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2022). A Levenberg-Marquardt method for nonsmooth regularized
least squares, Rapport technique, Les Cahiers du GERAD G–
2022–58, GERAD, HEC Montréal, Canada.
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Montréal (Qc), Canada, H3C 3A7

saravkin@uw.edu

rjbaral@sandia.gov

dominique.orban@gerad.ca

December 2022
Les Cahiers du GERAD
G–2022–58
Copyright © 2022 GERAD, Aravkin, Baraldi, Orban
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Abstract : We develop a Levenberg-Marquardt method for minimizing the sum of a smooth nonlinear
least-squares term f(x) = 1

2∥F (x)∥22 and a nonsmooth term h. Both f and h may be nonconvex. Steps
are computed by minimizing the sum of a regularized linear least-squares model and a model of h using
a first-order method such as the proximal gradient method. We establish global convergence to a first-
order stationary point of both a trust-region and a regularization variant of the Levenberg-Marquardt
method under the assumptions that F and its Jacobian are Lipschitz continuous and h is proper and
lower semi-continuous. In the worst case, both methods perform O(ϵ−2) iterations to bring a measure of
stationarity below ϵ ∈ (0, 1). We report numerical results on three examples: a group-lasso basis-pursuit
denoise example, a nonlinear support vector machine, and parameter estimation in neuron firing. For
those examples to be implementable, we describe in detail how to evaluate proximal operators for
separable h and for the group lasso with trust-region constraint. In all cases, the Levenberg-Marquardt
methods perform fewer outer iterations than a proximal-gradient method with adaptive step length
and a quasi-Newton trust-region method, neither of which exploit the least-squares structure of the
problem. Our results also highlight the need for more sophisticated subproblem solvers than simple
first-order methods.

Keywords : Regularized optimization, nonsmooth optimization, nonconvex optimization, nonlinear
least squares, Levenberg-Marquardt method, proximal gradient method
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1 Introduction

We consider the problem

minimize
x

f(x) + h(x), f(x) = 1
2∥F (x)∥22, (1)

where F : Rn → R
m is continuously differentiable and h : Rn → R is proper and lower semi-

continuous; we allow h to be nonsmooth and nonconvex. In practice, f is often a data-misfit term

while h is a regularizer designed to promote desirable properties in the solution, such as sparsity.

Numerous applications investigated in the nonsmooth regularized optimization literature actually

have the structure (1), including basis pursuit denoising [14, 28], sparse factorization and dictionary

learning [2], and sparse total least squares [30]. Yet nonsmooth numerical methods do not exploit the

least-squares structure, nor accommodate general nonsmooth regularizers.

We describe two methods for (1): a quadratic regularization variant and trust-region variant inspired

by the method of Levenberg [19] and Marquardt [21], denoted LM and LMTR respectively. Steps are

computed by approximately minimizing simpler nonsmooth iteration-dependent Gauss-Newton-type

models. Our algorithmic realizations utilize first-order methods, such as the proximal gradient method

or the quadratic regularization method of Aravkin et al. [1], to solve the subproblems. The trust-region

approach allows for any arbitrary trust-region norm, which, in practice, is influenced by nonconvex

subproblem tractibility. For both algorithms, we establish global convergence in terms of an optimality

measure describing achievable decrease by a single proximal gradient step. Additionally, we derive a

worst-case complexity bound of O(1/ϵ2) iterations to bring the stationarity measure below a tolerance

of ϵ ∈ (0, 1) for LM and LMTR, i.e., the presence of a nonsmooth term in the objective yields a complexity
bound of the same order as in the smooth case.

We provide implementation details and illustrate the performance of our methods on several

numerical examples, including basis pursuit denoise with group-lasso regularization, nonlinear support

vector machine with ℓ
1/2
1/2-norm regularization, and a sparse parameter estimation example taken from

the Fitzhugh-Nagumo model of neuron firing. Our methods exhibit favorable performance under

certain conditions with respect to previous work Aravkin et al. [1]. We additionally provide efficient,
open-source software implementations of LM and LMTR as a package in the Julia language [3]. We find

that exploiting the least-squares structure yields few LM and LMTR outer iterations, a well-known benefit

in smooth optimization. The cost incurred is a large number of inner iterations, i.e, spent solving the

subproblem. Thus, the results highlight the need for more sophisticated methods to minimize the sum
of a linear least-squares term and a nonsmooth regularizer.

Related research

The present research is based on the framework laid out by Aravkin, Baraldi, and Orban [1]. The

convergence and complexity of our trust-region Levenberg-Marquardt implementation follow directly

from the general results of [1]. To the best of our knowledge, the trust-region literature does not

explicitly cover the case of a nonlinear least-squares smooth objective with a nonsmooth regularizer

other than a penalty term even though numerous applications exhibit that structure. See [13] for

background and an extensive treatment.

A large portion of the literature focuses on h convex and/or globally Lipschitz continuous, e.g., Cartis

et al. [11], Grapiglia et al. [17] and references therein. We do not attempt to give a comprehensive account

of that literature here as we focus on significantly weaker assumptions. While many methods exist in the

first-order literature, e.g., [12], few can effectively utilize any significant curvature information. Proximal

Newton methods [18] require solutions to nontrivial proximal operators and positive semi-definiteness
of the Hessian. The small number of references that allow both f and h to be nonconvex that we are

aware of include: Li and Lin [20], who design accelerations of the proximal gradient method under the

assumption that f + h is coercive; Bolte et al. [8] who design an alterating method for cases where
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h(x) = h1(x1) + h2(x2) and (x1, x2) is a partition of x; Stella et al. [26] who propose a linesearch

limited-memory BFGS method named PANOC; Themelis et al. [27] who propose a nonmonotone

linesearch proximal quasi-Newton method named ZeroFPR based on the forward-backward envelope;

and Boţ et al. [9], who study a proximal method with momentum. The last three converge if f + h

satisfies the Kurdyka- Lojasiewicz (K L) assumption. Moreover, while all include (1) as a special case, few

exploit any curvature information and none are specific to the least-squares structure. The algorithms

presented here, like those of [1], require no such coercivity or K L assumptions.

Notation

We use ∥ · ∥ to represent a generic, but fixed, norm on Rn or Rm. The unit ball defined by that norm

is B, and x+ ∆B is the ball centered at x of radius ∆ > 0. For an integer q ≥ 1, ∥ · ∥q is the ℓq-norm

and Bq is the unit ball in the ℓq-norm. If A ⊆ R
n, χ(· | A) is the indicator of A, i.e., the function

whose value is 0 if x ∈ A and +∞ otherwise. Unless otherwise noted, if A is a matrix, ∥A∥ denotes the

spectral norm of A, i.e., its largest singular value. We use J(x) : Rn → R
n×m to denote the Jacobian

of F at x.

2 Background

Definition 1 (Limiting subdifferential). Consider ϕ : Rn → R and x̄ ∈ Rn with ϕ(x̄) <∞. We say that

v ∈ Rn is a regular subgradient of ϕ at x̄, and we write v ∈ ∂̂ϕ(x̄) if

lim inf
x→x̄

ϕ(x) − ϕ(x̄) − vT (x− x̄)

∥x− x̄∥2
≥ 0.

