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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2023-54
https://www.gerad.ca/en/papers/G-2023-54
https://www.gerad.ca/en/papers/G-2023-54


Can mean field game equilibria amongst exchangeable
agents survive under partial observability of their com-
petitors’ states?

Farid Rajabali

Roland Malhamé
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Abstract : Classical mean field games (MFG) have been concerned with large games amongst sym-
metrically influential agents with asymptotically negligible weight. In the absence of a common driving
noise, propagation of chaos occurs. The analysis assumes that the initial agent’s state probability dis-
tribution is known, making its future deterministic and computable via a fixed-point calculation under
a limiting equilibrium policy, if it exists. However, oftentimes, despite equal mutual influence, a given
agent can only observe a limited number of neighboring agents due to the agent observability structure
characterized by an information access graph. This graph may have a low degree even with a large
number of agents. The main question addressed is whether an MFG equilibrium can still potentially
emerge asymptotically over time. The answer is affirmative, contingent on specific conditions that rely
on the stability properties of agents’ dynamics and the relative speed of communication to reactions, as
derived in this study. The focus is on independent linear scalar agents correlated through a quadratic
cost related to the mean state of the agents, which remains unobservable. To tackle convergence to a
mean field equilibrium, the proposed model involves a fast communication time scale using a consen-
sus algorithm, alongside a slower agent dynamic time scale. The research explores agents’ ability to
accurately estimate the system mean as both time and agent numbers increase.

Acknowledgements: Research supported by NSERC–RGPIN–2022–0540.



Les Cahiers du GERAD G–2023–54 1

1 Introduction

Mean Field Game (MFG) problems gained a lot of interest over the past decade, leading to the develop-

ment of various methods for solving different setups of MFG problems. A substantial body of literature

on MFGs has emerged, building upon foundational works by Lasry, Lions [1, 2], Caines, Huang, and

Malhamé [3, 4] who approached the analysis from a PDE perspective, and Carmona, and Delarue [5,

6] who adopted a probabilistic viewpoint. In this context, we will focus on papers directly relevant to

the specific research issues we aim to address. MFG problems involve non-cooperative agents trying

to minimize their cost functions, leading to a system of coupled Hamilton-Jacobi-Bellman equations.

In large stochastic games with diminishing individual influence, agents become stochastically indepen-

dent. In such cases, their joint probability distribution follows a Fokker-Planck-Kolmogorov (FPK)

equation. In MFG problems, limiting equilibria are described by a system of coupled forward-backward

partial differential equations [5].

1.1 Literature review

We review MFG literature based on their application to our problem. At the outset, studies delve

into the core MFG problem, introducing key concepts such as ε-Nash equilibrium and Nash certainty

equivalence (NCE). Two main approaches are used to find Nash Equilibrium: the bottom-up method,

which directly solves the finite game and derives limiting equations as the population size approaches

infinity, and the top-down method, which involves solving an optimal control problem using a repre-

sentative agent while assuming mass behavior for other agents. An equilibrium is reached when all

agents follow their best response policy, and the FPK equation replicates the assumed mass behavior,

forming the basis for NCE [7]. Other pertinent studies closely aligned with this research are stochastic

games on graphs where agents’ mutual influences are mediated by a weighted graph [8, 9]. Paper [9]

is particularly instructive in that it provides a closed-form solution for the Nash equilibrium in a class

of linear quadratic games where agents attempt to follow, at least cost, a weighted combination of the

states of their direct neighbors in a so-called transitive graph (essentially a graph which looks “simi-

lar” as seen by any agent). Note that this is a radical departure from the classical MFG formulation

where agents within possibly distinct classes are exchangeable. An important feature of this paper

is that the Nash equilibrium solution is computed under the assumption that agents can observe all

other agent states at all times. It is precisely this somewhat unrealistic assumption that we wish to do

without in our proposed research. Finally, papers that consider non-cooperative aggregative games on

networks. Aggregative games are static games where agent costs depend on both their actions and an

aggregate measure of all the other agent actions, typically their mean [10]. In a series of papers [10-16],

graph-based information exchanges by agents in the form of consensus algorithms were assumed with

the objective of helping achieve distributed computation of their Nash equilibria. While, unlike MFGs,

the games in [17–23] are static, they relate from the modeling point of view to the question that we

are attempting to explore here.

