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Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
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Abstract : This paper presents a novel rapid estimation method (REM) to perform stochastic impact
analysis of grid-edge technologies (GETs) to the power distribution networks. The evolution of network
states’ probability density functions (PDFs) in terms of GET penetration levels are characterized by
the Fokker-Planck equation (FPE). The FPE is numerically solved to compute the PDFs of network
states, and a calibration process is also proposed such that the accuracy of the REM is maintained
for large-scale distribution networks. The approach is illustrated on a large-scale realistic distribution
network using a modified version of the IEEE 8500 feeder, where electric vehicles (EVs) or photovoltaic
systems (PVs) are installed at various penetration rates. It is demonstrated from quantitative analyses
that the results from our proposed approach have negligible errors comparing with those obtained from
Monte Carlo simulations.

Keywords: Grid-edge, electric vehicles, power distribution networks, stochastic analysis, Fokker-
Planck equation, probability density function, Monte Carlo
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1 Introduction

Grid-edge technologies (GETs), e.g., plug-in electric vehicles (EVs), rooftop photovoltaic systems

(PVs), demand response (DR) programs, etc., are being installed at customers’ sites (edges of the

grid) from which they are connected to the power distribution networks. With the on-going energy

transition, the number of GETs is rapidly growing. It becomes critical to assess their influence on the

distribution network in order to maintain system reliability and power quality, and to avoid service

interruptions. As changes to customers’ power demands (load offset) due to the use of GETs are

behind-the-meter and are stochastic in terms of customers’ usage behaviors, it is difficult to evaluate

their impacts especially at high penetration rates. For example, EV charging may introduce undesired

impacts to power networks such as overloading of key equipment, severe voltage variations, phase

unbalancing, harmonic distortions, etc. [4, 14]. Various uncertain factors such as charging locations of

EVs, charging time and duration, charging power, and battery capacities, must be properly modeled

to perform an impact analysis to evaluate the network states with different penetration levels of EVs

installed. The analysis should be extended to other GETs than EVs, and combined impacts should be

studied when multiple types of GETs are installed to the same power network.

In the literature, deterministic methods have been proposed to study the impacts of EVs [8–10, 12]

and PVs [6, 7, 11], and their combined impacts [25] to the power distribution networks. These methods

normally evaluate network states by generating typical or worst-case scenarios from the parameters

with uncertainties, e.g., power flow analysis is usually used to study the impacts in each scenario.

While these deterministic simulation models are easier to implement, uncertainty is often ignored

when looking at selected scenarios. Analysis results may be consequently inaccurate and cannot

provide meaningful insights for power system plannings. It is important to model the uncertainty

in the input variables such as the locations and the charging/generation profiles of EVs/PVs, etc.,

and use stochastic approaches to compute the network states and their associated probability density

functions (PDFs).

Such stochastic approaches can be categorized into numerical, analytical, and approximation ap-

proaches. Due to the simplicity in the implementation, several Monte Carlo simulation-based studies

have been performed in the context of GET integration. Monte Carlo simulations can provide accurate

results to complicated and/or non-linear systems with many random variables involved. For example,

in [19], impacts of voltage drops and loading conditions of lines due to EV charging are studied, and

in [13], network losses, voltage variations and transformer loadings are studied at various penetration

levels of EVs. In [15, 27], the harmonic impacts due to EV charging are analyzed, where not only

locations of EVs and charging patterns are randomized, but also the operating states of the residential

household loads. Finally, impacts of multiple technologies including EVs and PVs to the distribution

network in terms of abnormal voltages and transformer loading levels are studied in [23].

While the Monte Carlo simulation approach is a straightforward numerical method for the stochastic

analysis and can provide accurate results if all uncertain variables are covered, it has a very slow rate

of convergence. The construction of a large number of samples is time-consuming, and performing a

power flow analysis to each sample is computationally expensive. Analytical approaches are, therefore,

an alternative to derive PDFs of output variables from PDFs of input variables, such as in probabilistic

power flow analysis. For example, the PDF of an output random variable can be computed from the

convolution of input random variables which are independent. However, the convolution operation

requires extensive computation, even with the discrete Fourier transform (DFT) applied to reduce the

computational burden [2]. Approximation methods for probabilistic power flow analysis are developed

to improve the computational efficiency [28, 31–35]. In [31], PDFs of power flows in transmission

lines are approximated in terms of cumulants, which are an alternative set of quantitative measures

to moments related to the shape of PDFs with the computational time significantly reduced. Another

approximation method is the point estimation method which approximates the PDF of an output

variable from its first and second moments as in [28]. In recent years, polynomial chaos expansion

(PCE)-based methods have shown promising results in quantifying uncertainties in power systems;
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however, limitations still exist which make them less applicable to stochastic analysis of large-scale

distribution systems. For example, it suffers from the “curse of dimensionality” [33] when the number of

random input variables is large. Hence, the computation for the polynomial coefficients of the surrogate

model is challenging even if the expansion degree is limited to 2 [35]. Also, separate approaches are

required to accompany the PCE method when random variables are correlated such as in [32] by using

the Copula theory, and when random variables have arbitrary probability distributions such as in [34]

by using the Stieltjes procedure to construct the orthogonal basis for PCE.

A common disadvantage of the analytical and approximated probabilistic power flow is that the

model is developed at a fixed penetration rate. For multiple penetration rates, models will have to

be recalculated which is not efficient. Our objective is to develop a model which can characterize the

evolution of network state PDFs with the uncertainties of GETs while the penetration rate is taken

as a parameter. Such a model can be derived from the Fokker-Planck Equation (FPE). In [22], an

advection equation which is a simplified FPE is used to describe the evolution of temperature PDFs

for a group of thermostatically controlled loads (TCLs). In [30], the FPE is modeled and is solved to

describe the probability of power network stability over time under perturbations.

In this paper, we propose a rapid estimation method (denoted as REM hereinafter) based on FPE

to perform a stochastic analysis on the impact of EVs and PVs to power distribution networks. The

REM approach provides a rapid sweep of the network states at a wide range of penetration levels.

It also indicates concentrated areas where GETs are installed on the network, and network sections

susceptible to abnormal conditions, e.g., equipment overloading and under/over-voltages, at any given

penetration level. Results from the REM can also identify the maximum penetration level possible

that can be hosted by each network section for the network to operate securely. Conversely, the REM

approach permits to determine the penetration level at which network expansion and/or mitigation

actions are required.