The set of regular subgradients is also called the Fréchet subdifferential. We say that v is a general

subgradient of ϕ at x̄, and we write v ∈ ∂ϕ(x̄), if there are sequences {xk} and {vk} such that

xk → x̄, ϕ(xk) → ϕ(x̄), vk ∈ ∂̂ϕ(xk) and vk → v.

The set of general subgradients is called the limiting subdifferential.

Proposition 1 (25, Theorem 10.1). If ϕ : Rn → R is proper and has a local minimum at x̄, then

0 ∈ ∂̂ϕ(x̄) ⊆ ∂ϕ(x̄). If ϕ is convex, the latter condition is also sufficient for x̄ to be a global minimum.

If ϕ = f + h where f is continuously differentiable on a neighborhood of x̄ and h is finite at x̄, then

∂ϕ(x̄) = ∇f(x̄) + ∂h(x̄).

If 0 ∈ ∂̂ϕ(x̄), we say that x̄ is first-order stationary for ϕ. Under our assumptions,

x is first-order stationary for (1) ⇐⇒ 0 ∈ J(x)
T
F (x) + ∂h(x). (2)

The proximal gradient method [16] applied to a regularized objective f(x) + h(x) where f is

differentiable is defined by the iteration

xk+1 ∈ prox
νh

(xk − ν∇f(xk)) (k ≥ 0), (3)

where ν > 0 is a steplength and the proximal operator is defined as

prox
νh

(y) := argmin
u

1
2∥u− y∥22 + νh(u). (4)

Without further assumptions on h, (4) is a set that may be empty, or contain one or more elements.

The iteration (3) has the following descent property

Lemma 1 (8, Lemma 2). Let ∇f be Lipschitz continuous with Lipschitz constant L ≥ 0, h be proper

lower semi-continuous and inf h > −∞. Let xk ∈ domh, 0 < ν < 1/L, and xk+1 be defined according

to (3). Then,

(f + h)(xk+1) ≤ (f + h)(xk) − 1
2 (ν−1 − L)∥xk+1 − xk∥22. (5)
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3 Linear least squares

For fixed σ ≥ 0 and x ∈ Rn, define

φ(s;x) := 1
2∥J(x)s+ F (x)∥22, (6a)

ψ(s;x) ≈ h(x+ s) with ψ(0;x) = h(x), (6b)

m(s;x, σ) := φ(s;x) + 1
2σ∥s∥

2
2 + ψ(s;x). (6c)

Consider the parametric problem and its optimal set

p(x, σ) := min
s

m(s;x, σ) ≤ φ(0;x) + ψ(0;x) = f(x) + h(x) (7a)

P (x, σ) := argmin
s

m(s;x, σ). (7b)

The form of (7) is representative of a Levenberg-Marquardt subproblem for (1) in which f and h are

modeled separately.

In particular, φ(0;x) = f(x) and ∇sφ(0;x) = ∇f(x). We make the following additional assumption.

Model Assumption 3.1. For any x ∈ Rn, ψ(·;x) is proper, lsc and prox-bounded, i.e., there exists

λx ∈ R+ ∪ {+∞} such that ψ(·;x) + 1
2λ

−1
x ∥ · ∥22 is bounded below. In addition, ψ(0;x) = h(x), and

∂ψ(0;x) = ∂h(x).

In Model Assumption 3.1, we assume that our choice of λx is the supremum of all possible choices,

and we refer to it as the threshold of prox-boundedness of ψ(·;x). In particular, ψ(·;x) is bounded

below if and only if λx = +∞.

By Proposition 1, if σ ≥ λ−1
x ,

s ∈ P (x, σ) =⇒ 0 ∈ ∇φ(s;x) + σs+ ∂ψ(s;x).

We define

ξ(x, σ) := (f + h)(x) − p(x, σ). (8)

The following stationarity criterion follows directly from the definitions above.

Lemma 2. Let Model Assumption 3.1 be satisfied and σ ≥ λ−1
x . Then ξ(x, σ) = 0 ⇐⇒ 0 ∈ P (x, σ) =⇒ x

is first-order stationary for (1). In addition, x is first-order stationary for (1) if and only if s = 0 is

first-order stationary for (6c).

Proof. Note first that ξ(x, σ) = 0 ⇐⇒ p(x, σ) = (f + h)(x) = φ(0;x) + ψ(0;x), which occurs if and

only if 0 ∈ P (x, σ). Proposition 1 then implies 0 ∈ ∂m(0;x, σ) = ∇φ(0;x) + ∂ψ(0;x) and is equivalent

to (2).

The next result states some properties of (7).

Proposition 2. Let Model Assumption 3.1 be satisfied. dom p = domP = domψ × {σ | σ ≥ λ−1
x }. In

addition, for any x ∈ Rn,

1. p(x, ·) is proper lsc and for each σ > λ−1
x , P (x, σ) is nonempty and compact;

2. if {σk} → σ̄ > λ−1
x in such a way that {p(x, σk)} → p(x, σ̄), and for each k, sk ∈ P (x, σk), then

{sk} is bounded and all its limit points are in P (x, σ̄);

3. p(x, ·) is continuous at any σ̄ > λ−1
x and {p(x, σk)} → p(x, σ̄) holds in part 2 if σ̄ > 0.

Proof. Parts 1–2 follow from applying [25, Theorem 1.17] by noting that (6c) is level-bounded in s

locally uniformly in (x, σ) because ψ(·;x) + 1
2λ

−1
x ∥s∥22 is bounded and φ(s;x) + 1

2 (σ − λ−1
x )∥s∥22 is level

bounded in s locally uniformy in (x, σ). Part 3 also follows from [25, Theorem 1.17] by noting that (6c)

is continuous in σ at any σ̄ > λ−1
x .
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By Proposition 2 part 3, ξ(x, ·) is continuous at any σ̄ > λ−1
x .

Although (6a) is a natural model of f about x, convergence properties may be stated in terms of

the simpler first-order model

φ1(s;x) := f(x) + ∇f(x)T s = 1
2∥F (x)∥22 + (J(x)TF (x))

T
s, (9a)

m1(s;x, σ) := φ1(s;x) + 1
2σ∥s∥

2 + ψ(s;x). (9b)

The first step of the proximal gradient method (3) applied to the minimization of both φ(s;x)+ψ(s;x)

and φ1(s;x) + ψ(s;x) with steplength ν > 0 is

s1 ∈ prox
νψ(·;x)

(−νJ(x)
T
F (x)) (10)

= argmin
s

1
2∥s+ νJ(x)

T
F (x)∥22 + νψ(s;x)

= argmin
s

(J(x)
T
F (x))T s+ 1

2ν
−1∥s∥22 + ψ(s;x)

= argmin
s

m1(s;x, ν−1).

If ν−1 ≥ σ, then m1(s;x, σ) ≤ m1(s;x, ν−1). Therefore, if s1 results from (10), it also induces

decrease in (9b).

