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Abstract : We develop a worst-case evaluation complexity bound for trust-region methods in the
presence of unbounded Hessian approximations. We use the algorithm of Aravkin et al. [3] as a
model, which is designed for nonsmooth regularized problems, but applies to unconstrained smooth
problems as a special case. Our analysis assumes that the growth of the Hessian approximation is
controlled by the number of successful iterations. We show that the best known complexity bound of
€2 deteriorates to e 2/(1=P) where 0 < p < 1 is a parameter that controls the growth of the Hessian
approximation. The faster the Hessian approximation grows, the more the bound deteriorates. We
construct an objective that satisfies all of our assumptions and for which our complexity bound is
attained, which establishes that our bound is sharp. To the best of our knowledge, our complexity
result is the first to consider potentially unbounded Hessians and is a first step towards addressing a
conjecture of Powell [38] that trust-region methods may require an exponential number of iterations
in such a case. Numerical experiments conducted in double precision arithmetic are consistent with
the analysis.
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1 Introduction
We consider the nonsmooth regularized problem

miIleiFRr}jze f(z)+ h(xz) subject to f <z < u, (1)

where £ € (RU {—00})", u € (RU {400})"™ with ¢ < u componentwise, f : R™ — R is continuously
differentiable on an open set containing the feasible set [¢,u] of (1), and h : R™ — RU{+o0} is proper
and lower semicontinuous (lsc). A component ¢; = —oo or u; = 400 indicates that x; is unbounded
below or above, respectively. Both f and h may be nonconvex. The nonsmooth regularizer h is often
used to identify a local minimizer of f with desirable features, such as sparsity.

Algorithms used to solve (1) are often based on the proximal-gradient method [24, 28]. The
algorithm that we consider here is the trust-region method (TR) of Aravkin et al. [3], which improves
upon the proximal-gradient method by constructing a model of f and a model of h at each iteration
in order to compute a step, in the spirit of traditional trust-region methods [16]. To the best of our
knowledge, it is the only trust-region method for (1) that allows both f and h to be nonconvex, and that
only assumes that h is proper Isc. Typically, the model of f is a quadratic about the current iterate, and
we denote its Hessian By; the latter may be the Hessian of f if it exists, or an approximation thereof.
TR was developed under the assumption that {Bj} remains bounded, a common, but sometimes
restrictive, assumption. A worst-case evaluation complexity bound for a stationarity measure to drop
below € € (0,1) of O(e~2) results, which matches the best possible complexity bound in the smooth
case, i.e., when h = 0 [15].

In the present paper, we examine the situation where {By} is allowed to grow unbounded. We
impose a bound on the growth of ||Bg|| in terms of the number of successful iterations that is slightly
more restrictive than bounds used in smooth optimization to establish global convergence—see below.
Our tighter growth control, however, allows us to formalize a worst-case evaluation complexity bound,
which we then show to be tight. Specifically, we show that the best known complexity bound of
O(e™?) deteriorates to O(e~2/(1=P)) where 0 < p < 1 is a parameter that controls the growth of || By||.
To the best of our knowledge, this is the first formal worst-case analysis in the case of potentially
unbounded By,.

A Julia implementation of TR is available as part of the RegularizedOptimization.jl package [5].
Our findings also apply to Algorithm TRDH of Leconte and Orban [27], which is similar to TR, but
uses diagonal Hessian approximations to compute a step without recourse to a subproblem solver.

Unbounded, or potentially unbounded, Hessians are not uncommon in applications. A prime
example is interior-point methods for bound-constrained optimization. Consider the minimization of
a twice differentiable objective ¢ : R™ — R subject to simple bounds x > 0. Primal interior-point
methods [21] consist in applying Newton’s method to a sequence of log-barrier subproblems whose
objective is ¢(x) — p ), log(x;) where p > 0 is a barrier parameter that is eventually driven to zero.
Such methods maintain = > 0 implicitly but the barrier objective Hessian is V2¢(x) + uX 2, where
X := diag(x). For any p > 0, the barrier Hessian is unbounded as any component of z approaches
a bound, which is often where a solution is located. Primal methods have long been superseded by
the better-behaved primal-dual methods—see, e.g., [23] and references therein for an overview of the
extensive literature on the subject—in which the barrier Hessian is replaced with VZ¢(z) + X172,
where Z := diag(z) and z is an approximation of the vector of Lagrange multipliers for = > 0.
Even though the primal-dual Hessian does not grow unbounded as fast as the primal Hessian, it
nevertheless remains unbounded as any component of x approaches a bound. In order to converge,
interior-point methods rely on extra mechanisms that prevent components of x from approaching a
bound too fast unless there are indications that a solution is nearby and p is close to zero. In spite of
those mechanisms, x must be allowed to approach bounds, and, therefore, the primal and primal-dual
Hessians must be allowed to grow unbounded. Although primal-dual interior-point methods can be
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shown to have excellent worst-case complexity bounds in convex optimization [31], no such general
result is known for nonconvex problems.

Another prime example, often cited in the literature, is when By results from a secant approx-
imation [19]. Conn et al. [16, §8.4] suggest that for the BFGS and SR1 approximations, By could
potentially grow by at most a constant at each update, though it is not clear whether that bound is
attained. This point is developed further in the related research below.

The paper is organized as follows. Section 2 provides the nonsmooth analysis background necessary
to understand the algorithm of Aravkin et al. [3], a description of how models are constructed at each
iteration, and a formal statement of the algorithm. In Section 3, we establish convergence and a
worst-case evaluation complexity bound under the assumption that the growth of the model Hessian is
controlled by a function of the number of successful iterations, i.e., iterations in which a step is accepted.
We show in Section 4 that the worst-case bound is indeed attained, by performing an analysis similar
to that of [15, Theorem 2.2.3]. In Section 5, we construct an explicit function that attains the bound
and validate our findings numerically. We provide concluding comments and perspectives in Section 6.

Related research

We do not provide an extensive review of trust-region approaches for smooth optimization, but refer
the interested reader to [16] for a thorough account, as well as a number of generalizations.

We begin by reviewing milestones in the convergence analysis of trust-region methods with poten-
tially unbounded model Hessians. Powell [36] first showed convergence of a trust-region algorithm for
smooth optimization that allows unbounded Hessian approximations By. Specifically, he assumes that
there exist nonnegative o and 8 such that ||Bg|| < a+ Zf;é |ls;jll, where s; is the trust-region step
at iteration j. Under that and other standard assumptions, he established that liminf ||V f(zx)|| = 0.
Powell hints that his motivation lies in Hessian approximations arising from secant updates [19]. To
the best of our knowledge, it is not known whether secant approximations remain bounded. However,
Fletcher [22] establishes that the quasi-Newton update that bears Powell’s name, the Powell symmetric
Broyden update, derived in [35], satisfies the bound above.

Secant, and, in particular, quasi-Newton, methods are among the most widely employed methods
in smooth optimization. Yet, for lack of a boundedness result, no existing complexity analysis applies
to them. Like Powell [36], our main motivation is to provide a first worst-case complexity result that
may apply to them. Whether or not certain quasi-Newton approximations satisfy our assumption on
the growth of model Hessians remains to be established, even for convex problems. Nevertheless, our
result is a first step forward.

Powell [37] refines his earlier analysis by showing global convergence under the weaker assumption
| Bl < a+ Bk. Under the weaker yet assumption

00
= 00, 2
Z;) 1+ maxo<, <k HB || ( )

which is hinted at in the proofs of Powell [37], Toint [42] shows that global convergence is preserved.
The condition is necessary but not sufficient; Toint [42] provides an example for which (2) fails to hold
and on which trust-region method may fail to converge.

When f is convex with uniformly bounded Hessian, Conn et al. [16, §8.4] indicate that the BFGS
update satisfies || Byy1|| < || Bkl + 8 for some g > 0. Therefore, ||Br+1]| < || Boll + (k + 1)8, and the
assumption of Powell [37], and hence (2), are satisfied. The SR1 update with safeguards satisfies a
similar inequality without the convexity assumption.

Under such a growth assumption, Powell [38] surmises in his concluding remarks that trust-region
methods may require a “monstrous” number of iterations; which he projects to be exponential.
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Because quasi-Newton approximations are typically only updated on successful iterations, i.e., when
a trial step is accepted, we believe that the authors above mean that || Bg11]| < || Bol|+|Sk+1|3 instead,
where |Sk1] is the number of successful iterations until iteration k+ 1. Our complexity result, though
it does not encompass the latter bound, approaches it by imposing instead || Byxy1|| < || Boll + [Sk+1|P8
for 0 < p < 1, and is therefore a first step towards validating Powell’s conjecture.

Carter [8] presents procedures to safeguard Hessian approximations in trust-region algorithms for
smooth problems. The goal of these procedures is to satisfy the uniform predicted decrease condition

A7)
Y 50 )

where ¢y is a model of f about iterate xy, Ap > 0 is the trust-region radius, Sy > 0, and B; > 0.
When ||Bg|| < B for all k, this condition is satisfied, but the author shows that it can also be satisfied
under milder assumptions. Carter’s procedures are used to correct By so that such assumptions hold.

