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Abstract : In this paper, we study a novel approach for data-driven decision-making under uncer-
tainty in the presence of contextual information. Specifically, we address this problem using a new
Conditional Robust Optimization (CRO) paradigm that seeks the solution of a robust optimization
problem where the uncertainty set accounts for the most recent side information provided by a set
of covariates. We propose an integrated framework that designs the conditional uncertainty set by
jointly learning a partition in the covariate data space and simultaneously constructing region specific
deep uncertainty sets for the random vector that perturbs the CRO problem. We also provide theo-
retical guarantees for the coverage provided by conditional uncertainty sets and for the value at risk
performances obtained using the proposed CRO model. Finally, we use simulated and real world data
to illustrate the implementation of our approach and compare it against two non-contextual robust
optimization benchmark approaches to demonstrate the value of exploiting contextual information in
robust optimization.
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1 Introduction

In most real world decision problems, the decision maker (DM) faces uncertainty either in the objective

function that he aims to optimize, or some of the constraints that he needs to satisfy. Stochastic

Programming and Robust Optimization (RO) are the most popular methods for addressing this type

of issue. With the growing availability of data, there has recently been a surge of interest in modeling

optimization under uncertainty as contextual optimization problems that seek to leverage rich feature

observations to make better decisions (Ban and Rudin, 2019; Bertsimas and Kallus, 2020). In a

simple cost minimization problem, where X ⊆ Rn and c(x, ξ) respectively capture the feasible set of

actions and a cost that depends on both the action x and a random perturbation vector ξ ∈ Rm, the

“contextual” DM has access to a vector of covariates ψ ∈ Rm assumed to be correlated to ξ. This DM

therefore traditionally wishes to identify an optimal policy, i.e. a functional x : Rm → X that suggests

an action in X adapted to the observed realization of ψ, with respect to his expected cost over the

joint distribution of (ψ, ξ):

min
x(·)

E[c(x(ψ), ξ)]. (1)

From a theoretical point of view, one can exploit the interchangeability property (see Theorem 14.60,

(Rockafellar and Wets, 2009)) to identify an optimal policy for Problem (1) using the following condi-

tional stochastic optimization (CSO) problem:

(CSO) x∗(ψ) ∈ argmin
x∈X

E[c(x, ξ)|ψ]. (2)

While the literature that treats contextual optimization through the CSO problem is rich, much less

attention has been given to contextual optimization in the risk averse setting. Namely, one can easily

think about replacing the risk neutral expected value operator in problem (2) with a risk measure

such as value-at-risk or conditional value-at-risk in order to prevent the DM from being exposed to the

possibility of large costs. Moreover, while robust optimization is being used pervasively in disciplines

that employ decision models, including chemical, civil, electrical engineering, medecine, and physics

(see respectively (Bernardo and Saraiva, 1998; Bendsøe et al., 1994; Mani et al., 2006; Chu et al., 2005;

Bertsimas et al., 2007)) to name a few, the question of how to systematically integrate contextual

information in this important class of decision models remains to this day unexplored.

In this work, we therefore tackle for the first time the contextual optimization problem from the

point of view of robust optimization. Namely, we will consider a contextual DM that wishes to exploit

the side information in the design and solution of a robust optimization problem. This naturally gives

rise to the following conditional robust optimization (CRO) problem

x∗(ψ) := argmin
x∈X

max
ξ∈U(ψ)

c(x, ξ) ,

where U(ψ) is an uncertainty set designed to contain with high probability the realization of ξ con-

ditionally on observing ψ. Our proposed approach will be data-driven in the sense that the design of

the CRO problem will make use of historical observations of joint realizations of ψ and ξ.

Our contribution can be summarized as follows.

• We propose for the first time a framework for learning from data an uncertainty set for RO that

adapts to side information. The “training” of this conditional uncertainty set is done by jointly

learning a partition in the covariate data space using deep clustering methods, and simultaneously

constructing region specific deep uncertainty sets, using techniques from one-class classification,

for the random vector that perturbs the CRO problem.

• We establish theoretical connections between CRO and Contextual Value-at-Risk Optimization

(CVO):

min
x(·)

VaR1−ε(c(x(ψ), ξ)), (3)
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where VaR1−ε(Z) := inf{t|P(Z ≤ t) ≥ 1− ε} refers to the value-at-risk of 1− ε confidence level

of Z.

• We demonstrate empirically that contextual robust optimization can improve the performance

of robust optimization models in a data-driven portfolio optimization problem that employs real

world data from the US stock market. In particular, we find that in conditions where side

information carries a strong signal about future returns, the risk of the portfolio can be reduced

by up to 15%.

The paper is organized as follows. Section 2 surveys related work. Section 3 summarizes the

approach discussed in (Goerigk and Kurtz, 2020). Section 4 presents a Deep Cluster then Classify

(DCC) scheme and our Integrated Deep Cluster then Classify (IDCC) scheme to generate conditional

uncertainty sets. It also establishes the connections to CVO. Our case study based on real world

portfolio optimization is presented in Section 5 followed by conclusions in Section 6.

2 Related work

Conditional Stochastic Optimization (Hannah et al., 2010) was possibly the earliest work on CSO,

where a kernel density estimation approach is exploited to formulate and solve a CSO problem. (Ban

and Rudin, 2019) apply CSO to a newsvendor optimization problem where the performance of linear

policies and kernel density estimation is explored and where generalization error can be controlled

using regularization. (Kallus and Mao, 2020) studied methods to train forest decision policies for CSO

in a way that directly targets the optimization costs. (Ban et al., 2019) use residual tree methods to

solve general multi-stage stochastic programs where information about the underlying uncertainty is

available through covariate information. (Kannan et al., 2020a) propose data-driven SAA frameworks

for approximating the solution to two-stage stochastic programs with access to a finite number of

samples of random variables and concurrently observed covariates. Recently, Lin et al. (2022) has

applied a conditional VaR constrained CSO formulation to the newsvendor problem. While most of

the related work focuses on an “estimate-then-optimize” approach (see also (Srivastava et al., 2021b)

and (Hu et al., 2022)), there has also been recent efforts in designing CSO models using an end-to-end

paradigm (see (Elmachtoub and Grigas, 2022) and (Donti et al., 2017)).