The rest of the paper is organized as follows: in Section 2 the REM approach to perform a stochastic

impact analysis based on FPE is presented. The solution to the FPE model characterizes the evolution

of equipment loading levels and voltage levels on the network with the GET penetration rate. In

Section 3, a numerical method to solve the FPE model is introduced, and a calibration method to

improve the accuracy of the solution is proposed. Section 4 demonstrates the performance of the REM

by evaluating the impacts of EVs on the modified IEEE-8500 test feeder. Finally the conclusion is

made in Section 5 along with some future work directions pointed out.

2 Stochastic impact analysis model

In this section, the REM model for the stochastic impact analysis of EVs/PVs is proposed.

2.1 Assumptions

We assume that the following information is provided. This information can often be obtained from

statistical surveys or socio-economic analysis [5, 26, 29].

• Quantity probability Prinum,k(n) which specifies the probabilities of any customer i = 1, 2, · · · of

having n = 0, 1, · · · GET k devices where k ∈ {EV, PV}.
• A set of load offset profiles Lk for GET k, Lk = {ljk(t), j = 1, 2, · · · }, where ljk(t) is an EV

charging or a PV generation profile, both at time t. The diversity of Lk characterizes different

usage patterns of EVs and PVs.

• Adoption probability PriL,k(j), j = 1, 2, · · · . for customer i to adopt a load offset profile j in Lk.

Based on the given data, the REM approach is formulated in the next section which provides PDFs

of network states (equipment loading level and node/bus voltage level) at any penetration level of EVs

and PVs without performing repetitive power flow analysis to the network.
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In some work such as [36], the penetration rate is defined as the ratio of the number of GET devices

in service to the total number of GET devices on the network. This definition is not applicable to our

analysis because we do not know the total number of GET devices on the network. However, we do

know the total number of customers/meters on the network. Hence in this paper, the penetration rate

is defined as the ratio of the number of GET devices to the total number of customers/meters on the

distribution network.

Definition 2.1 (Penetration rate). The penetration rate pk for GET k is defined as

pk ≜
Tk

Nm
=

nk + n0
k

Nm
, (1)

where Nm is the total number of customers/meters on the network, Tk is the number of GET k devices,

n0
k is the number of GET k devices already existing on the network, and nk is the number of devices

that are required to add in order to reach pk. The initial penetration rate of GET k of the network is

therefore

p0k =
n0
k

Nm
.

Note that the definition is somewhat similar to that adopted in [37], but we extend it to consider the

case in which some GET k devices may already exist on the network (i.e., p0k > 0). When simultaneous

impacts of multiple GET types are studied, a separate penetration rate should be defined for each GET

type. By this definition, pk can exceed 100%, which indicates that on average each customer has more

than one device of GET type k.

For simplicity, when referring to one GET type, the subscript k in the penetration rate is dropped

from hereinafter, unless stated otherwise.

2.2 Stochastic model

Let x ∈ R denote a network state of interests, whether the loading level of a network equipment or

the voltage level of a network node/bus. The following general model is proposed here to describe the

network state when GET k devices are installed to the network with respect to p:

dx = u(x, p)dp+ σ(x, p)dWp, (2)

where Wp is a Wiener process indexed by p. The term u(x, p) is the drift velocity of the network state

under the influence of EVs/PVs, and σ(x, p) > 0 denotes the magnitude of the additive disturbances.

Due to the presence of the Wiener process, the trajectory x(p) does not have an analytical form,

but given an initial network state x(p0), one can generate a single trajectory by numerical integration

of (2) [16]. To study the stochastic behavior, one can further generate a large set of trajectories and

construct a histogram of x at each p to approximate the PDF of x at p, denoted as m(x, p). This

approach is similar to Monte Carlo which is computationally heavy. Therefore, we derive a method

that can directly describe the propagation of m(x, p) with the penetration rate. To obtain such a

method, the Fokker-Planck equation [24] can be used:

∂m(x, p)

∂p
+

∂

∂x

{
m(x, p)u(x, p)

}
=

∂2

∂x2

{
m(x, p)d(x, p)

}
, (3)

subject to m0 = m(x, p0). Here, d(x, p) = σ(x, p)2/2 is the diffusion velocity. It can be generally

assumed that the magnitude of additive disturbances to the network states due to GETs is much

smaller than the magnitude of the drift velocity, i.e., σ(x, p) ≪ |u(x, p)|. Hence, we assume that the

diffusion velocity is a small constant, i.e., d(x, p) ≜ d,∀x, p. We can then rewrite (3) as

∂m(x, p)

∂p
+

∂

∂x
{m(x, p)u(x, p)} = d

∂2m(x, p)

∂x2
. (4)
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To solve (4) for the propagation of m(x, p), the drift term u(x, p) must first be computed. The

term depends on what network state x is describing, either the loading level of a device/equipment or

the voltage level of a bus/node. In the following sections, we describe how u(x, p) can be computed

based on the stochastic data of customer’s quantity probability Prinum,k(n), load offset profiles Lk, and

customer’s adoption probability PriL,k(j).

2.3 Drift velocity of loading level

Let m(x, p) refer to the PDF of equipment loading level x at penetration rate p. For equipment on

distribution networks, the loading level is computed by-phase, hence we denote x = zϕe,k(p) as the

loading level of equipment e on phase ϕ ∈ {A,B,C} when devices of GET k are to be added to the

network. The drift velocity, therefore, is the derivative of zϕe,k(p) with respect to p. Let zϕe (p
0) be the

initial loading level of e without installing additional GET k devices other than those already existing

on the network (which represent the penetration rate p0). The value of zϕe (p
0) can be obtained from

the power flow solution of the network. For a given technology k, let gϕe,k(p) denote the change of

loading level on phase ϕ with respect to p. We can express zϕe,k(p) as devices of GET k are installed

in the network by the following equation.

zϕe,k(p) = zϕe (p
0) + gϕe,k(p). (5)

The term gϕe,k(p) can be expressed as:

gϕe,k(p) = sgn(k)
nk(p) Pr

ϕ
e,k(p)E[S

ϕ
e,k] + E[∆Sϕ

e,loss(p)]