(k) — er(es1) > 561V f (k)| min (A

We now review determinant complexity analyses of trust-region and related methods for smooth
optimization. Cartis et al. [9] show that the steepest descent method and Newton’s method for smooth
problems may converge in as many as O(e~2) iterations, and that the bound is sharp for the steepest
descent method. The analysis assumes that the Hessian remains uniformly bounded. In addition,
they prove that it is possible to construct an example where Newton’s method is arbitrarily slow when
allowing unbounded Hessians.

Our main contribution is to establish that TR, the trust-region algorithm of [3], may converge in
as many as O(e~2/(1=P)) iterations, where p € [0,1) is a parameter that controls the growth of the
model Hessian—the larger p, the larger the allowed growth. Because ¢ 2/(1=P) — 400 as p 71, our
results reinforce that of Cartis et al. [9] and makes it more precise. Our analysis applies to smooth
optimization—indeed, the example that we construct to establish sharpness of the complexity bound
is smooth—but it is general enough to apply to (1).

Cartis et al. [15, Section 2.2] show that the steepest-descent algorithm with backtracking Armijo
linesearch results in an O(e~2) complexity bound, and a function is constructed by polynomial inter-
polation to prove that the bound is sharp, with a technique that is different from that of [9]. The rest
of their book reviews complexity analyses for trust-region and regularization methods, always under
the assumption that the Hessian remains bounded.

The complexity of other methods for smooth optimization was subsequently analyzed using tech-
niques similar to those of [9]. The Adaptive Regularization with Cubics algorithm (ARC, or AR2
because it uses second-order derivatives) [10, 20] minimizes at each iteration the model

or(zk +8) = f(zg) + Vf(:ck)Ts + %STBkS + %(7;€||s||37 (3)

where Bj, must remain bounded. It is known to require at most O(¢~3/2) iterations to reach
IV f(zk)| < e and this bound is sharp [10, 32]. Curtis et al. [17] and Martinez and Raydan [30]
present modified trust-region algorithms with bounded model Hessians to solve nonconvex smooth
problems that also have a complexity bound of O(e~3/2).

Cartis et al. [13] show that Algorithm ARp for smooth problems, a generalization of ARC using a
model of order p > 1, requires at most O(e~(P+1)/P) iterations to satisfy ||V f(zx)|| < ¢, and that the
bound is sharp. They introduce a generalization of the first-order stationarity measure ||V f(zg)| < €
to g-th order stationarity, where ¢ € INy, and show that at most O(e~(®+1)/(P=a+1)) evaluations of the
objective and the derivatives are required with this measure. They require that the p-th derivative of
f be globally Hoélder continuous. For p = 2 and ¢ = 1, we recover the bound of [10].

For smooth nonconvex problems with bounded Hessians, the number of iterations required to
satisfy the conditions on the gradient ||V f(zx)|| < €, and on the smallest eigenvalue of the Hessian
Amin(V2f(21)) > —e€m, where €,, ey € (0,1), have also been studied. Cartis et al. [12] show that
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their trust-region algorithm needs at most O(max{eg’QeI_{l, €57 }) iterations to satisfy these conditions,

and O(max{e;B’/ 2 6;13}) iterations for ARC. The latter bound is also obtained for the trust-region
algorithms in [17, 30]. Royer and Wright [41] use a second-order linesearch method to obtain the
bound O(max{e, ®e};, 6;3/2, e ).

Aravkin et al. [3] provide an overview of the literature on convergence of methods for nonsmooth
optimization, and we now summarize the review with an eye to trust-region methods. Methods prior
to their work were restricted to special cases. Most were developed for f = 0, i.e., in a purely
nonsmooth context. Yuan [43] considers a nonsmooth term of the form h(c(z)), where ¢ € C! and
convex. Dennis et al. [18] take f = 0 and assume that h is Lipschitz-continuous. Qi and Sun [39]
relax the assumptions of [18] to h locally Lipschitz-continuous with bounded level sets. Martinez and
Moretti [29] add treatment of equality constraints to the method of Qi and Sun [39]. The only prior
trust-region method for f # 0 and more general h that we are aware of is that of Kim et al. [26], who
assume that f and h are convex. None of those works provides a complexity analysis.

Finally, we review complexity analyses of trust-region methods for nonsmooth problems. Cartis
et al. [11] describe a first-order trust-region method and a quadratic regularization algorithm to solve
nonsmooth problems of the form

minimize f(z) + h(c(2)), (4)

where f and c are continuously differentiable and may be nonconvex, and h is convex but may be
nonsmooth, and is Lipschitz-continuous. Note that (4) is a special case of (1), but the convexity
assumption on h is strong. They show that both algorithms have a complexity bound of O(e~2).
Grapiglia et al. [25] provide a unified convergence theory for smooth optimization that has trust-region
methods as a special case. They also generalize the results of [11] under the same assumptions.

Aravkin et al. [3] describe a proximal trust-region algorithm to solve (1) using bounded model
Hessians. They also present a quadratic regularization variant. They establish that their criticality
measure is smaller than e in at most O(¢~2) iterations for both algorithms. Aravkin et al. [1] adapt
these algorithms to solve nonsmooth regularized least-squares problems and obtain the same complexity
bound under the assumption that the residual Jacobian is uniformly bounded. As far as we know, the
complexity analyses of [1, 3] make the weakest assumptions on h so far, that h be lsc.

Baraldi and Kouri [4] also describe a proximal trust-region algorithm for convex h. In addition,
they allow the use of inexact objective and gradient evaluations. As Toint [42] in the smooth case,

they assume that
= 1
Z 1 =% <5)

o + maxop< <k Wj

where
2

oy = sup{wwk(mk 1 5)— i) — Ver(a)Ts 0 < [ls] < Ak}7

and ¢y, is a smooth model of f about zj. In particular, if py is a second-order Taylor approximation at
), with Hessian approximation By, wy = sup {s” Bys/|[|s[|? | 0 < ||s|| < Ax}, so that (5) is reminiscent
of (2). If wy is bounded independently of k, which is the case for bounded Hessian approximations,
they show that their algorithm enjoys a complexity bound of O(e~2).

Cartis et al. [14] present a similar concept of high-order approximate minimizers to that of [13] for
nonsmooth problems such as (4) where f, ¢ are smooth, and h is nonsmooth but Lipschitz-continuous.
They present an algorithm of adaptive regularization of order p, and derive several bounds depending
on the properties of (4) and of the order of the desired approximate minimizer. In particular, for ¢ = 1
and convex h, their complexity bound is O(e~(P*1/P) and they show that it is sharp.
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Contributions

Our main contribution is a sharp O(e~2/(1=P)) worst-case evaluation complexity bound for a class of
trust-region algorithms for smooth and nonsmooth optimization when model Hessians By, are allowed
to grow according to || B|| = O(|Sk|?]), where |Sk| is the number of successful iterations up to iteration
k, and 0 < p < 1. Our analysis builds upon the intuition of Powell [38] and Hermite interpolation-
based tools inspired from those of Cartis et al. [15]. The trust-region algorithm, Algorithm 2.1, is
a minor variation on that of Aravkin et al. [3] to allow for potentially unbounded model Hessians.
To the best of our knowledge, previous literature does not provide a complexity analysis in the case
of potentially unbounded model Hessians. Our result applies to nonconvex nonsmooth regularized
optimization problems of the form (1), and to smooth optimization as a special case. Indeed, the
example constructed in Section 4 to establish sharpness is for smooth optimization, i.e., h = 0. Finally,
we provide new results that indicate conditions under which limit points of the sequence of iterates
are stationary.

Notation

B denotes the unit ball at the origin in a certain norm dictated by the context, AIB is the ball of radius
A > 0 centered at the origin, and  + AB is the ball of radius A > 0 centered at z € R™. For A C R",
the indicator of A is x(- | A) : R — R U {+o0} defined as x(z | A) =0 if x € A and +o0 otherwise.
If A+ @, x(-| A) is proper. If A is closed, x(- | A) is lsc. For a finite set A C IN, we denote by |A] its
cardinality. If fi and fy are two positive functions of € > 0, we say that f1(e) = O(fa2(¢)) if there exists
a constant C' > 0 such that fi(e) < Cfa(e) for all € > 0 sufficiently small. || - || denotes the 2-norm on
R"™, and its associated induced matrix spectral norm on R™*" is also denoted || - ||.

2 Context

2.1 Background

We recall relevant concepts of variational analysis—see, e.g., [40].

Consider ¢ : R" — R and Z € R™ with ¢(Z) < co. The Fréchet subdifferential of ¢ at z is the
closed convex set Op(Z) of v € R™ such that

i 9@) = 9(@) =07 (@ — 2)
=S = =]

> 0.

