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Legal deposit – Bibliothèque et Archives nationales du Québec, 2023
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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2023-01
https://www.gerad.ca/en/papers/G-2023-01
https://www.gerad.ca/en/papers/G-2023-01


Mitigating equipment overloads due to electric vehicle
charging using customer incentives

Feng Li a, b, d

Ilhan Kocar c

Antoine Lesage-Landry a, b
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Abstract : This paper first presents a time-series impact analysis of charging electric vehicles (EVs) to
loading levels of power network equipment considering stochasticity in charging habits of EV owners. A
novel incentive-based mitigation strategy is then designed to shift the EV charging from the peak hours
when the equipment is overloaded to the off-peak hours and maintain equipment service lifetime. The
incentive level and corresponding contributions from customers to alter their EV charging habits are
determined by a search algorithm and a constrained optimization problem. The strategy is illustrated
on a modified version of the IEEE 8500 feeder with a high EV penetration to mitigate overloads on
the substation transformer.

Keywords: Electric vehicles, power distribution networks, stochastic analysis, demand response
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1 Introduction

As electric vehicles are promoted as part of the electrification plan in the transportation sector, its

penetration level in power systems is rapidly increasing. While EVs relax the dependency on fossil

fuels and reduce the emission of greenhouse gases, power distribution networks are heavily burdened

when EVs are being charged, especially in high penetration scenarios. Abnormal conditions such

as overloading of crucial equipment like substation transformers, important voltage variations, phase

unbalancing, harmonic distortions, etc. may occur due to EV charging [2, 8].

Stochastic impact analyses of EV charging which account for the uncertainties in locations of charg-

ing, starting time and duration, and charging power, may reveal abnormal conditions on the power

networks that need to be addressed [6, 9, 11]. Mitigation plans and network optimization must be

considered by utilities to maintain safe grid operations and provide good quality of service. While

upgrades to the network infrastructure such as expansion of equipment capacity and installation of

reactive power support devices can provide immediate relief to abnormal network conditions, they

require high levels of capital investments. Alternatively, load shaping techniques have been proposed

to reduce impacts of high penetration levels of EV charging to distribution networks. Demand re-

sponse (DR) programs, whether incentive [14] or price-based [3, 15], are designed to shift EV charging

loads to periods when grids are not heavily loaded. For example, in [14] an incentive-based DR pro-

gram is proposed to minimize impacts of controllable loads to distribution networks. A constrained

optimization problem is formulated to allocate a demand limit for each customer during a time period,

and customers can select charging hours for their EVs as long as the demand limit is respected at

all times. Effectiveness of the DR program is shown at different EV penetration levels; however, the

relationship between the incentive and the demand limit is not clear. In [15], load shapes are studied

when a DR strategy is implemented to non-critical loads (including EV charging) with time-of-use

(TOU) rates. In [3], to reduce EV charging demand at the peak hours, an EV charging schedule

is developed in response to the TOU rates to minimize users’ charging costs. In both works, TOU

rates are assumed to be pre-defined but not optimized considering load demands or other objectives.

Finally, coordinated EV charging is another technique aiming for an optimal charging schedule of EVs

connected to the network [5, 16].

In our previous work [11], we have proposed a rapid method to perform a stochastic analysis for

impacts of EV charging on distribution networks at a specific time. In this paper, we extend this work

to a time-series analysis such that we can assess impacts of EV charging to key network equipment, e.g.,

a substation transformer during a given period of time. We then propose an approach to mitigate the

overloading issue identified, if any, by the stochastic impact analysis that could shorten equipment’s

service lifetime and cause premature failures. To account for the uncertainties in customers’ EV

charging habits, incentives are based on changes to customers’ probabilities of the time when charging

starts. Hence, our proposed method aims to reduce the probability of customers connecting and

charging their EVs during hours when the equipment is overloaded, and increase the probability of

having EV charged outside those hours. The amount of incentives offered to customers as well as the

amount of changes to customers’ charging probabilities are to be optimized.

The rest of the paper is organized as follows: in Section 2 the model to perform a time-series

stochastic impact analysis in terms of EV penetration rate is presented. In Section 3, the mitigation

strategy to shift customers’ charging habits is proposed and how customers’ probabilities of charging

are modified accordingly is explained. A search algorithm along with an optimization problem to

determine both the incentive level and the amount of changes to customers’ charging probabilities

is presented. Section 4 illustrates the results of the proposed mitigation strategy to an overloaded

substation transformer due to EV charging on a modified IEEE-8500 test feeder, and finally we conclude

in Section 5 and point out some future work directions.
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2 Model for time-series stochastic EV impact analysis

We adopt the methodology from [11] due to its efficiency to analyse the impact to loading levels of

power system equipment under various EV penetration rates. We then extend it to the time-series

analysis case.