Distributionally robust CSO One common challenge with the applications of CSO is due to

the fact that often there is only a few sample (if any at all) drawn from the conditional distribution of

ξ given ψ for each realization of ψ (Hu et al., 2020). This in turns causes a poor approximation of the

true conditional distribution resulting in poor out-of-sample performance. Most proposed solutions

to this issue have relied on distributionally robust optimization (DRO). For example, (Bertsimas and

Van Parys, 2021), (Bertsimas et al., 2022; Nguyen et al., 2021), and (Srivastava et al., 2021a) all propose

DRO approaches that employ a distribution sets that are centered at either the estimated conditional

distribution or joint joint empirical distribution of (ψ, ξ). (Kannan et al., 2020b) applies distributionally

robust optimization to the residual-based CSO model proposed in (Kannan et al., 2020a). We finally

note that none of these works have considered the problem of conditional DRO where the distributional

ambiguity set itself, namely its support or size, depend on contextual information.

Data-driven Robust Optimization and One-class Classification There has been a grow-

ing set of papers (see (Ohmori, 2021; McCord, 2019; Wang and Jacquillat, 2020)) proposing various

frameworks that use both supervised and unsupervised one-class classification techniques in designing

the uncertainty sets which are further integrated in the RO problems. Some approaches make use of

variance and covariance of historical data (Natarajan et al., 2008) while others (Goerigk and Kurtz,

2020; Wang et al., 2021) have exploited the representative power of deep neural networks to construct

compact uncertainty sets Up to this day, none of the data-driven robust optimization approaches have

considered accounting for contextual information.
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Deep Clustering Methods Traditional clustering methods like Gaussian Mixture Models (GMM)

and k-means clustering rely on the original data representations and suffer from the curse of dimen-

sionality. Recent developments in DNNs led to learning of high quality representations, especially

auto-encoder(AE) and decoder systems are particularly appealing as they are able to learn the repre-

sentations in a fully unsupervised fashion. Several works like (Chang et al., 2017; Guo et al., 2017; Ji

et al., 2017) combine variational AEs and GMMs to perform clustering and non-linearly map the input

data into a latent space. Few works like (Fard et al., 2020) try to jointly learn the representations and

jointly cluster with k-means and learning representations. We modify these algorithms to introducing

a probability simplex which interact with the centroids and also the center of the uncertainty sets.

3 The Deep Data-Driven Robust Optimization (DDDRO) approach

Focusing on a classical robust optimization model, i.e. minx∈X maxξ∈U c(x, ξ), the authors of (Goerigk

and Kurtz, 2020) propose to employ deep learning to characterize the uncertainty set U in a data-driven

environment. In particular, they consider describing the uncertainty set U in the form:

U(W,R) := { ξ ∈ Rm : ∥fW (ξ)− f̄0∥ ≤ R} , (4)

where fW : Rm → Rd is a deep neural network, parametrized using W , that projects the perturbation

vector ξ to a new vector space where the uncertainty set can be more simply defined as a sphere of

radius R centered at some f̄0.

Given a dataset Dξ = {ξ1, ξ2 . . . ξN}, they propose discovering the underlying structure of U by

training the NN using a method found in the one-class classification literature, namely minimizing the

empirical centered total variation of the projected data points:

min
W

1

N

N∑
i=1

∥fW (ξi)− f̄0∥2 , (5)

where f̄0 := (1/N)
∑
i∈[N ] fW0

(ξi) is the center of the projected points under some initial random

choice of fW0 . Once the network is trained, they calibrate the radius R of U in order to reach a

targeted coverage 1− ϵ of the data set.

In terms of NN architecture, they favor a special class of fully connected neural network of depth L:

fW (c) = σL(WLσL−1(WL−1 . . . σ1(W 1(c)) . . . )) (6)

where each W ℓ captures a linear projection while each σℓ captures a term-wise piecewise linear acti-

vation function (e.g. ReLU, Hardtanh, or hard sigmoid):

σℓj(wj) = aℓkwj + bℓk if αℓk ≤ wj ≤ αℓk, k = 1, . . . ,K

with {aℓk, bℓk, αℓk, αℓk}Kk=1 as the parameters that identifies each of the K affine pieces.

The motivation for such an architecture comes from the proposed solution scheme for the RO

problem, which relies on a constraint generation approach (See Algorithm 3 in appendix). This scheme

relies on progressively adding scenarios to a reduced set U ′ ⊆ U until the worst-case cost of the solution

under U ′ is the same as under U . Numerically, a critical step consists in identifying the worst-case

realization in U , which is shown to reduce to a mixed-integer linear program when c(x, ξ) is linear in

ξ under the selected NN architecture due to the following representation of U(W,R):

U(W,R) =


ξ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃u ∈ {0, 1}d×K×L, ζ ∈ Rd×L, ϕ ∈ Rd×L∑K
k=1 u

k,ℓ
j = 1, ∀j, ℓ

ϕ1 =W 1ξ

ζℓj =
∑K
k=1 u

k,ℓ
j aℓkϕ

ℓ
j +

∑K
k=1 u

k,ℓ
j bℓk, ∀j, ℓ

ϕℓ =W ℓζℓ−1, ∀ℓ ≥ 2∑K
k=1 u

k,ℓ
j αℓk ≤ ϕℓj ≤

∑K
k=1 u

k,ℓ
j αℓk, ∀j, ℓ

∥ζL − f̄0∥ ≤ R


, (7)
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where we assume for simplicity that each layer of the deep neural network has d neurons and ϕℓ is the

output at l-th layer of the neural network. We refer interested readers to (Goerigk and Kurtz, 2020)

for more details.