The limiting subdifferential of ¢ at x is the closed, but not necessarily convex, set ch)(:i) of v € R™
for which there exist {zx} — Z and {vx} — v such that {¢p(zr)} — ¢(Z) and v, € dp(xy) for all k.

-~

0¢(T) C 0¢(Z) always holds.
We say that Z is stationary for the problem of minimizing ¢ if 0 € 9¢(z).

The horizon subdifferential of ¢ at T is the closed, but not necessarily convex, cone (2°°¢(§:) of
v € R™ for which there exist {zx} — Z, {vx} and {A\z} | 0 such that {¢(zx)} — ¢(Z), vi € IP(xy) for
all k, and {\pvr} — v.

If C CR"™ and Z € C, the closed convex cone Ac(i) = Ox(z | C) is the regular normal cone to C'
at . The closed cone N¢(Z) := 0x(Z | C') = 0°x(Z | C) is the normal cone to C' at Z. No(Z) C N¢ ()
always holds, and is an equality if C' is convex.

¢ is proper if ¢(x) > —oo for all z, and ¢(x) < co for at least one x. ¢ is lower semicontinuous

(Isc) at z if liminf, ,; ¢(z) = ¢(Z).
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Let ¢ : R® — R be proper Isc, and C' C R™ be closed. We say that the constraint qualification is
satisfied at £ € C for the constrained problem

mi{ﬁrﬁﬂn{}}ze ¢(x) subject to x € C (6)
if
9%¢(z) N (—Nc(z)) = {0}. (7)

If Z solves (6) and (7) is satisfied at Z, [40, Theorem 8.15 and Corollary 10.9] yield
0 € 86+ x(- | O)(@) € 96(7) + No(a).
In the case of (1), this first-order necessary condition for optimality reads
0 € Vf(z)+ 0h(z) + Ny (T)
thanks to [40, Exercise 8.8c|.

If ¢ and ¢ : R® — R for k € IN, we say that {¢} converges to ¢ continuously if {¢x(zr)} — ¢(z)
for all sequences {zx} —  in R™.

The epigraph of ¢ is the set epi¢ = {(¢t,x) | t > #(x)} € R x R™. The set epi¢ is closed if and
only if ¢ is Isc.

For a sequence of sets {Ax} with A, C R™ for all k& € IN, the set limsup,cy Ax is the set of
limits of all possible subsequences {z;}x with N C IN infinite and ) € Ay for all & € N. The set
liminfrew Ak is the set of limits of sequences {x }rew such that z; € Ay for all k sufficiently large.
In particular, those concepts can be applied to the sets epi ¢, where ¢ : R™ — R for kK € IN. The sets
lim inf}, epi ¢y, and lim sup,, epi ¢, enjoy the properties of epigraphs, i.e., if (¢, ) lies in one of them, so
does (s,z) for all s > ¢t. In addition, both are closed, and therefore, can be viewed as the epigraphs
of certain lsc functions. The lower and upper epi-limits of {¢;} are the functions e-liminfy ¢5 and
e-lim sup;, ¢x that satisfy epie-liminfy ¢ = limsup, epi ¢y and epie-limsup,, ¢ = liminfy epigr. In
general, e-liminfy, ¢ < e-lim sup,, ¢. When they coincide, we say that {¢y} converges epigraphically
to the common value ¢, and write {¢y} — ¢ or e-limy dp, = ¢.

The prozimal operator associated with a proper Isc function ¢ is

prox(q) := argmin 51" |z — g3 + ¢(x), (8)

vo

where v > 0 is a preset steplength. Below, we assume that all proximal operators can be evaluated
analytically. That is not a restrictive assumption in many cases of interest for applications—see [6] for
a large, but not exhaustive, list of choices of ¢ for which the set (8) is known.

We say that ¢ is prox-bounded if it is bounded below by a quadratic. If ¢ is prox-bounded and
v > 0 is sufficiently small, proxw(q) is a nonempty and closed set. It may contain multiple elements.

The proximal gradient method [24, 28] for (1) is a generalization of the gradient method that takes
the nonsmooth term into account. It generates iterates {s;} according to

Sj+1 € pr(}ix(sj — vV f(s;))- (9)

2.2 Models and trust-region algorithm

At x € R™ where h is finite, we define models

o(s;z) = flz+s) (10a)
Y(s;x) =~ h(z+s) (10b)
m(s;x) = p(s;z) +P(s; x). (10c)

Our assumptions on (10) are a minor variation on those of Aravkin et al. [3]:
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Model Assumption 2.1. For any = € R", o(-;x) € C!, and satisfies p(0;2) = f(x) and Vip(0;2) =
Vf(z). For any x € R™ where h is finite, 9(-;x) is proper Isc, and satisfies ¥(0;2) = h(x) and
0(0;) C ON(z).

The difference between Model Assumption 2.1 and [3, Model Assumption 3.1] is the last inclusion
instead of an equality between the subdifferentials.

The following result states that if s = 0 minimizes (10c) and (7) is satisfied,  must be stationary.
Proposition 1 (27, Proposition 1). Let C' C R™ be nonempty and compact, and let Model Assumption 2.1
be satisfied. Let (1) satisfy the constraint qualification (7) at x € C. Assume 0 € argming m(s;x) +
x(x+s|C), and let the latter subproblem satisfy the constraint qualification (7) at s = 0. Then x is
first-order stationary for (1).

Assuming 09 (0;x2) = Oh(z) in Model Assumption 2.1 would allow us to establish the reverse
implication in Proposition 1.

Each iteration is divided into two parts. In the first part, Aravkin et al. [2] define the following
model based on a first-order Taylor expansion to compute a Cauchy point

Yep(852) := f(2) + Vf(x)Ts, (11a)
m(s;x,v) = ep(s;x) + 307 Is]|* + 9 (s;2), (11b)

where v, > 0 and “cp” stands for “Cauchy point.” We compute a first step
Sk € argmin m(s; zk, vg) + x(xk + s | [0, u] N (2 + ArB)), (12)
S

for an appropriate value of v > 0.

In the notation of [2], let
Eep(Ak; Th, i) = [f(2k) + h(wk) — Pep(sks wr) = (k15 28), (13)
denote the optimal model decrease for (11). By (12),
M(Sk,13 Ty Vi) = Pep(Sk,1328) + ¥ (sk,1528) + 505 lskall? < m(0; 2, i) = f(zr) + h(zk),

so that, with (13),

op(Aks i, vi) > 2vp (14)

The following proposition indicates that {p(A;z,v) can be used to determine whether x is first-
order stationary for (1).
Proposition 2 (3, Proposition 3.3 and 2). Let Model Assumption 2.1 be satisfied, A >0, and v > 0. In
addition, let (1) satisfy the constraint qualification at x and the objective of (12) satisfy the constraint
qualification at s = 0. Then, {p(Asz,v) =0 <= s =0 is a solution of (12) = x is first-order
stationary for (1).

In the second part of iteration k, we construct a model based on the second-order Taylor expansion

o(s;x,B) = f(x) + Vf(z)s + %STBS, (15a)
m(s;x, B) := ¢(s;x, B) + ¥(s; x), (15b)

where B = BT € R™*", and compute a step as an approximate solution of
minimize mg(s;zk) + x(xp + s | [4, u] N (zr + ArB)), (16)
S

using sy 1 as starting point.
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We focus on the trust-region (TR) algorithm formally stated as Algorithm 2.1. Tt consists of the
algorithm of Aravkin et al. [3] with a modified maximum allowable stepsize vj. The concept of inexact
solution of (16) at Line 8 is made precise in Proposition 4 below.

Note that Algorithm 2.1 differs from a “standard” trust-region algorithm in that the parameter
Ay that is updated according to whether or not a step sy is accepted serves to define the trust-region
radius, but is not the radius in itself; s; 1 is used to check for stationarity, and to set the trust-region
radius for the computation of the step s;. Aravkin et al. [3] provide more details on this point and link
to variants of standard trust-region algorithms for smooth optimization possessing similar features.

Algorithm 2.1 Nonsmooth trust-region algorithm with potentially unbounded Hessian.

1: Choose constants

O0<m<m<l, 0<1/v3<1 <72<1<v3<7, Amax>~Ag, a>0, and B>1.