1.2 Contribution of this research

In this preliminary work, we wish to explore scalar linear quadratic (LQ) MFGs where agents try to

track system mean, while able to exchange information only with a limited number of agents over a

transitive so-called information access graph (transitivity will preserve equivalent views of the graph

as seen by arbitrary agents). The main question we are trying to address is the following: Can a

mean field effect (agents guided by the population mean) still take hold in large populations of non-

cooperative agents even though agents are not able to always observe the statistics of the complete

population?

Motivated by what we believe to be a mean field effect taking hold in fish schools which display a

high degree of nimbleness in reforming purposeful groups following disturbances, we contribute here:

(i) a modeling framework where we consider a separation of time scales between “communication
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dynamics” over an information access graph, (it characterizes the agents whose states are observable

at all times by a given agent, and with whom that agent can exchange information) and “motion

dynamics” of the agents; (ii) an algorithm for estimating the current global state which relies on a

consensus-based approach to improve the initial mean system state estimate, followed by a forecast.

The forecast assumes that agents will use a “certainty equivalent” control law structure, i.e., based on

their best response under the assumption of full state observation (iii) an analysis of the dependence

of the bias and variance of the mean estimate based on the graph structure, the assumptions on the

random nature of the initial state distribution, and the time at which the mean is estimated; (iv) how

these quantities evolve as the number of agents increases to infinity. Note that under these assumptions,

we assimilate a mean field effect taking place with the ability of agents to estimate at some point in

time the system mean with reasonable accuracy.

Remark 1. This research focuses on a non-cooperative game where individual agents aim to minimize

their own cost functions. Despite being non-cooperative, the agents are assumed to share specific

information. This sharing of information can be understood either as a scenario where agents seek

decentralized control strategies while desiring cooperation or as agents recognizing the mutual benefit

of exchanging states, as seen in apps like Google Maps or Waze.

Notation: In this paper, E[x] stands for the expected value of a random variable x. The N × 1

column vector of all ones is denoted 1. Vector ei is N × 1 vector whose ith element is 1 (ei =[
0 · · · 1 · · · 0

]T
). Also, small letters are used for scalar variables and capital letters for vectors

or matrices. Set R denotes real numbers.

2 Background

In our analysis of MFG with information access graphs, we shall follow the bottom-up approach, i.e.,

starting from finite agent population games and moving towards infinite population games. Thus, in

this section, under full state observation assumptions (or equivalently a full information access graph)

and based on [7, 17], we first summarize useful results on the existence and Nash equilibrium (NE)

control policy in linear quadratic games.

2.1 NE policies in finite population, finite horizon, scalar LQ games with full
state observations [7]

Consider a non-cooperative game in a population of N agents that are uniform and have scalar dy-

namics. The dynamics equation for agent i is written in (1) which is a linear and stochastic differential

equation.

dxi(t) =
(
axi(t) + bui(t)

)
dt+ σdwi(t), t ≥ 0 (1)

In (1), xi(t) is the state of agent i and ui(t) is the control input or action of agent i. Coefficients

a, b are in R and σ is nonnegative finite value. Noises wi(t), i = 1, 2, . . . , N are scalar mutually

independent zero mean Wiener processes and independent from initial states. The agents’ initial

conditions are assumed to be random with finite variance.

Agents wish to track ϕ
(
xN (t)

)
which is taken to be an affine function of the empirical mean with

the cost given by:

Ji (ui, xi, x) = E

[∫ T

0

[
q

(
xi(t)− ϕ

(
xN (t)

))2

+ ru2
i (t)

]
dt+ h

(
xi(T )− ϕ

(
xN (T )

))2

|xi(0)

]
(2)

ϕ
(
xN

)
= ΓxN + η, xN =

1

N

N∑
j=1

xj (3)
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Coefficients q and h are non-negative real numbers, and r is a positive real number.