Sϕ
e

. (6)

Here, sgn(k) is a sign function where sgn(k) = 1 if GET k consumes active power and sgn(k) = −1

otherwise, nk(p) = Nmp − n0
k by (1), Prϕe,k(p) is the probability that GET k devices are installed to

sections downstream of e on the desired phase ϕ, E[Sϕ
e,k] ∈ R is the expected apparent load offset (in

kVA) of one GET k device installed downstream of e and on phase ϕ, E[∆Sϕ
e,loss(p)] ∈ R is the expected

change of network losses (in kVA) of all sections downstream of e on ϕ from adding GET k devices, and

Sϕ
e ∈ R is the rated power (in kVA) of e on ϕ which is assumed given. For certain equipment whose Sϕ

e is

expressed in A (e.g., overhead lines or switches), their Sϕ
e can be converted into kVA by multiplying the

nominal voltage. The first term in (6)’s numerator can be interpreted as the expected apparent power

contributed by GET k devices. We simplify (6) by assuming E[∆Sϕ
e,loss(p)] ≪ nk(p) Pr

ϕ
e,k(p)E[S

ϕ
e,k].

To see this, let E[Iϕe,k] ∈ R and E[Iϕl,k] ∈ R be the expected currents contributed by GET k flowing

through e and through each section l downstream of e on ϕ, respectively, E[V ϕ
e,k] ∈ R be the expected

voltage of e on ϕ, and E[δV ϕ
l,k] ∈ R be the expected voltage drop on section l. Hence, we have

nk(p) Pr
ϕ
e,k(p)E[S

ϕ
e,k] =E[V ϕ

e,k]E[I
ϕ
e,k] (7)

E[∆Sϕ
e,loss(p)] =

∑
l
E[Iϕl,k]E[δV

ϕ
l,k]

≤
∑

l
E[Iϕl,k]δV

=δV
∑

l
E[Iϕl,k]

(8)

where δV is an upper bound of the voltage drops for all sections. Given that in general δV ≪ E[V ϕ
e,k]

and
∑

l E[I
ϕ
l,k] ≈ E[Iϕe,k] if phase angles of currents are similar, we can establish E[∆Sϕ

e,loss(p)] ≪
nk(p) Pr

ϕ
e,k(p)E[S

ϕ
e,k] by (7) and (8). Hence gϕe,k can be approximated by,

gϕe,k(p) ≈ sgn(k)
nk(p) Pr

ϕ
e,k(p)E[S

ϕ
e,k]

Sϕ
e

. (9)
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By (5), we have d
dp

(
zϕe,k(p)

)
= d

dp

(
gϕe,k(p)

)
. To obtain an analytical form of d

dp

(
gϕe,k(p)

)
, Prϕe,k(p)

and E[Sϕ
e,k] need to be computed.

2.3.1 Computation of Prϕe,k(p)

To derive an analytical form for Prϕe,k(p), we first denote K as the set of all customers, and let Kϕ
e = {i ∈

K | i is downstream of e and on phase ϕ} be the set of customers who are downstream of equipment

e on phase ϕ. Suppose for now that ni
k, the number of GET k devices allocated to customer i at any

p, is proportional to their expected number of GET devices, which is E[ni
k] =

∑
n=0,1,... nPrinum,k(n).

We have,

ni
k(p) =

{
nk(p)

E[ni
k]∑

i∈K E[ni
k]
, if p < pik,

ni
k, if p ≥ pik.

(10)

Here, ni
k is the maximum number of devices that i is allowed to add, i.e., ni

k = argmaxn{Prinum,k(n) >

0}, and pik is the penetration rate at which ni
k devices would have been added to i. Given that such

pik may differ from one customer to another, for a given p, some customer, say i, may already have

hit the upper bound (p > pik) while another customer j still has room to add more devices (p ≤ pjk).

In such a case, the total number of devices actually added to the network (denoted as ñk) will be less

than the desired nk.

Let ∆nk(p) = nk(p) − ñk(p) be the gap between the desired nk and the actual ñk at p, and

K>p,k = {i ∈ K|p < pik} be the set of customers who still have room to add more devices. Then for each

i ∈ K>p,k, we can compute the available room to add more GET k devices, which is ∆i
k = ni

k−ni
k > 0.

To bridge the gap of ∆nk, each customer in K>p,k should receive some additional number of devices

to ni
k in (10). Such an additional number ni,+

k for i ∈ K>p,k is computed by,

ni,+
k (p) = ∆nk(p)

∆i
k∑

i∈K>p,k
∆i

k

.

The computed ni,+
k for a customer i never exceeds their available room∆i

k because ∆nk ≤
∑

i∈K>p,k
∆i

k.

Note that for i /∈ K>p,k, n
i,+
k = 0.

Hence, the number of devices added to customer i can be modified from (10) by the following

equation,

ni
k(p) =

{
ni,old
k (p) + ni,+

k (p), if p < pik,

ni
k, otherwise,

(11)

where ni,old
k (p) is computed by (10).

The probability Prϕe,k(p) can then be expressed as the ratio of the total numbers of devices that

can be installed to all customers in Kϕ
e over those in K:

Prϕe,k(p) =

∑
i∈Kϕ

e
ni
k(p)∑

i∈K ni
k(p)

. (12)

2.3.2 Calculation of E[Sϕ
e,k]

Recall that E[Sϕ
e,k] is the expected load offset of one GET k device for all customers in Kϕ

e . Let

sik(t) ∈ C be the complex load offset value at time t for 1 GET k device added to i. Based on Lk and

PriL,k(j), one can compute the expected value of sik(t).

E[sik(t)] =
∑
j

ljk(t) Pr
i
L,k(j). (13)
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To calculate E[Sϕ
e,k], one can sum up E[sik(t)] for all customers in Kϕ

e and then divided by the number

of customers in Kϕ
e . Specifically,

E[Sϕ
e,k] =

1

|Kϕ
e |

∣∣∣∣∣∣
∑
i∈Kϕ

e

E[sik(t)]

∣∣∣∣∣∣ , (14)

where |Kϕ
e | is the cardinality of Kϕ

e . Note that in (14), the magnitude is taken to the summation since

E[sik(t)] may be a complex value.