4 Deep data-driven conditional robust optimization

Let (ψ, ξ) be a pair of random vectors defining respectively the side-information and random pertur-

bation vectors of a contextual optimization problem. We can call our dataset Dψξ := {(ψ1, ξ1), . . . ,

(ψN , ξN )}. Our objective is to train a data-driven conditional uncertainty set U(ψ) that will lead to

robust solutions that are adapted to the type of perturbance that are experienced when ψ is observed.

In this section, we propose two algorithms, namely Deep cluster then classify (DCC) and the Inte-

grated Deep cluster then classify (IDCC), to do so, and propose a calibration procedure that offers

some guaranties with respect to a contextual value-at-risk problem.

4.1 The Deep “Cluster then Classify” (DCC) approach

A direct extension of G&K’s 3 DDDRO approach consists in reducing the side-information ψ to a

set of K different clusters, which provides states of the environment in which one wishes to design

customized data-driven uncertainty sets. Mathematically, U(ψ) := Ua(ψ), where a : Rm → [K], is a

trained K-class cluster assignment function for ψ, and each Uk, for k = 1, . . . ,K, is an uncertainty

sets for ξ that is trained and sized using the procedure described in Section 3 with the dataset Dk
ξ :=

∪(ψ,ξ)∈Dψξ:a(ψ)=k{ξ}. This process implicitly involves multiple sequential steps of training of deep

neural networks. Following (Moradi Fard et al., 2020), when performing deep K-mean clustering

to obtain a(ψ), training can take the form of Algorithm 5, where the deep K-means algorithm trains

simultaneously a representation gVE : Rm → Rd, using an encoder and gVD : Rd → Rm, using a decoder

network, and a K-mean classifier āθ(ϕ) := argmink∈[K] ∥ϕ − θk∥2 by minimizing, using stochastic

gradient descent in a coordinate descent scheme, a trade-off (using αK) between reconstruction error

and the within cluster centered total variation in the encoded space:

L1(V, θ) := (1− αK)
1

N

N∑
i=1

∥gVD (gVE (ψi))− ψi∥2 + αK
1

N

N∑
i=1

∥gVE (ψi)− θa(ψi)∥2 , (8)

where a(ψ) := āθ(gVE (ψ)). To solve this problem, we iterate between improving V := (VE , VD) while

keeping θ fixed, and improving θ while preserving V fixed.

Once the K-mean and one-class classifiers are trained, we correct for a deficiency of DDDRO

approach, who assume wrongfully that the projected fWk(ξ) are normalized for each Dk
ξ . Namely, we

replace U(W,R) with a set that employs an ellipsoid in the projected space according to the statistics

of Dk
ξ :

U(W k, Rk,Sk) := {ξ ∈ Rm : ∥Σkf
−1/2

(fWk(ξ)− µkf )∥ ≤ Rk} , (9)

where Sk is short for (µkf ,Σ
k
f ) with

µkf := |Dk
ξ |−1

∑
ξ∈Dkξ

fWk
0
(ξ) and Σkf := |Dk

ξ |−1
∑
ξ∈Dkξ

(fWk(ξ)− µk)(fWk(ξ)− µk)T .

The calibration of each Rk can finally be done using the same procedure as in (Goerigk and Kurtz,

2020)but using the reduced dataset Dk
ξ .
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4.2 The Integrated Deep Cluster-Classify (IDCC) approach

While the simplicity of the approach presented in Section 4.1 makes it appealing, we identify two

important weaknesses. First, by separating the training in multiple step, it omits to tackle the con-

ditional uncertainty set learning problem as a whole. Namely, that low total variation in the ψ space

(or a projection of it) does not necessarily imply that low total variation can easily be achieved in a

projection of the ξ space. Second, it is unclear how to adapt the approach to a context where a clear

separation of the clusters is impossible and where the notion of partial membership to a cluster is more

appropriate.

To address the first problem, we propose an integrated framework for performing deep clustering

and deep uncertainty set design jointly. Namely, we propose to optimize all of V , θ, and {W k}Kk=1

jointly using a loss function that trades-off between the objectives used for clustering and each of

the K versions of one-class classifiers. We also tackle the issue of hard assignments by training a

parameterized random assignment policy π : Rm → ∆K , where ∆K is the probability simplex in RK ,

and θ the parameters that define the policy space. In the context of employing a soft version of deep

K-means (Fard et al., 2020); this random assignment policy takes the form of π(ψ) := π̄θ(gV (ψ)),

where

π̄θk(ψ) :=
exp{−β∥gV (ψ)− θk∥2}∑K

k′=1 exp{−β∥gV (ψ)− θk′∥2}
(10)

With these adjustments, our proposed loss function takes the form of:

L3
α(V, θ, {W k}Kk=1) :=αS

(
(1− αK)EπD[∥gVD (gVE (ψi))− ψi∥2]

+ αKEπD[TotalVar
π
D(gVE (ψ), θ

ã(ψ) |ã(ψ))]
)

+ (1− αS)
1

K

K∑
k=1

min
ϑk

TotalVarπD(fWk(ξ), ϑk |ã(ψ) = k) , (11)

where ã(ψ) ∼ π̄θ(gVE (ψ)) is the randomized assignment based on ψ, TotalVarπD(ϕ, θ|ã(ψ)) :=

/
∑d
j=1 EπD[(ϕj − θj)

2|ã(ψ)] is the conditional centered total variation of given ã(ψ). In fact, all statis-

tics are measured using the empirical distribution expressed in Dψξ and the conditional distribution

produced by the randomized assignment policy π̄θ(gV (ψ)), i.e. PπD((ψ, ξ, ã) ∈ E) = (1/N)
∑N
i=1

∑K
k=1

1{(ψi, ξi, k) ∈ E}π̄θk(gV (ψi)). The explicit form of equation (11) can be found in Appendix B.1.

