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Abstract : The most common form of renewable energy production around the world is hydropower.
As a result of the growing demand for robust and environmentally friendly methods of energy generation
around the world, it is imperative to develop and improve the current energy production processes.
Machine learning has significantly contributed to numerous academic domains in the past decade, and
hydropower is no exception. All three horizons of hydropower models, short-term, medium-term, and
long-term, could benefit from machine learning. Currently, the majority of hydropower scheduling
models employ dynamic programming. As a result of machine learning’s use of a new evolution of pre-
existing methodologies, unconstrained optimization also enables improvement. In this research paper,
we review the current state of the hydropower scheduling problem and the development of machine
learning as a type of optimization problem and prediction tool. In addition, the paper investigates
the other conceivable roles that machine learning has taken on in recent years. To the best of our
knowledge, this is the first survey article that provides a comprehensive overview of machine learning
and artificial intelligence application in the hydroelectric power industry for Scheduling, Optimization,
and Prediction.

Keywords: Hydropower, hydropower scheduling, machine learning, optimization, stochastic program-
ming, linear regression, random forest, reinforcement learning, Deep Neural Networks
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1 Introduction
Hydropower generation is a complex problem that needs to be defined in its many aspects in order
to have a good grasp of how models are built in this field [6, 37, 45]. The publication of [4] aims to
survey the various research advances in hydropower generation while providing a detailed description
of the optimization process over a short, medium, and long-term horizon.

The authors in [6] have looked at the application of machine learning in the previous decade for
the reservoir inflow problem but not at the most recent models in the last years.

In addition, the authors of the same work discussed the concepts that are used when modelling
hydroelectric plants. They also described the general methodology of hydropower generation and the
issues that need to be considered when designing a decision model within this context. All of these
topics were covered in the same work.

There are three different kinds of hydroelectric power plants: run-of-river, pumped storage, and
reservoirs (which are large dams). The majority of hydroelectric power facilities that generate electric-
ity are of the reservoir variety. This power plant is situated in close proximity to a dam, which serves
as a reservoir for water that is used to control the amount of electricity produced by the facility.

A reservoir gives the power plant the ability to control the amount of water that is consumed.
Because of this characteristic, the power plant’s energy production is very adaptable, and as a result,
it will be able to better satisfy the demands for electricity.

The production of electricity at run-of-river power plants does not require the use of a reservoir
because the plants instead rely on the flow of the river.

The lack of a reservoir makes it impossible to maintain a consistent water level, which results in
a high rate of overflow in these rivers and lakes. Because of this, the amount of power produced is
highly dependent on the intensity of the current and the volume of water entering the penstock.

Reservoir power plants and pumped-storage power plants both function by storing energy in a
reservoir. The key distinction is that the water is collected in a reservoir that is positioned downstream
after it has been processed by the power plant. This reservoir is connected to the reservoir upstream
of it by a pipe, and as a result, it is possible to pump water from the lower reservoir into the upper
reservoir. This power plant acts in a manner analogous to that of a battery and is used to store excess
energy [1]. As a result of the fact that these plants are not connected to a watershed, they are unable
to generate any additional electricity.

The pumped-storage power plant is the most cost-effective energy storage method, with an energy
retention efficiency of around 80%. It is Europe’s most common energy storage method [13]. This
infrastructure can also be coupled with intermittent energy sources, such as the hydro-wind power
plant in El Hierro, which allows the storage of additional energy produced by the nearby offshore wind
farm [19].

Hydroelectric power generation requires a turbine to receive a flow of water. The main variables to
consider when producing electricity are the efficiency η of a turbine, the net water head hnet in meters
of the dam, and the water discharge Q in m3/s.

The function representing the electricity produced by a turbine is nonlinear and non-convex. The
power produced for a turbine P in Kilowatt (kW ) is obtained by:

P = η(Qturb) × g × Qturb × hnet(Qtot), (1)

where g is the gravitational acceleration constant 9.8m/s2, Qturb the water discharge, and Qtot is the
total amount of water discharge. The gross water head is calculated by evaluating the difference in
elevation between the water level in the forebay ef and the tailrace elevation et. The water level is
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then adjusted in (2) by considering the energy losses ϕ due to the friction of the water passing through
the penstock:

hnet(Qtot) = (ef − et) − ϕ(Qtot). (2)

The energy loss ϕ is approximated in meters, but the equation to calculate its value depends on the
hydroelectric powerplant observed.

The authors in [6] provide review the role of machine learning of water conservation in a reservoir
of a power plant.

In this study, we investigate the current state of hydropower scheduling, optimization, prediction,
and production forecasting, and we draw conclusions based on our findings. Both of these subjects are
discussed in great depth. In addition, the paper analyses the other possible functions that machine
learning and artificial intelligence (AI) may have taken on over the course of the past few years. To the
best of our knowledge, this is the first survey study that summarises the application of machine learning
and artificial intelligence in hydroelectric power for scheduling models, optimization, and prediction.

The rest of the paper is organized as follows. Section 2 introduces the basis of hydropower pro-
duction and schedulings models. Section 3 closely defines the concept of short and medium-term op-
timization in hydropower production. This Section examines the various optimization models created
for hydropower generation and published in recent scientific literature. Section 4 is about mathemat-
ical optimization in machine learning and how machine learning utilizes unconstrained optimization
to achieve better model accuracy. This Section also provides a comprehensive review of historical and
present advancements in artificial intelligence-based optimization strategies. Section 5 discusses the
state of machine learning in hydropower. This Section reviews the recent paper on the hydropower
model that explores machine learning implementation in different horizon terms and how they compare
to traditional stochastic dynamic algorithms. Section 6 concludes the paper.

2 Hydropower scheduling models
When optimizing hydroelectric power facilities, the goal is often to increase the amount of energy
produced by the plant while simultaneously increasing the amount of money made from selling that
energy. On the other hand, it is much more frequent in the research that has been done for optimization
models to concentrate on efficiency and/or profit.

As a result of the fixed price of electricity that is imposed by a state-owned company in Canada and
Quebec in particular, the models that are developed in this region tend to place a greater emphasis on
energy production. This is caused by the management of hydroelectricity by the government enterprise
Hydro-Québec.

Private enterprises in other parts of the United States and Europe are in charge of the generation
of hydroelectric power; these businesses’ primary objective is to sell their hydroelectric output to the
highest potential buyer.

This strategy is supported by the authors [35] on the grounds that it reduces production costs
while maintaining a high level of reliability. Typically, the sale of electricity is conducted through
an auction in which producers put offers based on their production costs and purchasers place bids
depending on their consumption needs.

In this economic setting, the purpose of these models is to maximise profit from the sale of energy
produced. There are a number of ways for calculating the price of energy produced per hour, including
those proposed by [35].

There are also hydroelectric systems that are operated by energy-intensive industries, such as the
Rio Tinto facility that operates the Saguenay Lac-Saint-Jean hydroelectric system. These companies
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have set electricity needs, which makes the unpredictability of the power plants in relation to the need
for energy output more adaptable.

A hydroelectric power plant is frequently connected to other power plants located upstream and
downstream. This is referred to as a hydroelectric system, which may include numerous reservoirs,
powerplants, and run-of-river powerplants along interconnected rivers and lakes.

The illustration depicting a cascade system is shown in Figure 1. Each hydroelectric plant is
situated within a watershed, from which water will ultimately flow into one of the territory’s reservoirs.
Hydrology is the study of the distribution, flow, and quality of water, as described in detail by [20].

In the field of optimization, the quality of a model is frequently judged based on how accurately it
predicts the amount of water that will be added to a system.