In parallel to Lemma 2 and Proposition 2, we may define

p1(x, σ) := min
s

m1(s;x, σ) ≤ φ1(0; s) + ψ(0;x) = f(x) + h(x) (11a)

P1(x, σ) := argmin
s

m1(s;x, σ), (11b)

ξ1(x, σ) := (f + h)(x) − p1(x, σ) ≥ 0, (11c)

and we have the following results, stating corresponding properties of p1 and ξ1. The proofs replicate

those in Proposition 2 and Lemma 3.

Lemma 3. Let Model Assumption 3.1 be satisfied and σ ≥ λ−1
x . Then ξ1(x, σ) = 0 ⇐⇒ 0 ∈ P1(x, σ) =⇒

x is first-order stationary for (1). In addition, x is first-order stationary for (1) if and only if s = 0 is

first-order stationary for (9b).

Proposition 3. Let Model Assumption 3.1 be satisfied. dom p1 = domP1 = domψ × {σ | σ ≥ λ−1
x }. In

addition, for any x ∈ Rn,

1. p1(x, ·) is proper lsc and for each σ > λ−1
x , P1(x, σ) is nonempty and compact;

2. if {σk} → σ̄ > λ−1
x in such a way that {p1(x, σk)} → p1(x, σ̄), and for each k, sk ∈ P1(x, σk),

then {sk} is bounded and all its limit points are in P1(x, σ̄);

3. p1(x, ·) is continuous at any σ̄ > λ−1
x and {p1(x, σk)} → p1(x, σ̄) holds in part 2 if σ̄ > 0.

Because L = 0 for φ1, Lemma 1 implies that the decrease achieved by s1 is (φ1 + ψ)(s1;x) ≤
(φ1 + ψ)(0;x) − 1

2ν
−1∥s1∥2, which can be rearranged as

(f + h)(x) − (φ1 + ψ)(s1;x) ≥ 1
2ν

−1∥s1∥2 ≥ 1
2σ∥s1∥

2. (12)

In the special case where ψ = 0, s1 = −ν−1∇f(x), so that (12) reduces to

ξ1(x, σ) ≥ ξ1(x, ν−1) ≥ f(x) − φ1(s1;x) ≥ 1
2σν

−1∥∇f(x)∥2 ≥ 1
2σ

2∥∇f(x)∥2,

which suggests that σ−1(ξ1(x, ν−1))1/2 may be used as stationarity measure.
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4 Nonlinear least squares

4.1 A regularization approach

We first examine the formulation of the method of Levenberg and Marquardt in which the model (6c)
is employed to compute a step. Specifically, consider Algorithm 1. The step sk is computed by

approximately minimizing (6c) in stage 7 but the quality of the step is measured without taking the

regularization term 1
2σk∥sk∥

2 into account in stage 8. The subproblem step sk may be computed by

continuing the iterations of the proximal gradient method initialized at sk,1. This gives rise to one

possible implementation of Algorithm 1.

Algorithm 1 Nonsmooth regularized Levenberg-Marquardt method.

1: Choose constants 0 < η1 ≤ η2 < 1 and 0 < γ3 ≤ 1 < γ1 ≤ γ2.
2: Choose x0 ∈ Rn

where h is finite, σ0 > 0, compute F (x0) and h(x0).
3: for k = 0, 1, . . . do

4: Choose a steplength νk < 1/(∥J(xk)∥
2
+ σk).

5: Compute sk,1 as defined in (10) and ξ1(xk, ν
−1
k ) as defined in (11c).

6: Define m(s;xk, σk) as in (6c).
7: Compute an approximate solution sk of (7b).
8: Compute the ratio

ρk :=
f(xk) + h(xk)− (f(xk + sk) + h(xk + sk))

φ(0;xk) + ψ(0;xk)− (φ(sk;xk) + ψ(sk;xk))
.

9: If ρk ≥ η1, set xk+1 = xk + sk. Otherwise, set xk+1 = xk.
10: Update the regularization parameter according to

σk+1 ∈


[γ3σk, σk] if ρk ≥ η2,

[σk, γ1σk] if η1 ≤ ρk < η2,

[γ1σk, γ2σk] if ρk < η1.

11: end for

It may occur that σk ≤ λ−1
xk

. In such a case, ψ(sk;xk) = −∞ so that the rules of extended arithmetic

imply ρk = 0, whether h(xk + sk) = +∞ or is finite. Thus sk will be rejected at stage 9 and σk+1 will

be chosen larger than σk at stage 10. After a finite number of such increases, σk will exceed λ−1
xk

and a

step with finite ψ(sk;xk) will result.

Our main working assumption is the following.

Problem Assumption 4.1. The residual F and its Jacobian J are bounded and Lipschitz continuous on

Ω := {x ∈ Rn | (f + h)(x) ≤ (f + h)(x0)} and h is proper and lower semi-continuous.

While Problem Assumption 4.1 is a strong demand on all of Rn and, in particular, rules out the

case of linear least squares, it is a common assumption in the convergence analysis of the Levenberg-

Marquardt method. If Ω is a compact set, then F is Lipschitz continuous on Ω if it is C1 on Ω, and J

is Lipschitz continuous on Ω if F is C2 on Ω.

Under Problem Assumption 4.1, ∇f is Lipschitz continuous on Ω, i.e., there exists L > 0 such that

|f(x+ s) − (f(x) + ∇f(x)
T
s)| ≤ 1

2L∥s∥
2
2 for all x, x+ s ∈ Ω. (13)

We emphasize that in what follows, knowledge of L, or an estimate thereof, is not required. Our

next assumption on the model is the following.

Model Assumption 4.1. There exists a constant κm > 0 such that for all x and s ∈ Rn, |(f + h)(x+

s) − (φ+ ψ)(s;x)| ≤ κm∥s∥2.

Model Assumption 4.1 is essentially an assumption on the nonsmooth part ψ of the model. In-

deed, (6a) and (13) combine to yield

|f(x+ s) − φ(s;x)| ≤ |f(x+ s) − (f(x) + ∇f(x)
T
s)| + 1

2∥J(x)s∥2|
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≤ 1
2 (L+ ∥J(x)∥2)∥s∥2.

where we used the definition of f(x), the identity ∇f(x) = J(x)
T
F (x), and (13). Thus if J is bounded

on Ω, we obtain

|f(x+ s) − φ(s;x)| ≤ 1
2 (L+ sup

x∈Ω
∥J(x)∥2)∥s∥2.

In particular, Model Assumption 4.1 is satisfied with κm = 1
2 (L + supx∈Ω ∥J(x)∥2) if we select

ψ(s;x) := h(x+ s).

We make the following additional assumption and say that {ψ(·;xk)} is uniformly prox-bounded.

Model Assumption 4.2. There exists λ > 0 such that λxk
≥ λ for all k ∈ N.

Model Assumption 4.2 is satisfied if h itself is prox-bounded and we select ψ(s;xk) := h(xk + s) at

each iteration.

Our first result ensures that σk is bounded above in Algorithm 1.

Theorem 1. Let Problem Assumption 4.1 and Model Assumptions 3.1, 4.1 and 4.2 be satisfied, and let

σsucc := max(2κm/(1 − η2), λ−1) > 0. (14)

If xk is not first-order stationary and σk ≥ σsucc, then iteration k is very successful and σk+1 ≤ σk.