Overall, L3
α trades off (using αS) between the reconstruction error of the encoder-decoder networks

on ξ, the expected recognizability of the K clusters, i.e. the fact that the observed features gVE (ψ)

form distinct clusters of points, and the average compactness of the produced conditional uncertainty

sets. In particular, as αS → 1, we can expect the minimizer of L3
α to converge to the minimizer of

the cluster then classify approach. At the other end of the spectrum, when αS → 0, the model will

produce more self contained conditional uncertainty sets but at the price of less distinguishable clusters

(in terms of ψ) that might poorly exploit the side-information. Algorithm 1 presents our proposed

training scheme for the IDCC approach.

Given that we employ a random assignment policy, we propose replacing the deterministic CRO

problem with its randomized version:

x̃∗(ψ) ∈ argmin
x∈X

max
ξ∈Ũ(ψ)

c(x, ξ) ,
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where Ũ(ψ) := U(W ã(ψ), Rã(ψ),S ã(ψ)) 1 is a random uncertainty set, and where we express the fact

that, conditionally on ψ, x̃(ψ) is a random policy that depends on the realization of ã. Given the

randomness of Ũ(ψ), one needs to be more careful in defining a calibration scheme for each Rk. Our

proposed scheme is motivated by the following Lemma, which proof can be found in Appendix A.

Lemma 4.1. Let the random uncertainty set Ũ(ψ) satisfy:

PπD(ξ ∈ Ũ(ψ)|ã(ψ) = k) ≥ 1− ϵ, ∀k , (12)

then it satisfies:

PπD(ξ ∈ Ũ(ψ)) ≥ 1− ϵ. (13)

In particular, this lemma suggests calibrating each Rk using the bisection to solve:

inf

{
R

∣∣∣∣∣
∑N
i=1 1{ξi ∈ U(W k, R,Sk)}π̄θk(gVE (ψi))∑N

i=1 π̄
θ
k(gVE (ψi))

≥ 1− ϵ

}
, (14)

given that the resulting Rk are the smallest that satisfy (12).

Algorithm 1 Integrated deep cluster-classify with deep K-means

Input: Data-set Dψξ, Number of clusters K, hyper-parameters αK , αS , β
Randomly initialize θ0, V0, and W0

Let π0 := π̄θ0 (gVE0
(ψ)) and Wk

0 :=W0 for all k’s
Set t := 0
repeat

Set t := t+ 1.
Update θkt := EπD[gVEt−1

(ψ)|ã(ψ) = k] using πt−1

Update (Vt, {Wk
t }Kk=1) using gradient descent on (11) with θt

Get πt := π̄θt (gVEt (ψ))
until t ≥ T or convergence
Let π(·) := πt(·) and Wk :=Wk

t for all k’s
for k = 1, . . . ,K do

Calibrate Rk using (14)
Let Uk := U(Wk, Rk,Sk)

end for
Return π(·) and {Uk}Kk=1

4.3 Connections to contextual value-at-risk optimization

In the previous subsections, we proposed two different schemes to produce a possibly randomized

uncertainty set Ũ(ψ) that can be employed in a randomized CRO problem.2. We also proposed a

scheme for radii calibration so that they would satisfy the coverage property in (13). Hence, one can

derive the following connection between conditional robust optimization and the CVO problem (1).

The proof is pushed to Appendix A.

Lemma 4.2. When Ũ satisfies (13), the random policy x̃(·) to the randomized CRO problem together

with

v∗ := esssupπD min
x∈X

max
ξ∈Ũ(ψ)

c(x, ξ)

1 Here, Sk refers to (f̄θ,V
Wk|ã(ψi)=k

, Σ̄θ,V
Wk|ã(ψ)=k

) with

Σ̄θ,V
Wk|ã(ψ)=k

:=
N∑
i=1

π̄θk(gVE (ψi))∑N
i=1 π̄

θ
k(gVE (ψi))

· (fWk (ξi)− f̄θ,V
Wk|ã(ψi)=k

)(fWk (ξi)− f̄θ,V
Wk|ã(ψi)=k

)T ,

2Note that in the case of Section 4.1, the conditional uncertainty set is deterministic thus reducing the randomized
version of CRO to a pure CRO problem
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provide a conservative approximate solution to the CVO problem under the empirical measure PπD.
Namely,

VaRD,π
1−ϵ(c(x̃(ψ), ξ)) ≤ v∗.

In particular, in the case of the proposed DCC and IDCC approaches we have that

v∗ = max
k∈[K]

min
x∈X

max
ξ∈U(Wk,Rk.Sk)

c(x, ξ) .

As the robust optimization paradigm traditionally aims at offering statistical guarantees on the

out-of-sample performance of the prescribed solutions, we describe below how a bootstrap method can

be used to estimate the radii Rk’s.

Remark 4.1. Using bootstrapping methods, we can get a conservative approximation of each Rk as:

R̃k := inf

{
R

∣∣∣∣∣PD̃

(
N∑
i=1

π̄θk(gVE (ψi)∑N
i=1 π̄

θ
k(gVE (ψi)

1{ξi ∈ U(W k, R,Sk)} ≥ 1− ϵ

)
≥ 1− δ

}

where PD̃ measures the probabibility when resampling a new dataset of size N with replacement from

Dψξ. When N is large enough and assuming that each data point is drawn i.i.d. according to some

unknown probability measure P, we asymptotically get the guarantee that P(ξ ∈ Ũ(ψ)) ≥ 1 − ϵ with

probability higher than approximately 1−Kδ.