Figure 1: An example of a hydropower system with three reservoirs and two powerhouses.

2.1 Approximating hydropower production

A nonlinear and non-convex function represents the power produced by a turbine in a hydroelectric
facility. This sort of function is far more difficult to optimize than its linear convex equivalents.

Depending on their complexity, nonlinear functions can be more challenging to work with, but
the non-convexity of the production function is the fundamental issue in mathematical optimization.
However, it is still possible to design non-convex optimization models, as [22] have experimented
with in their medium-term model. In addition, they observed that this form of model soon becomes
computationally expensive as the size of the problem increases, particularly when constraints are
added to their model. In addition, the performance improvement is deemed insufficient to warrant the
increase in computing time.

The authors in [7] evaluate the linearization of a nonlinear mixed integer model. The transformation
from a nonlinear function to a linear one improves the efficiency of the resolution time but necessarily
causes a loss of the precision of the results.

On the other hand, adopting a mixed integer linear programming model has enabled the addition
of various constraints, mitigates the losses associated with the linear approximation, and permits an
increase in the problem’s complexity.

The authors in [11] discussed the impact of linear function transformation in hydropower. They
evaluate the effectiveness of their linearization method for hydroelectric dam models by contrasting it
with the performance of a nonlinear model.

The link between the flow of water, the movement of the water in the headrace, and the level of
the water in the reservoir is the first nonlinear function. This function looks at how the three variables
affect each other. The resistance of the water in the penstock is assumed to be constant, so this
function can be expressed linearly.

The link between the water level in the reservoir and the discharge rate, as well as the rotation
speed of the turbine, is the subject of the second nonlinear function. The Taylor Theorem of the first
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order is used to create an approximation of the true value. A comparison is made between the linear
model and a nonlinear model over a period of time in order to assess the performance of the linear
model. Furthermore, the same authors in [11] have found:

• The linear approximation of the water level produces more accurate results than the estimation
of the turbine’s rotational speed.

• The mean absolute error (MAE) of the linear estimates for the rotational speed of the turbine is
less than 10%, while the MAE of the linear estimates for the water level in the reservoir is less
than 1%.

• When significant changes occur in the opening and closing of the valves, the performance of the
estimations decreases.

2.2 Scenario tree

Water inflows are unpredictable in hydropower. Because of this, it is hard to anticipate with accuracy
the water level in the reservoirs. Despite the fact that a turbine’s electrical energy output is reliant on
the water level in the reservoir, it is nevertheless feasible to achieve fully ideal hydroelectric production.
This is accomplished by constructing a scenario tree of the anticipated influx. This is why stochastic
models are frequently mentioned in the literature on hydropower. A stochastic model contains at least
one random variable.

In order to predict water inflows for power generation purposes, the authors in [48] address the
problem in a short-term optimization model. To predict hydroelectric generation, a scenario tree
structure is used. They investigate and analyze, among other things, three strategies for estimating
the input scenario on the production of the hydroelectric system in the Saguenay region, Quebec,
Canada.

Using a black-box optimization solver, the first method identifies the set of scenario trees that
maximizes energy production. The scenario tree has three input parameters: the number of stages,
the number of child nodes for each node, and the aggregation level for each day. The scenario tree
is optimized to maximize hydroelectric production by returning water flows, reservoir volume, and
working turbines based on the output of an input scenario.

Another model uses this last result to maximize the number of turbines by restricting each turbine’s
start-up and shut-down times. Each day, a new scenario tree is constructed based on meteorological
data, and the water level in the reservoir is computed. The second approach employs the median
scenario determined by the black box, whereas the third method, scenario fans, allows only the tree’s
root to have several child nodes.

The selection of these two methods is influenced by the calculation time and complexity of the
black box algorithm used to anticipate contribution.

This study uses 31 days of production data and 30 days of input forecasting. The obtained results
indicate that the daily scenario selection is mainly impacted by the number of inputs rather than by
the structure of the scenario trees. Thus, scenario fans derived from the third technique proved to be
the most effective, as it is simpler to compute and yields comparable results to the first way. This
result demonstrates that scenario trees do not need to be intricate to be effective.

The building of scenario trees is a promising endeavor, as the outcomes are generally effective.
However, water inputs still need to be determined. Therefore the chosen scenario does not necessarily
reflect reality.
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3 Hydropower optimization models, a review
In the context of hydroelectric production, a great variety of models have been constructed. Depending
on the description of the problem, these models typically try to maximize energy production or profit.

A hydropower system is typically not restricted to a single optimization model, as the complexity of
the hydropower problem grows rapidly. The hydroelectric scheduling problem involves many decision
variables, parameters, and restrictions that impact production over multiple time horizons, as well as
nonlinear and non-convex functions.

In addition, many parameters are stochastic, meaning that they are influenced by random factors
or are partially the result of chance. The problem’s dimensionality also limits the calculation time of
a model, as it must be computed in set time intervals based on the time horizon. An optimization
model focuses on three different time horizons: the short, medium, and long term.

This section examines the various optimization models created for hydropower generation and
published in scientific literature.

A two-stage short-term stochastic optimization model is developed by [49] to predict hydropower
generation with uncertain water inflows. This paper is related to [48], where a black-box optimization
model is developed to build inflow scenario trees. While a medium-term optimization model determines
the water level in the reservoir, this short-term model considers water inflow uncertainty, weather
forecasts, and historical weather data to predict energy production. Initially, the model optimizes the
quantity of water discharged, the volume of water, and the number of turbines required to maximize
energy output. This model is subject to constraints regarding the equilibrium of the downstream
water level, the selection and number of operating turbines, the water volume in the reservoir, and the
discharged volume. The outcome of the first model is used to determine the exact number of turbines
that will be turned on. This process aims to discover the optimal combination of turbines that will
optimize production while minimizing the impact of turbine start-ups and shut-downs. To acquire
the input values, the authors utilize a K-means scenario tree in [27]. The scenario tree will always
have the same number of nodes and steps when it is created. In order to aggregate the data, the
clusters that were produced by the k-means algorithm over 3038 different water supply scenarios are
rounded. The accuracy of the tree can be improved by randomly generating additional influx situations
that are based on the existing scenarios. Following a number of rounds of iteration, the techniques
eventually converge on a single viable design. The model was tested on five hydroelectric plants over a
31-day period. The computation time of the decision tree is 5 seconds, while the optimization model’s
resolution is 42 seconds per computed day. The computation time is acceptable for a small set of plants,
but it becomes problematic for larger hydroelectric plant systems. The results reveal an improvement
ranging from 0.016% to 0.068% percent when compared to the median of the months examined. This
improvement represents a considerable gain in the quantity of energy produced during these times.

An integer linear quadratic programming model was established in the research paper referenced
above [16], with the goal of optimizing in real-time (hourly) the amount of electricity produced by
the Brazilian hydroelectric plant of Santo Antônio. This research aims to develop a more advanced
approach to modeling real-time alternating current (AC) hydropower generation, where the AC is often
a set rate for simplifying the model.

The purpose of the AC-constrained optimization model is to ascertain which turbines should be
turned on or off, the amount of power generated by each turbine, and the quantity of energy that should
be transferred to the power transformers in the plant. In order to make it practicable to execute the
algorithm once every hour, the author suggests doing linearization on the model constraints, which
would include the AC constraint.

The nonlinear and non-convex production functions are transformed using the piecewise linear
application algorithm. For the linear approximation of the AC constraints, these were approximated
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using their equivalence by Taylor’s series expansion. The model is solved in three phases. First, the
model is solved without AC constraints to determine each turbine’s activation status and power level.