2: Choose a stopping tolerance € > 0.
3: Choose zg € R™ where h is finite, Ag > 0, compute f(zo) + h(zo).
4: for k=0,1,... do
5: Choose
0< vy < 2Bk ! (17)
v < = — —.
L+ (Brll(1+adr) o tAL +||Bill(1+a—1AY)
6: Define my(s; z, V) as in (11) and compute si 1 as in (12).
7 If V,Zlmfcp(Ak; z1, ) /2 < €, terminate and claim that zj, is approximately stationary.
8: Define my(s; xk, Bi) as in (15) according to Model Assumption 2.1 and compute an approximate solution sy,
of (16) with Ay, replaced by min(Ay, Blsg,1l)-
9: Compute the ratio
P fxp) + hze) = (f (zp + sk) + h(zg + s1)) (18)
my(0; zk, By) — mg(sk; 2k, Br)
10: If pr, > M1, set xp41 = x) + si. Otherwise, set xp 1 = .
11: Update the trust-region radius according to
~ [v3Ak, valg] if pp > 12, (very successful iteration)
Apy1 € (V2 Ak, Ag] if m < pr <n2, (successful iteration)
1Ak, 20k if pp <1, (unsuccessful iteration)

and Ay 1 = min(Axi1, Amax)

Let us now briefly turn our attention to unconstrained smooth problems. In this case, the following
lemma gives a global minimizer of (11) and (15).
Lemma 1. We consider the special case of (1) where h =0, ¢; = —oc0 and u; = 400 fori=1,...,n.
Let B = BT € R"*" be positive definite and 1) = 0. Then for any x € R",

argmin m(s; z, B) = argmin (s; z, B) = {-B~ 'V f(x)}. (19)

In particular, if B=v='T with v > 0,

argminm(s; ,v) = argmin e, (s;z) + 2071 [s||? = {sk1} = {-vV f(2)}. (20)

S

Proof. The objective of (19) is convex because B is positive definite. Its global minimizer satisfies the
first-order necessary condition V f(x) + Bs = 0, i.e., s = —B~'V f(x). With B = v~11, the first-order
necessary condition is s = —vV f(x). O

The following proposition draws a parallel between &, (Ag; zx, vx) and ||V f(xy)|| for smooth prob-
lems when the trust-region constraint is inactive, as is expected to occur when close to a stationary
point.

Proposition 3. We consider the special case of (1) where h = 0, £; = —oc0 and u; = 400 for i =
Loooyn. If|Iskall < Ak, then &ep(Ax; zk, vi) = vk ||V f(zr) ||%
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Proof. If the trust-region constraint is inactive, Lemma 1 indicates that si 1 = —vV f(xy). Thus, (13)
yields Eep (Ak; zp, vi) = =V f2r) sk, = vi ||V (1) > O

3 Convergence and complexity with potentially unbounded Hes-
sians

From this section onwards, we consider the model defined in (15), and we aim to establish convergence
and worst-case complexity results for Algorithm 2.1 in the presence of potentially unbounded Hessian
approximations By.

The following two assumptions are essential. Assumption 1 is [3, Step Assumption 3.8b], whereas
Assumption 2 is a relaxed version of [3, Step Assumption 3.8a] that takes into account potentially
unbounded Hessian approximations. Indeed, assuming, for simplicity, that V2 f(zy) exists, a second-
order Taylor expansion of f about x yields

@y + sk) = sk an, Br) = 555 (V2 f(ax) = Be)si + ollskl*),

which is not necessarily O(||sx||?) if {Bx} is unbounded.
Assumption 1. There exists kmdc € (0,1) such that

m(0; xy, Br) — m(sg; x, Br) > Kmdcep(Dk: Tk, Vi) (21)
Assumption 2. There exists kupq > 0 such that

|(f + h) (@ + sk) — m(si; @, Bi)| < wupa(L + || Biel))sell3- (22)

Leconte and Orban [27, Proposition 2] and Aravkin et al. [2] already indicate that Assumption 1
holds for TRDH and TR. We now justify that it also holds for Algorithm 2.1 with potentially un-
bounded Hessian approximations.

Proposition 4. If Model Assumption 2.1 is satisfied, and sy is computed so that m(sy;xk, Br) <
m(Sk.1; %k, Br) at Line 8 of Algorithm 2.1, there exists kmac € (0,1) such that Assumption 1 holds.

Proof. We proceed similarly as in [27, Proposition 2]. Note that sy 1 is feasible for the problem on
Line 8. The definition of s; in the assumptions implies that

m(sk; Tr, Br) < m(sk1; Tk, Br) = @ep (515 0k) + 5541 Brskn + ¥ (sk,15 2k)
< Qep(sk,157k) + 511 Bllllskall® + (515 21),

where we used Cauchy-Schwarz and the consistency of the ¢3-norm for matrices. Because m(0; 2, By) =
m(0; g, Vi),
m(0; zx, Br) — m(sk; Tx, Br) = Eep(Aks w, vi) — 51| Bellll sk [

To satisfy Assumption 1, it is sufficient to show that there exists £mdc € (0,1) such that
Eop(Ars 2, vi) — 2| Billllsk,1l1? = Kmdcep (A Thy Vi),

ie.,
(1 = Kmde)éep (Ak; T, vi) > 2| Byll| sk, |-

Because of (14), it is also sufficient to show that there exists Kmac € (0, 1) such that
(1= Fmac)vy, = [|Bx|l- (23)

If B, = 0, the conclusion holds. Otherwise,
1 1 1
=1 = < -1 - < —1
ailAk HBk”71+1+0‘71Ak ailAmax“Bkllil +1+a71Amax 1+O‘71Amax

We deduce from (24) that (23) holds, which is sufficient to satisfy Assumption 1. O

| Bllve <

€(0,1). (24)
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Because a step sj is typically computed using a variant of the proximal gradient method applied to
m(s; xy, By ), Proposition 4 suggests that we first compute sj 1 to determine (approximate) stationarity,
and continue the proximal gradient iterations from s; ; if appropriate.

Because all norms are equivalent in finite dimension, the proof of Proposition 4 continues to hold
if we compute ||Bg|| in a norm other than the spectral norm, or even if we obtain an approximation
Br > pl|Bg|l for some p € (0,1). We may replace ||Bg| with B in the upper bound on v in
Algorithm 2.1 and repeat the proof of Proposition 4 to arrive at kmge = 1 — 1/(u(1 + a 1A L).
In practice, By is often available as an abstract operator rather than an explicit matrix. In such a
situation, computing || Bx/||1, ||Bk|leo o || Bk||F, say, is impractical.

We begin the convergence analysis by showing that there still exists a Agyce as in [3, Theorem 3.4],
despite our more general Assumption 2.
Theorem 1. Let Model Assumption 2.1, Assumption 1 and Assumption 2 be satisfied and

Kmdc(l - 772)

Aguce =
e 2Kubay3?

> 0.
If (1) satisfies the constraint qualification at xy, (11) satisfies the constraint qualification at 0, xy is
not first-order stationary for (1), and A < Agucc, then iteration k is very successful and Agy1 > Ag.

Proof. By (14) and (17),

Ep(Akizr, vi) 2 5 sk ll® = (@™ AT Bl (T+a ™ ALY [skall® = 5 (o™ A (1| Bil) sk, >
(25)

If &p(Ag;zi, v) = 0, then s, 1 = 0, and xy, is first-order stationary with Proposition 1. If zj is not

first-order stationary, si 1 # 0 according to Proposition 2. In this case, Assumption 1, Assumption 2,

and (25) lead to

(f + h)(xk + sk) — m(sk; zk, Bi)

o =11 = m(0; xy, By,) — m(sk; 2y, B)
kubd (1 + [ Bi)llsx 13
KmdeSep (Ak; Tk, Vi)
Fubd (1 + | Be )52l sw.1113
T Srmaca P AL (L4 || Bi|) sk |2
 2KubaBaly,
== —
Thus, Ag < Agyec implies pg > 12 and iteration k is very successful. O

We set Apin := min(Ap, v1Aguce), and we observe that Ay > Ay, for all & € IN. Motivated by

Proposition 3, we use V,?l/Zpr(Ak; Tk, vp)/? as our criticality measure. Let 0 < € < 1, k. be the first

iteration such that Vk_l/chp(Ak; Tk I/k)l/2 < e, and

S(e) :={k=0,...,ke =1 pr >m},
U(E) Z:{k:07...,]€6—1‘pk<771},

be the set of successful , and unsuccessful iterations until the criticality measure drops below e, respec-
tively.

At iteration k of Algorithm 2.1, let o be the number of successful iterations encountered so far:
or=H{i=0,....,k|p; >m}|, kel (26)

We introduce an assumption allowing { By} to be unbounded, as long as it is controlled by oy.
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Assumption 3. There are constants 4 > 0 and 0 < p < 1 such that maxo<;<i || B;|| < p(1 + o) for
all k € IN.

Clearly, Assumption 3 allows approximations that grow unbounded, though they must not grow
too fast. It reduces to the bounded case when p = 0. Following the discussion in the introduction,
it is possible that quasi-Newton approximations satisfy Assumption 3, though that remains to be
established. The bound ||Bj1]| < ||Bj|| + £p provided by Conn et al. [16] and Powell [38] for the
BFGS, SR1 and PSB updates, where kg > 0 is a constant, suggest that in the worst case, certain
quasi-Newton approximations could satisfy Assumption 3 with p = 1. Unfortunately, in that case, the
analysis below would not apply to them. However, once again, to the best of our knowledge, no bound
on quasi-Newton approximations is known at this time.