5 Experiments

In this section, we illustrate the coverage aspect of the IDCC approach using simulated data. We will

further demonstrate the advantage of the CRO problem using a standard risk minimizing portfolio

optimization problem. We compare the performance of IDCC with that of DCC, DDDRO (with

ellipsoidal correction in (9)), and the classical ellipsoidal uncertainty approach (i.e. DCC with K = 1

and fW 1(ξ) := ξ). The IDCC and DCC methods incorporate the covariate information whereas

DDDRO and ellipsoid approach ignore this information. The neural network architecture and other

modeling information is available in the Appendix B. The code can be found on github.3 Our code

uses the Pytorch implementation from(Goerigk and Kurtz, 2020), which is available online.4

5.1 Conditional uncertainty set illustration using simulated data

For the ease of illustration, we consider a simulation environment where [ψT ξT ] ∈ R4 is a random

vector which distribution is an equal weighted mixture of two 4-d multi-variate normal distributions.

We consider N = 500 and train IDCC (with K = 2), DDDRO, and the ellipsoid and calibrate the

uncertainty sets for a probability coverage of 90%, 99% (i.e. ϵ ∈ {1%, 10%}). As a result, DDDRO

and IDCC, which use deep neural networks, identify non-convex uncertainty sets, whose convex hulls

are presented in Figure 1 together with the calibrated ellipsoid.The figure also presents the conditional

distribution of ξ according to PπD(·|ã(ψ) = k), using IDCC’s randomized assignment, and the training

dataset. One can remark that the conditional sets produced by IDCC exploit the side information by

concentrating the uncertainty set on the region that has the most mass according to PπD(·|ã(ψ) = k)

thus leading to a less conservative RO problem then DDDRO and the ellipsoid, which are oblivious to ψ.

In fact, it appears to have successfully learned to at least partially recognize the mixture membership

using ψ and exploit this information to adapt the uncertainty set.

3https://anonymous.4open.science/r/Data-Driven-Conditional-Robust-Optimization-E160
4https://github.com/goerigk/RO-DNN

https://anonymous.4open.science/r/Data-Driven-Conditional-Robust-Optimization-E160
https://github.com/goerigk/RO-DNN
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(a) ã(ψ) = 1,

90% coverage

(b) ã(ψ) = 1,

99% coverage

(c) ã(ψ) = 2,

90% coverage

(d) ã(ψ) = 2,

99% coverage

IDCC DDDRO Ellipsoid

Figure 1: Convex hull of trained uncertainty sets for two levels of coverage and with a conditional uncertainty set for
IDCC that exploits two clusters. The heatmap represents the conditional distribution of ξ according to PπD(·|ã(ψ) = k).
The cloud of points represent the training dataset.

5.2 Robust portfolio optimization

We further investigate the empirical out of sample performance of the proposed uncertainty sets on a

classical robust portfolio optimization problem. Namely, we consider a situation where an investor is

trying to minimize the worst-case return based on an uncertainty set that provides 1− ϵ probabilistic

coverage of the uncertain future return vector. In particula, given that x captures a vector of investment

in n = m different assets which return are captured using ξ, we let c(x, ξ) := −ξ⊺x to capture the return

on investment, and let X := {x ∈ Rn|
∑n
i=1 xi = 1, x ≥ 0} to capture the need to invest one unit

of wealth among the available assets. Following Lemma 4.2, this model can in turn be interpreted as

conservatively approximating a minx∈X VaR1−ϵ(ξ
⊺x), where the objective is a risk averse value-at-risk

metric.

Dataset Our experiments make use of historical data from the US stock market. We collect the

adjusted daily closing prices for 70 stocks (as used in (Xu and Cohen, 2018)) coming from 8 different

sectors from January 1, 2012 to December 31, 2020 using the Y!Finance’s API. Each year has 252

data points and we compute the percentage gain/loss w.r.t the previous day to create our dataset

for ξ. As for side information, we use trading volume of individual stocks, and other market indices5

over the same period as covariates. Our algorithm gives the flexibility to use any number of such

metrics as contextual information. Given the time series nature of the data, at a given instance, we

use 3 years of data to train and the following year as validation to pick the hyper parameters of our

model such as learning rate, weight decay, optimal number of clusters. We then retrain the model

using the 4 years of data to build the final model. Upon calibrating the uncertainty set, we use it to

solve the robust portfolio optimization problem. We then apply this policy on the next 1 year data

and compute the performance metric, namely Value at risk (VaR) for different confidence levels to

compare the performances. VaR quantifies the level of risk of a portfolio over a specified time frame.

Here, it gives an estimate of the maximum % loss the decision maker can incur over a period of 1 year

when he uses the policy from the RO model. Intuitively, lower the VaR, less riskier is the generated

policy. Many financial institutions use VaR to determine the amount of collateral needed when trading

financial products so lowering VaR for high confidence levels is crucial.

Experiment Design To test for robustness of the IDCC algorithm, we experiment on various

randomly sampled stock combinations across different time periods. We randomly sampled a subset

of 15 stocks in a time window and repeated the experiment for 10 runs on 3 moving time frames. We

used learning rate = 0.01, αK = 0.5, αS = 0.5, β = 0.1 for all the experiments. We use a cold start

K-means approach to determine K for each run. We do this across all these experiments as it will

5Volatility Index (VIX), 10-year Treasury Yield Index (TNX), Oil Index (CL=F), S&P 500 (GSPC), Global Income
& Currency Fund (XGCFX), Dow Jones Index (DJI)
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Figure 2: Avg. VaR across portfolio simulations. Error bars report 95% CI.

be computationally expensive to tune the parameters through grid search for each run and also our

intention is to show the learning capability of our algorithm even with minimal tuning. The parameter

tuning and implementation details can be found in Appendix B.3.

