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Citation suggérée : N. Huang, Y.-H. Dai, D. Orban, M. A. Saun-
ders (Août 2022). On GSOR, the generalized successive
overrelaxation method for double saddle-point problems, Rapport
technique, Les Cahiers du GERAD G– 2022–35, GERAD, HEC
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Abstract : We consider the generalized successive overrelaxation (GSOR) method for solving a class
of block three-by-three saddle-point problems. Based on the necessary and sufficient conditions for all
roots of a real cubic polynomial to have modulus less than one, we derive convergence results under
reasonable assumptions. We also analyze a class of block lower triangular preconditioners induced
from GSOR and derive explicit and sharp spectral bounds for the preconditioned matrices. We report
numerical experiments on test problems from the liquid crystal director model and the coupled Stokes-
Darcy flow, demonstrating the usefulness of GSOR.

Keywords : Iterative methods, double saddle-point systems, saddle-point problems, matrix splitting,
successive overrelaxation, preconditioning

Résumé : Nous considérons la méthode de surrelaxation successive généralisée (GSOR) pour la
résolution d’une classe de systèmes de points de selle à trois par trois blocs. Sur base des conditions
nécessaires et suffisantes pour que les racines d’un polynôme de degré trois soient de module inférieur
à l’unité, nous établissons la convergence de la méthode sous des hypothèses raisonnables. Nous
analysons également une calsse de préconditionneurs triangulaires inférieurs par blocs induits par
GSOR et dérivons des bornes spectrales explicites et fines pour les matrices préconditionnées. Nous
présentons des résultats numériques sur des problèmes de crystaux liquides et du flux couplé de Stokes-
Darcy, et illustrons l’utilité de GSOR.
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1 Introduction

We consider the double saddle-point problem

Aw :=

A BT CT

B 0 0
C 0 −D

x
y
z

 =

f
g
h

 =: b, (1)

where A ∈ Rn×n and D ∈ Rp×p are symmetric positive definite (SPD) matrices, B ∈ Rm×n has full

row rank, and C ∈ Rp×n. Linear systems like (1) arise from many practical applications, such as mixed

and mixed-hybrid finite element approximation of the liquid crystal director model [17] and coupled

Stokes-Darcy flow [6, 8, 12, 13], and interior methods for quadratic programming problems [9, 10, 19].

We emphasize that (1) is importantly different from the block 3 × 3 systems considered by Huang et

al. in [14, 15].

In principle, (1) can be treated as the block 2×2 saddle-point problem(
H ET

E −W

)(
x
y

)
=

(
f
g

)
, (2)

which has been studied for decades [5]. We focus here on splitting iterative methods for (1) by fully

utilizing the special structure of A. The generalized successive overrelaxation (GSOR) method of Bai

et al. [1] is for (2) with W = 0. We extend GSOR to (1) by introducing three parameters. The

convergence analysis of this new GSOR method is quite different from that of stationary methods; we

derive convergence conditions based on the necessary and sufficient conditions for all roots of a real

cubic polynomial to have modulus less than one. We also analyze a class of block lower triangular

preconditioners induced from GSOR and show that all eigenvalues of the preconditioned matrices are

positive real and can be clustered by appropriate selections of parameters.

For linear systems discretized from a mixed Stokes-Darcy model, Cai et al. [6] proposed precondi-

tioning techniques by treating (1) as system (2) with W = 0. Ramage and Gartland Jr. [17] studied a

preconditioned nullspace method for solving systems (1) that arise from discretizations of continuum

models for the orientational properties of liquid crystals, in which they also partitioned A into a block

2×2 form. Recently, based on the special structure of A in (1), several preconditioners were proposed

to accelerate Krylov subspace methods. Beik and Benzi [2, 3] analyzed several block diagonal and

block triangular preconditioners and derived bounds for the eigenvalues of the preconditioned matri-

ces. An alternating positive semidefinite splitting (APSS) preconditioner and its relaxed variant were

proposed by Liang and Zhang [16] to solve double saddle-point problems arising from liquid crystal

director models. The improved APSS preconditioner of Ren et al. [18] and the two-parameter block

triangular preconditioner of Zhu et al. [21] were also constructed to deal with the same saddle-point

problem. However, the latter preconditioners either do not fully exploit the special structure of A or

need to solve several complicated and dense linear systems at each iteration.

It is generally difficult to analyze the spectral properties of a “full” block three-by-three matrix;

i.e., one that cannot be reduced to a block 2×2 matrix. Little literature exists on iterative schemes

for (1). Uzawa-like methods based on the splitting

A =

A 0 0
B − 1

αQ 0
C 0 M

−

0 −BT −CT

0 − 1
αQ 0

0 0 N

 (3)

were studied by Benzi and Beik [4], where α > 0 and the SPD matrix Q are given, and D = N −M

with M negative definite. In addition, given a parameter ω ̸= 0, they split A into

A =
1

ω

 A BT 0
B 0 0
ωC 0 −D

− 1

ω

(1− ω)A (1− ω)BT −ωCT

(1− ω)B 0 0
0 0 −(1− ω)D


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and proposed a generalized block successive overrelaxation (GBSOR) method. The convergence analy-

sis of these two methods is similar to that of stationary iterative schemes for block 2×2 linear systems,

where convergence conditions are derived from a quadratic polynomial equation of the eigenvalues of

the iteration matrix. Moreover, GBSOR needs to solve four linear systems at each step: two of the

form Ax = r1, one BA−1BTy = r2, and one Dz = r3. By partitioning A into system (2) with H = A,

Dou and Liang [7] construct a class of block alternating splitting implicit (BASI) iteration methods.

