heuristic of Adler and Mirchandani

(2017) to take into account partial recharging and nonlinear recharging times. With this heuristic,

they solved EVSP instances with up to 10710 trips.

Yıldırım and Yıldız (2021) tackled large-scale MDEVSP instances with several types of electric

buses and diesel buses, several types of chargers, and partial nonlinear recharging. They developed a

CG heuristic that can solve a first set of real-world instances with 6416 trips and 1685 buses in 3.5

hours on average and a second one with 846 trips and 99 buses in 1.7 hours on average.

Zhang et al. (2021b) introduced an exact BP approach to solve the EVSP. Their model considers

battery degradation in their objective function but assumes full recharging which allows to define an

efficient labeling algorithm for solving the CG subproblem. The largest test instances have 160 trips

and are solved in about 2 hours.

2.3 Works with charger capacity constraints

One feature that we will consider is a limit on the number of buses that can recharge simultaneously

at each charging station. Such charger capacity constraints typically arise for two reasons, namely, the

available number of parking spots equipped with a charger and the power available from the grid.

Not many papers on pure (MD)EVSP have considered these constraints due to the difficulty to

handle them. To simplify their treatment, some authors like Li (2014), Sassi and Oulamara (2017) and

Zhang et al. (2021b) have chosen to use a discretized time horizon for the recharging operations, i.e., a

recharge covers an integer number of consecutive periods. On the other hand, Alvo et al. (2021) avoid

this approximation and use a continuous time horizon in their Benders’ decomposition algorithm by

handling these constraints in the linear programming subproblem that is responsible to find a feasible

schedule for each available charger.

2.4 Works leveraging machine learning in combinatorial optimization

In a different context, there has been a surge in the prevalence of deep learning architectures (LeCun

et al., 2015) over the past decade. This rise is attributed to advancements in computational capabil-

ities and the abundance of available data, enabling the development of increasingly complex neural

architectures that have achieved remarkable results across a wide range of tasks, spanning computer

vision to natural language processing. As the machine learning community continues to seek new

Les Cahiers du GERAD G–2024–13 4

frontiers and challenges, there has been a gradual adoption of deep learning techniques to address

combinatorial optimization problems, as discussed by Bengio et al. (2021). Related to the MDVSP,

Dauer and Prata (2021) propose to reduce the number of variables on a time-space network using a

supervised approach.

A recent and widely embraced architectural approach for tackling combinatorial optimization prob-

lems is the GNN (Kipf and Welling, 2017). Much like convolutional neural networks, which are tailored

for learning from spatial data such as images, GNNs specialize in learning from data structured in the

form of graphs. Numerous variations of architectures based on GNNs are available, including those

incorporating sampling techniques (Hamilton et al., 2017), attention mechanisms (Veličković et al.,

2018), or gating mechanisms (Ruiz et al., 2020). This architectural paradigm has progressively gained

attention for diverse combinatorial optimization domains, including integer programming (Gasse et al.,

2019), constraint programming (Cappart et al., 2021), SAT solving (Selsam and Bjørner, 2019), de-

cision diagrams (Cappart et al., 2022), and even column generation (Morabit et al., 2021). For a

comprehensive examination of GNNs and their application in combinatorial optimization, we direct

the reader to the survey conducted by Cappart et al. (2023). To the best of our knowledge, GNNs

have not been considered yet for the (MD)EVSP.

2.5 Our contributions

As one can observe from this literature review, several types of algorithms have been proposed to solve

the (MD)EVSP. Among them, there are several CG-based algorithms that allow to solve large-scale

instances, while providing dual bounds to assess solution quality. Such a CG heuristic is commercialized

by our industrial partner GIRO for solving real-life instances. The goal of this paper is to develop an

efficient arc selection technique to speed up such algorithms without deteriorating too much solution

quality. To do so, we explore different techniques and apply them to solve the (MD)EVSP with a

nonlinear recharging process and charging station capacity constraints.

Our main scientific contributions can be stated as follows:

• We develop a fast greedy heuristic that can include some randomness to generate a subset of

(possibly infeasible) solutions;

• We introduce a GNN architecture, trained in a supervised fashion from previously solved in-

stances, that can provide an approximation of the probability that an arc is part of an optimal

solution;

• We propose different arc selection procedures that rely on the results of the greedy heuristic or

the GNN or both of them;

• We apply these selection procedures to speed up a basic CG heuristic.

To assess the proposed solution methods, we report computational results obtained on (MD)EVSP

instances generated from real bus lines.

3 Problem statement and mathematical model

In this section, we first define the MDEVSP in detail, before presenting a mathematical formulation

for it.

3.1 Problem statement

In public transit, the MDEVSP is often defined over a single day. Let T be a set of n trips to cover

with a single bus each. Each trip t ∈ T is defined by its departure and end terminals lDt and lEt , its

departure and end times qDt and qEt , and its energy consumption et. These trips must be covered by

Les Cahiers du GERAD G–2024–13 5

a fleet of identical electric buses that are spread in a set D of depots. Depot d ∈ D has vd available

buses. We assume that any bus can cover any trip.

While scheduling electric buses, we ensure that they do not run out of energy. Thus, we impose that

the SoC of each bus remains in an interval [σ, σ] and assume that the buses are fully charged at σ at the

start of the day. To recharge the buses in the middle of the day, there is a set H of recharging stations

(at the depots or elsewhere). Station h ∈ H is equipped with uh chargers and, thus, a maximum of uh

buses can recharge simultaneously there. As suggested by Montoya et al. (2017), the charging process

is modeled by a piecewise linear function f which, from an initial battery SoC σI and a charging time

∆, gives the final SoC σF = f(σI ,∆) (see Figure 1).

-
Time (min)

6

SoC

�
�
�
�
�
�
�
�
�

��
(((((σ

σ

σI r
-�∆

rσF = f(σI ,∆)

Figure 1: Recharging model

To track the number of buses present simultaneously at a charging station, the day is discretized

into m consecutive δ-minute time intervals. Let P = {p1, p2, ..., pm} be the set of these periods and

denote by τSp and τEp the start and end times of period p ∈ P , respectively, where τEpi
= τSpi+1

,

∀i ∈ {1, 2, . . . ,m − 1}. We assume that any recharging operation must start at the beginning of a

period and last an integer number of periods. In fact, recharging can stop before the last period if the

SoC reaches σ but the vehicle continues to occupy the charger until the end of this period. Only one

(non-preemptive) recharge is allowed per visit at a recharging station.

For each pair of points i and j in the transportation network (i.e., depots, recharging stations, start

and end trip terminals), let ρij and eij be the travel time and energy consumption between i and j
when the bus is deadheading, i.e., without passengers.

A bus schedule is a sequence of trips, deadheads and recharging events. It is feasible if it starts and

ends at the same depot, it respects the timetable of the visited trips, and the bus SoC always remains

in [σ, σ]. Furthermore, to avoid long unproductive time for the drivers, we impose a maximum duration

of β minutes between two trips t1 and t2 performed consecutively by the same bus (i.e., qDt2 − q
E
t1 ≤ β).

This rule applies only if no recharge or return to the depot (see below) is performed between t1 and

t2. On the other hand, it is possible to return temporarily to any depot during the day, but if so, the

bus must be parked there for a minimum time γ.

The cost structure is as follows. Each used bus incurs a fixed cost cF and a variable cost associated

with its schedule. The cost of a schedule is separated into four parts: a cost cW for each time unit

waiting outside the depots (including any time spent at the recharging stations), an empty travel cost

cDij for deadheading between locations i and j, a penalty cost cR for each return to a depot during the

day, and a penalty cost cH for each charging event. There is no waiting cost at the depots because

the driver can, typically, leave the vehicle without attendance and there is no travel cost on the trips

because they must be covered exactly once, incurring an overall constant cost. The penalty costs cR

and cH are considered to avoid unnecessary recharging operations and returns to the depot.

Les Cahiers du GERAD G–2024–13 6

The goal of the MDEVSP is to find a set of feasible bus schedules that covers each trip once while

minimizing the total cost and respecting the capacity of the depots and charging stations.

3.2 Mathematical formulation

The MDEVSP can be formulated as a set partitioning problem with side constraints. This formulation

relies on the following additional notation. Let Sd be the set of feasible schedules for the buses housed

in depot d. For a schedule s ∈ Sd, d ∈ D, we define the following parameters: cs is the schedule cost;

ats is a binary parameter equal to 1 if trip t ∈ T is covered by schedule s and 0 otherwise, and; bphs is

a binary parameter equal to 1 if schedule s uses a charger at station h ∈ H in time period p ∈ P and

0 otherwise. Furthermore, we associate a binary variable xs that is equal to 1 if schedule s is used in

the solution and 0 otherwise.