The second model calculates the ultimate power per turbine using AC restrictions. The turbine
activation parameters are then reset, and the model is run in a loop until the AC constraint conver-
gence condition is met. The model’s performance is evaluated using three scenarios, two real-time
optimization phases, a 24-hour horizon, and an algorithm that runs every 30 minutes.

The time required to compute a result for one hour is 67.41 seconds. The results demonstrate a
small decrease in energy losses. In comparison to an existing fixed model, the proposed model provides
improved management of turbine startup and shutdown while requiring less computing work.

The authors show that AC limitations can be applied to a real-time hydroelectric generation opti-
mization function. Nevertheless, it needs to be shown whether the model can support a system on a
bigger scale.

Richard Bellman conceived of the dynamic programming model [3]. This method permits the recur-
sive solution of optimization issues by decomposing the primary problem into subproblems. Frequently,
a collection of little difficulties is easier to address than a single major difficulty.

Due to its recursive structure, this approach, like many others, is subject to the so-called curse of
dimensionality, as described in [53]. This implies that as the number of variables and sub-problems
increases, so does the computing time of the model.

In the paper of [12], a medium-term dynamic programming method with stochastic sampling is
designed to anticipate water inflows on a four-reservoir system in less than four minutes.

Deploring the rising difficulty of solving the hydroelectric scheduling model when more than three
reservoirs are involved, this model makes it possible to calculate the precise amount of water to
accumulate in the reservoirs in order to maximise energy production. To do this, the production
functions have been approximated using a discretized set of functions to determine the appropriate
amount of water to be turbined at each reservoir storage level.

This research also use stochastic sampling to limit the number of potential reservoir water level
states by incorporating the cost of unknown influx scenarios into the goal function. The curse of
dimension manifests itself in the reservoirs’ storage level values.

To reach a solution in a fair period of time, the number of water level states and discretization
value were streamlined. Using the water level and inflows for each reservoir, a set of potential scenarios
is constructed.

The number of created scenarios is restricted by merging related historical scenarios. The concept
is implemented to allow parallel calculation on many processors in order to achieve faster computation
speeds.

The model was written in Python 2.7 [52], use the COIN-OR solver, and operates on a 125-thread
cluster comprised of 10 servers with 2 CPUs and 8 cores each. Using a 63-year dataset of water supply
forecast horizon, the model generates 63 supply possibilities. It is put to the test on the Saguenay
Lac-Saint-Jean hydroelectric system, which consists of four reservoirs and five power units.

Model computation time is approximately three minutes. 0.01%Compared to historical data, the
model reduced production costs by 2% and reservoir spill risk by 0.01% for one of the reservoirs. In
terms of the net water head, the initial plants shown a substantial improvement.

This article illustrates the difficulty of the hydropower optimization. To attain such low processing
times, the model had to simplify the problem by all means. This indicates that better solutions may be
possible, but require additional data manipulation. In addition, Python is not regarded as the quickest
language, thus the computation time could be improved by employing a more robust language.
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This article currently indicates that dynamic programming is unsuitable for hydropower issue
systems with five or more reservoirs.

4 Applications of artificial intelligence techniques for optimization
problems

Mathematical optimization and machine learning are disciplines associated with the search for issue
solutions. Mathematical optimization often seeks the optimal solution to a problem expressed using
functions and constraints, but machine learning attempts to anticipate the outcome of a data input
by assessing a similar and preferably big data collection.

The paper [8] provides a comprehensive review of historical and present advancements in artificial
intelligence-based optimization strategies. In their article, they address three questions:

• What kinds of challenges in optimization can be solved using machine learning? What is it that
makes them so challenging?

• When it comes to machine learning on a big scale, which optimization strategies have shown to
be the most successful, and why?

• What new developments have been made recently in the design of solution algorithms, and what
questions still need to be answered in this field of research?

In the subsections that follows, an attempt will be made to provide a concise response to these
three questions.

4.1 Optimization algorithms in machine learning

Two case studies are presented to explain the role of optimization in classical machine learning prob-
lems. The first case study deals with text classification, a convex optimization problem where an
algorithm must predict the topic of a text based on its content.

The need for machine learning for this problem stems from the lack of a pre-established rule to
accurately classify the turn of a sentence. This model’s formulation starts with a dataset containing n

text instances x and their classification y.

The model has formulated Pred(xi) , which provides a prediction on the value of yi, where i ∈ n.
The model aims to minimize the sum of instances where Pred(xi) ̸= yi. The data set is divided into
a training set and a test set.

The training set is used to generate a classification model, and the test set is used to know the
accuracy of the predictions. A careful selection of these two sets decreases the model’s error rate. When
the data in the set are sparse, it is possible to represent the prediction function as pred(x; w, τ) =
wT x − τ where w and τ define the accuracy and recall variable, i.e., a proportion of the good and bad
predictions.

These variables allow us to approximate a loss function and compute the cost of the prediction Pred

for the value of y. This loss function represents our objective function, which allows the formulation
of a convex optimization problem aiming at minimizing the bad prediction rate of the model.

min
w,τ

1
n

n∑
i=1

loss(pred(xi; w, τ), yi) + λ

2 ||w||22. (3)

The addition of the parameter λ > 0 regulates the loss function to obtain a convex function.
The optimal solution (w∗, τ∗) is obtained by experimenting with different values of λ until the best-
performing model is obtained.
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The second case study deals with speech or image recognition using Deep Neural Networks (DNN).
This problem consists in making a classification according to the arrangement of multimedia files.
Because there are almost infinite possibilities of representing a number using an arrangement of pixels,
it goes to machine learning methods to predict its value.

Neural networks apply successive transformations on input data x where each transformation step
is represented by a layer j. For a network consisting of J layers, x0 represents the data input, and the
prediction is given by xj .

Each layer of the DNN consists of neurons with weight values linked to each. Each weight is
determined during the training phase of the model. The prediction function is pred(x; w), where the
variable w represents the set of neurons in the network.

The optimization problem involves a training set of N instances (xn, yn), where y is the classification
of x. Concerning the optimization of the algorithm, the loss function (Equation (4)) is chosen according
to the nature of the problem:

1
n

n∑
i=1

loss(pred(xi; w), yi). (4)

The optimization of a DNN is nonlinear and non-convex. In order to be able to work efficiently
with these methods, the backpropagation of the gradient algorithm is applied to minimize the error
rate at each neuron during training. This technique involves finding the value of xj

i by traversing the
neural network, then computing the error between xj

i and yi.

The error ei is propagated in the reverse direction of the neural network, modifying the value of the
weights contained in w in order to reduce the risks that pred(xi; w) ̸= yi. These risks are represented
Equation (5) as a cost function C, which is the squared difference between the result and the value to
be predicted for each neuron at layer J .

C =
n∑

i=1
(pred(xi, w) − wj)2 (5)

The negative gradient of the cost function (−∇C) allows for modifying the weight of the neurons
to reduce the error rate.

As a DNN can be composed of several layers J , each containing several neurons, this process can
take up to several weeks of computation before obtaining an accurate prediction model.

4.2 Unconstrained optimization

The various kinds of optimization issues that can be solved with machine learning all fall under the
category of "unconstrained optimization problems." The presence of a significant number of choice
factors is frequently a defining feature of situations of this nature.

In the article [45], the authors provide an in-depth discussion of the essential approaches for tackling
unconstrained optimization issues. When it comes to overcoming issues that are associated with
machine learning, the most popular solution is to use first-order optimization approaches.

Gradient descent is a commonly used first-order method for this type of optimization and is the
basis for many other first-order techniques. In gradient descent, the objective is to find the global
minimizer of f(x), where f is convex, and the optimal value is x∗.

