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nécessaire et un lien vers l’article publié est ajouté.
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a GERAD, Montréal (Qc), Canada, H3T 1J4

b School of Mathematics and Statistics, Carleton
University, Carleton (On), Canada, K1S 5B6

c Department of Mathematics and Statistics, Mc-
Master University, Hamilton (On), Canada, L8S
4K1

mhuang@math.carleton.ca

henryyangxuwei@gmail.com

June 2023
Les Cahiers du GERAD
G–2023–21
Copyright © 2023 GERAD, Huang, Yang
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The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



Les Cahiers du GERAD G–2023–21 ii

Abstract : This paper studies linear-quadratic Stackelberg games with a major player (leader) and
N minor players (followers). To design decentralized strategies in the N + 1 player model, we con-
struct a mean field limit model consisting of the leader and a representative follower and use dynamic
programming to derive two master equations. We analyze quadratic solutions to the master equations
and characterize existence and uniqueness by a pair of Riccati ordinary differential equations. The
master equation-based solution is time consistent and provides decentralized feedback strategies in
finite populations. As in feedback solutions of standard two-player dynamic Stackelberg games, the
leader’s equilibrium strategy in the mean field model does not have global optimality in minimizing
its cost, and this feature makes the equilibrium analysis much more intricate than in mean field games
(Huang, 2010). To characterize the performance of the decentralized strategies, we extend a procedure
of Ekeland and Lazrak (2006) introduced for time inconsistent optimal control, so that the game of
N + 1 players is interpreted as being played by a stream of short-lived agents. Subsequently, the set
of decentralized strategies is shown to be an εN -Stackelberg equilibrium, where εN = o(1).

Keywords : Mean field models, Stackelberg games, decentralized control, time consistency
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1 Introduction

Mean field game (MFG) theory has been developed to deal with non-cooperative dynamic decision-

making in a large population of comparably small players [36, 43]. By addressing the macroscopic

behavior of the overall population, the theory relates finite large populations to a simpler continuum

population model, leading to a tractable solution. This methodology overcomes the dimensionality

difficulty and provides decentralized strategies for the original model with a finite number of players.

Since the inception of this paradigm, there has accumulated an enormous literature; see [7, 11, 13, 17]

and references therein. The basic framework of MFG modeling and analysis has been enriched by

extensions along different directions such as common noise models [13, 15, 17], discrete states [30, 53],

mean field of controls [16, 46], partial information [54], cooperative agents [27, 35], learning algorithms

[31, 45], among others.

1.1 Major player models

Among the generalizations of MFG modeling, of particular interest is a population with a major

player, which has strong influence on a large number of minor players. Let (Ω,F , P ) be the underlying
probability space. Consider a major player A0 and N minor players Ai, 1 ≤ i ≤ N , which have state

processes described by the stochastic differential equations (SDEs):

dX0
t = f0(X

0
t , µ

(N)
t , u0t )dt+ σ0dW

0
t , (1)

dXi
t = f(Xi

t , X
0
t , µ

(N)
t , uit, u

0
t )dt+ σdW i

t , 1 ≤ i ≤ N, (2)

where {W j
t , 0 ≤ j ≤ N} are N + 1 independent Brownian motions and µ

(N)
t := 1

N

∑N
i=1 δXi

t
is the

empirical distribution of the states of the minor players. For simplicity, we take σ0 and σ as constant

matrices of suitable dimensions.

The cost functionals with initial time 0 are given by

JN+1
0 (0, u0,u) = E

∫ T

0

L0(X
0
t , µ

(N)
t , u0t )dt+ Eg0(X0

T , µ
(N)
T ), (3)

JN+1
i (0, ui, u0,u−i) = E

∫ T

0

L(Xi
t , X

0
t , µ

(N)
t , uit, u

0
t )dt (4)

+ Eg(Xi
T , X

0
T , µ

(N)
T ), 1 ≤ i ≤ N,

where we denote by u = (u1, · · · , uN ) the strategies of all minor players and write u−i = (u1, · · · , ui−1,

ui+1, · · · , uN ). Here A0 is called the major player due to its significant impact on all other players. In

contrast, each minor player’s impact on others is negligible when N is large. Note that the functions

f0, f , L0 and L are defined as a function of the states (i.e., x0, xi), the controls (i.e., u0, ui) and the

measure-valued variable µ from a certain space.

This class of major-minor player mean field games was initially introduced in a linear-quadratic

(LQ) setting [34]. It developed the so-called Nash certainty equivalence approach treating a mean field

limit model consisting of the major player and a representative minor player. This method obtains

decentralized strategies for the original finite population, which have an ϵ-Nash equilibrium property.

Within the LQ framework, the reader is referred to [49] for non-uniform minor players, [12, 28] for

partially information, [38] for an application to optimal execution in finance, and [40] for random

entrance of agents. Meanwhile, the study of major-minor players in nonlinear models can be found

in [7, 8, 10, 18, 19, 50], where the stochastic maximum principle or dynamic programming plays a

key role in analyzing an agent’s best response control law. Sen and Caines [54] considered partial

information and control with nonlinear filtering. Lasry and Lions [44] introduced master equations for

a nonlinear major-minor player model. Cardaliaguet et al [14] analyzed a convergence problem for a
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major-minor player model, where a pair of master equations was obtained as the limit of the Hamilton–

Jacobi–Bellman (HJB) equations for the N + 1 players as N → ∞. In the above contributions, all

players choose their strategies simultaneously.

1.2 Stackelberg games and mean field Stackelberg games

Some noncooperative decision problems demonstrate a hierarchy among the players. Historically, von

Stackelberg [56] introduced such a game model, later named after him, with a leader and a follower,

where the leader moves first while incorporating the follower’s response. Dynamic Stackelberg games

started in the fundamental work [20, 55], and found important applications in economic theory since

1970s [41, 42].

The study of dynamic Stackelberg games has been mainly founded on three solution concepts

and their associated information structures: (i) open-loop solutions, (ii) closed-loop solutions, and

(iii) feedback solutions [3, 41, 55]. The open-loop solution can naturally be extended to stochastic

dynamic Stackelberg games such that the players can use information of the underlying filtration

on the probability space. Each player’s control in the open-loop solution is just a function of time

in a deterministic model, or a random process adapted to the underlying filtration in a stochastic

model [60]. In a closed-loop solution, the leader’s strategy is selected as a feedback rule on the entire

time horizon all at once while taking into consideration the reaction of the follower(s). The feedback

solution is determined by dynamic programming and specifies a feedback rule for each player, but

is so-called for a distinction with the closed-loop solution which cannot be characterized by dynamic

programming [55]. A further related solution notion is the global Stackelberg solution where the leader

announces, under an accompanying information structure, its strategy on the whole time horizon and

commits to that strategy, which the follower responds to [3]. The closed-loop solution may be viewed

as a global Stackelberg solution under a specific information structure. For feedback solutions, see [3,

sec. 7.6] for a continuous-time two-player Stackelberg game, and [41] for a discrete-time model with a

leader and N followers playing a Stackelberg–Nash game. The feedback solution of Stackelberg games

has time consistency. Informally stated, the solution, as a decision rule on a whole time interval [0, T ],

still solves the decision problem restricted to any remaining period [t, T ].

Within the setting of major-minor players, a natural solution notion is to consider leadership of the

major player while all minor players act as followers. In the recent literature on major player models,

the analysis of leadership or Stackelberg equilibria can be found in [58] for a discrete time model,

[5, 33, 48] for LQ Stackelberg games via stochastic calculus of variations, [6] for nonlinear dynamics
with control delay, where each follower has delay in collecting the information of the leader, [26] for

mean field principal-agent problems via the stochastic maximum principle, [2] for an application to

epidemic control, and [39] for evolutionary inspection games under a major player’s pressure. Also

see [29, 47], which study leadership in the mean field setting via the stochastic maximum principle and

so essentially adopt an open-loop solution. Moreover, different from the major-minor player modeling,

both the leader and the follower in the mean field type models of [29, 47] can directly influence the

mean field.

1.3 The LQ mean field Stackelberg model

In this paper we consider an LQ mean field Stackelberg game. For this purpose, in (1)–(4) we take

the drift terms: {
f0(x0, µ, u

0) = A0x0 +B0u
0 + F0⟨y⟩µ,

f(xi, x0, µ, u
i, u0) = Axi +Bui +B1u

0 + F ⟨y⟩µ +Gx0,
(5)
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where ⟨y⟩µ :=
∫
Rn yµ(dy), and running costs and terminal costs:

L0(x0, µ, u
0) = |x0 − Γ0⟨y⟩µ|2Q0

+ |u0|2R0
,

L(xi, x0, µ,u
i, u0) = |xi − Γ1x0 − Γ2⟨y⟩µ|2Q

+|ui|2R + |u0|2R1
+ 2uiTR2u

0,

g0(x0, µ) = |x0 − Γ0f ⟨y⟩µ|2Q0f
,

g(xi, x0, µ) = |xi − Γ1fx0 − Γ2f ⟨y⟩µ|2Qf
,

(6)

where |y|2M := yTMy for a symmetric matrix M ≥ 0. For this LQ model, Xj
t ∈ Rn and ujt ∈ Rn1

are, respectively, the state and control of Aj , 0 ≤ j ≤ N . The initial states {Xj
0 , 0 ≤ j ≤ N} are

independent with finite second moment. The Rn2 -valued Brownian motions {W j : 0 ≤ j ≤ N} are

mutually independent and also independent of the initial states.

The constant matrices A0, B0, F0, σ0, A,B,B1, F,G, σ, Γ0, Q0, R0, Γ1, Γ2, Q, R, R1, R2, Γ0f , Q0f ,

Γ1f , Γ2f , and Qf have compatible dimensions, where Q0, R0, Q, R, R1, Q0f , Qf are symmetric and

Q0 ≥ 0, Q ≥ 0, Q0f ≥ 0, Qf ≥ 0, R0 > 0, R > 0, R1 > 0. It is possible to consider a more general

form for JN+1
0 and JN+1

i . For instance, one may use |x0 −Γ0⟨y⟩µ − η0|2Q0
with a constant vector η0 in

JN+1
0 and similarly generalize JN+1

i . These more general cases can be easily handled by the method

developed in this paper.

A desirable solution of this dynamic Stackelberg game of N + 1 players is to seek some form

of low-complexity feedback strategies. With the N + 1 players, one might try a direct solution for

a Stackelberg–Nash equilibrium by dynamic programming. This direct solution, however, becomes

unfeasible for large N due to high complexity. Instead, we employ dynamic programming in the mean

field limit model consisting of the leader and a representative follower. This approach may be viewed

as the mean field counterpart of the feedback solution of Stackelberg games, and leads to the so-called

master equations. Master equations have been an important tool to analyze mean field games; see e.g.

[4, 7, 13, 17, 21, 44]. Preliminary results of our master equation-based approach have been presented

at the conferences [37, 59], and in this paper we provide complete analysis.

By our approach, the solution has time-consistency. In contrast, several other contributions study-

ing mean field Stackelberg games [6, 8, 33, 48] rely on calculus of variations or the stochastic maximum

principle, and the resulting equilibria do not have time-consistency. When a decision rule is time in-

consistent, a decision-maker lacking commitment will not stick to it under replanning in the future.

After the N + 1 players apply the master equation-based strategies φ0 and φ for the leader and

followers, respectively, a fundamental question is how to characterize the equilibrium properties of

these strategies. The resulting performance issue, however, becomes intricate. The difficulty stems

from the fact that the leader’s strategy φ0, while taking into account instantaneous reactions of all

followers, is not guaranteed a minimizer of its cost on [0, T ], denoted as J̄0(0, u
0, ψu0

), where ψu0

solves

the mean field game for all followers when u0 is announced (see (57)) for details).

To overcome the above difficulty with asymptotic equilibrium characterization, we adopt a method

of Ekeland and Lazrak [23] to view the game of N + 1 players as being played by a stream of short-

lived agents. Accordingly, we only need to consider control perturbation on infinitesimally small

time intervals rather than on the whole interval [0, T ]. Remarkably, the method of [23] was orig-

inally introduced to obtain time consistent policies for time-inconsistent optimal control problems.

The time inconsistency phenomena of decision problems were observed very early by economists; see

e.g. [1, 57] . Later Pollak [51] suggested an equilibrium approach for replanning at a set of discrete times,

where the decision maker at different stages is identified as a different entity acting non-cooperatively

with others. The extension of the above equilibrium approach to continuous time was developed only

much later by Ekeland and Lazrak [23] for optimal control problems with a non-exponential discount.

They introduced the notion of t-selves (the decision-maker labelled by time t) making decisions se-

quentially, and characterized a sub-game perfect equilibrium [23] by use of spike variations of the
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equilibrium policy. This sub-game perfect equilibrium approach was adopted in [22] to mean field

games without Markovian dynamics. For further references applying the technique in [23] to overcome

time-inconsistency in optimal control problems, see [9, 24, 25, 32, 61].

The main contributions of this paper are outlined as follows.

• For a mean field limit model of a leader and a representative follower, we introduce a pair of

master equations and give a necessary and sufficient condition, in terms of two Riccati ordinary

differential equations (ODEs), for the existence of a unique quadratic solution. The connection

with LQ mean field games is illuminated when the leader’s strategy is based on the master

equations and fixed and only the continuum of followers seek alternative strategies.

• To our best knowledge, this is the first contribution to achieve a time-consistent solution in

continuous-time mean field Stackelberg games.

• We use the solution of the master equations to construct decentralized strategies for the N + 1

players, and further evaluate their performance.

• Motivated by the Stackelberg–Nash equilibrium for N + 1 players, we introduce the notion

of εN -Stackelberg equilibrium, where each player’s feedback strategy is modified following the

procedure of Ekeland and Lazrak [23]. By considering agents alive on a short period and using

a spike variation of their strategies, we show that the set of decentralized strategies is an εN -

Stackelberg equilibrium.

1.4 Organization of the paper

The paper is organized as follows. Section 2 introduces the mean field limit model and master equa-

tions, which lead to a set of decentralized strategies. Section 3 analyzes quadratic solutions of the

master equations and determines existence and uniqueness of such solutions. Section 4 applies these

decentralized strategies to the finite-population model. Section 5 analyzes the performance of the

decentralized strategies and establishes an ϵ-Stackelberg equilibrium result. Section 6 concludes the

paper.

1.5 Notation

Let C2(Rn;R) be the set of twice continuously differentiable functions. Let C2
b (Rn;Rk) be the set of

Rk-valued functions h with continuous and bounded second order partial derivatives (so that h has at

most quadratic growth). For h ∈ C2(Rn;R), its gradient is denoted by ∂yh(y) or hy as a row vector,

and its Hessian by ∂2yh or hyy.

Denote ⟨µ, h⟩ =
∫
h(y)µ(dy), and ⟨y⟩µ =

∫
yµ(dy) for probability measure µ and function h if the

integral is finite. We may indicate dy as in ⟨µ(dy), h(x, y)⟩ when h involves more than one spatial

variable. Let P2(Rn) be the set of Borel probability measures on Rn with finite second moment.

On P2(Rn) we define the Wasserstein metric W2(µ, ν) = infγ∈Γ (µ,ν)(
∫
R2n |x − y|2γ(dx, dy))1/2, where

Γ (µ, ν) is the set of probability distributions on R2n that have µ, ν ∈ P2(Rn) as the marginals.