By solving a system of N coupled Hamilton-Jacobi-Bellman equations, it is possible to show (see [7,

17]) that a NE policy for an arbitrary agent i can be written as:

ui(t) = − b

r

(
p(t)xi(t) + α(t)xN (t) + β(t)

)
(4)

dp(t)

dt
=

b2

r
p2(t)− 2ap(t)− q (5)

p(T ) = h

dα(t)

dt
= −2

(
a− b2

r
p(t)

)
α(t) +

b2

r
α2(t) + qΓ (6)

α(T ) = −hΓ

In (5), p(t) is the solution of a standard Riccati differential equation guaranteed to exist under our

assumptions, while, given p(t), α(t) in (6) corresponds to the solution of another Riccati differential

equation which in general is not guaranteed to exist. However, we will show later that if Γ < 1, the

solution to α(t) exists, and discuss motivations for Γ < 1.

Remark 2. For simplicity and without loss of generality, we assume η = 0, so β(t) will be zero over

time [7].

Remark 3. In this paper, we consider Γ ≤ 1, since if Γ > 1 finite escape time happens and one should

be cautious in the time interval of the game to avoid finite escape times [7].

Remark 4. An application for Γ < 1 is decentralized power control of cellular phones within the same

cell. The latter compete to enhance their signal to noise ratio. Increasing power levels generates

more noise on other phones within the cell, compelling those phones to boost their power as well. This

scenario can be viewed as a static game whose dynamic version has been the inspiration behind [18]. A

motivation for Γ = 1 is an attempt to reproduce collective dynamics within fish schools, with individual

fishes aiming to follow their school with least effort.

For a known (considered deterministic) initial empirical mean xN (0), and if the solution of (6)

exists, xN (t) evolves according to:

dxN =

(
a− b2

r

(
α(t) + p(t)

))
xN (t)dt+ σdwN (t) (7)

where wN (t) = 1
N

∑N
i=1 wi(t).

Denoting x(t) = E
[
xN (t)

]
, and using the state transition matrix φx (t, t0) (it is scalar) for the

interval [t0, t] we have:

x(t) = φx (t, t0)x (t0) (8)

Remark 5. Note that the implementation of the NE control law in (4) requires that besides an agent’s

own state, the agent be able to observe the empirical global mean state at all times. Furthermore, as

Figure 1 grows without bounds, the law of large numbers dictates that it becomes sufficient to only

know the initial empirical global mean. This indeed becomes the MFG solution concept. However,

these global mean quantities are no longer available in the presence of a sparse information access

graph.

Remark 6. The stability characteristics of the transition function φx (tn, t0) are determined by the

properties of the Riccati equation derived from the addition of equations (5) and (6):

d
(
p(t) + α(t)

)
dt

=
b2

r
(p+ α)2 − 2a(p+ α)− q(−Γ + 1)

p(T ) + α(T ) = h(1− Γ) (9)
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We analyze the stability behavior of p(t) + α(t) in two scenarios for the parameter Γ. Case 1: for

Γ < 1, the boundary condition h(1−Γ) is positive and q(−Γ+1) is also positive. These two conditions

are adequate to ensure the existence of a positively bounded solution for the Riccati equation, leading

to a stabilizing gain [19], and thus φx (tn, t0) will be stable. Case 2: for Γ = 1, it can be readily

demonstrated that α(t) + p(t) equals zero. The stability of either xN or φx (tn, t0) hinges on the sign

of parameter a.

2.2 Consensus algorithm

In this section, we briefly review some notions of consensus algorithms (see for example [20, 21]). Con-

sensus algorithms are quite useful when an average is to be estimated from a collection of observation

points and agents can only exchange information over a graph.

Assume agents observe each other through an undirected information access graph (IAG) G. The

continuous time consensus algorithm dynamics is written as follows:

dX∗

dt
= −LX∗ (10)

where X∗ is an N × 1 vector comprising the scalar states of all agents, and L is the Laplacian matrix

of the graph G. We assume λi for i = 1, . . . , N are eigenvalues of L in ascending order and Vi for

i = 1, . . . , N are corresponding eigenvectors.

Two important lemmas regarding the transition matrix of the Laplacian matrix, φL (t, t0), are

stated in the following. We do not provide their proofs here since these are well established materials

in the consensus algorithm references [20, 21].

