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Abstract : We develop a worst-case evaluation complexity bound for trust-region methods in the
presence of unbounded Hessian approximations. We use the algorithm of Aravkin et al. [3] as a
model, which is designed for nonsmooth regularized problems, but applies to unconstrained smooth
problems as a special case. Our analysis assumes that the growth of the Hessian approximation is
controlled by the number of successful iterations. We show that the best known complexity bound of
ϵ−2 deteriorates to ϵ−2/(1−p), where 0 ≤ p < 1 is a parameter that controls the growth of the Hessian
approximation. The faster the Hessian approximation grows, the more the bound deteriorates. We
construct an objective that satisfies all of our assumptions and for which our complexity bound is
attained, which establishes that our bound is sharp. To the best of our knowledge, our complexity
result is the first to consider potentially unbounded Hessians and is a first step towards addressing a
conjecture of Powell [38] that trust-region methods may require an exponential number of iterations
in such a case. Numerical experiments conducted in double precision arithmetic are consistent with
the analysis.
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1 Introduction

We consider the nonsmooth regularized problem

minimize
x∈Rn

f(x) + h(x) subject to ℓ ≤ x ≤ u, (1)

where ℓ ∈ (R ∪ {−∞})n, u ∈ (R ∪ {+∞})n with ℓ ≤ u componentwise, f : Rn → R is continuously

differentiable on an open set containing the feasible set [ℓ, u] of (1), and h : Rn → R∪{+∞} is proper

and lower semicontinuous (lsc). A component ℓi = −∞ or ui = +∞ indicates that xi is unbounded

below or above, respectively. Both f and h may be nonconvex. The nonsmooth regularizer h is often

used to identify a local minimizer of f with desirable features, such as sparsity.

Algorithms used to solve (1) are often based on the proximal-gradient method [24, 28]. The

algorithm that we consider here is the trust-region method (TR) of Aravkin et al. [3], which improves

upon the proximal-gradient method by constructing a model of f and a model of h at each iteration

in order to compute a step, in the spirit of traditional trust-region methods [16]. To the best of our

knowledge, it is the only trust-region method for (1) that allows both f and h to be nonconvex, and that

only assumes that h is proper lsc. Typically, the model of f is a quadratic about the current iterate, and

we denote its Hessian Bk; the latter may be the Hessian of f if it exists, or an approximation thereof.

TR was developed under the assumption that {Bk} remains bounded, a common, but sometimes

restrictive, assumption. A worst-case evaluation complexity bound for a stationarity measure to drop

below ϵ ∈ (0, 1) of O(ϵ−2) results, which matches the best possible complexity bound in the smooth

case, i.e., when h = 0 [15].

In the present paper, we examine the situation where {Bk} is allowed to grow unbounded. We

impose a bound on the growth of ∥Bk∥ in terms of the number of successful iterations that is slightly

more restrictive than bounds used in smooth optimization to establish global convergence—see below.

Our tighter growth control, however, allows us to formalize a worst-case evaluation complexity bound,

which we then show to be tight. Specifically, we show that the best known complexity bound of

O(ϵ−2) deteriorates to O(ϵ−2/(1−p)), where 0 ≤ p < 1 is a parameter that controls the growth of ∥Bk∥.
To the best of our knowledge, this is the first formal worst-case analysis in the case of potentially

unbounded Bk.

A Julia implementation of TR is available as part of the RegularizedOptimization.jl package [5].

Our findings also apply to Algorithm TRDH of Leconte and Orban [27], which is similar to TR, but

uses diagonal Hessian approximations to compute a step without recourse to a subproblem solver.

Unbounded, or potentially unbounded, Hessians are not uncommon in applications. A prime

example is interior-point methods for bound-constrained optimization. Consider the minimization of

a twice differentiable objective ϕ : Rn → R subject to simple bounds x ≥ 0. Primal interior-point

methods [21] consist in applying Newton’s method to a sequence of log-barrier subproblems whose

objective is ϕ(x) − µ
∑

i log(xi) where µ > 0 is a barrier parameter that is eventually driven to zero.

Such methods maintain x > 0 implicitly but the barrier objective Hessian is ∇2ϕ(x) + µX−2, where

X := diag(x). For any µ > 0, the barrier Hessian is unbounded as any component of x approaches

a bound, which is often where a solution is located. Primal methods have long been superseded by

the better-behaved primal-dual methods—see, e.g., [23] and references therein for an overview of the

extensive literature on the subject—in which the barrier Hessian is replaced with ∇2ϕ(x) + X−1Z,

where Z := diag(z) and z is an approximation of the vector of Lagrange multipliers for x ≥ 0.

Even though the primal-dual Hessian does not grow unbounded as fast as the primal Hessian, it

nevertheless remains unbounded as any component of x approaches a bound. In order to converge,

interior-point methods rely on extra mechanisms that prevent components of x from approaching a

bound too fast unless there are indications that a solution is nearby and µ is close to zero. In spite of

those mechanisms, x must be allowed to approach bounds, and, therefore, the primal and primal-dual

Hessians must be allowed to grow unbounded. Although primal-dual interior-point methods can be
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shown to have excellent worst-case complexity bounds in convex optimization [31], no such general

result is known for nonconvex problems.

Another prime example, often cited in the literature, is when Bk results from a secant approx-

imation [19]. Conn et al. [16, §8.4] suggest that for the BFGS and SR1 approximations, Bk could

potentially grow by at most a constant at each update, though it is not clear whether that bound is

attained. This point is developed further in the related research below.

The paper is organized as follows. Section 2 provides the nonsmooth analysis background necessary

to understand the algorithm of Aravkin et al. [3], a description of how models are constructed at each

iteration, and a formal statement of the algorithm. In Section 3, we establish convergence and a

worst-case evaluation complexity bound under the assumption that the growth of the model Hessian is

controlled by a function of the number of successful iterations, i.e., iterations in which a step is accepted.

We show in Section 4 that the worst-case bound is indeed attained, by performing an analysis similar

to that of [15, Theorem 2.2.3]. In Section 5, we construct an explicit function that attains the bound

and validate our findings numerically. We provide concluding comments and perspectives in Section 6.

Related research

We do not provide an extensive review of trust-region approaches for smooth optimization, but refer

the interested reader to [16] for a thorough account, as well as a number of generalizations.

We begin by reviewing milestones in the convergence analysis of trust-region methods with poten-

tially unbounded model Hessians. Powell [36] first showed convergence of a trust-region algorithm for

smooth optimization that allows unbounded Hessian approximations Bk. Specifically, he assumes that

there exist nonnegative α and β such that ∥Bk∥ ≤ α+ β
∑k−1

j=0 ∥sj∥, where sj is the trust-region step

at iteration j. Under that and other standard assumptions, he established that lim inf ∥∇f(xk)∥ = 0.

Powell hints that his motivation lies in Hessian approximations arising from secant updates [19]. To

the best of our knowledge, it is not known whether secant approximations remain bounded. However,

Fletcher [22] establishes that the quasi-Newton update that bears Powell’s name, the Powell symmetric

Broyden update, derived in [35], satisfies the bound above.

Secant, and, in particular, quasi-Newton, methods are among the most widely employed methods

in smooth optimization. Yet, for lack of a boundedness result, no existing complexity analysis applies

to them. Like Powell [36], our main motivation is to provide a first worst-case complexity result that

may apply to them. Whether or not certain quasi-Newton approximations satisfy our assumption on

the growth of model Hessians remains to be established, even for convex problems. Nevertheless, our

result is a first step forward.

Powell [37] refines his earlier analysis by showing global convergence under the weaker assumption

∥Bk∥ ≤ α+ βk. Under the weaker yet assumption

∞∑
k=0

1

1 + max0≤j≤k ∥Bj∥
= ∞, (2)

which is hinted at in the proofs of Powell [37], Toint [42] shows that global convergence is preserved.

The condition is necessary but not sufficient; Toint [42] provides an example for which (2) fails to hold

and on which trust-region method may fail to converge.

When f is convex with uniformly bounded Hessian, Conn et al. [16, §8.4] indicate that the BFGS

update satisfies ∥Bk+1∥ ≤ ∥Bk∥ + β for some β ≥ 0. Therefore, ∥Bk+1∥ ≤ ∥B0∥ + (k + 1)β, and the

assumption of Powell [37], and hence (2), are satisfied. The SR1 update with safeguards satisfies a

similar inequality without the convexity assumption.

Under such a growth assumption, Powell [38] surmises in his concluding remarks that trust-region

methods may require a “monstrous” number of iterations; which he projects to be exponential.



Les Cahiers du GERAD G–2023–65 – Revised 3

Because quasi-Newton approximations are typically only updated on successful iterations, i.e., when

a trial step is accepted, we believe that the authors above mean that ∥Bk+1∥ ≤ ∥B0∥+ |Sk+1|β instead,

where |Sk+1| is the number of successful iterations until iteration k+1. Our complexity result, though

it does not encompass the latter bound, approaches it by imposing instead ∥Bk+1∥ ≤ ∥B0∥+ |Sk+1|pβ
for 0 ≤ p < 1, and is therefore a first step towards validating Powell’s conjecture.

Carter [8] presents procedures to safeguard Hessian approximations in trust-region algorithms for

smooth problems. The goal of these procedures is to satisfy the uniform predicted decrease condition

φk(xk)− φk(xk+1) ≥ 1
2β1∥∇f(xk)∥min

(
∆k,

∥∇f(xk)∥
β0

)
,

where φk is a model of f about iterate xk, ∆k > 0 is the trust-region radius, β0 > 0, and β1 > 0.

When ∥Bk∥ ≤ β0 for all k, this condition is satisfied, but the author shows that it can also be satisfied

under milder assumptions. Carter’s procedures are used to correct Bk so that such assumptions hold.

We now review determinant complexity analyses of trust-region and related methods for smooth

optimization. Cartis et al. [9] show that the steepest descent method and Newton’s method for smooth

problems may converge in as many as O(ϵ−2) iterations, and that the bound is sharp for the steepest

descent method. The analysis assumes that the Hessian remains uniformly bounded. In addition,

they prove that it is possible to construct an example where Newton’s method is arbitrarily slow when

allowing unbounded Hessians.