The derivative of this function gives us the gradient ∇f(x). Obtaining the gradient on a point xk

results in a linear function related to the rate of change at this location, where ∇f(x∗) = 0 and k

represents the iteration of Equation (6), an iterative function that gradually comes closer to x∗:

xk+1 = xk + αkdk, (6)
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where αk represents the step length and dk the descent direction. In general, the method used to find
the values of αk and dk defines the type of resolution algorithm. The book from [34] gives a lot more
detail about unconstrained optimization and optimization as a whole.

In the technique known as gradient descent, the direction known as dk is determined by the inverse
of the gradient of the objective function −∇f(xk). It is also necessary to iterate as little as possible
in order to progress along the goal function curve in the most effective manner. To accomplish this, a
suitable value for the step length variable αk is selected.

Finding a prospective step that can deliver a significant reduction to the function f(xk+1) is the
method used to accomplish this goal. If the step length is too large, there is a chance that the desired
value of x∗ will not be achieved, but if the step length is too short, the number of iterations will be
increased.

The Hessian matrix can be found by computing the double derivation notation ∇2f(xk). The
Hessian makes it possible to create a quadratic curve on xk, which is helpful when trying to determine
the best step length to utilise.

When discussing optimization, Hessian is frequently a reference to either Newton’s method or a
method that is derived from it. When the matrix is positive-definite, the step length can be calculated
as an equivalent of ∇2f(xk)−1 by selecting the position of xk+1 that corresponds to the point where
the curve is at its lowest.

The Equation (7) represents the iterative second-order version of Newton’s method, which ulti-
mately converges to the value f(x∗):

xk+1 = xk − ∇2f(xk)−1∇f(xk), (7)

4.3 Machine learning as an optimization problem

According to [45], the integration of mathematical optimization with machine learning can be broken
down into three distinct stages: machine learning formulated as an optimization problem; fundamental
optimization methods; and the creation and application of an optimization model based on the type
of machine learning algorithms.

Almost every method used in machine learning can be recast as an optimization issue. However,
the precise formulation of the problem changes depending on the algorithm that is being applied.

When dealing with difficulties involving supervised learning, the goal is to find a way to minimise
the loss function L that is associated with the prediction function f(x). In a manner analogous to that
of Equation (4), the loss function is written as:

1
N

N∑
i=1

L(f(xi, θ), yi). (8)

Where N represents the sample size, θ is a parameter in the function, xi is an instance of sample
data, and yi is its classification.

For this type of problem, there are a few different loss functions that have been discussed, including
squared Euclidean distance, cross-entropy, contrast loss, hinge loss, and information gain.

Structured risk minimization, which is used for support vector machines, is a strategy that is quite
common.

In order to prevent the problem of overlearning with regard to this goal function, the parame-
ter λ was included. It is decided by a step of cross-validation that involves multiple different values of



Les Cahiers du GERAD G–2022–52 10

lambda greater than zero (λ > 0) in order to find the one that results in the best outcome. When it
comes to text categorization, this approach is identical to the one that is used in the Equation 3.

1
N

N∑
i=1

L(f(xi, θ), yi) + λ||θ||22. (9)

Learning through semi-supervision can be used to problems including classification, clustering, and
regression. These issues are distinguished by the presence of a dataset that contains both labelled and
unlabelled data.

The support vector machine is one of the approaches that is used rather frequently for addressing
issues of this kind. Labelled data are defined using x, y.

The unlabeled data are limited by the use of an unrestricted variable denoted by zeta (slack
variable). The goal is to ensure that there is as little unintentional mixing of marked and unlabelled
data as possible.

The Equation (10) represents the objective function to minimize the number of prediction errors,
where the variable C is a penalty coefficient and the variables ϵ and z are the misclassified and successful
values.

min
ζ,ϵ

||w|| + C

 l∑
i=1

ζi +
N∑

j=l+1
min(ϵi, zj)

 , (10)

Unsupervised learning is used when all data are unlabelled. It is up to the learning algorithm to
classify the data according to their features. The K-means partitioning algorithm is a popular method
for solving this problem.

The loss function in Equation (11) is used to optimize this type of model, where K represents the
number of partitions, µk the centre of partition k and Sk the subset of data related to partition k:

min
S

K∑
k=1

∑
x∈Sk

||x − µk||22, (11)

In the last step of reinforcement learning, an entity known as Agent is in a state that is defined by
its environment. This state is denoted by s. The task given to the Agent is to take action based on
the situation of its environment.

The goal is to maximise the value of the function Vpi(s) while adhering to a policy pi(s) in which
each accurate prediction makes the solution better. Additional details on reinforcement learning can
be found in 4.6.

4.4 Overview of different optimizers for neural networks

In [45], a section is dedicated to optimization methods for different types of learning. Among the
optimization algorithms, the most popular algorithms are first-order and second-order optimization
methods. To meet the need of machine learning, these algorithms are slightly modified to perform
better in this environment. Among the common first-order methods, there are:

• AdaGrad [14]: an improvement of the Stochastic Gradient Descent (SGD) method, [41]. Instead
of having a constant learning rate, it evolves at each iteration using the gradients of each previous
iteration.

• AdaDelta/RMSProp: One of the problems with the AdaGrad method is that the learning rate
tends towards zero when there is a large number of iterations. In order to avoid this fate,



Les Cahiers du GERAD G–2022–52 11

AdaDelta, [57], and RMSProp, [50], use only the gradients of the most recent iterations. More-
over, each iteration is subject to a degenerative average of the previous gradients, allowing the
calculation of a cumulative momentum.

• Adam: Adaptive moment estimation (Adam) is a method reusing the advances of AdaDelta/
RMSProp in a more efficient formula for problem-solving [26].

• SAG: Stochastic Average Gradient (SAG) is an attempt to improve the convergence time com-
pared to the previous methods [23]. As the name implies, the SAG method uses only a sample of
the previous gradient history while keeping the totality of the gradients of the previous iterations
computed this way.

The DNNs are automatic learning algorithms that are becoming increasingly popular for their
effectiveness in predicting large problems.

In optimization, most first-order algorithms have been sidelined in favor of second-order methods
because convergence is always a problem for first-order problems regardless of the algorithm used.

This difficulty affects the SGD and more advanced methods, such as Adam. In neural network
optimization, an effort has been made by [25] to develop the SWATS technique, which works quite
well for training DNNs.

It is a hybrid strategy using an adaptive solving method, such as Adam, for the initial solving of
the problem. Adaptive approaches are perfect for the initial training when presented with a sizeable
problem but perform less well towards the last iterations.

The SWATS method adds a criterion for changing the solution method to SGD, which performs
much better for generalizing the solution and obtaining much more accurate results. Despite a fast
learning rate, first-order methods suffer from a bad convergence, a crucial criterion for solving large
problems such as DNNs.

The Recurrent Neural Networks used for predicting sequential data, such as audio files, are strongly
dependent in the long run. Momentum and NAG, [33], methods seem to be promising in this aspect.

Second-order methods provide information about the curvature of the function, making them a
much more popular choice for training. With second-order methods, the information obtained from
the adapted Hessian matrix for DNNs allows for a near-optimal rate of convergence.

However, the objective function of a DNN is not convex, which requires an adaptation of the
Hessian matrix. This operation becomes possible thanks to the Hessian-free optimization method, [28]
and [30].

In the usual Newton method, the problem is optimized using the Hessian matrix H, a costly
computation when the matrix’s dimension N × N becomes moderately large.

When performing Hessian-free optimization, two different adjustments are performed to the stan-
dard technique. To begin, in order to determine Hd for a directional vector d of dimension N , one
need only perform a simple calculation between any two points on the curve in order to arrive at this
value.