2.1 Assumption on input data

We assume that the input data for the analysis is gathered from either statistical surveys [4, 13, 17]

or estimated from EV usage and travel data [7]. Hence, we have access to:

• Quantity probability Prinum that characterizes the probabilities of customer i ∈ {1, 2, · · · , Nm}
of owning an EV, where Nm is the total number of customers.

• A set of charging profiles LEV = {ljEV(t), j = 1, 2, · · · }, where ljEV(t) is a time-series EV charging

profile during the discretized time horizon T = {1, 2, · · · , T}, where T is the length of the

considered period.

• Adoption probability PriL(j), j = 1, 2, · · · attached to customer i to adopt a charging profile

type j in LEV.

In addition, the network model should also be available such that equipment data and network

topology can be extracted to implement the stochastic analysis model.

2.2 Equipment loading levels

Let xt(p) denote the loading level of an equipment on the power distribution network at time t with

an EV penetration rate p. The penetration rate is defined as the ratio of the total number of EVs nEV

over the the total number of customers on the network Nm, i.e., p = nEV/Nm. Let m(xt, p) denote

the probability density functions (PDFs) of xt at p, and the evolution of m(xt, p) is characterized by

the following Fokker-Planck equation (FPE).

∂m(xt, p)

∂p
+

∂

∂xt

{
m(xt, p)u(xt, p)

}
= d

∂2m(xt, p)

∂x2
t

, (1)

subject to m0 = m(xt, p
0). Without loss of generality, p0 = 0 hereinafter, i.e., the initial network does

not have any EV connected. In (1), the diffusion velocity term d is a small positive constant, and the

drift velocity term u(xt, p) specifies the rate of increase to equipment loading level at given p and t.

For distribution networks, the equipment loading level is computed by-phase. Let gϕt,e(p) denote

the increased amount of loading to equipment e on phase ϕ ∈ {A,B,C} at EV penetration p and

time t. We can approximate gϕt,e(p) by the following Equation [11].

gϕt,e(p) ≈
nEV Prϕe (p)E[Sϕ

e ](t)

Sϕ
e

, (2)

where Prϕe (p) is the probability that EVs are connected to sections downstream of e on phase ϕ,

E[Sϕ
e ](t) ∈ R is the expected charging power at t of an EV connected downstream of e and on phase ϕ,

and Sϕ
e ∈ R is the rated power of e on ϕ, which is assumed to be known. The drift velocity u(xϕ

t,e, p)

at t, therefore, is the derivative of gϕt,e(p) with respect to p.

Once u(xϕ
t,e, p) is computed, (1) is numerically solved by finite-volume method (FVM) using an

implicit scheme [10]. The solution is a sequence of PDFs indexed by p at a given t, from which the mean

or any percentile value of xϕ
t,e(p) can be computed to indicate whether the equipment is overloaded

or not at t. To evaluate equipment loading levels at multiple times during the period T , the analysis

must be repeated for each t ∈ T . By such a time-series analysis, if the equipment is frequently



Les Cahiers du GERAD G–2023–01 – Revised 3

overloaded or the overload lasts long, the risk of premature equipment failure is higher which increases

the operating and maintenance costs for utilities. Hence, a mitigation strategy becomes necessary to

manage equipment loading levels.

3 Mitigation strategy

For a distribution network with high penetration of residential EVs, equipment is most likely overloaded

during the peak hours when most EVs are connected and start charging around the same time. In such

a case, the expected EV charging power E[Sϕ
e ](t) during the peak hours will be high, and according

to (2) the extra loading due to EV charging will be high. Conversely, if a control mechanism is in

place to limit E[Sϕ
e ](t) during the peak hours, the overloading on the equipment can be mitigated.

The expected charging power for t ∈ T of an EV connected downstream of e on phase ϕ can be

expressed by the following equation:

E[Sϕ
e ](t) =

1

|Kϕ
e |

∑
i∈Kϕ

e

∑
j

ljEV(t) Pr
i
L(j), (3)

where Kϕ
e is the set of customers who are downstream of e on phase ϕ, and |Kϕ

e | is its cardinality.