Then (P2(Rn),W2) is a complete metric space [13]. For a function h(t, x, µ), we follow [15] to define

(δh/δµ)(t, x, µ, y) as the derivative with respect to the measure µ when it exists, and will use the

short notation δµh(t, x, µ; y). Here δµ indicates differentiation and shall not be confused with the dirac

measure.

For a vector or matrix Y , its Frobenius norm is denoted by |Y |. For a symmetric matrixM ∈ Rn×n

and Y ∈ Rn×k, we denote JY K2M = Y TMY ; if we further have M ≥ 0 and y ∈ Rn, we denote

|y|2M = yTMy. For vectors and/or matrices, we sometimes write a product vw as v · w for ease of

reading, especially when the product involves long expressions.

Letting h(ϵ) be nonnegative and defined on [0, ϵ0] for some small ϵ0 > 0, we use Ok×l(h(ϵ)) to denote

a k× l matrix such that for a fixed constant C > 0, |Ok×l(h(ϵ))| ≤ Ch(ϵ) holds for all sufficiently small
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ϵ ≥ 0. Sometimes we drop k×l when the dimensions are clear from the context. If k = l = 1, we simply

write O(h(ϵ)) as O(h(ϵ)). For a function h1(ϵ), we write h1(ϵ) = o(h(ϵ)) if limϵ→0+ h1(ϵ)/h(ϵ) = 0. We

similarly define O(ck) and o(ck) for a sequence {ck, k ≥ 1}.

Let I and 0 be, respectively, identity matrices and zero matrices of compatible dimensions. For N

vectors Yk, 1 ≤ k ≤ N , of the same dimension, denote Y (N) = 1
N

∑N
k=1 Yk and Y (−k) = 1

N

∑N
j=1,j ̸=k Yj .

In some proofs, a vector or scalar function h(t) of t ∈ [0, T ] (such as P̂(t), r̂(t)) is sometimes written

as ht. Denote Σw = σσT and Σw0 = σ0σ
T
0 .

Throughout the paper, we use the agent index from {0, · · · , N} to label a variable, a process, a

function, and so on (for instance, Xi
s, u

0
t , Z

i
t , P0). They are always interpreted as a superscript, but

not as an exponent. We use C,C0, C1, etc, to denote generic constants, which do not depend on (t,N)

and may vary from place to place. When entries like ui, uF , etc, appear as an argument of a cost

functional (such as JN+1
0 (0, u0,uF )), they mean a control law or a strategy, not a vector in a Euclidean

space.

2 Mean field limit model and master equations

Based on the (N + 1)-player model specified by (1)–(6), we consider a mean field limit Stackelberg

game model which involves the leader A0 with state Z0
s and a representative follower Ai with state Zi

s.

The two players A0 and Ai have the mean field limit dynamics:

dZ0
s = f0(Z

0
s , µs, u

0
s)ds+ σ0dW

0
s , (7)

dZi
s = f(Zi

s, Z
0
s , µs, u

i
s, u

0
s)ds+ σdW i

s , (8)

where µs is the mean field generated at time s by a continuum of followers. For convenience of later

analysis, here we use s to denote time. The initial condition is given by (X0
0 , X

i
0). Equations (7)–(8)

are obtained from (1)–(2) after approximating µ
(N)
s by µs. The measure flow {µs, s ≥ 0} drives the

evolution of (Z0
s , Z

i
s).

For this two-player mean field model, we take (Z0
s , Z

i
s, µs) as the state variable. We consider

closed-loop perfect state (CLPS) information and adopt state feedback strategies of the form

u0s = ψ0(s, Z0
s , µs), uis = ψ(s, Zi

s, Z
0
s , µs), (9)

where we have ψ0 : [0, T ]× Rn × P2(Rn) → Rn1 and ψ : [0, T ]× R2n × P2(Rn) → Rn1 .

Following the consistent mean field approximation methodology in mean field games [36], below we

specify the dynamics of µs. We apply feedback strategies of the form (9) to (7)–(8) for 1 ≤ i ≤ N . So

(8) is replicated to generate N processes driven by independent Brownian motions. Let µ
(N)
s be the

empirical distribution of (Z1
s , · · · , ZN

s ). For h ∈ C2
b (Rn;R), by (8) and Itô’s formula we have

d⟨µ(N)
s , h⟩ =⟨µ(N)

s (dy), ∂yh(y) · f(y, Z0
s , µs, ψ(s, y, Z

0
s , µs), ψ

0(s, Z0
s , µs)) (10)

+ (1/2)Tr[∂2yh(y)Σw]⟩ds+
1

N

N∑
i=1

∂yh(Z
i
s) · σdW i

s .

The consistency condition stipulates that as N → ∞, µ
(N)
s has µs as its limit, and we formally

write (10) in a limit form, which is the following ODE in a weak form:

d

ds
⟨µs, h⟩ =⟨µs(dy), ∂yh(y) · f(y, Z0

s , µs, ψ(s, y, Z
0
s , µs), ψ

0(s, Z0
s , µs))

+ (1/2)Tr[∂2yh(y)Σw]⟩, (11)
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where the initial condition µ0 = µX
0 is determined by the initial states of the continuum of followers.

We call (11) the consistency condition. The pair of strategies (ψ0, ψ) is called admissible if the resulting

closed-loop system has a well-defined solution (Z0
s , Z

i
s, µs) for (7)–(8) and (11).

Let (u0, ui) be a pair of admissible feedback strategies defined on [0, T ]. Now consider (7)–(8)

and (11) with a general initial time t ∈ [0, T ) and initial states Z0
t = z0, Z

i
t = zi, µt = µ ∈ P2(Rn).

Define

J̄0(t, z0, µ, u
0, ui) = E

∫ T

t

L0(Z
0
s , µs, u

0
s)ds+ Eg0(Z0

T , µT ), (12)

J̄i(t, zi, z0, µ, u
i, u0) = E

∫ T

t

L(Zi
s, Z

0
s , µs, u

i
s, u

0
s)ds+ Eg(Zi

T , Z
0
T , µT ). (13)

Due to the arbitrary choice of zi and µ at time t, µs in general is not equal to the distribution (or the

conditional distribution given {Z0
τ , τ ≤ s}) of Zi

s.

Below we elaborate on the determination of the feedback strategies (u0∗, ui∗) = (φ0(t, z0, µ),

φ(t, zi, z0, µ)), if they exist, by dynamic programming equations. Let the value functions be

V0(t, z0, µ) = J̄0(t, z0, µ, u
0∗, ui∗), (14)

V (t, zi, z0, µ) = J̄i(t, zi, z0, µ, u
i∗, u0∗), (15)

where t ∈ [0, T ], z0, zi ∈ Rn, and µ ∈ P2(Rn).

2.1 Dynamic programming

For fixed vectors u0, ui, v ∈ Rn1 , define the following differential operators associated with the pro-

cesses (7)–(8):

(Lu0

0 h)(z0) = hz0(z0) · f0(z0, µ, u0) +
1

2
Tr[hz0z0(z0)Σw0 ], (16)

(Lui,u0

h)(zi) = hzi(zi) · f(zi, z0, µ, ui, u0) +
1

2
Tr[hzizi(zi)Σw], (17)

(Lv,u0

mf h)(y) = hy(y) · f(y, z0, µ, v, u0) +
1

2
Tr[hyy(y)Σw], (18)

where h ∈ C2(Rn;R). Here v is the control of a generic follower with state y from an infinite population.

Throughout Sections 2.1 and 2.2 we follow the rule in (16)–(18) as to which variable is used in the
differentiation.

We proceed to apply dynamic programming by assuming that the value functions (V0, V ) are well-

defined on [0, T ] with sufficient regularity. We introduce the HJB equation system
0 = ∂tV0(t, z0, µ) + Lu0∗

0 V0 + L0(z0, µ, u
0∗)

+⟨µ(dy), Lφ(t,y,z0,µ),u
0∗

mf δµV0(t, z0, µ; y)⟩,
0 = ∂tV (t, zi, z0, µ) + (Lu0∗

0 + Lui∗,u0∗
)V + L(zi, z0, µ, u

i∗, u0∗)

+⟨µ(dy), Lφ(t,y,z0,µ),u
0∗

mf δµV (t, zi, z0, µ; y)⟩,

(19)

where (t, zi, z0, µ) ∈ [0, T ]× Rn × Rn × P2(Rn),

V0(T, z0, µ) = g0(z0, µ), V (T, zi, z0, µ) = g(zi, z0, µ).

We still need to specify u0∗ = φ0(t, z0, µ) and u
i∗ = φ(t, zi, z0, µ) in terms of (V0, V ). The descrip-

tion of the procedure is postponed to Section 2.2.

We also call (19) the master equations. Here Lv,u0

mf acts on δµV0 and δµV via the y variable, with

(t, zi, z0, µ) fixed. Note that δµV0 and δµV have the extra independent variable y.
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Remark 2.1. For the master equations to be meaningful, we look for a solution pair (V0, V ) with those

properties: (i) for fixed µ ∈ P2(Rn), we have V0 ∈ C1,2([0, T ]×Rn) and V ∈ C1,2([0, T ]×R2n); (ii) the

functions δµV0, (δµV0)y, (δµV0)yy (resp., δµV , (δµV )y, (δµV )yy ) are continuous in (t, z0, µ, y) (resp.,

(t, zi, z0, µ, y)); (iii) the integrands for µ(dy) in (19), as a function of y, have quadratic growth.

If the strategies (u0∗, ui∗) = (φ0(t, z0, µ), φ(t, zi, z0, µ)) exist for the master equations in (19), they

are called mean field feedback Stackelberg strategies.

2.2 Selection of reaction functions

Step 1. For each vector u0 ∈ Rn1 , let ϕu
0

(t, y, z0, µ) be the instantaneous reaction function (with argu-

ments (t, y, z0, µ, u
0)) of a generic follower, where y is its state value. As a means to find ϕu

0

(t, y, z0, µ),

below we determine the reaction function ûi = ϕu
0

(t, zi, z0, µ) of the representative player Ai. Denote

H =L(zi, z0, µ, u
i, u0) + (Lu0

0 + Lui,u0

)V (t, zi, z0, µ)

+ ⟨µ(dy), Lϕu0
(t,y,z0,µ),u0

mf δµV (t, y, z0, µ; y)⟩,

We interpret −H as the Hamiltonian of Ai. Player Ai optimizes ui, which is only contained in L and

Lui,u0

V (t, zi, z0, µ). Since R > 0, the minimizer of H is determined by the first order condition:

ui = ϕu
0

(t, zi, z0, µ)

= −1

2
R−1[BT∂TziV (t, zi, z0, µ) + 2R2u

0], (20)

which is the instantaneous reaction of Ai to u
0 ∈ Rn1 given (t, zi, z0, µ).

Step 2. Next we consider the leader’s reaction when all followers have adopted ϕu
0

in (20) by matching

with their own states. In view of (19), denote

H0 =L0(z0, µ, u
0) + Lu0

0 V0(t, z0, µ)

+ ⟨µ(dy), Lϕu0
(t,y,z0,µ),u

0

mf δµV0(t, z0, µ; y)⟩.

Since R0 > 0, the minimizer of H0 is determined by the first order condition:

u0∗ = −1

2
R−1

0 [BT
0 ∂

T
z0V0(t, z0, µ) + B̃T

1 ⟨µ(dy), ∂Ty δµV0(t, z0, µ; y)⟩]

=: φ0(t, z0, µ), (21)

where

B̃1 = B1 −BR−1R2. (22)

Substituting (21) into (20) gives

ui∗ = −1

2
R−1BT∂TziV (t, zi, z0, µ) +

1

2
R−1R2R

−1
0 ·[

BT
0 ∂

T
z0V0(t, z0, µ) + B̃T

1 ⟨µ(dy), ∂Ty δµV0(t, z0, µ; y)⟩
]

=: φ(t, zi, z0, µ). (23)

Remark 2.2. The master equations in (19) can be formally derived by combining the local expansion of

the value function and the above reaction function selection in (21) and (23). We show how the integral

terms in (19) arise. Let u0 be fixed. On [t, t + ϵ] with the initial condition (zi, z0, µ) at t, we take

a Taylor expansion of V (t + ϵ, Zi
t+ϵ, Z

0
t+ϵ, µt+ϵ). In particular, we have the first order approximation

term ∫
Rn

δµV (t, zi, z0, µ; y)(µt+ϵ(dy)− µ(dy))
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= ϵ⟨µ(dy), ∂yδµV (t, zi, z0, µ; y) · f(y, z0, µ, v, u0)
+ (1/2)Tr

[
∂2yδµV (t, zi, z0, µ; y)Σw

]
⟩+ o(ϵ).

Subsequently, we determine the reaction functions so that the pair (u0, v) within f is taken as the

equilibrium strategies (φ0(t, z0, µ), φ(t, y, z0, µ)). The integral term in the equation of V0 arises for

similar reasons.

This section only constructs the equations in (19). The existence analysis for these equations will

be investigated in the next section.

The pair in (21) and (23) is called the mean field feedback Stackelberg strategies for the mean field

Stackelberg game specified by (7)–(8) and (12)–(13). Under the equilibrium strategies

in (21)–(23), we may further write the closed-loop dynamics for (Z0
s , Z

i
s, µs).

3 Quadratic solutions of the master equations

We exploit the linear-quadratic structure to write the master equations in a more explicit form. By (5)

and (6), we reduce (19) to the following two equations:

−∂tV0(t, z0, µ) = ∂z0V0 · (A0z0 + F0⟨y⟩µ) (24)

+
1

2
Tr

(
∂2z0V0Σw0) + |z0 − Γ0⟨y⟩µ|2Q0

+ ⟨µ(dy), ∂yδµV0(t, z0, µ; y) · (Ay + F ⟨y⟩µ +Gz0)⟩

− 1

2
⟨µ(dy), ∂yδµV0(t, z0, µ; y) ·BR−1BT∂Ty V (t, y, z0, µ)⟩

− 1

4

∣∣∣BT
0 ∂

T
z0V0 + B̃T

1 ⟨µ(dy), ∂Ty δµV0(t, z0, µ; y)⟩
∣∣∣2
R−1

0

+
1

2
Tr

[
⟨µ(dy), ∂2yδµV0(t, z0, µ; y)Σw⟩

]
,

−∂tV (t, zi, z0, µ) = ∂z0V · (A0z0 + F0⟨y⟩µ) + ∂ziV · (Azi + F ⟨y⟩µ +Gz0) (25)

− 1

4
∂ziV BR

−1BT∂TziV

+
1

2
Tr(∂2z0V Σw0 + ∂2ziV Σw) + |zi − Γ1z0 − Γ2⟨y⟩µ|2Q

+ ⟨µ(dy), ∂yδµV (t, zi, z0, µ; y) · (Ay + F ⟨y⟩µ +Gz0)⟩

− 1

2
⟨µ(dy), ∂yδµV (t, zi, z0, µ; y) ·BR−1BT∂Ty V (t, y, z0, µ)⟩

+
1

4

r
R−1

0

[
BT

0 ∂
T
z0V0 + B̃T

1 ⟨µ(dy), ∂Ty δµV0(t, z0, µ; y)⟩
]z2

R12

− 1

2

[
∂z0V0 ·B0 + ⟨µ(dy), ∂yδµV0(t, z0, µ; y)⟩B̃1

]
R−1

0 ·[
BT

0 ∂
T
z0V + B̃T

1

{
∂TziV + ⟨µ(dy), ∂Ty δµV (t, zi, z0, µ; y)⟩

}]
+

1

2
Tr

[
⟨µ(dy), ∂2yδµV (t, zi, z0, µ; y)Σw⟩

]
,

where

R12 = R1 −RT
2 R

−1R2, (26)

and the terminal conditions are

V0(T, z0, µ) = |z0 − Γ0f ⟨y⟩µ|2Q0f
,

V (T, zi, z0, µ) = |zi − Γ1fz0 − Γ2f ⟨y⟩µ|2Qf
.
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Denote z0 = (zT0 , z̄
T )T ∈ R2n and z = (zTi , z

T
0 , z̄

T )T ∈ R3n, where z̄ = ⟨y⟩µ. We are interested in

solutions of the form

V0(t, z0, µ) = zT0 P0(t)z0 + r0(t), (27)

V (t, zi, z0, µ) = zTP(t)z+ r(t), 0 ≤ t ≤ T, (28)

where P0 and P are symmetric matrix functions of t ∈ [0, T ] and have the partition

P0 = (P 0
kl)1≤k,l,≤2, P = (Pkl)1≤k,l≤3.