The conjugate gradient approach, often known as the Newton-CG method, is the second change
that can be made to optimise the quadratic function.

4.5 Adapting DNNs for Hessian-free optimization

In order to use the Hessian-free optimization approach on DNN issues, the problem must first be
modified in such a way that the objective function becomes convex and positive define. Only then
can the Hessian-free optimization method be applied. The method is modified by employing a variety
of strategies, such as damping, the generalised Gauss-Newton matrix, and subsampling, which are
outlined in detail in [28].
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4.5.1 Damping

Newton’s method performs quite poorly with nonlinear objective functions, such as those from neural
networks. Thus, the minimization of the quadratic approximation often ends up outside the confidence
zone of the approximation due to a too-wide and inclined curve.

Damping is a method for modifying an optimization model’s quadratic function or certain con-
straints so that the next iteration ends at a point on the objective function curve with considerable
progress toward a local minimum.

4.5.2 Generalized Gauss-Newton matrix

When the objective function is non-convex, the quadratic approximation may require a candidate for
minimization if the Hessian-free optimization approach is used.

The generalised Gauss-Newton approach approximates the Hessian matrix in a positive and semidef-
inite manner [43]. Therefore, the guarantee of a positive semidefinite matrix indicates that the conju-
gate gradient method will always be functional, even when using an undampened quadratic approxi-
mation.

Using the Hessian approximation yields superior search directions compared to the Hessian, is twice
as quick, and uses half as much memory as the Hessian.

4.5.3 Sub-sampling

Subsampling is used in optimization when a problem is too large for an algorithm to tackle efficiently.
This approach of optimization is stochastic, as the true Hessian value is estimated using a fraction of
the original data set. This strategy reduces computing time significantly per iteration.

4.5.4 Adapting Newton-CG

Although newton-CG is used for the hessian to vector transformation, the method also needs adaptation
to the DNNs problem.

For instance, the stop condition is updated heuristically from minimising the quadratic function
to minimising phi(x) below a tolerance level, where the value of phi(x) is determined by the rate of
solution reduction relative to prior iterations.

The search direction information is also shared across iterations. Given that the matrix of the x

iteration will be comparable to the matrix of the x + 1 iteration, the search direction px is likewise a
reasonable starting point for the next iteration.

Due to damping or undersampling, the subsequent iteration may need to be more representational
of the situation. Thus, the answer of each iteration is stored in memory so that it can be reverted.
Experiments indicate that the present direction should not be altered despite the backtracking if this
is the case.

Finally, a preconditioner is used to accelerate the process. The Hessian matrix is preconditioned
diagonally, enhancing the curvature of the quadratic function phi(x).

The following Equation (12) is the preconditioner offering the best improvements:

M =
[

diag

(
D∑

i=1
∇fi(θ) ⊙ ∇fi(θ)

)
+ λI

]α

(12)

where ⊙ denotes the product element-by-element and the exponent α is less than 1.
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4.6 Optimization with reinforcement learning

Reinforcement learning algorithms are distinguished by a much more robotic approach to learning. As
described in [47], the process is composed of a Agent making decisions a (actions) with respect to its
state and environment s. The actions taken by the agent influence the environment.

The objective of this model is to obtain the largest number of rewards r(st−1, at−1, st), which are
obtained when the Agent performs a good action at time t.

The policies π(a|s) represent the functions allowing the Agent to decide according to its envi-
ronment. The probability p(s′|s, a) represents the probability that the Agent performs an action
transforming the current environment s to s′. In contrast, p(s′, r|s, a) represents the probability that
the state change s′ resulting in a reward.

Reinforcement learning problems can often be described by the Markov Decision Process (MPD)
< S, A, P, γ, r > where gamma is a discount factor between 0 and 1 [2].

The goal of the model is to obtain the largest value of gamma relative to rewards, i.e., the following
Equation (13):

Gt =
∞∑

k=0
γkrt+k. (13)

Several reinforcements learning methods use a value function to optimize performance. A common
function is the Equation (14) to compute the expected return with respect to the π policy, depending
on the s state.

Another function is that of action-state of the Equation (15), which calculates the expected return
with respect to the choice of action a according to the environment s and the policy π.

Vπ(s) = Eπ[Gt|St = s]. (14)
Qπ(s, a) = Eπ[Gt|St = s, At = a]. (15)

Another strategy is using policy-based approaches, which involve optimizing each function sepa-
rately without considering the value function. The actor-critic algorithm, presented in [5], is the final
method that integrates the previous two approaches.

This reinforcement learning approach employs a critic who evaluates the value function outcome
while an actor who solves a prediction problem is held in place.

In the paper [55], an attempt was made to combine reinforcement learning and asynchronous
convolutional neural networks.

In Deep Reinforcement Learning (DRL), pi is represented by DNN, and a first-order algorithm is
used to optimize actions based on this representation.

In addition, the Actor-Critic using the Kronecker-Factored Trust Region (ACKTR) technique sug-
gests utilizing the K-FAC method to optimize both the actor and the critic.

When compared to the traditional stochastic gradient descent method, the K-FAC method that
was developed in [29] is shown to be much faster when it is applied to a large scale than the method
that is described in the paper.

Unlike the first-order and second-order approaches, the K-FAC algorithm performs exceptionally
well in situations with a large degree of stochasticity.

In contrast to the Hessian-free optimization technique, the computational cost and storage space
required by the curvature matrix in this method do not depend on the amount of data that is employed
in the estimation process.
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The Fisher information matrix has been proven to be equivalent to the second-order extended
Gauss-Newton matrix, which is the foundation of this method. This method is based on an efficiently
invertible approximation of the Fisher information matrix. Despite this, the computation of the inverse
of the Hessian matrix presents one of the most significant challenges when attempting to find an
effective solution to a problem with a high dimension.

In K-FAC, the Fisher matrix is approximated by performing a Kronecker product, represented by
the symbol

⊗
, i.e., the multiplication of two matrices A

⊗
B with different dimensions.

The multiplication is carried out block by block, with one of the matrices being multiplied by each
element of the second matrix. This method does not require that the dimensions of both matrices be
the same.

When performing the Kronecker product with the Fisher matrix on a matrix that was acquired by
the multiplication produced by the gradient being applied to the layers of a neural network, the Fisher
matrix is used.

The Fisher matrix approximation also undergoes specific further changes, each of which plays an
essential part in the progression of the algorithm and its eventual convergence on the optimal solution.

The authors of [21] tested several ways of applying the Kronecker product. The method was tested
on three auto-encoders using the datasets MNIST, CURVES, and FACES.

The method K-FAC is compared with a method based on the accelerated Nesterov gradient, detailed
in [46].

For each problem, K-FAC has a faster rate of progress per second than the benchmark. The
method achieves the same error rate as the referent in about 2000 seconds compared to 10000 seconds
of computation for the referent.

The authors note the importance of convergence momentum in their algorithm, as mentioned in the
publication of [46]. Without this technique, K-FAC would not necessarily be better than the referent.
The authors also recommend their algorithm as a benchmark in future work.

4.7 Machine learning improvements

The computation of the inverse Hessian matrix ∇2f(xk)−1 at each iteration can be very expensive
in computation and storage space when paired with machine learning because of the high number of
variables in the problem.

The conjugate gradient method and the quasi-Newton methods, such as the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm, are variants of the Newton algorithm aiming at reducing the
computational costs related to the Hessian [34] and [45].

The conjugate gradient method is an algorithm used to handle large linear optimization problems
between the first-order and second-order methods.