The MDEVSP can then be expressed as follows:

min
∑
d∈D

∑
s∈Sd

csxs (1)

s.t.:
∑
d∈D

∑
s∈Sd

atsxs = 1, ∀t ∈ T, (2)

∑
d∈D

∑
s∈Sd

bphs xs ≤ uh, ∀p ∈ P, h ∈ H, (3)

∑
s∈Sd

xs ≤ vd, ∀d ∈ D, (4)

xs ∈ {0, 1}, ∀d ∈ D, s ∈ Sd. (5)

Objective function (1) aims at minimizing the total cost of the schedules. Constraints (2) ensure

that each trip is serviced by exactly one bus. Constraints (3) model the capacity of the recharging

stations in each time period. Constraints (4) enforce the capacity of the depots. Finally, constraints (5)

impose binary requirements on the schedule variables. In practice, model (1)–(5) involves a huge

number of variables, namely, one per feasible schedule. As discussed next, CG can be used to handle

them.

4 Basic CG heuristic

For many years, CG heuristics have been used to solve various large-scale vehicle and crew scheduling

problems (see, e.g., Desaulniers et al., 2005; Sadykov et al., 2019). Such a matheuristic applies CG to

solve linear relaxations and derive integer solutions by partially exploring a branch-and-bound search

tree. In this section, we first present our CG algorithm (Subection 4.1) before describing our branching

strategy (Subsection 4.2). Finally, three basic speedup techniques are briefly exposed in Subsection 4.3.

4.1 Column generation

CG is an iterative algorithm that is first used to solve the linear relaxation of model (1)–(5) that is

called the master problem (MP). At each iteration ℓ, CG solves the MP restricted to a subset Sd
ℓ ⊂ Sd

of the feasible schedules for each depot d ∈ D. This problem, called the restricted MP (RMP) and

denoted RMP ℓ at iteration ℓ, writes as follows:

min
∑
d∈D

∑
s∈Sd

ℓ

csxs (6)

s.t.:
∑
d∈D

∑
s∈Sd

ℓ

atsxs = 1, ∀t ∈ T, (7)

Les Cahiers du GERAD G–2024–13 7

∑
d∈D

∑
s∈Sd

ℓ

bphs xs ≤ uh, ∀p ∈ P,∀h ∈ H, (8)

∑
s∈Sd

ℓ

xs ≤ vd, ∀d ∈ D, (9)

xs ≥ 0, ∀d ∈ D, s ∈ Sd
ℓ . (10)

Solving RMP ℓ yields a primal solution (assuming it is feasible) and a dual solution (πℓ, νℓ, ηℓ), where

πℓ, νℓ, and ηℓ are the vectors of dual variables associated with constraints (7)–(9), respectively. Then,

CG solves a subproblem for each depot d ∈ D whose goal is to find new variables (columns) with a

negative reduced cost, where the reduced cost c̄ℓs of a variable xs, s ∈ Sd, at iteration ℓ is

c̄ℓs = cs −
∑
t∈T

πℓ
ta

t
s −

∑
p∈P

∑
h∈H

νℓphb
ph
s − ηℓd. (11)

If no negative reduced cost columns are found for all depots, the optimal solution to RMP ℓ is also

optimal for the MP. Otherwise, negative reduced cost columns are added to RMP ℓ to yield RMP ℓ+1,

and a new iteration must be executed.

For the MDEVSP, each CG subproblem is a shortest path problem with resource constraints (SP-

PRC, see Irnich and Desaulniers, 2005) that is defined on a specific network and can be solved by a

labeling algorithm. This network and this algorithm are described below.

4.1.1 Subproblem network and resource constraints

The SPPRC for depot d ∈ D is defined on an acyclic network Gd = (Vd,Ad), where Vd and Ad are its

vertex and arc sets, respectively. This network (see Figure 2) has the structure of a direct connection

network between the trips (to easily deal with the time limit between consecutive trips) and that of a

time-space network for the recharging stations and the intra-day depot returns.

In Vd, there is a source node od and a sink node kd that represent depot d at the beginning and

the end of the day, respectively. There is a trip node t for each trip t ∈ T . For each charging station

h ∈ H and time period p ∈ P , a waiting node wh
p and a recharging node rhp are created to represent a

vehicle ready to wait or charge at station h at the beginning of period p. Furthermore, for each depot

d′ ∈ D and period p ∈ P , there is a node sd
′

p representing the possibility of idling at the depot. Hence,

a discretized timeline is also used at the depots to obtain an acyclic network.

Arc set Ad is built as follows. For each trip t ∈ T , there is a (black) pull-out arc (od, t) and a

(black) pull-in arc (t, kd). For each pair of distinct trips ti ∈ T and tj ∈ T that can be feasibly covered

consecutively by the same bus (ρlEti ,l
D
tj

≤ qDtj − qEti ≤ β), there is a (red) connection arc (ti, tj). Next,

for each trip t ∈ T and each charging station h ∈ H, we create a (blue) from-station arc (wh
pL , t), where

pL is the latest period in P such that τEpL + ρh,lDt ≤ qDt . Similarly, a (blue) to-station arc (t, wh
pE) is

created, where pE is the earliest period in P such that qEt + ρlEt ,h ≤ τSpE . Then, for each trip t ∈ T

and depot d′ ∈ D, a (green) from-depot arc (sd
′

pL , t) is defined, where p
L is the latest period in P such

that τEpL + ρd′,lDt
≤ qDt . Moreover, we define a (green) to-depot arc (t, sd

′

pE), where p
E is the earliest

period in P such that qEt + ρlEt ,d′ + γ ≤ τSpE , where γ ensures that the bus spends at least γ minutes in

the depot. Also, for each recharging station h ∈ H and time period pi ∈ P , we create (brown) waiting

arcs (wh
pi
, wh

pi+1
), (brown) start-of-recharging arcs (wh

pi
, rhpi+1

) and (brown) recharging arcs (rhpi
, rhpi+1

)

associated both with period pi, as well as end-of-recharging arcs (rhpi
, wh

pi
). As shown in Figure 2,

some of these arcs are not defined when pi = p1 or pi = pm. For each station h, there is also a (black)

pull-in arc (wh
pm
, kd) to model the possibility to end a schedule by a recharging event to reach the

depot. The symmetric option is not considered at the beginning of the day because we assume that

all buses are fully recharged at night. Finally, for each depot d′ ∈ D, there is a sequence of (orange)

idle arcs (sd
′

pi
, sd

′

pi+1
), i = 1, 2, . . . ,m− 1} allowing to extend the time spent at the depot in the middle

of the day.

Les Cahiers du GERAD G–2024–13 8

od

t1

t2

t3 ...

tn−1

tn

kd

wh
p1

wh
p2

wh
p3

... wh
pm

rhp2 rhp3
... rhpm

sd
′

p2
sd

′
p1

sd
′

p3
... sd

′
pm

Figure 2: Subproblem network Gd for depot d

Each arc (i, j) ∈ Ad has a real cost cij that is computed according to the structure explained

at the end of Section 3.1. In particular, the fixed cost cF , the return-to-the-depot penalty cR, and

the charging-event penalty cH are included in the cost of all pull-out arcs, to-depot arcs, and to-

station arcs, respectively. To compute the reduced cost of the schedule variables xs in the subproblem

at iteration ℓ, these arc costs cij are replaced by adjusted costs c̄ℓij that take into account the dual

solution (πℓ, νℓ, ηℓ) of RMP ℓ as follows:

c̄ℓij =


cij − (ηℓd + πℓ

j) if (i, j) is a pull-out arc
cij − πℓ

j if i ̸= od and j is a trip node
cij − νℓpkh

if j = rhpk+1
is a recharging node

cij otherwise.

(12)

With these adjusted costs, the cost of any od − kd path corresponding to a feasible schedule s ∈ Sd is

equal to its reduced cost c̄ℓs as defined by Equation (11). With each arc (i, j) ∈ Ad, we also associate

an energy consumption

ẽij =

{
ei + eli l̄j if i is a trip node

eli l̄j otherwise,
(13)

where li is the terminal lEi if i is a trip node or the location associated with node i otherwise, while l̄j
is the terminal lDj if j is a trip node or the location associated with node i otherwise.