At each step, BASI needs to solve several linear systems of the form αI + A + aBTB + bCTC and

αI +D + cCCT, where I is the identity and α, a, b, c are real scalar constants.

The paper is organized as follows. In Section 2, we present the generalized successive overrelaxation

method. In Section 3, convergence of GSOR is established under reasonable assumptions. Precondi-

tioners are analyzed in Section 4. Numerical experiments are reported in Section 5. Conclusions are

summarized in Section 6.

Notation

For any S ∈ Rr×r, its spectral radius, inverse and transpose are denoted ρ(S), S−1 and ST , respectively.

For any s ∈ Cr, its conjugate transpose is denoted s∗.

2 The generalized successive overrelaxation (GSOR) method

In this section, we present GSOR for solving the double saddle-point problem (1). We consider the

equivalent unsymmetric system

Âw :=

 A BT CT

−B 0 0
−C 0 D

x
y
z

 =

 f
−g
−h

 =: b̂. (4)

Although Â is unsymmetric, it has certain desirable properties:

1. Â is semipositive real: vTÂv ≥ 0 for all v ∈ Rn+m+p.

2. Â is positive semistable; i.e., its eigenvalues have nonnegative real part.

These properties enable convergence of the classical successive overrelaxation (SOR) method [20]. To

improve efficiency, we modify the classical SOR method and propose a generalized version that extends

the GSOR method considered in [1].

By introducing the three matrices

D =

A 0 0
0 P 0
0 0 D

 , L =

 0 0 0
B 0 0
C 0 0

 , U =

0 −BT −CT

0 P 0
0 0 0

 , (5)

where P ∈ Rm×m is SPD, we can split Â as

Â = D − L− U .

Let ω, τ , and θ be three nonzero reals, In, Im, and Ip be identity matrices of appropriate order, and

Ω =

ωIn 0 0
0 τIm 0
0 0 θIp

 .

Consider the following iteration for (1):

wk+1 = (D − ΩL)−1[(I − Ω)D +ΩU ]wk + (D − ΩL)−1Ωb̂ (6)
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=: T wk + (D − ΩL)−1Ωb̂.

From (5),

D − ΩL =

 A 0 0
−τB P 0
−θC 0 D

 , (7)

(I − Ω)D +ΩU =

(1− ω)A −ωBT −ωCT

0 P 0
0 0 (1− θ)D

 . (8)

Substituting (7) and (8) into (6), we obtain GSOR as stated in Algorithm 1.

Algorithm 1 The GSOR method

1: Choose (x0, y0, z0) ∈ Rn+m+p, P ∈ Rm×m SPD, and ω, τ , θ > 0.
2: for k = 0, 1, . . . do
3: Compute (xk+1, yk+1, zk+1) according to the iteration

xk+1 = xk + ωA−1(f −Axk −BTyk − CTzk),

yk+1 = yk + τP−1(Bxk+1 − g),

zk+1 = zk + θD−1(Cxk+1 −Dzk − h).

(2.7)

4: end for

At each step, GSOR needs to solve only three SPD systems (of order n, m, and p). This is easier

than in GBSOR [4], which solves four linear systems involving A, A, BA−1BT, and D.

Iteration scheme (2.7) can also be deduced from the splitting

A = M−N :=

 1
ωA 0 0
B − 1

τ P 0
C 0 − 1

θD

−

( 1
ω − 1)A −BT −CT

0 − 1
τ P 0

0 0 (1− 1
θ )D

 . (2.6)

Therefore, GSOR is a splitting method. In particular if ω = 1, GSOR reduces to the Uzawa-like

schemes studied in [4], where M = − 1
θD and N =

(
1− 1

θ

)
D in (3).

3 Convergence analysis for GSOR

First, the following two lemmas give readily verifiable necessary and sufficient conditions for all roots

of a real polynomial of degree two or three, respectively, to have modulus less than one.

Lemma 3.1. [11, Theorem 1.3] Consider the second-degree polynomial equation

λ2 + a1λ+ a0 = 0, (9)

where a0 and a1 are real numbers. A necessary and sufficient condition for both roots of (9) to lie in

the open disk |λ| < 1 is

|a1| < 1 + a0 < 2.

.............

Lemma 3.2. [11, Theorem 1.4] Consider the third-degree polynomial equation

λ3 + a2λ
2 + a1λ+ a0 = 0, (10)

where a0, a1, and a2 are real numbers. A necessary and sufficient condition for all roots of (10) to lie

in the open disk |λ| < 1 is

|a2 + a0| < 1 + a1, |a2 − 3a0| < 3− a1, a20 + a1 − a0a2 < 1.
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GSOR is convergent if and only if the spectral radius of T is less than 1; i.e., ρ(T ) = ρ((D −
ΩL)−1[(I − Ω)D + ΩU ]) < 1. From this point of view, we can now study the convergence properties

of GSOR.

Theorem 3.1. Assume that A and D are SPD, and that B has full row rank. Let the maximum eigen-

values of A−1BTP−1B and A−1CTD−1C be µmax and νmax, respectively. Then GSOR is convergent

if 0 < θ < 2 and

0 < ω <
4(2− θ)

(2− θ)(2 + τµmax) + 2θνmax
, 0 < τ <

4(ω + θ − ωθ)

ωθµmax
.