2.4 Drift velocity of voltage level

As GET devices are added to the distribution network, voltage levels will be affected. For example,

undervoltage conditions are likely to happen to areas with a high penetration rate of EVs, whereas

overvoltage conditions may occur where high penetration levels of distributed energy resources (e.g.

PVs) are installed on the network. In this section, the computation of the drift velocity u(x, p) is

outlined, where m(x, p) is the PDF of voltage level x at various penetration rate p. Unless specified

otherwise, all complex variables in this section refer to per-unit values.

We first consider a simple case where one GET k device is installed to a customer. We can then

compute the current injected by such GET k device, ∆i, by the following equation, from which the

change of voltage of this customer can be approximated,

∆i =
∆v

zth
≈
(
∆S

v

)∗

, (15)

where v ∈ C is the customer’s voltage before installing the GET device, zth ∈ C is the equivalent

network impedance at the customer’s location, ∆S ∈ C is the complex power of the GET device, and

∆v ∈ C is the change of voltage after installing the GET device. The ∗ denotes the complex conjugate.

It should be noted that ∆v in (15) is an approximated value for the following two reasons:

1. The equivalent impedance zth is assumed to be computed from a linearized network. In reality,

the distribution network is not fully linear (due to load/generation models, tap changers and

voltage-controlled devices, etc.).

2. Even if the network is fully linear, the current injected by the GET device is non-linear since it

depends on the voltage (v+∆v) after the GET device is connected. However, on (15)’s right-hand

side, the voltage v before adding GET devices is used, thus any voltage difference is neglected.

Model (15) can be extended to simultaneously installing multiple GET devices to multiple cus-

tomers in a matrix form,

∆v(p) = Z∆i(p)

=
[
∆vϕo,k(p), o = 1, 2, · · · , N, ϕ = A,B,C

]⊤ (16)

where ∆v ∈ C3N is the voltage change of all N nodes of the network, and ∆i ∈ C3N is the vector

of currents injected to each node due to the GET devices installed. It is assumed that each node is

three-phase, and for a non-connected phase, the voltage and current injection are zero. The matrix

Z ∈ C3N×3N is the sensitivity impedance of voltage with respect to current injection, which can be

computed from the modified augmented nodal analysis (MANA) formulation [17, 18].

When multiple GET devices are connected to a node o, the current injected to o on phase ϕ, which

is a single element of ∆i, can be computed using:

∆iϕo,k(p) ≈ nk(p) Pr
ϕ
o,k(p)

(
E[Sϕ

o,k]

vϕo (p0)

)∗

, (17)
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where Prϕo,k(p) is the probability of a GET k device directly installed to o on phase ϕ, E[Sϕ
o,k] is the

expected load offset of a GET k device directly connected to o on ϕ, and vϕo (p
0) is the initial phase

voltage of node o on phase ϕ which can be obtained from a power flow analysis.

To derive the analytical forms of Prϕo,k(p) and E[Sϕ
o,k], letKϕ

o = {i ∈ K|i is connected to o and on phase ϕ}
be the set of customers who are directly connected to node o and on phase ϕ. Then Prϕo,k(p) can be

computed in a similar way as in (12), such that,

Prϕo,k(p) =

∑
i∈Kϕ

o
ni
k(p)∑

i∈K ni
k(p)

,

where ni
k(p) is given by (11). Recall that K is the set of all customers on the network. The expected

load offset E[Sϕ
o,k] can be obtained from (14) where Kϕ

e is replaced by Kϕ
o .

Having computed the current injection to each node on each phase from (17), we can construct the

column vector ∆i(p) by,

∆i(p) =
[
∆iϕo,k(p), o = 1, 2, · · · , N, ϕ = A,B,C

]⊤
.

Using the resulting ∆i(p) in (16), we can obtain the column vector ∆v(p) which has the voltage

changes to all nodes on all phases. The voltage of node o on phase ϕ can be written as,

vϕo,k(p) ≜ vϕo (p
0) + ∆vϕo,k(p).

As x refers to the voltage level and vϕo,k(p) is the per-unit voltage in phasor, we let x = |vϕo,k(p)|, and
the drift velocity of x can be analytically computed by taking the derivative of |vϕo,k(p)| with respect

to p. Due to space limitation, the resulting long expression for the derivative is omitted, but it is

straightforward to obtain it using the chain rule and algebraic operations with all the components of

vϕo,k(p) expressed in this section.

3 Numerical solution

3.1 Numerical solution to the FPE

Let the solution to the FPE be M = {m(x, p)}p∈P which is a sequence of PDFs for each p in a

discretized set of penetration rates P = {p0, p0 + ∆p, p0 + 2∆p, · · · , pmax} with a step size ∆p. The

conservation law is to be satisfied such that the cumulative probability of each PDF must sum up

to 1. For advection-diffusion partial differential equations such as the Fokker-Planck equation under

the conservation law, finite-volume method (FVM) [20, 21] is a suitable class of numerical methods to

solve them. Using an implicit scheme, we can write the following generalized equation:

m(x, p) = f (m(x, p+∆p), u(x, p+∆p)) , (18)

where the mapping f : Rnx 7→ Rnx depends on the selected discretization scheme and nx is the number

of discretized points of x. For some schemes such as backwards Euler or Crank–Nicolson, the mapping

f is linear such that it can be represented by a matrix Su ∈ Rnx×nx which depends on u(x, p+∆p).

Hence, (18) can be written as:

m(x, p) = Sum(x, p+∆p).

By taking the inverse of Su, we can compute m(x, p+∆p) given m(x, p) by the following equation:

m(x, p+∆p) = S−1
u m(x, p).

Due to space limitation, the form of the Su matrix is not expressed in this paper, but the readers can

refer to [20, 21] for more details. It is remarked that Su is tridiagonal, where its diagonal elements

are always non-zero, and lower/upper-diagonal elements on each row are also non-zero and differ from

any diagonal element. Hence, for any given row of Su, it must be linearly independent of any other

row. Therefore, Su has always full rank and is non-singular.
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3.2 Calibration of m(x, p)

Due to the approximations made in (9) and (17), the drift velocity term u(x, p) computed in Section 2.3

for equipment loading levels and in Section 2.4 for voltage levels may become less accurate when (i)

the penetration rate is high enough such that magnitudes of voltage drop/rise caused by GET devices

are non-negligible, and (ii) transformers with load-tap changers, voltage regulators and Volt/VAR

devices are active on the network causing non-linearity to voltages and network loadings. Under these

situations, the obtained sequence of m(x, p) by numerically solving the FPE may not accurately reflect

the evolution of network states as a function of the penetration rate. To improve the accuracy, a

calibration process is proposed.