Every feasible schedule in Sd corresponds to an od − kd path in Gd. However, not all od − kd paths

represent a feasible schedule as the SoC and charging constraints are not explicitly taken into account

in the network structure. These constraints are modeled as resource constraints using three different

resources. The first resource is the SoC, the second ensures that any recharging event is not split in

multiple parts, while the third forces a recharging event to take place at every visit to a recharging

station. The usage of these resources is detailed in the next subsection.

4.1.2 Labeling algorithm

The SPPRC for depot d ∈ D can be solved using a labeling algorithm (see Irnich and Desaulniers,

2005). Starting with an initial partial path containing only source node od, this algorithm extends

iteratively partial paths until reaching sink node kd. To avoid enumerating all possible paths, infeasible

paths (those violating the resource constraints) and paths that are proven to be dominated by others

are discarded during the course of the algorithm.

Les Cahiers du GERAD G–2024–13 9

A partial path p ending at a node i ∈ Vd is represented by a label Λp = (ΓrCost
p ,ΓSoC

p ,ΓNoR
p ,ΓRchR

p)

associated with this node, where the label components provide the following information about path p:

ΓrCost
p : Reduced cost up to node i;

ΓSoC
p : SoC at node i;

ΓNoR
p : Number of recharging events since the last trip;

ΓRchR
p : Indicator equal to 1 if a recharging event is still required before the next trip and to 0 otherwise.

The labeling algorithm starts with an initial label Λp0 = (0, σ, 0, 0) at node od that represents partial

path p0 = od. Extending a partial path p ending at node i or, equivalently, its label

Λp = (ΓrCost
p ,ΓSoC

p ,ΓNoR
p ,ΓRchR

p), along an arc (i, j) ∈ Ad yields a new label Λp′ = (ΓrCost
p′ ,ΓSoC

p′ ,

ΓNoR
p′ ,ΓRchR

p′) at node j whose components are computed using the following resource extension func-

tions at iteration ℓ:

ΓrCost
p′ = ΓrCost

p + c̄ℓij (14)

ΓSoC
p′ =

{
min{σ, f(ΓSoC

p , δ)} if (i, j) ∈ Ad
SR ∪ Ad

R

ΓSoC
p − ẽij otherwise

(15)

ΓNoR
p′ =


ΓNoR
p + 1 if (i, j) ∈ Ad

SR

ΓNoR
p − 1 if (i, j) ∈ Ad

FS

ΓNoR
p otherwise

(16)

ΓRchR
p′ =


ΓRchR
p + 1 if (i, j) ∈ Ad

TS

ΓRchR
p − 1 if (i, j) ∈ Ad

SR

ΓRchR
p otherwise

(17)

where Ad
SR, Ad

R, Ad
FS , and Ad

TS are the subsets of start-of-recharging, recharging, from-station, and

to-station arcs, respectively. Observe that the extension function (15) allows to stay in a recharging

mode after reaching σ, the maximum SoC. In this case, the bus continues to occupy a charger but

stops recharging. Label p′ is deemed infeasible and discarded if at least one of the following conditions

holds: i) ΓSoC
p′ < σ, ii) ΓNoR

p′ > 1, and iii) j is a trip node and ΓRchR
p′ = 1. To avoid enumerating all

feasible paths, the following dominance rule is applied.

Definition 1. Let Λpi = (ΓrCost
pi

,ΓSoC
pi

,ΓNoR
pi

,ΓRchR
pi

), i = 1, 2, be two labels associated with the same

node. Label Λp1
dominates label Λp2

if

ΓrCost
p1

≤ ΓrCost
p2

, ΓSoC
p1

≥ ΓSoC
p2

, ΓNoR
p1

≤ ΓNoR
p2

, ΓRchR
p1

≤ ΓRchR
p2

.

All dominated labels are discarded except when two labels dominate each other, in which case one

of them must be kept.

4.2 Integer solutions

To derive integer solutions, we partially explore a search tree. We can apply in order of priority the

following three types of decisions (the parameter values below have been selected based on preliminary

tests):

• Fixing to 1 the value of at most 10 variables xs that take a fractional value larger than or equal

to 0.7. A single child node is created.

• Fixing to 1 the (direct or indirect) flow between two consecutive trips for at most 50 pairs of trips

whose flow is fractional and larger than or equal to 0.7, or for a single pair (that with the largest

flow) if none have a fractional flow larger than or equal to 0.7. Such inter-trip constraints are

imposed in the CG subproblem by modifying the labeling algorithm (see Irnich and Desaulniers,

2005). A single child node is created.

Les Cahiers du GERAD G–2024–13 10

• Branching on an arc flow if it is fractional. The decisions are imposed by adding a constraint in

the MP. Two child nodes are created.

Most of the times, the first two types are sufficient to complete the solution process and find a high-

quality integer solution. This corresponds to a diving heuristic (see Sadykov et al., 2019). In rare

cases, we need to resort to the third decision type. Note that CG is re-started after imposing the

decisions.

4.3 Speedup techniques

Despite using CG and heuristic branching, the convergence of the algorithm can be very long for large

instances, partly because they become highly degenerated. To fight degeneracy, perturbation of the

trip coverage constraints (7), which allows to slightly under- and over-cover each trip, is applied as

proposed in Desfontaines and Desaulniers (2018). Perturbation is deactivated when no decisions of

types 1 and 2 (for a fractional value of at least 0.7) can be imposed.

To further accelerate the algorithm, CG is terminated prematurely at each node of the search tree

when the optimal value of the current RMP has decreased by less than a predefined threshold (set to

100 for our tests) over a given number of iterations (3 for our tests).

Finally, for the very large instances for which solving the subproblem is highly time-consuming, we

use an aggressive heuristic dominance rule in the labeling algorithm that considers only the test on

the reduced cost component. In each node of the search tree, this heuristic rule is used to generate

columns until the CG process starts to stall (the optimal value of the RMP has decreased by less than

100 in the last 5 iterations).

5 Heuristics for reducing the size of the networks

Despite the speedup techniques described previously, the execution time of the CG heuristic can still be

prohibitive for solving very large instances. To tackle this issue, we propose to reduce the complexity

of the SPPRC subproblem by shrinking the size of the related networks Gd = (Vd,Ad), d ∈ D (see

Figure 2). Instead of executing the labeling algorithm on a complete Gd network, our idea is to execute

it on a subnetwork Ĝd = (Vd, Âd) such that Âd ⊂ Ad. In other words, all the vertices are present in

a subnetwork but only a subset of the arcs is included. The following two options can be considered:

defining the subnetworks Ĝd, d ∈ D, only once before starting CG or redefining them at each CG

iteration taking into account the current RMP dual solution. We have chosen the first option because

the second one is more complex and, thus, requires devising a procedure that might induce a too

large overhead at each iteration. Nevertheless, determining which arcs can be safely removed without

altering the final solution is nontrivial. When we remove arcs, there is a potential risk of diminishing

the solution quality as the SPPRC subproblems might not be able to generate all necessary paths.

Another consideration is to determine how many arcs should be kept in the subnetworks. Pruning too

many arcs may result in a poor-quality solution, but on the other hand, being too conservative will

not have a significant impact on the execution time that we want to reduce. Therefore, there is an

appropriate balance to achieve. Finally, even if this selection procedure is executed only once before

starting CG, it should be relatively fast.

We introduce three approaches for reducing the subproblem networks by selecting appropriate arcs.

The first approach is a greedy heuristic exploiting the problem structure (Section 5.1). The second one

is based on supervised learning and leverages a GNN (Section 5.2). Finally, the last approach combines

both of them (Section 5.3). These three arc selection approaches focus only on the connection, from-

station, to-station, from-depot and to-depot arcs. These arcs are called the selectable arcs. All other

(black, brown, and orange) arcs are always kept in the Ĝd subnetworks to ensure feasibility.

Les Cahiers du GERAD G–2024–13 11

5.1 Selection with a greedy heuristic

Inspired by Adler and Mirchandani (2017), we design a greedy heuristic for solving the MDEVSP

without taking into account station capacity. Then, only the selectable arcs present in the solution

are included in Âd when building subnetwork Ĝd, independently of the depot associated with the bus

traversing these arcs in the solution. Briefly, our greedy heuristic consists in maintaining a set of partial

paths, and to append each trip to the path incurring a minimal immediate insertion cost. When there

is no direct way to add a trip to a path, we complete the path with a detour towards a charging station

or a depot. If it is still not possible to add the trip, we create a new path starting from a depot having

an available bus. We realistically assume that the bus fleet is sufficient to cover all trips. Otherwise,

we dynamically increase it. The heuristic is formalized in Algorithm 1, where zd indicates the current

number of buses used from depot d ∈ D and the built paths are stored in a dictionary data structure

R indexed by the depot d and vehicle v associated with the path.