This approach utilizes only the information offered by the first-order gradient yet guarantees a
convergence rate comparable to that of second-order methods. Due to the difficulties of calculating and
storing the inverse Hessian matrix, quasi-Newton techniques aim to avoid performing this computation.

The latter consists of conducting an approximation of the positive Hessian matrix, avoiding the
whole computation of the matrix at the expense of a modest reduction in computing precision.

The Hessian matrix is computed at first, then the value of the matrix is estimated between each
iteration. The approximation of the matrix is represented using Bk and the inverse using Hk.

Generally, the quasi-Newton algorithms are distinguished by the method used to obtain Bk and Hk.
The algorithm BFGS is a quasi-Newton method for solving medium-size problems.
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However, more significant problems still require too many storage resources due to the number of
matrices generated sequentially by the algorithm. Thus, the memory-limited BFGS algorithm remedies
this problem by storing only the vector of the computational sequence leading to Ht, which limits the
number of computations.

In the paper by [10], they propose the use of a stochastic curvature method to speed up the
Newton-CG (conjugate gradient) and BFGS optimization methods.

For large-scale deterministic optimization problem classes, the gradient of the objective function
can be computed in an acceptable amount of time. Still, the formation of the Hessian matrix is
not feasible. Recent research considers the Hessian information to be stochastic, utilizing supervised
learning to make predictions on data unknown to the model.

The research study in [10] considers the objective function to be convex with a large data collection
and numerous variables. The objective function of the stochastic approximation is defined using an
average sample approximation to reduce the number of examples.

Hessian information requires less precision than gradient information for performing the same
work [10]. Thus, it is conceivable to operate with a subset of the data set without a significant loss of
precision.

The same research work [10] intends to demonstrate that the second derivative approximation can
be beneficial when applied to machine learning. When applied to the Newton-CG technique, the
computing cost is comparable to that of the fast descent method, which is developed from the gradient
descent, but with substantially faster convergent iterations.

The Hessian subset method was tested on a speech recognition problem with 10191 decision vari-
ables and compared with conventional solution methods. The results show that Newton’s Hessian
subset method outperforms the conventional Newton-CG and BFGS methods.

Using the Hessian subset significantly reduces the number of iterations, three times faster than
Newton-CG and twice as fast as BFGS.

The memory-limited stochastic BFGS algorithm shows similar results to the Hessian subset. Based
on this work, the suitable algorithm depends on the problem, as both are efficient for machine learning.

5 Machine learning in hydropower production
To contextualise the several prospective hydropower research directions. This article focuses on ma-
chine learning by surveying 23 scientific articles employing various algorithms and comparing the
effectiveness of various machine learning methods [6].

This tendency toward employing machine learning models for predicting inflow is a consequence of
the complexity inherent in simulating the water levelling process using conventional model methods.
The behaviour of water is influenced by a number of stochastic and natural resources, including inflows
from upstream river reservoirs, evaporation from the reservoir surface, temperature variations, and
other environmental factors [42].

Since most of the works focus on predicting water inflows to reservoirs, the author explores the
application of machine learning to Cyber-Physical Systems.

However, the purpose of this study is to examine the application of machine learning in this
situation. Mathematical optimization is being used to tackle the majority of hydropower scheduling
issues.

With the surge in popularity of machine learning among academics and the significance of opti-
mization in their algorithm, we examine many publications that redefine the hydropower production
problem-solving method.
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The table 1 is a summary of the papers presented in this Section.

Table 1: An overview of the papers reviewed in this section.

Name Machine
Learning
Model

Year Dataset Objective

[44] LR (LMW) 2017 30 years of annual inflows in 30
regions.

Long-term annual prediction for water in-
flow prediction.

[24] LR 2014 Monthly data on the production
of 132 power stations and the
runoff from 1989 to 2008.

Project the trend of changes in hydroelec-
tric production up to 2039

[42] LR (BDTR)
(DFR) (NNR)
(BLR)

2020 12531 instances containing 34
years of historical data + a set
of 82057 hours of data recorded
between 2010 and 2019.

Predict water level one to seven days in
advance by testing four machine learning
algorithms (BDTR, DFR, NNR and BLR)
for SC1 and SC2.

[15] LR 2021 26 years of precipitation data
from 1993 to 2019 measured at
6 different locations.

Predict the electricity production of a hy-
droelectric plant.

[39] RF 2020 Analyzing daily auction data for
the sale of hydroelectricity from
Norway, data based on [38].

Observe if the data obtained in their previ-
ous work can be used in a machine learning
classification or regression models.

[36] RF (C4.5,
improved C4.5,
ID3-IV,
CHAID)

2021 Sample sets of each hydroplant
production and divided into win-
ter and summer.

Make quick decisions (24h) for production.
Comparison of 4 random forest algorithms.

[58] ACO-RF-
AWT-LSTM

2021 6205 daily data, from 2005 to
2019, retrieved from a power sta-
tion in the western region of
Azerbaijan.

Predicting short-term hydroelectric pro-
duction.

[56] DRL (DQN) 2020 Daily precipitation and 10-day
inflows of each reservoir from
1967 to 2015.

Optimize a system of three hydroplant.

[40] DRL 2020 Simplified historical dataset
with Nordic European market
price scenarios (2008 to 2019)
and Water supply from four
reservoirs of Norway between
1958 and 2019.

Optimize annual revenue based on water
supply and electricity price.

[31] RL 2022 1000 years of data simulated by
Rio Tinto.

Compare a reinforcement learning model
with traditional medium-term stochastic
optimization methods in a three reservoirs
system. Observe the behaviour of chance
constraints.

5.1 Linear regression

A Linear Regression (LR) model is a technique for predicting the type of a function based on the
relationship between two or more data elements. Typically, the purpose is to decrease the value of a
cost function associated with each point’s distance. This is accomplished by employing a "closed-form"
equation that directly computes the model parameters that best suit the model.

However, a high number of features and instances may necessitate using a gradient descent method
to optimize the cost function [18]. Despite this, these models are renowned for their simplicity and
speed of computation.

A study in [44] examines 30 years of water input over an extended time frame (one year per
instance). Their objective is to create a prediction model of annual water inflows for a hydropower
plant—collecting and standardizing data for each place within the dataset.
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Using linear regression, the 30-year data for each place is separated into periods to determine the
trend in inflows for each period. This approach, titled Linear Moving Window, is developed in this
study (LMW).

The results demonstrate that the model can estimate the trend of plants separated by rivers. When
a period contains fewer than 30 years, the model is especially sensitive to outliers.

The emphasis of the work in [24] is creating a strategy for forecasting the change in the annual
hydroelectric output of federal hydroelectric plants in the United States. This method is based on the
correlation between geological runoff data and the yearly hydroelectric production of 132 U.S. plants.

Monthly data collection occurred between 1989 and 2008, spanning a period of twenty-nine years.
Three types of projection models are utilized: global, regional, and local. The data indicate that the
correlation between runoff and hydropower production is increasing.

The linear regression data was utilized to forecast the change in production till 2039. This forecast
offers fresh perspectives on annual and seasonal production that might be utilized in future endeavors.

Predicting the water level in a reservoir used by a hydroelectric plant using two different scenarios
over a relatively short time horizon is the purpose of the research presented in the publication cited [42].

In the first scenario, there is rainfall and water level. In contrast, in the second scenario, there is
precipitation, water level, and water release from a power plant.

Four machine learning methods are tested in [42]: Boosted Decision Tree Regression, Decision
Forest Regression, Bayesian Linear Regression and Neural Network Regression.