Based on (11) and (13), we can compute the expected number of GET k devices ni
k(p) that should

be added to customer i at penetration p and the expected offset of one GET k device E[sik(t)] at
the time of analysis t. We can then compute an aggregated offset value of ni

k(p)E[sik(t)] which is

to be added to each customer i in the network model. A power flow analysis will be performed to

the modified network to extract the “true” mean network state x̃(p). In the ideal case, such x̃(p)

should be identical to the mean value E[x(p)] which is computed from E[x(p)] =
∫ +∞
−∞ xm(x, p)dx. If

E[x(p)] ̸= x̃(p), then m(x, p) should by calibrated to m(x+∆x, p) where ∆x(p) ≜ x̃(p)−E[x(p)] is the
shift value at p.

To maintain the computation efficiency, the power flow analysis of the network with aggregated

offset values added to customers is not done for all p ∈ P. Rather, the power flow is only performed

at a few selected penetration rates, and the calibration is interpolated for all penetration rates. The

process is as follow. Suppose that Ppf is the set of selected penetration rates for power flow analyses,

then we construct D = {∆x(p) = x̃(p)−E[x(p)]}p∈Ppf
which are differences between the mean E[x(p)]

from the REM and the power flow mean values x̃(p) at these penetration rates. Then for any p ∈ P,

we compute ∆x(p) by,

∆x(p) =
p− p−
p+ − p−

[∆x(p+)−∆x(p−)] + ∆x(p−),

where p− ≜ max{Ppf ∩ [p0, p]} is the greatest element in Ppf that is less than or equal to p, p+ ≜
min{Ppf∩[p, pmax]} is the least element in Ppf that is greater than or equal to p, and ∆x(p−),∆x(p+) ∈
D. The calibrated PDF m(x̃, p) = m(x + ∆x(p), p) is reported as the REM results. The number of

power flow analyses required by the calibration process is independent of the number of network

sections for analysis but only corresponds to the number of penetration rates included in Ppf, which

is a much smaller set than P. Thus, the calibration process adds negligible computation efforts to the

REM.

It is remarked that this calibration step is optional. It does not produce any PDF, but rather it

“shifts” the mean values of the PDFs computed numerically from the FPE. For large-scale distribution

networks such as the IEEE-8500 test feeder used in the next section, voltage control (e.g., regulators)

and VAR control (e.g., switchable shunt capacitors) devices are usually installed. Without the calibra-

tion step, the PDFs obtained by solving the FPE while neglecting impacts of these Volt/VAR devices

may result in observable errors even at low penetration rates, and become much less accurate as the

penetration rate increases. On the other hand, the calibration step can be skipped without impacts

on the accuracy for small networks or networks without Volt/VAR control devices.

3.3 Combined impact of multiple GETs

In the sections above, we present the methodology to study the impact of one GET type (EV or PV)

installed to the network at various penetration rates. Throughout this section, the subscript k in the

notation is conserved for clarity. Recall that Mk = {m(x, pk)}pk∈Pk
is the sequence of PDFs computed

and calibrated from the REM for each pk ∈ Pk when only GET type k exists on the network. In the
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following, we explain how the model can be extended to the analysis of networks where multiple GET

types exist.

We start with the case in which two GET types k1 and k2 are installed to the network. We first

compute Mk1|k2
= {m(x, pk1

)|pk2
}pk1

∈Pk1
when the penetration rate of GET type k2 is fixed at pk2

as a parameter. To do so, the numerical FVM in Section 3.1 is first used to solve for m(x, pk1)|pk2

from the FPE under the drift velocity of u(x, pk1
)|pk2

. By assuming the impacts of GET types k1 and

k2 are independent, we have u(x, pk1
)|pk2

= u(x, pk1
) + u(x, pk2

) by superposition. If necessary, the

method in Section 3.2 is then applied to calibrate the resulting m(x, pk1)|pk2 . We repeat this process

to construct Mk1,k2
= {Mk1|k2

}pk2
∈Pk2

which is a sequence of Mk1|k2
for each pk2

∈ Pk2
. Each element

of Mk1,k2
represents the network state PDF under the combined impacts of GET types k1 and k2 with

penetrations pk1 and pk2 , respectively.

For combined impacts of more than two GET types, the same process is adopted to compute

Mk1,k2,···, where sequences of PDFs are solved and calibrated by varying the penetration rate of one

GET type at a time.

4 Test results

In this section, results from the stochastic impact analysis are illustrated on a test feeder.

4.1 Test setup

The IEEE-8500 test feeder [3] is selected to demonstrate REM’s ability to conduct a rapid stochastic

impact analysis. The following modifications to the network are made:

• The network contains 1177 spot loads and a total of 4205 customers, where some spot loads

contain more than 1 customer (the original IEEE-8500 network assumes each spot load models

1 customer).

• The substation transformer is changed to Wye-wye configuration such that its loading on each

phase can be more easily seen.

To assess impacts of EVs and PVs on the network, we assume that the following information are

given.

• 4 levels of EV charging power are considered (1.8kW, 3.6kW, 6.6kW, 7.2kW). Charging may

start at any hour during the day and can last 2, 4, or 8 hours. Hence the set LEV contains 288

charging profiles, where each profile ljEV(t) is time-series data over a 24-hour period.

• 4 levels of PV nominal generation capacity are considered (1.6kW, 2.4kW, 3.6kW, 4kW). We

consider 8 solar radiance profiles under different weather types [1], hence we have a total of 32

PV generation profiles in LPV.

• Each customer is assumed to have at most 1 EV.1 Quantity probability Prinum,EV(1) for customer

i = 1, 2, . . . , 4205 is randomly generated from the uniform distribution U [0, 1], and Prinum,EV(0) =

1 − Prinum,EV(1). The probability PriL,EV(j) for adopting charging profile j ∈ [1, 288] is also

randomly generated from U [0, 1], and PriL,EV is normalized such that
∑

j Pr
i
L,EV(j) = 1.