Algorithm 1: Greedy heuristic for arc selection

1 ▷ Pre: D is the set of depots.

2 ▷ Pre: G = {G1, . . . ,G|D|} are the networks for each depot.

3 ▷ Pre: T is the set of trips, sorted by departure time qDt .

4 ▷ Pre: od, kd, vd are parameters for each d ∈ D (Section 3).
5

6 R[d, v] := od ∀d ∈ D ∧ ∀v ∈ {1, . . . , vd}
7 zd := 0 ∀d ∈ D
8 forall t ∈ T do
9 Er := getAdmissiblePaths(R, t,G)

10 Ec := getAdmissibleChargingStations(R, t,G)
11 Ed := getAdmissibleDepots(R,G)
12 if Er ̸= ∅ then
13 (d, v) := getCheapestPath(R, t, Er,G)
14 R[d, v] := R[d, v]⊕ t

15 else if Ec ∪ Ed ̸= ∅ then
16 (d, v, r) := getCheapestExtension(R, t, Ec, Ed,G)
17 R[d, v] := R[d, v]⊕ r ⊕ t

18 else
19 d := argmind∈D

{
getCost(od, t)

∣∣ d ∈ D ∧ zd < vd
}

20 zd := zd + 1

21 R[d, zd] := R[d, zd]⊕ t

22 forall d ∈ D do
23 forall v ∈ {1, . . . , zd} do
24 r := getCheapestFeasiblePathToDepot(R, d, v,Gd)

25 R[d, v] := R[d, v]⊕ r ⊕ kd

26 Q̂ := getAllSelectedArcs(R,G)
27 return Q̂

First, a partial path corresponding to an empty schedule is initialized for each available vehicle v

in each depot d (line 6) and the current number of vehicles used is set to 0 (line 7). Then, all trips

t ∈ T , sorted in increasing order of their departure time, are considered for insertion in a partial path

(line 8). Three sets are computed at each iteration: (1) Er, which includes all the existing paths on

which trip t can be directly appended without violating the energy and time constraints, (2) Ec, which

includes the set of charging stations for which there exists at least one path that can be extended to

cover trip t by going through this station, and (3) Ed, which includes the set of depots for which there

exists at least one path that can be extended to cover trip t by letting the vehicle wait at this depot

before trip t (lines 9 to 11).

There are three options for inserting a trip. First, if trip t can be directly appended to an existing

path without detours (line 12), we get the partial path R[d, v] for which the insertion cost is minimal

(line 13) and we add the trip to this path (line 14). The operator x⊕ y represents extending a partial

Les Cahiers du GERAD G–2024–13 12

path x with y. Second, if the trip can be inserted to an existing path only by resorting to a detour

through a charging station or a depot (line 15), we get the path R[d, v] with the minimal insertion

cost subject to a detour denoted r (line 16). The trip is then inserted into the path, after the detour

(line 17). Third, if there is no option to insert the trip in an existing path (line 18), we start a new

path from the cheapest depot that has an available vehicle (line 19). The number of available vehicles

is then updated (line 20), and the trip is inserted (line 21).

At this step, we have a set of partial paths covering all trips in T . The last loop consists in closing

each path by finding the cheapest feasible extension to the vehicle’s depot (lines 22–25). We ensure

that a vehicle can always go back to its depot by enforcing a safety margin on the battery level. Finally,

we build the subset Q̂ of retained selectable arcs by taking all selectable arcs appearing in a path of

the solution (line 26), and return this set Q̂ that applies to all depots d ∈ D (line 27). Note that

the number of chargers available at a charging station is not considered in the algorithm and that

the solution obtained may, consequently, be infeasible. This is a reason why all non-selectable arcs

are kept in the subnetworks. The execution time of this algorithm is negligible compared to the CG

algorithm executed afterwards.

5.1.1 Adding randomness in the heuristic

Incorporating randomness is a common enhancement strategy to increase diversification in a greedy

heuristic. We introduce randomness in Algorithm 1 as follows. First, instead of selecting the cheapest

arcs for insertion, e.g. in line 19, we choose one arc from the set of the nR most affordable arcs

using a uniform distribution. Second, the algorithm is executed a total of nS times. Here, nR and

nS are predefined parameters. This random strategy is also applied on lines 13 and 16. The final

set of selectable arcs returned encompasses the union of the arc subsets obtained through these nS

executions.

5.2 Selection with a graph neural network

A drawback of the greedy heuristic lies in its strategy for path extension, which primarily relies

on selecting arcs with the least immediate insertion cost. In cases where finding an optimal path

necessitates the inclusion of costly immediate arcs, the greedy approach may prove inefficient. Rather

than seeking to identify these arcs through a manually crafted algorithm, we propose learning to

identify them from historical data using a GNN.

Let us consider the aggregated network G = (V,A) underlying the subproblems, where V = ∪d∈DVd

and A = ∪d∈DAd. Let yv,u ∈ {0, 1} be a binary value associated with arc (v, u) ∈ A indicating whether

arc (v, u) belongs to a good-quality MDEVSP solution obtained with the basic CG heuristic described

in Section 4. We define k as the number of arcs in A and Y = {y1, . . . , yk} as the set of all indicator

arc values in network G. Briefly, our supervised learning procedure consists in training a function

Φ : G → [0, 1]k from a dataset D = {(G1,Y1), . . . , (Gm,Ym)} of m previously solved MDEVSPs. We

note that the number of vertices or arcs in the m networks from can be different. This function takes

as input an aggregated network (i.e., an MDEVSP instance) and output a probability for each arc to

be part of the solution obtained with the CG algorithm. We propose to build this function thanks to a

GNN. This approach is elaborated next, starting with an overview of the feature information employed

for training, followed by the GNN’s architecture and the specifics of the training process.

5.2.1 Description of features

All vertices and arcs are decorated with a list of features. Intuitively, such features embed the charac-

teristics of the MDEVSP that must be solved. Let ϕdv ∈ R9+2nL

and ψd
a ∈ R8 be the vectors of features

associated with a vertex v ∈ Vd and an arc a = (v, u) ∈ Ad, respectively, where nL is the number

of physical locations (depots, terminals, charging stations) in the transportation network. The vertex

features include the vertex type, the starting and ending times of the associated activity, the physical

Les Cahiers du GERAD G–2024–13 13

locations associated with the vertex and, for the trip vertices, the numbers of trips that arrive shortly

before the trip departure and that depart shortly after the trip arrival. On the other hand, the arc

features include the arc cost, energy consumption, deadhead travel time, and waiting time. Further-

more, for trip-to-trip arcs, some cost and departure time rankings are also considered to assess the

quality of this connection with respect to other possible ones. The detailed features are provided in A.

Before using these features in the GNN, two preprocessing steps are carried out: first, each feature

is considered as a real value (required for the training with a neural network) and second, values are

normalized between 0 and 1 to stabilize the training.

5.2.2 Architecture of the graph neural network

In essence, the objective of a GNN is to transform the data within a network into a p-dimensional

tensor for each vertex within the network. This transformation process entails an iterative refinement

of the information associated with each vertex, achieved by gathering and consolidating information

from neighboring vertices. Each step in this information aggregation process is commonly termed a

layer of the GNN, and encompasses parameters that need to be learned.

Let hlv ∈ Rp be a p-dimensional vector representation of vertex v ∈ V at layer l and glv,u ∈ Rq a

q-dimensional representation of arc (v, u) ∈ A at layer l ∈ {0, 1, . . . , L}. The inference process of a

GNN consists in computing the next representations (hl+1
v and gl+1

u,v) from the previous ones for each

vertex and arc. This operation can be executed through various approaches and is commonly referred

to as message passing. In our specific context, we adopt the formalization proposed by Joshi et al.

(2022). First, we set h0v = θ1ϕv and g0v,u = θ2ψv,u. This corresponds to a linear projection, where θ1
and θ2 are two tensors of weights that are determined during training. Then, the representations at

each layer l + 1 from 0 to L− 1 are formalized as follows.