Each submatrix P 0
kl or Pkl has dimensions n × n. Moreover, r0(t) and r(t) are functions from [0, T ]

to R.
Definition 3.1. We call the pair (V0, V ) in (27)–(28) a quadratic solution for master Equations (24)–

(25) if the pair satisfies (24)–(25).

Denote

A0(t) =

[
A0 F0

G−BR−1BTP12 A+ F −BR−1BT (P11 + P13)

]
,

A(t) =
[
A (G,F )
0 A0

]
, B0 =

[
B0

B̃1

]
, B =

[
B

02n×n1

]
B1 =

[
B̃1

B0

]
,

J1 = [02n×n, I2n],

where B̃1 is given by (22). Let R12 be defined by (26). We introduce the Riccati ODE system:

−Ṗ0 =P0A0 + AT
0 P0 − P0B0R

−1
0 BT

0 P0 + J(I,−Γ0)K2Q0
, (29)

−Ṗ =PA+ ATP− PBR−1BTP+ J(I,−Γ1,−Γ2)K2Q (30)

− PB1R
−1
0 BT

0 P0J1 − JT1 P0B0R
−1
0 BT

1 P
+ JT1 P0B0R

−1
0 R12R

−1
0 BT

0 P0J1,

where

P0(T ) =J(I,−Γ0f )K2Q0f
, P(T ) = J(I,−Γ1f ,−Γ2f )K2Qf

.

Note that the coefficient matrices A0 and A depend on P. We further introduce the following ODEs:

−ṙ0 = Tr(P 0
11Σw0), r0(T ) = 0, (31)

−ṙ = Tr(P22Σw0 + P11Σw), r(T ) = 0. (32)

Remark 3.2. If the system (29)–(30) admits a solution (P0,P) on [0, T ], the solution is unique since

the vector field of the ODE system is locally Lipschitz along the solution trajectory. Subsequently, we

further obtain a unique solution (r0, r) on [0, T ].

Theorem 3.3. The master equation system (24)–(25) has a quadratic solution of the form (27)–(28)

on [0, T ] if and only if (P0,P) is a solution of (29)–(30) on [0, T ].

Proof. See appendix A.

If (P0,P) is a solution of (29)–(30), we construct the quadratic solution (27)–(28), which has the

regularity properties in Remark 2.1.
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3.1 Feedback strategies

We proceed to analyze the closed-loop systems under feedback strategies. Although the master equa-

tions give the control laws as a function of the agent states and the mean field µ, it turns out we only

need to use the first moment of µ, which simplifies the computation and implementation of the control

laws.

Proposition 3.4. Suppose that the system (29)–(30) has a solution (P0,P) on [0, T ]. Then for master

equations in (19), the pair

φ0(t, z0, µ) = K0
1z0 +K0

2 ⟨y⟩µ, (33)

φ(t, zi, z0, µ) = K1zi +K2z0 +K3⟨y⟩µ, (34)

t ∈ [0, T ], z0, zi ∈ Rn, µ ∈ P2(Rn),

gives mean field feedback Stackelberg strategies, where

[K0
1 ,K

0
2 ] = −R−1

0 BT
0 P0, (35)

[K1,K2,K3] = −R−1BTP+R−1R2R
−1
0 BT

0 P0J1. (36)

Proof. If (29)–(30) admits a solution (P0,P) on [0, T ], the master equation system (24)–(25) has a

unique quadratic solution (27)–(28) by Theorem 3.3 and Remark 3.2. We substitute (27)–(28) into

(21) and (23) to obtain (33)–(34).

The feedback strategies are implemented using the actual states (Zi
t , Z

0
t , µt) of the mean field limit

model. The resulting control laws take the form

u0∗t = K0
1Z

0
t +K0

2 ⟨y⟩µt
, (37)

ui∗t = K1Z
i
t +K2Z

0
t +K3⟨y⟩µt

, (38)

and Z̄t := ⟨y⟩µt
satisfies the following equation

˙̄Zt = [A+ F +B(K1 +K3) +B1K
0
2 ]Z̄t

+ (G+BK2 +B1K
0
1 )Z

0
t . (39)

The initial condition is Z̄0 = ⟨y⟩µX
0
, where µX

0 is the limit empirical state distribution of the followers.

The ODE of Z̄t is constructed from (11) by taking h(y) = y and setting the control laws ψ0 = u0∗ and

ψ = ui∗. The process Z̄t is interpreted as the average state of the continuum of followers.

Below we evaluate the costs under the equilibrium strategies (37)–(38). We take a general initial

condition (t, zi, z0, z̄) for the system

dZi
s = (AZi

s +Bui∗s +B1u
0∗
s + FZ̄s +GZ0

s )ds+ σdW i
s , (40)

dZ0
s = (A0Z

0
s +B0u

0∗
s + F0Z̄s)ds+ σ0dW

0
s , (41)

˙̄Zs = [A+ F +B(K1 +K3) +B1K
0
2 ]Z̄s + (G+BK2 +B1K

0
1 )Z

0
s , (42)

s ∈ [t, T ],

which has a unique strong solution. Under the equilibrium strategies, the costs in (12)–(13) are now

written as

J̄∗
0 (t, z0, z̄) = E

∫ T

t

(|Z0
s − Γ0Z̄s|2Q0

+ |u0∗s |2R0
)ds+ E|Z0

T − Γ0f Z̄T |2Q0f
(43)

J̄∗
i (t, zi, z0, z̄) = E

∫ T

t

(
|Zi

s − Γ1Z
0
s − Γ2Z̄s|2Q + |ui∗s |2R + |u0∗s |2R1

(44)

+ 2ui∗Ts R2u
0∗
s

)
ds+ E|Zi

T − Γ1fZ
0
T − Γ2f Z̄T |2Qf

.
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Proposition 3.5. Assume that the system (29)–(30) has a solution (P0,P) on [0, T ]. Then we have{
J̄∗
0 (t, z0, z̄) = zT0 P0(t)z0 + r0(t),

J̄∗
i (t, zi, z0, z̄) = zTP(t)z+ r(t),

(45)

where z0 = (zT0 , z̄
T )T ∈ R2n and z = (zTi , z

T
0 , z̄

T )T ∈ R3n.

Proof. The representation in (45) follows from setting µ = δz̄ in V0(t, z0, µ) and V (t, zi, z0, µ).

Remark 3.6. An alternative method can be used to obtain the cost representation in Proposition 3.5.

Let (P0, r0) be given. By Lemma B.1, we write J̄∗
0 (t, z0, z̄) = zT0 P̄0(t)z0 + r̄0(t), where P̄0 and r̄0 are

determined by two linear ODEs with a unique solution. Specifically, we have

− ˙̄P0 = P̄0Ã0 + ÃT
0 P̄0 + J(I,−Γ0)K2Q0

+ J(K0
1 ,K

0
2 )K

2
R0
,

P̄0(T ) = J(I,−Γ0f )K2Q0f
,

where Ã0 is the coefficient matrix of (Z0
s , Z̄s) for the equation system (41)–(42). Then we can verify

that P0 is a solution for the ODE of P̄0. Furthermore, we can take the solution r̄0 = r0. Hence this

verifies the first equality in (45). We similarly re-derive the expression of J̄∗
i .

3.2 A further characterization of strategies of followers

Suppose that the leader announces its strategy u0∗t = K0
1Z

0
t +K

0
2 Z̄t for the time interval [0, T ]. We let

the continuum of followers re-choose their strategies to solve a mean field game. A natural question is

what strategies the followers will take.

Consider the representative agent Ai with control ui when the leader applies u0∗t and the continuum

of other followers have generated a mean field process Z̄t. In this case, player Ai solves an optimal

control problem with dynamics

d

Zi
t

Z0
t

Z̄t

 = A

Zi
t

Z0
t

Z̄t

 dt+ Buitdt+

 σdW i
t

σ0dW
0
t

0

 , 0 ≤ t ≤ T, (46)

where Zi
0 = Xi

0, Z
0
0 = X0

0 , Z̄0 = ⟨y⟩µX
0
, and

A =

A G+B1K
0
1 F +B1K

0
2

0 A0 +B0K
0
1 F0 +B0K

0
2

0 G A

 , B =

[
B

02n×n1

]
. (47)

In the above, K0
1 and K0

2 are known and defined by (35). The matrix functions A(t) and G(t) will

be determined below as part of the solution of the mean field game. The equations of (Zi
t , Z̄t) within

(46) have been modified from (40) and (42) by setting a general control uit.

The cost functional of player Ai is given by

J̄mfg
i (ui) = E

∫ T

0

[
|Zi

t − Γ1Z
0
t − Γ2Z̄t|2Q + |K0

1Z
0
t +K0

2 Z̄t|2R1
(48)

+ |uit|2R + 2uiTt R2(K
0
1Z

0
t +K0

2 Z̄t)
]
dt

+ E|Zi
T − Γ1fZ

0
T − Γ2f Z̄T |2Qf

,

which is constructed from (44) after taking initial condition (0, zi, z0, z̄) and replacing control ui∗t by

uit. Due to the last term in the integrand, the control problem may be indefinite.
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The solution procedure of the mean field game consists of two steps.

Step 1. Assume that (A,G) has been known. We start by introducing the following Riccati equation

−Ṗ(t) = PA+ ATP− PBR−1BTP (49)

− PBR−1R2[0,K
0
1 ,K

0
2 ]− [0,K0

1 ,K
0
2 ]

TRT
2 R

−1BTP
+ J(I,−Γ1,−Γ2)K2Q + J(0,K0

1 ,K
0
2 )K

2
R1

− J(0,K0
1 ,K

0
2 )K

2
RT

2 R−1R2
,

P(T ) = J(I,−Γ1f ,−Γ2f )K2Qf
.

This Riccati equation is derived by a formal application of dynamic programming to the optimal

control problem specified by (46) and (48). If (49) has a solution on [0, T ], the optimal control law is

given by

uit = −R−1(BTP+R2[0,K
0
1 ,K

0
2 ])Zt, (50)

where Zt = [ZiT
t , Z0T

t , Z̄t]
T .

Step 2. After determining P, denote

[K1,K2,K3] = −R−1(BTP+R2[0,K
0
1 ,K

0
2 ]). (51)

Now following the method in [34, sec 4.3] we impose the consistency condition{
A = A+ F +B1K

0
2 +B(K1 +K3),

G = G+B1K
0
1 +BK2.

(52)

This condition is due to the requirement that Z
(N)
t , as the average of the closed-loop states (Z1

t , · · · , ZN
t )

of N agents under the best response control laws ūi, should regenerate Z̄t in (46) as N → ∞.

Finally the solution of the mean field game reduces to a solution of (49) subject to (47) and (52).

Proposition 3.7. If the ODE system (29)–(30) has a solution (P0,P) on [0, T ], then the mean field

game solution system consisting of (49), (47) and (52) has a unique solution as P = P. Moreover, ūit
in (50) is the equilibrium strategy and is equivalent to ui∗t in (38).

Proof. We rewrite (49) in the equivalent form

−Ṗ(t) = P{A− BR−1BTP− BR−1R2[0,K
0
1 ,K

0
2 ]} (53)

+ {A− BR−1BTP− BR−1R2[0,K
0
1 ,K

0
2 ]}TP

+ PBR−1BTP+ J(I,−Γ1,−Γ2)K2Q + J(0,K0
1 ,K

0
2 )K

2
R1

− J(0,K0
1 ,K

0
2 )K

2
RT

2 R−1R2
.

Next we write equation (30) in the equivalent form

−Ṗ = P(A− BR−1BTP− B1R
−1
0 BT

0 P0J1) (54)

+ (A− BR−1BTP− B1R
−1
0 BT

0 P0J1)TP+ PBR−1BTP
+ JT1 P0B0R

−1
0 R12R

−1
0 BT

0 P0J1 + J(I,−Γ1,−Γ2)K2Q,
P(T ) = J(I,−Γ1f ,−Γ2f )K2Qf

.

With P0 and P as given functions, we may use (35) to show

J(0,K0
1 ,K

0
2 )K

2
R1

− J(0,K0
1 ,K

0
2 )K

2
RT

2 R−1R2
(55)

= JT1 P0B0R
−1
0 R12R

−1
0 BT

0 P0J1.
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Now we take P as a candidate solution of P. After setting P = P for (51)–(52) to determine A, we
can directly show

A− BR−1R2[0,K
0
1 ,K

0
2 ] = A− B1R

−1
0 BT

0 P0J1. (56)

As a result, if we take P = P, the equality in (53) holds. Therefore, (49) has a solution given as P.
Its solution is clearly unique by the local Lipschitz property of the vector field in (49), where (A,G)

contained in A is expressed in term of P via (51)–(52).

Once we have determined P, for the best response optimal control problem of Step 1, we can show

optimality of uit in (50) using the method of completion-of-squares of the cost functionals; see [52,

Corollary 3.2]. Since P = P, we see that uit and ui∗t are the same feedback law. In other words, the

strategy ui∗t is the solution of the mean field game among the followers.

Remark 3.8. When u0∗t has been fixed and the game is played only among the followers, the strategy

ui∗t becomes a mean field Nash equilibrium in the sense (i) that ui∗t is the optimal control with dy-

namics (46) and cost (48), and (ii) that Z̄t has been generated by a continuum of followers applying

ui∗ with their own states.