Proof. Let λ and v = (x, y, z) be an eigenvalue and eigenvector of T . Then

[(I − Ω)D +ΩU ]v = λ(D − ΩL)v.

Substituting (7) and (8) gives

(1− ω)Ax− ωBTy − ωCTz = λAx, (11)

Py = −λτBx+ λPy, (12)

(1− θ)Dz = −λθCx+ λDz. (13)

To continue the proof, we consider sufficient conditions to guarantee |λ| < 1.

If λ = 1− θ, we have |λ| < 1 if and only if 0 < θ < 2. In the following, we assume that λ ̸= 1− θ

and 0 < θ < 2.

Note that we must have λ ̸= 1; otherwise, (11)–(13) give

Ax+BTy + CTz = 0, Bx = 0, Dz = Cx, (14)

which imply that 0 = xTAx+xTBTy+xTCTz = xTAx+ zTDz. Given that both A and D are SPD, we

have xTAx = 0 and zTDz = 0, which further means x = 0 and z = 0. With B having full row rank,

the first equality in (14) gives y = 0. This contradicts the fact that v is an eigenvector.

It follows from λ ̸= 1, λ ̸= 1− θ, and (12)–(13) that

y =
λτ

λ− 1
P−1Bx, z =

λθ

λ+ θ − 1
D−1Cx.

Substituting these into (11), we obtain

(1− ω)Ax− λωτ

λ− 1
BTP−1Bx− λωθ

λ+ θ − 1
CTD−1Cx = λAx.

Note that x ̸= 0; otherwise, we have Py = 0 and Dz = 0, which implies v = 0 because P and D

are SPD. This contradicts the fact that v is an eigenvector. Therefore, premultiplying both sides by

x∗/(x∗Ax) gives

1− ω − λωτ

λ− 1
ϕ(x)− λωθ

λ+ θ − 1
φ(x) = λ, (15)

where

ϕ(x) =
x∗BTP−1Bx

x∗Ax
, φ(x) =

x∗CTD−1Cx

x∗Ax
.

First, we consider the case x ∈ null(B). Clearly, ϕ(x) = 0. If x ∈ null(C) as well, it follows

from (15) that λ = 1− ω. To guarantee |λ| < 1, we can assume that 0 < ω < 2. If x /∈ null(C), with

ϕ(x) = 0, (15) reduces to the quadratic polynomial equation

λ2 + (ω + θ + ωθφ(x)− 2)λ+ 1 + ωθ − ω − θ = 0.
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By Lemma 3.1, both roots λ of this real quadratic equation satisfy |λ| < 1 if and only if

|ω + θ + ωθφ(x)− 2| < 2 + ωθ − ω − θ < 2.

If 0 < ω < 2 and 0 < θ < 2, we have ω+ θ ≥ 2
√
ωθ > ωθ ⇒ ω+ θ−ωθ > 0. This, along with φ(x) ≥ 0

yields

0 < ω <
2(2− θ)

2− θ + θφ(x)
≤ 2 . (16)

Next, we consider the case x /∈ null(B). Then ϕ(x) > 0 and (15) can be rewritten as a cubic

polynomial equation λ3 + a2λ
2 + a1λ+ a0 = 0, where

a2 = θ + ω + ωτϕ(x) + ωθφ(x)− 3,

a1 = 3 + ωθ − 2ω − 2θ − ωτ(1− θ)ϕ(x)− ωθφ(x),

a0 = ω + θ − ωθ − 1.

By Lemma 3.2, all roots λ of the above real cubic equation satisfy |λ| < 1 if and only if∣∣ 2ω + 2θ − ωθ + ωτϕ(x) + ωθφ(x)− 4
∣∣ < 4 + ωθ − 2ω − 2θ − ωτ(1− θ)ϕ(x)− ωθφ(x), (17)∣∣ωτϕ(x) + ωθφ(x)− 2ω − 2θ + 3ωθ
∣∣ < 2ω + 2θ − ωθ + ωτ(1− θ)ϕ(x) + ωθφ(x), (18)

θ(ωθ − ω − θ) (1 + φ(x))− ωτ(1− θ)ϕ(x) < 0. (19)

Note that with ϕ(x) > 0, φ(x) ≥ 0, and 0 < θ < 2, (17) leads to τ > 0 and

0 < ω <
4(2− θ)

4− 2θ + τ(2− θ)ϕ(x) + 2θφ(x)
≤ 2. (20)

It follows from (18) that

ωτθϕ(x) < 4(ω + θ − ωθ), (21)

and

ωτ(2− θ)ϕ(x) + 2ωθφ(x) + 2ωθ > 0. (22)

If ω > 0, τ > 0 and 0 < θ < 2, as ϕ(x) > 0 and φ(x) ≥ 0, clearly (22) holds. This together with (21)

implies that (18) holds if

0 < τ <
4(ω + θ − ωθ)

ωθϕ(x)
. (23)

Inequality (19) holds if 0 < θ ≤ 1 because ω, τ > 0. If 1 < θ < 2 and 0 < ω < 2, solving (19) leads to

τ <
θ(ω + θ − ωθ) (1 + φ(x))

ω(θ − 1)ϕ(x)
.