µl
v = max

u∈N (v)

(
σ(glv,u)θ

l
3h

l
u

)
∀v ∈ V (18)

hl+1
v = hlv + ReLU

(
Norm

(
θl4h

l
v + µl

v

))
∀v ∈ V (19)

gl+1
v,u = glv,u + ReLU

(
Norm

(
θl5g

l
v,u + θl6h

l
v + θl7h

l
u

))
∀(v, u) ∈ A (20)

Parameters θl3, . . . , θ
l
7 are additional weight tensors for each layer l, σ is the sigmoid function,

ReLU(x) = max(0, x) is a non-linear activation function (Glorot et al., 2011), N (v) is the neigh-

borhood of vertex v, and Norm is a normalization function. Such operations are executed for each

vertex and each arc. The information from each neighbor is first aggregated by taking their maximum
value in (18) which is then used in (19) for computing a vertex representation at the next layer. The

representation for an arc is computed in (20) using the representations of the arc and its two vertices

at the previous layer.

Let ŷv,u ∈ [0, 1] be the predicted probability that arc (v, u) is part of the MDEVSP solution. The

last step is to compute such prediction from hLv as stated in the following equations:

h =
1

|V|
∑
u∈V

hLu (21)

ŷv,u = σ
(
θ8ReLU

(
θ9(h∥hLv ∥hLu)

))
∀(v, u) ∈ A. (22)

A comprehensive representation of network G is generated by calculating the mean value of each

vertex representation in (21). The prediction is subsequently derived by concatenating this mean value

with the representations of the two vertices connected by the arc. This concatenated representation

is then processed in (22) through a non-linear function that involves two additional tensors of weights

θ8 and θ9. Note that the final sigmoid function is employed to ensure that the prediction falls within

the range [0, 1]. For more information about these equations, we refer the reader to Joshi et al. (2022).

Our architecture consists of L = 25 layers, each of dimension p = 128.

Les Cahiers du GERAD G–2024–13 14

5.2.3 Training algorithm

To find good values for the tensors θ1, . . . , θ9, the model is trained using gradient back-propagation

with a weighted binary cross-entropy loss. The loss is computed only using the selectable arcs and

has a weight of 1 for arcs that are part of the MDEVSP solution, and of 0.1 for the others. Our

dataset of solved instances is divided into three sets: 70 % are used for the training set, 15 % for the

validation set, and 15 % for the test set. The training is carried out for a maximum of 200 epochs

(roughly between 6 and 16 hours depending on the training dataset, see Section 6) using the Adam

optimizer (Kingma and Ba, 2014) with a batch size of 5. We used the default values for the optimizer

(β1 = 0.9, β2 = 0.999 and no weight decay), except for the learning rate which was set to 10−4 instead

of 10−3 to better stabilize the training. At the end of each epoch, the loss function is evaluated on

the validation set. If this value has not decreased for the last 5 epochs, the learning is stopped. The

numerical values have been set either using the recommended default values, or have been calibrated

manually based on preliminary tests. The implementation is done in Python using PyTorch (Paszke

et al., 2017) and DGL (Wang and Tang, 2021) libraries.

5.2.4 Selection algorithm

We recall that the GNN is a function Φ : G → [0, 1]k giving, for each of the k arcs of a network, an

estimate of the probability that it is part of the solution obtained by the CG heuristic. Once the GNN

is trained, we can use it to select relevant arcs from a new network G. Additionally, we introduce a

parameter nA ∈ N defining the number of arcs to keep for each vertex. Our learning-based selection

approach that finds a subset Q̂ of the selectable arcs is formalized in Algorithm 2. Set Q̂ is initially

empty (line 6). Then, for each trip vertex, we choose the nA outgoing selectable arcs having the highest

probability to be in the solution, based on the prediction of GNN Φ (line 8). A similar selection is

carried out for the incoming selectable arcs (line 9). Finally, subset Q̂ is returned.

Algorithm 2: GNN learning approach for arc selection

1 ▷ Pre: G is the aggregated network.
2 ▷ Pre: Vtrip is the set of trip vertices in G.
3 ▷ Pre: Φ is the GNN, previously trained.

4 ▷ Pre: nA ∈ N is the threshold for the selection.
5

6 Q̂ := ∅
7 forall v ∈ Vtrip do
8 Ov := getHighestOutArcs(v,Φ, nA)

9 Iv := getHighestInArcs(v,Φ, nA)

10 Q̂ := Q̂ ∪Ov ∪ Iv
11 return Q̂

5.3 Selection with a hybrid heuristic

Both the greedy heuristic and the learning-based approach exhibit certain limitations. The former fo-

cuses on incorporating arcs with low immediate costs, potentially overlooking other important arcs. On

the other hand, the latter, due to the inherent uncertainty of learning methods, may miss straightfor-

ward, yet significant arcs. These limitations become apparent in our experimental results. In response

to this challenge, we introduce a third selection approach that simply combines both methods. Let

Q̂GRD and Q̂GNN represent the sets of arcs selected by Algorithms 1 and 2, respectively. The hybrid

heuristic returns Q̂ = Q̂GRD ∪ Q̂GNN. By doing so, we can benefit from the non-trivial selections made

by the GNN while maintaining the guarantee that we do not overlook straightforward, yet significant

arcs.

Les Cahiers du GERAD G–2024–13 15

We also implemented another hybrid heuristic that applies the greedy heuristic but using the

probabilities provided by the GNN instead of the arc costs. This approach was clearly outperformed

by the above hybrid heuristic and, for this reason, will not be discussed in this paper.

6 Computational experiments

This section presents the results of our computational experiments. All tests were run on a Linux

machine equipped with an 16-core Intel i7-10700 processor with 64 GB and clocked at 2.9 GHz. A

single thread was used for each test. The CG heuristic was implemented using the Gencol library

(Desrosiers, 2010). The RMPs were solved using IBM Cplex version 20.1.

Below, we first describe the instances used for our experiments (Section 6.1). Then, we list the

various CG heuristics used for our tests (Section 6.2). Finally, we report computational results to

compare these heuristics and to assess the performance of the best ones on instances with varying

characteristics and sizes (Section 6.3).

6.1 Test instances

To test the proposed algorithms, we use instances that were generated as in Brasseur (2022) from

real-life timetables of the Montreal public transit agency. Two subsets of lines have been chosen to

define two networks and create seven subsets of instances. Network 1 contains four lines, traveled in

both directions, that are represented by different colors in Figure 3a. Network 2 has ten lines, also

serviced in both directions (see Figure 3b). For each network, we define two depots and two charging

stations. Some subsets of instances based on Network 1 have a reduced number of depots and/or a

reduced number of recharging stations.

Depot

Depot Recharge

Recharge

(a) Network 1

Depot

Depot

Recharge

Recharge

(b) Network 2

Figure 3: Networks used for our tests

To get various instances of an approximate target size for a given network, the original timetable

is randomly modified such that a constant headway is imposed between the trips of each line in each

hour, and the relative trip frequencies between one line and the others remain similar (see Brasseur,

2022). This method allows to have many instances with different timetables for the same network and

a realistic distribution of the trips over time.

For all instances, we use the parameter values provided in Table 1. Note that the battery capacity
σ of 100 KWh is consistent with the values given in Dirks et al. (2022). In addition, the recharging

function f (see Figure 1) has three pieces defined by a recharging rate (in Wh per minute) of 1539.7

Les Cahiers du GERAD G–2024–13 16

between 0 and 55 minutes of recharging time, of 716.0 between 55 and 69 minutes, and of 240.5 between

69 and 91 minutes.

Table 1: Parameter values

Parameter Value

σ 0 kWh
σ 100 kWh
δ 15 minutes
β 45 minutes
γ 30 minutes
cF 1000 per bus
cW 2 per minute
cR 30 per depot return
cH 30 per recharge

The characteristics of the different instance subsets are displayed in Table 2. In order, the columns

indicate: the subset identifier, the associated network, the number of depots, the number of charging

stations, the average, minimum, and maximum numbers of trip per instance, the possibility to return

to the depot for waiting during the day, the number of vehicles available per depot, the number of

chargers available per station, and the number of instances in the subset. Note that subsets A to D

share the same 500 trip timetables, but differ by the number of depots, the number of stations, and

the possibility to return to the depot in the middle of the day.

Table 2: EVSP and MDEVSP instances

No. Trips

Instance
Subset

Network |D| |H| Avg Min Max Return vd uh
No.