Proposition 3.7 shows that φ = ui∗ minimizes J̄mfg
i among all feedback control laws defined on

[0, T ] as long as the closed-loop system has a well-defined solution. The leader’s optimizing behavior,

however, is different. Let the initial condition at time 0 be (Z0
0 , µ0). Based on (12), denote the cost

of the leader by J̄0(0, ψ
0, ψ), which is integrated on [0, T ]. In general, the leader’s strategy φ0 = u0∗

does not have a global minimizer property, resulting in

J̄0(0, φ
0, φ) > inf

u0
J̄0(0, u

0, ψu0

), (57)

for feedback strategies u0(t, z0, µ), where ψ
u0

(t, zi, z0, µ) is the strategy of the mean field game of the

followers when u0(t, z0, µ) is announced for [0, T ]. Thus it is possible for the leader to strictly improve

for itself by taking a strategy u0 different from φ0. For standard dynamic Stackelberg games, it is well-

known that the feedback solution is different from the global Stackelberg solution, where the leader’s

equilibrium strategy is a global minimizer while taking into account the follower’s optimal response,

and which cannot be solved by dynamic programming [3, p. 413]. Similarly, the determination of the

global optimizer u0opt for the right hand side of (57) needs to anticipate the solution of the mean field

game on [0, T ], and so cannot be achieved by dynamic programming as used in finding (φ0, φ).

4 Decentralized strategies for the N + 1 players

We introduce the following assumptions.

Assumption 1. The ODE system (29)–(30) has a solution (P0,P) on [0, T ].

Assumption 2. The initial states {Xj
0 , j ≤ N} are independent and satisfy

sup
N

max
j≤N

E|Xj
0 |2 ≤ CX

0 , lim
N→∞

1

N

N∑
i=1

EXi
0 = mX

0 .

Based on strategies (37)–(38) for the mean field limit model, we construct decentralized strategies

(û0, û1, · · · , ûN ) for the (N + 1)-player model (1)–(6) as follows. The idea is to replace Z̄t in (39) by

a new process Xt:

Ẋt = [A+ F +B(K1 +K3) +B1K
0
2 ]Xt (58)

+ (G+BK2 +B1K
0
1 )X

0
t ,
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where X0
t is now generated by the (N + 1)-player model and we take the initial condition X0 = mX

0 .

For (1)–(6), denote the strategies

û0t = K0
1X

0
t +K0

2Xt, (59)

ûit = K1X
i
t +K2X

0
t +K3Xt, 1 ≤ i ≤ N. (60)

These strategies are called decentralized since each follower uses the state information (Xi
t , X

0
t , Xt)

and the leader uses (X0
t , Xt), instead of the overall state vector of a high dimensional system.

Denote

Â11 = A+BK1, Â12 = G+BK2 +B1K
0
1 ,

Â13 = F, Â14 = BK3 +B1K
0
2 ,

Â22 = A0 +B0K
0
1 , Â23 = F0, Â24 = B0K

0
2 ,

Â32 = Â12, Â33 = A+ F +BK1, Â34 = Â14,

Â42 = Â12, Â43 = 0, Â44 = A+ F +B(K1 +K3) +B1K
0
2 ,

and

Â0 = (Âkl)2≤k,l≤4, Â =

[
Â11 [Â12, Â13, Â14]

0 Â0

]
. (61)

Under the set of strategies (59)–(60) for (1)–(6) on [0, T ], we use X̂0
t and X̂i

t , 1 ≤ i ≤ N , to denote the

closed-loop state processes. Further denote X̂
(N)
t = 1

N

∑N
k=1 X̂

k
t and W

(N)
t = 1

N

∑N
k=1W

k
t . Fixing

i ∈ {1, · · · , N}, we obtain

d


X̂i

t

X̂0
t

X̂
(N)
t

X̂t

 = Â


X̂i

t

X̂0
t

X̂
(N)
t

X̂t

 dt+

σdW i

t

σ0dW
0
t

σdW
(N)
t

0

 , (62)

where X̂t is given by (58) after replacing X0
t by X̂0

t . The initial states are X̂j
0 = Xj

0 for 0 ≤ j ≤ N ,

and X0 = mX
0 . The linear SDE system (62) admits a unique strong solution on [0, T ].

Lemma 4.1. Under Assumptions 1 and 2, for system (62), we have

sup
t∈[0,T ]

E|X̂(N)
t − X̂t|2 ≤ C

(
E|X(N)

0 −mX
0 |2 + 1/N

)
, (63)

where the constant C is independent of N .

Proof. From (62) we obtain

d(X̂
(N)
t − X̂t) = (A+ F +BK1)(X̂

(N)
t − X̂t)dt+ σdW

(N)
t .

We apply Itô’s formula to get

E|X̂(N)
t − X̂t|2 =E|X(N)

0 −mX
0 |2 + t|σ|2/N

+ 2

∫ t

0

E[(X̂(N)
s − X̂s)

T (A+ F +BK1)(X̂
(N)
s − X̂s)]ds.

Then (63) follows from elementary SDE estimates with Grönwall’s lemma.
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4.1 Costs under decentralized strategies

Subsequently, we evaluate the performance of A0 and Ai among the N + 1 players. Here the initial

condition has been given as Xj
0 , 0 ≤ j ≤ N . Our method is to embed the cost evaluation problem into

a family of problems with different initial conditions as in dynamic programming. The key observation

is that if the term X̂(N) in (62) is not defined as 1
N

∑N
k=1 X̂

k
t but instead specified as an independent

component of the state vector of the SDE (62), the resulting SDE is still well-defined on [t0, T ] as long

as an initial condition is selected at t0 ∈ [0, T ].

For convenience of specifying the cost functionals below, we use a set of new variables (Zi
s, Z

0
s , Ẑs, Zs)

to rewrite (62) as follows:

d


Zi
s

Z0
s

Ẑs

Zs

 = Â


Zi
s

Z0
s

Ẑs

Zs

 ds+

σdW i

s

σ0dW
0
s

σdW
(N)
s

0

 , (64)

with initial condition Zi
t = zi, Z

0
t = z0, Ẑt = ẑ, and Zt = z̄ at time t ∈ [0, T ]. The above variables

(Zi
s, Z

0
s , Zs) are used as generic notation and are different from those in (40)–(42). This reuse of

notation shall cause no confusion. Here we take arbitrary zi, z0, ẑ, z̄ ∈ Rn. Denote ǔ0s = K0
1Z

0
s +K

0
2Zs

and ǔis = K1Z
i
s +K2Z

0
s +K3Zs. Define

V̂0(t, z0, ẑ, z̄) =E
∫ T

t

(|Z0
s − Γ0Ẑs|2Q0

+ |ǔ0s|2R0
)ds+ E|Z0

T − Γ0f ẐT |2Q0f
, (65)

V̂ (t, zi, z0, ẑ, z̄) =E
∫ T

t

(
|Zi

s − Γ1Z
0
s − Γ2Ẑs|2Q + |ǔis|2R + |ǔ0s|2R1

(66)

+ 2ǔiTs R2ǔ
0
s

)
ds+ E|Zi

T − Γ1fZ
0
T − Γ2f ẐT |2Qf

.

Under Assumption 1, V̂0 and V̂ are well-defined for t ∈ [0, T ].

Denote ẑ0 = (zT0 , ẑ
T , z̄T )T and ẑ = (zTi , z

T
0 , ẑ

T , z̄T )T . Below we will determine V̂0 and V̂ in the

form

V̂0(t, z0, ẑ, z̄) = ẑT0 P̂0(t)ẑ0 + r̂0(t), (67)

V̂ (t, zi, z0, ẑ, z̄) = ẑT P̂(t)ẑT + r̂(t), (68)

where P̂0(t) and P̂(t) are symmetric matrix functions with the partition

P̂0 = (P̂ 0
kl)1≤k,l≤3, P̂ = (P̂kl)1≤k,l≤4.

Each submatrix above is a function of t ∈ [0, T ] with value in Rn×n. To determine V̂0 and V̂ , we

introduce the following linear ODE system:

− d

dt
P̂0 = P̂0Â0 + ÂT

0 P̂0 + J(K0
1 , 0,K

0
2 )K

2
R0

+ J(I,−Γ0, 0)K2Q0
, (69)

− d

dt
P̂ = P̂Â+ ÂT P̂+ J(I,−Γ1,−Γ2, 0)K2Q (70)

+ J(K1,K2, 0,K3)K2R + J(0,K0
1 , 0,K

0
2 )K

2
R1

+ (K1,K2, 0,K3)
TR2(0,K

0
1 , 0,K

0
2 )

+ (0,K0
1 , 0,K

0
2 )

TRT
2 (K1,K2, 0,K3),

− d

dt
r̂0 = Tr[P̂ 0

11Σw0 + (1/N)P̂ 0
22Σw], (71)

− d

dt
r̂ = Tr{[P̂11 + (1/N)(P̂33 + 2P̂13)]Σw}+Tr(P̂22Σw0), (72)
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where terminal conditions are

P̂0(T ) = J(I,−Γ0, 0)K2Q0
, P̂(T ) = J(I,−Γ1,−Γ2, 0)K2Q,

r̂0(T ) = r̂(T ) = 0.

The matrix functions (K0
1 ,K

0
2 ,K1,K2,K3) in (69)–(70) have been defined by (35)–(36).

Lemma 4.2. Under Assumption 1, the ODE system (69)–(72) has a unique solution (P̂0, P̂, r̂0, r̂) on

[0, T ], and the functions V̂0 and V̂ in (65)–(66) have the representation (67)–(68).

Proof. Once (P0,P) is given, we find a unique solution (P̂0, P̂) on [0, T ] from two linear ODEs with

bounded coefficients, and further uniquely obtain (r̂0, r̂) on [0, T ]. The last part of the lemma follows

from Lemma B.1.

Lemma 4.3. Under Assumption 1, the solution (P̂0, P̂) of (69)–(70) satisfies

P0(t) = JT2 P̂0(t)J2, P(t) = JT3 P̂(t)J3, for all t ∈ [0, T ]. (73)

where

J2 =

[
I2n

[0n×n, In]

]
, J3 =

[
I3n

[0n×n, 0n×n, In]

]
.

Proof. For the purpose of relating (P̂0, P̂) to (P0,P), it is sufficient to consider the special case of

deterministic dynamics. We evaluate the costs by taking σ = 0, σ0 = 0, and initial conditions

(t, zi, z0, z̄) in system (40)–(42) and (t, zi, z0, z̄, z̄) in system (64). In this case, we evaluate J̄∗
0 , J̄

∗
i in

(44)–(43) and V̂0, V̂ in (65)–(66) without using expectation. Then we easily see that the pair (Zi
s, Z

0
s )

is the same in both systems. Moreover, we have Z̄s = Ẑs = Zs for all s ∈ [t, T ]. Subsequently, we have

J̄∗
0 (t, z0, z̄) = V̂0(t, z0, z̄, z̄) for all t ∈ [0, T ], z0, z̄ ∈ Rn, (74)

since they use the same cost integrand and terminal cost.

On the other hand, by Proposition 3.5 and Lemma 4.2, when σ = 0 and σ0 = 0, we have

J̄∗
0 (t, z0, z̄) = (zT0 , z̄

T )P0(t)

[
z0
z̄

]
, (75)

V̂0(t, z0, z̄, z̄) = (zT0 , z̄
T , z̄T )P̂0(t)

z0z̄
z̄

 = (zT0 , z̄
T )JT2 P̂0(t)J2

[
z0
z̄

]
. (76)

Since z0 and z̄ are arbitrary, the first part of the lemma follows from (74)–(76). The second part is

proved in a similar manner.

The following theorem compares the costs of the finite population under the decentralized strate-

gies (59)–(60) with the costs in (45) for the mean field limit model. The mean field limit model

only involves the leader A0 and the representative follower Ai with initial condition (X0
0 , X

i
0,m

X
0 ) at

t = 0. Recall that we take X0 = mX
0 . We evaluate JN+1

k , 0 ≤ k ≤ N , with the initial condition

(X0
0 , X

1
0 , · · · , XN

0 ) and X0. For J̄
∗
0 and J̄∗

i we set the initial condition (X0
0 , X

i
0,m

X
0 ).

Theorem 4.4. Under Assumptions 1 and 2, if the decentralized strategies û0 and ûF = (û1, · · · , ûN )

in (59)–(60) are applied to the (N + 1)-player model (1)–(6), then we have

|JN+1
0 (0, û0, ûF )− J̄∗

0 (0, X
0
0 ,m

X
0 )| (77)

= O((E|X(N)
0 −mX

0 |2)1/2 + 1/N),

|JN+1
i (0, ûi, û0, ûF,−i)− J̄∗

i (0, X
i
0, X

0
0 ,m

X
0 )| (78)

= O((E|X(N)
0 −mX

0 |2)1/2 + 1/N).
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Proof. It follows from (67), (27) and (73) that

JN+1
0 (0, û0, ûF )− J̄∗

0 (0, X
0
0 ,m

X
0 )

= E
{
[X0T

0 , X
(N)T
0 , X

T

0 ]P̂0(0)[X0T
0 , X

(N)T
0 , X

T

0 ]
T + r̂0(0)

}
− E

{
[X0T

0 , X
T

0 ]P0(0)[X0T
0 , X

T

0 ]
T + r0(0)

}
= E

{
[X0T

0 , X
(N)T
0 , X

T

0 ]P̂0(0)[X0T
0 , X

(N)T
0 , X

T

0 ]
T + r̂0(0)

}
− E

{
[X0T

0 , X
T

0 , X
T

0 ]P̂0(0)[X0T
0 , X

T

0 , X
T

0 ]
T − r0(0)

= E
{
[0, X

(N)T
0 −X

T

0 , 0]P̂0(0)[2X0T
0 , X

T

0 +X
(N)T
0 , 2X

T

0 ]
T
}

+ r̂0(0)− r0(0).

Note that (73) implies P̂ 0
11 = P 0

11 on [0, T ]. So comparing (31) and (71), by Grönwall’s lemma we have

that supt∈[0,T ] |r̂0(t) − r0(t)| = O(1/N). The estimate (77) then follows. The estimate (78) can be

shown in a similar manner.

4.2 Improving performance via alternative strategies

For the N + 1 player model, suppose u0 is fixed as û0 for the leader. Player Ai attempts a different

strategy ui ∈ Uc consisting of feedback control laws of the form ψ(t,X0
t , · · · , XN

t , Xt) which is continu-

ous in its arguments (t, x0, · · · , xN , x̄) ∈ [0, T ]×R(N+2)n and is Lipschitz continuous in (x0, · · · , xN , x̄).
We have the following ϵ-Nash equilibrium property for (û1, · · · , ûN ).

Proposition 4.5. Under Assumptions 1 and 2, we have

JN+1
i (0, ûi, û0, ûF,−i) ≤ inf

ui∈Uc
JN+1
i (0, ui, û0, ûF,−i) + εN , 1 ≤ i ≤ N, (79)

where εN ≤ C[(E|X(N)
0 −mX

0 |2)1/2 + 1/
√
N ].

Proof. We have the key observation from Proposition 3.7 that ui∗t in (38) is the solution of a mean

field game (with a continuum of players) and that ûit is based on ui∗t by using the states (Xi
t , X

0
t , Xt).

Then we follow the standard method (see e.g. [34, sec 6]) to estimate the performance in the model of

N followers. The detail is routine and omitted here.