• Each customer is assumed to have at most 1 PV.1 Quantity probability Prinum,PV(1) for customer

i = 1, 2, . . . , 4205 is randomly generated from U [0, 1], and Prinum,PV(0) = 1 − Prinum,PV(1). To

consider the correlation between the weather and the generation profiles, we first randomly

generate the probabilities of the 8 solar radiance profiles from U [0, 1], denoted as Prsolar. Then

for each customer i we generate the probabilities of PV generation capacity from U [0, 1], denoted
as PriPVgen. Then, we let PriL,PV = Prsolar ×PriPVgen. Finally, PriL,PV is normalized such that∑

j Pr
i
L,PV(j) = 1.

1 The REM approach is not restricted to this assumption. Rather, this assumption is made to reduce the amount of
the probability data required and, hence, simplifies the simulation.
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The information assumed above can be obtained from socio-economic or statistical studies. Taking

EV as an example, in [5, 26] the adoption rate of electric vehicles in terms of different demographic and

socio-economic characteristics (such as education levels, age group, household income, etc.) are studied.

The results can be used to quantify the customer’s quantity probabilities. Probability distributions of

EV charging start time, state-of-charge (SOC), and EV travel information (mileage and duration per

trip) are collected in [13, 19], and can be used to generate EV charging profiles along with the adoption

probability. Although there may exist much more possible profiles from the statistical studies, in this

paper we use a smaller set of representative EV charging and PV generation profiles (288 and 32,

respectively) for illustration purpose. As increasing the number of profiles only affects the calculations

of the expected value in (13) and (14), it has negligible impacts on the efficiency of the REM. Thus,

the number of profiles is not limited in the REM approach, nor does it affect its efficiency.

The modified network is modeled in the CYME software which is also used to perform power flow

analysis. The numerical solution and the calibration process of the REM analysis are implemented in

Python.

4.2 Result validation

For validation of accuracy, a Monte Carlo simulation-based approach is also developed, where samples

are constructed by randomly sampling from the same data set as given above. Although such a Monte

Carlo simulation-based approach is slow in convergence rate and requires extensive computation for

power flow analysis, the obtained results can be considered accurate once convergence is reached.

Stochastic analysis results based on power flow solutions, i.e., the empirical distributions of loading

levels of equipment and voltage levels of network sections, serve as benchmarks for the REM and is

used to evaluate its performance.

4.3 Test results – EV

The analysis time is set to 8:00PM when peak load usually occurs, and 2000 samples are constructed

for Monte Carlo simulations.

4.3.1 Loading level at selected penetration levels

Figure 1 illustrates the loading levels of the substation transformer when EVs are installed to the

modified IEEE-8500 network at 3 penetration rates (10%, 30%, 50%). Because the power flow solution

to a Monte Carlo sample is likely to diverge if the penetration rate is too high, completing the Monte

Carlo simulations of 2000 samples with feasible power flow solutions takes too long. For this reason, the

maximum penetration rate of 50% is chosen for Monte Carlo simulations. However, no limitation to the

maximum penetration rate exists for our REM approach (i.e., see Section 4.3.3 and Figure 3 below).

Results from the REM with and without calibrations at these penetration rates are compared with

empirical distributions from Monte Carlo simulations. It should be noted that the y-axis represents

the probability density and the total area under each curve sums up to 1.

4.3.2 Voltage level at selected penetration levels

Figure 2 illustrates the probability distributions of the voltage level (in percentage) of a section called

“M1125994”. This section is 4.8 km from the substation and 1.2 km from a downstream voltage regu-

lator. Due to its long distance from the substation, this section is expected to suffer from undervoltage

when EV penetration is high. While, the substation voltage is regulated at 1.05 p.u., Figure 2 confirms

that this section has a small probability of having undervoltage issues at 50% EV penetration if the

lower voltage limit is set at 0.95 p.u.
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4.3.3 Network state estimation across a wide range of penetration rates

The REM provides a rapid estimation of network states (minimum, average, maximum levels) across

a wide range of penetration rates, based on the computed PDFs. It also enables fast assessment

for probabilities of abnormal conditions on the network (overloading, under/over-voltages) as the

penetration rate increases. For example, Figure 3 shows the average, minimum, and maximum loading

levels as well as overloading probabilities of a main line section near the substation of the IEEE-8500

network up to 100% EV penetration rate. Here, we take the mean value of the calibrated PDF at

each p as the average loading level, and minimum and maximum loading levels are ± 2× standard

deviation from the mean value, respectively. This type of results can provide insightful information on

what penetration level can be supported by the network before severe abnormalities occur.
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Figure 1: Comparison of probabilities of the substation transformer loading levels at various EV penetration rates, REM
results (blue) vs. calibrated REM results (green dashed) vs. Monte Carlo (orange)

4.3.4 Network locations susceptible to abnormal conditions

In the last experiment related to EVs, we select a total of 183 network sections on which the initial

equipment loading level is greater than 50% or the initial voltage level is less than 0.965 p.u. before

any EV is installed to the network. These sections are likely to have equipment overloading or under-

voltage issues as EVs are installed to the network. The impact analysis is performed to these sections

to estimate network states and probabilities of abnormal conditions at different EV penetration rates.

Figure 4 visualizes the locations of the network sections with the calculated probabilities of abnormal

conditions at 50% EV penetration rate. Here, we create Overloading probability and Undervoltage

probability keywords in CYME to highlight the locations according to the computed overloading and

undervoltage probabilities, respectively. Almost all selected network equipment have some probability

of overloading. The line sections near the substation have an overloading probability close to 50%,
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Figure 2: Comparison of probabilities of voltage levels the M1125994 section at various EV penetration rates, REM results
(blue) vs. calibrated REM results (orange dashed) vs. Monte Carlo (green)
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Figure 3: Loading levels (top) and overloading probabilities (bottom) of a line section vs. penetration rates of EVs added
to the IEEE-8500 network
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which is consistent with the results of Figure 3. The undervoltage issue is less severe on the network

mainly due to the presence of voltage regulators (indicated by the green droplets). Only some sec-

tions that are far from the substation and upstream of a voltage regulator show some probability of

undervoltage, and this is where the section M1125994 is located.