Note that ω > 0, ϕ(x) > 0, ω + θ − ωθ > 0 and 4(θ − 1) < θ2(1 + φ(x)), giving

4(ω + θ − ωθ)

ωθϕ(x)
<

θ(ω + θ − ωθ) (1 + φ(x))

ω(θ − 1)ϕ(x)
.

This implies that (19) holds under condition (23).

To sum up, by combining (16), (20), (23) and the fact that τ(2−θ)ϕ(x) ≥ 0, we know that |λ| < 1 if

0 < θ < 2, (24)

0 < ω <
4(2− θ)

4− 2θ + τ(2− θ)ϕ(x) + 2θφ(x)
, (25)

0 < τ <
4(ω + θ − ωθ)

ωθϕ(x)
. (26)

For any x ̸= 0, we have 0 ≤ ϕ(x) ≤ µmax and 0 ≤ φ(x) ≤ νmax. Combining with (24)–(26) completes

the proof.
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Remark 1. We emphasize that parameters ω, τ and θ can be chosen to satisfy the conditions derived

in Theorem 3.1. Indeed, as 0 < ω < 2 and 0 < θ < 2, we get

4(ω + θ − ωθ)

ωθµmax
=

4

θµmax

(
1 +

θ

ω
− θ

)
>

4

θµmax

(
1 +

θ

2
− θ

)
=

2(2− θ)

θµmax
.

Thus, we can first choose θ satisfying 0 < θ < 2, and then choose τ in the open interval
(
0, 2(2−θ)

θµmax

)
.

Finally, we choose ω satisfying

0 < ω <
4(2− θ)

(2− θ)(2 + τµmax) + 2θνmax
.

Remark 2. If ω = 1, (15) can be simplified as

λ2 + (θ − 2 + τϕ(x) + θφ(x))λ+ 1− θ − τϕ(x) + τθϕ(x)− θφ(x) = 0.

It follows from Lemma 3.1 that |λ| < 1 holds if and only if

|θ − 2 + τϕ(x) + θφ(x)| < 2− θ − τϕ(x) + τθϕ(x)− θφ(x) < 2.

After some algebra, we see that GSOR with ω = 1 is convergent if

0 < θ <
2

1 + νmax
, 0 < τ <

2(2− θ − θνmax)

(2− θ)µmax
.

Remark 3. If ω = 1 and θ = 1, GSOR is the same as the Uzawa-like method studied in [4, section 2.2].

In this case, (15) reduces to

λ2 + (τϕ(x) + φ(x)− 1)λ− φ(x) = 0.

By Lemma 3.1, we know that |λ| < 1 holds if and only if∣∣τϕ(x) + φ(x)− 1
∣∣ < 1− φ(x) < 2.

This implies that, for any τ , GSOR diverges when νmax ≥ 1. Therefore, for this special case, GSOR is

convergent provided

νmax < 1, 0 < τ <
2(1− νmax)

µmax
.

This result is the same as [4, Theorem 3], which is the convergence theorem of the Uzawa-like method.

However, we emphasize that the condition νmax < 1 is strong. In fact, as shown in Section 5.2 below,

the saddle-point problems from the mixed Stokes-Darcy model in porous media applications do not

satisfy this condition. With Remark 2, this shows that it is necessary to introduce another parameter.

4 The GSOR preconditioner

We develop and analyze a class of block lower triangular preconditioners to accelerate Krylov methods

for (1).

The splitting in (2.6) can induce a preconditioner M for (1). The corresponding preconditioned

matrix M−1A has the form ωI ωA−1BT ωA−1CT

(ω − 1)τP−1B ωτP−1BA−1BT ωτP−1BA−1CT

(ω − 1)θD−1C ωθD−1CA−1BT θI + ωθD−1CA−1CT

 .
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When ω = 1, M−1A has at least n eigenvalues equal to 1. As clustered eigenvalues are desirable, we

consider the block lower triangular preconditioner

P =

A 0 0
B − 1

τ P 0
C 0 − 1

θD

 .

When P is used to precondition Krylov subspace methods, each step needs to solve three linear systems

involving A, P , and D. This is more practical than the block preconditioners of [2, 3] and the (relaxed)

APSS preconditioners of [16], which need to solve several dense linear systems involving matrices like

BA−1BT, D + CA−1CT , A+BTB/α, and D + CCT /α, where α is a positive number.

To illustrate further the efficiency of our preconditioner P, we derive explicit and sharp bounds on

the spectrum of the preconditioned matrix P−1A. By direct calculations, we have

P−1A =

I A−1BT A−1CT

0 τP−1BA−1BT τP−1BA−1CT

0 θD−1CA−1BT θI + θD−1CA−1CT

 ,

which is similar to I B̂T ĈT

0 τB̂B̂T τB̂ĈT

0 θĈB̂T θI + θĈĈT

 ,

where B̂ = P−1/2BA−1/2 and Ĉ = D−1/2CA−1/2. Thus P−1A has eigenvalue 1 with multiplicity n,

and the remaining eigenvalues are the same as those of

K =

(
τB̂B̂T τB̂ĈT

θĈB̂T θI + θĈĈT

)
.

We can now establish the following theorem.