Instances

A 1 1 1 687 568 893 Yes 60 4 500
B 1 1 2 687 568 893 Yes 60 2 500
C 1 2 2 687 568 893 Yes 30 2 500
D 1 1 1 687 568 893 No 60 4 500
E 2 2 2 787 669 880 Yes 50 2 500
F 2 2 2 1336 1152 1474 Yes 70 3 200
G 2 2 2 2600 2374 3115 Yes 200 5 50

6.2 Benchmarked column generation heuristics

For our computational tests, we compare the following CG algorithms.

cgBasic: The CG heuristic described in Section 4.

cgUtopic: A CG heuristic that keeps only the selectable arcs used in the solution found by the cgBasic

heuristic. This heuristic is considered to estimate the maximum speedup that can be achieved.

cgGRD(nR, nS): Same as cgBasic except that a subset of the selectable arcs are removed. The ones

kept are selected using the greedy selection procedure (Algorithm 1) and the parameters nR and

nS defined in Section 5.1.1. Note that cgGRD(1, 1) applies the pure greedy heuristic, i.e., without

randomness, to select the removed arcs.

cgGNN(I, nA): Same as cgGRD(nR, nS) except that the selectable arcs kept are chosen using the GNN

procedure (Algorithm 2) and the parameter nA defined in Section 5.2.4. Set I indicates the

training subset used.

cgRND(nA): Same as cgGNN(I, nA) except that the selectable arcs kept are not chosen using a GNN

model but at random.

cgHBD(I, nA, nR, nS): A hybrid of cgGRD(nR, nS) and cgGNN(I, nA) that chooses the selectable arcs to

keep as described in Section 5.3.

Les Cahiers du GERAD G–2024–13 17

6.3 Computational results

In this section, we report average computational results obtained from three series of experiments. The

first series allows to compare the different arc selection procedures on a subset of instances. The second

aims at assessing the robustness of the best heuristic by testing it on more instances with different

characteristics. Finally, the third set of experiments focuses on the largest instances. Detailed results

are available in an online supplement.

To evaluate the performance of the network reduction procedures, we use the following two metrics.

Let zH and tH be the cost of the solution obtained by a heuristic H and its total computational time.

Then, we compute the time reduction and cost difference of heuristic H with respect to the cgBasic

heuristic (B) as (tB−tH)
tB

and (zH−zB)
zB

, respectively.

6.3.1 Selection procedure comparison

The first tests involve all CG heuristics listed in Section 6.2 (some with different parameter values) and

is performed only on the instance subset A containing 75 test instances and involving a single depot and

a single recharging station. The results obtained are reported in Table 3. Each row corresponds to a

heuristic and provides its average results, namely, its total computational time in seconds (Time); the

time reduction in percentage (Time Red.); the cost difference in percentage (Cost Diff.); the number

of vehicles used in the solution (No. Veh.); and the number of arcs in the networks (No. Arcs).

First, we observe from the cgUtopic heuristic results that there is a huge potential to reduce the

computational time by removing arcs from the subproblem network as an average time reduction of

more than 99% can be achieved without deteriorating solution quality. The next four lines in Table 3

compare four variants of the cgGRD(nR, nS) heuristic. Variant cgGRD(1, 1) indicates that a pure greedy

arc selection procedure provides a huge average time reduction (97.2%) but a poor-quality solution

(average cost increase of 27.5%). This may be due to the fact that the greedy solution obtained by

Algorithm 1 might not be feasible. The random variants cgGRD(3, nS), nS = 1, 3, 5, yield, on average,

improved solutions as nS increases, but at the expense of more selected arcs and larger computational

times.

Table 3: Comparative average results for instance subset A

Time Time Cost No. No.
Heuristic (s) Red. (%) Diff. (%) Veh. Arcs

cgBasic 454.2 - - 41.9 20695
cgUtopic 3.7 99.1 0.0 41.9 2513

cgGRD(1, 1) 11.6 97.2 27.5 45.1 2562
cgGRD(3, 1) 11.4 97.3 29.9 45.3 2555
cgGRD(3, 3) 83.8 80.9 8.2 42.9 3381
cgGRD(3, 5) 128.3 70.8 4.3 42.3 3862

cgGNN(A, 1) 9.9 97.7 161.3 124.8 2819
cgGNN(A, 2) 85.5 80.1 12.4 48.6 3621
cgGNN(A, 3) 187.1 57.2 1.6 42.6 4379
cgRND(2) 47.9 88.6 111.4 75.1 3776

cgHBD(A, 1, 3, 3) 112.7 74.2 2.3 42.2 3769
cgHBD(A, 2, 1, 1) 126.3 70.8 1.4 42.2 3850

Then, the cgGNN(A, nA) variants with nA = 1, 2, 3 also exhibit the trade-off between average reduced

computational time and average cost difference. Again, as the number of selected arcs increases with

the value of nA, both the time and the solution quality increase to reach an average cost difference of

only 1.6% for an average time reduction of near 60% with cgGNN(A, 3). On the other hand, we observe

that, for a similar time reduction, cgGRD(3, 3) yields, on average, better solutions than cgGNN(A, 2)

(cost difference of 8.3% vs 12.4%). This is due to the fact that it is difficult to have a global view of

Les Cahiers du GERAD G–2024–13 18

the problem when making predictions with a machine learning model. Nevertheless, comparing the

results of cgRND(2) and cgGNN(A, 2) that select approximately the same number of arcs indicate that

the GNN model has learned from the training datasets and is making relatively good predictions.

Finally, the last two rows disclose the results of two cgHBD(A, nA, nR, nS) variants. Compared to the

first with nA = 1 and nR = nS = 3, the second variant with nA = 2 and nR = nS = 1 selects more arcs

with the GNN procedure but less with the greedy one. On average, both variants select approximately

the same number of arcs (3769 and 3850) and yield similar computational times (reductions of 74.2%

and 70.8%). However, cgHBD(A, 2, 1, 1) computes much better quality solutions with an average cost

difference of only 1.4%. This is similar to cgGNN(A, 3) which required larger computational times, and

much better than cgGRD(3, 5) that required similar times. Consequently, cgHBD(A, 2, 1, 1) seems to offer

the best compromise as it outperforms the standalone heuristics. This is explained by the fact that

the GNN predictions identify interesting arcs without ensuring the global consistency of the schedules,

while the greedy algorithm identifies arcs that are interesting for the construction of entire schedules.

A final word about the numbers of vehicles reported in Table 3. They are directly proportional to

solution quality because they incur a large fixed cost per bus (cF = 1000). Furthermore, given that

there are 686 trips on average in the A instances and the optimal average number of vehicles is close to

42, we deduce that each used vehicle covers around 16 trips on average yielding high degeneracy and

justifying the need to develop an efficient CG heuristic.

6.3.2 Robustness assessment

The second test series aims at evaluating the robustness of cgHBD(I, 2, 1, 1) when applied to other

instance subsets I ∈ {B, . . . , F}. Table 4 reports the average results obtained by this heuristic, by the

methods that compose it (cgGRD(1, 1) and cgGNN(I, 2)), and by cgBasic. First, we observe a slight

deterioration of the performance of cgHBD(I, 2, 1, 1) on the subsets I ∈ {B, C, D} (average cost difference

varying between 1.6% and 2.1%) compared to cgHBD(A, 2, 1, 1) on subset A (1.4%). Because such a

deterioration is also observed for cgGNN(I, 2), it can be explained by less accurate predictions made by

the GNN model when there are more arcs to choose from (due to an increase of the number of charging

stations or depots in subsets B and C) or returning to the depot is forbidden (subset D). For subsets B

and C, this counterperformance is mitigated by an improvement of the greedy selection procedure as

shown by the average cost differences yielded by cgGRD(1, 1). For all those subsets I, cgHBD(I, 2, 1, 1)

clearly outperforms the methods that compose it when applied separately and still yields interesting

average speedups compared to cgBasic.

For the subsets I ∈ {E, F} that involve more bus trips, more bus lines, and two depots, the story

is somewhat different. Indeed, cgHBD(I, 2, 1, 1) still outperforms cgGRD(1, 1) and cgGNN(I, 2) but by a

much smaller margin for cgGNN(I, 2). It seems that the GNN predictions are much better for these

instances which allow to cover much more trips per vehicle (close to 30 on average compared to 16

for subset A). The average time reductions decrease for these larger instances but remain substantial

(close to 60%).

Consequently, all these results show that the proposed hybrid CG heuristic is robust to some

variations of the instance characteristics.