 

Figure 4: IEEE-8500 network sections susceptible to equipment overloading and undervoltage issues at 50% EV penetration
rate

4.4 Test results – PV

The analysis time is set to 11:00AM when the solar irradiance starts to reach the peak. While customers

can have diversified EV charging profiles, the PV generation profiles are correlated with the weather

type, thus the analysis should be performed conditional on each weather type. Then weighted average

results based on probabilities of all weather types are computed. Here, we present only the results

when considering PV generation profiles during sunny days to avoid running Monte Carlo simulations

for other weather types. In Monte Carlo simulations, 2000 samples are constructed.

4.4.1 Loading level at selected penetration levels

Figure 5 illustrates the loading levels of the substation transformer when PV are installed to the

network at 3 penetration rates (10%, 30%, 50%). Similar to the EV case, 50% penetration is selected

for comparison purpose. Results from the REM with and without calibrations are compared with

empirical distributions from Monte Carlo simulations.

4.4.2 Voltage level at selected penetration levels

Figure 6 illustrates the probability distributions of the voltage level (in percentage) of the M1125994

section when PVs are installed. This section has no probabilities of overvoltage or undervoltage issues

at the selected PV penetrations as shown by Figure 6. Although no overvoltage (by taking 1.05 p.u. as
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Figure 5: Comparison of probabilities of the substation transformer loading levels at various PV penetration rates, REM
results (blue) vs. calibrated REM results (green dashed) vs. Monte Carlo (orange)

the upper voltage limit) occurs to the M1125994 section due to its distance from the substation, it is

observed that REM well captures the trend of increasing voltage levels with the PV penetration rate.

Therefore, overvoltage would possibly occur as the penetration continues to increase, and calibrated

results from the REM approach would accurately indicate the probabilities.

4.4.3 Network locations susceptible to overvoltage

In this experiment, we select a total of 114 locations whose voltage level is greater than 1.04 p.u. before

any PV is installed to the network. When setting the upper voltage limit to 1.05 p.u., more than half

of these locations have overvoltage probabilities at 50% PV penetration. The calibrated probability

values from REM are used to create the Overvoltage probability keyword in CYME to highlight network

sections in Figure 7. It is observed that sections near the substation have close to 100% probability of

overvoltage, while some sections immediately downstream of voltage regulators also have overvoltage

issues with different probabilities.

4.5 Discussion of results

4.5.1 Impacts of EV

As the EV penetration level increases, more power demand is expected on the network due to EV

charging. This will increase the loading level of the substation transformer, and more voltage drops

will be incurred on each network section. These can be confirmed from observations of Figure 1

and 2: empirical distributions of the substation transformer loading levels constructed from Monte

Carlo simulations shift towards the heavier loading side, and distributions of the voltage level shift

towards the lower voltage side. The same dynamics are also observable from the PDFs computed
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Figure 6: Comparison of probabilities of voltage levels of the M1125994 section at various PV penetration rates, REM
results (blue) vs. calibrated REM results (orange dashed) vs. Monte Carlo (green)

and calibrated from the REM approach. In addition, as the level of uncertainties increases with the

penetration rate, so does the standard deviation of the distributions which is well captured by both

Monte Carlo and our method.

Tables 1 and provide quantitative comparisons of the mean and standard deviation values for

the substation transformer loading levels using the two methods at various EV penerations. The

calibration step significantly reduces the errors of the mean values, i.e., from 4.32% to less than 0.5%

at 50% penetration rate. Given that the calibration step only “shifts” the mean of the computed

PDFs, the standard deviation values with and without calibrations should be identical. Hence for each

penetration rate, a single cell is used for standard deviation (Std). This applies to all the following

tables showing Std values. It can be observed in Table 2 that the Std errors are negligible, and the

increasing values reflect higher levels of uncertainties with the penetrations.

Table 1: Mean values of substation transformer loading levels at various EV penetration rates

Substation transformer loading levels (Mean)

Penetration
Monte Carlo

(p.u.)
Non-calibrated (p.u.)
and relative error

Calibrated (p.u.)
and relative error

10% 0.396 0.389 -1.97% 0.397 0.08%
30% 0.432 0.419 -3.06% 0.432 -0.08%
50% 0.467 0.447 -4.32% 0.465 -0.45%

Tables 3 and 4 list the mean and standard deviation values of voltage levels on the M1125994

section at various EV penetrations. The mean values from Monte Carlo and our REM approach are

almost identical without the calibration step, and the calibration step further reduces the errors. The

standard deviation values are also observed to increase with the penetration rates, which captures the

higher levels of uncertainties.
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Figure 7: IEEE-8500 network sections susceptible to overvoltage issues at 50% PV penetration rate

Table 2: Standard deviations of substation transformer loading levels at various EV penetration rates

Substation transformer loading levels (Std)

Penetration
Monte Carlo

(p.u.)
Calibrated/non-calibrated (p.u.)

and error (p.u.)

10% 1.31× 10−2 1.06× 10−2 -2.5×10−3

30% 1.80× 10−2 1.42× 10−2 -3.8×10−3

50% 2.13× 10−2 2.13× 10−2 2.5×10−5

Table 3: Mean values of voltage levels on the M1125994 section at various EV penetration rates

Voltage levels (Mean)

Penetration
Monte Carlo

(p.u.)
Non-calibrated (p.u.)
and relative error

Calibrated (p.u.)
and relative error

10% 0.9860 0.9881 0.21% 0.9866 0.06%
30% 0.9764 0.9821 0.59% 0.9790 0.26%
50% 0.9679 0.9774 0.98% 0.9714 0.35%

Table 4: Standard deviations of voltage levels on the M1125994 section at various EV penetration rates

Voltage levels (Std)

Penetration
Monte Carlo

(p.u.)
Calibrated/non-calibrated (p.u.)

and error (p.u.)

10% 3.26× 10−3 2.76× 10−3 -4.96×10−4

30% 6.76× 10−3 5.92× 10−3 -8.32×10−4

50% 1.18× 10−2 8.69× 10−3 -3.11×10−3



Les Cahiers du GERAD G–2022–45 – Revised 17

4.5.2 Impacts of PV

It is generally expected that PVs have opposite impacts on the network to those by EVs, such that

network equipment’s loadings should decrease, and voltage rise usually happens on network sections

as PV penetration increases. From Figures 5 and 6, it is observed that empirical distributions of the

substation transformer loading levels from Monte Carlo simulations shift towards the lighter loading

side, while distributions of the voltage levels of the M1125994 section shift towards the higher voltage

side. The PDFs computed and calibrated from our REM approach show similar dynamics.