Lemma 1. Assume L is the Laplacian matrix of an undirected and connected graph, then the following

formula holds.

1TφL (t, t0) = 1T

Lemma 2. In the transition matrix φL (t, t0), in the asymptotic cases when time goes to infinity, the

following equation holds:

lim
t−→∞

φL (t, t0) =
1

N
11T

3 A mathematical model for mean field games on a partial IAG

In this context of partial information access, we simplify analysis by assuming that agent state actions

evolve discretely over time intervals of length t̃. During these intervals, agents exchange information

about a system quantity and use it to synthesize a better-informed control action. The dynamics of

information exchange follow a continuous time consensus process (as in (10)), with a relative informa-

tion exchange rate characterized by the coefficient rc/d, acting as an accelerator of consensus dynamics.

Agents employ a “certainty equivalent” best response policy analogous to (4), replacing the empirical

mean state with its best non-anticipative estimate based on all past and current information at time

tn = t0+nt̃, n = 0, 1, 2, . . .. Consequently, consensus algorithm dynamics including the ratio between

communication time scale and dynamics time scale, rc/d, is rewritten in (11) as:

dX∗

dt
= −rc/dLX

∗ (11)

Remark 7. We should notice that the presence of rc/d in the differential equation of the consensus

algorithm results in multiplying eigenvalues of L by rc/d which leads to faster convergence if rc/d > 1.
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4 The special case of initial global empirical mean information ex-
change

In this study, we use an interlaced information exchange/motion dynamics model to improve estimates

of the initial global empirical mean state (GEMS) over consensus cycles t̃. Agents use these estimates

to forecast the most current GEMS for their individualized certainty equivalent control law (4). We

analyze the quality of the forecast-based estimator and how it evolves over time. As time progresses,

two competing effects influence the estimator quality: (i) More agents reached through consensus

propagation lead to improved initial GEMS estimation, and (ii) the current forecast becomes more

compromised by process noise due to increasing forecast intervals.

4.1 Empirical mean estimation procedure

At time tn = t0 + nt̃, generic agent i calculates its current estimate x̂
N

0i(tn) of the initial global

empirical mean state xN (t0). Using this estimate, agent i produces a forecast x̂
N

i (tn) of the GEMS

xN (t), assuming all agents follow trajectories dictated by (1) and (4) with xN (tn) replaced by x̂
N

j (tn) ,

j = 1, . . . , N . The dynamics of GEMS as observed by agent i remain governed by (8) under the

proposed certainty equivalent control policy. Thus, agent i uses (8) initialized with x̂
N

0i(tn) to estimate

GEMS at time tn.

The summary of how the calculations proceed over time is written in Algorithm 1.

Algorithm 1 Empirical mean estimation using consensus algorithm

Initialization: t =t0, x̂
N
0i(t0) =xi (t0) , i = 1, 2, . . . , N

Iteration: For n = 0, 1, . . . , round(T
t̃
)

t ∈ [tn, tn+1]

Action: Use x̂
N
i (tn) for the calculation of ui(t) based on (4) and (8) initialized with x̂

N
0i(tn)

Communication and Estimation: Use x̂
N
0i(tn) to communicate with neighbors until tn+1 to get an estima-

tion of x̂
N
0i(tn+1) at tn+1

Forecast: compute forecast, x̂
N
i (tn+1), using x̂

N
0 (tn+1) based on (8)

Before stating Theorem 1 in the next section, we delve into the assumptions needed for it.

Assumption 1. The agent population is made up of N homogeneous agents in a connected partial

IAG which is time-invariant, undirected, and transitive. Also, agents do not have prior information

on the initial state distribution of the population. Initial agent states are arbitrary random variables

with finite first and second moments.

Assumption 2. The transition function φx (tn, t0) exhibits stable dynamics associated with condition

Γ < 1.