Results Figure 2 shows the avg. VaR across the runs at different confidence levels. It is evident

that IDCC generally performs better than the baseline models. This difference is especially noticeable

at higher confidence level, and vanishes as we move to lower confidence levels. Table 1 provides more

details by comparing the overall and conditional cluster level VaR with the baseline models. Specifi-

cally, in each run we identify each cluster as either the “majority” or “minority” cluster depending on

its frequency and report averages of VaR (among the 10 runs) for each of these labels. The average

frequencies for each label is also reported in the table. In particular, one can observe that the im-

provement on average overall VaR can reach up to ∼15% (see in 2019 at a 0.99 confidence level). This

advantage is even more clearly visible when we look at the individual cluster level conditional VaR. For

instance, in the year 2018 for the 0.99 confidence level, the majority cluster (∼68% data) provides an

improvement of 19% and an overall improvement of 9% compared to the second best baseline model.

A similar pattern is observed for the year 2019 as well. In year 2017, the overall performance of IDCC

is close and for some confidence levels slightly above the baseline models. However, we see that the

majority cluster (∼80% data) is performing better than the baseline models while the minority cluster

has slightly higher risk. We attribute this loss in performance to the fact that the minority clusters is

much less frequent (∼20% data) and therefore has less data available to properly learn its conditional

uncertainty set. This large difference in frequencies might also indicate that the side information does

not have a strong signal for the behavior of the returns during this period of time.

Table 1: Comparison of average value-at-risk (over 10 runs) for different level of probability coverage. Both the overall
VaR and conditional VaR given the membership to the majority/minority clusters are presented.

2017 2018 2019

Conf. 1− ϵ 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99

IDCC 0.30 0.55 0.75 1.37 0.64 1.16 1.67 2.86 0.44 0.77 1.11 2.02
Overall DDDRO 0.31 0.52 0.79 1.46 0.63 1.24 1.84 3.17 0.45 0.84 1.27 2.35

Ellipsoid 0.30 0.49 0.75 1.45 0.72 1.45 2.04 3.19 0.47 0.81 1.30 2.52

Cond. on Cluster Freq. 80% 68% 59%

Majority IDCC 0.31 0.52 0.71 1.30 0.57 1.08 1.50 2.62 0.44 0.75 1.17 1.88
Cluster DDDRO 0.31 0.52 0.74 1.35 0.59 1.15 1.63 3.23 0.45 0.85 1.31 2.06

Ellipsoid 0.32 0.52 0.74 1.41 0.69 1.29 1.92 3.08 0.47 0.85 1.25 2.31

Cond. on Cluster Freq. 20% 32% 41%

Minority IDCC 0.30 0.61 0.77 1.43 0.96 1.57 2.05 3.13 0.48 0.82 1.15 2.22
Cluster DDDRO 0.30 0.56 0.84 1.39 1.00 1.66 2.04 3.30 0.49 0.84 1.40 2.39

Ellipsoid 0.28 0.47 0.69 1.13 1.17 1.80 2.43 3.43 0.49 0.82 1.38 2.57
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6 Conclusion and future work

In this work, we introduced a new approach, Conditional Robust Optimization, for solving contextual

optimization problems in a risk averse setting. We proposed a novel integrated approach to design

uncertainty sets that adapts to revealed covariate information. We identified connections to contextual

value-at-risk optimization and showed empirically that our method reduces the out-of-sample VaR

considerably compared to non-contextual RO schemes when the level of protection needed is high. As

future work, we find that it should be interesting to integrate data-driven conditional uncertainty sets in

the context of multi-stage robust optimization models. Given that clustering techniques are often prone

to learning correlations from the data that do not reflect true causal relation, there might be a need to

integrate causal inference methods to our approach. One might also be concerned regarding fairness

considerations in contexts where side information might allow to treat certain class of individuals

differently from others. This last issue might be addressed by adding fairness consideration in our

integrated loss function.

A Proofs

As mentioned in Section 3 and 4, our dataset D contains the random perturbation vectors ξ and side

information ψ. Ũ(ψ) represents the conditional uncertainty set which satisfies the following properties.

Lemma 4.1. Let the random uncertainty set Ũ(ψ) satisfy:

PπD(ξ ∈ Ũ(ψ)|ã(ψ) = k) ≥ 1− ϵ, ∀k (15)

then it satisfies:

PπD(ξ ∈ Ũ(ψ)) ≥ 1− ϵ. (16)

Proof. The claim follows from:

PπD(ξ ∈ Ũ(ψ)) =
K∑
k=1

PπD(ξ ∈ Ũ(ψ)|ã(ψ) = k)PπD(ã(ψ) = k)

≥
∑
k

(1− ϵ)PπD(ã(ψ) = k) = 1− ϵ .

Lemma 4.2. When Ũ satisfies (13), the random policy x̃(·) to the randomized CRO problem together

with

v∗ := esssupπD min
x∈X

max
ξ∈Ũ(ψ)

c(x, ξ)

provide a conservative approximate solution to the CVO problem under the empirical measure PπD.
Namely,

VaRD,π
1−ϵ(c(x̃(ψ), ξ)) ≤ v∗.

In particular, in the case of the DCC and IDCC approaches we have that

v∗ = max
k∈[K]

min
x∈X

max
ξ∈U(Wk,Rk.Sk)

c(x, ξ) .