Our main contribution is to establish that TR, the trust-region algorithm of [3], may converge in

as many as O(ϵ−2/(1−p)) iterations, where p ∈ [0, 1) is a parameter that controls the growth of the

model Hessian—the larger p, the larger the allowed growth. Because ϵ−2/(1−p) → +∞ as p ↗ 1, our

results reinforce that of Cartis et al. [9] and makes it more precise. Our analysis applies to smooth

optimization—indeed, the example that we construct to establish sharpness of the complexity bound

is smooth—but it is general enough to apply to (1).

Cartis et al. [15, Section 2.2] show that the steepest-descent algorithm with backtracking Armijo

linesearch results in an O(ϵ−2) complexity bound, and a function is constructed by polynomial inter-

polation to prove that the bound is sharp, with a technique that is different from that of [9]. The rest

of their book reviews complexity analyses for trust-region and regularization methods, always under

the assumption that the Hessian remains bounded.

The complexity of other methods for smooth optimization was subsequently analyzed using tech-

niques similar to those of [9]. The Adaptive Regularization with Cubics algorithm (ARC, or AR2

because it uses second-order derivatives) [10, 20] minimizes at each iteration the model

φk(xk + s) = f(xk) +∇f(xk)T s+ 1
2s

TBks+
1
3σk∥s∥

3, (3)

where Bk must remain bounded. It is known to require at most O(ϵ−3/2) iterations to reach

∥∇f(xk)∥ ≤ ϵ, and this bound is sharp [10, 32]. Curtis et al. [17] and Mart́ınez and Raydan [30]

present modified trust-region algorithms with bounded model Hessians to solve nonconvex smooth

problems that also have a complexity bound of O(ϵ−3/2).

Cartis et al. [13] show that Algorithm ARp for smooth problems, a generalization of ARC using a

model of order p ≥ 1, requires at most O(ϵ−(p+1)/p) iterations to satisfy ∥∇f(xk)∥ ≤ ϵ, and that the

bound is sharp. They introduce a generalization of the first-order stationarity measure ∥∇f(xk)∥ ≤ ϵ

to q-th order stationarity, where q ∈ N0, and show that at most O(ϵ−(p+1)/(p−q+1)) evaluations of the

objective and the derivatives are required with this measure. They require that the p-th derivative of

f be globally Hölder continuous. For p = 2 and q = 1, we recover the bound of [10].

For smooth nonconvex problems with bounded Hessians, the number of iterations required to

satisfy the conditions on the gradient ∥∇f(xk)∥ ≤ ϵg and on the smallest eigenvalue of the Hessian

λmin(∇2f(xk)) ≥ −ϵH , where ϵg, ϵH ∈ (0, 1), have also been studied. Cartis et al. [12] show that
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their trust-region algorithm needs at most O(max{ϵ−2
g ϵ−1

H , ϵ−3
H }) iterations to satisfy these conditions,

and O(max{ϵ−3/2
g , ϵ−3

H }) iterations for ARC. The latter bound is also obtained for the trust-region

algorithms in [17, 30]. Royer and Wright [41] use a second-order linesearch method to obtain the

bound O(max{ϵ−3
g ϵ3H , ϵ

−3/2
g , ϵ−3

H }).

Aravkin et al. [3] provide an overview of the literature on convergence of methods for nonsmooth

optimization, and we now summarize the review with an eye to trust-region methods. Methods prior

to their work were restricted to special cases. Most were developed for f = 0, i.e., in a purely

nonsmooth context. Yuan [43] considers a nonsmooth term of the form h(c(x)), where c ∈ C1 and

convex. Dennis et al. [18] take f = 0 and assume that h is Lipschitz-continuous. Qi and Sun [39]

relax the assumptions of [18] to h locally Lipschitz-continuous with bounded level sets. Mart́ınez and

Moretti [29] add treatment of equality constraints to the method of Qi and Sun [39]. The only prior

trust-region method for f ̸= 0 and more general h that we are aware of is that of Kim et al. [26], who

assume that f and h are convex. None of those works provides a complexity analysis.

Finally, we review complexity analyses of trust-region methods for nonsmooth problems. Cartis

et al. [11] describe a first-order trust-region method and a quadratic regularization algorithm to solve

nonsmooth problems of the form

minimize
x∈Rn

f(x) + h(c(x)), (4)

where f and c are continuously differentiable and may be nonconvex, and h is convex but may be

nonsmooth, and is Lipschitz-continuous. Note that (4) is a special case of (1), but the convexity

assumption on h is strong. They show that both algorithms have a complexity bound of O(ϵ−2).

Grapiglia et al. [25] provide a unified convergence theory for smooth optimization that has trust-region

methods as a special case. They also generalize the results of [11] under the same assumptions.

Aravkin et al. [3] describe a proximal trust-region algorithm to solve (1) using bounded model

Hessians. They also present a quadratic regularization variant. They establish that their criticality

measure is smaller than ϵ in at most O(ϵ−2) iterations for both algorithms. Aravkin et al. [1] adapt

these algorithms to solve nonsmooth regularized least-squares problems and obtain the same complexity

bound under the assumption that the residual Jacobian is uniformly bounded. As far as we know, the

complexity analyses of [1, 3] make the weakest assumptions on h so far, that h be lsc.

Baraldi and Kouri [4] also describe a proximal trust-region algorithm for convex h. In addition,

they allow the use of inexact objective and gradient evaluations. As Toint [42] in the smooth case,

they assume that
∞∑
k=0

1

1 + max0≤j≤k ωj
= ∞, (5)

where

ωk = sup

{
2

∥s∥2
|φk(xk + s)− φk(xk)−∇φk(xk)

T s| | 0 < ∥s∥ ≤ ∆k

}
,

and φk is a smooth model of f about xk. In particular, if φk is a second-order Taylor approximation at

xk with Hessian approximation Bk, ωk = sup
{
sTBks/∥s∥2 | 0 < ∥s∥ ≤ ∆k

}
, so that (5) is reminiscent

of (2). If ωk is bounded independently of k, which is the case for bounded Hessian approximations,

they show that their algorithm enjoys a complexity bound of O(ϵ−2).

Cartis et al. [14] present a similar concept of high-order approximate minimizers to that of [13] for

nonsmooth problems such as (4) where f , c are smooth, and h is nonsmooth but Lipschitz-continuous.

They present an algorithm of adaptive regularization of order p, and derive several bounds depending

on the properties of (4) and of the order of the desired approximate minimizer. In particular, for q = 1

and convex h, their complexity bound is O(ϵ−(p+1)/p), and they show that it is sharp.
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Contributions

Our main contribution is a sharp O(ϵ−2/(1−p)) worst-case evaluation complexity bound for a class of

trust-region algorithms for smooth and nonsmooth optimization when model Hessians Bk are allowed

to grow according to ∥Bk∥ = O(|Sk|p|), where |Sk| is the number of successful iterations up to iteration

k, and 0 ≤ p < 1. Our analysis builds upon the intuition of Powell [38] and Hermite interpolation-

based tools inspired from those of Cartis et al. [15]. The trust-region algorithm, Algorithm 2.1, is

a minor variation on that of Aravkin et al. [3] to allow for potentially unbounded model Hessians.

To the best of our knowledge, previous literature does not provide a complexity analysis in the case

of potentially unbounded model Hessians. Our result applies to nonconvex nonsmooth regularized

optimization problems of the form (1), and to smooth optimization as a special case. Indeed, the

example constructed in Section 4 to establish sharpness is for smooth optimization, i.e., h = 0. Finally,

we provide new results that indicate conditions under which limit points of the sequence of iterates

are stationary.

Notation

B denotes the unit ball at the origin in a certain norm dictated by the context, ∆B is the ball of radius

∆ > 0 centered at the origin, and x+∆B is the ball of radius ∆ > 0 centered at x ∈ Rn. For A ⊆ Rn,

the indicator of A is χ(· | A) : Rn → R ∪ {+∞} defined as χ(x | A) = 0 if x ∈ A and +∞ otherwise.

If A ̸= ∅, χ(· | A) is proper. If A is closed, χ(· | A) is lsc. For a finite set A ⊂ N, we denote by |A| its
cardinality. If f1 and f2 are two positive functions of ϵ > 0, we say that f1(ϵ) = O(f2(ϵ)) if there exists

a constant C > 0 such that f1(ϵ) ≤ Cf2(ϵ) for all ϵ > 0 sufficiently small. ∥ · ∥ denotes the 2-norm on

Rn, and its associated induced matrix spectral norm on Rn×n is also denoted ∥ · ∥.

2 Context

2.1 Background

We recall relevant concepts of variational analysis—see, e.g., [40].

Consider ϕ : Rn → R and x̄ ∈ Rn with ϕ(x̄) < ∞. The Fréchet subdifferential of ϕ at x̄ is the

closed convex set ∂̂ϕ(x̄) of v ∈ Rn such that

lim inf
x→x̄
x ̸=x̄

ϕ(x)− ϕ(x̄)− vT (x− x̄)

∥x− x̄∥
≥ 0.

The limiting subdifferential of ϕ at x̄ is the closed, but not necessarily convex, set ∂ϕ(x̄) of v ∈ Rn

for which there exist {xk} → x̄ and {vk} → v such that {ϕ(xk)} → ϕ(x̄) and vk ∈ ∂̂ϕ(xk) for all k.

∂̂ϕ(x̄) ⊂ ∂ϕ(x̄) always holds.

We say that x̄ is stationary for the problem of minimizing ϕ if 0 ∈ ∂ϕ(x̄).

The horizon subdifferential of ϕ at x̄ is the closed, but not necessarily convex, cone ∂∞ϕ(x̄) of

v ∈ Rn for which there exist {xk} → x̄, {vk} and {λk} ↓ 0 such that {ϕ(xk)} → ϕ(x̄), vk ∈ ∂̂ϕ(xk) for

all k, and {λkvk} → v.

If C ⊆ Rn and x̄ ∈ C, the closed convex cone N̂C(x̄) := ∂̂χ(x̄ | C) is the regular normal cone to C

at x̄. The closed cone NC(x̄) := ∂χ(x̄ | C) = ∂∞χ(x̄ | C) is the normal cone to C at x̄. N̂C(x̄) ⊆ NC(x̄)

always holds, and is an equality if C is convex.