Theorem 4.1. Assume that A and D are SPD, and B has full row rank. Let the minimum and

maximum eigenvalues of P−1BA−1BT be µmin and µmax. Let the maximum eigenvalue ofD−1CA−1CT

be νmax. Then P−1A has eigenvalue 1 with multiplicity at least n, and the remaining eigenvalues lie

in the interval  Λ−
√
Λ2 − 4τθµmin

2
,
Λ +

√
Λ
2 − 4τθµmax

2

 ,

where

Λ = θ(1 + νmax) + τµmin, Λ = θ(1 + νmax) + τµmax. (27)

Proof. We need to estimate spectral bounds for K. Let λ be an eigenvalue of K and (yT, zT)T be a

corresponding eigenvector. With τ > 0 and θ > 0 we see that K is similar to a symmetric matrix, and

hence λ is real. Also,

τB̂B̂Ty + τB̂ĈTz = λy, (28)

θĈB̂Ty + θz + θĈĈTz = λz. (29)

We obtain estimates of λ by considering two cases separately.

Case I: z ∈ null(ĈT ). Clearly, τB̂B̂Ty = λy and θĈB̂Ty = (λ − θ)z. This implies that λ = θ or λ

is an eigenvalue of B̂B̂T. Note that B̂B̂T = P−1/2BA−1BTP−1/2 is similar to P−1BA−1BT, so that

λ = θ or τµmin ≤ λ ≤ τµmax.
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Case II: z /∈ null(ĈT ). We only consider the case λ /∈ [τµmin, τµmax], so that λI − τB̂B̂T is

nonsingular. With (28), this leads to y = τ(λI − τB̂B̂T )−1B̂ĈTz. Substituting into (29) gives

τθĈB̂T(λI − τB̂B̂T )−1B̂ĈTz + θz + θĈĈTz = λz. (30)

As
(
I − τ

λ B̂
TB̂

)−1

= I + τB̂T(λI − τB̂B̂T)−1B̂, (30) yields

θĈ
(
I − τ

λ
B̂TB̂

)−1

ĈTz = (λ− θ)z. (31)

We assert that λ > 0. Otherwise, we have

(λ− θ)zTz < 0 and zTĈ
(
I − τ

λ
B̂TB̂

)−1

ĈTz ≥ 0,

which contradicts (31).

If λ > τµmax, as the matrices B̂TB̂ and B̂B̂T have the same nonzero eigenvalues, it holds for any

0 ̸= u ∈ Rn that

uT
(
I − τ

λ
B̂TB̂

)
u ≥

(
1− τµmax

λ

)
uTu > 0.

With (31) and the fact that ĈĈT = D−1/2CA−1CTD−1/2 is similar to D−1CA−1CT, this leads to

λ− θ ≤ θ
(
1− τµmax

λ

)−1 zTĈĈTz

zTz
≤ θ

(
1− τµmax

λ

)−1

νmax.

Solving this inequality for λ gives

Λ−
√
Λ
2 − 4τθµmax

2
≤ λ ≤

Λ +

√
Λ
2 − 4τθµmax

2
.

We can directly check that

Λ−
√
Λ
2 − 4τθµmax ≤ 2max{θ, τµmax} ≤ Λ +

√
Λ
2 − 4τθµmax.

Therefore, λ admits the upper bound

λ ≤
Λ +

√
Λ
2 − 4τθµmax

2
. (32)

If λ < τµmin, it can be verified that

zTĈ
(
I − τ

λ
B̂TB̂

)−1

ĈTz ≥
(
1− τµmin

λ

)−1

zTĈĈTz ≥
(
1− τµmin

λ

)−1

νmaxz
Tz.

Combining with (31) gives

λ− θ ≥
(
1− τµmin

λ

)−1

θνmax =
λθνmax

λ− τµmin
.

Note that λ < τµmin and the inequality can be simplified as

λ2 − (θ + θνmax + τµmin)λ+ τθµmin ≤ 0.

By the definition of Λ, we have

Λ−
√

Λ2 − 4τθµmin

2
≤ λ ≤ Λ +

√
Λ2 − 4τθµmin

2
.
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Similarly, we can check that

Λ−
√
Λ2 − 4τθµmin ≤ 2min{θ, τµmin} ≤ Λ +

√
Λ2 − 4τθµmin.

This implies that λ admits the lower bound

τµmin > λ ≥ Λ−
√
Λ2 − 4τθµmin

2
.

Combining with (32) and the bounds derived in Case I completes the proof.

Remark 4. To precondition the equivalent unsymmetric system (4), we can use the block lower trian-

gular preconditioner

P̂ =

 A 0 0
−B 1

τ P 0
−C 0 1

θD

 .

Because P̂−1Â = P−1A, the preconditioned matrix P̂−1Â possesses the same spectral bounds as in

Theorem 4.1.

Remark 5. Theorem 4.1 shows that the preconditioned matrices P−1A = P̂−1Â are positive stable.

Moreover, their condition number is bounded by

max

 Λ +

√
Λ
2 − 4τθµmax

2
,
Λ +

√
Λ
2 − 4τθµmax

Λ−
√
Λ2 − 4τθµmin

 .

Using (27), we obtain

Λ +

√
Λ
2 − 4τθµmax

2
≤ Λ = θ(1 + νmax) + τµmin

and

Λ +

√
Λ
2 − 4τθµmax

Λ−
√
Λ2 − 4τθµmin

=

(
Λ +

√
Λ
2 − 4τθµmax

)(
Λ +

√
Λ2 − 4τθµmin

)
4τθµmin

≤ ΛΛ

τθµmin

=
θ2(1 + νmax)

2 + τ2µminµmax + τθ(1 + νmax)(µmax + µmin)

τθµmin

=
θ

τ

(1 + νmax)
2

µmin
+

τ

θ
µmax + (1 + νmax)

(
1 +

µmax

µmin

)
.