Proof. First, by definition of x̃(·) and v∗, we have that when ξ ∈ Ũ(ψ):

c(x̃(ψ), ξ) ≤ max
ξ∈Ũ(ψ)

c(x̃(ψ), ξ) = min
x∈X

max
ξ∈Ũ(ψ)

c(x, ξ) ≤ v∗ .

Hence, we must have that:

PπD(c(x̃(ψ), ξ) ≤ v∗) ≥ PπD(c(x̃(ψ), ξ) ≤ v∗|ξ ∈ Ũ(ψ))PπD(ξ ∈ Ũ(ψ))
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≥ 1 · (1− ϵ) .

We thus obtain our result based on the following argument:

VaRD,π
1−ε(c(x̃(ψ), ξ)) := inf{t|PπD(c(x̃(ψ), ξ) ≤ t) ≥ 1− ϵ} ≤ v∗ .

In the case of the DCC and IDCC approaches we have that

v∗ = max
k∈[K]

min
x∈X

max
ξ∈U(Wk,Rk)

c(x, ξ) ,

since Ũ(ψ) is supported on {U(W k, Rk,Dπ
k )}Kk=1.

B Deep learning implementation of IDCC approach

B.1 Loss function

Mathematically, the conditional total variation loss function (11) can be explicitly written as:

L3
α(V, θ, {W k}Kk=1) := (1− αS)

1

K

K∑
k=1

N∑
i=1

π̄θk(gVE (ψi))∑N
i=1 π̄

θ
k(gVE (ψi))

∥fWk(ξi)− f̄θ,V
Wk|ã(ψi)=k∥

2

+ αS

(
(1− αK)

1

N

N∑
i=1

∥gVD (gVE (ψi))− ψi∥2 + αK
1

N

N∑
i=1

K∑
k=1

π̄θk(gVE (ψi))∥gVE (ψi)− θk∥2
)

(17)

where

f̄θ,V
Wk|ã(ψi)=k :=

N∑
i=1

π̄θk(gVE (ψi))∑N
i=1 π̄

θ
k(gVE (ψi))

fWk(ξi) .

B.2 Architecture

The joint loss minimization task is performed using the following network architecture which has

2 parallel networks training simultaneously. The first network (gV := (gVE , gVD )) takes the side

information(ψ) as the input and generates a randomized assignment ã(ψ) ∼ π̄θ(gVE (ψ)). The sec-

ond network ({fWk}Kk=1) takes the random perturbation vector (ξ) and ã(ψ) as the input to generate

W ã(ψ),S ã(ψ)6 which are subsequently used to design the uncertainty set Ũ(ψ) := U(W ã(ψ), Rã(ψ),S ã(ψ)).

gV is an auto-encoder(AE) network which generates the assignment vector ã(ψ). They are trained

to learn lower dimension data representations at the bottleneck of the network. They have the capa-

bility to learn representations in a fully unsupervised way which makes them suitable for the task at

hand. The encoder(gVE (.)) consists of the input(dim=m), hidden and the output layers(dim=d). The

decoder(gVD (.)) uses this low dimension representation to reconstruct the original input data. The

decoder is a mirrored version of the encoder. The input layer is fully connected to the output layers

with an intermediate ReLU activation layers in both the encoder and the decoder. We initialize the

network weights using kaiming normal initialization. The output from the encoder is passed through a

softmax layer to generate a soft version of deep K-means (Fard et al., 2020) which gives the assignment

simplex ã(ψ) ∼ π̄θ(gVE (ψ)) where

π̄θk(gVE (ψ)) :=
exp{−β∥gVE (ψ)− θk∥2}∑K

k′=1 exp{−β∥gVE (ψ)− θk′∥2}
(18)

6 Here, Sk refers to (f̄θ,V
Wk|ã(ψi)=k

, Σ̄θ,V
Wk|ã(ψ)=k

) with

Σ̄θ,V
Wk|ã(ψ)=k

:=

N∑
i=1

π̄θk(gVE (ψi))∑N
i=1 π̄

θ
k(gVE (ψi))

· (fWk (ξi)− f̄θ,V
Wk|ã(ψi)=k

)(fWk (ξi)− f̄θ,V
Wk|ã(ψi)=k

)T ,

.



Les Cahiers du GERAD G–2022–37 12

The parallel network({fWk}Kk=1) designs the K customized data-driven uncertainty sets using a

slightly modified deep SVDD method from (Goerigk and Kurtz, 2020). The input to these networks

is the perturbations ξ and the assignment policy(π̄θ(gVE (ψ))). Each fWk has an input layer(dim=15),

hidden layer and an output layer(dim=5). All layers are fully connected with a ReLU activation

function. All the networks are initialized with a uniform distribution in [0, 1]. Our approach constructs

a weighted center, f̄θ,V
Wk|ã(ψi)=k which uses π̄θ(gVE (ψ)) to compute the loss 17.

B.3 Suggested extensive parameter tuning procedure

In this section, we discuss the parameter tuning strategy that can be used to train the network

proposed in Section B.2 using the portfolio optimization example discussed in Section 5.2. Here, given

the time series nature of the data, we follow the rolling window approach for network training. Our

architecture uses a set of hyperparameters, hp = (lr, αK , αS , β,K) where lr represents the learning

rate, αK regulates the trade-off between seeking good representations for ψ that are faithful to the

original data and representations that are useful for clustering purposes. αS plays a similar trade-off

between the recognizability and compactness of uncertainty sets. Finally, β is a softmax temperature

parameter and K represents the number of clusters. We split the data into training and validation

periods and search for the optimal combination through grid search method. For each combination,

we train the network and generate the optimal policy using training data which is applied on the

unseen validation data. The optimal combination is the one that give the lowest V aR1−ϵ on validation

dataset as this is a worst case return minimization problem. This is shown in algorithm 2. Once the

hyperparameters are selected, we re-train the network using the complete data. It is important to note

that the results reported in Section 5 did not use the parameter tuning to reduce computations.