4.2 Evaluation of quality of GEMS estimation by individual agents

In what follows, we develop an expression for the mean of the GEMS estimation error by a generic

agent i. In order to follow the solution easily, we denote X̂
N

0n and X̂
N

n the N × 1 concatenated vectors

of respectively initial GEMS estimates after running the consensus algorithm for time duration nt̃,

and current GEMS estimates of agents at the time tn. The error between the estimated GEMS and

its true value for agent i at time t is denoted erri(t).

erri(t) = xN (t)− x̂
N

i (t) (12)
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Theorem 1. Under Assumptions 1 and 2 and provided that agents employ Algorithm 1 for mean

estimation and control action: (i) The GEMS achieves asymptotic unbiasedness as time increases

indefinitely; (ii) Convergence to zero bias is geometric with a rate governed by the second smallest

eigenvalue of L (Fiedler eigenvalue).

Proof. The proof follows from calculating the error erri and showing that its expectation converges

to zero as time grows indefinitely. We assume the global vector X(t) contains all agent states. The

empirical mean xN is written based on X:

X(t) =
[
x1(t) · · · xN (t)

]T
, xN (t) =

1

N
1TX(t) (13)

The initial condition for the consensus algorithm differential equation in (11) is X∗ (t0) = X (t0).

The solution for the consensus state at the time tn is expressed as

X∗ (tn) = φL (tn, t0)X
∗ (t0) = φL (tn, t0)X (t0) (14)

At time tn, agents find their nth estimation of the GEMS for time t0 by using the state of consensus

at tn in (14).

X̂
N

0n = X∗ (tn) (15)

Employing Equations (8), (14), and (15), agents forecast the mean for time tn: X̂
N

n =

φx (tn, t0) X̂
N

0n. The predicted mean value for agent i, x̂
N

i (tn), corresponds to time tn.

X̂
N

n =
[
x̂
N

1 · · · x̂
N

N

]T
, x̂

N

i (tn) = eTi φx (tn, t0)φL (tn, t0)X (t0) (16)

In order to calculate xN , we need to average the states of agents considering the estimated value

of the mean in their dynamics. The details of the calculation for xN is given in Appendix A.

xN (t) = φx (t, t0)
1

N
1TX (t0) + σ

∫ t

t0

φ(t, s)dwN (s) (17)

φ (t, t0) = exp

(∫ t

t0

(
a− b2

r
p(s)

)
ds

)
We have calculated the exact value for the mean and that estimated by agent i. Now, we calculate

the error at tn.

erri (tn) =xN (tn)− x̂
N

i (tn) = φx (tn, t0)
1

N
1TX (t0)

+ σ

∫ tn

t0

φ (tn, s) dw
N (s)− eTi φx (tn, t0)φL (tn, t0)X (t0) (18)

Since E
[
dwN

]
= 0, the expected value of error is:

E [erri (tn)] = φx (tn, t0)

[
1

N
1T − eTi φL (tn, t0)

]
E [X (t0)] (19)

Based on Lemma 2, when n goes to ∞,

lim
n→∞

eTi φL (tn, t0)=
1

N
1T=⇒ lim

n→∞
E [erri (tn)] = 0



Les Cahiers du GERAD G–2023–54 7

Remark 8. In Theorem 1, as indicated by Equation (19), the convergence rate of E [erri (tn)] is de-

termined by exp
(∫ tn

t0

(
a− b2

r

(
α(τ) + p(τ)

))
dτ − rc/dλ2(tn − t0)

)
. With the condition Γ < 1, the

stability of φx (tn, t0) is assured, resulting in faster convergence of consensus facilitated by the stable

dynamics of the agents.

Theorem 2. Given Assumption 1 and Γ = 1, for E [erri (tn)] to converge to zero as n goes to infinity,

it is necessary and sufficient that rc/d > a
λ2
.

Proof. When Γ = 1, as previously discussed, φx (t, t0) simplifies to exp
(
a (t− t0)

)
. Furthermore,

according to Equation (19), the convergence rate of E [erri (tn)] is represented by exp
( (

a− rc/dλ2

)
(tn − t0)

)
. Therefore, for the objective of driving E [erri (tn)] towards zero, it is essential that a −

rc/dλ2 < 0. This condition ensures the desired outcome.