5 Asymptotic equilibrium in finite populations

We proceed to analyze the performance of the decentralized strategies (59)–(60) applied to the (N+1)-

player game. In this case one expects that an asymptotic Stackelberg equilibrium property holds as

N → ∞. But the lack of global optimality of u0∗ = φ0 for minimizing J̄0(0, u
0, ψu0

) (see (57)) implies

that we should not attempt to identify an equilibrium by testing strategies that allow modification on

the whole interval [0, T ]. To seek a feasible equilibrium concept, we adopt the idea of t-selves suggested

in [23] so that each player Ai is distinguished as a different agent at differen time instants. At time t,

the player is called the t-Ai agent. Therefore the game is played by a stream of N +1 t-indexed agents

as incarnations of the original N + 1 players.

To characterize the equilibrium of the t-indexed agents, one may try to relate the selection of

(u0∗, ui∗) to an optimization problem of N + 1 agents alive only at time t. Such an optimization

problem is, however, not meaningful if we only consider a single point of time. To overcome this

difficulty, following [23], we consider a very small time interval as the following. Given the system

initial condition at t, for each i, a coalition of followers denoted by A[t,t+ϵ]
i , consisting of all s-Ai

agents, s ∈ [t, t+ ϵ], optimizes its cost defined on [t, T ] while it only acts on [t, t+ ϵ]. Then we check

how the controls of the N + 1 coalitions on that small interval behave as ϵ approaches 0.
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5.1 Decentralized feedback strategies and spike variation

Consider the following system

dX0
s = (A0X

0
s +B0u

0
s + F0X

(N)
s )ds+ σ0dW

0
s , (80)

dXi
s = (AXi

s +Buis +B1u
0
s + FX(N)

s +GX0
s )ds+ σdW i

s , (81)

dXs = f̄(s,X0
s , Xs)ds, X0 = mX

0 , 1 ≤ i ≤ N, 0 ≤ s ≤ T, (82)

where the initial states {Xj
0 , 0 ≤ j ≤ N} satisfy Assumption 2. Denote Xc

s = (X0
s , X

1
s , · · · , XN

s , Xs),

where the superscript in Xc
s indicates centralized information. For specifying strategies of interest, we

regard f̄ : [0, T ] × R2n → Rn as part of the strategy design, and for convenience of presentation will

call it a control.

Our plan here is to specify a class of feedback strategies that contains the set of decentralized

strategies (59)–(60) and serves as a space to search for an asymptotic equilibrium to be introduced

subsequently. We take u0 and ui, 1 ≤ i ≤ N , as decentralized strategies of the form: u0 = ψ0(s,X0
s , Xs)

and ui = ψ(s,Xi
s, X

0
s , Xs), where ψ is shared by all followers as N increases. We call (u0,uF , f̄) a set

of admissible decentralized (feedback) strategies if the following conditions hold: (i) the functions f̄ ,

ψ0, and ψ are continuous, and Lipschitz continuous in their spatial variables (i.e., those for Xj
s , Xs);

(ii) sup0≤s≤T E|X(N)
s −Xs|2 = o(1) as N → ∞. Condition (ii) is due to the consistency requirement

that Xs be an approximation of X
(N)
s .

Let Ufd
0,T consist of all (u0,uF , f̄), each as a set of admissible decentralized strategies defined on

[0, T ]. When f̄ is already given, we also say that (u0,uF ) is in Ufd
0,T and is a set of admissible

decentralized strategies.

Suppose that (u0,uF , f̄) ∈ Ufd
0,T is chosen for (80)–(82), which generates a unique solution Xc

s ,

s ∈ [0, T ]. At time t, taking the initial condition Xc
t , we define the costs:

JN+1
0 (t,Xc

t , u
0,uF , f̄) =E

∫ T

t

L0(X
0
s , µ

(N)
s , u0s)ds+ Eg0(X0

T , µ
(N)
T ), (83)

JN+1
i (t,Xc

t , u
i, u0,uF,−i, f̄) =E

∫ T

t

L(Xi
s, X

0
s , µ

(N)
s , uis, u

0
s)ds (84)

+ Eg(Xi
T , X

0
T , µ

(N)
T ), 1 ≤ i ≤ N.

Now, under (u0,uF , f̄) ∈ Ufd
0,T and with the initial condition (t,Xc

t ), we introduce two types of

perturbed strategies. Denote f̄s = f̄(s,X0
s , Xs).

(a) On [t, t+ ϵ], for a single player Ai, we set uis = vi.

(b) On [t, t+ ϵ], the set of controls (u0s, · · · , uNs , f̄s) is replaced by (v0, · · · , vN , f̌s), where f̌s is used

as a new drift term for Xs in (82).

Case (a). For the single player Ai, we take

ui,ϵs :=

{
vi, s ∈ [t, t+ ϵ],

uis, s ∈ [0, T ] \ [t, t+ ϵ],

with vi being represented as a Borel measurable function of Xc
t and E|vi|2 <∞. Such a random vector

vi is called admissible. The other components uF,−i and f̄ remain the same. We accordingly have

the cost JN+1
i (t,Xc

t , u
i,ϵ, u0,uF,−i, f̄). This method of modifying a feedback control implemented on

[t, T ] by using a constant control on a small interval was initially introduced in [23]. We call ui,ϵ a

modification of ui with the spike variation vi on [t, t + ϵ]. Thus for a given ω ∈ Ω, ui,ϵs remains the

same on [t, t+ ϵ].
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Case (b). We introduce a spike variation on [t, t+ ϵ] for each strategy uj defined on [0, T ], which leads

to the new strategy

uj,ϵs :=

{
vj , s ∈ [t, t+ ϵ],

ujs, s ∈ [0, T ] \ [t, t+ ϵ],
0 ≤ j ≤ N, (85)

with vj being a Borel measurable function of Xc
t and E|vj |2 < ∞. Note that the choice of f̄ in

(80)–(82) has been part of the design of strategies. Now given (v0, · · · , vN ), we further define

f̄ ϵs =

{
f̌s. s ∈ [t, t+ ϵ],

f̄s s ∈ [0, T ] \ [t, t+ ϵ],
(86)

where f̌s := f̌(s,X0
s , Xs, v

0, v(N)). The function f̌ : [0, T ]×R2n+2n1 → Rn is continuous, and Lipschitz

continuous in (x0, x̄) (for (X0
s , Xs)), with linear growth in all four spatial variables. Since as in (82)

our approach is still to use Xs to provide information on X
(N)
s , we consider the above form for f̌ ,

instead of making f̌ as general as possible. Denote uF,ϵ = (u1,ϵ, · · · , uN,ϵ) and uF,−i,ϵ similarly.

For both case (a) and case (b), in our further analysis, the spike variation associated with a specific

perturbed strategy uj,ϵs will be clear from the context.

For the resulting solution Xs on [t, t + ϵ] in case (b) to be relevant, we need to further specify f̌

in an appropriate form. The idea is to use f̌ to adjust Xt+ϵ to closely approximate X
(N)
t+ϵ . Note that

X0 has been selected under a similar requirement (see (58)). Adjusting Xt+ϵ to the right position is

crucial since otherwise it would be irrelevant to the game resumed at time t + ϵ. We introduce the

following definition.

Definition 5.1. We call f̌ in (86) compatible if it ensures that for some fixed constant C independent

of (t,N, v0, · · · , vN ),

E|X(N)
t+ϵ −Xt+ϵ|2 ≤ CE|X(N)

t −Xt|2 + Cϵ/N,

where (X0
s , · · · , XN

s , Xs), 0 ≤ s ≤ T , is the solution of (80)–(82) with strategies (u0,ϵ,uF,ϵ, f̄ ϵ) specified

by (85)–(86). Accordingly, we call (u0,ϵ,uF,ϵ, f̄ ϵ) a set of admissible perturbed strategies.

Remark 5.2. The compatibility condition in Definition 5.1 translates into a certain constraint on the

selection of f̌ . Since (u0,uF , f̄) ∈ Ufd
0,T ensures sup0≤s≤t E|X

(N)
s − Xs|2 = o(1), now with f̌ being

compatible, we have E|X(N)
t+ϵ −Xt+ϵ|2 = o(1) as N → ∞.

Note that (u0,ϵ,uϵ, f̄ ϵ) in general is not in Ufd
0,T but still ensures a well-defined solution in

L2
FWX0

(0, T ;R(N+2)n)) for the SDE system (80)–(82), where FWX0
t is the σ-field generated by (W j

s , X
j
0 , 0 ≤

j ≤ N, s ≤ t). So JN+1
0 (t,Xc

t , u
0,ϵ,uF,ϵ, f̄ ϵ) and JN+1

i (t,Xc
t , u

i,ϵ, u0,ϵ,uF,−i,ϵ, f̄ ϵ) are well-defined.

Regardless of the specific form of f̄ , we adopt a natural construction of f̌ :

Ẋs = GX0
s + (A+ F )Xs +B1v

0 +Bv(N) (87)

=: f̌s, t ≤ s ≤ t+ ϵ,

where the initial state Xt has been determined as the last component of Xc
t . This ODE is constructed

by approximating the SDE of X
(N)
s :

dX(N)
s = [GX0

s + (A+ F )X(N)
s +B1v

0 +Bv(N)]ds+ σdW (N)
s , t ≤ s ≤ t+ ϵ,

where v(N) = (1/N)
∑N

i=1 v
i and W

(N)
s = (1/N)

∑N
i=1W

i
s .

Proposition 5.3. Under (u0,ϵ,uF,ϵ, f̄ ϵ) taking f̌ in (87), we have

sup
t≤s≤t+ϵ

E|X(N)
s −Xs|2 ≤ CE|X(N)

t −Xt|2 + Cϵ/N, (88)

and f̌ is compatible.
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Proof. The estimate (88) follows by checking the SDE of X
(N)
s −Xs. Then f̌ is clearly compatible.

For determinacy, we will take f̌ of the form in (87) in all subsequent analysis. We introduce the

notion of εN -Stackelberg equilibrium for the game of N + 1 players in (80)–(82).

Definition 5.4. A set of strategies (u0, · · · , uN , f̄) ∈ Ufd
0,T is an εN -Stackelberg equilibrium if for each

given t ∈ [0, T ) it fulfills the following two conditions:

(i) For each 1 ≤ i ≤ N ,

lim sup
ϵ↓0

1

ϵ
[JN+1

i (t,Xc
t , u

i, u0,uF,−i, f̄)− JN+1
i (t,Xc

t , u
i,ϵ, u0,uF,−i, f̄)] ≤ εN , (89)

for any ui,ϵ being a modification of ui by taking an admissible vi on [t, t+ ϵ].

(ii) For admissible perturbed strategies (u0,ϵ,uF,ϵ, f̄ ϵ) with f̌ given by (87),

lim sup
ϵ↓0

1

ϵ
[JN+1

0 (t,Xc
t , u

0,uF , f̄)− JN+1
0 (t,Xc

t , u
0,ϵ,uF,ϵ, f̄ ϵ)] ≤ εN , (90)

where u0,ϵ is any modification of u0 by taking its admissible v0 on [t, t+ ϵ], and uF,ϵ = (u1,ϵ, · · · , uN,ϵ)

is a modification of uF = (u1, · · · , uN ) with vF = (v1, · · · , vN ) on [t, t + ϵ] such that uF,ϵ is a Nash

equilibrium for the N followers when v0 has been selected and fixed for the leader (so vF depends on

v0 and may be denoted vF (v0)).

Remark 5.5. For very small ϵ and εN and the game played on [t, t + ϵ], condition (i) means that

(u0, · · · , uN ) restricted on that interval is almost a Nash equilibrium among the followers. Condition

(ii) further indicates that u0 nearly attains the lowest cost of all scenarios in which the followers react

on the time interval [t, t+ ϵ] by playing a Nash game among themselves.

For N ≥ 1, denote

dXN = (E|X(N)
0 −mX

0 |2)1/2 + 1/
√
N. (91)

Under Assumption 2, we have dXN = o(1). A key result of the equilibrium analysis is the following

theorem.

Theorem 5.6. Under Assumptions 1 and 2, the set of decentralized strategies (û0, ûF ) = (û0, û1, · · · , ûN )

given by (59)–(60) constitutes an εN -Stackelberg equilibrium for the N+1 player model (1)–(6), where

εN = O(dXN ).

In view of Lemma 4.1, it is easy to show that (û0, ûF ) belongs to Ufd
0,T . The proof of Theorem 5.6

is postponed to the end of this section. For convenience of presentation, we will first check condition

(ii) in Definition 5.4 for the cost of the leader.

5.2 The auxiliary static Stackelberg–Nash game

To prove Theorem 5.6, we introduce an auxiliary static game with N + 1 players. Denote

Y 0
s = [X0T

s , X(N)T
s , X

T

s ]
T , Y i

s = [XiT
s , Y 0T

s ]T , (92)

and

A0 =

A0 F0 0
G A+ F 0
G 0 A+ F

 , A =

[
A (G, F, 0)
0 A0

]
,

B0 =

B0

B1

B1

 , Ba
0 =

 0
B
B

 , D0 =

σ00
0

 , Da
0 =

0σ
0

 ,
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B1 =

[
B1

B0

]
, Ba

N =

[
B

Ba
0/N

]
, Ba =

[
0
Ba

0

]
,

D =

[
0
D0

]
, DN =

[
σ

Da
0/N

]
, Da =

[
0
Da

0

]
,

B̃0 =

[
B0

B̃1

]
, Bb

0 =

 0
B
0

 , Bb
N =

[
B

Bb
0/N

]
.

Let X̂c
t := (X̂0

t , X̂
1
t , · · · , X̂N

t , X̂t) be generated by (62) under the set of strategies (û0, · · · , ûN )

applied on [0, t]. Define ûj,ϵ with spike variation vj on [t, t+ ϵ]. When the system (1)–(6) takes the set

of controls (v0, v1, · · · , vN ) on [t, t+ϵ] that depends only on (Y 0
t , · · · , Y N

t ), the processes (Y 0
s , · · · , Y N

s )

follow the dynamics on [t, t+ ϵ]:

dY 0
s =(A0Y

0
s +B0v

0 +Ba
0v

(N))ds+D0dW
0
s +Da

0dW
(N)
s , (93)

dY i
s =(AY i

s +B1v
0 +Ba

Nv
i +Bav(−i))ds (94)

+DdW 0
s +DNdW

i
s +DadW (−i)

s , 1 ≤ i ≤ N,

with the initial conditions

Y 0
t =[X̂0T

t , X̂
(N)T
t , X̂

T

t ]
T , Y i

t = [X̂iT
t , Y 0T

t ]T , (95)

where we denote v(N) = (1/N)
∑N

i=1 v
i and v(−i) = (1/N)

∑N
j=1,j ̸=i v

j , and likewise for W (N) and

W (−i). The initial conditions in (95) are determined using (62) on [0, t]. Both (93) and (94) share the

last component Xs described by (87), which is re-displayed below:

Ẋs = GX0
s + (A+ F )Xs +B1v

0 +Bv(N), t ≤ s ≤ t+ ϵ.

See Remark 5.2 for the requirement underlying the construction of this equation.

For a real matrix M , define

ΨM (s2, s1) =

∫ s2

s1

exp{(s2 − s)M}ds, for all 0 ≤ s1 ≤ s2 ≤ T.