Proof. Let sk be the step computed at iteration k of Algorithm 1. If σk < λ−1
xk

, ρk = 0 as explained

above, sk is rejected and σk is increased. Hence, we assume that σk ≥ λ−1 ≥ λ−1
xk

. Because xk is not

first-order stationary, sk ̸= 0. Because sk is an approximate solution of (7b), we must have

φ(0;xk) + ψ(0;xk) ≥ φ(sk;xk) + 1
2σk∥sk∥

2 + ψ(sk;xk)

and therefore,

φ(0;xk) + ψ(0;xk) − (φ(sk;xk) + ψ(sk;xk)) ≥ 1
2σk∥sk∥

2. (15)

Model Assumption 4.1 and (15) combine to yield

|ρk − 1| =
|f(xk + sk) + h(xk + sk) − (φ(sk;xk) + ψ(sk;xk))|

φ(0;xk) + ψ(0;xk) − (φ(sk;xk) + ψ(sk;xk))
≤ 2κm∥sk∥2

σk∥sk∥2
.

After simplifying by ∥sk∥2, we obtain σk ≥ σsucc =⇒ ρk ≥ η2.

Note that Theorem 1 does not explicitly include Problem Assumption 4.1 in its assumptions, though

it is likely to be required for Model Assumption 4.1 to hold.

Interestingly, Theorem 1 holds without assuming that the step sk satisfies a sufficient decrease

condition. Upon examination of the proof, the reason turns out to be that any step that results in

simple decrease in m(s;σ, x) results in sufficient decrease in φ(·;x) + ψ(·;x), independently of the

method used to compute sk.

Theorem 1 ensures existence of a constant σmax > 0 such that

σk ≤ σmax := min(σ0, γ2σsucc) > 0 for all k ∈ N. (16)

Our next result concerns the situation where a finite number of successful iterations occur. The

proof is almost identical to that of [13, Theorem 6.4.4] and [1, Theorem 3.5] and is omitted.

Theorem 2. Let Problem Assumption 4.1 and Model Assumptions 3.1 and 4.1 be satisfied. If Algorithm 1

only generates finitely many successful iterations, then xk = x∗ for all sufficiently large k and x∗ is

first-order critical.
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By Rockafellar and Wets [25, Theorem 1.25], p1(x, σ) increases when σ increases, and thus, ξ1(x, σ)

decreases when σ increases. Thus, it follows from (16) that

ξ1(xk, σk) ≥ ξ1(xk, σmax) for all k ∈ N. (17)

Lemma 2, (17) and the remarks at the end of section 3 suggest using ξ1(xk, σmax)
1
2 as stationarity

measure. Indeed, for given ϵ > 0, ξ1(xk, σmax) ≤ ϵ/σmax =⇒ σkξ1(xk, σmax) ≤ ϵ.

Because we must choose the steplength νk as in Step 4 of Algorithm 1, we compute ξ1(xk, ν
−1
k )

rather than ξ1(xk, σk). Concretely, for given 0 < θ < 1, we set

νk := θ/(∥Jk∥2 + σk). (18)

Under Problem Assumption 4.1, there exists κJ > 0 such that ∥J(x)∥ ≤ κJ for all x ∈ Ω. Because

Algorithm 1 only generates xk ∈ Ω, the above and (16) yield

νk ≥ θ/(κ2J + σmax) := νmin > 0 for all k ∈ N. (19)

Therefore, ν−1
k ≤ ν−1

min for all k ≥ 0, and

ξ1(xk, ν
−1
k ) ≥ ξ1(xk, ν

−1
min) for all k ∈ N. (20)

For a stopping tolerance ϵ ∈ (0, 1), we seek to determine k(ϵ) ∈ N such that

ξ1(xk, ν
−1
min)

1
2 > ϵ for all k < k(ϵ) and ξ1(xk(ϵ), ν

−1
min)

1
2 ≤ ϵ. (21)

Define the sets

S := {k ∈ N | ρk ≥ η1}, (22a)

S(ϵ) := {k ∈ S | k < k(ϵ)}, (22b)

U(ϵ) := {k ∈ N | k ̸∈ S and k < k(ϵ)}. (22c)

In order to conduct the complexity analysis, it is necessary to assume that the step computation at

stage 7 of Algorithm 1 is related to ξ1(xk, σk). We make the following assumption.

Step Assumption 4.1. There exists κmdc ∈ (0, 1) such that sk computed at stage 7 of Algorithm 1

satisfies

φ(0;xk) + ψ(0;xk) − (φ(sk;xk) + ψ(sk;xk)) ≥ κmdcξ1(xk, ν
−1
k ). (23)

Step Assumption 4.1 is similar to sufficient decrease conditions used in trust-region methods—see [13].

Aravkin et al. [1] provide a concrete use of such condition in a trust-region method for nonsmooth

regularized optimization. Clearly, the sufficient decrease assumption is satisfied after a single step of

the proximal gradient method applied to (6c). Hence, it is also satisfied at a minimizer of (6c). Thus,

in step 7 of Algorithm 1, one strategy is to continue the proximal-gradient iterations until a stopping

condition is attained.

The following results parallel those of Aravkin et al. [1], which are in turn inspired from those of

Cartis et al. [11] and references therein.

Lemma 4. Let Problem Assumption 4.1 and Model Assumptions 3.1 and 4.1 be satisfied and sk be

computed according to Step Assumption 4.1, where νk is chosen according to (18). Assume there are

infinitely many successful iterations and that f(x) + h(x) ≥ (f + h)low for all x ∈ Rn. Then, for all

ϵ ∈ (0, 1),

|S(ϵ)| ≤ (f + h)(x0) − (f + h)low

η1κmdcϵ
2 = O(ϵ−2). (24)
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Proof. For k ∈ S(ϵ), Step Assumption 4.1 and (20) imply

(f + h)(xk) − (f + h)(xk + sk) ≥ η1(φ(0;xk) + ψ(0;xk) − (φ(sk;xk) + ψ(sk;xk)))

≥ η1κmdcξ1(xk, ν
−1
k )

≥ η1κmdcξ1(xk, ν
−1
min)

≥ η1κmdcϵ
2.

The rest of the proof mirrors that of [1, Lemma 3.6].

Lemma 5. Under the assumptions of Lemma 4,

|U(ϵ)| ≤ log(σmax/σ0)

log(γ1)
+ |S(ϵ)| | log(γ3)|

log(γ1)
= O(ϵ−2). (25)

Proof. For each k ∈ U(ϵ), σk+1 ≥ γ1σk, while for each k ∈ S(ϵ), σk+1 ≥ γ3σk. Thus if k(ϵ) is the

iteration for which (21) occurs for the first time,

σ0γ
|U(ϵ)|
1 γ

|S(ϵ)|
3 ≤ σk(ϵ)−1 ≤ σmax.

Taking logarithms, we have

|U(ϵ)| log(γ1) + |S(ϵ)| log(γ3) ≤ log(σmax/σ0).

Rearranging and recalling that 0 < γ3 < 1 yields (25).

Combining Lemmas 4 and 5 yields the overall iteration complexity bound.