This shows that the matrices P−1A and P̂−1Â will be well-conditioned given appropriate selections

of parameters τ , θ and matrix P when νmax is not too large.1

5 Numerical experiments

We present the results of numerical tests to examine the feasibility and effectiveness of GSOR. All

experiments were run using MATLAB R2015b on a PC with an Intel(R) Core(TM) i7-8550U CPU

@ 1.8GHz and 16GB of RAM. The initial guess is taken to be the zero vector, and the algorithms are

terminated when the number of iterations exceeds 105 or

Res := ∥b−Awk∥2/∥b∥ ≤ 10−8,

1This is a reasonable request. As shown in Section 5 below, νmax of the saddle-point systems from the liquid crystal
directors model and the mixed Stokes-Darcy model in porous media applications is 0.1750 and 1.0057, respectively.
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where wk is the current approximate solution. We report the number of iterations, the CPU time, and

the final value of the relative residual, denoted by “Iter”, “CPU” and “Res”, respectively.

For our GSOR method, we tried just a few values of the parameters ω, τ and θ. We compared

our method with the Uzawa-like method (denoted “Uzawa”) and the generalization of the block SOR

method (denoted “GBSOR”) studied in [4, Section 2.2 and Section 3], respectively. We emphasize

that the Uzawa method is a special case of our GSOR method with P = Q, ω = 1, and θ = 1. For

GBSOR, based on [4, Theorem 5], we chose ω = s/4, s/2, 3s/4 (denoted “GBSORa”, “GBSORb”,

“GBSORc”, respectively), where s = 2/(1 +
√
νmax) is the upper bound of the convergence interval

for the parameter ω. We used the function “eigs” to compute νmax.

We also tested Krylov methods for (1) or (4), such as MINRES, GMRES, and BICGSTAB. For

preconditioned MINRES (denoted “BPMINRES”), we use the block diagonal preconditionerA 0 0
0 BA−1BT 0
0 0 D + CA−1CT

 .

For D = 0, this block diagonal preconditioner has been studied in [3]. For preconditioned GMRES,

we test the GSOR preconditioner P with τ = θ = 1 (denoted “GPGMRES”) and the block triangular

preconditioner [3] (denoted “BPGMRES”)A BT CT

0 −BA−1BT 0
0 0 −(D + CA−1CT)

 .

5.1 Saddle-point systems from the liquid crystal directors model

Continuum models for the orientational properties of liquid crystals require minimization of free energy

functionals of the form

F [u, v, w, U ] =
1

2

∫ 1

0

[(u2
z + v2z + w2

z)− η2(β + w2)U2
z ]dz, (33)

where u, v, w, and U are functions of z ∈ [0, 1] subject to suitable end-point conditions, uz, vz, wz,

and Uz denote the first derivatives of the corresponding functions with respect to z, and η and β are

prescribed positive parameters. By discretizing with a uniform piecewise-linear finite element scheme

with N + 1 cells using nodal quadrature and the prescribed boundary conditions, we minimize the

free energy (33) under the unit vector constraint. We apply the Lagrange multiplier method to solve

this discretized minimization model, and Newton’s method to solve the nonlinear equations from the

first-order conditions of the Lagrangian. Each step involves the solution of a linear system of the

form (1) with n = 3N and m = p = N . For more details, we refer to [17].

In our numerical experiments we set η =
√
3π/4 and β = 0.5, which is known as the critical

switching value. The discretized matrix A is tridiagonal, so in all algorithms we solve systems Ax = r

directly by the function “\”, which uses a tridiagonal solver. We set P = BA−1BT and solve systems

Py = r using Cholesky factorization. Numerical results are listed in Tables 1 and 2 with N =

1023, 2047, 4095, 8191, 16383, where the parameter choices for GSOR and the corresponding notation

are as follows:

Method GSORa GSORb GSORc GSORd

(ω, τ, θ) (1, 1, 1) (0.95, 0.95, 0.95) (0.9, 0.8, 1) (0.95, 1, 0.95)

For this problem, A−CTD−1C is SPD, which guarantees convergence of the Uzawa-like method [4,

Theorem 3]. We set Q = BA−1BT and α = 1− νmax, where νmax = 0.1750 is the maximum eigenvalue

of A−1CTD−1C. MINRES, GMRES and BICGSTAB without preconditioning failed to solve this

problem. (For GMRES, we set the restart frequency to 100.) BICGSTAB hit an error condition.

Therefore in Table 2 we only report results from preconditioned MINRES and preconditioned GMRES.
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Table 1: CPU time for Cholesky factorization of P = BA−1BT .

N 1023 2047 4095 8191 16383
n 3069 6141 12285 24573 49149
m 1023 2047 4095 8191 16383
p 1023 2047 4095 8191 16383
n+m+ p 5115 10235 20475 40955 81915
BA−1BT 0.086 0.43 1.95 8.93 145.2

To see the role of the parameters in the convergence behavior of GSOR, Figure 1 shows the region of

the parameters where GSOR satisfies Res ≤ 10−8 within 5, 000 iterations, and the characteristic curves

of the number of iterations versus the parameters for N = 1, 023. In Figure 2, we plot the eigenvalue

distributions of the original matrix and the GSOR preconditioned matrix P−1A with different τ and ω.