Algorithm 2 Hyperparameter tuning

Input:hp = (lr, αK , αS , β,K)
for year = y, . . . , y +M do

Obtain {Uk}Kk=1 1
Get optimal portfolio using: minx∈X VaR1−ϵ(ξ⊺x)5.2

end for
Choose hp which minimizes out of sample V aR1−ϵ for M periods

B.4 Simulated data generation process

In this section, we discuss the data generation process for the simulated data used in Section 5.1. For

easy visualization, we consider a simulation environment where [ψT ξT ]T ∈ R4 is a random vector

which distribution is an equal weighted mixture of two 4-d multivariate normal distributions.7 Namely,

[ψT ξT ]T ∼ 0.5N(µ1,Σ1) + 0.5N(µ2,Σ2) where:

µ1 :=


1
2
0
4

 , Σ1 :=


1.0 0.0 0.3 −0.1
0.0 −1.0 0.1 −0.2
0.3 0.1 1.0 2.0
−0.1 −0.2 2.0 1.0



µ2 :=


5
5
4
0

 , Σ2 :=


1.0 0.0 0.3 −0.1
0.0 −1.0 0.1 −0.2
0.3 0.1 1.0 0.0
−0.1 −0.2 0.0 1.0

 .
The distribution marginalized over the random vectors ψ ∈ R2 and ξ ∈ R2 can respectively be

visualized in figure 3(a) and (b).

7The data is generated using (Page Jr, 1984).
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(a) (b)

Figure 3: Density plot of the marginalized distributions over ψ (in (a)) and ξ (in (b)) from a mixture of two Gaussian
distributions on the joint space [ψT ξT ]T .

B.5 Sensitivity analysis for parameters

Here, we show the sensitivity analysis for the parameters αS and K. For each of these analysis, we

keep all the other parameters constant and train the model by varying the considered parameters. For

αS , we consider the range of values between 0 and 1. For the sensitivity analysis of K, we considered

1 to 9 clusters. We conducted 10 such runs in the year 2019 and observe the average validation VaR.

The results can be seen in the plots below. The analysis in 4b shows that 2 clusters result in similar

or improved performance compared to using more clusters. Regarding the influence of αS on out-of-

sample performance, we did not observe any insightful behavior. We believe this hyper parameter can

play a role in problem settings where the convergence of TV losses in contextual and perturbed spaces

is different and needs moderation. However, in this case, we don’t notice any such issues and the

choice of αS as 0.5 seemed to work generally well across all experiments as seen in 4a. The sensitivity

analysis also highlights the same, which points to 0.5 as being a legitimate choice for αS .

(a) (b)

Figure 4: Sensitivity analysis (using validation data) across portfolio simulations for the year 2019.

C Algorithms

In this section, we provide the pseudo code for the Iterative constraint generation and the Deep Cluster

then Classify 4.1 techniques.

C.1 Iterative constraint generation

We present the iterative constraint generation algorithm for both the robust objective problem:

min
x∈X

max
ξ∈U

c(x, ξ),
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and a robust constraint problem of the form:

min
x∈X :c(x,ξ)≤0,∀ξ∈U

f(x).

We note that when X is convex and c(x, ξ) is convex in x and linear in ξ, then argminx∈X maxξ∈U ′ c(x, ξ)

can be obtained using convex optimization algorithms, while ξ∗ ∈ argmaxξ∈U c(x
∗, ξ) can be obtained

using mixed-integer linear programming solvers such as MOSEK (see MOSEK ApS (2022)). In more

general setting, one might need to employ more general non-linear programming software.

Algorithm 3 Iterative constraint generation for robust objective problem

Input: Max number of iteration M
Set U ′ := {ξ0} ⊆ U
for iter = 1, . . . ,M do

Set x∗ ∈ argminx∈X maxξ∈U′ c(x, ξ)
Set ξ∗ ∈ argmaxξ∈U c(x

∗, ξ)
if c(x∗, ξ∗) > maxξ∈U′ c(x∗, ξ) then

Add ξ∗ to U ′

else
Break

end if
end for
Return x∗

Algorithm 4 Iterative constraint generation for robust constraint problem

Input: Max number of iteration M
Set U ′ := {ξ0} ⊆ U
for iter = 1, . . . ,M do

Set x∗ ∈ argminx∈X :c(x,ξ)≤0,∀ξ∈U′ f(x, ξ)
Set ξ∗ ∈ argmaxξ∈U c(x

∗, ξ)
if c(x∗, ξ∗) > 0 then

Add ξ∗ to U ′

else
Break

end if
end for
Return x∗

C.2 Deep Cluster then Classify with deep K-means

Algorithm 5 Deep Cluster then Classify with deep K-means

Input: Data-set Dψξ, number of clusters K, maximum number of iterations T , coverage error ϵ

Randomly initialize θ0, V0 and all Wk
0 ’s

Let a0(ψ) := āθ0 (gVE0
(ψ))

Set t := 0
repeat

Set t := t+ 1.
Update θkt :=

∑
i∈Ik gVEt−1

(ψi)/|Ik| where Ik := {i : at−1(ψi) = k}
Let at(ψ) := āθt (gVEt−1

(ψ))

Update Vt using SGD on (8) with at(ψi)
until t ≥ T
Let a(ψ) := at(ψ)
for k = 1, . . . ,K do

Train the parameters Wk using (5) with Dkξ
Calibrate Rk on Dkξ using coverage target 1− ϵ

Let Uk := U(Wk, Rk,Sk)
end for
Return a(·) and {Uk}Kk=1
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