Theorem 3. Under the assumptions of Lemma 4,

|S(ϵ)| + |U(ϵ)| = O(ϵ−2). (26)

Stated differently, Theorem 3 ensures that either(f+h)(xk)→−∞or thatlim infk→∞ξ1(xk, ν
−1
min)=0.

4.2 A trust-region approach

We now apply Algorithm 3.1 of Aravkin et al. [1] to (1). We assume that each fi : Rn → R is C1, so
that their Problem Assumption 3.1 is satisfied. A natural model for f about x is the Gauss-Newton

model (6a), which satisfies φ(0;x) = f(x) and ∇sφ(0;x) = ∇f(x) = J(x)
T
F (x). The model ψ(s;x) of

h(x+ s) is required to satisfy the same Model Assumption 4.1, which holds provided ∇f is Lipschitz

continuous or each fi is C2 with bounded Hessian. In Aravkin et al. [1, Algorithm 3.1], the first proximal

gradient step s1 is computed by solving

minimize
s

1
2∥F (x)∥22 + (J(x)

T
F (x))

T
s+ 1

2ν
−1∥s∥2 + ψ(s;x)

subject to ∥s∥ ≤ ∆,
(27)

i.e.,

s1 ∈ prox
νψ(·;x)+χ(·|∆B)

(−νJ(x)
T
F (x)),

where 0 < ν < 1/(∥J(x)∥2 + α−1∆−1) for a preset constant α > 0. Subsequent steps continue the

proximal gradient iterations to compute an approximate solution of

minimize
s

1
2∥J(x)s+ F (x)∥22 + ψ(s;x) subject to ∥s∥ ≤ min(β∥s1∥, ∆), (28)
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where β ≥ 1. The above describes a trust-region variant of the method of Levenberg [19] and

Marquardt [21] for regularized nonlinear least-squares problems. The assumption that ψ(·;x) is prox-

bounded can be removed because ψ(·;x) + χ(· | ∆B) is always bounded below, hence prox-bounded

with λx = ∞. An approximate solution of (28) must satisfy Step Assumption 4.1 with ξ1(x, σ) replaced

with

ξ̂1(∆;x, ν) := f(x) + h(x) − p̂1(∆;x, ν),

where p̂1(∆;x, ν) is the optimal value of (27).

Under the above assumptions, Aravkin et al. establish that the trust-region radius ∆ never drops

below the threshold

∆min := min

(
∆0, γ̂1

κmdc(1 − η2)

2κmαβ
2

)
,

where ∆0 > 0 is the initial trust-region radius, γ̂1 ∈ (0, 1) is the fraction by which ∆ is reduced on

rejected steps, η2 ∈ (0, 1) is the threshold above which ∆ is increased on accepted steps, and κmdc

and κm play similar roles as the constants of the same name in Model Assumption 4.1 and Step

Assumption 4.1.

Aravkin et al. use ξ̂1(∆min;x, ν) as stationarity measure. They show that for any ϵ ∈ (0, 1), the

number of iterations necessary to achieve

ξ̂1(∆min;x, ν)
1
2 ≤ ϵ

is O(ϵ−2) provided that f + h is bounded below. We refer the reader to [1] for complete details.

5 Proximal operators

In Algorithm 1 or the algorithm of Section 4.2, a typical model of the nonsmooth term h is ψ(s;x) :=

h(x+s). If those algorithms are to use Aravkin et al.’s quadratic regularization method [1, Algorithm 6.1]

to compute a step, the latter will in turn form a model of ψ(·;x) at each iteration. In order to simplify

notation, let ψk(s) := ψ(s;xk) = h(xk + s) be the model used at iteration k of Algorithm 1 or the

algorithm of Section 4.2.

5.1 General proximal operators

In Algorithm 1, the nonsmooth term in the objective of the subproblem is ψk(s). The typical model

about sj reduces to ωj(t) = ψk(sj + t) = h(xk + sj + t) and, instead of (30), the step computed is

tj ∈ argmin
t

1
2ν

−1∥t− q∥2 + h(xk + sj + t). (29)

The same change of variable as above yields

vj ∈ argmin
v

1
2ν

−1∥v − q̄∥2 + h(v) = prox
νh

(q̄),

whether h is separable or not. Thus we obtain

tj ∈ prox
νh

(q̄) − (xk + sj).

The nonsmooth term in the objective of the subproblem of the algorithm of Section 4.2 is ψk(s) +

χ(s; ∆k). About iterate sj of [1, Algorithm 6.1], the user supplies a model ωj(t) := ω(t; sj) ≈
ψk(sj + t) + χ(sj + t | ∆kB), and the typical choice is ωj(t) = ψk(sj + t) + χ(sj + t | ∆kB) =

h(xk + sj + t) + χ(sj + t | ∆kB). The step computed is tj ∈ proxνωj
(q) for certain fixed ν > 0 and

q ∈ Rn, i.e.,

tj ∈ argmin
t

1
2ν

−1∥t− q∥2 + h(xk + sj + t) + χ(sj + t | ∆kB). (30)
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The change of variables v := xk + sj + t allows us to rewrite (30) as

vj ∈ argmin
v

1
2ν

−1∥v − q̄∥2 + h(v) + χ(v − xk | ∆kB), (31)

where q̄ := xk + sj + q, from which we recover tj = vj − (xk + sj).

5.2 Separable shifted proximal operators

If h is separable and the trust region is defined by the ℓ∞-norm, the problem decomposes and the i-th

component of vj is

vj,i ∈ argmin
vi

1
2ν

−1(vi − q̄i)
2 + hi(vi) + χ(vi − xk,i | [−∆k,∆k])

= argmin
vi

1
2ν

−1(vi − q̄i)
2 + hi(vi) + χ(vi | [xk,i − ∆k, xk,i + ∆k]).

(32)

Two situations may occur. In the first situation, xk,i−∆k < vj,i < xk,i+ ∆k, so that vj,i ∈ proxνhi
(q̄i),

i.e.,

tj,i ∈ prox
νhi

(q̄i) − (xk,i + sj,i).

In the second situation, at least one unconstrained solution lies outside of [xk,i−∆k, xk,i + ∆k], so that

constrained global minima of (32) are either one or both bounds, and/or unconstrained local minima

that lie between the bounds.

When h is convex, the constrained solution is the feasible point nearest the unique unconstrained

global solution, i.e.,

vj,i ∈ proj
[xk,i−∆k,xk,i+∆k]

(prox
νhi

(q̄i)),

i.e.,

tj,i ∈ proj
[xk,i−∆k,xk,i+∆k]

(prox
νhi

(q̄i)) − (xk,i + sj,i).

Example 1 (ℓ
1/2
1/2 pseudonorm). Consider ψ(s) = ∥s∥1/21/2 =

∑
j |sj |

1/2. When the trust-region bounds

are inactive, Cao et al. [10] express the solution of (32) as

vj,i =


2
3 |q̄i|

(
1 + cos

(
2
3π − 2

3µλ(q̄i)
))

q̄i > p(λ)

0 |q̄i| ≤ p(λ)

− 2
3 |q̄i|

(
1 + cos

(
2
3π − 2

3µλ(q̄i)
))

q̄i < −p(λ)

where

µλ(q̄i) := arccos

(
λ

4

( |q̄i|
3

)−3/2
)
, p(λ) :=

541/3

4
(2λ)2/3.