Considering (3), to reduce E[Sϕ
e ] during the peak hours, we can modify PriL(j) of each customer such

that their probabilities of adopting charging profile types ljEV(t) that are activated during the peak

hours are reduced by a certain amount. On the other hand, when the probabilities of profiles that are

activated during the off-peak hours are increased by the same amount, E[Sϕ
e ](t) is increased during

the off-peak hours while the sum of PriL(j) is conserved to be 1. In the following section, we discuss

how modification is made to PriL.

3.1 Modification to charging profile probabilities

Let the set of the peak hours be T pk ⊆ T and that of the off-peak hours be T off-pk ⊆ T . Then,

let Lpk
EV = {ljEV(t)| EV charging start hour ∈ T pk} and Loff-pk

EV = {ljEV(t)| EV charging start hour ∈
T off-pk}. Hence LEV is partitioned into LEV = Lpk

EV

⋃
Loff-pk
EV . Let Y ∈ RL = [yj , j = 1, 2, · · ·L]⊤ be

an indicator vector where yj = 1 if j ∈ Lpk
EV and yj = 0 otherwise. Let PrL ∈ RNm×L denote the EV

charging profile probabilities for all Nm customers. Note that PrL can be of any arbitrary probability

distribution. We can extract the probabilities of profiles in Lpk
EV for all customers by,

PrpkL = PrL diag{Y },

where diag{Y } ∈ RL×L is a square matrix with Y on the diagonal elements. Let Σi = Pri,pkL Y ∈ R
be the sum of all elements in Pri,pkL , which is customer i’s total probability of starting EV charging

during the peak hours. Suppose that we would like to adjust Σi by an amount ∆i
prob ∈ R, then the

resulting probabilities during peak hours become,

P̃r
i,pk

L = Pri,pkL +
∆i

prob

Σi
Pri,pkL . (4)

To reduce the loading during peak hours, we should impose −Σi ≤ ∆i
prob ≤ 0, where the lower bound

is necessary to make sure that all elements of P̃r
i,pk

L are non-negative. Further, the aspect ratios among

EV charging profile probabilities are maintained following the adjustment ∆i
prob. We can write (4) in

a matrix form for all customers:

P̃r
pk

L = PrpkL +Σ−1 diag{∆i
prob}PrpkL , (5)
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where Σ = diag{PrpkL Y }, diag{∆i
prob} ∈ RNm×Nm . Similarly, we can write the adjusted probabilities

for off-peak profiles after adding ∆prob to them.

P̃r
off-pk

L = Proff-pkL +(INm
−Σ)

−1
diag{−∆i

prob}Proff-pkL , (6)

where INm
is the Nm × Nm identity matrix. Summing (5) and (6), we obtain the modified charging

profile probabilities,

P̃rL = P̃r
pk

L + P̃r
off-pk

L (7)

In the next section, we formulate an optimization problem to determine the appropriate ∆i
prob

values for all customers.

3.2 Determination of optimal ∆i
prob adjustment

Values of ∆i
prob should be determined such that (a) the equipment usable lifetime should not be reduced

due to extensive overloading and (b) incentives should be given to customers to change their charging

habits according to the adjusted EV charging profile probabilities P̃rL without leading to unmotivated

costs.

3.2.1 Constraint on E[Sϕ
e ](t)

As equipment loading levels are computed from the stochastic analysis model with respect to EV

penetration, it is difficult to directly impose a constraint on them. Alternatively, constraints can be

made on E[Sϕ
e ](t) which implicitly limit the extra equipment loadings due to EV charging. Let S̄pk

and S̄off-pk be given limits of E[Sϕ
e ](t) during T pk and T off-pk, respectively. We have,

E[Sϕ
e ](t) ≤ S̄pk, t ∈ T pk (8)

E[Sϕ
e ](t) ≤ S̄off-pk, t ∈ T off-pk. (9)

3.2.2 Incentives received by customer

As customer i contributes to reducing loadings of network equipment during the peak hours by changing

their EV charging habits from the associated probabilities PrL to P̃rL, an incentive Ri should be

rewarded. We define the incentive Ri as:

Ri =
∑

t∈T pk

r

∑
j

ljEV(t)
(
PriL(j)− P̃r

i

L(j)
)∆t, (10)

where ∆t is the time step, and r ∈ R ($/kWh) is the unit reward applicable to all customers which is

also to be determined by the optimization problem. Note that Ri ≥ 0 due to ∆i
prob ≤ 0.