Tables 5 and 6 provide quantitative comparisons of the mean and standard deviation values using

the two methods at various PV penerations. As in the EV case, the calibration step reduces the errors

of the mean values, and the errors of the standard deviation values are negligible.

Table 5: Mean values of substation transformer loading levels at various PV penetration rates

Substation transformer loading levels (Mean)

Penetration
Monte Carlo

(p.u.)
Non-calibrated (p.u.)
and relative error

Calibrated (p.u.)
and relative error

10% 0.381 0.388 1.85% 0.381 -0.10%
30% 0.311 0.327 4.94% 0.306 -1.82%
50% 0.252 0.265 5.13% 0.248 -1.35%

Table 6: Standard deviations of substation transformer loading levels at various PV penetration rates

Substation transformer loading levels (Std)

Penetration
Monte Carlo

(p.u.)
Calibrated/non-calibrated (p.u.)

and error (p.u.)

10% 5.82× 10−3 5.19× 10−3 -6.33×10−4

30% 8.31× 10−3 8.65× 10−3 3.48×10−4

50% 8.70× 10−3 1.04× 10−2 1.68×10−3

Tables 7 and 8 list the mean and standard deviation values of voltage levels on the M1125994

section at various PV penetrations. The mean values from Monte Carlo and the REM have a relative

difference of 1.85% in the worst case without the calibration step, and the calibration step further

reduces the relative errors to below 0.35%.

Table 7: Mean values of voltage levels on the M1125994 section at various PV penetration rates

Voltage levels (Mean)

Penetration
Monte Carlo

(p.u.)
Non-calibrated (p.u.)
and relative error

Calibrated (p.u.)
and relative error

10% 0.9881 0.9920 0.40% 0.9876 -0.05%
30% 1.0026 1.0083 0.57% 1.0060 0.34%
50% 1.0096 1.0282 1.85% 1.0092 -0.03%

Table 8: Standard deviations of voltage levels on the M1125994 section at various PV penetration rates

Voltage levels (Std)

Penetration
Monte Carlo

(p.u.)
Calibrated/non-calibrated (p.u.)

and error (p.u.)

10% 1.85× 10−3 1.21× 10−3 6.39×10−4

30% 2.87× 10−3 1.81× 10−3 -1.06×10−3

50% 2.32× 10−2 2.41× 10−3 9.49×10−5
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4.5.3 Quantile-Quantile plots

Besides comparing the mean and standard deviation values, we use Quantile-Quantile plots as in

Figure 8 to better illustrate the similarity between the empirical distributions from Monte Carlo

simulations and the calibrated PDFs obtained from REM. Given that no sample is created in the

REM, we randomly generate a set of samples from the calibrated PDFs, and compare them with the

samples from Monte Carlo simulations. It is observed that in most plots the points in the center region

mainly lie on a 45◦ straight line, indicating that the mean values of the calibrated PDFs from the REM

well match those from Monte Carlo simulations. Some skewness and deviations from the straight line

at both ends can also be observed. This could be due to the use of a constant diffusion velocity value

in the FPE, which results in errors at the tail regions of the PDFs. Diffusion velocity’s dependency on

the penetration rate can be studied in future work.
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Figure 8: Q-Q plots to compare distributions from Monte Carlo simulations and PDFs obtained from the REM

4.5.4 Computation speed

All the experiments are performed on a workstation equipped with Intel Core i7-11800H @ 2.30GHz

CPU and 16GB RAM. Table 9 lists the computation time for experiments in Section 4.3 when EVs

are installed to the network. In Table 9, the time spent on numerically solving the FPE is reported in

the “Non-calibrated” column. As the FPE is solved for one location at a time, the time is expected

to increase linearly with the number of locations to be simulated. However, for the time in the

“Calibration” column, since network states of all locations can be obtained from a single power flow,

the time may only be slightly increased for data processing as the number of locations for simulation

increases. The total time spent on each experiment using the REM is the sum of times in these two

columns.
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For the Monte Carlo simulation approach, since the results are based on power flow solutions of

all the samples constructed, the time shown in Table 9 is similar for all experiments and independent

of the number of network sections included for stochastic impact analysis. For the REM approach, it

is significantly faster to conduct an impact analysis to a single network section (within a few minutes

including the calibration). However, in the last experiment, as 183 network sections are to be included

for analysis, the time to obtain non-calibrated PDFs increases to 5.69 hours which is 190× that required

for a single network section. On the other hand, as the time on calibrations does not depend linearly

on the number of sections for analysis, it takes only 0.29 hour in the last experiment which is increased

by only 10× on more data processing. Finally, although not shown in the table, the analysis time also

depends linearly on the maximum penetration level for both approaches.

Table 9: Comparison of computation speed

Experiments Time (hr)

Monte Carlo Non-calibrated Calibration

Substation transformer loading levels 20.84 0.03 0.03
Section M1125994 voltage levels 21.79 0.03 0.03
Line loading levels across a wide range of penetration rates - 0.06 0.03
Identifying locations with potential abnormal conditions 21.90 5.69 0.29

5 Conclusion and future work

In this paper, we present a rapid estimation approach to perform a stochastic analysis on the impact

of EVs and PVs to power distribution networks. A calibration step is also proposed to improve the

accuracy of the REM. Quantitative assessments on a large-scale realistic distribution network indicate

that results from the REM well follow those from Monte Carlo simulations with minimal errors, hence

Monte Carlo simulations can be avoided for such a stochastic analysis and the computation efficiency

can be greatly improved.

We demonstrated the impacts of EVs and PVs to the distribution network at their respective “peak”

time in this work. As a next step, time-series analysis (e.g., on a typical day) can be performed, and

the combining impacts can be studied when EVs and PVs are simultaneously installed to the network.

The approach can also be extended to analyze the impacts of other GETs (such as energy storage

systems, demand response programs, etc.) installed to power networks. Based on the impact analysis

results, mitigation strategies to reduce and to remove any potential abnormal conditions due to GETs

can be designed. As penetration levels of GETs are expected to increase over the next few years given

energy transition, an analysis framework dedicated to these technologies will allow utilities to properly

plan and optimize their networks.
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