ϕ is proper if ϕ(x) > −∞ for all x, and ϕ(x) < ∞ for at least one x. ϕ is lower semicontinuous

(lsc) at x̄ if lim infx→x̄ ϕ(x) = ϕ(x̄).
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Let ϕ : Rn → R be proper lsc, and C ⊆ Rn be closed. We say that the constraint qualification is

satisfied at x̄ ∈ C for the constrained problem

minimize
x∈Rn

ϕ(x) subject to x ∈ C (6)

if

∂∞ϕ(x̄) ∩ (−NC(x̄)) = {0}. (7)

If x̄ solves (6) and (7) is satisfied at x̄, [40, Theorem 8.15 and Corollary 10.9] yield

0 ∈ ∂(ϕ+ χ(· | C))(x̄) ⊆ ∂ϕ(x̄) +NC(x̄).

In the case of (1), this first-order necessary condition for optimality reads

0 ∈ ∇f(x̄) + ∂h(x̄) +N[ℓ,u](x̄)

thanks to [40, Exercise 8.8c].

If ϕk and ϕ : Rn → R for k ∈ N, we say that {ϕk} converges to ϕ continuously if {ϕk(xk)} → ϕ(x)

for all sequences {xk} → x in Rn.

The epigraph of ϕ is the set epiϕ := {(t, x) | t ≥ ϕ(x)} ⊆ R × Rn. The set epiϕ is closed if and

only if ϕ is lsc.

For a sequence of sets {Ak} with Ak ⊆ Rn for all k ∈ N, the set lim supk∈NAk is the set of

limits of all possible subsequences {xk}N with N ⊆ N infinite and xk ∈ Ak for all k ∈ N . The set

lim infk∈NAk is the set of limits of sequences {xk}k∈N such that xk ∈ Ak for all k sufficiently large.

In particular, those concepts can be applied to the sets epiϕk where ϕk : Rn → R for k ∈ N. The sets

lim infk epiϕk and lim supk epiϕk enjoy the properties of epigraphs, i.e., if (t, x) lies in one of them, so

does (s, x) for all s ≥ t. In addition, both are closed, and therefore, can be viewed as the epigraphs

of certain lsc functions. The lower and upper epi-limits of {ϕk} are the functions e-lim infk ϕk and

e-lim supk ϕk that satisfy epi e-lim infk ϕk = lim supk epiϕk and epi e-lim supk ϕk = lim infk epiϕk. In

general, e-lim infk ϕk ≤ e-lim supk ϕk. When they coincide, we say that {ϕk} converges epigraphically

to the common value ϕ, and write {ϕk}
e−→ ϕ or e-limk ϕk = ϕ.

The proximal operator associated with a proper lsc function ϕ is

prox
νϕ

(q) := argmin
x

1
2ν

−1∥x− q∥22 + ϕ(x), (8)

where ν > 0 is a preset steplength. Below, we assume that all proximal operators can be evaluated

analytically. That is not a restrictive assumption in many cases of interest for applications—see [6] for

a large, but not exhaustive, list of choices of ϕ for which the set (8) is known.

We say that ϕ is prox-bounded if it is bounded below by a quadratic. If ϕ is prox-bounded and

ν > 0 is sufficiently small, proxνϕ(q) is a nonempty and closed set. It may contain multiple elements.

The proximal gradient method [24, 28] for (1) is a generalization of the gradient method that takes

the nonsmooth term into account. It generates iterates {sj} according to

sj+1 ∈ prox
νh

(sj − ν∇f(sj)). (9)

2.2 Models and trust-region algorithm

At x ∈ Rn where h is finite, we define models

φ(s;x) ≈ f(x+ s) (10a)

ψ(s;x) ≈ h(x+ s) (10b)

m(s;x) := φ(s;x) + ψ(s;x). (10c)

Our assumptions on (10) are a minor variation on those of Aravkin et al. [3]:
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Model Assumption 2.1. For any x ∈ Rn, φ(·;x) ∈ C1, and satisfies φ(0;x) = f(x) and ∇φ(0;x) =

∇f(x). For any x ∈ Rn where h is finite, ψ(·;x) is proper lsc, and satisfies ψ(0;x) = h(x) and

∂ψ(0;x) ⊆ ∂h(x).

The difference between Model Assumption 2.1 and [3, Model Assumption 3.1] is the last inclusion

instead of an equality between the subdifferentials.

The following result states that if s = 0 minimizes (10c) and (7) is satisfied, x must be stationary.

Proposition 1 (27, Proposition 1). Let C ⊂ Rn be nonempty and compact, and let Model Assumption 2.1

be satisfied. Let (1) satisfy the constraint qualification (7) at x ∈ C. Assume 0 ∈ argminsm(s;x) +

χ(x+ s | C), and let the latter subproblem satisfy the constraint qualification (7) at s = 0. Then x is

first-order stationary for (1).

Assuming ∂ψ(0;x) = ∂h(x) in Model Assumption 2.1 would allow us to establish the reverse

implication in Proposition 1.

Each iteration is divided into two parts. In the first part, Aravkin et al. [2] define the following

model based on a first-order Taylor expansion to compute a Cauchy point

φcp(s;x) := f(x) +∇f(x)T s, (11a)

m(s;x, ν) := φcp(s;x) +
1
2ν

−1∥s∥2 + ψ(s;x), (11b)

where νk > 0 and “cp” stands for “Cauchy point.” We compute a first step

sk,1 ∈ argmin
s

m(s;xk, νk) + χ(xk + s | [ℓ, u] ∩ (xk +∆kB)), (12)

for an appropriate value of νk > 0.

In the notation of [2], let

ξcp(∆k;xk, νk) := f(xk) + h(xk)− φcp(sk,1;xk)− ψ(sk,1;xk), (13)

denote the optimal model decrease for (11). By (12),

m(sk,1;xk, νk) = φcp(sk,1;xk) + ψ(sk,1;xk) +
1
2ν

−1
k ∥sk,1∥2 ≤ m(0;xk, νk) = f(xk) + h(xk),

so that, with (13),

ξcp(∆k;xk, νk) ≥ 1
2ν

−1
k ∥sk,1∥2. (14)

The following proposition indicates that ξcp(∆;x, ν) can be used to determine whether x is first-

order stationary for (1).

Proposition 2 (3, Proposition 3.3 and 2). Let Model Assumption 2.1 be satisfied, ∆ > 0, and ν > 0. In

addition, let (1) satisfy the constraint qualification at x and the objective of (12) satisfy the constraint

qualification at s = 0. Then, ξcp(∆;x, ν) = 0 ⇐⇒ s = 0 is a solution of (12) =⇒ x is first-order

stationary for (1).

In the second part of iteration k, we construct a model based on the second-order Taylor expansion

φ(s;x,B) := f(x) +∇f(x)T s+ 1
2s

TBs, (15a)

m(s;x,B) := φ(s;x,B) + ψ(s;x), (15b)

where B = BT ∈ Rn×n, and compute a step as an approximate solution of

minimize
s

mk(s;xk) + χ(xk + s | [ℓ, u] ∩ (xk +∆kB)), (16)

using sk,1 as starting point.
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We focus on the trust-region (TR) algorithm formally stated as Algorithm 2.1. It consists of the

algorithm of Aravkin et al. [3] with a modified maximum allowable stepsize νk. The concept of inexact

solution of (16) at Line 8 is made precise in Proposition 4 below.

Note that Algorithm 2.1 differs from a “standard” trust-region algorithm in that the parameter

∆k that is updated according to whether or not a step sk is accepted serves to define the trust-region

radius, but is not the radius in itself; sk,1 is used to check for stationarity, and to set the trust-region

radius for the computation of the step sk. Aravkin et al. [3] provide more details on this point and link

to variants of standard trust-region algorithms for smooth optimization possessing similar features.

Algorithm 2.1 Nonsmooth trust-region algorithm with potentially unbounded Hessian.

1: Choose constants

0 < η1 ≤ η2 < 1, 0 < 1/γ3 ≤ γ1 ≤ γ2 < 1 < γ3 ≤ γ4, ∆max > ∆0, α > 0, and β ≥ 1.

2: Choose a stopping tolerance ϵ > 0.
3: Choose x0 ∈ Rn where h is finite, ∆0 > 0, compute f(x0) + h(x0).
4: for k = 0, 1, . . . do
5: Choose

0 < νk ≤
α∆k

1 + ∥Bk∥(1 + α∆k)
=

1

α−1∆−1
k + ∥Bk∥(1 + α−1∆−1

k )
. (17)

6: Define mk(s;xk, νk) as in (11) and compute sk,1 as in (12).

7: If ν
−1/2
k ξcp(∆k;xk, νk)

1/2 ≤ ϵ, terminate and claim that xk is approximately stationary.
8: Define mk(s;xk, Bk) as in (15) according to Model Assumption 2.1 and compute an approximate solution sk

of (16) with ∆k replaced by min(∆k, β∥sk,1∥).
9: Compute the ratio

ρk :=
f(xk) + h(xk)− (f(xk + sk) + h(xk + sk))

mk(0;xk, Bk)−mk(sk;xk, Bk)
. (18)

10: If ρk ≥ η1, set xk+1 = xk + sk. Otherwise, set xk+1 = xk.
11: Update the trust-region radius according to

∆̄k+1 ∈

 [γ3∆k, γ4∆k] if ρk ≥ η2, (very successful iteration)
[γ2∆k, ∆k] if η1 ≤ ρk < η2, (successful iteration)
[γ1∆k, γ2∆k] if ρk < η1, (unsuccessful iteration)

and ∆k+1 = min(∆̄k+1, ∆max)

Let us now briefly turn our attention to unconstrained smooth problems. In this case, the following

lemma gives a global minimizer of (11) and (15).

Lemma 1. We consider the special case of (1) where h = 0, ℓi = −∞ and ui = +∞ for i = 1, . . . , n.

Let B = BT ∈ Rn×n be positive definite and ψ = 0. Then for any x ∈ Rn,

argmin
s

m(s;x,B) = argmin
s

φ(s;x,B) = {−B−1∇f(x)}. (19)

In particular, if B = ν−1I with ν > 0,

argmin
s

m(s;x, ν) = argmin
s

φcp(s;x) +
1
2ν

−1∥s∥2 = {sk,1} = {−ν∇f(x)}. (20)

Proof. The objective of (19) is convex because B is positive definite. Its global minimizer satisfies the

first-order necessary condition ∇f(x)+Bs = 0, i.e., s = −B−1∇f(x). With B = ν−1I, the first-order

necessary condition is s = −ν∇f(x).