Remark 9. Among partial IAGs, cycle graphs offer a particularly illustrative worst-case scenario. In-

deed, in these graphs, each agent is linked to only two neighbors. The eigenvalues of cycle graphs are

expressed by Equation (20):

λj = 4 sin2
(
π(j − 1)

N

)
, j = 1, . . . , N (20)

For cycle graphs, as the number of agents approaches infinity, it follows that λ2 tends towards

4
(
π
N

)2
. This observation highlights that for cycle graphs as N increases, λ2 diminishes in a manner

proportional to N−2, consequently leading to a reduction in the convergence rate of the proposed

algorithm.

5 Properties of GEMS estimator

In this section, assuming an i.i.d. initial distribution for agents, we shall provide an analysis regarding

the expected value and variance of the error in (12).

Assumption 3. Agents have i.i.d. initial distribution with finite mean E [xi(t0)] = x0 and finite

variance E
[(
xi(t0)− x0

)2]
= σ2

0

(
or ΣX(t0) = σ2

0I
)
.

Proposition 1. Under Assumptions 1 and 3 the GEMS estimated by agent i, x̂
N

i (tn), is an unbiased

estimator of xN (tn) at all times.

Proof. We have:

E [erri (tn)] = φx (tn, t0)

[
1

N
1T − eTi φL (tn, t0)

]
E [X (t0)]

In view of the i.i.d. initial state distribution assumption, Lemma 2, and the symmetry of matrix L,

one can write:

E [X (t0)] = x01, eTi φL (tn, t0)1x0 = x0

As a result, E [erri (tn)] = 0, and x̂
N

i (tn) is an unbiased estimator of xN (tn).

5.1 Error variance analysis

In this subsection, we derive the variance of error estimation. Our goal is to analyze the evolution of

the GEMS estimator variance over time.

Σerri(tn) =E
[
(erri (tn)− E [erri (tn)])

2
]
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=
σ2

N

∫ tn

t0

φ2 (tn, s) ds+ φ2
x (tn, t0)

[
1

N
1T − eTi φL (tn, t0)

]
ΣX(t0)

[
1

N
1T − eTi φL (tn, t0)

]T

In the following, the error variance is calculated under Assumption 3 using eigenvalues and eigen-

vectors of L.

Σerri(tn) =
σ2

N

∫ tn

t0

φ2 (tn, s) ds+ φ2
x (tn, t0)σ

2
0

N∑
j=2

exp2
(
− rc/dλj(tn − t0)

)
eTi VjV

T
j ei (21)

We now discuss the behavior of GEMS estimation variance based on the stability properties of

φx (tn, t0).

Remark 10. The first term in (21) is the variance contributed by the Wiener noise term in the GEMS

forecast based on (1). It is affected by the state transition function φ (tn, t0) which is guaranteed to

fall to zero exponentially due to the stabilization properties of the associated Riccati equation-based

gain. The second term is the variance associated with the forecast of the consensus-based initial GEMS

estimate.

Proposition 2. Given Assumptions 1, 3, and the condition Γ < 1, it can be established that the variance

of the error as defined in Equation (21) remains bounded.

Proof. As previously mentioned, in the scenario where Γ < 1, the function φx (t, t0) exhibits ex-

ponential decay as time progresses. This behavior leads to the convergence of the second term in

Equation (21) to zero, leaving only the first term in play. Consequently, variance remains bounded.

Proposition 3. Under Assumptions 1 and 3, when Γ = 1, the variance experiences a downward trend

as time progresses if the communication dynamics, represented by rc/dλ2, outpace the system dynamics,

represented by a, signifying that rc/d should be greater than a
λ2
.

Proof. The long term behavior of the consensus-induced variance, as represented in (21), is determined

by the term φ2
x (tn, t0) exp

2
(
−rc/dλ2(tn−t0)

)
, which equates to exp2

(
(a−rc/dλ2)(tn−t0)

)
. Analyzing

this growth rate, it becomes evident that in order to ensure the boundedness of the variance, the

condition rc/dλ2 > a must be satisfied.