Figure 1: Top left: The region of parameter values for which GSOR satisfies Res ≤ 10−8 within 5, 000 iterations. Other
plots: Characteristic curves for the number of iterations versus parameters ω, τ and θ for GSOR with ω = 1 (top right),
τ = 1 (bottom left), and θ = 1 (bottom right). All plots are for saddle-point systems from the liquid crystal directors
model with n = 3069, m = p = 1023.

5.2 Saddle-point systems from the mixed Stokes-Darcy model in porous media
applications

Fluid flow in Ωf ⊂ R2 coupled with porous media flow in Ωp ⊂ R2 is governed by the static Stokes

equations

−υ∆uf +∇ pf = f , and divuf = 0, x ∈ Ωf , (34)

where Ωf ∩ Ωp = ∅ and Ωf ∩ Ωp = Γ with Γ being an interface, υ > 0 is the kinematic viscosity, and

f is the external force.

In the porous media region, the governing variable is ϕ =
pp

ρfg
, where pp is the pressure in Ωp, ρf is

the fluid density, and g is the gravity acceleration. The velocity up of the porous media flow is related

to ϕ by Darcy’s law and is also divergence free:

up = − ϵ2

rυ
∇ϕ and − divup = 0, x ∈ Ωp, (35)

where r is the volumetric porosity, and ϵ the characteristic length of the porous media.
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Figure 2: Eigenvalue distributions of the original matrix and the GSOR preconditioned matrices for saddle-point systems
from the liquid crystal directors model with n = 3069,m = p = 1023.

Applying finite element discretization to the mixed Stokes-Darcy model (34)–(35) with the Dirichlet

boundary conditions leads to linear systems of form (1) [6].

In our numerical experiments, we set υ = 1, r = 1, and ϵ =
√
0.1. The computational domain is

Ωf = (0, 1)× (1, 2), Ωp = (0, 1)× (0, 1) and the interface is Γ = (0, 1)× {1}. We use a uniform mesh

with grid parameters h = 2−3, 2−4, 2−5, 2−6 to decompose Ωf , P2–P1 elements in the fluid region,

and P2 Lagrange elements in the porous media region.

For this problem, P is the pressure mass matrix discretized from the decoupled problem

of (34)–(35) [6]. In all algorithms we use Cholesky factorization to solve the systems Ax = r, Py = r

and BA−1BTy = r. Numerical results for saddle-point systems from the mixed Stokes-Darcy

model (34)–(35) are listed in Tables 3 and 4, where the parameters choices for GSOR and the corre-

sponding notation are as follows.

Method GSORa GSORb GSORc GSORd

(ω, τ, θ) (0.5, 1.5, 1.0) (0.5, 1.7, 0.8) (0.5, 1.6, 1.2) (0.6, 1.5, 1.0)

For this problem, νmax = 1.0057. The matrix A − CTD−1C is no longer SPD, so convergence of

the Uzawa-like method cannot be guaranteed [4, Theorem 3]. We tested several α ranging from 0.005

to 0.5 for h = 2−3. Uzawa failed in all cases. Thus, we do not report results for Uzawa in Table 4. As

MINRES and GMRES worked only for systems with h ≥ 2−5, we again do not report their results.

To see the role of the parameters in the convergence behavior of GSOR, Figure 3 shows the region

of parameters for which GSOR satisfies Res ≤ 10−8 within 5, 000 steps, and the characteristic curves

of iteration numbers versus parameters for h = 2−3. In Figure 4, we plot the eigenvalue distributions

of the original matrix and the GSOR preconditioned matrix P−1A with different τ and ω.
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Table 2: Numerical results for saddle-point systems from the liquid crystal directors model.

N 1023 2047 4095 8191 16383

Iter 24 24 25 25 26
GSORa CPU 0.20 1.08 4.81 23.86 226.04

Res 5.95e-09 8.42e-09 5.44e-09 7.70e-09 4.96e-09

Iter 15 15 16 16 16
GSORb CPU 0.12 0.64 3.03 15.35 152.79

Res 5.02e-09 7.09e-09 2.53e-09 3.57e-09 5.05e-09

Iter 16 17 17 17 17
GSORc CPU 0.14 0.71 3.29 15.28 160.58

Res 8.41e-09 1.82e-09 2.01e-09 2.34e-09 2.88e-09

Iter 14 14 14 14 14
GSORd CPU 0.11 0.59 2.83 12.64 132.68

Res 7.30e-10 9.62e-10 1.31e-09 1.81e-09 2.53e-09

Iter 18 18 18 20 20
UZAWA CPU 0.14 0.76 3.51 18.35 187.64

Res 4.01e-09 5.67e-09 8.02e-09 1.56e-09 2.22e-09

Iter 72 73 75 76 77
GBSORa CPU 0.56 3.12 14.80 70.90 773.60

Res 8.38e-09 9.23e-09 7.90e-09 8.69e-09 9.57e-09

Iter 29 30 30 31 31
GBSORb CPU 0.23 1.31 5.98 28.03 294.17

Res 7.91e-09 5.95e-09 8.42e-09 6.32e-09 8.95e-09

Iter 35 36 36 37 38
GBSORc CPU 0.27 1.59 7.13 34.63 356.66

Res 7.59e-09 6.34e-09 8.97e-09 7.51e-09 6.30e-09

Iter 13 13 13 14 14
BPMINRES CPU 3.50 18.10 96.25 837.49 10736.63

Res 2.67e-09 4.75e-09 9.35e-09 1.41e-09 1.51e-09

Iter 8 8 8 8 8
BPGMRES CPU 3.35 18.63 91.74 543.05 10609.10

Res 6.42e-09 1.34e-08 9.35e-09 7.74e-08 1.86e-07

Iter 8 8 8 8 8
GPGMRES CPU 1.80 8.17 40.53 251.52 3548.65

Res 9.00e-10 1.92e-09 4.99e-09 1.66e-08 7.79e-08

Table 3: The CPU time of the Cholesky factorization.