The following proposition draws a parallel between ξcp(∆k;xk, νk) and ∥∇f(xk)∥ for smooth prob-

lems when the trust-region constraint is inactive, as is expected to occur when close to a stationary

point.

Proposition 3. We consider the special case of (1) where h = 0, ℓi = −∞ and ui = +∞ for i =

1, . . . , n. If ∥sk,1∥ < ∆k, then ξcp(∆k;xk, νk) = νk∥∇f(xk)∥2.
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Proof. If the trust-region constraint is inactive, Lemma 1 indicates that sk,1 = −νk∇f(xk). Thus, (13)
yields ξcp(∆k;xk, νk) = −∇f(xk)T sk,1 = νk∥∇f(xk)∥2.

3 Convergence and complexity with potentially unbounded Hes-
sians

From this section onwards, we consider the model defined in (15), and we aim to establish convergence

and worst-case complexity results for Algorithm 2.1 in the presence of potentially unbounded Hessian

approximations Bk.

The following two assumptions are essential. Assumption 1 is [3, Step Assumption 3.8b], whereas

Assumption 2 is a relaxed version of [3, Step Assumption 3.8a] that takes into account potentially

unbounded Hessian approximations. Indeed, assuming, for simplicity, that ∇2f(xk) exists, a second-

order Taylor expansion of f about xk yields

f(xk + sk)− φ(sk;xk, Bk) =
1
2s

T
k (∇2f(xk)−Bk)sk + o(∥sk∥2),

which is not necessarily O(∥sk∥2) if {Bk} is unbounded.

Assumption 1. There exists κmdc ∈ (0, 1) such that

m(0;xk, Bk)−m(sk;xk, Bk) ≥ κmdcξcp(∆k;xk, νk). (21)

Assumption 2. There exists κubd > 0 such that

|(f + h)(xk + sk)−m(sk;xk, Bk)| ≤ κubd(1 + ∥Bk∥)∥sk∥22. (22)

Leconte and Orban [27, Proposition 2] and Aravkin et al. [2] already indicate that Assumption 1

holds for TRDH and TR. We now justify that it also holds for Algorithm 2.1 with potentially un-

bounded Hessian approximations.

Proposition 4. If Model Assumption 2.1 is satisfied, and sk is computed so that m(sk;xk, Bk) ≤
m(sk,1;xk, Bk) at Line 8 of Algorithm 2.1, there exists κmdc ∈ (0, 1) such that Assumption 1 holds.

Proof. We proceed similarly as in [27, Proposition 2]. Note that sk,1 is feasible for the problem on

Line 8. The definition of sk in the assumptions implies that

m(sk;xk, Bk) ≤ m(sk,1;xk, Bk) = φcp(sk,1;xk) +
1
2s

T
k,1Bksk,1 + ψ(sk,1;xk)

≤ φcp(sk,1;xk) +
1
2∥Bk∥∥sk,1∥2 + ψ(sk,1;xk),

where we used Cauchy-Schwarz and the consistency of the ℓ2-norm for matrices. Becausem(0;xk, Bk) =

m(0;xk, νk),

m(0;xk, Bk)−m(sk;xk, Bk) ≥ ξcp(∆k;xk, νk)− 1
2∥Bk∥∥sk,1∥2.

To satisfy Assumption 1, it is sufficient to show that there exists κmdc ∈ (0, 1) such that

ξcp(∆k;xk, νk)− 1
2∥Bk∥∥sk,1∥2 ≥ κmdcξcp(∆k;xk, νk),

i.e.,

(1− κmdc)ξcp(∆k;xk, νk) ≥ 1
2∥Bk∥∥sk,1∥2.

Because of (14), it is also sufficient to show that there exists κmdc ∈ (0, 1) such that

(1− κmdc)ν
−1
k ≥ ∥Bk∥. (23)

If Bk = 0, the conclusion holds. Otherwise,

∥Bk∥νk ≤
1

α−1∆−1
k ∥Bk∥−1 + 1 + α−1∆−1

k

≤
1

α−1∆−1
max∥Bk∥−1 + 1 + α−1∆−1

max

≤
1

1 + α−1∆−1
max

∈ (0, 1). (24)

We deduce from (24) that (23) holds, which is sufficient to satisfy Assumption 1.
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Because a step sk is typically computed using a variant of the proximal gradient method applied to

m(s;xk, Bk), Proposition 4 suggests that we first compute sk,1 to determine (approximate) stationarity,

and continue the proximal gradient iterations from sk,1 if appropriate.

Because all norms are equivalent in finite dimension, the proof of Proposition 4 continues to hold

if we compute ∥Bk∥ in a norm other than the spectral norm, or even if we obtain an approximation

βk ≥ µ∥Bk∥ for some µ ∈ (0, 1). We may replace ∥Bk∥ with βk in the upper bound on νk in

Algorithm 2.1 and repeat the proof of Proposition 4 to arrive at κmdc = 1 − 1/(µ(1 + α−1∆−1
max)).

In practice, Bk is often available as an abstract operator rather than an explicit matrix. In such a

situation, computing ∥Bk∥1, ∥Bk∥∞ or ∥Bk∥F , say, is impractical.

We begin the convergence analysis by showing that there still exists a ∆succ as in [3, Theorem 3.4],

despite our more general Assumption 2.

Theorem 1. Let Model Assumption 2.1, Assumption 1 and Assumption 2 be satisfied and

∆succ :=
κmdc(1− η2)

2κubdαβ2
> 0.

If (1) satisfies the constraint qualification at xk, (11) satisfies the constraint qualification at 0, xk is

not first-order stationary for (1), and ∆k ≤ ∆succ, then iteration k is very successful and ∆k+1 ≥ ∆k.

Proof. By (14) and (17),

ξcp(∆k;xk, νk) ≥ 1
2ν

−1
k ∥sk,1∥2 ≥ 1

2 (α
−1∆−1

k +∥Bk∥(1+α−1∆−1
k ))∥sk,1∥2 ≥ 1

2 (α
−1∆−1

k (1+∥Bk∥))∥sk,1∥2.
(25)

If ξcp(∆k;xk, νk) = 0, then sk,1 = 0, and xk is first-order stationary with Proposition 1. If xk is not

first-order stationary, sk,1 ̸= 0 according to Proposition 2. In this case, Assumption 1, Assumption 2,

and (25) lead to

|ρk − 1| =
∣∣∣∣ (f + h)(xk + sk)−m(sk;xk, Bk)

m(0;xk, Bk)−m(sk;xk, Bk)

∣∣∣∣
≤ κubd(1 + ∥Bk∥)∥sk∥22

κmdcξcp(∆k;xk, νk)

≤ κubd(1 + ∥Bk∥)β2∥sk,1∥22
1
2κmdcα−1∆−1

k (1 + ∥Bk∥)∥sk,1∥2

=
2κubdβ

2α∆k

κmdc
.

Thus, ∆k ≤ ∆succ implies ρk ≥ η2 and iteration k is very successful.

We set ∆min := min(∆0, γ1∆succ), and we observe that ∆k ≥ ∆min for all k ∈ N. Motivated by

Proposition 3, we use ν
−1/2
k ξcp(∆k;xk, νk)

1/2 as our criticality measure. Let 0 < ϵ < 1, kϵ be the first

iteration such that ν
−1/2
k ξcp(∆k;xk; νk)

1/2 ≤ ϵ, and

S(ϵ) := {k = 0, . . . , kϵ − 1 | ρk ≥ η1},
U(ϵ) := {k = 0, . . . , kϵ − 1 | ρk < η1},

be the set of successful , and unsuccessful iterations until the criticality measure drops below ϵ, respec-

tively.

At iteration k of Algorithm 2.1, let σk be the number of successful iterations encountered so far:

σk = |{j = 0, . . . , k | ρj ≥ η1}|, k ∈ N. (26)

We introduce an assumption allowing {Bk} to be unbounded, as long as it is controlled by σk.
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Assumption 3. There are constants µ > 0 and 0 ≤ p < 1 such that max0≤j≤k ∥Bj∥ ≤ µ(1 + σp
k) for

all k ∈ N.

Clearly, Assumption 3 allows approximations that grow unbounded, though they must not grow

too fast. It reduces to the bounded case when p = 0. Following the discussion in the introduction,

it is possible that quasi-Newton approximations satisfy Assumption 3, though that remains to be

established. The bound ∥Bj+1∥ ≤ ∥Bj∥ + κB provided by Conn et al. [16] and Powell [38] for the

BFGS, SR1 and PSB updates, where κB > 0 is a constant, suggest that in the worst case, certain

quasi-Newton approximations could satisfy Assumption 3 with p = 1. Unfortunately, in that case, the

analysis below would not apply to them. However, once again, to the best of our knowledge, no bound

on quasi-Newton approximations is known at this time.

Note also that we do not consider p > 1 as (2) might no longer hold, and that would endanger

convergence altogether. We also do not consider here a variant of Assumption 3 in which σk is replaced

with k because model Hessians are typically not updated on unsuccessful iterations—we are not aware

of any algorithm that does, though it could of course be done.

We may now establish a variant of [3, Lemma 3.6] based on Assumption 3. The proof uses a

technique similar to that of [3, Lemma 3.6], itself inspired from the proofs of [15], except for the

management of Assumption 3. When p = 0, Aravkin et al. [3] show that |S(ϵ)| = O(ϵ−2). In the

following result, we restrict our attention to the case p > 0.