Note also that we do not consider p > 1 as (2) might no longer hold, and that would endanger
convergence altogether. We also do not consider here a variant of Assumption 3 in which oy, is replaced
with k& because model Hessians are typically not updated on unsuccessful iterations—we are not aware
of any algorithm that does, though it could of course be done.

We may now establish a variant of [3, Lemma 3.6] based on Assumption 3. The proof uses a

technique similar to that of [3, Lemma 3.6], itself inspired from the proofs of [15], except for the
management of Assumption 3. When p = 0, Aravkin et al. [3] show that |S(e)] = O(¢72). In the
following result, we restrict our attention to the case p > 0.
Lemma 2. Let Assumption 1 and Assumption 3 be satisfied with p > 0. Assume that Algorithm 2.1
generates infinitely many successful iterations when Line 7 is ignored, that the step size vy, := aAy/(1+
| Bl (1+aly)) is selected at each iteration, and that there exists (f+h)iow € R such that (f+h)(xy) >
(f + R)ow for all k € N. Let e € (0, 1) be small enough that pn+ 1 < p|S(e)[P. Then,

1/(1-p)
|S(€)| < <2’u(1 + ailAmm) (f + h)(xo) — (f + h)10W> -0 (€*2/(17P)) . (27)

m Kmdce2

Proof. Let k € S(e). We proceed as in [3, Lemma 3.6] with the minor corrections made in [2]. We
have

(f +h)(xx) = (f + h)(xr + s1) = MEmdebep (Ak; Th, Vi)

2
2 M1 KmdcVk€

1 2
= M FKm €
T dCOé_lAlzl‘f'HBk”(l"'a_lA];l)
> 1 2
Km
= e A A BT+ a 1A LL)

We add together the above inequalities over all k € S(¢) and use the assumption that f+ h is bounded
below to obtain

(f + h)(x0) = (f + Piow 2 1 Fnde” Z() o 1ALy ||B:||< L+a 1AL
2 mrmace’|S(9)] m keS(e) a- AL+ ||Bl~c1||(1 oA
1
= 11 Rmdce”| S (€)] maxges() (@AY + | Byll(1+atALL))
= 771/@de€2|5(€)| —1Amm + (maxkes ; | Bel)(1 + O‘_lAmm)
1
> 1 Fmdce’] S(e)] A (1 +1SOP)1 +a 1AL
1

> N1 Kmdce”|S
= M1 Kmdc€ l (€)|(M+1+IU’|S( )‘p)(1+a_1Am1n)
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where we appealed to Assumption 3 in the penultimate step.
Because, 1+ 1 < plS(€)[?,

1 - 1
= mdc S P ;
21S(OP(1 + a—1AL) N1 Kmdce” |S(€)] 2u(l + a- 1A 1)

min min

(f+h) (o) = (f+h)ow > 771’<5md052|5(5)|

which establishes (27). O

If there are infinitely many successful iterations, the inequality g+ 1 > p|S(€)|P can only hold for
all sufficiently small ¢ > 0 if p = 0.

The complexity bound |S(e)| = O(e~/(*=?)) also holds for p = 0, as it reduces to that of Aravkin
et al. [3]. We obtain a complexity bound of O(e%/2) for p = £ and O(¢~3) for p = 1. In other words,
the faster the growth of ||Bg||, the worse the deterioration of the complexity bound.

A bound on the number of unsuccessful iterations is obtained using the technique of Cartis et al.
[15].
Proposition 5 (3, Lemma 3.7). Under the assumptions of Lemma 2,

U()] < log, (Amin/Ao) + [S(€)| [10g,, (7). (28)

Proof. The proof is a minor modification of that of [3, Lemma 3.7]. We provide it for completeness.
The update rule of A in Line 11 indicates that

Amin < Ag,—1 < min(Ag” VO A < Agyd Oy 50

As 0 < 9 < 1, we take the logarithm of the above inequalities to obtain

U(e)|1log(v2) 4 [S(€)[log(va) = log(Amin/Ao),

which leads to (28). O

We caution the reader that as p 1 1, Lemma 9 does not provide any useful bound. Thus, our analysis
really only applies to fixed p < 1 and no limit should be taken in (27). However, as Powell [38] surmises
in his concluding remarks, the number of iterations should remain finite, “monstrous” though it may
be, when p = 1. Specifically, Powell conjectures a pessimistic bound of the form O(exp(exp(1/¢))).

The following result follows from Lemma 2 and Proposition 5.
Corollary 1. Under the assumptions of Lemma 2, lim inf V,Zl/Qécp(Ak; xp,vp)/? = 0.

Proof. The first part of this result is obtained similarly as in [3, Theorem 3.8]. Under the assumptions
of Lemma 2, Lemma 2 and Proposition 5 indicate that

[S@1+1U(9] =0 (e2/00),
thus liminf v, /€y (Ag; 2k, vi) /2 = 0. 0

To conclude this section, we examine conditions under which limit points of {x}} are first-order
stationary for (1). We first establish results about the first-order stationarity conditions of (12).
Lemma 3. Under the assumptions of Lemma 2, there exists an infinite index set N C IN such that

1. {ijlﬂgcp(Ak;xkka)l/Q}N — 0,
2. {Vk_lsk,l}keN — 0, and therefore, {sk.1}n — 0, and
3. {Sk}N — 0.
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Proof. Corollary 1 ensures the existence of an infinite index set N C IN such that claim 1 holds.
By (14), Vk_l/zfcp(Ak;xk,Vk)l/Q > l/k_lHSkJH/\/i Thus, {I/k_lsk,l}N — 0. As liminfy, > 0 and
sup v < oo always hold, claim 2 must hold. Because ||sg|| < 5]|sk,1|| for all k by Line 8 of Algorithm 2.1,

claim 3 holds. O

Because Ay > Apin > 0 for all k, and {sx1}n — 0 by Lemma 3, there exists kg € N such that
for all k € N with k > ko, sk,1 is not on the boundary of AyB. By (12), we have for all k € N with
k > ko,

skp1 € argmin m(s; xg, vg) + x (T + s | [4, u]). (29)

In the following, we define, for all x and s € R",

~

P(s;2) = (s;0) + x(@ + s | [€,u)). (30)

Lemma 4. Let N be the infinite index set of Lemma 3. Then, there exists kg € N such that for all
k € N with k > ko, R
—v; tsp1 € V() + 0Y(sk1; ). (31)

Proof. The claim follows directly from the first-order stationarity conditions of (29). O

In view of L/gmmas 3 and 4, for all € > 0, there exists k. € IN such that for all £ > k. with &k € NV,
there is uy € OY(sk,1; k) satisfying
[V f(zk) +uk| < e

The above suggests that limit points of {(zy, ux)}ren may be expected to be stationary for (1) under
certain conditions. We now make this last statement more precise.

When liminf v > 0, which happens when {Bj} remains bounded, and when models ¢ are lsc in
the joint variables (s, z), [3, Proposition 3.10] established that £(Amyin;-,-) is lsc and that if (Z, D) is
a limit point of {(zx, )}, then Z is first-order stationary for (1). However, that result does not take
explicit bound constraints into account.

We now provide an alternative analysis before examining the case where {v} — 0.

If liminfyen v, > 0, there exists an infinite index N7 C N such that {vg}tren, — 7 > 0. The
following results hinge around epigraphical convergence [40, Chapter 7] and consist in determining the
epigraphical limit of the sequence of models.

Consider the situation where {x}ren, has a limit point, or, without loss of generality, that
{zr}ren, — Z. It does not follow that {x(xx + - | [{, u])}ken, — X(Z + - | [¢, u]) pointwise or
continuously. Indeed, if 4 s is on the boundary of [¢, u] and xj + s, lies outside of [¢, u] for all k € Ny
with {xx + sk}ren, = v+ 5, {x(xx + sk | [¢, u]) }ken, — +o00 while x(Z + s | [¢, u]) = 0. However,
convergence occurs epigrahically.

Lemma 5. Let N be the infinite index set of Lemma 3. Let {xi}ren, — T € [¢, u], where Ny C N is
defined as above. Then
elimy(zp + - | 6 ul) = x(z + - [ £, ul).

Proof. The result follows from [40, Theorem 7.17a and b] after noticing that the indicators are convex
and limgen, x(xp + s | [¢, u]) = x(T + s | [¢, u]) for all s € R™ except perhaps on the boundary of
[¢, u], hence for all s in a dense set in R". O
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Theorem 2. Let N be the infinite index set of Lemma 3. Let {xp}ren, — T € [{, u], where Ny C N
is defined as above. Assume that there is ¢ : R™ — R such that {(:;x1) }ren, — ¥ continuously, and
that satisfies Model Assumption 2.1 as a model about Z, i.e., 1¥(0) = h(Z) and 9¢(0) C Oh(z). Assume
further that the constraint qualification (7) is satisfied at s =0 for

minimize m(s;Z,7) + x(T + s | [¢, u]), m(s;T,0) = @ep(s;T) + %17*1||5||2 +(s),

and that it is satisfied at T for (1). If —oco < infsm(s;Z,0) + x(T+ s | [{, u]) < oo, T is stationary

for (1).
Proof. Continuity of V f and [40, Theorem 7.11a and b] ensure that

e-lim pep (-5 2x) + 3V 1P = e (52) + 377117 (32)
€Ny

and the convergence is continuous. By Lemma 5 and [40, Theorem 7.46b],

eclim pop ) + 0 - 2 + x| 1 ) = @ep(5) + 507 F o x(@ - | 6 ).