When the trust-region constraint is active, Cao et al. [10] state that the above yields the inflection

points of (32). We simply check the inflection points as well as the bounds. If the inflection points are

within the bounds, we choose the minimum; if not, we select the minimum value of the cost function at

the bounds.

5.3 Nonseparable shifted proximal operators for convex h

In this section we consider examples of nonseparable shifted proximal operators. The starting point

is (31) where we assume that h is closed, proper, and convex. We rewrite

χ(v − x | ∆B) = sup
z

⟨v − x, z⟩ − σ∆B(z),
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where we write x and ∆ instead of xk and ∆k for simplicity, and where the support function

σ∆B(z) := sup
d

⟨d, z⟩ + χ(d | ∆B).

We substitute into (31) and obtain the saddle point problem

min
v

sup
z

1
2ν

−1∥v − q̄∥2 + h(v) + ⟨v − x, z⟩ − σ∆B(z). (33)

The objective of (33) is convex in v and concave in z. The saddle-point conditions can be written

0 ∈ ν−1(v − q̄) + ∂h(v) + z = ν−1(v − (q̄ − νz)) + ∂h(v)

0 ∈ v − x− ∂σ∆B(z).

The first condition implies that v ∈ proxνh(q̄ − νz). By convexity of h, v is unique so that we are left

with

0 ∈ v − x− ∂σ∆B(z), where prox
νh

(q̄ − νz) = {v}. (34)

5.3.1 Special case: ℓ2-norm

For h(·) := λ∥ · ∥2,

prox
νλ∥·∥2

(y) =

{
0 if ∥y∥ ≤ νλ(

1 − νλ
∥y∥2

)
y if ∥y∥ > νλ

. (35)

We now show how to solve (31) by converting (34) to a scalar root finding problem. For given z, let

ζ = ζ(z) := ∥q̄ − νz∥2.

There are two possibilities.

Case A: If ζ ≤ νλ, (35) yields

prox
νλ∥·∥2

(q̄ − νz) = {v} = {0}.

The optimal value of (31) in this case is 1
2ν

−1∥q̄∥2.

Case B: If ζ > νλ, (35) yields

prox
νλ∥·∥2

(q̄ − νz) = {v} =

{(
1 − νλ

ζ

)
(q̄ − νz)

}
, (36)

and (34) becomes

0 ∈ x−
(

1 − νλ

ζ

)
(q̄ − νz) + ∂σ∆B(z)

= (ζ − νλ)
ν

ζ

(
z −

(
1

ν
q̄ − ζ

ν(ζ − νλ)
x

))
+ ∂σ∆B(z),

which we interpret as

z = z(ζ) := prox
ζ

ν(ζ−νλ)
σ∆B

(
1

ν
q̄ − ζ

ν(ζ − νλ)
x

)
. (37)

Recall that [6, Theorem 6.46]

prox
ασ∆B

(y) = y − α proj
∆B

(α−1y), (α > 0). (38)
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Therefore, the projection into ∆B must be computable. In our implementation, we use B = B∞.

We may now search for ζ such that

g(ζ) := ζ − ∥q̄ − νz(ζ)∥2 = 0. (39)

Because projections into convex sets are Lipschitz continuous, so is g over (νλ,+∞).

Since (31) is strongly convex, there is a unique solution, and so g has at most one root such that

ζ > νλ. Any such root of g yields v given by (36) and z(ζ) given by (37) that jointly satisfy (34). If g

has no such root, the Case A must occur.

The combination of (37) and (38) yields

q̄ − νz(ζ) =
ζ

ζ − νλ

[
x+ proj

∆B

(
ζ − νλ

ζ
q̄ − x

)]
. (40)

As ζ ↑ ∞, (ζ − νλ)/ζ ↑ 1, and by continuity, the term between square brackets in (40) converges

to x+ proj∆B(q̄ − x). Therefore, ∥q̄ − νz(ζ)∥2 → ∥x+ proj∆B(q̄ − x)∥2 and for sufficiently large ζ, we

must have g(ζ) > 0.

To study g(ζ) as ζ ↓ νλ, we consider several mutually-exclusive cases.

1. If x ̸∈ ∆B, then, proj∆B(−x) ̸= −x. As ζ ↓ νλ, (ζ − νλ)/ζ ↓ 0, and by continuity, the term
between square brackets converges to x+ proj∆B(−x) ̸= 0. Therefore, ∥q̄ − νz(ζ)∥2 → ∞ and for

sufficiently small ζ, we must have g(ζ) < 0.

2. Consider next the case where x ∈ int ∆B. For ζ sufficiently close to νλ,

proj
∆B

(
ζ − νλ

ζ
q̄ − x

)
=
ζ − νλ

ζ
q̄ − x, (41)

and q̄ − νz(ζ) = q̄, i.e., z(ζ) = 0. In this case,

(a) if ∥q̄∥2 > νλ, then g(ζ) < 0 for ζ close enough to νλ,

(b) if ∥q̄∥2 ≤ νλ, then g(ζ) > 0 for all ζ > νλ;

3. If ∥x∥∞ = ∆ and proj∆B(q̄ − x) = −x, then proj∆B(αq̄ − x) = −x for any α > 0. In this case,

the term between square brackets in (40) is always zero, and q̄ − νz(ζ) = 0. Thus for all ζ > νλ,

g(ζ) = ζ > 0.

4. If ∥x∥∞ = ∆ but proj∆B(q̄ − x) ̸= −x, there are two possible situations. Either the ray αq̄ − x

intersects int ∆B, or it does not. If it does, (41) occurs for all ζ sufficiently close to νλ, q̄−νz(ζ) = q̄,

and cases 2a–2b apply. If it does not, we have from Lipschitz continuity that∥∥∥∥x+ proj
∆B

(
ζ − νλ

ζ
q̄ − x

)∥∥∥∥
2

=

∥∥∥∥proj
∆B

(
ζ − νλ

ζ
q̄ − x

)
− proj

∆B
(−x)

∥∥∥∥
2

≤ ζ − νλ

ζ
∥q̄∥2.

Thus, ∥q̄ − νz(ζ)∥2 ≤ ∥q̄∥2, and

(a) if ∥q̄∥2 > νλ, then g(ζ) ≥ ζ − ∥q̄∥2 > 0 for ζ > ∥q̄∥2, and so there may exist a root in

(νλ, ∥q̄∥2]. By (40), and the fact that ∥y∥2 ≤ √
n∥y∥∞ for all y, we also have

∥q̄ − νz(ζ)∥2 ≤ ζ

ζ − νλ

(
∥x∥2 +

∥∥∥∥proj
∆B

(
ζ − νλ

ζ
q̄ − x

)∥∥∥∥
2

)
≤ (∥x∥2 + ∆

√
n)ζ

ζ − νλ
,

so that g(ζ) > 0 for ζ > νλ+ 2∆
√
n. Thus, the search interval may potentially be reduced

to (νλ,min(νλ+ ∥x∥2 + ∆
√
n, ∥q̄∥2)].