Lemma 2. Let Assumption 1 and Assumption 3 be satisfied with p > 0. Assume that Algorithm 2.1

generates infinitely many successful iterations when Line 7 is ignored, that the step size νk := α∆k/(1+

∥Bk∥(1+α∆k)) is selected at each iteration, and that there exists (f+h)low ∈ R such that (f+h)(xk) ≥
(f + h)low for all k ∈ N. Let ϵ ∈ (0, 1) be small enough that µ+ 1 ≤ µ|S(ϵ)|p. Then,

|S(ϵ)| ≤
(
2µ(1 + α−1∆−1

min)
(f + h)(x0)− (f + h)low

η1κmdcϵ2

)1/(1−p)

= O
(
ϵ−2/(1−p)

)
. (27)

Proof. Let k ∈ S(ϵ). We proceed as in [3, Lemma 3.6] with the minor corrections made in [2]. We

have

(f + h)(xk)− (f + h)(xk + sk) ≥ η1κmdcξcp(∆k;xk, νk)

≥ η1κmdcνkϵ
2

= η1κmdc
1

α−1∆−1
k + ∥Bk∥(1 + α−1∆−1

k )
ϵ2

≥ η1κmdc
1

α−1∆−1
min + ∥Bk∥(1 + α−1∆−1

min)
ϵ2.

We add together the above inequalities over all k ∈ S(ϵ) and use the assumption that f +h is bounded

below to obtain

(f + h)(x0)− (f + h)low ≥ η1κmdcϵ
2
∑

k∈S(ϵ)

1

α−1∆−1
min + ∥Bk∥(1 + α−1∆−1

min)

≥ η1κmdcϵ
2|S(ϵ)| min

k∈S(ϵ)

1

α−1∆−1
min + ∥Bk∥(1 + α−1∆−1

min)

= η1κmdcϵ
2|S(ϵ)| 1

maxk∈S(ϵ)(α−1∆−1
min + ∥Bk∥(1 + α−1∆−1

min))

= η1κmdcϵ
2|S(ϵ)| 1

α−1∆−1
min + (maxk∈S(ϵ) ∥Bk∥)(1 + α−1∆−1

min)

≥ η1κmdcϵ
2|S(ϵ)| 1

α−1∆−1
min + µ(1 + |S(ϵ)|p)(1 + α−1∆−1

min)

≥ η1κmdcϵ
2|S(ϵ)| 1

(µ+ 1 + µ|S(ϵ)|p)(1 + α−1∆−1
min)

,
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where we appealed to Assumption 3 in the penultimate step.

Because, µ+ 1 ≤ µ|S(ϵ)|p,

(f+h)(x0)−(f+h)low ≥ η1κmdcϵ
2|S(ϵ)| 1

2µ|S(ϵ)|p(1 + α−1∆−1
min)

= η1κmdcϵ
2|S(ϵ)|1−p 1

2µ(1 + α−1∆−1
min)

,

which establishes (27).

If there are infinitely many successful iterations, the inequality µ+ 1 > µ|S(ϵ)|p can only hold for

all sufficiently small ϵ > 0 if p = 0.

The complexity bound |S(ϵ)| = O(ϵ−2/(1−p)) also holds for p = 0, as it reduces to that of Aravkin

et al. [3]. We obtain a complexity bound of O(ϵ−5/2) for p = 1
5 and O(ϵ−3) for p = 1

3 . In other words,

the faster the growth of ∥Bk∥, the worse the deterioration of the complexity bound.

A bound on the number of unsuccessful iterations is obtained using the technique of Cartis et al.

[15].

Proposition 5 (3, Lemma 3.7). Under the assumptions of Lemma 2,

|U(ϵ)| ≤ logγ2
(∆min/∆0) + |S(ϵ)| | logγ2

(γ4)|. (28)

Proof. The proof is a minor modification of that of [3, Lemma 3.7]. We provide it for completeness.

The update rule of ∆k in Line 11 indicates that

∆min ≤ ∆kϵ−1 ≤ min(∆0γ
|U(ϵ)|
2 γ

|S(ϵ)|
4 , ∆max) ≤ ∆0γ

|U(ϵ)|
2 γ

|S(ϵ)|
4 .

As 0 < γ2 < 1, we take the logarithm of the above inequalities to obtain

|U(ϵ)| log(γ2) + |S(ϵ)| log(γ4) ≥ log(∆min/∆0),

which leads to (28).

We caution the reader that as p ↑ 1, Lemma 9 does not provide any useful bound. Thus, our analysis

really only applies to fixed p < 1 and no limit should be taken in (27). However, as Powell [38] surmises

in his concluding remarks, the number of iterations should remain finite, “monstrous” though it may

be, when p = 1. Specifically, Powell conjectures a pessimistic bound of the form O(exp(exp(1/ϵ))).

The following result follows from Lemma 2 and Proposition 5.

Corollary 1. Under the assumptions of Lemma 2, lim inf ν
−1/2
k ξcp(∆k;xk, νk)

1/2 = 0.

Proof. The first part of this result is obtained similarly as in [3, Theorem 3.8]. Under the assumptions

of Lemma 2, Lemma 2 and Proposition 5 indicate that

|S(ϵ)|+ |U(ϵ)| = O
(
ϵ−2/(1−p)

)
,

thus lim inf ν
−1/2
k ξcp(∆k;xk, νk)

1/2 = 0.

To conclude this section, we examine conditions under which limit points of {xk} are first-order

stationary for (1). We first establish results about the first-order stationarity conditions of (12).

Lemma 3. Under the assumptions of Lemma 2, there exists an infinite index set N ⊆ N such that

1. {ν−1/2
k ξcp(∆k;xk, νk)

1/2}N → 0,

2. {ν−1
k sk,1}k∈N → 0, and therefore, {sk,1}N → 0, and

3. {sk}N → 0.
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Proof. Corollary 1 ensures the existence of an infinite index set N ⊆ N such that claim 1 holds.

By (14), ν
−1/2
k ξcp(∆k;xk, νk)

1/2 ≥ ν−1
k ∥sk,1∥/

√
2. Thus, {ν−1

k sk,1}N → 0. As lim inf νk ≥ 0 and

sup νk <∞ always hold, claim 2 must hold. Because ∥sk∥ ≤ β∥sk,1∥ for all k by Line 8 of Algorithm 2.1,

claim 3 holds.

Because ∆k ≥ ∆min > 0 for all k, and {sk,1}N → 0 by Lemma 3, there exists k0 ∈ N such that

for all k ∈ N with k ≥ k0, sk,1 is not on the boundary of ∆kB. By (12), we have for all k ∈ N with

k ≥ k0,

sk,1 ∈ argmin
s

m(s;xk, νk) + χ(xk + s | [ℓ, u]). (29)

In the following, we define, for all x and s ∈ Rn,

ψ̂(s;x) := ψ(s;x) + χ(x+ s | [ℓ, u]). (30)

Lemma 4. Let N be the infinite index set of Lemma 3. Then, there exists k0 ∈ N such that for all

k ∈ N with k ≥ k0,

−ν−1
k sk,1 ∈ ∇f(xk) + ∂ψ̂(sk,1;xk). (31)

Proof. The claim follows directly from the first-order stationarity conditions of (29).

In view of Lemmas 3 and 4, for all ϵ > 0, there exists kϵ ∈ N such that for all k ≥ kϵ with k ∈ N ,

there is uk ∈ ∂ψ̂(sk,1;xk) satisfying

∥∇f(xk) + uk∥ ≤ ϵ.

The above suggests that limit points of {(xk, uk)}k∈N may be expected to be stationary for (1) under

certain conditions. We now make this last statement more precise.

When lim inf νk > 0, which happens when {Bk} remains bounded, and when models ψ are lsc in

the joint variables (s, x), [3, Proposition 3.10] established that ξ(∆min; ·, ·) is lsc and that if (x̄, ν̄) is

a limit point of {(xk, νk)}, then x̄ is first-order stationary for (1). However, that result does not take

explicit bound constraints into account.

We now provide an alternative analysis before examining the case where {νk} → 0.

If lim infk∈N νk > 0, there exists an infinite index N1 ⊆ N such that {νk}k∈N1
→ ν̄ > 0. The

following results hinge around epigraphical convergence [40, Chapter 7] and consist in determining the

epigraphical limit of the sequence of models.

Consider the situation where {xk}k∈N1
has a limit point, or, without loss of generality, that

{xk}k∈N1
→ x̄. It does not follow that {χ(xk + · | [ℓ, u])}k∈N1

→ χ(x̄ + · | [ℓ, u]) pointwise or

continuously. Indeed, if x+s is on the boundary of [ℓ, u] and xk+sk lies outside of [ℓ, u] for all k ∈ N1

with {xk + sk}k∈N1
→ x + s, {χ(xk + sk | [ℓ, u])}k∈N1

→ +∞ while χ(x̄ + s | [ℓ, u]) = 0. However,

convergence occurs epigrahically.

Lemma 5. Let N be the infinite index set of Lemma 3. Let {xk}k∈N1
→ x̄ ∈ [ℓ, u], where N1 ⊆ N is

defined as above. Then

e-lim
k∈N1

χ(xk + · | [ℓ, u]) = χ(x+ · | [ℓ, u]).

Proof. The result follows from [40, Theorem 7.17a and b] after noticing that the indicators are convex

and limk∈N1
χ(xk + s | [ℓ, u]) = χ(x̄ + s | [ℓ, u]) for all s ∈ Rn except perhaps on the boundary of

[ℓ, u], hence for all s in a dense set in Rn.
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Theorem 2. Let N be the infinite index set of Lemma 3. Let {xk}k∈N1
→ x̄ ∈ [ℓ, u], where N1 ⊆ N

is defined as above. Assume that there is ψ : Rn → R such that {ψ(·;xk)}k∈N1 → ψ continuously, and

that satisfies Model Assumption 2.1 as a model about x̄, i.e., ψ(0) = h(x̄) and ∂ψ(0) ⊆ ∂h(x̄). Assume

further that the constraint qualification (7) is satisfied at s = 0 for

minimize
s

m(s; x̄, ν̄) + χ(x̄+ s | [ℓ, u]), m(s; x̄, ν̄) := φcp(s; x̄) +
1
2 ν̄

−1∥s∥2 + ψ(s),

and that it is satisfied at x̄ for (1). If −∞ < infsm(s; x̄, ν̄) + χ(x̄ + s | [ℓ, u]) < ∞, x̄ is stationary

for (1).

Proof. Continuity of ∇f and [40, Theorem 7.11a and b] ensure that

e-lim
k∈N1

φcp(·;xk) + 1
2ν

−1
k ∥ · ∥2 = φcp(·; x̄) + 1

2 ν̄
−1∥ · ∥2, (32)

and the convergence is continuous. By Lemma 5 and [40, Theorem 7.46b],

e-lim
k∈N1

φcp(·;xk) + 1
2ν

−1
k ∥ · ∥2 + χ(xk + · | [ℓ, u]) = φcp(·; x̄) + 1

2 ν̄
−1∥ · ∥2 + χ(x̄+ · | [ℓ, u]).