Again, [40, Theorem 7.46b] and the continuous convergence of {¢(-; zx) }ren, yield

elimm(; g, vi) +X(@k + - [ 6 ul) =m(52,0) + x(@ + - [ 16 u]).

Because sy € argming m(s; zx, vg) + x(zx + s | [¢, u]) for all kK € Ny and {sk,1}ken, — 0 by Lemma 3
and (29), we obtain from [40, Theorem 7.31b] that

0 € argminmi(s; T, 7) + x(Z + s | [¢, u]),
which implies that Z is stationary for (1). O

For the limiting model v of Theorem 2 to satisfy Model Assumption 2.1, we must have 1/(0) = h(Z)
and 0v(0;z) C Oh(z). We now review two important examples in practice.

A widely used model is simply 9 (s;z) = h(zr + s) for all k € IN. Clearly, when h is continuous,
the limiting model satisfies Model Assumption 2.1. A common situation occurs when h(z) = g(c(z)),
where ¢ : R® — R™ is C! and g : R™ — R is continuous. In penalty scenarii, ¢ is a norm. It is then
natural to choose 9 (s;xr) := g(c(zy) + Ve(xg)s) for all k. Again, the limiting model satisfies Model
Assumption 2.1.

In the absence of bound constraints, we may weaken the assumption on continuous convergence of
{¢(;x1)} in Theorem 2. We first require another technical lemma.
Lemma 6. For k € IN, let ¢y, ¢y : R" — R, and let ¢, ¥, 1 : R® — R. Assume that {¢p} — ¢
continuously, and that e-liminfyy, = ¢, and e-limsup vy, = . Then, e-liminf ey + Y = ¢ + Y and
e-limsup ¢ + thr = ¢ + 1.

Proof. Let z € R™. By [40, Proposition 7.2],
(e-limsup ¢y + ¥x)(z) = min{a € R | Iy} — =, limsup(or(zk) + Vi (zr)) = al.
Thus, there exists a sequence {zx} — x such that
(e-lim sup ¢ + Yx) (@) = lim gy () + limsup Yr (zx) = ¢(2) + lim sup ¢y (zr),

because lim inf ¢ (x)) + lim sup ¥y (zx) < limsup(ér (k) + Yr(zr)) < limsup ¢ (xk) + lim sup i (zk ),
which explains the first equality, and {¢r} — ¢ continuously, which explains the second. The proof
for the e-lim inf is analogous. O
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In the following result, continuous convergence of {¢(-; xx)}ren, is replaced with existence of the
epigraphical lim sup and continuous convergence with respect to {sx 1 }ren, — 0. The relevance of the
e-limsup in this context stems from [40, Proposition 7.30].

Theorem 3. Assume (1) has no bound constraints. Let N be the infinite index set of Lemma 3, and
{zr}ren, — T, where Ny C N is defined as above. Assume

¥ = e-limsupy(-; 1)
keEN,

is not identically +00 and satisfies Model Assumption 2.1 as a model about T, i.e., ¥(0) = h(Z) and
0Y(0) C On(Z). If {v(sk,1;2k) teen, — ¥(0), then T is stationary for (1).

Proof. As in the proof of Theorem 2, (32) holds. Lemma 6 yields

e-limsupm(; xg, vi) = m(+; T, ), m(s;z,v) = Vf(:i)Ts + %17*1||s||2 +1(s).
keNy

If {¢(sk1;2k, k) bken, — ¥(0), then {m(sg1;2k, vk)}ken, — M(0;Z,7). By [40, Proposition 7.30],
we obtain that 0 € argmin, m(s; Z, ), which implies that Z is stationary for (1). O

Finally, we may trade the continuous convergence of {sy 1 }ren, with respect to {¢(:; )} ren, for
the existence of the epigraphical limit of the models {¢(; ) bren, -
Theorem 4. Assume (1) has no bound constraints. Let N be the infinite index set of Lemma 3, and
{zr}ren, — T, where N1 C N is defined as above. Assume
) = e-li -
Y= e limap( z)

exists and satisfies Model Assumption 2.1 as a model about Z, i.e., P(0) = h(z) and 94(0) C Oh(T).
Assume further that —oo < inf 1) < +00. Then T is stationary for (1).

Proof. The proof is nearly identical to that of Theorem 3, except that e-limgen, m(:;zp, vi) =
m(-;Z,7) by [40, Theorem 7.46b]. The result follows from [40, Theorem 7.310] because —oo <
inf m(;z,7) < c0. O

When liminf v, may be zero, i.e., when {Bj} may not bounded, we work directly with subdiffer-
entials.
Model Assumption 3.1. There exists a model ¥(-; Z) that satisfies Model Assumption 2.1 such that,
for subsequences {sx1}n — 0 and {zx}n — Z € [/, u] such that for all k € N, x + sp1 € [(,ul,

lim sup 812;(81@,1; wi) C 812(0? ), (33)
kEN

where 1) is defined in (30).

Model Assumption 3.1 holds, among others, in the following cases:

1. When ¢ (+; z) and ¢(-; 7) are proper, lsc, convex functions with 1(-; vx) 5 (+; ) using Attouch’s
theorem [40, Theorem 12.35]. Indeed, in that case, 9(-;x) and ¥(0;Z) are also proper, lsc and
convex, and $(~;xk) 5 1])\(,3_3) Extension to non-convex functions under more sophisticated
assumptions are established by Penot [33], Poliquin [34] and references therein.

2. When ¢(s;z) = h(z + s) and h(xy + si,1) — h(Z), using [40, Proposition 8.7] applied to {x) +

sk,l}N — I.

We may now establish the following result.
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Theorem 5. Let the assumptions of Lemma 2 be satisfied. Let Model Assumption 3.1 hold for the
infinite index N of Lemma 3, and assume that {zp}n — Z. Assume further that the constraint
qualification (7) is satisfied at s =0 for

minimize m(s;Z,v) + x(Z + s | [¢, u]), (34)
for some U > 0, and that it is satisfied at T for (1). Then, T is first-order stationary.

Proof. By Lemma 4, there exists ug € azz(skyl;:ck) for all k € N such that 71/];1$k,1 =V f(xg) + ug.
By Lemma 3, the convergence of {xy } v and continuity of V f, {u} converges. Let @ be its limit. In the
limit over k € N, we obtain @ = —V f(Z). Model Assumption 3.1 implies that u € 8@(0;@). Because
the constraint qualification is satisfied at s = 0 for (34), [40, Corollary 10.9] and Model Assumption 2.1
yield @ € 09(0; %) + Ny, ) (T) = Oh(Z) + N, ) (T). Thus, the first-order stationarity conditions of (1)
under (7) hold. O

In Theorem 5, the value of ¥ is unimportant as it plays no role in the subdifferential of the objective
of (34) at s = 0.

4 Sharpness of the complexity bound

In this section, we show that the bound of Lemma 2 is attained using the techniques of Cartis et al.
[15, Theorem 2.2.3]. Even though those authors only use said techniques to construct examples under
the assumption that model Hessians remain bounded, they can be used under Assumption 3 as well
because the number of values to interpolate before a stopping condition is met is always finite. We
have not seen those techniques used in the present context elsewhere in the literature.