3.2.3 Objective function and constraint on incentives

The objective function is the total incentives given to all customers, which is,

fobj =

Nm∑
i=1

Ri. (11)

Utilities cannot offer unlimited amount of incentives which does not make economic sense. For example,

if the total incentives exceed the increased costs incurred due to shortened equipment lifetime caused by

overloads, then utilities’ best option is to keep operating at higher costs without paying any incentives

to customers to change their charging habits. Hence, we take the incurred costs due to the shortened
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equipment lifetime, denoted as c(Flife), as a “budget” for the incentives. Here, Flife is a factor indicating

the expected equipment lifetime which can be computed from the equipment loading levels obtained

from the model in Section 2.2. When Flife > 1, equipment lifetime is reduced, and c(Flife) > 0. Hence,

we impose the following constraint to the total incentives:

0 ≤ fobj ≤ c(Flife). (12)

3.2.4 Calculation of c(Flife)

As overloading often results in higher operating temperature of the equipment, a thermal-aging model

is utilized to compute Flife from equipment load levels with time. Thermal-aging models for differ-

ent types of equipment are described in the literature and in IEEE standards. For example, IEEE

standard C57.91 describes the thermal-aging model for transformers [1]. The cost c(Flife) is then

the increased amount to the annual cost (depreciation, operating & maintenance, etc.) due to the

shortened lifetime, i.e.,

c(Flife) = cannual(max{1, Flife} − 1), (13)

where cannual is the total annual cost at the nominal lifetime.

Note that when Flife ≤ 1, the equipment is expected to have its nominal lifetime hence

c(Flife ≤ 1) = 0. In such a case, no mitigation strategy is required.

3.2.5 Constrained optimization problem formulation

The optimization problem to determine ∆i
prob and the unit reward r can be written as,

min
∆i

prob,r
fobj

subject to − Σi ≤ ∆i
prob ≤ 0

(7), (8), (9), (10), (12)

(14)

Solving the optimization problem (14) gives the optimal values of ∆i
prob and r for given limits S̄pk

and S̄off-pk. In the following section, how the values for S̄pk and S̄off-pk are determined is discussed.

3.3 Determination of S̄pk and S̄off-pk

3.3.1 Calculation of S̄off-pk

Equipment loading level at time t can be written as,

xϕ
t,e(p) = xϕ

t,e(p
0) + gϕt,e(p),

where xϕ
t,e(p

0) is the baseline loading levels without any EV connected on the network and can be

obtained from power flow analysis. If we impose that the equipment during the off-peak hours should

never be overloaded, we have,

xϕ
t,e(p

0) + gϕt,e(p) ≤ 1,

gϕt,e(p) ≤ 1− xϕ
t,e(p

0), t ∈ T off-pk.
(15)

Substituting (2) into (15) we get,

nEV Prϕe (p)E[Sϕ
e ](t)

Sϕ
e

≤ 1− xϕ
t,e(p

0),

E[Sϕ
EV](t) ≤

Sϕ
e

(
1− xϕ

t,e(p
0)
)

nEV Prϕe (p)
, t ∈ T off-pk.
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By taking the maximum level of xϕ
t,e(p

0) over t ∈ T off-pk, we can compute S̄off-pk by,

S̄off-pk =
Sϕ
e

(
1−maxt∈T off-pk xϕ

t,e(p
0)
)

nEV Prϕe (p)
. (16)

3.3.2 Search for S̄pk

Unlike S̄off-pk, the limit S̄pk cannot be analytically computed. Rather, an appropriate value should be

selected such that two conditions are satisfied: (a) the optimization problem (14) is feasible, and (b)

the equipment’s lifetime should be as close as possible to its nominal value, i.e., |Flife−1| is minimized.

A basic search algorithm is proposed below to find an appropriate value for S̄pk at given p.