h 2−3 2−4 2−5 2−6 2−7

n 578 2178 8450 33282 132098
m 81 289 1089 4225 16641
p 289 1089 4225 16641 66049
n+m+ p 948 3556 13764 54148 214788
A 0.0008 0.0048 0.029 0.23 1.75
P 0.0003 0.0004 0.0011 0.02 0.10
BA−1BT 0.0064 0.18 7.18 555.59 31368.15

Tables 1 to 4 and Figures 1 to 4 illustrate that GSOR is a practical method, and its advantages

increase with the problem size. We see from Tables 1 to 4 that BPMINRES and BPGMRES are not

practical in terms of CPU times. Figures 1 and 3 indicate that the convergence rate of GSOR depends

strongly on ω, τ and θ. Figures 2 and 4 show that P greatly improves the eigenvalue distribution of

the original A.
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Table 4: Numerical results for saddle-point systems from mixed the Stokes-Darcy model.

h 2−3 2−4 2−5 2−6 2−7

Iter 50 49 49 47 47
GSORa CPU 0.05 0.15 0.89 10.19 54.22

Res 5.99e-09 9.80e-09 8.41e-09 9.53e-09 6.85e-09

Iter 50 50 50 50 50
GSORb CPU 0.03 0.15 0.91 10.13 64.10

Res 6.54e-09 5.93e-09 5.51e-09 5.82e-09 5.74e-09

Iter 50 50 50 50 49
GSORc CPU 0.04 0.15 0.90 10.02 62.91

Res 5.98e-09 5.19e-09 6.92e-09 7.00e-09 9.53e-09

Iter 48 45 42 39 38
GSORd CPU 0.04 0.14 0.80 7.70 49.98

Res 8.39e-09 8.53e-09 8.52e-09 9.63e-09 5.26e-09

Iter 158 150 141 132 124
GBSORa CPU 0.21 0.84 6.01 90.33 948.46

Res 9.79e-09 9.16e-09 9.46e-09 9.96e-09 9.77e-09

Iter 73 69 65 61 58
GBSORb CPU 0.08 0.36 2.74 41.47 441.51

Res 9.17e-09 9.18e-09 9.28e-09 9.57e-09 8.28e-09

Iter 44 42 40 37 35
GBSORc CPU 0.04 0.19 1.73 25.59 265.67

Res 9.33e-09 8.25e-09 7.38e-09 9.57e-09 8.61e-09

Iter 767.5 1491 2997.5 5912.5 13826.5
BICGSTAB CPU 0.09 0.41 2.23 21.51 288.07

Res 7.96e-09 7.64e-09 9.57e-09 4.76e-09 9.48e-09

Iter 18 18 18 17 18
BPMINRES CPU 0.13 0.71 6.11 216.39 3479.83

Res 8.34e-09 3.66e-09 1.49e-09 5.70e-09 2.85e-09

Iter 10 10 10 10 10
BPGMRES CPU 0.14 0.81 10.00 323.95 3992.25

Res 1.60e-09 1.56e-09 1.05e-09 7.06e-10 1.39e-09

Iter 24 24 25 26 27
GPGMRES CPU 0.14 0.84 3.53 17.34 92.48

Res 1.06e-09 4.98e-09 6.87e-09 1.53e-09 6.15e-10
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Figure 3: Top left: The region of parameter values for which GSOR satisfies Res ≤ 10−8 within 5, 000 iterations. Other
plots: Characteristic curves for the number of iterations versus parameters ω, τ and θ for GSOR with ω = 1 (top right),
τ = 1 (bottom left), and θ = 1 (bottom right). All plots are for saddle-point systems from the mixed Stokes-Darcy model
with n = 578, m = 81, p = 289.
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(d) P−1A with τ = 1, θ = 0.1

Figure 4: Eigenvalue distributions of the original matrix and the GSOR preconditioned matrices for saddle-point systems
from the mixed Stokes-Darcy model with n = 578,m = 81, p = 289.
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6 Conclusions

We presented a theoretical and numerical study of the GSOR method for solving the double saddle-

point problem (1). GSOR is convergent with suitable parameters ω, τ , and θ. Unlike existing work,

our proof is based on the necessary and sufficient conditions for all roots of a real cubic polynomial to

have modulus less than one. We analyzed a class of block lower triangular preconditioners P induced

from GSOR and derived explicit and sharp bounds for the eigenvalues of preconditioned matrices. The

numerical results presented are highly encouraging. GSOR requires the least CPU time, and especially

for larger problems, its advantages are clear. A shortcoming is the need to choose the three parameters.

A practical method to choose them is a topic for future research. 00000000
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