Again, [40, Theorem 7.46b] and the continuous convergence of {ψ(·;xk)}k∈N1
yield

e-lim
k∈N1

m(·;xk, νk) + χ(xk + · | [ℓ, u]) = m(·; x̄, ν̄) + χ(x̄+ · | [ℓ, u]).

Because sk,1 ∈ argminsm(s;xk, νk)+χ(xk + s | [ℓ, u]) for all k ∈ N1 and {sk,1}k∈N1
→ 0 by Lemma 3

and (29), we obtain from [40, Theorem 7.31b] that

0 ∈ argmin
s

m(s; x̄, ν̄) + χ(x̄+ s | [ℓ, u]),

which implies that x̄ is stationary for (1).

For the limiting model ψ of Theorem 2 to satisfy Model Assumption 2.1, we must have ψ(0) = h(x̄)

and ∂ψ(0; x̄) ⊆ ∂h(x̄). We now review two important examples in practice.

A widely used model is simply ψ(s;xk) = h(xk + s) for all k ∈ N. Clearly, when h is continuous,

the limiting model satisfies Model Assumption 2.1. A common situation occurs when h(x) = g(c(x)),

where c : Rn → Rm is C1 and g : Rm → R is continuous. In penalty scenarii, g is a norm. It is then

natural to choose ψ(s;xk) := g(c(xk) +∇c(xk)s) for all k. Again, the limiting model satisfies Model

Assumption 2.1.

In the absence of bound constraints, we may weaken the assumption on continuous convergence of

{ψ(·;xk)} in Theorem 2. We first require another technical lemma.

Lemma 6. For k ∈ N, let ϕk, ψk : Rn → R, and let ϕ, ψ, ψ : Rn → R. Assume that {ϕk} → ϕ

continuously, and that e-lim infψk = ψ, and e-lim supψk = ψ. Then, e-lim infϕk + ψk = ϕ + ψ and

e-lim supϕk + ψk = ϕ+ ψ.

Proof. Let x ∈ Rn. By [40, Proposition 7.2],

(e-lim supϕk + ψk)(x) = min{α ∈ R | ∃{xk} → x, lim sup(ϕk(xk) + ψk(xk)) = α}.

Thus, there exists a sequence {xk} → x such that

(e-lim supϕk + ψk)(x) = limϕk(xk) + lim supψk(xk) = ϕ(x) + lim supψk(xk),

because lim inf ϕk(xk) + lim supψk(xk) ≤ lim sup(ϕk(xk) + ψk(xk)) ≤ lim supϕk(xk) + lim supψk(xk),

which explains the first equality, and {ϕk} → ϕ continuously, which explains the second. The proof

for the e-lim inf is analogous.



Les Cahiers du GERAD G–2023–65 – Revised 15

In the following result, continuous convergence of {ψ(·;xk)}k∈N1
is replaced with existence of the

epigraphical lim sup and continuous convergence with respect to {sk,1}k∈N1 → 0. The relevance of the

e-lim sup in this context stems from [40, Proposition 7.30].

Theorem 3. Assume (1) has no bound constraints. Let N be the infinite index set of Lemma 3, and

{xk}k∈N1
→ x̄, where N1 ⊆ N is defined as above. Assume

ψ := e-lim sup
k∈N1

ψ(·;xk)

is not identically +∞ and satisfies Model Assumption 2.1 as a model about x̄, i.e., ψ(0) = h(x̄) and

∂ψ(0) ⊆ ∂h(x̄). If {ψ(sk,1;xk)}k∈N1
→ ψ(0), then x̄ is stationary for (1).

Proof. As in the proof of Theorem 2, (32) holds. Lemma 6 yields

e-lim sup
k∈N1

m(·;xk, νk) = m(·; x̄, ν̄), m(s; x̄, ν̄) := ∇f(x̄)T s+ 1
2 ν̄

−1∥s∥2 + ψ(s).

If {ψ(sk,1;xk, νk)}k∈N1
→ ψ(0), then {m(sk,1;xk, νk)}k∈N1

→ m(0; x̄, ν̄). By [40, Proposition 7.30],

we obtain that 0 ∈ argminsm(s; x̄, ν̄), which implies that x̄ is stationary for (1).

Finally, we may trade the continuous convergence of {sk,1}k∈N1
with respect to {ψ(·;xk)}k∈N1

for

the existence of the epigraphical limit of the models {ψ(·;xk)}k∈N1
.

Theorem 4. Assume (1) has no bound constraints. Let N be the infinite index set of Lemma 3, and

{xk}k∈N1
→ x̄, where N1 ⊆ N is defined as above. Assume

ψ := e-lim
k∈N1

ψ(·;xk)

exists and satisfies Model Assumption 2.1 as a model about x̄, i.e., ψ(0) = h(x̄) and ∂ψ(0) ⊆ ∂h(x̄).

Assume further that −∞ < inf ψ < +∞. Then x̄ is stationary for (1).

Proof. The proof is nearly identical to that of Theorem 3, except that e-limk∈N1
m(·;xk, νk) =

m(·; x̄, ν̄) by [40, Theorem 7.46b]. The result follows from [40, Theorem 7.31b] because −∞ <

infm(·; x̄, ν̄) <∞.

When lim inf νk may be zero, i.e., when {Bk} may not bounded, we work directly with subdiffer-

entials.

Model Assumption 3.1. There exists a model ψ(·; x̄) that satisfies Model Assumption 2.1 such that,

for subsequences {sk,1}N → 0 and {xk}N → x̄ ∈ [ℓ, u] such that for all k ∈ N , xk + sk,1 ∈ [ℓ, u],

lim sup
k∈N

∂ψ̂(sk,1;xk) ⊆ ∂ψ̂(0; x̄), (33)

where ψ̂ is defined in (30).

Model Assumption 3.1 holds, among others, in the following cases:

1. When ψ(·;xk) and ψ(·; x̄) are proper, lsc, convex functions with ψ(·;xk)
e→ ψ(·; x̄) using Attouch’s

theorem [40, Theorem 12.35]. Indeed, in that case, ψ̂(·;xk) and ψ̂(0; x̄) are also proper, lsc and

convex, and ψ̂(·;xk)
e→ ψ̂(·; x̄). Extension to non-convex functions under more sophisticated

assumptions are established by Penot [33], Poliquin [34] and references therein.

2. When ψ(s;x) = h(x + s) and h(xk + sk,1) → h(x̄), using [40, Proposition 8.7] applied to {xk +

sk,1}N → x̄.

We may now establish the following result.
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Theorem 5. Let the assumptions of Lemma 2 be satisfied. Let Model Assumption 3.1 hold for the

infinite index N of Lemma 3, and assume that {xk}N → x̄. Assume further that the constraint

qualification (7) is satisfied at s = 0 for

minimize
s

m(s; x̄, ν̄) + χ(x̄+ s | [ℓ, u]), (34)

for some ν̄ > 0, and that it is satisfied at x̄ for (1). Then, x̄ is first-order stationary.

Proof. By Lemma 4, there exists uk ∈ ∂ψ̂(sk,1;xk) for all k ∈ N such that −ν−1
k sk,1 = ∇f(xk) + uk.

By Lemma 3, the convergence of {xk}N and continuity of ∇f , {uk} converges. Let ū be its limit. In the

limit over k ∈ N , we obtain ū = −∇f(x̄). Model Assumption 3.1 implies that ū ∈ ∂ψ̂(0; x̄). Because

the constraint qualification is satisfied at s = 0 for (34), [40, Corollary 10.9] and Model Assumption 2.1

yield ū ∈ ∂ψ(0; x̄) +N[ℓ, u](x̄) = ∂h(x̄) +N[ℓ, u](x̄). Thus, the first-order stationarity conditions of (1)

under (7) hold.

In Theorem 5, the value of ν̄ is unimportant as it plays no role in the subdifferential of the objective

of (34) at s = 0.

4 Sharpness of the complexity bound

In this section, we show that the bound of Lemma 2 is attained using the techniques of Cartis et al.

[15, Theorem 2.2.3]. Even though those authors only use said techniques to construct examples under

the assumption that model Hessians remain bounded, they can be used under Assumption 3 as well

because the number of values to interpolate before a stopping condition is met is always finite. We

have not seen those techniques used in the present context elsewhere in the literature.

For 0 < ϵ ≤ 1/2, we explicitly construct kϵ = ⌊ϵ−2/(1−p)⌋ iterates of Algorithm 2.1 with n = 1

and h = 0, so that ν
−1/2
k ξcp(∆k;xk, νk)

1/2 > ϵ for k = 0, . . . , kϵ − 1, and ν
−1/2
kϵ

ξ(∆kϵ
;xkϵ

, νkϵ
)1/2 = ϵ.

Then, we invoke [15, Theorem A.9.2] to establish that there exists f : R→ R in (1) that interpolates

our iterates and satisfies our assumptions. The following result is a special case of [15, Theorem A.9.2].

Proposition 6 (Hermite interpolation with function and gradient evaluations). Let kϵ be a positive integer,

{fk}, {gk} and {xk} be sequences of numbers given for k ∈ {0, . . . , kϵ}. Assume that for k ∈ {0, . . . , kϵ},
sk = xk+1 − xk > 0, and that for all k ∈ {0, . . . , kϵ − 1},

|fk+1 − (fk + gksk)| ≤ κfs
2
k, (35a)

|gk+1 − gk| ≤ κfsk, (35b)

for some constant κf ≥ 0. Then, there exists f : R→ R continuously differentiable such that

f(xk) = fk and f ′(xk) = gk.

In addition, if

|fk| ≤ κf , |gk| ≤ κf and sk ≤ κf ,

then |f | and |f ′| are bounded by a constant depending only on κf .

Proof. The result is a special case of [15, Theorem A.9.2] with p = 1.