6.3.3 Results on larger instances

With our last experiments, we test the hybrid CG heuristic on the very large instances in subset G,

which involve 2 depots, 2 charging stations, and an average of 2600 trips. As reported in the first row

of Table 5, the cgBasic heuristic took 16266 seconds to solve these instances on average, providing

solutions with an average of 30.8 trips per vehicle. The next three rows present the results obtained by

cgGRD(1, 1), cgGNN(G, 2), and cgHBD(G, 2, 1, 1), which indicate a decrease in solution quality compared

to the previous datasets. In particular, cgHBD(G, 2, 1, 1) exhibits its worst performance with an average

cost difference of 5.1% but still preserves a substantial time reduction of 54.5%. These results are not

Les Cahiers du GERAD G–2024–13 19

Table 4: Average results for the instance subsets A to F

Instance Time Time Cost No. No.
Subset Heuristic (s) Red. (%) Diff. (%) Veh. Arcs

A cgBasic 454.2 - - 41.9 20695
A cgGRD(1, 1) 11.6 97.2 27.5 45.1 2562
A cgGNN(A, 2) 85.5 80.1 12.4 48.6 3621
A cgHBD(A, 2, 1, 1) 126.3 70.8 1.4 42.2 3850

B cgBasic 463.1 - - 42.0 22224
B cgGRD(1, 1) 12.4 97.1 18.6 43.5 2901
B cgGNN(B, 2) 76.2 82.5 16.2 50.1 3909
B cgHBD(B, 2, 1, 1) 122.6 72.0 2.1 42.4 4137

C cgBasic 505.4 - - 41.7 25609
C cgGRD(1, 1) 12.0 97.5 18.7 42.7 4380
C cgGNN(C, 2) 75.6 84.8 15.0 48.8 5436
C cgHBD(C, 2, 1, 1) 126.5 74.4 2.1 42.1 5643

D cgBasic 1479.7 - - 41.9 19726
D cgGRD(1, 1) 10.9 99.0 26.3 45.1 2479
D cgGNN(D, 2) 56.9 94.8 21.2 57.2 3601
D cgHBD(D, 2, 1, 1) 149.2 87.5 1.6 42.3 3866

E cgBasic 564.4 - - 29.1 23904
E cgGRD(1, 1) 27.5 95.1 57.7 41.8 4962
E cgGNN(E, 2) 186.8 66.7 5.4 31.3 6106
E cgHBD(E, 2, 1, 1) 232.5 58.6 3.7 30.3 6371

F cgBasic 2571.9 - - 45.3 55709
F cgGRD(1, 1) 85.0 96.7 63.9 66.9 7765
F cgGNN(F, 2) 809.6 68.4 7.0 50.3 9633
F cgHBD(F, 2, 1, 1) 1019.3 58.9 3.3 46.9 10021

surprising given the size of those instances and the smaller number of training instances used (only 35

compared to 350 for subsets A to E). To overcome this difficulty, we tried two strategies. The first is

to train the GNN model on instance subset E defined also on Network 2 and containing much more

training instances. This approach gives unsatisfactory results with an average cost difference exceeding

40%, excluding one instance for which the algorithm did not even return a feasible solution. The second

idea is to apply transfer learning (denoted E+G) that consists in training first the GNN model on subset

E before fine tuning it on subset G. Compared to cgHBD(G, 2, 1, 1), variant cgHBD(E+G, 2, 1, 1) improves

solution quality (cost difference of 4.2%) while yielding a similar time reduction of 52.5%. Thus, the

proposed hybrid method still works on large instances, thanks to transfer learning, but the gain in

computational time is less important.

Table 5: Results for the subset G of large instances

Time Time Cost No. No.
Heuristic (s) Red. (%) Diff. (%) Veh. Arcs

cgBasic 16266.3 - - 84.5 167520
cgGRD(1, 1) 716.8 95.5 66.0 126.6 13775
cgGNN(G, 2) 5111.9 67.8 21.6 114.5 17078
cgHBD(G, 2, 1, 1) 7261.4 54.5 5.1 88.3 17864

cgHBD(E, 2, 1, 1) 4082.5 74.3 40.6 108.0 23846
cgHBD(E+G, 2, 1, 1) 7584.8 52.5 4.2 87.1 17948

7 Conclusion

In this paper, we have developed different techniques to reduce the size of the subproblem networks

and accelerate a CG heuristic for solving the MDEVSP. These procedures identify network arcs to keep

from a set of potential arcs to remove. Three types of procedures are explored: the first is based on a

Les Cahiers du GERAD G–2024–13 20

greedy heuristic that quickly computes (possibly infeasible) solutions; the second relies on a GNN to

estimate the probability that an arc is part of an optimal solution; and the third combines the previous

two.

Our computational results showed that the hybrid technique yields the best results. For medium-

sized instances (with less than 1500 trips), this method reduces the computational time by an average

of at least 58% while limiting the cost increase to an average of up to 3.7%. For larger instances with

up to 3000 trips, transfer learning helps to obtain solutions with an average cost increase of 4.2% while

cutting the computational by an average factor of 2. Overall, our results show that combining a greedy

heuristic that can identify good sequences of arcs and a GNN model that can make good predictions

produce the best arc selection method.

As future work, we envision the development of an improved GNN model or a better local search

heuristic that would allow to select less arcs and obtain better solutions. Another interesting research

avenue is to try to limit the recharging possibilities by predicting when and where the recharges should

occur and their duration. This information could be used to further reduced the subproblems’ solution

space and speedup the CG heuristic.

A Detailed features

Table 6 presents the features ϕdv ∈ R9+2nL

and ψd
a ∈ R8 attached to the vertices and the arcs of a

network Gd that are considered by the proposed GNN model in Section 5.2.

Table 6: Detailed features used to represent a network Gd

Features attached to a vertex v ∈ N d

Feature Domain Description

ϕdv,1 One-hot Type of vertex v (trip, depot, charging station, etc.)

ϕdv,2 Integer Starting time of the activity associated with vertex v

ϕdv,3 Integer Ending time of the activity associated with vertex v

ϕdv,4 Integer Duration of the activity associated with vertex v

ϕdv,5 Integer For a trip vertex v, number of trips leaving lDv within 10 minutes after v

ϕdv,6 Integer Same as ϕdv,5 but considering only the trips that also end at lEv
ϕdv,7 Integer For a trip vertex v, number of trips arriving at lEv within 10 minutes before v

ϕdv,8 Integer Same as ϕdv,7 but considering only the trips that also start from lSv
ϕdv,9 Integer Number of trips in the instance (same value for each vertex v)

ϕdv,8+2k, k = 1, . . . , nL Binary Equal to 1 if k is the starting location of the activity associated with vertex v

ϕdv,9+2k, k = 1, . . . , nL Binary Equal to 1 if k is the ending location of the activity associated with vertex v

Features attached to an arc a = (v, u) ∈ Ad

Feature Domain Description

ψd
a,1 Real Cost of arc a

ψd
a,2 Real Energy consumption on arc a (0 for charging arcs)

ψd
a,3 Integer Deadhead travel time on arc a

ψd
a,4 Integer Waiting time on arc a

ψd
a,5 Integer Total elapsed time excluding trip time on arc a

ψd
a,6 Integer For a trip-to-trip arc (v, u), departure time ranking of arc (v, u) among all

trip-to-trip arcs (v, u′)
ψd
a,7 Integer Same as ψd

a,6 but considering only the arcs (v, u′) with lD
u′ = lDu

ψd
a,8 Integer Cost ranking of arc (v, u) among all arcs (v, u′)

References
Adler, J.D., Mirchandani, P.B., 2017. The vehicle scheduling problem for fleets with alternative-fuel vehicles.

Transportation Science 51, 441–456.

Les Cahiers du GERAD G–2024–13 21

Alvo, M., Angulo, G., Klapp, M.A., 2021. An exact solution approach for an electric bus dispatch problem.
Transportation Research Part E: Logistics and Transportation Review 156, 102528.

Bengio, Y., Lodi, A., Prouvost, A., 2021. Machine learning for combinatorial optimization: a methodological
tour d’horizon. European Journal of Operational Research 290, 405–421.

Bertossi, A.A., Carraresi, P., Gallo, G., 1987. On some matching problems arising in vehicle scheduling models.
Networks 17, 271–281.

Brasseur, J., 2022. Accélération d’une méthode d’agrégation dynamique de contraintes par apprentissage
automatique pour le problème de construction d’horaires de conducteurs d’autobus. Master’s thesis. Ecole
Polytechnique, Montréal (Canada).

Cappart, Q., Bergman, D., Rousseau, L.M., Prémont-Schwarz, I., Parjadis, A., 2022. Improving variable
orderings of approximate decision diagrams using reinforcement learning. INFORMS Journal on Computing
34, 2552–2570.

Cappart, Q., Chételat, D., Khalil, E.B., Lodi, A., Morris, C., Veličković, P., 2023. Combinatorial optimization
and reasoning with graph neural networks. Journal of Machine Learning Research 24, 1–61.