(b) if ∥q̄∥ ≤ νλ, then g(ζ) > 0 for all ζ > νλ.
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Thus, in cases 1 and 2a, a root is guaranteed to exist in (νλ,+∞) and can be found by a bisection

method. The upper bound may be found by observing that (40) implies

∥q̄ − νz(ζ)∥ ≤ ζ

ζ − ν
(∥x∥ + ∆),

so that

g(ζ) = ζ − ∥q̄ − νz(ζ)∥ ≥ ζ − ζ

ζ − νλ
(∥x∥ + ∆),

and g(ζ) > 0 as soon as ζ > ∥x∥ + ∆ + νλ.

In case 1, a lower bound follows by applying the reverse triangle inequality to (40):

∥q̄ − νz(ζ)∥ ≥ ζ

ζ − νλ
(∥x∥ − ∆),

so that g(ζ) < 0 as soon as ζ < νλ+ ∥x∥ − ∆.

In case 2a, the lower bound is simply ∥q̄∥.

In cases 2b, 3 and 4b, there can be no root in (νλ,+∞) and Case A must occur.

Only case 4a requires a root search, with or without sign change. If no root exists in the search

interval, Case A must occur.

5.3.2 Special case: Group lasso

The group lasso penalty is a sum of ℓ2-norms of subvectors:

Rg(x) =
∑
i

∥x[i]∥2,

where the x[i] partition x into non-overlapping groups. The proximal operator of Rg consists in

applying (35) to each subvector:

prox
λRg

(z)[i] =

(
1 − λ

∥z[i]∥2

)
+

z[i]. (42)

Thus, the strategy of the previous section may be applied to each group.

6 Implementation and numerical experiments

Our implementation of Algorithm 3.1 of [1] and Algorithm 1 for (1) employs Aravkin, Baraldi, and

Orban’s quadratic regularization method, named R2, to compute a step. R2 may be viewed as an

implementation of the proximal gradient method with adaptive step size. The trust-region variant uses

∆0 = 1, terminates the outer iterations as soon as ξ(∆k;xk, νk)1/2 < ϵa + ϵr ξ
1/2
1,0 , where ϵa > 0 and

ϵr > 0 are an absolute and a relative tolerance, and ξ1,0 is the value of ξ1 observed at the first iteration.

A round of inner iterations terminates as soon as

ξ̂1(xk + s, σ̂k) ≤
{

10−1 if k = 0,

max(ϵ,min(10−1, ξ1(xk, σk)/10)) if k > 0,
(43)

where σ̂k and ξ̂1 are the regularization parameter and first-order stationarity measure used inside R2.

In Algorithm 1, we use σ0 = 0.01, and we terminate the outer iterations as soon as ξ1(xk, σk)1/2 < ϵ for

a tolerance ϵ > 0 because σmax is unknown. The inner iterations stop in the same manner as (43). All

algorithms are implemented in the Julia language [7] version 1.8 as part of the RegularizedOptimization.jl

package [3]. The shifted proximal operators are implemented in the ShiftedProximalOperators.jl
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package [5], while test problems are in the RegularizedProblems.jl package [4]. By contrast with

the numerical results of Aravkin et al. [1], test cases are explicitly implemented as nonlinear least-

squares problems, with access to the residual F (x) and its Jacobian, and not simply the gradient of

f(x) := 1
2∥F (x)∥22. Jacobian-vector and transposed-Jacobian-vector products are either implemented

manually or computed via forward [24] and reverse [23] automatic differentiation, respectively.

We perform comparisons with R2 and with the quasi-Newton trust-region method of

Aravkin et al. [1], named TR, and which does not exploit the structure of (1). The trust region

is defined in ℓ∞-norm and the quadratic model uses a limited-memory SR1 Hessian approximation
with memory 5. In all experiments, we use ψ(s;x) := h(x+ s).

A direct comparison between the four methods is difficult because LM and LMTR do not utilize

the same gradient; they instead take Jacobian-vector and transposed-Jacobian-vector products. To

provide a meaningful comparison, in the tables below, we state: 1) the number of objective (or residual)

evaluations; 2) the number of gradient evaluations (for R2 and TR) ; 3) the number of transposed-

Jacobian-vector products (for LM and LMTR), listed under gradient evaluations; 4) the solve time in

seconds. Our rationale is as follows. LM and LMTR pass a model to R2 whose objective evaluation requires

one Jv, and whose gradient uses a Jv and a JT v. Note however that the latter Jv can be cached

and reused. Thus, R2 requires one Jv at each iteration, and additionally one JT v at each successful

iteration.

In the figures, we plot descent as a function of residual/objective evaluations.

The summary of the numerical results below is that exploiting the least-squares structure results in

a large reduction in outer iterations. However, solving the subproblem with a first-order method such

as R2 consumes many JT v. Our experiments thus highlight the need for more sophisticated subproblem

solvers dedicated to (6c) and (28).

6.1 Group LASSO

In the group-LASSO problem, we observe noisy data from a linear system b = AxT +ε, where A ∈ Rm×n

has orthonormal rows, and xT is segmented into g groups with every element in that group set to one

of {−1, 0, 1}. The group-LASSO problem is given by

min
x

1
2∥Ax− b∥22 + λ∥x∥1,2, (44)

where h(x) = ∥x∥1,2 =
∑g
i=1 ∥x[i]∥2, i.e., the sum of the ℓ2-norm of the groups. The groups consisting

of all zeros are labeled as “inactive”, whereas the groups set to ±1 are “active”. We let m = 512,

n = 200 and λ = 10−2. We designate g = 5 such groups of possible 16 (each with 32 elements) to be

“active”. The noise ε ∼ N (0, 0.01). Thus (44) has the form (1), where F (x) = Ax − b. We set the

absolute and relative exit tolerances to be 10−4 each. The number of subproblem iterations is capped

at 100 for each outer iteration.

Figure 1 shows the solutions of each algorithm, and Table 1 reports the statistics. All algorithms

arrive at approximately the same solution. R2 requires the most function evaluations whereas the others

require about the same. Table 1 suggests that a tradoff exists between the number of proximal operator

evaluations and the number of gradient/Jacobian-vector evaluations. TR takes many proximal iterations,

whereas LMTR and LM take far fewer. This tradeoff is further exemplified in the next test cases.

We additionally plot descent history in Figure 4a. The plots are roughly similar, with the trust

region methods TR and LMTR performing the best.

6.2 Nonlinear support vector machine

We now solve an image recognition problem of the form (1), where

F (x) = 1− tanh(b⊙ ⟨A, x⟩), 1 = [1, . . . , 1]T , (45)
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Table 1: Group-LASSO (44) statistics for R2, TR, LM, and LMTR, and h(x) = ∥x∥1,2. The #∇f is the number of J
T
v for LM

and LMTR.

A ∈ Rm×n, n = 784 is the vectorized image size, the number of images is m = 13007 in the training

set and m = 2163 in the test set, and ⊙ denotes the elementwise product between vectors. We wish

to use this nonlinear SVM to classify digits of the MNIST dataset as either 1 or 7, with all other

digits removed. We additionally impose the condition that the support is sparse, and therefore use

h(x) = ∥x∥1/21/2 as a regularizer. Hence, our overall problem is

min
x

1
2∥1− tanh(b⊙ ⟨A, x⟩)∥2 + λ∥x∥1/21/2 (46)

with λ = 10−1. We initialize the problem at x = 1n so that approximately 50% of the data is

misclassified. We set the stopping tolerances again to 10−4 and the maximum number of inner iterations

to 100.