In the following, we use

0 < ϵ ≤ 1/2, (36a)

0 ≤ p < 1, (36b)
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kϵ = ⌊ϵ−2/(1−p)⌋, (36c)

α > 0, (36d)

β ≥ 2α−1 + 1, (36e)

and for all k ∈ {0, . . . , kϵ}, we define the sequences

wk := (kϵ − k)/kϵ, (37a)

gk := −ϵ(1 + wk). (37b)

In addition, using the initial values

∆0 := 1, (38a)

B0 := 1, (38b)

x0 := 0, (38c)

f0 := 8ϵ2 +
4

1− p
, (38d)

we define, for all k ∈ {1, . . . , kϵ},

Bk := kp, (39a)

xk := xk−1 + sk−1, (39b)

fk := fk−1 + gk−1sk−1, (39c)

and for all k ∈ {0, . . . , kϵ},

sk := −B−1
k gk > 0, (40a)

νk :=
1

α−1∆−1
k + |Bk|(1 + α−1∆−1

k )
. (40b)

As in [15, Theorem 2.2.3], the sequences (37), (39) and (40) are created specifically so that we may

generate iterates that satisfy the assumptions of Proposition 6, along with ν
−1/2
k ξcp(∆k;xk, νk)

1/2 =

|gk| > ϵ for k ∈ {0, . . . , kϵ− 1}, and |gkϵ | = ϵ. It is worth noticing that we chose {Bk} so that Assump-

tion 3 is satisfied if every iteration is successful (which is shown in the proof of Theorem 6), and that

kϵ = O(ϵ−2/(1−p)).

First, Lemma 7 establishes bounds on fk.

Lemma 7. Using the parameters in (36) and the sequences defined in (37), (39), and (40), the following

properties hold for the sequence {fk}:

1. for all k ∈ {1, . . . , kϵ},
fk < fk−1, (41)

2. for all k ∈ {0, . . . , kϵ},

0 ≤ f0 − fk ≤ 4ϵ2
(
2 +

k(1−p)

1− p

)
≤ 8ϵ2 +

4

1− p
, (42)

3. for all k ∈ {0, . . . , kϵ},
fk ≥ 0. (43)

Proof. First, we notice that for all k ∈ {0, . . . , kϵ}, gk < 0 and sk > 0. By combining these observations

and the definition of fk, we deduce that fk < fk−1 for all k ∈ {1, . . . , kϵ}, and in particular

f0 − fk ≥ 0.
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Inequalities (42) hold for k = 0 and for k = 1 because f0 − f1 = −g0s0 = 4ϵ2. For all k ∈ {2, . . . , kϵ},

f0 − fk = −
k−1∑
i=0

gisi

= −g0s0 +
k−1∑
i=1

g2i i
−p

= 4ϵ2 +

k−1∑
i=1

ϵ2(1 + wi)
2i−p

= ϵ2

(
4 +

k−1∑
i=1

(1 + wi)
2i−p

)
.

Now,

k−1∑
i=1

(1 + wi)
2i−p ≤

k−1∑
i=1

4i−p because 1 + wi ≤ 2

≤ 4

(
1 +

k−1∑
i=2

i−p

)

≤ 4

(
1 +

k−1∑
i=2

∫ i

i−1

t−pdt

)
because i−p =

∫ i

i−1

i−pdt ≤
∫ i

i−1

t−pdt

≤ 4

(
1 +

∫ k−1

1

t−pdt

)

≤ 4

(
1 +

∫ k

1

t−pdt

)

= 4

(
1 +

k1−p − 1

1− p

)
≤ 4

(
1 +

k1−p

1− p

)
.

This results in

f0 − fk ≤ 4ϵ2 + 4ϵ2
(
1 +

k1−p

1− p

)
= 8ϵ2 + 4

ϵ2k1−p

1− p
. (44)

Finally, since k ≤ kϵ = ⌊ϵ−2/(1−p)⌋ ≤ ϵ−2/(1−p), we have, for all k ≤ kϵ,

ϵ2k(1−p) ≤ 1. (45)

We combine (44) and (45) to obtain (42). The value of f0 and (42) then allows us to establish (43).

Now, Lemma 8 establishes a bound for |gk+1 − gk|.
Lemma 8. Using the parameters in (36) and the sequences defined in (37), (38) and (40), we have

that, for all k ∈ {0, . . . , kϵ},
|gk+1 − gk| ≤ sk. (46)

Proof. For k ∈ {0, . . . , kϵ − 1},

|gk+1 − gk| = | − ϵ(1 + wk+1) + ϵ(1 + wk)| = ϵ/kϵ. (47)

Since p < 1 and k < kϵ, we have kp/kϵ ≤ 1 ≤ 1 + wk. We multiply the latter inequality by ϵk−p to

obtain ϵ/kϵ ≤ k−pϵ(1 + wk), which leads to |gk+1 − gk| ≤ sk using (47).
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The following result uses Lemma 7 and Lemma 8 to apply Proposition 6.

Proposition 7. Using the parameters in (36) and the sequences defined in (37), (38) and (40), there

exists f : R→ R continuously differentiable such that

f(xk) = fk, f ′(xk) = gk. (48)

In addition, the assumptions of Proposition 6 hold, so that |f | and |f ′| are bounded by a constant

independent of k.

Proof. We can see that sk > 0 and, by definition of fk,

|fk+1 − (fk + gksk)| = 0.

Lemma 8 shows that

|gk+1 − gk| ≤ sk.

Using Lemma 7, we know that for all k ∈ {0, . . . , kϵ}, fk ≥ 0, and since {fk} is decreasing, we have

|fk| ≤ f0.

In addition,

|gk| ≤ 2ϵ ≤ 1 and sk ≤ |gk| ≤ 1.

The result follows from Proposition 6.

For the following lemma, we define the sequence {sk,1} such that for all k ∈ {0, . . . , kϵ},

sk,1 := −νkgk. (49)

Lemma 9. Using the parameters in (36) and the sequences defined in (37), (38) and (40), we establish

that, for all k ∈ {0, . . . , kϵ} such that ∆k ≥ 1,

|sk| ≤ min(∆k, β|sk,1|). (50)

Proof. On the one hand, we have

|sk| = ϵ
(1 + wk)

Bk
≤ 2ϵ ≤ 1 ≤ ∆k. (51)

On the other hand, since B−1
k ≤ 1 and ∆k ≥ 1,

2α−1 + 1 ≥ α−1∆−1
k (B−1

k + 1) + 1,

so that

1 ≤ 2α−1 + 1

α−1∆−1
k (B−1

k + 1) + 1
≤ β

α−1∆−1
k (B−1

k + 1) + 1
.

We multiply the above inequality by B−1
k to obtain

B−1
k ≤

βB−1
k

α−1∆−1
k (B−1

k + 1) + 1
=

β

α−1∆−1
k +Bk(1 + α−1∆−1

k )
= βνk,

and, by multiplying by |gk|, we deduce that

|sk| = B−1
k |gk| ≤ βνk|gk| = β|sk,1|. (52)

We combine (51) and (52) to obtain (50).
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The following theorem finally establishes the main result of this section.

Theorem 6 (Slow convergence of Algorithm 2.1). Algorithm 2.1 applied to (1) with model mk satisfying

Model Assumption 2.1, Assumption 1, Assumption 2 and using Hessian approximations {Bk} satisfying

Assumption 3 may require as many as O(ϵ−2/(1−p)) iterations to produce an iterate xkϵ such that

ν
−1/2
kϵ

ξcp(∆kϵ ;xkϵ , νkϵ)
1/2 ≤ ϵ, (53)

in the sense that there exists f : R → R satisfying the assumptions of Lemma 2 and for which (53)

occurs for the first time after kϵ iterations.

Proof. The proof consists in constructing f : R → R by interpolation, as in [15, Theorem 2.2.3].

Let n = 1, h = 0, ℓ = −∞, u = +∞. We use the parameters in (36) and the sequences defined

in (37), (38) and (40). We invoke Proposition 7 to obtain f : R→ R differentiable and bounded such

that f(xk) = fk and f ′(xk) = gk. Our goal is to show that {xk}, {sk}, {fk} and {gk} satisfy all our

assumptions and are generated by Algorithm 2.1 applied to f with x0 = 0 and with the special value

of {Bk} in (38b) and (39a).

We proceed by choosing 0 ≤ k ≤ kϵ such that ∆k ≥ 1, which holds at least for k = 0, and

going through the steps of Algorithm 2.1 at iteration k to check that it generates the iterates defined

in (37), (38) and (40).

In Line 5, νk in (40b) is as large as allowed.

In Line 6, Lemma 1 indicates that sk,1 in (49) is a global minimizer of (11b) with ψ = 0. As

1 + wk ≤ 2 and |Bk| ≥ 1, we observe that

|sk,1| = |νkgk| =
ϵ(1 + wk)

α−1∆−1
k + |Bk|(1 + α−1∆−1

k )
≤ 2ϵ ≤ 1 ≤ ∆k,

which implies that sk,1 is a solution of (12) because the condition |sk,1| ≤ ∆k is already satisfied.

In Line 8, let mk(·;xk, Bk) be defined as in (15). mk(·;xk, Bk) satisfies Model Assumption 2.1, and

using Lemma 1, we have that sk in (40a) with ψ = 0 and B = Bk is its global minimizer. Lemma 9

shows that

|sk| ≤ min(∆k, β|sk,1|),

which also implies that sk is a solution of (15).

In Line 9, we compute

ρk =
fk − fk+1

m(0;xk, Bk)−m(sk;xk, Bk)

=
fk − fk+1

fk − fk − gksk −Bks2k/2

=
fk − fk+1

g2kB
−1
k /2

=
−gksk
g2kB

−1
k /2

=
B−1

k g2k
g2kB

−1
k /2

= 2.

(54)

In Line 10, ρk = 2 implies that xk+1 = xk+sk, and in Line 11, we can set ∆k+1 = min(γ3∆k, ∆max) ≥
∆k ≥ 1.
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Now, either ν
−1/2
k ξcp(∆k;xk, νk)

1/2 > ϵ, and we perform the next iteration of Algorithm 2.1, or

ν
−1/2
k ξcp(∆k;xk, νk)

1/2 ≤ ϵ, which stops the algorithm. We have shown that sk,1 is a solution of (12),

thus

ξcp(∆k;xk, νk) = fk − (fk + gksk,1) = −gksk,1 = νkg
2
k, (55)

and

ν
−1/2
k ξcp(∆k;xk, νk)

1/2 = |gk|. (56)

Therefore, for all k ∈ {0, . . . , kϵ − 1}, ν−1/2
k ξcp(∆k;xk, νk)

1/2 > ϵ, and ν
−1/2
kϵ

ξcp(∆kϵ
;xkϵ

, νkϵ
)1/2 = ϵ,

so that Algorithm 2.1 performs exactly kϵ iterations to generate xkϵ
satisfying (53).