By the variation of constants formula, for s ∈ [t, t+ ϵ] we have

Y 0
s =exp{(s− t)A0}Y 0

t + ΨA0
(s, t)(B0v

0 +Ba
0v

(N)) (96)

+

∫ s

t

exp{(s− τ)A0}(D0dW
0
τ +Da

0dW
(N)
τ ),

Y i
s =exp{(s− t)A}Y i

t + ΨA(s, t)(B1v
0 +Ba

Nv
i +Bav(−i)) (97)

+

∫ s

t

exp{(s− τ)A}(DdW 0
τ +DNdW

i
τ +DadW (−i)

τ ).

We proceed to specify the auxiliary game model. The (N+1)-player static Stackelberg–Nash game

has actions (v0, v1, · · · , vN ) on [t, t+ ϵ] and costs

JN+1
0 (t, Y 0

t , û
0,ϵ, ûF,ϵ), JN+1

i (t, Y i
t , û

i,ϵ, û0,ϵ, ûF,−i,ϵ), 1 ≤ i ≤ N, (98)

where the leader chooses its action v0 and the random vector X̂c
t is observed by all players; in analogue

to (83)–(84), we define

JN+1
0 (t, Y 0

t , û
0,ϵ, ûF,ϵ) =E

∫ T

t

L0(X
0
s , µ

(N)
s , û0,ϵs )ds+ Eg0(X0

T , µ
(N)
T ), (99)
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JN+1
i (t, Y i

t , û
i,ϵ, û0,ϵ, ûF,−i,ϵ) =E

∫ T

t

L(Xi
s, X

0
s , µ

(N)
s , ûi,ϵs , û0,ϵs )ds+ Eg(Xi

T , X
0
T , µ

(N)
T ). (100)

In this static game, we adapt Definition C.1 of the Stackelberg–Nash equilibrium by allowing general

action spaces. Due to the particular form of the control laws (û0,ϵ, ûF,ϵ), and in view of (96)–(97),

here JN+1
0 and JN+1

i depend on X̂c
t through (Y 0

t , v
0,vF ) and (Y i

t , v
0,vF ), where vF = (v1, · · · , vN ),

respectively, and so we write the costs in the form of (98). Similarly, for (û0, ûF ), we write the costs

JN+1
0 (t, Y 0

t , û
0, ûF ) and JN+1

i (t, Y i
t , û

i, û0, ûF,−i) for 1 ≤ i ≤ N .

Denote

SN+1
0 (t, ϵ, Y 0

t , v
0,vF ) (101)

= E
[∫ t+ϵ

t

L0(X
0
s , µ

(N)
s , v0)ds+ V̂0(t+ ϵ, Y 0

t+ϵ)

∣∣∣∣X̂c
t

]
,

SN+1
i (t, ϵ, Y i

t , v
i, v0,vF,−i) (102)

= E
[∫ t+ϵ

t

L(Xi
s, X

0
s , µ

(N)
s , vi, v0)ds+ V̂ (t+ ϵ, Y i

t+ϵ)

∣∣∣∣X̂c
t

]
,

where vF,−i is obtained from vF by excluding vi. The above processes {Y j
s , t ≤ s ≤ t+ ϵ}, 0 ≤ j ≤ N ,

are determined by (96)–(97). The functions V̂0 and V̂ have been specified by Lemma 4.2. For each

fixed t, SN+1
0 and SN+1

i are Borel measurable function of X̂c
t . A more concrete form of SN+1

0 and

SN+1
i will be derived in our further analysis; see (D.1) and (D.2). Then we have the relation

JN+1
0 (t, Y 0

t , û
0,ϵ, ûF,ϵ) = E[SN+1

0 (t, ϵ, Y 0
t , v

0,vF )], (103)

JN+1
i (t, Y i

t , û
i,ϵ, û0,ϵ, ûF,−i,ϵ) = E[SN+1

i (t, ϵ, Y i
t , v

i, v0,vF,−i)]. (104)

5.3 Performance of the leader

Before proving that (90) holds for the set of decentralized strategies (û0, · · · , ûN ), we make a cost

comparison when (û0, · · · , ûN ) is perturbed in a particular way.

To avoid the notation from becoming too heavy, below we will often write P̂0(t) as P̂0
t , and P̂(t)

as P̂t. This is similarly done for r̂0 and r̂. Throughout Sections 5.3 and 5.4, each term of the form

O(h(ϵ)) satisfies |O(h(ϵ))| ≤ C0h(ϵ) for a constant C0 independent of (t,N). For instance, we have

|O(ϵ)| ≤ C0ϵ. Also, each term O(ϵ) (or O(1), etc) is deterministic and can be determined in a concrete

form, but for our purpose it is adequate to indicate the generic form O(ϵ).

Lemma 5.7. Under Assumption 1, there exists ϵ∗ > 0 such that for all 0 < ϵ ≤ ϵ∗, the static

Stackelberg–Nash game with costs (103)–(104) has a unique equilibrium, which takes the form

v0∗ = −R−1
0 B̃T

0 P̂0(t)Y 0
t +O(ϵ)Y 0

t , (105)

vi∗ = −[R−1BaT
N P̂(t) +O(ϵ)]Y i

t +R−1R2R
−1
0 B̃T

0 P̂0(t)Y 0
t , 1 ≤ i ≤ N, (106)

where the term O(ϵ) in (106) is the same for all i ∈ {1, · · · , N}.

Proof. See appendix D.

Lemma 5.8. Suppose ϵ ∈ (0, ϵ∗] for ϵ∗ specified in Lemma 5.7. Under Assumptions 1 and 2, let

(v0∗, v1∗, · · · , vN∗) be the Stackelberg–Nash equilibrium of the static game with costs (103)–(104).

For 0 ≤ j ≤ N , define ûj,ϵ∗ on [0, T ] by

ûj,ϵ∗s :=

{
vj∗, s ∈ [t, t+ ϵ],

ûjs, s ∈ [0, T ] \ [t, t+ ϵ],
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where ûj is given by (59)–(60). Then it holds that

lim
ϵ↓0

1

ϵ

[
JN+1
0 (t, Y 0

t , û
0, ûF )− JN+1

0 (t, Y 0
t , û

0,ϵ∗, ûF,ϵ∗)
]
= O(dXN ), (107)

where the limit on the left hand side exists and ûF,ϵ∗ := (û1,ϵ∗, · · · , ûN,ϵ∗). The term dXN is given

by (91).

Proof. See appendix D.

5.4 Performance of the followers

Select a single player Ai and consider its auxiliary optimization problem as follows. It chooses its

control νi on [t, t+ ϵ] while the leader and the other N − 1 followers take the strategies (û0, ûF,−i) on

[t, t+ ϵ]. All N + 1 players take the strategies (û0, ûF ) on (t+ ϵ, T ]. Denote

A1 =


A G+B1K

0
1 F B1K

0
2

0 A0 +B0K
0
1 F0 B0K

0
2

−BK1/N G+B1K
0
1 +BK2(1− 1/N) A+ F +BK1 A1,34

0 G+B1K
0
1 +BK2 0 A1,44

 ,
where

A1,34 =B1K
0
2 +BK3(1− 1/N),

A1,44 =A+ F +B1K
0
2 +B(K1 +K3).

Player Ai chooses ν
i to minimize the cost JN+1

i (t, Y i
t , û

i,ϵ, û0, ûF,−i), which is defined similarly to

(100) and may be written as

JN+1
i (t, Y i

t , û
i,ϵ, û0, ûF,−i) = E

[∫ t+ϵ

t

L(Xi
s, X

0
s , µ

(N)
s , νi, û0s)ds+ V̂ (t+ ϵ, Y i

t+ϵ)

]
, (108)

where, for Y i
s defined in (92) and t ≤ s ≤ t+ ϵ,

dY i
s = (A1Y

i
s +Bb

Nν
i)dt+DdW 0

s +DNdW
i
s +DadW (−i)

s . (109)

Lemma 5.9. Under Assumption 1, there exists ϵ̄ > 0 such that for all 0 < ϵ ≤ ϵ̄, the optimization

problem on [t, t+ ϵ] to minimize (108) has a unique minimizer νi⋆, which takes the form

νi⋆ = −R−1{R2[0,K
0
1 , 0,K

0
2 ] +BbT

N P̂(t) +O(ϵ)}Y i
t . (110)

Proof. See appendix D.

Remark 5.10. For (106) and (110), we can show that for some constant C,

|vi∗ − νi⋆| ≤ C|X(N)
t −Xt|+ C|Y i

t |ϵ.

Denote

ûi,ϵ⋆s :=

{
νi⋆, s ∈ [t, t+ ϵ],

ûis, s ∈ [0, T ] \ [t, t+ ϵ].
(111)

Lemma 5.11. For the strategy given by (111),

lim
ϵ↓0

1

ϵ
[JN+1

i (t, Y i
t , û

i, û0, ûF,−i)− JN+1
i (t, Y i

t , û
i,ϵ⋆, û0, ûF,−i)] = O(dXN ),

where the limit on the left hand side exists and dXN is given by (91).

Proof. See appendix D.
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5.5 Proof of Theorem 5.6

Since (v0∗,vF∗) = (v0∗, v1∗, · · · , vN∗) in (105)–(106) is a Stackelberg–Nash equilibrium for the static

game of N + 1 players with costs (103)–(104) and actions (v0, · · · , vN ) on [t, t+ ϵ], it follows that

JN+1
0 (t, Y 0

t , û
0,ϵ∗, ûF,ϵ∗) ≤ JN+1

0 (t, Y 0
t , û

0,ϵ, ûF,ϵ),

for any û0,ϵ (with its associated variation v0 on [t, t+ϵ]) and ûF,ϵ = (û1,ϵ, · · · , ûN,ϵ), where ûF,ϵ with its

associated vF = (v1, · · · , vN ) is a Nash equilibrium among the followers for the given û0,ϵ. Therefore,

lim sup
ϵ↓0

1

ϵ

[
JN+1
0 (t, Y 0

t , û
0, ûF )− JN+1

0 (t, Y 0
t , û

0,ϵ, ûF,ϵ)
]

≤ lim
ϵ↓0

1

ϵ

[
JN+1
0 (t, Y 0

t , û
0, ûF )− JN+1

0 (t, Y 0
t , û

0,ϵ∗, ûF,ϵ∗)
]
.

In view of the above inequality and Lemma 5.8, condition (90) holds for (û0, ûF ).

Let ûi,ϵ be a modification of ûi with any admissible vi. For ûi,ϵ⋆ given by (111), Lemma 5.9 implies

JN+1
i (t, Y i

t , û
i,ϵ⋆, û0, ûF,−i) ≤ JN+1

i (t, Y i
t , û

i,ϵ, û0, ûF,−i).

Hence we have

lim sup
ϵ↓0

1

ϵ

[
JN+1
i (t, Y i

t , û
i, û0, ûF,−i)− JN+1

i (t, Y i
t , û

i,ϵ, û0, ûF,−i)
]

≤ lim
ϵ↓0

1

ϵ

[
JN+1
i (t, Y i

t , û
i, û0, ûF,−i)− JN+1

i (t, Y i
t , û

i,ϵ⋆, û0, ûF−i)
]
.

which combined with Lemma 5.11 implies that condition (89) holds for (û0, ûF ).

6 Concluding remarks

We study linear-quadratic mean field Stackelberg games with a leader and a large number of followers.

We use master equations to determine decentralized strategies for the finite-population model and

establish an εN -Stackelberg equilibrium property for such strategies when the game is played by a

stream of t-selves of the original N +1 players. For future work, it will be of interest to generalize the

asymptotic equilibrium analysis to nonlinear models.

Appendix A: Proof of Theorem 3.3

Proof. Suppose (24)–(25) has a quadratic solution of the form (27)–(28). Recall z0 = (xT0 , z̄
T )T and

z = (zTi , z
T
0 , z̄

T )T , where z̄ = ⟨y⟩µ. We have

∂z0V0 = 2zT0 P
0
11 + 2z̄TP 0

21, ∂2z0V0 = 2P 0
11,

δµV0(t, z0, µ; y) = 2z̄TP 0
22y + 2zT0 P

0
12y,

∂yδµ∂V0(t, z0, µ; y) = 2z̄TP 0
22 + 2zT0 P

0
12,

∂2yδµV0(t, z0, µ; y) = 0,

∂ziV = 2zTi P11 + 2zT0 P21 + 2z̄TP31, ∂2ziV = 2P11,

∂z0V = 2zT0 P22 + 2zTi P12 + 2z̄TP32, ∂2z0V = 2P22,

δµV (t, zi, z0, µ; y) = 2z̄TP33y + 2zTi P13y + 2zT0 P23y,

∂yδµV (t, zi, z0, µ; y) = 2z̄TP33 + 2zTi P13 + 2zT0 P23,

∂2yδµV (t, zi, z0, µ; y) = 0.

(A.1)
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Denote the right hand side of (24) as s0 =
∑7

k=1 s0k, where the components s0k correspond to the

seven terms on the right hand side of (24) in the same order. Similarly, denote the right hand side

of (25) as s =
∑10

k=1 sk.

We substitute (A.1) into the right hand side of (24) to get

s01 = zT0

{[
P 0
11

P 0
21

]
[A0, F0] +

[
AT

0

FT
0

]
[P 0

11, P
0
12]

}
z0,

s04 + s05 = zT0

{[
P 0
12

P 0
22

] [
A0,21, A0,22

]
+

[
AT

0,21

AT
0,22

] [
P 0
21, P

0
22

]}
z0,

s02 = Tr(P 0
11Σw0), s03 = zT0 J(I, −Γ0)K2Q0

z0, (A.2)

s06 = −zT0 P0B0R
−1
0 BT

0 P0z0, s07 = 0,

where A0,21 and A0,22 are, respectively, the lower left and lower right submatrices within the partition

of A0. Note that s01 + s04 + s05 = P0A0 + AT
0 P0. By the above calculations, the right hand side

of (24) is

s0 =zT0 [P0A0 + AT
0 P0 − P0B0R

−1
0 BT

0 P0 + J(I,−Γ0)K2Q0
]z0 +Tr(P 0

11Σw0). (A.3)

Substituting (A.1) into the left hand side of (24) gives

−zT0 Ṗ0(t)z0 − ṙ0(t). (A.4)

Equating (A.4) to (A.3), we have that P0 satisfies (29) on [0, T ].

We substitute (28) into the right hand side of (28) to get

s1 =zT


P12

P22

P32

 [0, A0, F0] +

 0
AT

0

FT
0

 [P21, P22, P23]

 z,

s2 =zT


P11

P21

P31

 [A,G,F ] +

AT

GT

FT

 [P11, P12, P13]

 z,

s3 =− zT

P11

P21

P31

BR−1BT [P11, P12, P13]z

=− zTPBR−1BTPz,

s6 + s7 =zT


P13

P23

P33

 [0,A0,21,A0,22] +

 0
AT

0,21

AT
0,22

 [P31, P32, P33]

 z,

s4 =Tr(P22Σw0 + P11Σw), s5 = zT J(I,−Γ1,−Γ2)K2Qz,

s8 =zT0 JR−1
0 BT

0 P0K2R12
z0 = zT JT1 JR−1

0 BT
0 P0K2R12

J1z,
s9 =− 2zT0 P0B0R

−1
0 BT

1 Pz = −2zT JT1 P0B0R
−1
0 BT

1 Pz
=− zT (JT1 P0B0R

−1
0 BT

1 P+ PB1R
−1
0 BT

0 P0J1)z,
s10 =0. (A.5)

It is easy to show s1 + s2 + s6 + s7 = PA + ATP. By the above calculations, the right hand side

of (25) is

s =zT {PA+ ATP− PBR−1BTP− PB1R
−1
0 BT

0 P0J1
− JT1 P0B0R

−1
0 BT

1 P+ JT1 P0B0R
−1
0 R12R

−1
0 BT

0 P0J1
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+ J(I,−Γ1,−Γ2)K2Q}z+Tr(P22Σw0 + P11Σw). (A.6)

Substituting (28) into the left hand side of (25) gives

−zT Ṗ(t)z− ṙ(t). (A.7)

By equating (A.7) to (A.6), we have that P satisfies (30) on [0, T ].