Cappart, Q., Moisan, T., Rousseau, L.M., Prémont-Schwarz, I., Cire, A.A., 2021. Combining reinforcement
learning and constraint programming for combinatorial optimization, in: Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pp. 3677–3687.

Chao, Z., Xiaohong, C., 2013. Optimizing battery electric bus transit vehicle scheduling with battery exchang-
ing: Model and case study. Procedia-Social and Behavioral Sciences 96, 2725–2736.

Dauer, A.T., Prata, B.d.A., 2021. Variable fixing heuristics for solving multiple depot vehicle scheduling
problem with heterogeneous fleet and time windows. Optimization Letters 15, 153–170.

Desaulniers, G., Desrosiers, J., Solomon, M.M. (Eds.), 2005. Column Generation. Springer, Boston.

Desaulniers, G., Hickman, M.D., 2007. Public transit, in: Barnhart, C., Laporte, G. (Eds.), Handbooks in
Operations Research and Management Science. Elsevier, Amsterdam. volume 14, pp. 69–127.

Desfontaines, L., Desaulniers, G., 2018. Multiple depot vehicle scheduling with controlled trip shifting. Trans-
portation Research Part B: Methodological 113, 34–53.

Desrosiers, J., 2010. GENCOL : Une équipe et un logiciel d’optimisation, in: Bui, A., Tseveendorj, I. (Eds.),
Combinatorial Optimization in Practice. Hermann, Paris. volume 8, pp. 61–96.

Dirks, N., Schiffer, M., Walther, G., 2022. On the integration of battery electric buses into urban bus networks.
Transportation Research Part C: Emerging Technologies 139, 103628.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A., 2019. Exact combinatorial optimization with graph
convolutional neural networks. Advances in neural information processing systems 32.

Gkiotsalitis, K., Iliopoulou, C., Kepaptsoglou, K., 2023. An exact approach for the multi-depot electric bus
scheduling problem with time windows. European Journal of Operational Research 306, 189–202.

Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks, in: Proceedings of the fourteenth
international conference on artificial intelligence and statistics, pp. 315–323.

Häll, C.H., Ceder, A., Ekström, J., Quttineh, N.H., 2019. Adjustments of public transit operations planning
process for the use of electric buses. Journal of Intelligent Transportation Systems 23, 216–230.

Hamilton, W., Ying, Z., Leskovec, J., 2017. Inductive representation learning on large graphs. Advances in
neural information processing systems 30.

Ibarra-Rojas, O., Delgado, F., Giesen, R., Muñoz, J., 2015. Planning, operation, and control of bus transport
systems: A literature review. Transportation Research Part B 77, 38–75.

Irnich, S., Desaulniers, G., 2005. Shortest path problems with resource contraints, in: Desaulniers, G.,
Desrosiers, J., Solomon, M.M. (Eds.), Column generation. Springer Science & Business Media. volume 5,
pp. 33–65.

Jiang, M., Zhang, Y., Zhang, Y., 2022a. A branch-and-price algorithm for large-scale multidepot electric bus
scheduling. IEEE Transactions on Intelligent Transportation Systems. In Press .

Jiang, M., Zhang, Y., Zhang, Y., 2022b. Multi-depot electric bus scheduling considering operational constraint
and partial charging: A case study in Shenzhen, China. Sustainability 14, 255.

Joshi, C.K., Cappart, Q., Rousseau, L.M., Laurent, T., 2022. Learning the travelling salesperson problem
requires rethinking generalization. Constraints 27, 70–98.

Jovanovic, R., Bayram, I.S., Bayhan, S., Voß, S., 2021. A GRASP approach for solving large-scale electric bus
scheduling problems. Energies 14, 6610.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 0.

Les Cahiers du GERAD G–2024–13 22

Kipf, T.N., Welling, M., 2017. Semi-supervised classification with graph convolutional networks, in: Interna-
tional Conference on Learning Representations.

van Kooten Niekerk, M.E., van den Akker, J., Hoogeveen, J., 2017. Scheduling electric vehicles. Public
Transport 9, 155–176.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. nature 521, 436–444.

Li, J.Q., 2014. Transit bus scheduling with limited energy. Transportation Science 48, 521–539.

Montoya, A., Guéret, C., Mendoza, J.E., Villegas, J.G., 2017. The electric vehicle routing problem with
nonlinear charging function. Transportation Research Part B 103, 87–110.

Morabit, M., Desaulniers, G., Lodi, A., 2021. Machine-learning–based column selection for column generation.
Transportation Science 55, 815–831.

Olsen, N., Kliewer, N., 2020. Scheduling electric buses in public transport: Modeling of the charging process
and analysis of assumptions. Logistics Research 13, 4.

Olsen, N., Kliewer, N., Wolbeck, L., 2022. A study on flow decomposition methods for scheduling of electric
buses in public transport based on aggregated time–space network models. Central European Journal of
Operations Research 30, 883––919.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L.,
Lerer, A., 2017. Automatic differentiation in PyTorch.

Perumal, S.S., Lusby, R.M., Larsen, J., 2022. Electric bus planning & scheduling: A review of related problems
and methodologies. European Journal of Operational Research 301, 395–413.

Reuer, J., Kliewer, N., Wolbeck, L., 2015. The electric vehicle scheduling problem: A study on time-space
network based and heuristic solution, in: Proceedings of the Conference on Advanced Systems in Public
Transport (CASPT), pp. 1–15.

Ruiz, L., Gama, F., Ribeiro, A., 2020. Gated graph recurrent neural networks. IEEE Transactions on Signal
Processing 68, 6303–6318.

Sadykov, R., Vanderbeck, F., Pessoa, A., Tahiri, I., Uchoa, E., 2019. Primal heuristics for branch and price:
The assets of diving methods. INFORMS Journal on Computing 31, 251–267.

Sassi, O., Oulamara, A., 2017. Electric vehicle scheduling and optimal charging problem: complexity, exact
and heuristic approaches. International Journal of Production Research 55, 519–535.

Selsam, D., Bjørner, N., 2019. Guiding high-performance sat solvers with unsat-core predictions, in: Theory
and Applications of Satisfiability Testing, Springer. pp. 336–353.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y., 2018. Graph attention networks,
in: International Conference on Learning Representations.

Wang, C., Guo, C., Zuo, X., 2021. Solving multi-depot electric vehicle scheduling problem by column generation
and genetic algorithm. Applied Soft Computing 112, 107774.

Wang, Q., Tang, C., 2021. Deep reinforcement learning for transportation network combinatorial optimization:
A survey. Knowledge-Based Systems 233, 107526.

Wen, M., Linde, E., Ropke, S., Mirchandani, P., Larsen, A., 2016. An adaptive large neighborhood search
heuristic for the electric vehicle scheduling problem. Computers & Operations Research 76, 73–83.

Yıldırım, Ş., Yıldız, B., 2021. Electric bus fleet composition and scheduling. Transportation Research Part C:
Emerging Technologies 129, 103197.

Zhang, A., Li, T., Tu, R., Dong, C., Chen, H., Gao, J., Liu, Y., 2021a. The effect of nonlinear charging function
and line change constraints on electric bus scheduling. Promet-Traffic&Transportation 33, 527–538.

Zhang, A., Li, T., Zheng, Y., Li, X., Abdullah, M.G., Dong, C., 2022. Mixed electric bus fleet scheduling
problem with partial mixed-route and partial recharging. International Journal of Sustainable Transportation
16, 73–83.

Zhang, L., Wang, S., Qu, X., 2021b. Optimal electric bus fleet scheduling considering battery degradation
and non-linear charging profile. Transportation Research Part E: Logistics and Transportation Review 154,
102445.

	Introduction
	Literature review and contributions
	Works assuming a simplified recharging process
	Works with a nonlinear recharging process
	Works with charger capacity constraints
	Works leveraging machine learning in combinatorial optimization
	Our contributions

	Problem statement and mathematical model
	Problem statement
	Mathematical formulation

	Basic CG heuristic
	Column generation
	Subproblem network and resource constraints
	Labeling algorithm

	Integer solutions
	Speedup techniques

	Heuristics for reducing the size of the networks
	Selection with a greedy heuristic
	Adding randomness in the heuristic

	Selection with a graph neural network
	Description of features
	Architecture of the graph neural network
	Training algorithm
	Selection algorithm

	Selection with a hybrid heuristic

	Computational experiments
	Test instances
	Benchmarked column generation heuristics
	Computational results
	Selection procedure comparison
	Robustness assessment
	Results on larger instances

	Conclusion
	Detailed features