When looking at the results on a Taylor diagram and comparing them with other machine learning
performance metrics (MAE, MSE, R2, RMSE, and RAE), the Bayesian Linear Regression approach
produces the best overall outcomes.

12531 data set containing 34 years of daily water level and precipitation data was harvested from
1985 to 2019, and 82057 hours set was recorded between 2010 and 2019. The results show that all
methods are suitable for water level prediction, but Bayesian Linear Regression is particularly effective
for the first scenario and Boosted Decision Tree Regression for the second scenario.

The authors in [15] discuss the creation of many medium-term regressive models (monthly and
quarterly) to anticipate the amount of energy produced by a hydroelectric plant.

Four types of regressive algorithms include power regression, multiple linear regression, Gaussian
process regression, and support vector regression. The precipitation data in this set spans a period of
26 years, from 1993 to 2019, and was collected from 6 different locations.

The information that was utilized refers to the amount of rainfall, temperature, and evaporation
that occurred from the plant reservoir. According to the findings, the Gaussian process regression
model is superior to the other approaches in terms of performance.

Gaussian refers to a method that is defined by the means and standard deviation; this method
does not require any parameters, is appropriate for use with small datasets, and is able to take into
account the uncertainty of the predictions.

By employing this model, the authors in [15] could establish a connection between the weather
forecast and the amount of power the plant generated. According to the authors, monthly data are
not ideal for forecasting energy generation; instead, quarterly precipitation generates the most accurate
projections with a high correlation. In recent research, there appears to be an abundance of regressive
algorithms, necessitating testing the same problem on each approach to derive the model.

Despite the simplicity of this type of procedure, the findings achieved with this instrument are
generally of high quality. However, regressive algorithms can only supply limited information.
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In general, the result of the predictions made by this class of algorithms reveals more information
about the situation, allowing for a more precise examination of the projected data. On a bigger scale,
linear regression algorithms appear better suited as complementary to more advanced machine learning
algorithms with a broader definition of the hydropower production problem.

5.2 Random forest

A decision tree is a type of machine learning algorithm that is able to perform tasks involving classi-
fication as well as regression. The authors in [18] develop a model with the help of a labelled dataset
by basing their decisions on the characteristics of the input data. They are the fundamental build-
ing blocks of the Random Forest (RF) model, which is one of the most effective machine learning
algorithms.

According to the authors in [58], in comparison to linear regression models, a random forest makes
use of ensemble learning by constructing a large number of distinct trees. These trees are then used to
make many predictions based on an input and to provide a more accurate inference from the variables.

The bagging method is often described as the main reason as to why ensemble methods work so
well in the random forest algorithm. This is done by training the decision trees of a random forest
with slightly different subset of a training set in order to obtain a different prediction each time [9].

This study in [39] examines daily auction data for the sale of Norwegian hydropower. The purpose
of this study is to determine whether the data gained in their earlier work can be applied to machine
learning [38]. In order to accomplish this, two random forests are created, one for classification and
the other for regression.

The development of neural networks has also been tried, but this model was abandoned due to a
low convergence rate caused by inadequate data samples.

Observing the links between market price and inflows and labelling each feature as stochastic or
deterministic in order to construct a model that classifies each occurrence as deterministic or random.

The second regression model is trained to forecast a decision heuristic for determining if a deter-
ministic approach should be employed for the current market. The dataset was altered to obtain more
accurate predictions. By comparing the performance of some data to the market price, the strategy gap
function was introduced. To examine the relationships between the features in the set, a correlation
matrix with Spearman’s coefficient was generated.

No feature reduction is undertaken based on the results of test models. The gradient boosting
decision tree approach is employed as the random forest algorithm [17].

The selection of the model’s hyperparameters is based on 1000 random parameter selections ap-
plied to five random sets. The performance of the models is determined by calculating the accurate
classification rate based on the total number of classifications conducted, the performance gap, and
the average performance of an optimal design.

The set is divided into 2
3 training sets and the remaining for the test sets. Consequently, production

and sales data from 2016 and 2017 are utilised to forecast 2018 results.

The results indicate that the best classification model achieves an accuracy of approximately 62%,
indicating a significant level of noise in the data.

The regression indicates a 3% decrease in accurate predictions, but a 3% improvement in the
performance gap. The quality of the solutions is ultimately unsatisfactory.

The data used do not appear to provide a good picture of hydroelectric power generation and
sales. Based on this paper, decision tree algorithms do not appear to be well-suited for this type of
prediction, or the dataset utilised for this project may not have accurately represented the situation.
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The paper of [36] makes use of several data analysis and machine learning algorithms, culminating
in the comparison of four decision tree algorithms, namely C4.5, enhanced C4.5 (improved C4.5),
ID3-IV and Chi-squared Automatic Interaction Detection (CHAID).

The case study focuses on two cascaded hydroelectric power facilities in China’s Tianshengqiao,
situated on the Hengshui River.

The purpose is for short-term and real-time optimization algorithms to be able to make rapid
judgments for energy generation, which they need assistance in doing swiftly and efficiently.

The authors acknowledge that fluctuating data may have an impact on performance and note that
safety and environmental constraints are disregarded in this study. Utilizing a deterministic K-mean
approach, the production curve of the plant is estimated.

The information utilized for each power plant is divided into two seasons, winter and summer, and
includes the following:

• The time at which the data was collected.
• The level of water in the reservoir.
• The volume of discharged water.
• The energy generated.
• One of the 15 plant schedules must reach its goal.

The C4.5 algorithm has the lowest error rate and an appropriate computation time, as determined
by the results. However, the results and conclusions of this paper are difficult to interpret.

Due to the split of ensembles into seasons and the need to calculate for each plant and tree, the
results are muddled, with error rates ranging from 4% to 30% depending on the algorithm, plant, and
season.

Due to the lack of openness of the data used, particularly with regard to the quantity and duration
of data collection, the experiment should be repeated under different conditions to validate the results.

The article of [58] proposes a hybrid model making use of the algorithms Adaptive Wavelet Trans-
form (AWT), Long Short-Term Memory (LSTM), and RF to design the AWT-LSTM-RF model for
hydropower prediction.

The ant colony optimization approach is also utilised to determine the significance of the dataset’s
attributes. The research utilises 6,205 daily data collected by the Mahabad Dam power facility in the
Western Azerbaijan Province from 2005 to 2019.

The set includes 52 characteristics pertaining to energy production, reservoir volume, reservoir area,
reservoir water level, evaporation volume, maximum and minimum temperature, and precipitation.

The training set contains information from 2005 to 2016. The model is constructed in four stages.
Using the ant colony optimization algorithm, the most significant variables are ranked in order of
importance from one to six before their features are extracted.

Then, the best combination of features is chosen with a random forest algorithm. Secondly, the
features combination and temporal data are decomposed into multi-level sub-signals called wavelets
with the AWT algorithm, [51]. This phase is crucial to the creation of the model because it allows
sequential historical data to be represented as a frequency. Low-frequency components, for instance,
show a high pattern, while the contrary implies erratic variations in the data series.

This provides far more insight into the data, particularly the stochastic (exogenous) factors. In the
third stage, each wavelet is sent via an RNN-LSTM algorithm to forecast the frequency of future data.

LSTM parameters are tuned using the Back Propagation Through Time technique. The final phase
involves collecting the forecasts of the sub-signals.
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A nonlinear ensemble learning technique is used in conjunction with a random forest to forecast
the nonlinear values of the subsignals.

After examining 53 data sequences at various times, the results of the ant colony algorithm demon-
strate six key energy production characteristics.

The random forest results show that the best combination of features is the reservoir volume at
time t, evaporation volume at t − 2, the minimum temperature at t − 5, and energy produced at t − 1
and t − 4. The null hypothesis is rejected at a 1% significance level.