Conversely, if (29)–(30) has a solution (P0,P), we can substitute (P0,P) into (31)–(32) to solve for

a unique solution (r0, r) on [0, T ]. By (A.3)–(A.4) and (A.6)–(A.7), the pair in (27)–(28) is verified to

be a solution of the master equations (24)–(25).

Appendix B

Consider the linear SDE

dXs = [A(s)Xs + k(s)]ds+ σ(s)dWs, s ∈ [t, T ], (B.1)

with initial condition Xt = x for t ∈ [0, T ] and x ∈ Rd. The standard Brownian motion Ws is in Rd1 .

The cost functional is

V (t, x) =E
∫ T

t

[XT
s Q(s)Xs + 2ηT (s)Xs + h(s)]ds (B.2)

+ E(XT
TQfXT + 2ηTf XT + hf ).

The matrix or vector (or scalar) functions A(t), k(t), σ(t), Q(t), η(t) and h(t) are deterministic, bounded

and Lebesgue measurable on [0, T ]. The parameters Qf , ηf and hf are deterministic. We introduce

the ODE system 
0 = Ṗ (t) +ATP + PA+Q,

0 = Ṡ(t) +ATS + Pk + η,

0 = ṙ(t) + 2ST k + h+Tr(PσσT ),

0 ≤ t ≤ T, (B.3)

where P (T ) = Qf , S(T ) = ηf and r(T ) = hf . The ODE system (B.3) has a unique solution on [0, T ].

Lemma B.1. For V defined in (B.2), we have the representation

V (t, x) = xTP (t)x+ 2xTS(t) + r(t), t ∈ [0, T ], x ∈ Rd. (B.4)

Proof. Let V̂ (t, x) be the function defined by right hand side of (B.4). Applying Itô’s formula and

using (B.3), we get an SDE of dV̂ (s,Xs) for s ∈ [t, T ]. Integrating the resulting SDE on [t, T ] and

taking expectation, we obtain

EV̂ (T,XT )− V̂ (t, x) = −E
∫ T

t

[XT
s Q(s)Xs + 2ηT (s)Xs + h(s)]ds. (B.5)

Writing V̂ (T,XT ) using the terminal conditions Qf , ηf , hf , we see that V̂ (t, x) is equal to the right

hand side of (B.2).

Appendix C

This part formulates a static Stackelberg–Nash game with a leader A0 and N followers Ai, 1 ≤ i ≤ N .

Player Aj has cost Jj and chooses action uj ∈ Rn1 . Their costs depend continuously on a small

parameter ε ≥ 0. After the leader’s action u0 is announced, the followers play a Nash game among
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themselves. Denote the two symmetric matrices M0,ϵ = (M0,ϵ
kl )1≤k,l≤3 and MF,ϵ = (MF,ϵ

kl )1≤k,l≤4,

where the partitions satisfy M0,ϵ
kk ,M

F,ϵ
ll ∈ Rn1×n1 for all 1 ≤ k ≤ 2, 1 ≤ l ≤ 3, and M0,ϵ

33 ,M
F,ϵ
44 ∈

Rn×n. Denote uF = (u1, · · · , uN ). Let uF,−i be obtained from uF by excluding ui. Define u(N) =

(1/N)
∑N

i=1 ui and u
(−i) = (1/N)

∑N
k=1,k ̸=i uk.

The costs are given by

J0(u0,uF ) = |(uT0 , u(N)T , yT0 )
T |2M0,ϵ , (C.1)

Ji(ui, u0,uF,−i) = |(uTi , uT0 , u(−i)T , yTi )
T |2MF,ϵ , 1 ≤ i ≤ N, (C.2)

where yj ∈ Rn, 0 ≤ j ≤ N are constants. The parameters (y0, · · · , yN ) have been included in the

quadratic forms for convenience of applying the obtained results to Section 5.

Below we consider M0,ϵ = (M0,ϵ
kl ) and M

F,ϵ = (MF,ϵ
kl ) satisfying

M0,ϵ =

O(1) O(ϵ) O(1)
O(ϵ) O(ϵ) O(1)
O(1) O(1) O(1)


and

MF,ϵ =


O(1) O(1) O(ϵ) O(1)
O(1) O(1) O(ϵ) O(1)
O(ϵ) O(ϵ) O(ϵ) O(1)
O(1) O(1) O(1) O(1)

 .
Denote M0

kl =M0,ϵ
kl |ϵ=0 and MF

kl =MF,ϵ
kl |ϵ=0 for all k and l.

Assumption C.1. Both M0,ϵ and MF,ϵ are Lipschitz continuous in ϵ ∈ [0, ϵ̄] for some ϵ̄ > 0; M0
11 and

MF
11 are positive definite.

Definition C.1. We call (u∗0, · · · , u∗N ) a Stackelberg–Nash equilibrium if the two conditions hold: (i)

for each i, Ji(u
∗
i , u

∗
0,u

∗
F,−i) ≤ Ji(vi, u

∗
0,u

∗
F,−i) for all vi ∈ Rn1 (i.e., given u∗0, u

∗
F is a Nash equilibrium

for the followers), (ii) J0(u
∗
0,u

∗
F ) ≤ J0(v0,u

ne
F (v0)) for all v0 ∈ Rn1 , whenever une

F (v0) is a Nash

equilibrium for the N followers with v0 given.

In Lemma C.2 and its proof, all terms written as O(ϵ) may be uniquely determined using

M0,ϵ,MF,ϵ, y0, · · · , yN . Their specific forms are immaterial for our purpose of application.

Lemma C.2. Under Assumption C.1, there exists ϵ∗ ∈ (0, ϵ̄] such that for all 0 < ϵ ≤ ϵ∗, the

Stackelberg–Nash game (C.1)–(C.2) has a unique equilibrium with u∗0 and u∗
F = (u∗1, · · · , u∗N ) tak-

ing the following form

u∗0 =− (M0
11)

−1[M0
13 −MF

21(M
F
11)

−1M0
23]y0 (C.3)

+O(ϵ)y0 +O(ϵ)y(N),

u∗i =(MF
11)

−1MF
12(M

0
11)

−1[M0
13 −MF

21(M
F
11)

−1M0
23]y0 (C.4)

− (MF
11)

−1MF
14yi +O(ϵ)yi +O(ϵ)y0 +O(ϵ)y(N), 1 ≤ i ≤ N.

Proof. Since MF
11 > 0 and MF,ϵ

13 = O(ϵ), there exists ϵ1 > 0 such that MF,ϵ
11 > 0, det(MF,ϵ

11 + (1 −
1/N)MF,ϵ

13 ) > 0, and det(MF,ϵ
11 −MF,ϵ

13 /N) > 0 for all 0 < ϵ ≤ ϵ1 and N ≥ 2.

Step 1. For u0 fixed, we check the Nash equilibrium ũF = (ũ1, · · · , ũN ) of the N followers by the

first order condition

0 =MF,ϵ
11 ũi +MF,ϵ

12 u0 +MF,ϵ
13 ũ

(−i) +MF,ϵ
14 yi, 1 ≤ i ≤ N, (C.5)

for all 0 < ϵ ≤ ϵ1 and for all N ≥ 2. From (C.5) we obtain

ũ(N) = −[MF,ϵ
11 + (1− 1/N)MF,ϵ

13 ]−1[MF,ϵ
12 u0 +MF,ϵ

14 y
(N)]. (C.6)
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We further uniquely determine ũi. This gives the Nash equilibrium of the followers.

Step 2. When the followers take their Nash equilibrium strategies ũF in response to u0, the

leader’s cost is J0(u0, ũF ) = |(uT0 , ũ(N)T , yT0 )
T |2M0,ϵ . Our next step is to rewrite J0(u0, ũF ) in terms

of (u0, y0, · · · , yN ). Denote M̂F,ϵ
11 =MF,ϵ

11 + (1− 1/N)MF,ϵ
13 and

U ϵ =

 I 0 0

−(M̂F,ϵ
11 )−1MF,ϵ

12 −(M̂F,ϵ
11 )−1MF,ϵ

14 0
0 0 I

 , M̃0,ϵ = U ϵTM0,ϵU ϵ.

We have the relation

[uT0 , ũ
(N)T , yT0 ]

T = U ϵ[uT0 , y
(N)T , yT0 ]

T .

The submatrices of the symmetric matrix M̃0,ϵ = (M̃0,ϵ
kl )1≤k,l≤3 satisfy

M̃0,ϵ
11 =M0

11 +O(ϵ),

M̃0,ϵ
31 =M0

31 −M0
32(M

F
11)

−1MF
12 +O(ϵ),

M̃0,ϵ
32 = −M0

32(M
F
11)

−1MF
14 +O(ϵ),

M̃0,ϵ
33 =M0

33 +O(ϵ),

and the three unspecified submatrices M̃0,ϵ
kl are O(ϵ).

Then we have

J0(u0, ũF ) = |(uT0 , y(N)T , yT0 )
T |2

M̃0,ϵ .

Since M0
11 > 0, there exists ϵ2 > 0 such that for all 0 ≤ ϵ ≤ ϵ2, we have M̃0,ϵ

11 > 0. For all

0 < ϵ ≤ min(ϵ1, ϵ2), the first order condition

0 =M̃0,ϵ
11 u

∗
0 + M̃0,ϵ

12 y
(N) + M̃0,ϵ

13 y0

determines the leader’s unique optimal action

u∗0 =− (M̃0,ϵ
11 )−1(M̃0,ϵ

13 y0 + M̃0,ϵ
12 y

(N)), (C.7)

which can be written in the form (C.3).

Step 3. After setting u0 = u∗0 in (C.5), we obtain (u∗1, · · · , u∗N ). Substituting u∗0 in (C.7) for u0
in (C.6), we have that

u∗(N) =(MF
11)

−1MF
12(M

0
11)

−1[M0
13 −MF

21(M
F
11)

−1M0
23]y0

− (MF
11)

−1MF
14y

(N) +O(ϵ)y(N) +O(ϵ)y0. (C.8)

Substituting (C.7) and (C.8) into (C.5) after writing ũ(−i) = ũ(N) − (1/N)ũi, we have

0 = (MF,ϵ
11 −MF,ϵ

13 /N)u∗i +MF,ϵ
12 u

∗
0 +MF,ϵ

13 u
∗(N) +MF,ϵ

14 yi,

which gives (C.4).

Appendix D

This appendix provides the proofs of some lemmas used in Section 5.
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Proof of Lemma 5.7. By (67) and (96), we compute the conditional expectation in (101) to obtain

SN+1
0 (t, ϵ, Y 0

t , v
0,vF ) = ϵ|(v0T , v(N)T , Y 0T

t )T |2M0,ϵ + ζϵ0(t), (D.1)

where

ζϵ0(t) = ϵ{Tr[P̂0
t (D0D

T
0 +Da

0D
aT
0 /N)] +O(ϵ)}+ r̂0t+ϵ + Y 0T

t P̂0
t+ϵY

0
t .

The matrix M0,ϵ = (M0,ϵ
kl )1≤k,l≤3 is symmetric and satisfies

M0,ϵ
11 = R0 +O(ϵ), M0,ϵ

13 = BT
0 P̂0

t +O(ϵ),

M0,ϵ
23 = BaT

0 P̂0
t +O(ϵ),

M0,ϵ
33 = P̂0

tA0 +AT
0 P̂0

t + J(I,−Γ0, 0)K2Q0
+O(ϵ),

and the three unspecified submatrices M0,ϵ
kl are of the form O(ϵ).

By (68), (97) and (102), we represent SN+1
i in the form

SN+1
i (t, ϵ, Y i

t , v
i, v0,vF,−i) =ϵ|(viT , v0T , v(−i)T , Y iT

t )T |2Mϵ + ζϵ(t), (D.2)

where

ζϵ(t) =ϵ{Tr[P̂t(DDT +DNDT
N + ((N − 1)/N2)DaDaT )] +O(ϵ)} (D.3)

+ r̂t+ϵ + Y iT
t P̂t+ϵY

i
t .

The matrix MF,ϵ = (MF,ϵ
kl )1≤k,l≤4 is symmetric and satisfies

MF,ϵ
11 = R+O(ϵ), MF,ϵ

12 = R2 +O(ϵ), MF,ϵ
22 = R1 +O(ϵ),

MF,ϵ
14 = BaT

N P̂t +O(ϵ), MF,ϵ
24 = BT

1 P̂t +O(ϵ),

MF,ϵ
34 = BaT P̂t +O(ϵ),

MF,ϵ
44 = P̂tA+AT P̂t + J(I,−Γ1,−Γ2, 0)K2Q +O(ϵ),

and the four unspecified submatrices MF,ϵ
kl are of the form O(ϵ).

By the static nature of the game, the solution with costs JN+1
k , 0 ≤ k ≤ N , in (103)–(104) is

equivalent to the solution with costs SN+1
k , 0 ≤ k ≤ N , where the actions (v0, · · · , vN ) are optimized

with respect to each individual sample point ω ∈ Ω.

By Lemma C.2, there exists ϵ∗ > 0 such that for all 0 < ϵ ≤ ϵ∗, the Stackelberg–Nash game with

costs (D.1)–(D.2) admits a unique equilibrium (v0∗, · · · , vN∗). We further obtain (105)–(106) from

(C.3)–(C.4).

Proof of Lemma 5.8. First of all, by Lemma 4.2 and (103) we have

JN+1
0 (t, Y 0

t , û
0, ûF ) = E(Y 0T

t P̂0
tY

0
t ) + r̂0t , (D.4)

JN+1
0 (t, Y 0

t , û
0,ϵ∗, ûF,ϵ∗) = ESN+1

0 (t, ϵ, Y 0
t , v

0∗,vF∗). (D.5)

Now by (D.1), we have

SN+1
0 (t, ϵ, Y 0

t , v
0∗,vF∗) (D.6)

=ϵv0∗T [R0 +O(ϵ)]v0∗ + 2ϵY 0T
t [M0,ϵ

31 v
0∗ +M0,ϵ

32 v
∗(N)]

+ ϵY 0T
t [P̂0

tA0 +AT
0 P̂0

t + J(I,−Γ0, 0)K2Q0
+O(ϵ)]Y 0

t

+ 2ϵv0∗TM0,ϵ
12 v

∗(N) + ϵv∗(N)TM0,ϵ
22 v

∗(N)

+ ζϵ0(t).
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By (59)–(60), we have

Â0Y
0
t = A0Y

0
t +B0û

0
t +Ba

0 û
(N)
t +Bc

0K1(X̂t − X̂
(N)
t ), (D.7)

|û0t |2R0
= Y 0T

t J(K0
1 , 0,K

0
2 )K

2
R0
Y 0
t , (D.8)

where Bc
0 = [0, 0, BT ]T . It follows from (D.7) that

Y 0T
t (P̂0

tA0 +AT
0 P̂0

t )Y
0
t =Y 0T

t (P̂0
t Â0 + ÂT

0 P̂0
t )Y

0
t − 2Y 0T

t P̂0
t (D.9)

· [B0û
0
t +Ba

0 û
(N)
t +Bc

0K1(X̂t − X̂
(N)
t )].