Remark 11. In Theorem 2 and Proposition 3, as discussed earlier, in a worst case cycle graph, when

the number of agents N approaches infinity, λ2 diminishes at a rate proportional to N−2. For these

assertions to hold, it becomes necessary for the communication parameter rc/d to escalate in proportion

to N2. This observation underscores the need for communication speed to increase quadratically as

the agents’ network expands while the IAG remains sparse, ensuring that agents remain well-informed

about the population mean for effective decision-making.

5.2 Simulation of error variance

In Figure 1, error variance (21) is plotted for Γ = 0.6 across different population sizes. As N increases,

noise-induced variance weakens, causing an overall reduction in variance. Additionally, higher N leads

to a longer time to reach minimum variance. These trends suggest agents might eventually trust their

GEMS estimates, implying a Nash equilibrium.

6 Conclusion

In this paper, we discussed the question of possible convergence to a Nash equilibrium amongst large

systems of exchangeable agents interacting through an incomplete but connected information access

graph. An observations-dynamics model was proposed to capture the possible separation of time
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Figure 1: The error variance for different N . Parameters of the simulation: a=0, b=1, q=1, r=0.1, h=1, σ=0.7, Γ=0.6,
rc/d = 1, σ0 = 0.2

scales between communications and dynamics. The communications part is assumed to be effectively

equivalent to a consensus algorithm the information of which reaches the controller with some time

delay. The agents use a particular estimation scheme to evaluate their cost and produce a Nash

certainty equivalent policy. For the worst-case Partial IAG -cycle graphs- analysis suggests that for

stable mean field dynamics, convergence to an ideal MFG equilibrium over time is helped by the

consensus process and will always occur. For unstable mean field dynamics over a finite horizon,

convergence for a given large network size can be helped by increasing the relative communication

to dynamics speed. In future work, we shall explore more thoroughly the role of IAG structure,

communication speed, and possibly more sophisticated estimation schemes on the cost regret relative

to a complete IAG when the number of agents grows to infinity.

A Appendix

In the following, we will calculate xN (t) by averaging xi(t).

dxi =

((
a− b2

r
p(t)

)
xi −

b2

r
α(t)x̂

N

i (t)

)
dt+ σdwi

xi(t) = φ (t, t0)xi (t0)−
b2

r

∫ t

t0

φ(t, s)α(s)x̂
N

i (s)ds+ σ

∫ t

t0

φ(t, s)dwi(s)

Lemma 3. By using Lemma 1, we can easily show that

1

N

N∑
i=1

x̂
N

in(t) =
1

N
1TX (t0)φx (t, t0) = E[xN (t)]

Using Lemma 3, xN is calculated.

xN (t) = φ (t, t0)
1

N
1TX (t0)−

b2

r

1

N
1TX (t0)

∫ t

t0

φ(t, s)φx (s, t0)α(s)ds+
σ

N

∫ t

t0

φ(t, s)

N∑
i=1

dwi(s)

Using the following equation to simplify the integral.

φ(t, s)φx (s, t0) = φ (t, t0) exp

(∫ s

t0

−b2

r
α(l)dl

)
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So, xN (t) is rewritten.

xN (t) = φ (t, t0)
1

N
1TX (t0)

(
1− b2

r

∫ t

t0

α(s) exp

(∫ s

t0

−b2

r
α(l)dl

)
ds

)
+

σ

N

∫ t

t0

φ(t, s)dwN (s)

Using the fact that: 1− b2

r

∫ t

t0
α(s) exp

(∫ s

t0
− b2

r α(l)dl
)
ds = exp

(∫ t

t0
− b2

r α(s)ds
)
.

xN (t) = φ (t, t0)
1

N
1TX (t0) exp

(∫ t

t0

−b2

r
α(s)ds

)
+ σ

∫ t

t0

φ(t, s)dwN (s)

Finally, using φ (t, t0) exp
(∫ t

t0
− b2

r α(s)ds
)
= φx (t, t0), one can find xN (t).

xN (t) = φx (t, t0)
1

N
1TX (t0) + σ

∫ t

t0

φ(t, s)dwN (s)
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[3] M. Huang, R. P. Malhamé, and P. E. Caines, Large population stochastic dynamic games: closed-loop
McKean-Vlasov systems and the Nash certainty equivalence principle, Communications in Information &
Systems, 6(3):221–252, 2006.
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