Subsequently, the five features are used as input to the wavelet analysis. The best mother wavelet
is db4, with decomposition into two layers of low and high frequency. These frequencies are sent for
training and prediction of the LSTM and then aggregated by a random forest emphasizing the bagging
method.

Among the different models and different combinations of algorithms tested, the test of the AWT-
LSTM-RF model obtains a mean error of 0.185, an error variance of 28.85 and an R2 of 0.987, that is
to say, an excellent result in terms of the predictive algorithm.

However, the model is not compared to traditional stochastic optimization methods, nor is the
computing time of the model specified in detail.

5.3 Reinforcement Learning

Reinforcement learning stands out from other machine learning algorithms by the way it perceives the
problem. As seen in subsection 4.6, a problem is defined using the MDP model.

Environment and state are defined in the context of hydropower production by the data produced
by power plants and their reservoirs. A policy can be represented in a variety of ways. However, this
study examines some techniques that employ neural networks. When neural networks are utilized in
a reinforcement learning algorithm, this is referred to as an DRL.

In the paper by [56], a deep reinforcement learning method is used to optimize a cascade power
plant network located on the Hun River in northern China. Specifically, these use the Deep Q-Network
method, introduced in [32], as a prediction model and use a Bayesian aggregation-disaggregation
technique on the three reservoirs to reduce the dimensionality of the problem.

The DRL consists of an agent with two neural networks as its brain (an action and a target
network), allowing it to make decisions regarding its surroundings. The environment is represented by
the dataset of hydroelectric power facilities. From 1967 to 2015, the statistics include daily precipitation
and 10-day inflows for each reservoir.

After receiving information on the condition of its surroundings, the agent decides whether or not
to utilize the DQN’s network capabilities. The model will mimic this activity in order to return a
reward to the agent based on the divergence of the system’s needs and the amount of energy that was
produced. The agent retains all of its previous states, actions, and rewards so that it can engage in
continuous learning.

The DRL model is compared using three Stochastic Dynamic Programming (SDP) models. The
methods using DRL are said to be better than their Stochastic Dynamic Programming (SDP) coun-
terparts, but few conclusions are made from this point of view, and the graphs seem to show similar
results between the two methods.

The author makes note of the fact that DRL with memory is applicable to the real-time production
problem, and that Bayesian aggregation-disaggregation appears to be appropriate to the problem of
cascading tank systems. Both of these points are taken into consideration.
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The paper [40] uses DRL on a long-term horizon problem to optimize annual revenues based on
water inflow and electricity price. The reinforcement algorithm is of type actor-critic with a Q-learning
algorithm.

The problem has been tested on simplified historical data, as this work aims to demonstrate the
viability of reinforcement learning for seasonal hydro planning problems.

The water level inside a reservoir symbolizes the environment, and the agent’s goal is to achieve a
state of equilibrium in the reservoir’s water level to minimize the amount of water that spills out and
increase the amount of money the agent makes each week.

The activity that needs to be done by the agent is to determine, based on the current price of
power on the market, what percentage of the water in the tank should be converted into energy.

The reward function for action is computed with respect to the greatest capacity of power that can
be produced in proportion to the reservoir’s capacity, the electricity price on a weekly basis, and the
importance connected to this price. All of these factors are taken into account.

The critic is composed of four neural networks, including a network describing the value of the
state, a target network allowing a better convergence of the error Backpropagation algorithm, and two
Q-networks allowing the obtaining of the value Q.

The decisions that the actor makes are determined by a neural network designed to represent the
policies in place in the state. It is important to emphasize using RMSprop to optimize their network,
which is one of the hyperparameters.

This decision was made because, compared to Adam, it has less momentum dependence when
applied to non-stationary data and a constantly shifting environment. In addition, using RMSprop
helps to level out the differences in learning rates and prevents an excessive investigation into a local
minimum.

The model is trained on an artificial scenario set in addition to a scenario set developed using data
from 2008 to 2019 on European Nordic market value, data from 1958 to 2019 on Norwegian water
supply, and four reservoirs with comparable meteorological conditions. The model converges after one
day of training with 300,000 weeks on a processor with 3.1 GHz and 16 GB of RAM [40].

This work demonstrates the viability of a reinforcement-based model in a minimalist hydroelectric
generation problem from the perspective of the field in which hydroelectric optimization models dom-
inate. Specifically, this is done by looking at the problem from the point of view of the hydroelectric
optimization models. The author incorporates the option of pushing the model farther with the use of
algorithms like aggregation-disaggregation [40].

This paper [31] proposes a reinforcement learning model for the hydroelectric generation problem
using chance constraints in conjunction with a gradient-based policy technique.

This paper aims to compare the reinforcement learning model with traditional medium-term
stochastic optimization methods in a three-reservoir system and to observe the behavior of chance
constraints in a hydroelectric context.

A MDP is used to represent the problem, defined with the tuple < S, V, P, r >. The variable S

represents the states at time t, defined for each reservoir by the amount of water in storage, a measure
of the layer of snow (and ice) and natural inflows; the variable V represents the amount of water
discharged for the period t; the variable P is a transition function to the state t + 1; and the variable r

is the reward function at time t, dictated by the reservoir water level, the variable V at time t and
with the natural water supply.

Due to the stochastic nature of the inflows, the reward is expressed as the sum of the expected
rewards over a time horizon. The policy to be chosen by the agent at time t uses the same parameters as
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the reward function used to obtain the decision variable corresponding to V . This policy is stochastic
and is represented by a neural network.

The policy uses the gradient ascent method to choose the direction of the step in the direction of the
gradient of the objective function. The turbine constraints are complex, while the storage constraints,
subject to many stochastic factors, are soft constraints.

To update their policy, a slightly altered version of REINFORCE is used [54], with Adam for the
parameter update step. The added chance constraint is joint, meaning that the probabilities of all
inequalities are joined in a single constraint.

It introduces a parameter that penalizes the objective function of the policy with a fixed value,
usually resulting in stringent restrictions on the model.

The variable backoffs is added to the storage constraints, i.e., a vector of all backoffs preceding the
time t. The backoffs is used to regulate the level of satisfaction of the constraint.

The value of backoffs is initiated by computing all storage constraints at all times t. Then, the
constraints being violated the most often are assigned larger values of backoffs.

The backoffs are adjusted during the algorithm’s course to minimize its value, decreasing the risk of
function violation. A SDP model using the same chance constraints has been designed as a performance
benchmark.

The case study is done on the Rio Tinto system in the Saguenay Lac-Saint-Jean, Quebec (Canada).
The models as been tested on 1000 years of data simulated by the company with an i7-8565U 1.80
GHz processor and 16 GB of RAM.

After testing different parameters for the chance constraint, the policy computation time of the
model by reinforcement is 41 hours compared to 49 hours for the SDP.

A decrease of 1.5% in hydroelectric production is observed in the reinforcement model. However,
for each of the tests (one, two, and three reservoirs), the reinforcement model shows less loss in water
discharged and less loss in the amount of energy produced.

In addition, the model is much more prone to power shortages and major water losses than the
reinforcement model. The results show that the reinforcement approach is a viable method with respect
to production, constraint satisfaction, and computation time.

6 Conclusion
The current state of mathematical optimization in the fields of hydropower and machine learning is
the topic of discussion in this article. In addition, we investigate their interaction within the context
of the existing hydropower generation scheduling issue.

Given that machine learning is still a relatively new area of research with numerous potential
applications, it is quite likely that machine learning will play a significant role in the development of
future models for the production of hydropower.
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