For 0 < e < 1/2, we explicitly construct k. = |e~2/(1=P)| iterates of Algorithm 2.1 with n = 1
and h = 0, so that Vgl/zfcp(Ak;mk,Vk)l/Q >efor k=0,...,k — 1, and V,;l/Qf(Ake;mkE,z/ke)l/Q =
Then, we invoke [15, Theorem A.9.2] to establish that there exists f : R — R in (1) that interpolates
our iterates and satisfies our assumptions. The following result is a special case of [15, Theorem A.9.2].
Proposition 6 (Hermite interpolation with function and gradient evaluations). Let k. be a positive integer,
{fr}, {gr} and {xi} be sequences of numbers given for k € {0, ... k.}. Assume that fork € {0,... k.},
Sk = Tpr1 — o > 0, and that for all k € {0, ... k. — 1},

| fev1 — (fr + grsi)| < ks, (35a)
|gk+1 — 9k| < Kgsg, (35b)

for some constant k5 > 0. Then, there exists f : R — R continuously differentiable such that
flaw) = fi and  f'(zk) = gi-

In addition, if
‘fk| S"ifv |gk| S:‘if and Skgﬁ;f’

then |f| and |f'| are bounded by a constant depending only on kKj.
Proof. The result is a special case of [15, Theorem A.9.2] with p = 1. O

In the following, we use

0<e<1/2, (36a)
0<p<l1, (36b)
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ke = [ 2/07P), (36¢)
a>0, (36d)
B>2a7t +1, (36e)

and for all k € {0,...,k.}, we define the sequences

Wy 1= (ke - k)/key (373)
gk = —€(1 + wg). (37b)
In addition, using the initial values
AO = 1, (38&)
By :=1, (38b)
o = O7 (38C)
4
= 8%+ —— d
fo =8+ 1= (38d)
we define, for all k € {1,...,kc},
Bk = kip, (39&)
T = Tk—1 + Sk—1, (39b)
fe = fr—1+ gr-18K-1, (39¢)
and for all k € {0,...,k},
sp = —Bgr >0, (40a)
1
Vg = (40b)

a LA+ [Br|(1+ o 1AY

As in [15, Theorem 2.2.3], the sequences (37), (39) and (40) are created specifically so that we may
generate iterates that satisfy the assumptions of Proposition 6, along with Vk_l/Qé“Cp(Ak; T, )2 =
lgr| > e for k € {0,..., k. — 1}, and |gx_| = €. It is worth noticing that we chose { By} so that Assump-

tion 3 is satisfied if every iteration is successful (which is shown in the proof of Theorem 6), and that
ke = 0(6_2/(1_p)>.

First, Lemma 7 establishes bounds on fj.
Lemma 7. Using the parameters in (36) and the sequences defined in (37), (39), and (40), the following
properties hold for the sequence {fi}:

1. for allk € {1,... k},

Ji < fr-1, (41)
2. forallk €{0,... k.},
(1-p)
0<f0_fk<4€2(2+k ><862+4, (42)
1-— I—p
3. for allk € {0,...,k},
fe = 0. (43)

Proof. First, we notice that for all k € {0,...,k.}, gr < 0 and s > 0. By combining these observations
and the definition of fi, we deduce that f < fr_1 for all k € {1,...,k.}, and in particular

fo—fr=>0.
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Inequalities (42) hold for £ = 0 and for k = 1 because fo — f1 = —goso = 4€2. For all k € {2,...,k.},

k—1

fo—fe ==Y _gisi

=0

= —goSo + 292 o’

1:1
Now,

k—1 k-1
Z(l + wi)zi_p < 242'_” because 1 + w; < 2
i=1 i=1

k-1

<4 <1 + i_p>
i=2
k-1

This results in

kl-p kP
fo—fk§4€2+462<1+1_p)=8€2+41 : (44)
Finally, since k < k. = |~ 2/(1=P) | < ¢=2/(1=P) we have, for all k < ke,

k1P <1, (45)

We combine (44) and (45) to obtain (42). The value of fp and (42) then allows us to establish (43). O

Now, Lemma 8 establishes a bound for |gx4+1 — gx|-

Lemma 8. Using the parameters in (36) and the sequences defined in (37), (38) and (40), we have
that, for all k € {0,... k.},

|gk+1 — gk] < Sk- (46)

Proof. For k € {0,..., k. — 1},

|9k+1 = gkl = | — €(1 + wrpa) + €(1 + wp)| = €/ke. (47)

Since p < 1 and k < k., we have kP/k. < 1 < 1+ wi. We multiply the latter inequality by ek™? to
obtain e€/ke < k~Pe(1 + wy ), which leads to |gk4+1 — gr| < sg using (47). O
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The following result uses Lemma 7 and Lemma 8 to apply Proposition 6.
Proposition 7. Using the parameters in (36) and the sequences defined in (37), (38) and (40), there
erists f : R — R continuously differentiable such that

far) = fe, f(zr) = g (48)

In addition, the assumptions of Proposition 6 hold, so that |f| and |f'| are bounded by a constant
independent of k.

Proof. We can see that s; > 0 and, by definition of fj,

| fer1 — (frx +grse)| = 0.

Lemma 8 shows that
lgk+1 — gr| < sk

Using Lemma 7, we know that for all k € {0,...,k.}, fr > 0, and since {f} is decreasing, we have

|k < fo-

In addition,
lgr] <2 <1 and s, <|gx| <1

The result follows from Proposition 6. O
For the following lemma, we define the sequence {sy 1} such that for all k € {0, ..., k.},
Sk,1 = ~VkJk- (49)

Lemma 9. Using the parameters in (36) and the sequences defined in (37), (38) and (40), we establish
that, for all k € {0,...,k.} such that Ay > 1,

|sk| < min(Ag, B]sk,1

)- (50)
Proof. On the one hand, we have
[sk] = e——= <26 <1< Ay (51)
On the other hand, since Bk_1 <land Ap>1,
207 +1> o PAN (B + 1) 4+ 1,
so that

2071 +1
I< _104 ——1i_ < —1 ﬁ—1 :
a A (B +1)+1 7 o A(B, T+ 1)+ 1

We multiply the above inequality by B, ! to obtain

B_l
Bk_l < —15 f1 = 1 o — = Pk,
a A (B, +1)+1 oA+ Br(l+ a7 tAY)
and, by multiplying by |gx|, we deduce that
skl = By Hgrl < Builgel = Blskal- (52)

We combine (51) and (52) to obtain (50). O
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The following theorem finally establishes the main result of this section.
Theorem 6 (Slow convergence of Algorithm 2.1). Algorithm 2.1 applied to (1) with model my, satisfying
Model Assumption 2.1, Assumption 1, Assumption 2 and using Hessian approzimations { B} satisfying
Assumption 8 may require as many as 0(6_2/(1_p)) iterations to produce an iterate xy, such that

I/kzl/Qgcp(Ak(;xke,l/kE)l/2 <e, (53)

in the sense that there exists f : R — R satisfying the assumptions of Lemma 2 and for which (53)
occurs for the first time after k. iterations.

Proof. The proof consists in constructing f : R — R by interpolation, as in [15, Theorem 2.2.3].
Let n =1, h =0, £ = —0c0, u = +00. We use the parameters in (36) and the sequences defined
in (37), (38) and (40). We invoke Proposition 7 to obtain f : R — R differentiable and bounded such
that f(zr) = fr and f'(xr) = gr. Our goal is to show that {zx}, {sx}, {fx} and {gx} satisfy all our
assumptions and are generated by Algorithm 2.1 applied to f with xp = 0 and with the special value
of {By} in (38b) and (39a).

We proceed by choosing 0 < k < k. such that Ag > 1, which holds at least for & = 0, and
going through the steps of Algorithm 2.1 at iteration k to check that it generates the iterates defined
in (37), (38) and (40).

In Line 5, vy in (40b) is as large as allowed.

In Line 6, Lemma 1 indicates that s, in (49) is a global minimizer of (11b) with ¢» = 0. As
1+ wg <2 and |Bg| > 1, we observe that

6(1 +wk)
o~ TA T 1 |Bul(I + o 1AL Y)

skl = [Vkgr| = <% <1< Ay,

which implies that s 1 is a solution of (12) because the condition |s; 1| < Ay is already satisfied.

In Line 8, let my(+; 2k, Bi) be defined as in (15). my(-; x, Bg) satisfies Model Assumption 2.1, and
using Lemma 1, we have that s; in (40a) with ¢» = 0 and B = By, is its global minimizer. Lemma 9
shows that

|sx| < min(Ag, B|sk,1l),

which also implies that si is a solution of (15).

In Line 9, we compute
T — fren1
m(0; 2k, Bx) — m(sy; zy, Bi)
S — Jr+1

Tk — [k — 9esk — Bisi/2
 fe = frn
T op—1/9

9iBy /2 (54)
_ _—9kSk_

9B /2
_ Big

9By /2
=2.

Pr =

In Line 10, pr, = 2 implies that 21 = xp+sk, and in Line 11, we can set Ag11 = min(v3Ag, Amax) >
Ap > 1.
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Now, either 1/,;1/2§Cp(Ak;:ck,1/k)1/2 > ¢, and we perform the next iteration of Algorithm 2.1, or

z/k_l/QECp(Ak; T, vk)'/? < ¢, which stops the algorithm. We have shown that sy, ; is a solution of (12),
thus

bep(Ap; g, vi) = fr — (fe + grSk1) = —grSk1 = Vi, (55)
and
v 2 Eep (B i, i) V2 = il (56)

Therefore, for all k € {0,..., k. — 1}, Vk_l/2fcp(Ak;l‘k, ve)t/? > ¢, and V/;1/2§CP(A]€E;T,]€6,V;§€)1/2 =,

so that Algorithm 2.1 performs exactly k. iterations to generate zj, satisfying (53).

To finish the proof, we must verify that Assumption 1, Assumption 2 and Assumption 3 hold.
Assumption 1 is satisfied thanks to Proposition 4. Assumption 2 is satisfied with Kunq = % because

| o1 — m(sk; Th, Br)| = | for1 — fe — gksk — 3Bisi| = 3Brsi, < 3(1+ By)st.