Algorithm 1 A search algorithm for S̄pk

Initialize n← 0, S̄pk
n ← maxt∈T E[Sϕ

EV], δn ← S̄pk
n

Compute S̄off-pk by (16), Flife,n, and c(Flife,n)
while n < N or δn > 0.001 do ▷ N is a large number

Solve the optimization problem (14)
n← n+ 1
if there exists a feasible solution to (14) then

Compute equipment loading under the solution
from the model in Section 2.2

Compute the resulting Flife,n and c(Flife,n)
if Flife,n > 1 then

S̄pk
n ← S̄pk

n−1 exp (−1/n)
else if Flife,n ≤ 1 then

S̄pk
n ← S̄pk

n−1 exp (1/n)
end if

else if there exists no feasible solution to (14) then

S̄pk
n ← S̄pk

n−1 exp (1/n)
end if
δn ← |S̄pk

n − S̄pk
n−1|

end while

The main idea of the search algorithm is to try a higher S̄pk value when (14) is infeasible or

when (14) is feasible but Flife,n ≤ 1, and try a lower S̄pk value when (14) is feasible and Flife,n > 1. The

algorithm is expected to converge when N is sufficiently large and δn vanishes due to the exponential

factor used in each iteration. The convergence proof is omitted here due to the space limitation.

4 Numerical study

For the numerical simulation to illustrate the proposed mitigation strategy, we use the modified IEEE-

8500 test network as in [11] where the substation transformer has a nominal rating of 27.5 MVA. The

following information are assumed:

LEV: Charging may start at each hour and lasts for 4 hours, and 4 levels of EV charging power are

considered (1.8kW, 3.6kW, 6.6kW, 7.2kW, with unity power factor).

PrL: uniform probabilities are assumed for simplicity, and customers have much higher probabilities

of starting charging between noon and midnight.

We look at the impact to the substation transformer loading levels on phase A at 80% EV pene-

tration for T = 24 hours with a time step of ∆t = 1 hour. We take the mean loading levels computed

from the time-series stochastic analysis model. As observed in Figure 1, the substation transformer

starts to be overloaded from 3PM until 9PM. Assuming that this loading pattern occurs for an entire

year, from the thermal-aging model we can calculate the lifetime factor Flife = 1.09. Suppose that the

annual cost of the transformer at the nominal lifetime is cannual = $500,000, then from (13) utilities
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are incurred an extra cost of c(Flife) = $45,000 per year due to the shortened lifetime, which serves as

the budget for customer incentives.
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Figure 1: Mitigation of the substation transformer overload by giving incentives to change customers’ EV charging habits
(probabilities of charging hours)

We rewrite (14) as a convex optimization problem to reduce computational efforts and find a

global optimum. We reformulate constraint (10) which is non-convex. To do so, we use the price

elasticity [12, 18] to model customers’ response to the incentive offered. Hence

Ri = −εir2, (17)

−εir =
∑

t∈T pk

(∑
j

ljEV(t)
(
PriL(j)− P̃r

i

L(j)
))

∆t, (18)

where εi < 0 ([kWh]2/$) is the price elasticity which is randomly generated in our numerical example.

The constraint (10) in the optimization problem (14) is then replaced by (17) and (18), and cvxpy

with the MOSEK solver is used to find an optimal solution.

Figure 2 shows S̄pk value for each iteration of Algorithm 1, as well as the corresponding total yearly

incentives rewarded to all customers (total cost to utilities) and the unit reward value. It is observed

that at convergence, S̄pk = 0.55 kVA, the unit reward r = 1.7 ¢/kWh, and the total extra cost to

utilities reduces from $45,000 to around $30,000 per year (a 33.3% saving). As shown in Figure 1, with

the incentive, a customer’s probabilities of starting charging during the midnight to noon period have

been greatly increased. Collectively, the overload of the substation transformer is mitigated such that

its lifetime of service is maintained at the nominal value.
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Figure 2: Total incentives fobj, the unit reward r, and the S̄pk value during the search algorithm iterations

5 Conclusion

In this paper, we propose a model to perform a time-series impact analysis of EV charging on power

distribution networks. When such an analysis indicates potential overloading issues to network equip-

ment, a mitigation strategy is designed based on shifting customers’ probabilities of charging their

EVs from peak hours to off-peak hours. Customers receive incentives from utilities to make these

changes to their charging habits. The proper incentive amount and customers’ changes required are

determined from a search algorithm embedded with a convex constrained optimization problem. Due

to the stochastic nature of EV usage and charging needs, customers are not required to follow any

specific daily charging schedule; rather, they still have the freedom to charge their EVs during the

peak hours when needed as long as the modified probabilities of charging hours are followed.

As a next step, a new search algorithm with a faster rate of convergence can be looked at. Its

convergence needs to be proved and the optimality of the converged value will also be studied. As

the stochastic analysis model can also indicate abnormal voltage conditions on the network [11], an-

other topic of future work is to extend our approach to including voltage constraints in designing

corresponding mitigation strategies.
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