Figure 2 shows the solution map of each algorithm, which can be interpreted as the pixels most

important in determining whether the image is indeed a 1 or 7. All algorithms produce a sparse solution;

only about 8% of pixels in the support vector are nonzero. The problem is large and nonconvex;

hence, the final solutions share pixels but altogether, they are different. This can be seen in Table 2,

which reports the statistics. R2 again requires the most function evaluations. TR requires about 10
times more than LM and LMTR. We again observe that a tradoff exists between number of proximal

operator evaluations and the number of gradient/Jacobian-vector evaluations. Here, proximal operator

evaluations are cheaper than gradient or Jv evaluations, so wallclock time is higher for LM and LMTR.

We plot descent history against number of function/residual iterations in Figure 4b. Here we can

see LM and LMTR performing the best in terms of descent.

Table 2: Nonlinear SVM (46) statistics for R2, TR, LM, and LMTR. Training/test error is with respect to the ℓ2-norm.

6.3 FitzHugh-Nagumo inverse problem

The problem has the form (1), with F : R5 → R
2n+2 defined as F (x) = (v(x) − v̄(x̄), w(x) − w̄(x̄)),

where v(x) = (v1(x), . . . , vn+1(x)) and w(x) = (w1(x), . . . , wn+1(x)) are sampled values of discretized

functions V (t;x) and W (t;x) satisfying the FitzHugh [15] and Nagumo et al. [22] model for neuron

activation
dV

dt
= (V − V 3/3 −W + x1)x−1

2 ,
dW

dt
= x2(x3V − x4W + x5), (47)

parametrized by x. The sampling is defined by a discretization of the time interval t ∈ [0, 20] and

initial conditions (V (0),W (0)) = (2, 0). The data (v̄(x), w̄(x)) is generated by solving (47) with
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Figure 1: Group-LASSO (44) solutions with R2, TR, LM, and LMTR with h = λ∥ · ∥1,2.

x̄ = (0, 0.2, 1, 0, 0), which corresponds to a simulation of the Van der Pol [29] oscillator. In our
experiments, we use n = 100 and solve

min
x

1
2∥F (x)∥22 + λ∥x∥1, (48)

where h(x) = λ∥x∥1 with λ = 10 to enforce sparsity in the parameters. Our absolute stopping criteria

is 10−2, whereas our the relative stopping criteria is set to 10−4.

The solution found by each solver is given in Table 3 TR has the correct nonzero parameters, but

the values are farther off. The corresponding simulations are shown in Figure 3; each method is able to

fit the data.

Table 4 reports the statistics for each algorithm, which exhibit the same pattern of results as before.

The final objective values are fairly similar. LMTR uses the smallest amount of objective evaluations,

whereas LM has a harder time solving (48). Because the gradient of the smooth term in (48) is not

Lipschitz continuous, we had to set a σmin for both R2 and LM, which increased iteration count. Similar

to the SVM example, we can see that LM and LMTR take more time than TR, which again stems from

proximal operators being much cheaper to compute than Jv products for this example. Notably, TR

seems to fit the data worse but attain a lower value of the regularizer.
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Figure 2: Nonlinear SVM (46) solutions with TR, R2, LM, LMTR.

Table 3: Final parameters for the FH problem (48) found by R2, TR, LM, and LMTR.

Table 4: Statistics for the FH problem (48) for R2, TR, LM, and LMTR.

Finally, Figure 4c shows descent of our objective function value against objective function iteration.

LMTR again performs the best, whereas LM and TR were similar in this metric. This again enunciates the

tradeoff between objective, gradient, and proximal operator expense. Expensive proximal evaluations

would be the limiting factor in TR and R2; one can think of Total Variation regularization as a test case,

since the proximal operator is itself a minimization problem.
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Figure 3: Simulation of the FH problem (48) solutions found by R2, TR, LM, LMTR.

7 Discussion

Similarly to smooth optimization, exploiting the least-squares structure of f can decrease significantly

the number of outer iterations. The challenge highlighted by our numerical results, which is the subject

of ongoing research, is to either identify a closed-form minimizer of (6c) for relevant choices of ψ, or to

devise methods that can produce a higher-quality step than R2 with fewer transposed-Jacobian-vector

products. As long as the subproblem solver yields a step satisfying Step Assumption 4.1, our convergence

properties and worst-case complexity bounds are guaranteed to hold. Thus, any improvement in the

step computation mechanism will immediately translate into a more efficient solver overall. In ongoing

research, we are exploring other improvements, including inexact evaluations of f and ∇f , nonmonotone

methods, and inexact evaluation of proximal operators.
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Figure 4: Objective decrease per objective or residual evaluation.

References
[1] A. Aravkin, R. Baraldi, and D. Orban. A proximal quasi-Newton trust-region method for nonsmooth

regularized optimization. SIAM J. Optim., (2):900–929, 2022. DOI: 10.1137/21M1409536.

[2] Francis Bach, Rodolph Jenatton, Julien Mairal, and Guillaume Obozinski. Optimization with Sparsity-
Inducing Penalties, volume 4 of Foundations and Trends in Machine Learning. now publishers, 2012. DOI:
10.1561/2200000015.

[3] R. Baraldi and D. Orban. RegularizedOptimization.jl: Algorithms for regularized optimization. https:
//github.com/JuliaSmoothOptimizers/RegularizedOptimization.jl, February 2022.

[4] R. Baraldi and D. Orban. RegularizedProblems.jl: Test cases for regularized optimization. https:

//github.com/JuliaSmoothOptimizers/RegularizedProblems.jl, February 2022.

[5] R. Baraldi and D. Orban. ShiftedProximalOperators.jl: Proximal operators for regularized optimization.
https://github.com/JuliaSmoothOptimizers/ShiftedProximalOperators.jl, February 2022.

[6] Amir Beck. First Order Methods in Optimization. SIAM, Philadelphia, USA, 2017. DOI:
10.1137/1.9781611974997.

[7] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to numerical
computing. SIAM Rev., 59(1):65–98, 2017. URL https://doi.org/10.1137/141000671.

http://dx.doi.org/10.1137/21M1409536
http://dx.doi.org/10.1561/2200000015
https://github.com/JuliaSmoothOptimizers/RegularizedOptimization.jl
https://github.com/JuliaSmoothOptimizers/RegularizedOptimization.jl
https://github.com/JuliaSmoothOptimizers/RegularizedProblems.jl
https://github.com/JuliaSmoothOptimizers/RegularizedProblems.jl
https://github.com/JuliaSmoothOptimizers/ShiftedProximalOperators.jl
http://dx.doi.org/10.1137/1.9781611974997
https://doi.org/10.1137/141000671


Les Cahiers du GERAD G–2022–58 20

[8] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and
nonsmooth problems. Math. Program., (146):459—-494, 2014. DOI: 10.1007/s10107-013-0701-9.
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