Finally, our choice of By allows Assumption 3 to be satisfied because all iterations are successful and
O — k. O

5 Numerical verification of the bound

We construct f : R — R satisfying the properties of the function in the proof of Theorem 6. The
construction follows the formula used in the proof of [15, Theorem A.9.2], and we use similar notation.

We use again the parameters (36), and the sequences (37)—(40). Define the cubic Hermite inter-
polant

T(T) = Cro + k1T + Ck,)gTz + Ck,)3T3, (57)
where, for all k € {0,...,k}, cko = fx, Ck,1 = gk, and cg 2, ¢k 3 solve
st s fewe| _ [fren = (e +arsi)] _ 0 (58)
28y 38% Ck,3 9k+1 — gk 9k+1 — Gk '
We use the additional conditions f_1 = fo, -1 = 0, fe.+1 = fr., k.41 = Gr., and z_1 = —s_q,

where s_1 = 1, which allows (35) to hold with x; = 1, because |fo — (f—1 + g—15-1)] = 0, and
l[g0 — g-1] = |go] = €(1 + wp) = 2¢ <1 = s_4 since € < 1/2. Finally,

fo ifx <z
fl@) = m(z —zg) ifz € (vg;zpe] for ke {—1,... k} (59)
fr. if x > xp, + si..

By construction, f is a piecewise polynomial of degree 3. We have 7;(0) = fi, 7.(0) = gx,
Tk(sk) = fr+1 thanks to the definition of f in (39¢) and the first line of (58), and 7 (sx) = gr4+1 with
the second line of (58). Thus, f: R — R is continuously differentiable over (x_1, g, +1).

We minimize f using Algorithm 2.1 as implemented in [5], without nonsmooth regularizer, and with
starting point o = 0. Inside TR, we set By = kP so that {By} grows unbounded and Assumption 3
holds, because p;, = 2 in (54) so that all iterations are very successful. In Line 8, we use the analytical
solution sy = —B; 'V f(x) of (19) given by Lemma 1 in order to avoid rounding errors occurring in a
subproblem solver for (16). This expression of sj satisfies the trust-region constraint by construction
thanks to Lemma 9. The modified TR implementation is available from https://github.com/
geoffroyleconte/RegularizedOptimization. jl/tree/unbounded.

We set p=1/10, a = B = 10710 43 = 3, Apax = 10% and € = 1/10, so that k. = 166. We observe
that TR converges in precisely 166 iterations. With e = 1/20, we obtain the convergence of TR in
precisely k. = 778 iterations.


https://github.com/geoffroyleconte/RegularizedOptimization.jl/tree/unbounded
https://github.com/geoffroyleconte/RegularizedOptimization.jl/tree/unbounded
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In order to make the oscillations of f’ clearly visible, Figure 2 shows plots of f and f’ over [0, xj_41]
with € = 1/3. Table 1 shows the theoretical values of V,?l/Qpr(Ak; Tp, vi) Y% = |gi| according to (56).
TR converges in 11 iterations and produces the logs in Figure 1 that align with these theoretical values.
Note that py = 2, as predicted by (54), and therefore, that each iteration is successful.

Table 1: Rounded theoretical values of V;1/2§cp(Ak; xk, vk) /2 for e = 1/3.

k 0 1 2 3 4 5 6 7 8 9 10
V;1/2§cp(Ak§ Tk, l/k)l/Z 0.67 064 061 058 055 0.52 048 045 042 0.39 0.36 0.33
outer inner £ (x) h(x) Ecp/\WW V3 P A [Bq] sl
Bl

1 1 5.3e+00 0.0e+00 6.7e-01 4.7e-01 2.0e+00 1.0e+00 0.0e+00 6.7e-01 1.0e+00
2 1 4.9e+00 0.0e+00 6.4e-01 4.5e-01 2.0e+00 3.0e+00 6.7e-01 6.4e-01 1.0e+00
3 1 4.5e+00 0.0e+00 6.1e-01 4.1e-01 2.0e+00 9.0e+00 1.3e+00 5.7e-01 1.1e+00
4 1 4.1e+00 0.0e+00 5.8e-01 3.9e-01 2.0e+00 2.7e+01 1.9e+00 5.2e-01 1.1e+00
5 1 3.8e+00 0.0et+t00 5.5e-01 3.6e-01 2.0et+00 8.let+01 2.4e+00 4.7e-01 1.1e+00
6 1 3.6e+00 0.0e+00 5.2e-01 3.4e-01 2.0e+00 2.4e+02 2.9e+00 4.4e-01 1.2e+00
7 1 3.4e+00 0.0e+00 4.8e-01 3.1e-01 2.0e+00 7.3e+02 3.3e+00 4.1e-01 1.2e+00
8 1 3.2e+00 0.0e+00 4.5e-01 2.9e-01 2.0e+00 1.0e+03 3.7e+00 3.7e-01 1.2e+00
9 1 3.0e+00 0.0e+00 4.2e-01 2.7e-01 2.0e+00 1.0e+03 4.1e+00 3.4e-01 1.2e+00
10 1 2.8e+00 0.0e+00 3.9e-01 2.5e-01 2.0e+00 1.0e+03 4.4e+00 3.2e-01 1.2e+00
11 1 2.7e+00 0.0e+00 3.6e-01 2.3e-01 2.0e+00 1.0e+03 4.7e+00 2.9e-01 1.3e+00
12 1 2.6e+00 0.0et+00 3.3e-01 1.0e+03 5.0e+00 2.6e-01 1.3e+00

TR: terminating with y£cp/WW
"Execution stats:

0. 3333333333333333

first-order stationary"

Figure 1: TR logs with ¢ = 1/3. outer denotes the iteration number, inner is the number of iterations performed by the
subsolver to solve (16) with the model in (15), | /&cp/, /v is ugl/Qgcp(Ak;xk,yk)l/% /€ is the numerator of (18), ||s|| is
|sk]l, and the remaining columns refer unambiguously to data used in Algorithm 2.1.
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Figure 2: lllustration of example (59) with ¢ = 1/3. Top row: values
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Bottom row: iterates z;, (left) and steps s (right) for k € [0, ke + 1].

of f (left) and of f’

(right) for « € [0,z)_41]-
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The code to run this experiment is available at https://github.com/geoffroyleconte/
docGL/blob/master/regularized-opt/test-unbounded-hess.jl. By making similar
changes to the algorithm TRDH [27], which can be found at the same URL, we obtain the same
number of iterations.

6 Discussion

We have shown that it is possible to establish convergence and sharp worst-case evaluation complexity
of Algorithm 2.1 in the presence of unbounded Hessian approximations By, provided they do not grow
too fast—ec.f., Assumption 3. We established that the complexity bound can be attained, and we gave
an example of a function for which it was attained, both theoretically and numerically.

Aravkin et al. [3] compare the performance of Algorithm 2.1 to other frameworks, but use a formula
for vy that assumes that {Bj} remains bounded. Their implementation uses limited-memory SR1 and
BFGS approximations. As it happens, such limited-memory approximations do remain bounded under
standard assumptions; see [7] for LBFGS. The fact that LSR1 approximations remain bounded was
not known to us at the time of writing [3]. However, an early version of that manuscript contained
a procedure to maintain bounds on the extreme eigenvalues of such an approximation, and skip the
update if those bounds became too large—see Section 4.2 in https://arxiv.org/pdf/2103.
15993v1. We only realized later that that very analysis of the extreme eigenvalues shows that LSR1
approximations remain bounded provided that the sequence of initial matrices remains bounded, which
is the case in the experiments of [3].

When p = 1 in Assumption 3 or the growth of || B[ is not governed by the number of successful iter-
ations, it may still be possible to establish convergence in the sense that lim inf uk_l/chp(Ak; Tg, Vi) =0
as in [16, §8.4.1.2], where the main assumption is (2). Generalizations of Assumption 3 might replace
o, with k, to account for situations where model Hessians are updated on unsuccessful iterations, or
by a positive function ¢(oy) or ¢(k). In view of (2), such ¢ would have to satisfy

- 1
— = 00.
kzzo 1+ maxocj<k 6(j)P

Under the simplifying, but reasonable, assumption that ¢ is continuous and nondecreasing, it would
be necessary and sufficient that
o)
1
———dt=00
/1 L+ o(t)r

We expect that sharp worst-case evaluation complexity bounds also hold for such more general cases.

Another possible extension of the present work would be to analyze the worst-case evaluation
complexity of ARp-type methods in the presence of potentially unbounded model Hessians.

Although Algorithm 2.1 does not reduce to the “standard” trust-region method in the case where
h = 0—by which we mean, e.g., the basic trust-region algorithm of [16, Chapter 6]—we expect that
the techniques of the present paper can be used under Assumption 3, or generalizations thereof, to
establish similar complexity bounds. Whether or not quasi-Newton updates satisfy Assumption 3
under certain assumptions is the subject of ongoing research.
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