To finish the proof, we must verify that Assumption 1, Assumption 2 and Assumption 3 hold.

Assumption 1 is satisfied thanks to Proposition 4. Assumption 2 is satisfied with κubd = 1
2 because

|fk+1 −m(sk;xk, Bk)| = |fk+1 − fk − gksk − 1
2Bks

2
k| = 1

2Bks
2
k ≤ 1

2 (1 +Bk)s
2
k.

Finally, our choice of Bk allows Assumption 3 to be satisfied because all iterations are successful and

σk = k.

5 Numerical verification of the bound

We construct f : R → R satisfying the properties of the function in the proof of Theorem 6. The

construction follows the formula used in the proof of [15, Theorem A.9.2], and we use similar notation.

We use again the parameters (36), and the sequences (37)–(40). Define the cubic Hermite inter-

polant

πk(τ) := ck,0 + ck,1τ + ck,2τ
2 + ck,3τ

3, (57)

where, for all k ∈ {0, . . . , kϵ}, ck,0 = fk, ck,1 = gk, and ck,2, ck,3 solve[
s2k s3k
2sk 3s2k

] [
ck,2
ck,3

]
=

[
fk+1 − (fk + gksk)

gk+1 − gk

]
=

[
0

gk+1 − gk

]
. (58)

We use the additional conditions f−1 = f0, g−1 = 0, fkϵ+1 = fkϵ
, gkϵ+1 = gkϵ

, and x−1 = −s−1,

where s−1 = 1, which allows (35) to hold with κf = 1, because |f0 − (f−1 + g−1s−1)| = 0, and

|g0 − g−1| = |g0| = ϵ(1 + w0) = 2ϵ ≤ 1 = s−1 since ϵ ≤ 1/2. Finally,

f(x) :=


f0 if x ≤ x−1

πk(x− xk) if x ∈ (xk;xk+1] for k ∈ {−1, . . . , kϵ}
fkϵ

if x > xkϵ
+ skϵ

.

(59)

By construction, f is a piecewise polynomial of degree 3. We have πk(0) = fk, π
′
k(0) = gk,

πk(sk) = fk+1 thanks to the definition of f in (39c) and the first line of (58), and π′
k(sk) = gk+1 with

the second line of (58). Thus, f : R→ R is continuously differentiable over (x−1, xkϵ+1).

We minimize f using Algorithm 2.1 as implemented in [5], without nonsmooth regularizer, and with

starting point x0 = 0. Inside TR, we set Bk = kp so that {Bk} grows unbounded and Assumption 3

holds, because ρk = 2 in (54) so that all iterations are very successful. In Line 8, we use the analytical

solution sk = −B−1
k ∇f(xk) of (19) given by Lemma 1 in order to avoid rounding errors occurring in a

subproblem solver for (16). This expression of sk satisfies the trust-region constraint by construction

thanks to Lemma 9. The modified TR implementation is available from https://github.com/
geoffroyleconte/RegularizedOptimization.jl/tree/unbounded.

We set p = 1/10, α = β = 10+16, γ3 = 3, ∆max = 103 and ϵ = 1/10, so that kϵ = 166. We observe

that TR converges in precisely 166 iterations. With ϵ = 1/20, we obtain the convergence of TR in

precisely kϵ = 778 iterations.

https://github.com/geoffroyleconte/RegularizedOptimization.jl/tree/unbounded
https://github.com/geoffroyleconte/RegularizedOptimization.jl/tree/unbounded
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In order to make the oscillations of f ′ clearly visible, Figure 2 shows plots of f and f ′ over [0, xkϵ+1]

with ϵ = 1/3. Table 1 shows the theoretical values of ν
−1/2
k ξcp(∆k;xk, νk)

1/2 = |gk| according to (56).

TR converges in 11 iterations and produces the logs in Figure 1 that align with these theoretical values.

Note that ρk = 2, as predicted by (54), and therefore, that each iteration is successful.

Table 1: Rounded theoretical values of ν
−1/2
k ξcp(∆k;xk, νk)

1/2 for ϵ = 1/3.

k 0 1 2 3 4 5 6 7 8 9 10 11

ν
−1/2
k ξcp(∆k;xk, νk)

1/2 0.67 0.64 0.61 0.58 0.55 0.52 0.48 0.45 0.42 0.39 0.36 0.33

� �
outer inner f(x) h(x)

√
ξcp/

√
ν

√
ξ ρ ∆ ∥x∥ ∥s∥ ∥

Bk∥
1 1 5.3e+00 0.0e+00 6.7e-01 4.7e-01 2.0e+00 1.0e+00 0.0e+00 6.7e-01 1.0e+00
2 1 4.9e+00 0.0e+00 6.4e-01 4.5e-01 2.0e+00 3.0e+00 6.7e-01 6.4e-01 1.0e+00
3 1 4.5e+00 0.0e+00 6.1e-01 4.1e-01 2.0e+00 9.0e+00 1.3e+00 5.7e-01 1.1e+00
4 1 4.1e+00 0.0e+00 5.8e-01 3.9e-01 2.0e+00 2.7e+01 1.9e+00 5.2e-01 1.1e+00
5 1 3.8e+00 0.0e+00 5.5e-01 3.6e-01 2.0e+00 8.1e+01 2.4e+00 4.7e-01 1.1e+00
6 1 3.6e+00 0.0e+00 5.2e-01 3.4e-01 2.0e+00 2.4e+02 2.9e+00 4.4e-01 1.2e+00
7 1 3.4e+00 0.0e+00 4.8e-01 3.1e-01 2.0e+00 7.3e+02 3.3e+00 4.1e-01 1.2e+00
8 1 3.2e+00 0.0e+00 4.5e-01 2.9e-01 2.0e+00 1.0e+03 3.7e+00 3.7e-01 1.2e+00
9 1 3.0e+00 0.0e+00 4.2e-01 2.7e-01 2.0e+00 1.0e+03 4.1e+00 3.4e-01 1.2e+00
10 1 2.8e+00 0.0e+00 3.9e-01 2.5e-01 2.0e+00 1.0e+03 4.4e+00 3.2e-01 1.2e+00
11 1 2.7e+00 0.0e+00 3.6e-01 2.3e-01 2.0e+00 1.0e+03 4.7e+00 2.9e-01 1.3e+00
12 1 2.6e+00 0.0e+00 3.3e-01 1.0e+03 5.0e+00 2.6e-01 1.3e+00
TR: terminating with

√
ξcp/

√
ν = 0.3333333333333333

"Execution stats: first-order stationary"� �
Figure 1: TR logs with ϵ = 1/3. outer denotes the iteration number, inner is the number of iterations performed by the

subsolver to solve (16) with the model in (15), √ξcp/
√
ν is ν

−1/2
k ξcp(∆k;xk, νk)

1/2, √ξ is the numerator of (18), ∥s∥ is

∥sk∥, and the remaining columns refer unambiguously to data used in Algorithm 2.1.
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Figure 2: Illustration of example (59) with ϵ = 1/3. Top row: values of f (left) and of f ′ (right) for x ∈ [0, xkϵ+1].
Bottom row: iterates xk (left) and steps sk (right) for k ∈ [0, kϵ + 1].
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The code to run this experiment is available at https://github.com/geoffroyleconte/
docGL/blob/master/regularized-opt/test-unbounded-hess.jl. By making similar

changes to the algorithm TRDH [27], which can be found at the same URL, we obtain the same

number of iterations.

6 Discussion

We have shown that it is possible to establish convergence and sharp worst-case evaluation complexity

of Algorithm 2.1 in the presence of unbounded Hessian approximations Bk, provided they do not grow

too fast—c.f., Assumption 3. We established that the complexity bound can be attained, and we gave

an example of a function for which it was attained, both theoretically and numerically.

Aravkin et al. [3] compare the performance of Algorithm 2.1 to other frameworks, but use a formula

for νk that assumes that {Bk} remains bounded. Their implementation uses limited-memory SR1 and

BFGS approximations. As it happens, such limited-memory approximations do remain bounded under

standard assumptions; see [7] for LBFGS. The fact that LSR1 approximations remain bounded was

not known to us at the time of writing [3]. However, an early version of that manuscript contained

a procedure to maintain bounds on the extreme eigenvalues of such an approximation, and skip the

update if those bounds became too large—see Section 4.2 in https://arxiv.org/pdf/2103.
15993v1. We only realized later that that very analysis of the extreme eigenvalues shows that LSR1

approximations remain bounded provided that the sequence of initial matrices remains bounded, which

is the case in the experiments of [3].

When p = 1 in Assumption 3 or the growth of ∥Bk∥ is not governed by the number of successful iter-

ations, it may still be possible to establish convergence in the sense that lim inf ν
−1/2
k ξcp(∆k;xk, νk) = 0

as in [16, §8.4.1.2], where the main assumption is (2). Generalizations of Assumption 3 might replace

σk with k, to account for situations where model Hessians are updated on unsuccessful iterations, or

by a positive function ϕ(σk) or ϕ(k). In view of (2), such ϕ would have to satisfy

∞∑
k=0

1

1 + max0≤j≤k ϕ(j)p
= ∞.

Under the simplifying, but reasonable, assumption that ϕ is continuous and nondecreasing, it would

be necessary and sufficient that ∫ ∞

1

1

1 + ϕ(t)p
dt = ∞.

We expect that sharp worst-case evaluation complexity bounds also hold for such more general cases.

Another possible extension of the present work would be to analyze the worst-case evaluation

complexity of ARp-type methods in the presence of potentially unbounded model Hessians.

Although Algorithm 2.1 does not reduce to the “standard” trust-region method in the case where

h = 0—by which we mean, e.g., the basic trust-region algorithm of [16, Chapter 6]—we expect that

the techniques of the present paper can be used under Assumption 3, or generalizations thereof, to

establish similar complexity bounds. Whether or not quasi-Newton updates satisfy Assumption 3

under certain assumptions is the subject of ongoing research.
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