Combining (D.6) and (D.9), and recalling the linear ODE (69), now we have

SN+1
0 (t, ϵ, Y 0

t , v
0∗,vF∗) (D.10)

=ϵv0∗TR0v
0∗ + 2ϵY 0T

t (M0,ϵ
31 v

0∗ +M0,ϵ
32 v

∗(N))

+ ϵY 0T
t

{
− d

dt
P̂0
t − J(K0

1 , 0,K
0
2 )K

2
R0

+O(ϵ)
}
Y 0
t

− 2ϵY 0T
t P̂0

t (B0û
0
t +Ba

0 û
(N)
t +Bc

0K1(X̂t − X̂
(N)
t ))

+ 2ϵv0∗TM0,ϵ
12 v

∗(N) + ϵv∗(N)TM0,ϵ
22 v

∗(N)

+ ζϵ0(t).

By (D.10) we calculate

∆∗,ϵ
0 :=

1

ϵ
[SN+1

0 (t, ϵ, Y 0
t , v

0∗,vF∗)− (Y 0T
t P̂0

tY
0
t + r̂0t )] (D.11)

={v0∗TR0v
0∗ − Y 0T

t J(K0
1 , 0,K

0
2 )K

2
R0
Y 0
t }

+ 2Y 0T
t [M0,ϵ

31 v
0∗ +M0,ϵ

32 v
∗(N) − P̂0

t (B0û
0
t +Ba

0 û
(N)
t )]

+ Y 0T
t

{
− d

dt
P̂0
t + (P̂0

t+ϵ − P̂0
t )/ϵ+O(ϵ)

}
Y 0
t

+ [2v0∗TM0,ϵ
12 v

∗(N) + v∗(N)TM0,ϵ
22 v

∗(N) − 2Y 0T
t P̂0

tB
c
0K1(X̂t − X̂

(N)
t )]

+ Tr{[P̂0
t (D0D

T
0 +Da

0D
aT
0 /N)] +O(ϵ)}+ 1

ϵ
(r̂0t+ϵ − r̂0t )

=:
5∑

k=1

∆∗,ϵ
0k ,

where each term ∆∗,ϵ
0k stands for one line. Now we have

lim
ϵ↓0

1

ϵ
[JN+1

0 (t, Y 0
t , û

0, ûF )− JN+1
0 (t, Y 0

t , û
0,ϵ∗,uF,ϵ∗)] (D.12)

= lim
ϵ↓0

E∆∗,ϵ
0 .

Comparing (59)–(60) and (105)–(106), we have

v0∗ − û0t =R−1
0 B̃T

0 P̂0
t [0, (X̂t − X̂

(N)
t )T , 0]T +O(ϵ)Y 0

t , (D.13)

and

vi∗ − ûit =R
−1BT P̂t[0, 0, (X̂t − X̂

(N)
t )T , 0]T (D.14)

−R−1R2R
−1
0 B̃T

0 P̂0
t [0, (X̂t − X̂

(N)
t )T , 0]T

+R−1(B −Ba
N )T P̂tY

i
t +O(ϵ)Y i

t ,
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where B = [BT , 0n1×3n]
T . By elementary SDE estimates for (62), we find a constant C0 independent

of (N, t) such that

E[|Y 0
t |2 + |v0∗|2 + |v∗(N)|2] ≤ C0. (D.15)

There exists ϵ0 > 0 such that for all ϵ ∈ (0, ϵ0], we have

|∆∗,ϵ
0 | ≤ Ca + Cb|Y 0

t |2, (D.16)

for two constants Ca and Cb. Moreover, ∆∗,ϵ
0 converges almost surely as ϵ ↓ 0. By (D.12), (D.15),

(D.16), and dominated convergence, the limit in (107) exists.

By Lemma 4.1 and (D.13)–(D.15), we further obtain

E|v0∗ − û0t |2 ≤ CE|X(N)
0 −mX

0 |2 + C(ϵ2 + 1/N), (D.17)

E|v∗(N) − û
(N)
t |2 ≤ CE|X(N)

0 −mX
0 |2 + C(ϵ2 + 1/N), (D.18)

where C does not depend on (t,N). Subsequently, in view of (D.8), we obtain

E|∆∗,ϵ
01 | ≤ C[E|X(N)

0 −mX
0 |2]1/2 + C/

√
N + Cϵ. (D.19)

By the representation of M0,ϵ and (D.17), (D.18), and Lemma 4.1, we have

E(|∆∗,ϵ
02 |+ |∆∗,ϵ

04 |) ≤ C[E|X(N)
0 −mX

0 |2]1/2 + C/
√
N + Cϵ. (D.20)

Next, by use of the ODEs of P̂0 and r̂0, we have

E|∆∗,ϵ
03 |+ |∆∗,ϵ

05 | ≤ Cϵ. (D.21)

Finally, (107) follows from (D.12), (D.19), (D.20) and (D.21).

Proof of Lemma 5.9. Denote

S̆N+1
i (t, ϵ, Y i

t , ν
i) (D.22)

= E
[∫ t+ϵ

t

L(Xi
s, X

0
s , µ

(N)
s , νi, û0s)ds+ V̂ (t+ ϵ, Y i

t+ϵ)

∣∣∣∣X̂c
t

]
.

Then we have

JN+1
i (t, Y i

t , û
i,ϵ, û0, ûF,−i) = E[S̆N+1

i (t, ϵ, Y i
t , ν

i)], (D.23)

and by Lemma 4.2,

JN+1
i (t, Y i

t , û
i, û0, ûF,−i) = E(Y iT

t P̂tY
i
t ) + r̂t. (D.24)

Let Φ(·, ·) be the fundamental solution matrix of the differential equation ż = A1(t)z. Then for

s ∈ [t, t+ ϵ], we have

Y i
s =Φ(s, t)Y i

t +

∫ s

t

Φ(s, τ)Bb
Nν

idτ (D.25)

+

∫ s

t

Φ(s, τ)[DdW 0
τ +DNdW

i
τ +DadW (−i)

τ ].

By (D.25), we calculate

E
[∫ t+ϵ

t

L(Xi
s, X

0
s , µ

(N)
s , νi, û0s)ds

∣∣∣∣X̂c
t

]
(D.26)
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= ϵY iT
t {J(I,−Γ1,−Γ2, 0)K2Q + J(0,K0

1 , 0,K
0
2 )K

2
R1

+O(ϵ)}Y i
t

+ 2ϵνiT {R2[0,K
0
1 , 0,K

0
2 ] +O(ϵ)}Y i

t

+ ϵνiT [R+O(ϵ)]νi +O(ϵ2).

By Lemma 4.2,

V̂ (t+ ϵ, Y i
t+ϵ) = Y iT

t+ϵP̂t+ϵY
i
t+ϵ + r̂t+ϵ.

We use (109) to calculate

E
[
Y iT
t+ϵP̂t+ϵY

i
t+ϵ

∣∣∣X̂c
t

]
(D.27)

= Y iT
t P̂tY

i
t + ϵY iT

t [P̂tA1(t) +AT
1 (t)P̂t +O(ϵ)]Y i

t

+ 2ϵY iT
t [P̂tB

b
N +O(ϵ)]νi + νiTO(ϵ2)νi

+ ϵTr
{
P̂t[DDT +DNDT

N + ((N − 1)/N2)DaDaT +O(ϵ)]
}
.

Now by (D.26)–(D.27), we obtain

S̆N+1
i (t, ϵ, Y i

t , ν
i) = ϵ|(νiT , Y iT

t )T |2
M̂ϵ + ζϵi (t),

where the symmetric matrix M̂ ϵ = (M̂ ϵ
kl)1≤k,l≤2 satisfies

M̂ ϵ
11 =R+O(ϵ),

M̂ ϵ
12 =BbT

N P̂t +R2[0,K
0
1 , 0,K

0
2 ] +O(ϵ),

M̂ ϵ
21 =(M̂ ϵ

12)
T ,

M̂ ϵ
22 =P̂tA1 +AT

1 P̂t + J(0,K0
1 , 0,K

0
2 )K

2
R1

+ J(I,−Γ1,−Γ2, 0)K2Q +O(ϵ).

and

ζϵi (t) =ϵTr{P̂t[DDT +DNDT
N + ((N − 1)/N2)DaDaT +O(ϵ)]}

+ r̂t+ϵ + Y iT
t P̂t+ϵY

i
t .

Since R > 0, there exists ϵ̄ > 0 such that for all 0 < ϵ ≤ ϵ̄, R+O(ϵ) > 0 holds and the optimal νi⋆

is uniquely determined by the first order condition

0 = M̂ ϵ
11ν

i⋆ + M̂ ϵ
12Y

i
t ,

which implies (110).

Proof of Lemma 5.11. By (D.23)–(D.24), we have

JN+1
i (t, Y i

t , û
i,ϵ⋆, û0, ûF,−i)− JN+1

i (t, Y i
t , û

i, û0, ûF,−i) (D.28)

= ES̆N+1
i (t, ϵ, Y i

t , ν
i⋆)− E(Y iT

t P̂tY
i
t + r̂t).

For the νi⋆ dependent terms in S̆N+1
i , by Lemma 5.9 we obtain

|νi⋆|2R + 2νi⋆T (R2[0,K
0
1 , 0,K

0
2 ] +BbT

N P̂t)Y
i
t = −ξR + Y iT

t O(ϵ)Y i
t , (D.29)

where

ξR = |(R2[0,K
0
1 , 0,K

0
2 ] +BbT

N P̂t)Y
i
t |2R−1 . (D.30)
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We use (D.29) to calculate

∆ϵ :=
1

ϵ
[S̆N+1

i (t, ϵ, Y i
t , ν

i⋆)− (Y iT
t P̂tY

i
t + r̂t)]

=
1

ϵ
Y iT
t (P̂t+ϵ − P̂t)Y

i
t +

1

ϵ
(r̂t+ϵ − r̂t)

+ Tr{P̂t[DDT +DNDT
N + ((N − 1)/N2)DaDaT +O(ϵ)]}

+ Y iT
t {J(I,−Γ1,−Γ2, 0)K2Q + J(I,K0

1 ,K
0
2 , 0)K

2
R1

}Y i
t

+ Y iT
t [P̂tA1(t) +AT

1 (t)P̂t +O(ϵ)]Y i
t

− ξR.

Our method below is to rewrite BbT
N P̂t within ξR so that it can be related to the ODE of P̂. Let

B be specified as in (D.14). We have

BbT
N P̂tY

i
t = BT P̂tY

i
t + (1/N)[0, 0, BT , 0]P̂tY

i
t . (D.31)

Denote Y o
t = [X̂iT

t , X̂0T
t , X̂

T

t ]
T . By (36) and Lemma 4.3, we have

BT P̂tY
i
t =BT JT3 P̂t(J3Y o

t + Y i
t − J3Y o

t ) (D.32)

=R(−[K1,K2,K3]−R−1R2[0,K
0
1 ,K

0
2 ])Y

o
t

+ BT JT3 P̂t[0, 0, X̂
(N)T
t − X̂

T

t , 0]
T

=− (R[K1,K2, 0,K3] +R2[0,K
0
1 , 0,K

0
2 ])Y

i
t

+ BT JT3 P̂t[0, 0, X̂
(N)T
t − X̂

T

t , 0]
T .

Therefore, it follows that

BbT
N P̂tY

i
t =(−R[K1,K2, 0,K3]−R2[0,K

0
1 , 0,K

0
2 ])Y

i
t

+ BT JT3 P̂t[0, 0, X̂
(N)T
t − X̂

T

t , 0]
T

+ (1/N)[0, 0, BT , 0]P̂tY
i
t .

We further use (D.31) to obtain

ξR =Y iT
t J(K1,K2, 0,K3)K2RY

i
t + [0, 0, X̂

(N)T
t − X̂

T

t , 0]O(1)Y i
t (D.33)

+ (1/N)Y iT
t O(1)Y i

t .

For Â in (61), we rewrite

Â =


A+BK1 G+B1K

0
1 +BK2 F B1K

0
2 +BK3

0 A0 +B0K
0
1 F0 B0K

0
2

0 G+B1K
0
1 +BK2 A+F+BK1 B1K

0
2 +BK3

0 G+B1K
0
1 +BK2 0 A+F+B1K

0
2+B(K1 +K3)

 .
By the form of A1, we have

Y iT
t P̂tA1(t)Y

i
t =Y iT

t P̂tÂ(t)Y i
t − Y iT

t P̂tB[K1,K2, 0,K3]Y
i
t (D.34)

+ Y iT
t O(1/N)Y i

t .

By (D.32), we have

− Y iT
t P̂tB[K1,K2, 0,K3]Y

i
t (D.35)
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= Y i
t (R[K1,K2, 0,K3] +R2[0,K

0
1 , 0,K

0
2 ])

T [K1,K2, 0,K3]Y
i
t

+ [0, 0, X̂
(N)T
t − X̂

T

t , 0]O(1)Y i
t .

Now by (D.33)–(D.34) and (D.35), we have

∆ϵ =
1

ϵ
(r̂t+ϵ − r̂t)

+ Tr{P̂t[DDT +DNDT
N + ((N − 1)/N2)DaDaT +O(ϵ)]}

+ Y iT
t

{1

ϵ
(P̂t+ϵ − P̂t) + P̂tÂ(t) + ÂT (t)P̂t

+ [K1,K2, 0,K3]
T (R[K1,K2, 0,K3] +R2[0,K

0
1 , 0,K

0
2 ])

+ (R[K1,K2, 0,K3] +R2[0,K
0
1 , 0,K

0
2 ])

T [K1,K2, 0,K3]

+ J(I,−Γ1,−Γ2, 0)K2Q + J(I,K0
1 ,K

0
2 , 0)K

2
R1

− J(K1,K2, 0,K3)K2R
}
Y i
t

+ [0, 0, X̂
(N)T
t − X̂

T

t , 0]O(1)Y i
t

+ (1/N)Y iT
t O(1)Y i

t .

We check ∆ϵ and use bounded convergence as in the proof of Lemma 5.8 to show the existence of the

limit of the lemma. By the ODEs of P̂ and r̂, we obtain for a fixed constant C such that

E|∆ϵ| ≤ C(ϵ+ 1/N)(1 + E|Y i
t |2) (D.36)

+ C(E|X̂(N)
t − X̂t|2)1/2(E|Y i

t |2)1/2.

From (D.28), (D.36) and Lemma 4.1, we conclude

lim
ϵ↓0

1

ϵ
[JN+1

i (t, Y i
t , û

i, û0, ûF,−i)− JN+1
i (t, Y i

t , û
i,ϵ⋆, û0, ûF,−i)]

= O((E|X(N)
0 −mX

0 |2)1/2 + 1/
√
N).

This completes the proof.
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